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AFIT/GOR/ENS/07-26 
Abstract 

 
 
 A control chart is often used to detect a change in a process.  Following a control 

chart signal, knowledge of the time and magnitude of the change would simplify the 

search for and identification of the assignable cause.  In this research, emphasis is placed 

on count processes where overdispersion has occurred.  Overdispersion is common in 

practice and occurs when the observed variance is larger than the theoretical variance of 

the assumed model.  Although the Poisson model is often used to model count data, the 

two-parameter gamma-Poisson mixture parameterization of the negative binomial 

distribution is often a more adequate model for overdispersed count data.  In this research 

effort, maximum likelihood estimators for the time of a step change in each of the 

parameters of the gamma-Poisson mixture model are derived.  Monte Carlo simulation is 

used to evaluate the root mean square error performance of these estimators to determine 

their utility in estimating the change point, following a control chart signal.   Results 

show that the estimators provide process engineers with accurate and useful estimates for 

the time of step change.  In addition, an approach for estimating a confidence set for the 

process change point will be presented. 
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CHANGE-POINT METHODS FOR OVERDISPERSED COUNT 
DATA 

 
 
 

1. Introduction 
 
 
 This chapter will start with some relevant background information on statistical 

process control (SPC) that sets the foundation for this research effort.  Following the 

background review, the problem definition will be introduced along with the research 

objectives and assumptions of this thesis.  The last section of this chapter will lay out the 

organization of this thesis. 

1.1 Review of Statistical Process Control 
 
 The focus of this research is on change-point estimation within an SPC context.  

Before going further with this research, a brief overview of SPC topics and terminology 

pertaining to this research is reviewed.  Refer to Montgomery [9] and Ryan [19] for more 

detailed descriptions of SPC and its applications. 

1.1.1 SPC Terminology and Concepts 
 
 Montgomery [9] defines statistical process control as a set of problem-solving 

tools that can be applied to a process to achieve stability and improve capability by 

reducing variability.  This term, process, is usually thought of in a manufacturing setting, 

but can include non-manufacturing settings as well.  Non-manufacturing processes can 

include tracking errors in some paperwork process of a business, or even monitoring 
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daily coalition casualties in the Iraq war, which is examined in Chapter 4.  Of the 

different SPC tools available, such as histograms and cause-and-effect diagrams, this 

research will only focus on the control chart, specifically the Shewhart control chart and 

the cumulative sum control chart.  Before getting into the specifics of each of these 

control charts, some overall SPC terminology needs to be addressed. 

 Any process, no matter how finely tuned, will always contain some variability.  

Natural variability, or uncontrollable variability, is inherent in any process.  A process 

operating in a state only affected by natural variability is said to be statistically in-

control.  However, other kinds of variability may be present in the output of a process.  

For instance, in a manufacturing context these non-natural sources of variability, or 

controllable sources of variability, may be introduced into a process by improperly 

calibrated machines, defective raw materials, or even human error.  Causes of these 

sources of variability are referred to as assignable causes.  A process is said to be out-of-

control if assignable causes are present.  Thus, one of the primary objectives of SPC is to 

quickly detect a change in the process, look for assignable causes, and take corrective 

action to bring the process back to a state of statistical control as quickly as possible. 

 One way a process can be monitored for changes is through the use of a control 

chart.  A basic Shewhart control chart can be seen in Figure 1.  The center line represents 

the expected in-control value of the quality characteristic being measured.  Examples of 

quality characteristics include numerical measurements like temperature or diameter, or 

frequency counts, such as the number of defects inspected per item.  The upper control 

limit (UCL) and lower control limit (LCL) are also shown.  The control limits are chosen 

in such a way that if the process is statistically in-control, then the rate at which the chart 
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falsely signals is controlled at some desired level.  In Figure 1, the observations are 

connected by a line to show how the observations evolve over time. 
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Figure 1:  Basic Control Chart 

 
 Control charts are closely related to hypothesis testing.  The control chart 

continually tests the null hypothesis that the process is statistically in-control.  If the 

observations stay within the control limits, this is equivalent to failing to reject the null 

hypothesis.  Likewise, a point plotted outside the control limits is equivalent to rejecting 

the null hypothesis.  For example, Figure 1 may represent some process where the 

hypothesized mean of the quality characteristic being measured is 10 units.  The 

hypothesis test is 
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 Looking at Figure 1, one can fail to reject the null hypothesis, which means that 

there is not enough evidence to conclude that the process is out-of-control.  Wackerly, 

Mendenhall, and Scheaffer [22] provide an excellent overview of mathematical statistics, 

including hypothesis testing. 

1.1.2 Shewhart Control Chart 
 
 The first control chart used in this thesis is the Shewhart control chart, named 

after Walter Shewhart, who developed these ideas while working at Bell Labs during the 

1920’s.  A general model used to construct a Shewhart control chart is as follows.  Let m 

denote a sample statistic measuring some quality characteristic of interest.  The mean of 

m is mμ  and the standard deviation of m is mσ .  The center line, upper control limit, and 

lower control limit are 

m m

m

m m

UCL L
CenterLine
LCL L

μ σ
μ

μ σ

= +
=

= −
         (1.1) 

where L denotes the distance of the control limits from the center line expressed in 

standard deviation units.  A control chart designed according to these principles is a 

Shewhart control chart, and using L = 3 creates a three-sigma (3σ ) control chart. 

 Integrating all of the above concepts and terminology, an SPC process monitored 

by a 3σ  control chart can be described as follows.  In phase 1, process data are gathered 

over some period of time in which the process is assumed to be in-control.  The data are 

analyzed, trial control limits are established using equation (1.1), and process engineers 
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then use the control chart to bring the process into a state of statistical control.  Once 

confident the process is in control and the actual 3σ  control limits of the in-control 

process have been calibrated, then phase II is implemented.  During phase II, the process 

is monitored by comparing the control chart statistic computed from each sample drawn 

to the control limits.  If the process shifts to an out-of-control state, the control chart will 

likely signal, and the process engineers can begin their search for any assignable causes 

that may have caused the process to change.  Their ultimate goal is to make appropriate 

process adjustments to get the process back into a state of statistical control as quickly as 

possible. 

 One way to evaluate the performance of a control chart implemented in phase II 

monitoring is to look at the Average Run Length (ARL).  ARL is defined as the number 

of observations plotted on the control chart before a point plots outside the control limits, 

signaling an out-of-control condition.  For a Shewhart control chart where the 

observations are uncorrelated, the ARL is calculated from 

1ARL = 
p

       (1.2) 

where p is the probability any point exceeds the control limits.  For a 3σ  control chart 

where the mean is the quality characteristic of interest,  p = 0.0027 is the probability that 

a point falls outside the control limits.  The average run length of the chart when the 

process is in-control 0(ARL )  is 

0
1ARL 370.

0.0027
= =  
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The interpretation is even if the process remains in-control, an out-of-control signal will 

be generated on average, every 370 samples.  Obviously a large 0ARL  is a desirable 

property of a control chart. 

 Shewhart control charts are designed a little differently depending on the quality 

characteristic being measured.  The two main types of Shewhart control charts are control 

charts for variables and attributes.  If the quality characteristic being measured can be 

represented on a numerical scale, such as temperature or length, the numerical scale is 

called variable.  The two main control charts for variables are x  and R charts (or S 

charts) used to monitor the mean and variance of numerical quality characteristics, 

respectively.  However, not all quality characteristics are represented numerically.  

Perhaps each item inspected is classified as conforming (nondefective) or nonconforming 

(defective).  Quality characteristics of this type are called attributes.  There are three 

main Shewhart-type control charts for attributes: 

1. p-charts for binomial counts.  Monitors the fraction of nonconforming product 

produced by a process. 

2. c-charts for Poisson counts.  Monitors the number of nonconformities observed. 

3. u-charts for Poisson counts.  Monitors the average number of nonconformities 

observed per unit. 

Again, the reader is referred to Montgomery [9] and Ryan [19] for more detailed 

descriptions of SPC, including the details of these control charts. 
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1.1.3 Cumulative Sum Control Chart 
 
 The Shewhart control chart is easy to implement, widely used, and good for 

detecting large changes in a process.  It is particularly useful during the phase I 

implementation of a process, where the process is not finely tuned yet.  Shewhart control 

charts have the disadvantage of only using information about the process contained in the 

last observation while ignoring the previous sequence of observations.  Cumulative sum 

(CUSUM) control charts are effective alternatives for detecting small changes, using 

information from the current and previous sequence of observations.  Therefore, 

CUSUMs are good choices to implement during the phase II monitoring of a process 

when the in-control process parameters are assumed to be known or sufficiently 

estimated.  Refer to Hawkins and Olwell [6] for a complete reference on CUSUM charts, 

including more detail regarding the theoretical foundations of the CUSUM discussed 

below.  

 The tabular CUSUM plots the statistics 

1max(0,  ( ) )i i iC y k C± ±
−= ± − +      (1.3) 

where iC±  is the cumulative sum at time i.  The algorithm cumulates the difference 

between an observed value iy  and a reference value k.  If the test statistic iC+  ( )iC−  

exceeds a decision interval h+  ( )h− , the chart signals that an increase (decrease) has 

been detected, suggesting the process is out-of-control.  The values of h±  and k ±  are 

selected based on desired ARL properties. 

 The CUSUM statistic above is derived from the sequential probability ratio test 

(SPRT), which uses observed data sequentially, employing each observation iy  as it 
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becomes available.  For each new T, the SPRT sequentially tests the null hypothesis 

0 0: iH Θ = Θ  i = 1, 2, ...,  T against the alterative hypothesis :a i aH Θ = Θ  i = 1, 2, ..., T .  

0Θ  and aΘ  are the in-control and pre-specified out-of-control values of the process 

parameters, respectively.  Each hypothesis is associated with a PDF 0 0( | )if y Θ  and 

( | )a i af y Θ  respectively. 

 In SPRT, the likelihood ratio is given by 
0 0

( | )
( | )1

a i a

i

T f y
i f yi

Z Θ±
Θ=

=∏ , while the log-

likelihood ratio is defined as 
0 0

( | )
( | )1

ln( )a i a

i

T f y
i f yi

C Θ±
Θ=

=∑ .  The SPRT operates by comparing 

iC±  to a decision interval h±  at each new observation.  New samples are collected until 

iC h± ±> ; the point that the test concludes in favor of aH .  In the CUSUM approach, the 

null hypothesis of in-control is never accepted.  Hence, the test is restarted each time the 

evidence favors the null hypothesis.  Thus, samples are obtained until the null hypothesis 

is rejected in favor of the alternative hypothesis. 

 It is worth noting the tabular CUSUM algorithm uses counters (or built-in change-

point estimators) that suggest when a process shift occurred.  For example, the quantity 

N +  indicates the number of consecutive periods or observations that the CUSUM iC+  has 

been nonzero.  As an example, suppose that the control chart signaled at period T = 20, 

with N + = 5.  This would indicate that five consecutive periods have elapsed since iC+  

rose above the value of zero.  Thus, it is likely the process was last in-control at period 20 

- 5 = 15, and that the shift likely occurred between periods 15 and 16.  After reviewing 

the basics of SPC and learning how a 3σ  control chart and CUSUM chart are used to 

detect changes in a process, the problem definition can now be defined. 
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1.2 Problem Definition 
 
 It was discussed above that a control chart is often used to detect a change in a 

process.  Following a control chart signal, knowledge of the time and magnitude of the 

change would simplify the search for and identification of the assignable cause.  In this 

research, emphasis is placed on count processes where the data are overdispersed, which 

implies that the observed variance is greater than the hypothesized variance.  This section 

will first discuss overdispersion in general.  Then, some discussion is provided that 

addresses the problem of estimating a process change point where the observations are 

overdispersed count data. 

1.2.1 Overdispersion 
 
 Consider a modeling scenario where the quality characteristic of interest is a 

count.  An event count is the realization of a non-negative integer-valued random variable 

[4].  Examples include the number of war casualties in Iraq per day, the number of 

defects a product manufacturer experiences per week, or the number of accidents a 

construction company observes per day.  It is well known that the Poisson probability 

distribution provides a reasonable probability distribution to model count data.  See 

Haight [5] for a comprehensive reference on the Poisson distribution. 

 Let iY  denote a random variable distributed Poisson( iλ ), where 0iλ >  is the rate 

parameter at time i and denotes the expected value of iY .  The Poisson probability mass 

function (PMF), a discrete function defined for [0,  1,  2,  ...]iy ∈ , is 
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( ) ( | )
!

i iy
i

i i i i
i

eP Y y f y
y

λ λλ
−

= = =     (1.4) 

 
where, ( | )i i iP Y y λ= denotes the probability that the random variable iY  will take on the 

value iy , given iλ . 

 Suppose it is postulated that 0iλ λ=  for all 1, 2,...,i T= .  Under Poisson model 

assumptions, one should expect that 0( ) ( )i iE Y Var Y λ= = , i.e., equidispersion, for all 

1, 2,...,i T= .  Unfortunately, this is rarely the case in practice.  More often the observed 

variance of a random sample is greater than the theoretical variance, implying that the 

count data are overdispersed.  If Poisson count data are collected over time in discrete 

samples, overdispersion can occur as a result of uncontrollable fluctuations in the rate 

parameter over this time domain. 

