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AFIT/GOR/ENS/07-23 
 

Abstract 
 
 This research uses an advanced statistical technique to expand upon the current 

understanding of war termination.  Specifically, this thesis addressed questions 

concerning the most relevant factors toward predicting both the outcomes of interstate 

wars and the winners of intrastate and extra-systemic wars, within the limitations of the 

available data.  Open-source war data from the Correlates of War Project was analyzed 

using both binary and multinomial logistic regression techniques.  While the Correlates 

of War Project did not necessarily focus its data collection efforts on those variables 

historically associated with war termination, it did provide a sufficient number of 

variables with which to demonstrate the applicability of logistic regression techniques to 

war termination analyses.  As a consequence, every significant logistic regression model 

contains a single relevant variable.  For both intrastate and extra-systemic wars, the 

duration of the conflict was found to be most relevant to predicting the winner.  In 

contrast, the proportion of total casualties borne by a nation in an interstate war was most 

relevant to predicting the manner in which an interstate war ends.  Conclusions drawn 

from this research and suggestions for future statistical applications to war termination 

studies were also discussed.                 
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PATTERNS OF WAR TERMINATION: A STATISTICAL APPROACH 

 

I. Introduction 
 

Background 
 
 What must be done to convince an enemy to give up armed resistance?  Most of 

the research on wars has been devoted to the prevention of war.  Much less focus has 

been placed on studying the factors involved in terminating a war after it ensues (Pillar, 

1983:3).   

 

Problem Statement 
 

Permeating throughout war termination literature is the lesson that deciding how a 

war shall end is just as important as deciding how a war shall be fought (Ikle, 1991:1).  

Additionally, ending a war such that the desired state of peace is achieved is equally 

paramount.  Knowledge must be gained concerning the appropriate amount of military 

force required, not only to affect the cessation of hostilities, but also to contribute 

positively to the planned peace (Ikle, 1991:x).  Under the assumption that war is a 

complex and unstable phenomenon, it is appropriate to examine war termination through 

a probabilistic lens.  What factors are relevant to ceasing armed hostilities?  To what 

degree are such factors significant?  Can these factors be controlled or manipulated?  

Given specific values for such relevant factors, what is the likelihood of achieving one 
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outcome versus another?  Logistic regression analyses on historical war data can address 

these questions and provide objective insights into existing social science theories.    

Numerous theories on war termination exist, and they have been used in political 

and social science circles to explain the outcomes of past wars.  However, beyond 

elementary statistical measures, such as the proportion of wars since 1815 ending by a 

negotiated settlement, there appears to be a lack of rigorous applications of advanced 

statistical methods to describe how wars end.  As a consequence, few of the social 

science theories on war termination can be consistently applied, given similar wartime 

conditions in multiple cases.  Authors of these war termination studies suggest many 

methods to devise a successful termination strategy, but few numerical methods have 

been employed to either support or contradict their arguments.       

 

Research Objectives 
 

This thesis sought to identify the key factor or factors that contribute to the 

termination of an armed conflict using readily available open-source data.  The 

overarching goal was to demonstrate the applicability of logistic regression techniques to 

war termination analyses.  Once the key variables were identified, the next phenomenon 

to be addressed was how the contributory factors influence trends in both how wars end 

and who wins wars. The three types of wars were analyzed separately to identify different 

war termination patterns between war types.  This study also sought to identify 

developing trends between 19th and 20th Century warfare because the open-source data 

used in this study spanned these two centuries.  One such pattern is the change in 

likelihood, from Napoleonic to modern warfare, that a particular combatant wins a war.  
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The change in the likelihood of a particular outcome between centuries was also of 

interest.  Any wars found to have significant effects on estimating the models were 

identified for future research.      

 

Limitations  
 

The data sets used for this research were obtained from the Correlates of War 

Project (COWP).  The COWP is based in Urbana, IL, and consists of scholars, mostly 

political scientists, devoted to increasing the scientific exploration and knowledge of war.  

The group was founded in 1963 by political scientist J. David Singer, who was soon 

joined by historian Melvin Small.  The data sets compiled by the COWP consist 

primarily of variables determined by the group to be relevant to the onset of war, such as 

international trade, nonaggression pacts, defense alliances, geographic contiguity, 

national materiel production, and diplomatic representation. 