 For example, consider Figure 2.  The solid line represents a vector of 'i sλ , where 

the ith element is the value of the rate parameter for the ith sample.  This vector is 

generally not observable; instead, only the noisy counts can be observed (represented by 

circles in Figure 2). 
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Figure 2:  Overdispersed Count Data 

 
 Under the postulated model that 0iλ λ=  for all 1, 2,...,i T= , the sample mean and 

sample variance of the 100 observations should be nearly equal.  The estimate of the 

mean of the data in Figure 2 is given by $0 10.40λ = , whereas the variance is estimated to 

be �
2

41.58yσ = .  This overdispersion is a direct result of the fluctuations in the 'i sλ  over 

the sampling interval.  If the rate parameter remains constant over the sampling interval, 

then the data are no longer overdispersed, as shown in Figure 3.  The estimate for the 

mean of the count data in Figure 3 is given by $0 9.48λ = , whereas the variance is 

estimated to be �
2

9.57yσ = .  Clearly, the mean of the data is much closer to the variance 

of the data given in Figure 3. 

( )i
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Figure 3:  Equidispersed Count Data 

 
 It was discussed above that the Poisson probability distribution is often not an 

adequate means to model overdispersed count data.  Again, this is due to the observed 

variance of a random sample being greater than the theoretical variance.  Thus, one 

objective of this research is to derive a probability distribution that will adequately 

account for overdispersion in count data that is otherwise distributed as Poisson.  In this 

section overdispersion was defined.  It is shown in Chapter 3 that the two-parameter 

gamma-Poisson mixture model is a reasonable model for overdispersed count data.  The 

next section will discuss the problem of change-point estimation within an SPC setting, 

where the count data are assumed to be overdispersed. 

1.2.2 Change Point Estimation 
 
 Often the process engineer would like to not only detect a change in the process, 

but also estimate when the change actually occurred.  Knowledge of the time and 

magnitude of the change would simplify the search for and identification of the 

( )i
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assignable cause.  Having an estimate for the change point can reduce the costs 

associated with misdiagnosing a control chart signal.  These costs include the time and 

resources used to track down any assignable causes, as well as any costs associated with 

unnecessary process adjustments.  Thus, the primary focus of this research is to derive 

and evaluate maximum likelihood change-point estimators (MLEs) for the time of a step 

change in each of the parameters of the gamma-Poisson mixture model following a 

genuine control chart signal.  After a control chart detects the process change, the 

engineer can very quickly isolate when the true change may have occurred by using the 

estimated change point as a guide. 

1.3 Research Objectives and Assumptions 
 
The objectives of this research are as follows: 

1. Derive the gamma-Poisson mixture model that will be used throughout this 

research effort. 

2. Derive a change-point estimator for the time of step change in each of the 

parameters of the gamma-Poisson mixture model using the method of 

maximum likelihood estimation. 

3. Use Monte Carlo simulation to evaluate the root mean square error 

performance of the change-point estimators. 

4. Present and evaluate an approach based on the likelihood function for 

estimating a confidence set for the process change point. 
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The assumptions made in this research are as follows: 

1. This research effort will investigate change-point estimation techniques for 

the two-parameter gamma-Poisson mixture model.  In the first case, it is 

assumed that the process experiences a step change in the location parameter 

following some unknown change point τ .  That is, the process starts in an in-

control state where the actual in-control mean is known or sufficiently 

estimated from a phase I study.  After some unknown point in time, τ , the 

process mean suddenly shifts to some unknown, out-of-control value and 

remains at that value until detected and corrected by the process engineer. 

2. For the second case, the assumption is that the process experiences a step 

change in the overdispersion parameter following some unknown change 

point τ .  That is, the process starts in an in-control state where the actual in-

control overdispersion parameter is known or sufficiently estimated from a 

phase I study.  After some unknown point in time, τ , the overdispersion 

parameter suddenly shifts to some unknown, out-of-control value and remains 

at that value until detected and corrected by the process engineer. 

1.4 Thesis Organization 
 
 This thesis is divided into five chapters.  Chapter 1 presented relevant background 

information on SPC, the motivation for this research, and the problem to be studied.  

Then, the research objectives and assumptions of this thesis were presented.  Chapter 2 

reviews relevant literature concerning change-point estimation within an SPC context.  

Chapter 3 develops the mathematical foundation for the proposed change-point 
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estimators.  Chapter 4 discusses the Monte Carlo simulation study that was used to 

evaluate the performance of the proposed methodologies, and presents the results.  Last, 

Chapter 5 presents the conclusions of this research and proposes recommendations for 

future research. 

 



16 

2. Literature Review 
 
 
 Pignatiello [16] points out that very little attention has been given to change-point 

estimation in the quality engineering literature.  This chapter presents relevant change-

point estimation research, as applied within an SPC context, which has been given 

attention in the literature.  This literature shows processes that experience step changes, 

linear trends, and monotonic changes have been studied for normal, Poisson, and/or 

binomial processes.  First, this chapter starts with a review of a change-point model 

designed for step changes. 

2.1 Overview of a Change-Point Model 
 
 The change-point model used in this research is attributed to Hinkley [7].  

Hinkley proposed a change-point model for step changes in normal process means.  

Montgomery [9] states that the change-point procedure is very good at estimating the 

point in time when a process has changed, and that it should be given wider attention in 

process monitoring problems.  Montgomery gives an introduction to the change-point 

model, under normal theory assumptions, applied within an SPC context.  Now a change-

point model for step changes is defined. 

 Consider a process where a sustained shift has occurred in a parameter, Θ .  The 

change-point model is defined as 

0 0~ ( ),  i 1, 2,...,
~ ( ),  i 1, 2,...

i

i a a

y f
y f t t T

τΘ =
Θ = + +

       (2.1) 

where the in-control distribution is 0 0( )f Θ  up to and including sample τ , the unknown 

change point.  The sustained parameter shift occurs between τ  and 1τ + , and 
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observations are sampled from the out-of-control distribution ( )a af Θ  from time 1τ +  to 

T.  Note, Θ  can represent a vector of parameters, as well as a single parameter.  Now that 

the basic change-point model has been introduced, some relevant literature on change-

point estimation, within an SPC context, will be discussed. 

2.2 Change-Point Estimation 
 
 This section will review relevant literature on change-point estimation considered 

in the quality engineering literature.  The reader is referred to Basseville and Nikiforov 

[1] for a more general coverage of change-point detection and estimation algorithms. 

 Three probability models often used in SPC applications are the normal, Poisson, 

and binomial distributions.  The normal distribution is probably the most important 

distribution in the theory and application of statistics.  For instance, normal theory is the 

foundation for Shewhart x  charts.  The Poisson probability model is an important 

discrete distribution used in SPC.  In a manufacturing context, for example, the Poisson 

model is often used to model the number of defects (or nonconformities) that occur 

within an inspection unit.  Likewise, the binomial probability model is another important 

discrete distribution used in SPC.  This discrete distribution is often an appropriate model 

for sampling from a large population, where parameter p represents the fraction of 

defective (or nonconforming) items in the population.  The relevant change-point 

estimation literature concerning these distributions is discussed next. 
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2.2.1 Normal Case 
 
 Samuel, Pignatiello, and Calvin [21] consider monitoring a process with a 

Shewhart x  control chart.  They suggest using the method of maximum likelihood 

estimation to estimate the time of a step change in the mean of the process.  These 

authors acknowledge that a Shewhart control chart can signal some time later from when 

a change actually occurred in the process mean.  Thus, they argue the importance of 

having an estimate of the process change point.  They derive their estimator and then 

evaluate its performance using Monte Carlo simulation.  They show that applying the 

MLE following a genuine Shewhart control chart signal provides an accurate estimate for 

the change point. 

 Khoo [8] used the MLE proposed by Samuel, Pignatiello, and Calvin [21] to 

identify the time of a permanent shift in the mean of a process being monitored by 

CUSUM control charts.  He concluded that using this change-point estimator with the 

CUSUM, rather than the Shewhart x  control chart, offers some advantages.  Namely, for 

small shifts, the expected run length is lower than that of the x  chart, therefore allowing 

process improvement to be carried out earlier. 

 Pignatiello and Samuel [16] compare the MLE of the time of a step change in a 

normal process mean to the built-in change-point estimators offered by the CUSUM and 

exponentially weighted moving average (EWMA) control charts.  Nishina [10] points 

out that the CUSUM, EWMA, and moving average charts are similar with respect to 

estimating a process change point, but that the CUSUM is more efficient than the other 

two in change-point estimation.  Using Monte Carlo simulation, Pignatiello and Samuel 
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[16] show that the performance of the MLE is better than the built-in estimators of both 

the EWMA and CUSUM when the entire range of step change magnitudes is considered.  

Not only do they consider just the point estimate, but they also propose a confidence set 

for the time of the process change.  The estimated change point denotes the most likely 

location for a step change in the parameter of interest, while the confidence set provides a 

window of potential locations to search for an assignable cause.  A confidence set on the 

process change point is an advantage of using the MLE as opposed to the CUSUM or 

EWMA change point estimators.  Note, while EWMA control charts were not considered 

for this thesis, an interested reader may refer to Roberts [18] or Montgomery [9] for 

further details on this control chart. 

 Rather than assuming the out-of-control process behavior is adequately modeled 

by a step function, Perry and Pignatiello [12] derive the MLE for the time of linear trend 

change in a normal process mean.  They compared performance results between their 

estimator and that suggested by Samuel, Pignatiello, and Calvin [21] following genuine 

x  control chart signals when a linear trend disturbance was present.  Perry and 

Pignatiello [12] use Monte Carlo simulation to evaluate the performance of their 

estimator.  They show that for a process where a linear trend is present, the MLE of the 

process change point derived for linear trends outperforms the MLE for step changes.  

They also evaluated the performance of the proposed estimator when the distribution of 

the random variable being monitored is not exactly normal.  It was shown that the 

estimator performs well when the distribution is symmetric, but heavier-tailed than the 

normal.  Last, they presented an approach using the likelihood function for estimating a 
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confidence set.  This would provide process engineers a smaller subset of observations to 

investigate for an assignable cause of the process change. 

 Park and Park [11] argue that the x  chart is affected by changes in the process 

variance as well as the process mean.  For example, many of the authors cited above will 

estimate the time of process change based on a change in the mean alone.  Park and Park 

state that when the x  chart issues a signal, a wrong conclusion could be reached if the 

change-point estimator considers a change in the process mean only.  Thus, they apply a 

joint estimator of a change point to the x  and S control charts, which considers the 

change in the process mean and variance simultaneously.  Using Monte Carlo simulation 

they showed that the proposed estimator performed well irrespective of subgroup size 

over various changes in both the process mean and variance. 

2.2.2 Poisson Case 
 
 Samuel and Pignatiello [20] derived their estimator for a Poisson process under 

the assumption of a step change in the Poisson rate parameter λ .  They applied the 

proposed estimator after a signal from a c-chart.  Using Monte Carlo simulation to 

evaluate the performance of their proposed estimator, they concluded overall good 

accuracy and precision performance.  They demonstrated that the estimator improves as 

the magnitude of the step change increases. 

 Perry, Pignatiello, and Simpson [15] derived and evaluated the MLE of the 

process change point using the change likelihood function for a linear trend in a Poisson 

rate.  As expected, their proposed estimator provides good overall accuracy and precision 

performances for a process that experiences a linear trend relative to the MLE derived for 
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step changes.  They note that if the MLE derived for step changes is applied to processes 

that experience a linear trend, the estimator will tend to overestimate the true change 

point. 

 As discussed above, many different change-point methods have been suggested.  

Most of these methods assume the type of change in a process parameter is known before 

hand.  Perry, Pignatiello, and Simpson [14] propose a maximum likelihood estimator for 

the time of change of a Poisson rate parameter without requiring exact knowledge, a 

priori, regarding the exact form of the change present.  They evaluated the performance 

of their estimator relative to that achieved by the estimator suggested by Samuel and 

Pignatiello [20] following genuine Poisson CUSUM control chart signals and across 

several types of monotonic behavior in the rate parameter.  These monotonic functions 

include sudden step, linear trend, exponential, and log functions.  Perry, Pignatiello, and 

Simpson [14] concluded it is better to use their proposed estimator when the form of the 

change present is only known to be monotonic.  Their proposed method is important 

since process engineers rarely know the type of change before hand. 

2.2.3 Binomial Case 
 
 The discussions above on change-point estimation have focused on normal and 

Poisson processes that experience step changes, linear trends, and even the more general 

monotonic changes.  Regarding change-point estimation for binomial processes, 

Pignatiello and Samuel [17] consider a step change in p, the process fraction 

nonconforming.  They propose an estimator using the method of maximum likelihood 

estimation to estimate when the change in p began.  This estimator can be applied after a 
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p-chart or an np-chart has detected a change.  Monte Carlo simulation was used to show 

that the estimator provides accurate and precise estimates of the time of a step change 

when the magnitude of the change in p is at least 10% and larger.  They also stress the 

ease of using this method in a spreadsheet application. 

 Perry and Pignatiello [13] also considered a process that experiences a step 

change in the process fraction nonconforming.  They compared the performance of the 

MLE proposed by Pignatiello and Samuel [17] to built-in change-point estimators from 

binomial CUSUM and EWMA control charts.  They concluded that the MLE of the 

change point will provide an overall better estimate of the process change point when 

compared to the built-in estimates of the CUSUM and EWMA.  They do point out that 

the only exception to this is when the process changes to the pre-specified magnitude of 

change used to design the CUSUM or EWMA control charts.  However, since these 

magnitudes are rarely known before hand, the MLE is still the better choice overall. 

2.3 Conclusion 
 
 This chapter started with a review of a change-point model for step changes.  

Next this chapter reviewed some relevant literature on change-point estimation as applied 

within an SPC context.  As discussed, processes that experience step changes, linear 

trends, and monotonic changes in general have been studied for normal, Poisson, and/or 

binomial processes.  However, the case of estimating a change point in a process 

parameter, where the observations are overdispersed counts, has currently not received 

much, if any, attention in the quality engineering literature.  Hence, that is the focus of 

this research.  The methodology of this research will be developed next. 
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3. Methodology 
 
 
 This chapter focuses on the mathematical models used for this research.  First, the 

gamma-Poisson mixture model is derived.  It is the probability model that will be the 

basis for modeling overdispersed count data in this thesis.  Then, two different step-

change scenarios will be addressed.  The change-point model for a process that 

experiences a step change in mean is defined, followed by the derivation of the MLE of 

the process change point.  Next, the change-point model for a process that experiences a 

step change in the overdispersion parameter of the underlying probability distribution is 

defined.  Then, the corresponding MLE of the process change point for this parameter 

will be derived.  Last, the method of building a confidence set to capture the true change 

point is discussed. 

3.1 Derivation of the gamma-Poisson Mixture Model 
 
 The Poisson distribution was defined previously in equation (1.4) to introduce the 

idea of overdispersion.  For completeness of deriving the gamma-Poisson mixture model, 

it will be restated here. 

 Let iY  denote a random variable distributed as Poisson( iλ ), where 0iλ >  is the 

rate parameter at time i and denotes the expected value of iY .  The Poisson probability 

mass function (PMF) is a discrete function defined for [0,  1,  2,  ...]iy ∈  given by 

( ) ( | )
!

i iy
i

i i i i
i

eP Y y f y
y

λ λλ
−

= = =     (3.1) 
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where, ( | )i i iP Y y λ= denotes the probability that the random variable iY  will take on the 

value iy , given iλ . 

 Suppose that it is postulated that 0iλ λ=  for all 1, 2,...,i T= .  Then under Poisson 

model assumptions, one should expect that 0( ) ( )i iE Y Var Y λ= = , i.e., equidispersion, for 

all 1, 2,...,i T= .  Unfortunately, this is rarely the case in practice.  Instead it is often true 

that the observed variance of a random sample is greater than the theoretical variance, 

implying that the count data are overdispersed.  If Poisson count data are collected over 

time in discrete samples, overdispersion can occur as a result of uncontrollable 

fluctuations in the rate parameter over this time domain. 

 It is reasonable to assume the variability in iλ  is well modeled using the flexible, 

two-parameter gamma probability distribution.  Let 0iλ >  be distributed gamma ( , )α β , 

where ν
αβ = , 0α > is the shape parameter, and 0β >  is the scale parameter.  The 

gamma PDF is a continuous distribution with non-negative support defined as 

 

1

( | , ) .
( )

i

i
i

ef

λ
α β

α

λλ α β
α β

−
−

=
Γ

      (3.2) 

 
 If iλ  denotes a random variable possessing a gamma distribution with parameters 

α  and β  for 1,  2,  ...,  Ti = , then it is easily shown that ( )iE λ ν=  and 2( )iVar ν
αλ = .  In 

equation (3.2), ( )zΓ  denotes the gamma function where for a non-negative integer z, 

( 1) !z zΓ + = , where ! denotes the factorial function. 
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The joint density function, using the parameterization ν
αβ = ,  is given as 

 
( , ) ( | ) ( )i i i i if y f y fλ λ λ=  

 

                    ( )( 1)

.
( 1) ( )

i
i iy

i

i

e e
y

αλ
ν

αλ α ν
αλ

α

−−− + −

=
Γ + Γ

                      (3.3) 

 
Thus, the marginal distribution of iy  for 1,  2,  ...,  Ti =  is 
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which is the well-known gamma-Poisson mixture parameterization of the negative 

binomial distribution with parameters 0r > , where r α=  and [0,1]p∈ , where p α
α ν+= .  

This model is employed as the underlying model for the data in this research.  The 

negative binomial model in equation (3.4) can also be written in the more familiar form 

as 

  
(1 ) iy r

iK p p−       (3.5) 
 

where the constant ( )
( 1) ( )

i

i

y r
i y rK Γ +

Γ + Γ= , (1 ) rp ν
ν+− = , and r

rp ν+= .  For the remainder of this 

thesis, the expanded form shown in equation (3.4) will be used.  Note, by rewriting 

equation (3.4) as  
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and calculating lim ( )if y

α→∞
 yields 
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which is the Poisson probability mass function.  This shows that the Poisson distribution 

is a limiting form of the negative binomial distribution as α  goes to infinity.  Therefore, 

α  can be interpreted as a parameter accounting for any overdispersion that may have 

occurred in the data.  Hence, α  is referred to as the overdispersion parameter.  Next, the 

mean and variance of the negative binomial distribution are calculated from the moment 

generating function. 

 The moment generating function of ( )if y  is 
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              (3.6) 

 
The first moment of iY  about the origin (i.e., the expected value or mean) is calculated as 
 

' (1)
1 ( ) (0)iu E Y m= =  

 
                                                            .ν=              (3.7) 
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Likewise, the second moment about the origin of iY  is  
 

' 2 (2)
2 ( ) (0)iu E Y m= =  

 
                                                           22 .ν

αν ν= + +          (3.8) 
 

 
Thus, the variance of iY  can be calculated as 
 

2 2( ) ( ) ( )i i iVar Y E Y E Y= −  
 

                                                       22 2( )ν
αν ν ν= + + −  

 
                                                              2 .ν

α ν= +          (3.9) 
 

 Note that if 2lim( )ν
αα

ν
→∞

+  is calculated, ( ) ( )i iVar Y E Yν= = .  Thus, as α  goes to 

infinity, the variance approaches the theoretical variance of a Poisson random variable.  

Now that the probability model for this research has been derived, the change-point 

models can be defined and the proposed estimators derived. 

3.2 Change-Point Model for a Step Change in Mean 
 
 The change-point model for a step change in mean is parameterized as follows: 

0
~ ( , ),  i 1, 2,...,

~ ( , ),  i 1, 2,... .
a

i

i

y NB

y NB T

α
α ν

α
α ν

α τ

α τ τ
+

+

=

= + +
         (3.10) 

 This model assumes an in-control process with distribution NB(
0

, α
α να + ) up to and 

including a point τ , the unknown change point.  Assume α , the overdispersion 

parameter, and 0ν , the in-control mean, are both known or sufficiently estimated. 

Between times τ  and 1τ +  the process shifts to a new level, 0aν ν≠ , and the process 
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continues with a sustained shift in mean with the distribution NB( ,
a

α
α να + ).  For this 

research, aν  is the unknown mean after the process experiences the step change, and T 

denotes the time of the control chart signal.  This change-point model can be used to 

derive a maximum likelihood estimator for the process change point, which is shown 

next. 

3.3 Derivation of the MLE When aν  is Unknown 

 
 The proposed MLE of the change point is denoted as ντ$ .  Assuming a process 

change point at τ , the likelihood function, derived from equation (3.4) is 

0

0 0
1 1

( , | ) ( ) ( ) ( ) ( )ai i

a a

T
y y

a i i i
i i

L y K K
τ

ν να αα α
α ν α ν α ν α ν

τ

τ ν + + + +
= = +

=∏ ∏               (3.11) 

where ( )
( 1) ( )

i

i

y
i yK α

α
Γ +

Γ + Γ= . 

 Assuming there has been a single change point, the goal is to estimate τ , the 

unknown change point.  The MLE of τ  is the value of τ  that maximizes the likelihood 

function in equation (3.11), or equivalently its logarithm.  Taking the natural logarithm of 

equation (3.11) and simplifying (less the constant iK ) yields the log-likelihood function 

0

0 0 ,( , | ) ln( ) ln( ) ( ) ln( ) ln( ) .a

a aa i Tl y y T yν να α
τ τα ν α ν α ν α ντ ν τ α τ α+ + + +

⎡ ⎤ ⎡ ⎤= + + − +⎣ ⎦ ⎣ ⎦     (3.12) 

 Again, the objective is to estimate the unknown change point τ ; however, there 

are two unknowns in the log-likelihood function:  and aτ ν .  An estimate for aν  is 

needed to maximize the log-likelihood function.  If the value of τ  was known, then the 

value of aν  that maximizes the log-likelihood function is given by the solution to 
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( )2
1

, ( ) ( ) ( ) 0.
a

a a
T a

a a a

y Tl T
ν

τ α ν α ν
τ α ν τ α

ν ν α ν

+ +
⎡ ⎤− − +∂ −⎢ ⎥⎣ ⎦= − =

∂ +
 

 
Solving this in terms of aν  yields 
 

,ˆ ( )a Ty τν τ =  
 

where 1
, 1

( ) T
T ii

y T yτ τ
τ −

= +
= − ∑ .  Making this substitution into the log-likelihood function 

of equation (3.12) gives 

,0

0 0 , ,,( | ) ln( ) ln( ) ( ) ln( ) ln( ) .T

T T

y
i T y yl y y T y τ

τ τ

ν α α
τ τα ν α ν α ατ τ α τ α+ + + +

⎡ ⎤⎡ ⎤= + + − +⎣ ⎦ ⎣ ⎦       (3.13) 

 
 Now the log-likelihood function has only one unknown parameter, the change 

point τ .  Evaluating equation (3.13) over all possible integer change points 

[0,1,... 1]t T∈ −  in search of the maximum yields 

 
{ }

0
ˆ arg max ( | )i

t T
l t yντ

≤ <
=            (3.14) 

 
where ντ$  is the maximum likelihood estimate of the last observation taken from the in-

control process.  The MLE of τ  will be applied to data obtained following a control chart 

signal.  To make this concept more concrete, consider the simulated example shown next. 
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3.3.1 MLE Example 
 
 Consider a fabric manufacturing process.  The quality characteristic being 

measured is the number of defects in each 6’x10’ section of fabric produced.  The 

manufacturing process is very difficult to get to the point where there are no defects.  In 

fact the in-control mean number of defects is two per 60 square feet of fabric, i.e. 0 2ν = .  

For this example, the overdispersion parameter, α , is assumed to be 10.  Calculating the 

control limits for the 3σ  control chart yields UCL = 6.64 and LCL = 0.  If the number of 

defects equals 7 or greater, then the fabric will be considered defective and will be 

scrapped.  The number of defects per unit of fabric is shown in Table 1. 

Table 1:  Observed Count at Each Observation i 

Observation 
i 

Number of 
Defects 

Observation 
i 

Number of 
Defects 

1 2 15 0 
2 1 16 3 
3 2 17 3 
4 2 18 2 
5 3 19 1 
6 1 20 0 
7 0 21 1 
8 2 22 1 
9 1 23 2 
10 4 24 1 
11 0 25 1 
12 3 26 3 
13 3 27 4 
14 0 28 7 

 

 Twenty seven units of fabric were inspected and determined to be within the 

control limits and the 28th unit of fabric exceeded the UCL.  Thus, the 3σ  control chart 

signaled at time T = 28.  The proposed estimator was applied after the control chart 
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signaled.  In applying the proposed change-point estimator, each potential change point, t, 

needs to be used to calculate its corresponding log-likelihood value from equation (3.13). 

 To evaluate equation (3.13), first all the averages, 1
, 1

( ) T
T t ii t

y T t y−
= +

= − ∑ , and 

1
1

( ) t
t ii

y t y−
=

= ∑  need to be calculated.  Recall in this example that T = 28.  To evaluate 

equation (3.13) for, say, potential change point t = 26, calculate ,T ty , and ty  as 

281 4 7
28,26 227

  (2)     5.5ii
y y− +

=
= = =∑  and 261 2 1 ... 1 3

26 261
 (26)     1.6154ii

y y− + + + +
=

= = =∑ . 

 Bringing these values and the other known parameters into equation (3.13) yields 

a log-likelihood value of -142.82 for t = 26.  Evaluating equation (3.13) over all t will 

provide the value of t that achieves the maximum log-likelihood value, which is 26ντ =$ .  

All log-likelihood values for this example are shown in Table 2. 

 In this example t = 26 gives the largest log-likelihood value.  That is, the proposed 

estimator calculates the change point at 26ντ =$ .  The conclusion is that observation i  = 

26 is the last observation from the in-control process and observation i = 27 is the first 

observation from the out-of-control process. Process engineers would be instructed to 

look for a change in the process between observations 26 and 27.  Note that the simulated 

change point for this example is τ  = 25.  In this example, the point estimate is off by 

one, which also alludes to the usefulness of confidence sets (covered later) to capture the 

true change point.  A similar example was done by Samuel, Pignatiello, and Calvin [21] 

for a step change in the normal process mean. 
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Table 2:  Log-Likelihood Values at each Potential Change Point 

Observation 
i 

Number 
of Defects t 

Log -
Likelihood 

Value 
1 2 0 -145.9449 
2 1 1 -145.9423 
3 2 2 -145.9807 
4 2 3 -145.9794 
5 3 4 -145.9780 
6 1 5 -145.9296 
7 0 6 -145.9747 
8 2 7 -146.0133 
9 1 8 -146.0133 
10 4 9 -146.0024 
11 0 10 -146.0016 
12 3 11 -146.0012 
13 3 12 -146.0133 
14 0 13 -145.9992 
15 0 14 -145.9986 
16 3 15 -145.8752 
17 3 16 -145.9460 
18 2 17 -145.9947 
19 1 18 -145.9928 
20 0 19 -145.9245 
21 1 20 -145.6326 
22 1 21 -145.3570 
23 2 22 -144.9582 
24 1 23 -144.7837 
25 1 24 -144.0714 
26 3 25 -142.9806 
27 4 26 -142.8196 
28 7 27 -143.1652 

 

3.4 Change-Point Model for a Step Change in the Overdispersion Parameter 
 
 The previous section defined the change-point model and derived the 

corresponding estimator for the case where a step change occurred in the mean of the 

process.  This section considers the case where the process experiences a step change in 

the overdispersion parameter, α .  The change-point model is parameterized as follows: 
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 This model assumes an in-control process with distribution NB( 0

00 , α
α να + ) up to 

and including the unknown change point, τ .  Assume 0α , the in-control overdispersion 

parameter, and ν , the process mean, are both known. Between times τ  and 1τ +  the 

process experiences a shift in the overdispersion parameter to a new level, 0aα α≠ , and 

the process continues with a sustained shift with the distribution NB( , a

aa
α

α να + ).  For this 

research, aα  is the unknown overdispersion parameter after the process experiences the 

step change, and T denotes the time of the control chart signal.  This change-point model 

is used to derive a maximum likelihood estimator for the process change point. 