The small number of variables for which the COWP collected data limited the 

discovery of a comprehensive list of statistically significant war termination factors.  This 

limitation also restricted the size and implications of the resulting logistic regression 

models.  There are more variables discussed in the existing war termination literature 

than were variables within the COWP data.  Consequently, some of the insights gained 

from the social science realm remain open to further investigation.     

 The data sets available from the Correlates of War Project, which also included 

data concerning diplomatic ties, trade agreements, and alliances in addition to war data, 

were compiled by different persons.  Therefore, it was difficult to pinpoint similarities 



 

 4

between data sets.  The ability to add and delete variables between data sets such that the 

models are better specified also requires additional investigations.    

Numerous missing entries existed within each of the data sets.  While valid 

statistical techniques can be used to fill in missing data, the resulting analyses would be 

more useful in real-world applications if the data were complete.  The sample sizes for 

each of the three data sets analyzed, on the other hand, were sufficiently large such that 

the observations containing missing data could be deleted with little effect on the model 

parameter estimates.  

 

Research Focus 
 

This research focused on the analyses of data concerning three types of wars: 

interstate, intrastate, and extra-state or extra-systemic.  The data were further 

distinguished by century.  That is, the data for each war type were further divided into 

19th and 20th Century data.  Interstate wars are those whose participants are 

internationally recognized nations.  Intrastate wars are defined as armed conflicts 

involving belligerents confined within a nation’s geographic borders, including civil 

wars.  Extra-state or extra-systemic wars are those involving state and non-state actors, 

but fighting occurs outside the nation’s borders.  The terms extra-state and extra-systemic 

both define the same type of war, so they are used interchangeably throughout this thesis. 

 A review of existing social science literature on war termination was conducted.  

The level of attention previously devoted to the subject of war termination was addressed.  

The literature review also discussed the subjective methods used in prior studies to 
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classify the types of war termination.  These prior classifications provided a basis from 

which to construct the war termination categories used in this study.    

 Two sources of logistic regression theory were reviewed.  The work of Hosmer 

and Lemeshow explained virtually all of the techniques and methods used in logistic 

regression.  The contribution by Montgomery, Peck, and Vining to this study was a 

thorough description of the least squares method used to estimate the logistic regression 

model parameters.   

 Subsets of variables from the original COWP data were selected.  These 

selections were made based primarily on relevant factors discussed in the social science 

literature on war termination.  Additionally, the sets of selected variables were further 

limited by variable availability in the COWP data.  That is, several factors deemed 

important by social scientists were not available in the COWP data.  The variable 

restriction, however, did not adversely affect the overall intent of this study, which was to 

demonstrate the applicability of logistic regression techniques to war termination 

problems.  A sufficient number of variables were provided by the COWP such that the 

effectiveness and potential of logistic regression applications to war termination could be 

shown.   

 Stepwise selection is a robust procedure that was used to determine an initial set 

of statistically significant variables for each fitted model.  Stepwise selection was 

conducted on the variables for the 19th Century, 20th Century, and aggregated data for 

each type of war.  The results from the stepwise procedure were used to estimate initial 

logistic regression models.  The initial models were each assessed for goodness-of-fit and 
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individual covariate significance.  The significance tests confirmed either the overall 

adequacy of an initial model or the need to fit a reduced model.    

 The statistical software program used in this study was MINITAB.  Several 

software packages have been programmed to fit and analyze logistic regression models, 

but MINITAB was chosen for two reasons.  One, MINITAB was readily available and 

accessible.  Secondly, MINITAB had been programmed to support binary logistic 

regression, multinomial logistic regression, and virtually all of the significance tests, 

goodness-of-fit tests, diagnostic measures, and diagnostic plots necessary for this 

investigation.   

 Each of the final models was assessed for overall adequacy using three 

statistically equivalent goodness-of-fit tests.  Individual covariate significance was also 

determined through tests on their coefficients.  The implications of each model were also 

interpreted.  Three types of residual plots were examined for influential observations.  

Once identified, the influence points were analyzed for their net effects on model 

coefficient estimations.  When necessary, new models were fit with the influential data 

points deleted. 