3.5 Derivation of the MLE When aα  is Unknown 

 Assuming a process change point at τ , the likelihood function derived from 

equation (3.4) is 

0 0 0

0 0 0
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Γ + Γ + + Γ + Γ + +

= = +

=∏ ∏         (3.16) 

 The goal is to estimate τ , under the assumption that there is a single, unknown 

change point.  The MLE of τ  is the value of τ  that maximizes the likelihood function in 

equation (3.16), or equivalently its logarithm.  Taking the natural logarithm of equation 

(3.16) and simplifying (less a constant, ( )ln yi

iy
ν
Γ ) yields the log-likelihood function 
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 Again, the objective is to estimate the unknown change point, τ ; however, there 

are two unknowns in the log-likelihood function of equation (3.17): τ  and aα .  A value 

for aα  is needed to maximize this log-likelihood function.  If the value of τ  were known, 

then the value of aα  that maximizes the log-likelihood function is given by the solution 

to 

T
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i ( )
i = +1
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where ln ( )( ) x
xxψ ∂ Γ
∂= .   

 Since there is no closed-form solution for aα ,  Newton’s method will be used to 

evaluate equation (3.18) over each potential change-point value.  This provides an 

estimate of aα  for each potential τ .  Substituting an estimate, � ( )aα τ , for each aα  in 

equation (3.17) yields 
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 Now the log-likelihood function in equation (3.19) has only one unknown 

parameter, the change point, τ .  Evaluating equation (3.19) over all possible integer 

change points [0,1,..., 1]t T∈ −  in search of the maximum yields 

{ }
0

ˆ arg max ( | )i
t T

l t yατ
≤ <

=                                            (3.20) 
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where ατ$  is the maximum likelihood estimate of the last observation taken from the in-

control process.  The next section gives a short summary of Newton’s method and how it 

was used to estimate aα  in this thesis. 

3.6 Newton’s Method for Finding the MLE of aα  

 
 Newton’s method is a derivative-based algorithm that uses a linear approximation 

to find roots (zeros) for real-valued functions.  Consider finding the root of some 

differentiable function f .  Given some current approximation, kx , a better 

approximation, 1kx + , may be found using 

1
( ) .
'( )

k
k k

k

f xx x
f x+ = −                       (3.21) 

 Given an initial guess, 0x , chosen near the root of the function f , and an 

appropriate stopping scheme, equation (3.21) should converge at the root of f.  The reader 

is referred to Burden and Faires [3] for more detail regarding Newton’s method.  Now, 

some discussion is provided on the application of Newton’s method to the problem 

presented in this thesis. 

 If τ  was known, Newton’s method could be used to solve for aα  in equation 

(3.18).  The estimate, � aα , at the k+1st iteration can be calculated explicitly from 
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where ,0aα  is the initial guess, ln ( )( ) digamma function = x
xxψ ∂ Γ
∂= , and (1, )xψ  is the 

trigamma function.  For this thesis, the initial guess was chosen to be ,0 0.01aα = . 

 Estimates for aα  can be obtained at each potential change point, [0,1,... 1]t T∈ − , 

using the iterative procedure defined in equation (3.22) given the vector of observations 

y .  The stopping scheme should terminate the iterative procedure if � �
, , 1a k a kα α +−  is 

sufficiently small.  For example, if the square root of the sum of squares of the difference 

of the last two iterations (i.e., the 2-norm) is less than, say, 1.0 x 10-6.  The estimator from 

equation (3.22) is then used for the evaluation of the argument of equation (3.20).  An 

example of Newton’s method, coded in MATLAB, is provided in Figure 4. 

 a_k = 0.01; %Initial guess 
 tol = 10^(-6); %Tolerance 
 N = 80; %Number of iterations 
 
      for k = 1:N 
        %Numerator of equation (3.22) 
        P=0; 
        P = sum((psi(0,y(t+1:T)+a_k) - psi(0,a_k) - ... 
            ((y(t+1:T)+a_k)./(a_k + v)) + log(a_k/(a_k+v)) + 1)); 
 
         %Denominator of equation (3.22) 
        Q=0; 
        Q = sum((psi(1, y(t+1:T)+a_k) - psi(1, a_k) + ... 
            ((a_k.*y(t+1:T) + v^2)/(((a_k+v)^2)*a_k)))); 
 
         %Newton steps 
        a_k1 = a_k + (-P/Q); 
        error = norm(a_k - a_k1, 2); 
        a_k = a_k1; 
 
        if error < tol 
           break 
        End 
        if a_k <= 0 %Constraint to keep a_k positive 
           a_k = 10,000; %Set "large" 
           break 
        end 
     end 

Figure 4:  Newton's Method Coded in MATLAB 
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3.6.1 Additional Newton Method Constraint 

 It was noticed in some instances of Newton’s method that � aα  grows very large 

and then turns negative due to a sign change in the numerator of equation (3.22) (denoted 

as P in Figure 4).  However, it is defined that 0α > .  Therefore, the additional constraint, 

shown in the code of Figure 4, was added to Newton’s method to keep the estimates of 

aα  positive.  Since the maximum of the log-likelihood function of (3.17) in these cases is 

achieved for very large aα , � aα  is set to a large value (i.e., � 10,000aα = ).  Figure 5 shows 

the effect of increasing α  over the log-likelihood function, as well as the numerator (P) 

and denominator (Q) of equation (3.22) for a single observation y.  Notice that the 

denominator (Q) of (3.22) is always negative, which is a necessary condition for (3.17) to 

have a maximum. 
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Figure 5:  Plots Showing the Effect of Increasing α  Over the Log-likelihood Function, and 
P and Q from MATLAB code in Figure 4 for Single Observation y.  =5 and y=5.ν  
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3.7 Confidence Sets 
 
 Estimating τ$  only gives a point estimate.  This research now constructs 

confidence sets on the process change points, which can provide the process engineer a 

search window of potential change points that covers the true process change point with a 

given level of confidence.  The method of constructing confidence regions on parameter 

estimates using the likelihood function is attributed to Box and Cox [2].  The confidence 

set is defined as follows: 

{ : ln ( ) ln ( ) }CS t L t L Dτ= > −$         (3.23) 

where ln ( )L τ$ is the maximum of the log-likelihood function evaluated over all potential 

change points t.  If at a given t, the value of ln ( )L t  is greater than ln ( )L Dτ −$ , where D 

is some specified constant, then t is included in the confidence set.  Box and Cox suggest 

using a reference value 21
,12D αχ=  to obtain a 100(1 )%α−  confidence region.  However, 

surface plots are provided in Chapter 4 to aid the user in selecting a value for D that will 

more accurately achieve the user’s desired level of confidence.  This confidence set 

approach is the same approach used by Pignatiello and Samuel [16]. 

3.7.1 Confidence Set Example 
 
 To make equation (3.23) more concrete, consider the following example.  A 

negative binomial process has in-control parameters NB(
0

, α
α να + ), where 10α = , and 

0 10v = .  Following the 50th observation, the process experiences a step change in mean 

where 14av = .  In this example, ντ$ , as estimated from equation (3.14), yields ντ$  = 47, 
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whereas the true change point is actually, τ  = 50.  Figure 6 is a plot of ln ( )L t  versus t 

using a 3σ  control chart that signaled at T = 55.  Applying the confidence set estimator 

in equation (3.23) with D = 1.5 yields a cardinality of 6.  The figure shows that t = 45 

through t = 50 are in the confidence set.  Note the true change point, τ  = 50, is included 

in this set.  A confidence set will give process engineers a window of potential change 

points that they can use to search for an assignable cause.  Monte Carlo simulation is 

used to evaluate the performance of these confidence sets in Chapter 4. 
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Figure 6:  Log-Likelihood Plot 
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3.8 Conclusion 

 This chapter started by deriving the gamma-Poisson mixture model.  This is the 

probability model that was the basis for modeling overdispersed count data in this 

research effort.  In addition, two different step-change scenarios were addressed.  First, 

the change-point model for a process that experiences a step change in mean was defined, 

followed by the derivation of the MLE of the process change point.  Second, the change-

point model for a process that experiences a step change in the overdispersion parameter 

was defined, followed by the derivation of the MLE for this case.  In order to derive the 

MLE for the latter case, Newton’s method was used to estimate aα .  This approach was 

discussed, along with the additional constraint required to keep the estimates of aα  

positive.  Last, the method of building a confidence set to capture the true change point 

was discussed.  Chapter 4 uses Monte Carlo simulation to evaluate both change-point 

estimators proposed in this chapter.  Likewise, Monte Carlo simulation is used to 

evaluate the performance of the confidence set estimators.  Chapter 4 concludes with an 

application of these methods to a real-world problem. 
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4. Results and Analysis 
 
 
 In Chapter 3, a change-point estimator was derived for the time of step change in 

each of the parameters of the gamma-Poisson mixture model using the method of 

maximum likelihood estimation. This chapter discusses the Monte Carlo simulation 

experiments used to evaluate the root mean square error performance of the proposed 

estimator, ντ$ , after genuine 3σ  control chart signals.  Since there is no standardized 

negative binomial distribution, this thesis investigates the 12 combinations of the 

following arbitrarily chosen in-control parameter values:  0ν = 1, 5, and 20, and α = 1, 5, 

10, and 50. 

 Second, this chapter discusses the Monte Carlo simulation experiments used to 

evaluate the root mean square error performance of the proposed estimator, ατ$ , after 

genuine CUSUM control chart signals.  Since there is no standardized negative binomial 

distribution, this thesis investigates the 6 combinations of the following arbitrarily chosen 

in-control parameter values: ν = 5 and 20, and 0α = 1, 5, and 10. 

 Monte Carlo simulation is also used to evaluate the performance of the confidence 

set estimators for each case considered.  Last, this chapter applies the methodologies 

developed in Chapter 3 to Iraq war casualty data to demonstrate the effectiveness of these 

techniques on a real-world problem. 

4.1 Monte Carlo Simulation When aν  is Unknown 

 
 Monte Carlo simulation is used to evaluate the root mean square error 

performance of the change-point estimator following a genuine signal from a 3σ  control 
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chart.  The 3σ  control chart was chosen due to its wide use and ease of implementation.  

Each count observed will be compared to the upper and lower control limits of the 

control chart.  The control limits are calculated as 

2
0

2
0

0 0

0 0

3

3

UCL

LCL

ν
α

ν
α

ν ν

ν ν

= + +

= − +
                                              (4.1) 

and if LCL < 0, then set LCL = 0. 

 The process change point was simulated to occur at τ  = 50.  Independent 

observations were drawn from a negative binomial process where ~iy NB(
0

, α
α να + ) for 

1,2,...,50i = .  Following the 50th sample collected, observations were drawn from a 

negative binomial process, where ~iy NB( ,
a

α
α να + ) for 1,  ...,  i Tτ= + , where T is the 

time of control chart signal.  Following the signal, ντ$  was calculated from equation 

(3.14).  This procedure was repeated a total of N = 10,000 times for each value of aν  

investigated.  The overdispersion parameter, α , and the in-control mean, 0ν , are both 

assumed known.  Note that α  remains unchanged after the step change occurs.  The out-

of-control mean, aν , and the change point, τ , are both assumed unknown. 

4.1.1 False Alarms 
 
 As described above, each simulated observation will be compared to the upper 

and lower control limits of the 3σ  control chart.  If the control chart signals at an 

observation T, where T τ> , then the control chart signals that the process is out-of-

control.  However, if the control chart signals at T, whereT τ< , then it is treated as a 

false alarm since the chart signaled before the simulated change point.  In the simulation, 
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if a false alarm is encountered at time T, the control chart is restarted at time T+1, and the 

simulated change point will occur as scheduled.  This is consistent with how a false alarm 

would be handled in practice, i.e., if a false alarm is encountered, the process engineer 

would declare it was a false alarm, and the process monitoring is continued at the next 

observation.  Pignatiello and Samuel [16] handle false alarms this way. 

4.2 Performance of the MLE for Step Change in Mean 
 
 The performance of the MLE, ντ$ , for various combinations of α  and 0ν  are 

shown in the tables throughout this section.  Appendix A contains all the results from the 

12 combinations of 0ν  and α  studied in this thesis.  Before getting to the specific results 

shown in the tables, column headings of the tables will be defined.  For example, see 

Table 3 below.  Recall that average run length (ARL) is defined as the expected number 

of observations that are observed before the control chart issues a signal.  Root mean 

square (RMS) error is defined as the square root of mean square error (MSE).  MSE, a 

function of both variance and bias, is defined as 

2MSE ( ( ))   Var( )B τ τ= +$ $               (4.2) 

where ( ) ( )B Eτ τ τ= −$ $  is the bias of the estimator. 

 Table 3 also shows ντ$ , which is the average of the change-point estimates 

obtained over the N=10,000 independent simulation runs.  The last column of the table is 

the standard error of ντ$ . 