 A general assessment of the findings of this study was given.  War termination 

implications across two centuries of warfare and across three types of wars, given the 

open-source data used, were stated.  Opportunities for future statistical studies on war 

termination were considered.  In addition, proposals for additional applications of logistic 

regression methods to war termination were discussed. 
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II. Literature Review 
 

General 
 

Few will deny that all wars do not end in the same manner, yet not enough 

attention is paid to the elements contributing to the conclusion of wars.  Fred Ikle 

addresses the one-way street between how wars begin and how they end, and he insists 

that the process of termination has the longest lasting effect on the ensuing peace than 

any other element of war (Ikle, 1991:vii).  One need look no further than to German 

actions during World War I and to French actions after World War I to accept Ikle’s 

assessment as an axiom of war.  Germany launched its unrestricted submarine warfare 

campaign in 1916 with the intent to inflict massive panic upon the British population and 

end the war on German terms, but the campaign instead served the unintended 

consequence of drawing the United States into the war, which hastened Germany’s defeat 

(Ikle, 1991:xi).  Germany’s perceived military excesses during World War I led to French 

insistence that the Versailles treaty punish Germany economically through massive war 

reparations and humiliate Germany diplomatically by forcing her to accept the aggressor 

label.  The eventual rise of Adolf Hitler and Nazi Germany can be traced back, at least in 

part, to French contributions to the Treaty of Versailles.   

 Classifying the manners in which wars end is important to a probabilistic analysis 

of war termination.  Paul Pillar conducts such a classification in his analyses.  However, 

he postulates that most future wars will end through negotiated agreements, so his 

classification of the types of war termination is influenced by this assertion.  It must first 

be determined whether combat ends at the same time as the war (Pillar, 1983:11).  For 
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example, Serbia and Turkey signed a peace treaty in March 1877, which technically 

ended the First Balkan War, but some Serbian forces continued to fight the Turks through 

the beginning of the Russo-Turkish War in April 1877 (Pillar, 1983:22).  Pillar classifies 

this type of war termination as absorption.  That is, the ending of a small war is marked 

by one or more of its belligerents becoming involved in a larger war.  If combat does 

indeed end simultaneously with the war, then it should be determined whether the 

fighting ended because of a mutual agreement by all belligerents or because one side 

applied sufficient military force to the opposition such that its enemy could no longer 

continue.  If the latter is the case, then Pillar denotes this type of war termination as 

extermination or expulsion.  When all sides mutually decide to end the war, then Pillar 

notes either the existence or absence of a written agreement.  Pillar defines withdrawal as 

a war which terminates without a written agreement (Pillar, 1983:14).   

For explicit agreements, Pillar distinguishes between those negotiated by the 

belligerents themselves and those negotiated by third parties.  Pillar further assumes that 

international organizations have almost always played the role of the third party in 

written negotiations.  As such, he uses the term international organization to denote the 

category for wars in which a third party aids in written agreements (Pillar, 1983:15). 

When formal settlements are handled by the belligerents themselves, Pillar 

discerns whether or not a settlement is imposed by one side upon the other.  If this is the 

case, then capitulation has occurred.  If the settlement is indeed mutually negotiated, then 

Pillar differentiates between agreements negotiated before an armistice and those 

negotiated after an armistice (Pillar, 1983:15).  These distinctions add support to the 
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construction of a polychotomous, or multi-category, dependent variable on the outcomes 

of wars.               

With the response variable defined, the focus of investigation must necessarily 

shift towards the common factors that contribute to stopping a given war.  Additionally, 

attention should be given to the manner in which a war ends, not just why it ends.  For 

example, the proportion of total casualties taken by one belligerent may prove to be more 

significant if the war ends through capitulation than if it ends through a negotiated 

settlement.  Because every war is different, only a few termination variables are present 

in all wars.   

Ikle points out the obvious economic and social costs of casualties and military 

expenditures (Ikle, 1991:1).  Even with the ongoing Operation Iraqi Freedom (OIF), the 

most commonly cited measures are the numbers of US dead and wounded, Iraqi civilian 

deaths, and the billions of dollars per month spent on the conflict.  Most other factors 

mentioned in the literature are qualitative in nature.  As a consequence, limited data is 

available for these factors, and their relevance is largely based on hindsight, conjecture, 

and inference.   

There does exist at least one case where these subjective variables are applied to 

social science war termination theories using what could be considered survey data as 

supporting evidence.  Joseph Engelbrecht, in his analyses of four war termination 

theories, uses transcripts from interviews with Japanese officers captured during World 

War II to support his conclusions (Engelbrecht, 1992:82-87).  His conclusions, however, 

seek to explain why wars end rather than to relate the relevant factors to specific types of 

war endings.  His case-study approach only addresses one type of war termination: 
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surrender or capitulation.  In two of the three cases, the Japanese surrender in 1945 and 

the Afrikaner surrender to the British in South Africa in 1902, a formal settlement to the 

conflict was reached.                       

Two interesting political science theories on war termination are considered by 

Engelbrecht and tested against three cases.  One theory is based on a winners and losers 

approach.  The other focuses on cost/benefit analyses.  The three test cases he used were 

the Japanese decision to surrender in August 1945, the Afrikaner decision to surrender to 

the British in South Africa in 1902, and the British decision to continue fighting the Nazis 

following the fall of France in 1940.  He applied each theory to each case, analyzed the 

particulars of each case, and determined which theory best fit the decisions made in each 

case (Engelbrecht, 1992:61-63). 

   The Winners and Losers model identifies two outcomes of war and emphasizes 

that one side is the clear victor, and the other side is the vanquished.  This model stresses 

the defeat of enemy military forces as the key to convincing the enemy to either seek a 

peaceful settlement or surrender.  This theory is commonly applied when one can identify 

a specific battle or campaign that marks a turning point in the war (Engelbrecht, 1992:63-

64).   

For example, the the Battle of Midway in 1943 is identified as the battle that 

turned the tide of World War II against Imperial Japan.  Interrogations of Imperial 

Japanese military officers at the end of World War II confirmed that the American 

victory at Midway signaled the eventual defeat of Japan (Engelbrecht, 1992:82-87).  In 

the Afrikaner case, the fall of Pretoria in 1900 turned the tide of the Anglo-Boer War 

against the Boer forces (Engelbrecht, 1992:155-157).   
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The German blitzkrieg through the Ardennes, the defeat of the British 

Expeditionary Force (BEF) in Belgium, and the fall of France were devastating defeats to 

the United Kingdom in 1940, yet the British refused to negotiate or surrender.  However, 

the defeated nation must capitulate soon after such turning points in order for the Winners 

and Losers theory to be valid (Engelbrecht, 1992:215).  In all the cases described above, 

the defeated nation did not immediately surrender, despite heavy battlefield losses.  The 

Afrikaners did not surrender to the British until 1902.  The Japanese surrender did not 

come until 1945, yet the interrogated Japanese officers deemed the surrender inevitable, 

even without the atomic bomb attacks on Hiroshima and Nagasaki.  On the other hand, 

the British never surrendered or talked of peace with Nazi Germany.  Why?  Why did 

surrender eventually occur in all the other cases, except the British?  The same conditions 

of a humiliating military defeat existed in all the cases, yet surrender did not always 

occur.   

   The Cost Benefit model focuses on comparing the costs of prosecuting a war with 

the achievement of the war’s objectives.  For this theory to be applicable, the losing 

nation is expected to first weigh the costs of war.  That is, it must consider the raw 

numbers of human, war weapon, logistic, and economic losses.  Then, the losing nation 

must determine whether or not its war aims can still be reasonably met.  If its war 

objectives cannot reasonably be met, then the Cost Benefit model implies that 

capitulation must occur (Engelbrecht, 1992:30-32).  In all three cases analyzed by 

Engelbrecht, no evidence suggested the use of any rational cost benefit analyses to decide 

the question of war termination, at least while the war was ongoing.  That is not to say 
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that costs were not discussed, but such discussions did not directly produce a decision to 

surrender, or in the British case, to continue fighting (Engelbrecht, 1992:32-33).      

 James Walker begins his Naval War College study by addressing the question of 

why war termination plans should be considered.  He notes that the majority of wars 

since 1800 have ended with negotiated peace agreements.  This fact moves the purpose of 

military force away from the wholesale destruction of enemy forces on the battlefield and 

toward the application of sufficient force to achieve diplomatic and political goals.  He 

points to the numerous Arab-Israeli wars to support the idea of this paradigm shift.  The 

undefeated military record of Israel, most notably in its War of Independence in 1948, the 

Six Day War in 1967, and the Yom Kippur War in 1973, has achieved neither a lasting 

peace nor a resolution of the political, social, and religious issues between Israel and her 

Arab neighbors.  Dynamic political, diplomatic, social, and cultural issues lend even 

more importance to war termination planning (Walker, 1996:1-2). 