 Three general results can be observed from the data in this section.  The most 

obvious is for a given 0ν  and α .  It can be seen that by looking down the columns of any 
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individual table, say Table 3, that as the magnitude of the step change increases, �ARL  

decreases, �RMS( )ντ$  decreases, and ντ$  approaches the true value of τ .  This should be 

intuitive in that a larger step change in mean should be estimated more accurately than a 

smaller step change.  That is, the bias goes to zero as the magnitude of the step change 

increases. 

Table 3:  Performance of MLE for 0=1, 5,  =50, and 10,000Nα ν τ= =  

aν  
% 

Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 28.90 37.49 73.50 0.292 
7 40 18.65 21.99 62.62 0.180 
8 60 13.41 14.78 57.41 0.128 
9 80 10.12 11.23 54.64 0.102 
10 100 8.16 9.07 53.35 0.084 
11 120 6.80 7.96 52.21 0.076 
12 140 5.74 7.08 51.56 0.069 
13 160 5.06 6.40 51.30 0.063 
14 180 4.58 5.96 51.04 0.059 
15 200 4.05 5.93 50.70 0.059 
20 300 2.95 4.52 50.23 0.045 
25 400 2.37 4.33 50.01 0.043 
30 500 2.05 4.06 49.88 0.041 
35 600 1.84 4.15 49.78 0.042 
40 700 1.73 3.28 49.86 0.033 
45 800 1.63 3.55 49.81 0.035 
50 900 1.56 3.57 49.82 0.036 
55 1000 1.47 3.27 49.80 0.033 

 

 The second general result that can be seen is by comparing different ' sα  for a 

given 0ν .  For example, take Table 3, Table 6, Table 7, and Table 8 and compare the 

summary statistics for 35aν = .  Table 4 summarizes these results as α  increases for 

fixed values of 0 5ν =  and 35aν = .  As the variance of the observations decreases due to 
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an increasing α , �ARL  and �RMS( )ντ$  both decrease, and ντ$  approaches the true value 

of τ  more quickly.  Figure 7 visually shows the effect of an increasing α  on RMS. 

Table 4:  Effect on MLE for Increasing α .   

0 a5 and 35. =50, and =10,000Nν ν τ= =  

 α  �ARL  
�RMS( )ντ$ ντ$  

1 1.84 4.15 49.78 
5 1.08 1.93 49.81 
10 1.02 1.09 49.92 
50 1.00 0.08 50.00 
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Figure 7:  Effect on RMS due to an Increasing α .   

0 a5 and 35. =50, and =10,000Nν ν τ= =  

 
 A similar but more pronounced example of this second result can be seen next.  

When 50α = , the estimator approaches the true change point much more quickly than 

when 1α = .  For example, when 50α =  and 0ν  experiences only a 40% change, 
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ντ$ =51.92.  This is in contrast to when 1α =  and 0ν  experiences a 40% change.  In this 

case, ντ$ =62.62.  These results, extracted from Table 3 and Table 8, show the effect of 

alpha on the MLE and are summarized in Table 5 below.  Again, the conclusion is that as 

the overdispersion parameter, α , increases, the variance of the observations decrease, 

resulting in a more accurate estimate of the process change point. 

Table 5:  Comparison of MLE for 1 and =50α α= .   

0 5,  =50, and =10,000Nν τ=  

1α =  ντ$  50α = ντ$  
6aν =  73.50 6aν = 63.39 
7aν =  62.62 7aν = 51.92 

10aν = 53.35 10aν = 49.77 
 

Table 6:  Performance of MLE for 0=5, 5,  =50, and 10,000Nα ν τ= =  

aν  
% 

Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 39.01 36.96 70.98 0.304 
7 40 19.45 14.16 55.62 0.130 
8 60 11.39 8.58 51.83 0.084 
9 80 7.36 6.22 50.67 0.062 
10 100 5.28 5.59 50.03 0.056 
11 120 4.12 4.75 49.92 0.048 
12 140 3.31 4.40 49.71 0.044 
13 160 2.78 4.40 49.57 0.044 
14 180 2.41 4.00 49.61 0.040 
15 200 2.15 4.05 49.50 0.040 
20 300 1.49 3.62 49.55 0.036 
25 400 1.25 2.57 49.70 0.026 
30 500 1.14 2.46 49.71 0.024 
35 600 1.08 1.93 49.81 0.019 
40 700 1.06 1.62 49.84 0.016 
45 800 1.03 1.39 49.89 0.014 
50 900 1.02 0.96 49.93 0.010 
55 1000 1.02 1.13 49.92 0.011 
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Table 7:  Performance of MLE for 0=10, 5,  =50, and 10,000Nα ν τ= =  

aν  
% 

Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 51.07 35.04 68.49 0.298 
7 40 22.41 11.77 53.68 0.112 
8 60 11.93 7.02 50.98 0.070 
9 80 7.28 5.22 50.26 0.052 
10 100 4.91 4.30 49.89 0.043 
11 120 3.66 4.02 49.69 0.040 
12 140 2.86 3.80 49.64 0.038 
13 160 2.36 3.78 49.53 0.038 
14 180 2.07 3.35 49.60 0.033 
15 200 1.79 3.37 49.54 0.033 
20 300 1.26 2.71 49.65 0.027 
25 400 1.11 2.08 49.78 0.021 
30 500 1.04 1.30 49.89 0.013 
35 600 1.02 1.09 49.92 0.011 
40 700 1.01 0.79 49.95 0.008 
45 800 1.00 0.51 49.97 0.005 
50 900 1.00 0.47 49.98 0.005 
55 1000 1.00 0.70 49.98 0.007 

 

Table 8:  Performance of MLE for 0=50, 5,  =50, and 10,000Nα ν τ= =  

aν  
% 

Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 75.77 30.75 63.39 0.277 
7 40 27.62 9.54 51.92 0.094 
8 60 12.84 5.63 50.42 0.056 
9 80 7.12 4.27 49.92 0.043 
10 100 4.45 3.54 49.77 0.035 
11 120 3.14 3.36 49.65 0.033 
12 140 2.38 3.26 49.60 0.032 
13 160 1.91 3.11 49.59 0.031 
14 180 1.63 3.01 49.59 0.030 
15 200 1.41 2.67 49.64 0.027 
20 300 1.08 1.61 49.82 0.016 
25 400 1.01 0.95 49.93 0.010 
30 500 1.00 0.33 49.98 0.003 
35 600 1.00 0.08 50.00 0.001 
40 700 1.00 0.05 50.00 0.001 
45 800 1.00 0.02 50.00 0.000 
50 900 1.00 0.00 50.00 0.000 
55 1000 1.00 0.01 50.00 0.000 
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 The simulation results also show that the MLE is more accurate for larger in-

control values of 0ν  for a given α  and aν .  For example, look at Table 8 along with 

Table 10 and Table 11.  It can be seen for a fixed α , and a larger 0ν , the change point is 

estimated much more accurately for a given percent change in mean.  For example, a 

40% increase in 0 1ν =  is 1.4aν = , which gives an MLE of 115.84.ντ =$  Contrast this to a 

40% increase in 0 20ν =  which is 28,aν =  which gives an MLE of  52.56.ντ =$   Note 

that these results hold due to the fact that the out-of-control mean is specified as a 

percentage increase of the in-control mean.  The conclusion here is that a larger shift in 

mean will result in a more accurate estimate of the true change point.  In some instances, 

in practice, smaller shifts (e.g. 10% or 20%) may not be as important to detect as large 

shifts.  Table 9 compares the MLE for different in-control values of 0ν  for the given 

percent changes shown. 

Table 9:  Comparison of MLE for 50α =  for 0 1,  5, and 10.ν =    

=50, and =10,000Nτ  

% 
Increase 0 1ν =  0 5ν = 0 20ν =

20 115.84 63.39 52.56 
40 67.90 51.92 49.94 

100 51.84 49.77 49.60 
400 49.60 49.93 50.00 
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Table 10:  Performance of MLE for 0=50, 1,  =50, and 10,000Nα ν τ= =  

aν  
% 

Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

1.2 20 117.43 103.96 115.84 0.805 
1.4 40 64.79 35.47 67.90 0.306 
1.6 60 39.11 18.26 57.18 0.168 
1.8 80 25.67 11.56 53.28 0.111 
2 100 17.80 8.47 51.84 0.083 

2.2 120 13.02 6.53 51.05 0.064 
2.4 140 9.96 5.52 50.57 0.055 
2.6 160 7.81 5.04 50.29 0.050 
2.8 180 6.35 4.68 50.06 0.047 
3 200 5.26 4.71 49.87 0.047 
4 300 2.68 3.53 49.65 0.035 
5 400 1.81 3.14 49.60 0.031 
6 500 1.44 2.93 49.65 0.029 
7 600 1.23 2.61 49.67 0.026 
8 700 1.13 1.87 49.78 0.019 
9 800 1.07 1.60 49.83 0.016 
10 900 1.04 1.53 49.86 0.015 
11 1000 1.02 1.29 49.89 0.013 

 

Table 11:  Performance of MLE for 0=50, 20,  =50, and 10,000Nα ν τ= =  

aν  
% 

Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

24 20 28.56 10.87 52.56 0.106 
28 40 7.76 4.54 49.94 0.045 
32 60 3.33 3.50 49.61 0.035 
36 80 1.96 3.13 49.56 0.031 
40 100 1.45 2.97 49.60 0.029 
44 120 1.21 2.57 49.66 0.026 
48 140 1.10 2.37 49.73 0.024 
52 160 1.04 1.63 49.84 0.016 
56 180 1.02 1.10 49.91 0.011 
60 200 1.01 0.76 49.94 0.008 
80 300 1.00 0.12 49.99 0.001 
100 400 1.00 0.05 50.00 0.001 
120 500 1.00 0.00 50.00 0.000 
140 600 1.00 0.00 50.00 0.000 
160 700 1.00 0.00 50.00 0.000 
180 800 1.00 0.00 50.00 0.000 
200 900 1.00 0.00 50.00 0.000 
220 1000 1.00 0.00 50.00 0.000 
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 General results indicate that as the magnitude of the step change increases, or as 

the variance of the observations is lowered, the true change point can be estimated more 

accurately in a process that experiences a step change in mean.  The above results show 

that the proposed MLE performs well.  There are some exceptions for small step changes 

with highly variable data, but overall, the true change point is still estimated very 

accurately. 

 The importance of having an accurate method for estimating the true change in a 

process should now be more obvious. Look at Table 8 where 0 a5, 7,  =50ν ν α= = , and 

�ARL=27.62 .  The estimate of the change point would be badly biased if an engineer 

estimated the time of the process change at the time the control chart signaled.  It is 

possible that the process engineer could incorrectly diagnose the root cause of the change 

or perhaps not even discover the root cause at all.  Instead of searching for causes around 

the correct time of change, a process engineer might examine log books and records 

associated with a time frame that was almost 28 observations after the process actually 

changed. 

4.3 Cardinality and Coverage Performances of Confidence Set Estimators for 
Step Change in Mean 

 
 Set cardinality and coverage measures are used to evaluate the confidence set 

estimators for the nine values of D, where D=1, 1.25, 1.50,…, 3.  Recall from equation 

(3.23) that D is a specified constant used to give a desired confidence and cardinality for 

each percent increase in ν  relative to 0ν .  The change point was evaluated at 20% 

increases in the mean (relative to 0ν ) up to a 200% increase.  Following this, the change 
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point was evaluated at 100% increases in the mean up to a 1000% increase.  Recall that 

the process change point was simulated to occur at τ  = 50.  After the 3σ  control chart 

signaled a genuine step change, the confidence set estimator was applied.  The cardinality 

of the confidence set was recorded as well as whether the true change point was included 

in that set.  This procedure was repeated for a total of 10,000N =  independent 

simulation runs for each percent increase in ν  relative to 0ν .  The average cardinality 

was computed over the 10,000 runs.  The proportion of the 10,000 runs that included the 

true change point in the estimated set, i.e., coverage, was also computed. 

 Surface plots were created for the 12 combinations of α  and 0ν .  These plots will 

aid the user in selecting a value of D that meets his or her desired level of confidence.  

This is the same approach used by Perry and Pignatiello [12].  While all 12 plots are 

shown in Appendix B, four of the surface plots are shown below. 

 The figures show that more coverage can be obtained for a given percent increase 

in ν  relative to 0ν  by selecting a larger reference value D.  The tradeoff is that the 

confidence set will also have a larger cardinality.  For example in Figure 8, a 40% change 

in ν  for D = 1.5 gives a coverage of 0.39 and cardinality of 16, whereas D = 2 gives a 

coverage of 0.64 and cardinality of 35.  For the case where D = 2, the interpretation is 

that the user can be 64% confident that the true change point will be contained in the set 

of 35 points. 
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Figure 8:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  01,  =1, =50, and 10,000.Nα ν τ= =  
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Figure 9:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν  , and 

Reference Value D.  05,  =1, =50, and 10,000.Nα ν τ= =  
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Figure 10:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Increase from 0ν , and Reference 

Value D.  010,  =1, =50, and 10,000.Nα ν τ= =  
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Figure 11:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Increase from 0ν , and Reference 

Value D. 050,  =1, =50, and 10,000.Nα ν τ= =  
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4.3.1 Choice of τ  for Performance Evaluation of the Confidence Set Estimator 
 
 For this research, the process change point was simulated to occur at τ  = 50.  

Results in Table 12 show that the choice of τ  in this simulation study has little impact on 

the coverage probabilities.  Cardinality, however, appears to increase slightly for 

increases in τ , as shown in Table 13.  While different values of τ  could have been used 

for this simulation study, overall the choice of 50τ =  seems reasonable.  These finding 

are consistent with results published in Pignatiello and Samuel [16]. 