 Walker notes that war termination is mentioned in the joint military doctrine of 

the United States, but the attention it is given is brief and the language vague.  He 

describes a state of tunnel vision resulting from America’s status as the lone superpower.  

That is, military commanders falsely assume that the mere overwhelming application of 

America’s superior weapons and firepower will automatically produce the desired peace 

(Walker, 1996:2-4).  This assessment essentially echoes a similar statement made by Ikle, 

where Ikle asserted that military power should be applied only to the extent that it will 

contribute positively to the desired peace, and such applications should be explicitly 

defined in military strategies for war.  Ikle maintains that the indiscriminant destruction 
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of enemy forces and civilians is most detrimental to the desired atmosphere of peace 

(Ikle, 1991: ix-xi).      

   The products of termination agreements must be considered.  Will written 

documents be drafted and signed by all parties?  If so, will it be a formal treaty?  If not a 

treaty, will it be an armistice or limited cease-fire?  Walker highlights these details for 

two reasons.  One, the Gulf War negotiations yielded no written agreements, only audio 

recordings.  Two, Walker emphasizes the international legitimacy behind written 

agreements.  Although only treaties are legally binding, written agreements, in general, 

still provide a certain degree of political and diplomatic leverage in the event that one 

side eventually breaks the deal (Walker, 1996:12-13).  Unlike Pillar, Walker treats 

armistices and cease-fires as actual termination agreements rather than conditions upon 

which formal war settlements hinge.   

 Emphasizing the importance of war termination in both doctrine and training is 

the method Walker offers with respect to how to plan for war termination.  Beyond that, 

he only stresses drafting war termination plans early in the strategic planning cycle.  As 

with other operational plans, war termination plans should be updated according to the 

progression of affairs in the war.  Alternatives within the termination plans should be 

analyzed, and contingencies should also be considered (Walker, 1996:13-14).  Rather 

than provide guidance on war termination methods, Walker focuses on the lack of 

attention given to and the necessity for early planning of war termination (Walker, 

1996:16).   
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Correlates of War Project (COWP) 
 
 The COWP is an organization that provides open-source data on wars and factors 

which account for wars.  The COWP has compiled thirteen data sets. These sets contain 

variables concerning state system membership, interstate wars, intrastate wars, extra-

systemic wars, militarized interstate disputes, national materiel capabilities, formal 

alliances, territorial changes, geographic contiguity, colonial dependency, 

intergovernmental organizations (IGOs), diplomatic representation, and bilateral trade.  

In the context of a war termination study, the interstate, extra-state, and intrastate war sets 

are of primary interest.  The interstate set contains data concerning the nations 

participating in 79 interstate wars from 1823 to 1991.  The intrastate set contains data 

concerning the state belligerents in 213 intrastate wars from 1816 to 1997.  The extra-

state set contains data concerning the state actors in 108 extra-systemic wars from 1817 

to 1983.  Appendix A shows the variables included in each of the three war data sets and 

their definitions as assigned by the COWP. 

 

Statistical Application 
 
 Suppose the response variable in a statistical study on war termination is the 

winner of a war.  Either a particular combatant wins, or his opponent does.  He succeeds 

in defeating his opponent or his enemy defeats him.  Since this response has only two 

possible outcomes, and its category definitions are arbitrary, the winner of a war can be 

defined as a Bernoulli random variable (Montgomery, Peck, and Vining, 2001:443-444).  

That is, each category for the winner has a probability attached to it.  As a contemporary 

example, let jY  denote the winner of the thj  extra-systemic war, which involved the 
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United States and the terrorist group Hamas.  Let j denote the thj  extra-state war from a 

sample of n extra-state wars, where 1,2, ,j n= K .  If 0jY = , then Hamas is the winner.  If 

1jY = , then the United States is the winner.  Since jY  is a Bernoulli random variable, the 

probability that 0jY =  and the probability that 1jY =  are the quantities under 

investigation (Montgomery, Peck, and Vining, 2001:444).  The goal now is to determine 

a mathematical relationship between who wins an extra-systemic war and appropriate 

contributory or predictor variables.      