Table 12:  Effect of the Change in τ  on Coverage Probability.  

05,  20,  and 10,000Nα ν= = =  

% Increase 1τ =  50τ =  100τ =  
20 0.33 0.28 0.27 
80 0.69 0.64 0.63 

160 0.83 0.81 0.81 
300 0.93 0.91 0.91 

 

Table 13:  Effect of the Change in τ  on Average Size of Confidence Sets.  

05,  20,  and 10,000Nα ν= = =  

% Increase 1τ =  50τ =  100τ =  
20 5.42 7.73 8.26 
80 2.28 3.17 3.47 
160 1.59 2.19 2.42 
300 1.29 1.67 1.72 

 

4.4 Monte Carlo Simulation When aα  is Unknown 

 
 Monte Carlo simulation is used to evaluate the root mean square error 

performance of the change-point estimator following a signal from a CUSUM control 

chart.  A CUSUM was chosen for this case to simply add variety to this research effort.  

The derivation of this CUSUM is in section 4.5. 
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 The process change point was simulated to occur at τ  = 50.  Independent 

observations were drawn from a negative binomial process where ~iy NB( 0

00 , α
α να + ), for 

1,2,...,50i = .  Following the 50th sample collected, observations were drawn from a 

negative binomial process, where ~iy NB( , a

aa
α

α να + ), for 1,  ...,  i Tτ= + , and T denotes 

the time of control chart signal.  Following the detection signal, ατ$  is calculated from 

equation (3.20).  This procedure was repeated a total of N = 10,000 times for each value 

of aα  investigated.  Since there is no standardized negative binomial distribution, this 

thesis investigated the 6 combinations of the following arbitrarily chosen in-control 

parameter values: ν = 5 and 20, and 0α = 1, 5, and 10.  The in-control overdispersion 

parameter, 0α , and the process mean, ν , are both assumed known, where ν  remains 

constant.  The out-of-control overdispersion parameter, aα , and the change point, τ , are 

unknown.  False alarms were handled exactly as described previously. 

4.5 CUSUM Control Chart for Detecting a Change in Overdispersion Parameter 
 
 For this research, the CUSUM test statistic for detecting a decrease in the 

overdispersion parameter is given by max{ ,0}i iC C− −= , where iC−  is the cumulative sum 

at time i.  Evidence of a decrease in the overdispersion parameter is indicated by a signal 

occurring if iC h− −> .  A one-sided tabular CUSUM was designed to quickly detect a 

25% decrease in α  relative to 0α  with the in-control average run length 0(ARL )  

calibrated to approximately 370. 
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 The CUSUM control chart used to detect a decrease from 0α  was derived from 

the sequential probability ratio test (SPRT).  See Hawkins and Olwell [6] for details of 

using the SPRT to derive a CUSUM statistic.   

 In the SPRT, the null hypothesis 0 0:  = ,  1,  2, ..., iH i Tα α =  is tested against 

*:  = ,  1,  2,  ..., a i aH i Tα α = .    In SPRT , the likelihood ratio is given by 
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where the value 0α  is the in-control value of α , the value *
aα  is the pre-specified out-of-

control value of α  that one wishes to detect, and ν  is the process mean, assumed 

constant.   

 To derive the CUSUM statistic, take the natural log of equation (4.3) and simplify 

to obtain 
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Rewriting this expression gives 
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where the value of 0C−  is taken to be zero.  Equation (4.5) is set to zero whenever 0iC− < .  

The SPRT operates by comparing iC− to the decision interval -h  at each new observation.  

If -
iC h− > , then the test concludes in favor of aH . 
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 Note that the familiar tabular form of the CUSUM statistic is not ready available 

since the observed count is contained in the gamma function.  However, since this is a 

SPRT, it still remains a CUSUM. 

4.6 Performance of the MLE for Step Change in the Overdispersion Parameter 
 
 Three general results can be observed from the data in this section.  The most 

obvious is for a given 0α  and ν .  It can be seen that by looking down the columns of any 

of these tables, say Table 14, that as the magnitude of step change increases, �ARL  and 

�RMS( )ατ$  both decrease, and ατ$  approaches the true value of τ .  The conclusion is that 

a larger magnitude of step change in α  will result in a more accurate estimate of the 

change point, i.e., the bias goes to zero as the magnitude of the step change increases. 

Table 14:  Performance of MLE for 05,  10,  50,  and =10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

9 10 246.97 327.69 276.17 2.371 
8 20 175.21 226.82 205.20 1.654 
7 30 124.48 153.54 155.15 1.119 
6 40 85.02 98.24 115.80 0.730 
5 50 59.27 63.04 90.23 0.485 
4 60 40.55 39.48 72.81 0.322 
3 70 26.70 23.51 60.72 0.209 
2 80 16.92 13.65 53.77 0.131 
1 90 9.26 7.75 50.18 0.078 

 
 
 The second general result that can be seen is by comparing different ' sν  for a 

given 0α  and given percent decreases.  For example, take Table 14 and Table 19 and 

compare the performance of ατ$  for 5ν =  and 20ν = .  Table 15 shows that when 

20ν = , the estimator approaches the true change point more quickly than when 5ν = .  
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The conclusion is that a larger ν  will experience a larger magnitude of change compared 

to a smaller ν  for a given 0α  and given percent decrease.  Again, the bias goes to zero as 

the magnitude of the step change increases.  Note that the results in this section hold due 

to the fact that the out-of-control overdispersion parameter is specified as a percentage 

decrease of the in-control parameter. 

Table 15:  Comparison of MLE for 5 and =20ν ν=  for Various Decreases in α  Relative to 

0α .   0 10,  =50, and 10,000Nα τ= =  

ν  
20%  

Decrease 
50%  

Decrease 
80%  

Decrease 
5 205.20 90.23 53.77 

20 144.19 64.21 50.93 
 

 The third general result from this section is that the MLE is more accurate for 

smaller in-control values of 0α  for a given mean and percent decrease in α  relative to 

0α .  For example, look at Table 17, Table 18, and Table 19 below.  It can be seen for a 

fixed ν  and given percent decreases in α  (relative to 0α ), the change point is estimated 

more accurately at a lower 0α .  For example, consider a 50% decrease from 10α =  to 

5α = , which gives an MLE of 64.21ατ =$ .  Contrast this to a 50% decrease from 1α = , 

to 0.5α = .  This case gives an MLE of 56.31ατ =$ .  The conclusion is that a smaller 0α  

causes higher variance in the observations, y, for a given mean and percent decrease.  It 

appears that this increased magnitude in variance allows ατ$  to be estimated more 

accurately.  Note that the variance of y, as shown in equation (3.9), can be made larger in 

two ways.  The first way to increase the variance is by increasing ν  for a given α .  The 
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second way the variance can be made larger is to decrease α  for a given ν , which is 

what was just discussed.  These results are summarized in Table 16. 

Table 16:  Comparison of MLE for 20ν =  for 0 1,  5,  and 10.α =    

=50, and 10,000Nτ =  

% Decrease 0 1α = 0 5α = 0 10α =
20% 109.05 126.01 144.19
50% 56.31 60.60 64.21 
80% 49.51 50.51 50.93 

 
 

Table 17:  Performance of MLE for 020,  1,  50,  and =10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

0.9 10 151.83 198.58 184.50 1.461 
0.8 20 76.51 89.16 109.05 0.668 
0.7 30 43.77 46.07 77.89 0.367 
0.6 40 27.73 25.38 63.51 0.215 
0.5 50 18.87 15.70 56.31 0.144 
0.4 60 13.30 10.27 52.61 0.099 
0.3 70 9.46 7.22 50.53 0.072 
0.2 80 6.77 5.68 49.51 0.057 
0.1 90 4.76 4.57 48.98 0.045 

 
 

Table 18:  Performance of MLE for 020,  5,  50,  and =10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

4.5 10 177.80 235.03 209.76 1.724 
4 20 93.53 114.08 126.01 0.851 

3.5 30 55.23 61.16 88.53 0.475 
3 40 35.67 36.15 70.57 0.297 

2.5 50 23.46 21.45 60.60 0.186 
2 60 15.53 13.51 54.73 0.127 

1.5 70 10.52 9.17 52.00 0.090 
1 80 6.77 6.23 50.51 0.062 

0.5 90 3.99 4.11 49.86 0.041 
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Table 19:  Performance of MLE for 020,  10,  50,  and =10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

9 10 192.08 252.41 223.78 1.831 
8 20 112.28 140.27 144.19 1.039 
7 30 66.85 76.22 99.57 0.579 
6 40 43.35 45.26 77.37 0.360 
5 50 28.19 26.67 64.21 0.226 
4 60 19.11 16.79 57.04 0.152 
3 70 12.62 10.87 52.88 0.105 
2 80 8.02 7.47 50.93 0.074 
1 90 4.44 4.76 50.01 0.048 

 
 
 General results indicate that as the magnitude of the step change increases, the 

true change point can be estimated more accurately.  On average, the results show that 

the proposed MLE performs well.  There are some exceptions as were shown, but overall, 

the true change point is still estimated very accurately.  See Appendix C for all cases 

investigated. 

4.7 Cardinality and Coverage Performances of Confidence Set Estimators for 
Step Change in Overdispersion Parameter 

 
 Set cardinality and coverage measures are used to evaluate the confidence set 

estimators for the nine values of D, where D=1, 1.25, 1.50,…, 3.  Recall from equation 

(3.23) that D is a specified constant used to provide a desired confidence level and 

cardinality for each percent decrease in α  relative to 0α .  The change point was 

evaluated at 10% decreases from 0α  up to a 90% decrease.  As before, the process 

change point was simulated to occur at τ  = 50.  Following a genuine CUSUM control 

chart signal, the confidence set estimator was applied.  The cardinality of the confidence 

set was recorded as well as whether the true change point was included in that set.  This 

procedure was repeated for a total of 10,000N =  independent simulation runs for each 
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percent increase in α  (relative to 0α ).  The average cardinality was computed over the 

10,000 runs.  The proportion of the 10,000 runs that included the true change point in the 

estimated set, i.e., coverage, was also computed. 

 Surface plots were created for the six combinations of ν  and 0α  looked at in this 

thesis.  The plots of various D values will aid the user in selecting a D value that meets 

his or her desired level of confidence. While all six plots are shown in Appendix D, two 

of the surface plots are shown below. 

 As before, the figures show that more coverage can be obtained for a given 

percent decrease in α  relative to 0α  by selecting a larger reference value D.  The 

tradeoff is that the confidence set will also have a larger cardinality.  For example in 

Figure 12, a 50% decrease from 0α  for D = 1.5 gives a coverage of 0.48 and cardinality 

of 27, whereas D = 2 gives a coverage of 0.64, but a cardinality of 42.  For the case where 

D = 2, the interpretation is that the user can be 64% confident that the true change point 

will be contained in the set of 42 points. 
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Figure 12:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=5, =5, =50, and 10,000.Nν α τ =  
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Figure 13:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=20, =5, =50, and 10,000.Nν α τ =  

 
 



63 

4.7.1 Choice of τ  for Performance Evaluation of the Confidence Set Estimator 
 
 For this research, the process change point was simulated to occur at τ  = 50.  

Results in Table 20 show that the choice of τ  in this simulation study has little impact on 

the coverage probabilities.  Cardinality, however, appears to increase slightly for 

increases in τ , as shown in Table 21.  While different values of τ  could have been used 

for this simulation study, overall the choice of 50τ =  seems reasonable.  These finding 

are consistent with the results published in Pignatiello and Samuel [16]. 

Table 20:  Effect of the Change in τ  on Coverage Probability.  

05,  20,  and 10,000Nα ν= = =  

% Decrease 1τ =  50τ =  100τ =  
10 0.10 0.09 0.09 
50 0.45 0.38 0.39 
90 0.71 0.65 0.65 

 

Table 21:  Effect of the Change in τ  on Average Size of Confidence Sets.  

05,  20,  and 10,000Nα ν= = =  

% Decrease 1τ =  50τ =  100τ =  
10 17.39 18.62 19.17 
50 7.31 10.57 11.47 
90 1.91 2.83 2.99 
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4.8 Change-Point Analysis Applied to Iraq War Coalition Casualty Data 
 
 The data and results of this thesis have been obtained from simulation 

experiments.  Hence, it begs the question, “How are these techniques applied to a real-life 

data set?”  To answer this question, a data set containing Iraq war coalition casualties was 

obtained from the Iraq Coalition Casualty Count website at http://icasualties.org/oif/.  A 

realistic scenario using that data is as follows. 

 The US commander in Iraq has tasked the strategic assessments team to monitor 

coalition casualties and to report if there are any noticeable changes from the average 

daily coalition casualties.  The assessment team decided they would use a 3σ  control 

chart to monitor for changes, and that they would also like to apply change-point 

estimation techniques after the control chart signals a genuine change.  Not knowing 

exactly what kind of change might occur; they decided to employ a step change model.   

 Because daily casualties are data counts, and it is suspected that the data would be 

overdispersed due to the variability associated with war, the gamma-Poisson mixture 

model was used as the underlying probability distribution of the counts.  The assessment 

team was to start monitoring on 07/19/2003.  To get a baseline, the equivalent of the 

phase I SPC calibration process, the assessment team took prior data from a 100-day 

period from 04/10/2003 – 07/18/2003.  Recall that the gamma-Poisson mixture model, as 

parameterized in this thesis, is the negative binomial probability distribution with 

parameters r α=  and p α
α ν+= .  After some careful analysis, the team estimated the in-

control parameters as � 2.21α =  and $0 1.25ν = .  They established upper and lower control 

limits as UCL = 5.4 and LCL = 0 respectively.  Any daily coalition casualty count of 6 or 



65 

greater would cause the control chart to signal.  They were now ready to use the control 

chart to monitor daily coalition casualties. 

 Figure 14 shows the results of the strategic assessment team’s change-point 

analysis.  The team started monitoring daily coalition casualties starting on 07/19/2003 

(day 1).  The control chart detected a change on 10/26/2003, or day 100 from when the 

daily monitoring was started.  After the control chart signaled, they applied the MLE 

from equation (3.14) and estimated the change point as day 99, as shown graphically in 

Figure 15.  Recall that the change point is the last point from the in-control process.  In 

this case, the control chart signal and the estimated change point are in exact agreement.  

 The log-likelihood plot of Figure 15 is important in the fact that it can be used to 

search for assignable causes on other likely days.  Even though the MLE of the change 

point was day 99, it can be seen from Figure 15 that potentially any of the change points 

from, say, days 83-99 can be investigated for assignable causes.  As an example of the 

usefulness of the confidence set estimator, the surface plot of Figure 8 is used as a guide 

to narrow down the pool of potential change points even further.  By setting D = 1.75 

from equation (3.23), the assessment team can narrow their search window for assignable 

causes to about 12 days and still achieve almost a 90% confidence. 

 After the control chart signal, there are two conclusions that can be made.  Either 

this signal is a false alarm and nothing is out of the ordinary, or that this is indeed a 

genuine signal and it warrants further investigation.  The team decided to investigate 

further and they discovered that the Muslim holy month of Ramadan begins on 

10/27/2003, or day 101 from when daily monitoring began.  Their conclusion was that 
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this is not a false alarm and they briefed their results to the US commander in charge so 

that appropriate actions could be taken.   

 Figure 16 is insightful in that it shows what happened after the change was 

detected in Figure 14.  In Figure 14, even though a change was detected, the daily 

casualty does not seem to be too far out of the ordinary.  But as Figure 16 shows, the 

control chart indeed detected a significant change that is clearly shown by the dramatic 

increase in casualties during the month of Ramadan.  Had the proposed method actually 

been used, tighter security measures could have been implemented following the control 

chart signal, and perhaps coalition lives could have been saved. 
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Figure 14:  Control Chart, Iraq Coalition Casualties 07/19/03 – 10/26/03 
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Figure 15:  Log-Likelihood Plot of Iraq War Casualty Data 
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Figure 16:  Coalition Casualties 07/19/03 – 12/31/03 
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 This example was based off of real-world data.  A 3σ  control chart was used to 

monitor a process where the data was overdispersed count data.  This example shows the 

power of using change-point methods in conjunction with a control chart to monitor a 

process.  The control chart will allow a change to be detected, while change-point 

estimation techniques can narrow down the search for an assignable cause.  In this 

example, however, the estimated change point and control chart signal coincided largely 

due to a spike in fatality counts.  While most of the literature deals with examples from a 

manufacturing context, this example shows that these methods can be applied to non-

traditional, non-manufacturing processes, including military processes. 

4.9 Conclusion 
 
 This chapter employed Monte Carlo simulation to evaluate the performance of 

each of the MLEs derived in Chapter 3.  The first case considered was when a count 

process experienced a step change in the mean.  Monte Carlo simulation was used to 

evaluate the root mean square error performance of the change-point estimator following 

a signal from a 3σ  control chart.  General results indicate that as the magnitude of the 

step change increases, or as the variance of the observations is lowered, the true change 

point can be estimated more easily in a process that experiences a step change in mean. 

 The second case considered was when a count process experienced a step change 

in the overdispersion parameter.  Monte Carlo simulation was used to evaluate the root 

mean square error performance of this change-point estimator following a signal from a 

CUSUM control chart.  General results indicate that as the magnitude of the step change 

increases, the true change point can be estimated more accurately.  
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 The performance of the confidence set estimator for each case was also 

investigated.  The surface plots generated will aid a user in selecting a value for D that 

meets his or her desired level of confidence.  Last, the methodologies developed in 

Chapter 3 were successfully applied to Iraq war coalition casualty data to demonstrate the 

effectiveness of these techniques on a real-world problem.  Next, Chapter 5 will 

summarize this research effort and make recommendations for future research. 
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5. Conclusions and Future Research 
 

5.1 Summary and Conclusions 
 
 If a process engineer could determine the actual time of a process change, their 

time and resources could be better used to investigate the assignable causes that 

contributed to the change.  A quick identification of the assignable causes would lead to 

an improvement of the process sooner.  Estimating the true change point is also important 

due to the costs associated with misdiagnosing a control chart signal.  These costs include 

the time and resources used to track down any assignable causes, as well as any costs 

associated with unnecessary process adjustments.  Therefore, the primary focus of this 

research was to derive and evaluate maximum likelihood estimators for the time of a step 

change in each of the parameters of the gamma-Poisson mixture model, following a 

genuine control chart signal. 

 To motivate a methodology for this research, a review of the relevant literature 

was presented.  First was a review of a step change, change-point model.  Then, the 

relevant literature on change-point estimation was discussed.  That is, processes that 

experience step changes, linear trends, and monotonic changes have been studied for 

normal, Poisson, and/or binomial processes.  Many cases of change-point estimation are 

considered in the literature; however, the case of estimating a change point, where the 

observations are overdispersed count data, has not received much, if any, attention in the 

quality engineering literature. 

 The methodology focused on the mathematical models employed in this research.  

The gamma-Poisson mixture model was derived and employed as the probability model 
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for modeling overdispersed count data in this thesis.  Then, two different step-change 

scenarios were addressed.  First, the change-point model for a process that experiences a 

step change in mean was defined, followed by the derivation of the MLE of the process 

change point.  Second, the change-point model for a process that experiences a step 

change in the overdispersion parameter of the underlying probability distribution was 

defined.  Then, the corresponding MLE of the process change point was derived for this 

case.  Last, the method of building a confidence set to capture the true process change 

point was discussed.  Monte Carlo simulation was used to evaluate each of these 

proposed estimators.  Likewise, Monte Carlo simulation was used to evaluate the 

performance the proposed confidence set estimators. 

 The first case considered a step change in the mean of a process.  The conclusions 

reached were as the magnitude of the step change increased, or as the variance of the 

observations was lowered, the true change point was estimated more accurately.  Then set 

cardinality and coverage measures were used to evaluate the confidence set estimators.  

The given surface plots show more coverage can be obtained for a given percent increase 

in ν  from 0ν  by selecting a larger reference value D, but the tradeoff is that the 

confidence set will also have a larger cardinality. 

 Second, Monte Carlo simulation was used to evaluate the performance of the 

proposed estimator after a CUSUM control chart detected a step change in the 

overdispersion parameter.  Results indicate that as the magnitude of the step change 

increased, the true change point could be detected more accurately.  The set cardinality 

and coverage measures were also used to evaluate the confidence set estimators in this 

case, with the similar findings as the step change in mean case. 
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 To demonstrate the effectiveness of these techniques on a real-world problem, the 

methodology of Chapter 3 was applied to Iraq war coalition casualty data.  A 3σ  control 

chart was used to detect a change in daily casualties, and then the change-point estimator 

was applied.  It was shown that an increase in daily coalition casualties coincided with 

the start of the Muslim holy month of Ramadan.  The significance of the example is 

while most of the literature deals with examples from manufacturing settings, this 

example shows these methods can be applied to a non-traditional, non-manufacturing 

process. 

5.2 Future Research 
 
 Although a general methodology has been developed for estimating a step change 

in both the mean and overdispersion parameters of an overdispersed count process, there 

are areas of future research.  For instance, in this thesis, the two-parameter gamma-

Poisson mixture model was used to model overdispersed count data.  It was assumed that 

both parameters were known for the in-control process, but that the process went out-of-

control due to a step change in only one of the parameters.  While, these assumptions 

allowed a foundation to be laid, other cases can be considered. 

 The case where neither the in-control nor out-of control parameter values are 

known would be a very valuable addition to this research.  While any established process 

would have known or sufficiently estimated in-control parameter values, it is possible a 

new process could benefit from this kind of analysis.  For example, at the start of the Iraq 

war, there may not have been any historical data.  Certainly estimating a change in a 

process where none of the parameters are known, a priori, is important. 
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 In addition, the assumption of a sustained step change can be too simplistic in 

some instances.  The techniques in this thesis lend themselves well to a process where it 

is assumed that the type of change can be accurately modeled by a step function.  

However, if the type of change is not known before hand, then the procedure proposed by 

Perry, Pignatiello, and Simpson [14] may be a better alternative. 

 In this thesis, it was assumed that the variability of the Poisson rate parameter, λ , 

was modeled more accurately by allowing it to be modeled as the flexible, two-parameter 

gamma probability distribution.  However, it may be the case that a set of covariates 

(predictors) do well in explaining some of the variability in λ .  A change-point model 

that incorporates covariates may have the potential to model a wide range of process 

behaviors.  For example, step changes, linear trends, and cyclical changes. 

 Last, this research proposes that the negative binomial distribution is an adequate 

model to use for all count data processes since the Poisson distribution is just a limiting 

form of the negative binomial distribution.  However, the one-parameter Poisson 

distribution may be preferred in cases where it can be used.  Hence, it may be worth 

characterizing for exactly what values of various combinations of the negative binomial 

parameters that the Poisson distribution is an adequate model to use in place of the 

negative binomial. 
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Appendix A:  Simulation Data for Step Change in Mean 
 

Table 22:  Performance of MLE for 01,  1,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ )

1.2 20 38.20 50.42 82.57 0.385 
1.4 40 25.66 30.89 69.03 0.243 
1.6 60 18.45 20.97 61.82 0.173 
1.8 80 14.22 15.46 57.93 0.133 
2 100 11.47 12.00 55.43 0.107 

2.2 120 9.44 10.10 53.90 0.093 
2.4 140 8.03 8.70 53.06 0.082 
2.6 160 7.16 7.76 52.38 0.074 
2.8 180 6.23 7.08 51.87 0.068 
3 200 5.60 6.61 51.46 0.065 
4 300 3.86 5.27 50.59 0.052 
5 400 2.98 4.72 50.22 0.047 
6 500 2.54 4.10 50.12 0.041 
7 600 2.25 3.99 49.97 0.040 
8 700 2.06 3.60 49.98 0.036 
9 800 1.87 3.83 49.83 0.038 
10 900 1.77 3.49 49.84 0.035 
11 1000 1.70 3.23 49.86 0.032 

 

Table 23:  Performance of MLE for 01,  5,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 28.90 37.49 73.50 0.292 
7 40 18.65 21.99 62.62 0.180 
8 60 13.41 14.78 57.41 0.128 
9 80 10.12 11.23 54.64 0.102 

10 100 8.16 9.07 53.35 0.084 
11 120 6.80 7.96 52.21 0.076 
12 140 5.74 7.08 51.56 0.069 
13 160 5.06 6.40 51.30 0.063 
14 180 4.58 5.96 51.04 0.059 
15 200 4.05 5.93 50.70 0.059 
20 300 2.95 4.52 50.23 0.045 
25 400 2.37 4.33 50.01 0.043 
30 500 2.05 4.06 49.88 0.041 
35 600 1.84 4.15 49.78 0.042 
40 700 1.73 3.28 49.86 0.033 
45 800 1.63 3.55 49.81 0.035 
50 900 1.56 3.57 49.82 0.036 
55 1000 1.47 3.27 49.80 0.033 
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Table 24:  Performance of MLE for 01,  20,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

24 20 28.52 36.64 72.91 0.286 
28 40 17.86 20.68 61.66 0.171 
32 60 12.52 14.00 56.84 0.122 
36 80 9.48 10.45 54.21 0.096 
40 100 7.57 8.72 52.80 0.083 
44 120 6.19 7.55 51.93 0.073 
48 140 5.52 6.60 51.57 0.064 
52 160 4.85 6.10 51.19 0.060 
56 180 4.29 5.91 50.85 0.059 
60 200 3.90 5.37 50.66 0.053 
80 300 2.76 4.80 50.09 0.048 
100 400 2.26 4.55 49.89 0.046 
120 500 1.99 3.82 49.93 0.038 
140 600 1.79 3.76 49.83 0.038 
160 700 1.67 3.40 49.87 0.034 
180 800 1.58 3.90 49.72 0.039 
200 900 1.50 2.98 49.84 0.030 
220 1000 1.45 2.90 49.84 0.029 

 
 

Table 25:  Performance of MLE for 05,  1,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

1.2 20 59.63 69.91 95.41 0.532 
1.4 40 35.53 31.62 68.00 0.260 
1.6 60 23.10 17.99 58.16 0.160 
1.8 80 16.20 11.95 54.42 0.111 
2 100 12.29 9.13 52.63 0.088 

2.2 120 9.33 7.42 51.61 0.072 
2.4 140 7.60 6.37 50.97 0.063 
2.6 160 6.40 5.68 50.58 0.057 
2.8 180 5.40 5.25 50.27 0.053 
3 200 4.66 5.09 50.04 0.051 
4 300 2.73 4.10 49.65 0.041 
5 400 1.99 3.79 49.57 0.038 
6 500 1.63 3.47 49.58 0.035 
7 600 1.43 3.23 49.61 0.032 
8 700 1.31 2.76 49.66 0.027 
9 800 1.23 2.70 49.68 0.027 

10 900 1.17 2.32 49.74 0.023 
11 1000 1.12 2.01 49.78 0.020 
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Table 26:  Performance of MLE for 05,  5,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 39.01 36.96 70.98 0.304 
7 40 19.45 14.16 55.62 0.130 
8 60 11.39 8.58 51.83 0.084 
9 80 7.36 6.22 50.67 0.062 
10 100 5.28 5.59 50.03 0.056 
11 120 4.12 4.75 49.92 0.048 
12 140 3.31 4.40 49.71 0.044 
13 160 2.78 4.40 49.57 0.044 
14 180 2.41 4.00 49.61 0.040 
15 200 2.15 4.05 49.50 0.040 
20 300 1.49 3.62 49.55 0.036 
25 400 1.25 2.57 49.70 0.026 
30 500 1.14 2.46 49.71 0.024 
35 600 1.08 1.93 49.81 0.019 
40 700 1.06 1.62 49.84 0.016 
45 800 1.03 1.39 49.89 0.014 
50 900 1.02 0.96 49.93 0.010 
55 1000 1.02 1.13 49.92 0.011 

 
 

Table 27:  Performance of MLE for 05,  20,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

24 20 35.10 27.55 64.27 0.236 
28 40 15.27 10.44 53.07 0.100 
32 60 8.49 6.77 50.78 0.067 
36 80 5.35 4.97 50.11 0.050 
40 100 3.89 4.73 49.77 0.047 
44 120 3.11 4.29 49.67 0.043 
48 140 2.53 4.27 49.53 0.042 
52 160 2.15 3.92 49.53 0.039 
56 180 1.90 3.66 49.52 0.036 
60 200 1.72 3.54 49.53 0.035 
80 300 1.29 3.03 49.61 0.030 

100 400 1.14 2.21 49.75 0.022 
120 500 1.08 1.93 49.82 0.019 
140 600 1.04 1.41 49.88 0.014 
160 700 1.03 1.30 49.91 0.013 
180 800 1.02 0.85 49.94 0.009 
200 900 1.01 0.60 49.96 0.006 
220 1000 1.01 0.39 49.98 0.004 
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Table 28:  Performance of MLE for 010,  1,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

1.2 20 80.75 86.03 105.81 0.655 
1.4 40 47.12 34.74 68.55 0.294 
1.6 60 29.33 18.31 58.14 0.164 
1.8 80 20.04 12.07 53.93 0.114 
2 100 14.68 8.91 52.31 0.086 

2.2 120 10.94 7.26 51.35 0.071 
2.4 140 8.70 6.38 50.65 0.063 
2.6 160 7.11 5.35 50.47 0.053 
2.8 180 5.76 4.99 50.18 0.050 
3 200 4.88 4.83 49.96 0.048 
4 300 2.70 3.84 49.65 0.038 
5 400 1.91 3.38 49.61 0.034 
6 500 1.54 3.14 49.62 0.031 
7 600 1.33 3.02 49.60 0.030 
8 700 1.22 2.42 49.71 0.024 
9 800 1.15 2.16 49.77 0.022 

10 900 1.10 1.98 49.79 0.020 
11 1000 1.07 1.61 49.84 0.016 

 
 

Table 29:  Performance of MLE for 010,  5,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 51.07 35.04 68.49 0.298 
7 40 22.41 11.77 53.68 0.112 
8 60 11.93 7.02 50.98 0.070 
9 80 7.28 5.22 50.26 0.052 
10 100 4.91 4.30 49.89 0.043 
11 120 3.66 4.02 49.69 0.040 
12 140 2.86 3.80 49.64 0.038 
13 160 2.36 3.78 49.53 0.038 
14 180 2.07 3.35 49.60 0.033 
15 200 1.79 3.37 49.54 0.033 
20 300 1.26 2.71 49.65 0.027 
25 400 1.11 2.08 49.78 0.021 
30 500 1.04 1.30 49.89 0.013 
35 600 1.02 1.09 49.92 0.011 
40 700 1.01 0.79 49.95 0.008 
45 800 1.00 0.51 49.97 0.005 
50 900 1.00 0.47 49.98 0.005 
55 1000 1.00 0.70 49.98 0.007 
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Table 30:  Performance of MLE for 010,  20,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

24 20 34.94 20.11 58.28 0.183 
28 40 12.80 7.68 51.05 0.076 
32 60 6.41 5.33 49.94 0.053 
36 80 3.97 4.24 49.67 0.042 
40 100 2.75 3.72 49.58 0.037 
44 120 2.13 3.39 49.57 0.034 
48 140 1.77 3.11 49.59 0.031 
52 160 1.54 3.14 49.57 0.031 
56 180 1.38 2.99 49.60 0.030 
60 200 1.28 2.74 49.64 0.027 
80 300 1.07 1.75 49.80 0.017 

100 400 1.02 1.32 49.90 0.013 
120 500 1.01 0.75 49.95 0.008 
140 600 1.00 0.35 49.98 0.004 
160 700 1.00 0.29 49.99 0.003 
180 800 1.00 0.18 49.99 0.002 
200 900 1.00 0.06 50.00 0.001 
220 1000 1.00 0.04 50.00 0.000 

 
 

Table 31:  Performance of MLE for 050,  1,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ )

1.2 20 117.43 103.96 115.84 0.805 
1.4 40 64.79 35.47 67.90 0.306 
1.6 60 39.11 18.26 57.18 0.168 
1.8 80 25.67 11.56 53.28 0.111 
2 100 17.80 8.47 51.84 0.083 

2.2 120 13.02 6.53 51.05 0.064 
2.4 140 9.96 5.52 50.57 0.055 
2.6 160 7.81 5.04 50.29 0.050 
2.8 180 6.35 4.68 50.06 0.047 
3 200 5.26 4.71 49.87 0.047 
4 300 2.68 3.53 49.65 0.035 
5 400 1.81 3.14 49.60 0.031 
6 500 1.44 2.93 49.65 0.029 
7 600 1.23 2.61 49.67 0.026 
8 700 1.13 1.87 49.78 0.019 
9 800 1.07 1.60 49.83 0.016 

10 900 1.04 1.53 49.86 0.015 
11 1000 1.02 1.29 49.89 0.013 
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Table 32:  Performance of MLE for 050,  5,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

6 20 75.77 30.75 63.39 0.277 
7 40 27.62 9.54 51.92 0.094 
8 60 12.84 5.63 50.42 0.056 
9 80 7.12 4.27 49.92 0.043 
10 100 4.45 3.54 49.77 0.035 
11 120 3.14 3.36 49.65 0.033 
12 140 2.38 3.26 49.60 0.032 
13 160 1.91 3.11 49.59 0.031 
14 180 1.63 3.01 49.59 0.030 
15 200 1.41 2.67 49.64 0.027 
20 300 1.08 1.61 49.82 0.016 
25 400 1.01 0.95 49.93 0.010 
30 500 1.00 0.33 49.98 0.003 
35 600 1.00 0.08 50.00 0.001 
40 700 1.00 0.05 50.00 0.001 
45 800 1.00 0.02 50.00 0.000 
50 900 1.00 0.00 50.00 0.000 
55 1000 1.00 0.01 50.00 0.000 

 
 

Table 33:  Performance of MLE for 050,  20,  50,  and 10,000Nα ν τ= = = =  

aν  % Increase �ARL  
�RMS( )ντ$ ντ$  Std.error( ντ$ ) 

24 20 28.56 10.87 52.56 0.106 
28 40 7.76 4.54 49.94 0.045 
32 60 3.33 3.50 49.61 0.035 
36 80 1.96 3.13 49.56 0.031 
40 100 1.45 2.97 49.60 0.029 
44 120 1.21 2.57 49.66 0.026 
48 140 1.10 2.37 49.73 0.024 
52 160 1.04 1.63 49.84 0.016 
56 180 1.02 1.10 49.91 0.011 
60 200 1.01 0.76 49.94 0.008 
80 300 1.00 0.12 49.99 0.001 

100 400 1.00 0.05 50.00 0.001 
120 500 1.00 0.00 50.00 0.000 
140 600 1.00 0.00 50.00 0.000 
160 700 1.00 0.00 50.00 0.000 
180 800 1.00 0.00 50.00 0.000 
200 900 1.00 0.00 50.00 0.000 
220 1000 1.00 0.00 50.00 0.000 
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Appendix B:  Cardinality and Coverage Surface Plots for Step Change in Mean 
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Figure 17:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  01,  =1,  =50, and 10,000.Nα ν τ= =  
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Figure 18:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  01,  =5,  =50, and 10,000.Nα ν τ= =  
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Figure 19:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  01,  =20, =50, and 10,000.Nα ν τ= =   
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Figure 20:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  05,  =1, =50, and 10,000.Nα ν τ= =  
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Figure 21:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  05,  =5, =50, and 10,000.Nα ν τ= =  
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Figure 22:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  05,  =20, =50, and 10,000.Nα ν τ= =  
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Figure 23:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  010,  =1, =50, and 10,000.Nα ν τ= =  
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Figure 24:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  010,  =5, =50, and 10,000.Nα ν τ= =  
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Figure 25:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  010,  =20, =50, and 10,000.Nα ν τ= =  
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Figure 26:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  050,  =1, =50, and 10,000.Nα ν τ= =  
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Figure 27:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  050,  =5, =50, and 10,000.Nα ν τ= =  
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Figure 28:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Set Cardinality, Coverage, Percent Increase from 0ν , and 

Reference Value D.  050,  =20, =50, and 10,000.Nα ν τ= =  
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Appendix C: Simulation Data for Step Change in Overdispersion Parameter 
 
 

Table 34:  Performance of MLE for 05,  1,  =50, and 10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

0.9 10 181.60 235.80 210.09 1.731 
0.8 20 97.94 117.52 127.45 0.884 
0.7 30 59.05 62.93 89.00 0.494 
0.6 40 38.45 36.12 69.73 0.303 
0.5 50 26.64 22.19 59.73 0.200 
0.4 60 18.84 14.33 53.83 0.138 
0.3 70 13.77 9.95 50.64 0.099 
0.2 80 10.04 7.05 49.54 0.070 
0.1 90 7.38 5.97 48.63 0.058 

 
 

Table 35:  Performance of MLE for 05,  5,  =50, and 10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

4.5 10 218.20 290.90 248.63 2.125 
4 20 140.78 179.69 171.56 1.323 

3.5 30 89.11 104.73 120.50 0.774 
3 40 60.38 65.26 91.97 0.500 

2.5 50 40.36 39.97 72.80 0.328 
2 60 27.86 25.10 62.02 0.220 

1.5 70 18.77 15.03 55.04 0.142 
1 80 12.22 9.54 51.54 0.094 

0.5 90 7.36 6.21 49.78 0.062 
 
 

Table 36:  Performance of MLE for 05,  10,  =50, and 10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

9 10 246.97 327.69 276.17 2.371 
8 20 175.21 226.82 205.20 1.654 
7 30 124.48 153.54 155.15 1.119 
6 40 85.02 98.24 115.80 0.730 
5 50 59.27 63.04 90.23 0.485 
4 60 40.55 39.48 72.81 0.322 
3 70 26.70 23.51 60.72 0.209 
2 80 16.92 13.65 53.77 0.131 
1 90 9.26 7.75 50.18 0.078 
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Table 37:  Performance of MLE for 020,  1,  =50, and 10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

0.9 10 151.83 198.58 184.50 1.461 
0.8 20 76.51 89.16 109.05 0.668 
0.7 30 43.77 46.07 77.89 0.367 
0.6 40 27.73 25.38 63.51 0.215 
0.5 50 18.87 15.70 56.31 0.144 
0.4 60 13.30 10.27 52.61 0.099 
0.3 70 9.46 7.22 50.53 0.072 
0.2 80 6.77 5.68 49.51 0.057 
0.1 90 4.76 4.57 48.98 0.045 

 
 

Table 38:  Performance of MLE for 020,  5,  =50, and 10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

4.5 10 177.80 235.03 209.76 1.724 
4 20 93.53 114.08 126.01 0.851 

3.5 30 55.23 61.16 88.53 0.475 
3 40 35.67 36.15 70.57 0.297 

2.5 50 23.46 21.45 60.60 0.186 
2 60 15.53 13.51 54.73 0.127 

1.5 70 10.52 9.17 52.00 0.090 
1 80 6.77 6.23 50.51 0.062 

0.5 90 3.99 4.11 49.86 0.041 
 
 

Table 39:  Performance of MLE for 020,  10,  =50, and 10,000Nν α τ= = =  

aα  % Decrease �ARL  
�RMS( )ατ$ ατ$  Std.error( ατ$ )

9 10 192.08 252.41 223.78 1.831 
8 20 112.28 140.27 144.19 1.039 
7 30 66.85 76.22 99.57 0.579 
6 40 43.35 45.26 77.37 0.360 
5 50 28.19 26.67 64.21 0.226 
4 60 19.11 16.79 57.04 0.152 
3 70 12.62 10.87 52.88 0.105 
2 80 8.02 7.47 50.93 0.074 
1 90 4.44 4.76 50.01 0.048 
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Appendix D:  Cardinality and Coverage Surface Plots for Step Change in 
Overdispersion Parameter 

 
 

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cardinality

C
ov

er
ag

e

D

1.00

1.50

2.00

2.50

3.00

Decrease

10%

30%

50%
70%

90%

 
Figure 29:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=5, =1, =50, and 10,000.Nν α τ =  
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Figure 30:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=5, =5, =50, and 10,000.Nν α τ =  
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Figure 31:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=5, =10, =50, and 10,000.Nν α τ =  
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Figure 32:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=20, =1, =50, and 10,000.Nν α τ =  
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Figure 33:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=20, =5, =50, and 10,000.Nν α τ =  
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Figure 34:  Surface Plot Obtained from Confidence Set Estimator Showing Estimated 
Relationships Between Cardinality, Coverage, Percent Decrease from 0α , and Reference 

Value D.  0=20, =10, =50, and 10,000.Nν α τ =  
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