 Alternatively, suppose the response variable in a statistical study on war 

termination is the manner in which a war terminates.  More than two types of war 

termination have been defined to exist, so the response is polychotomous or multi-

category.  The probabilities for the different types of war termination are still of interest, 

but each war termination probability is compared to a reference or baseline war 

termination probability (Hosmer and Lemeshow, 2000:260-261).  That is, the type of war 

termination that is most prevalent is selected to be the reference category, and the 

remaining categories are compared to it.  Mathematical relationships between each 

comparison and several predictor variables can now be established.  In this case, the 

objective can be to determine how likely one type of war termination is to occur over the 

baseline war termination method (Hosmer and Lemeshow, 2000:265).            

 Once the response is identified and its structure defined, a set of candidate 

predictor variables is compiled.  Advanced statistical techniques can be applied to these 

candidate variables to determine the strengths of their relationships to the response.  The 

results from such techniques can justify the retention or elimination of some of the 

candidate variables.   
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Logistic Regression 
 
 Because this thesis focuses on analyses performed on existing data, a regression 

technique is an effective way of describing the relationship between how a war ends, or 

who wins a war, and the factors contributing to such outcomes.  The outcome of a war is 

not a continuous variable, so classical linear regression is not a valid approach.  Instead, 

this thesis seeks to assess the likelihoods of different outcomes of war, and such 

likelihoods can be derived from conditional probabilities.  Logistic regression is the 

preferred method for this approach, primarily because the outcome variables are discrete 

categorical variables, either binomial or multinomial (Hosmer and Lemeshow, 2000:1).  

Some texts use the synonymous terms binary or dichotomous when referring to a logistic 

regression model with a two-category response. They also may use the terms 

polychotomous or polytomous when referring to a logistic regression model with a 

response containing three or more categories (Hosmer and Lemeshow, 2000:260).  

 The nature of the response variable determines the type of parametric model to be 

used.  It also determines the assumptions that can be made.  In linear regression, the 

response is continuous, and the distribution of the response is assumed to be normal.  The 

outcome of a war, however, is not a continuous random variable as defined in this study.  

Similarly, the winner of a war is not a continuous random variable.  Thus, the normality 

assumption no longer holds for the responses in this study.  These responses must be 

described by a different probability distribution (Hosmer and Lemeshow, 2000:1).  

 As with linear regression, model parsimony is also desired with logistic 

regression.  That is, fitting the model with the smallest number of contributory variables, 



 

 17

or covariates, that best describes the relationship between an outcome, or response, and a 

set of covariates, or predictors (Hosmer and Lemeshow, 2000:1).  The model can contain 

either continuous variables, categorical variables, or both. 

 

     Binary Logistic Regression. 
 
 The theory behind binary logistic regression is commonly explained using a 

univariate model, where only one covariate is present.  The techniques are readily 

adapted to multivariate cases.  The focal quantity for binary logistic regression is the 

conditional probability of the mean of the response, given a certain value of the covariate.  

That is, ( )|P Y i x j= = .  Several cumulative distributions have been proposed and used 

to fit models for this conditional probability, but the logistic distribution is used for 

logistic regression because of its ease of interpretation.  The binary logistic regression 

model is of the form 

( )
0 1

0 11

x

x

ex
e

β β

β βπ
+

+=
+

,     (2.1) 

where ( ) ( )|x P Y xπ =  represents the conditional probability of the response Y given the 

covariate x (Hosmer and Lemeshow, 2000:6).  For the multivariate case, let 

[ ]1 21, , , ,T
kx x x=x K  and T =β [ ]0 1 2, , , , kβ β β βK .  Then, the multivariate logistic 

regression model becomes 

( )π =x
1

T

T

e
e+

x

x

β

β
.     (2.2) 
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 The method of maximum likelihood is used to estimate the parameters of the 

model, but the model must be transformed and made linear in its parameters 0β  and 1β .  

The transformation used is called the logit.  The logit is defined in terms of ( )xπ . 

( ) ( )
( ) 0 1ln

1
x

g x x
x

π
β β

π
⎛ ⎞

= = +⎜ ⎟⎜ ⎟−⎝ ⎠
    (2.3) 

For multiple covariates, the logit becomes 

( ) ( )
( )

ln
1

g
π
π

⎛ ⎞
= =⎜ ⎟⎜ ⎟−⎝ ⎠

x
x

x
T =x β 0 1 1 2 2 k kx x xβ β β β+ + + +L       (2.4) 

It should be noted that the quantity ( ) ( )( )1x xπ π−  is called the odds, that is, the ratio 

of the probability of success to the probability of failure.  Therefore, the logit is also 

called the log-odds (Montgomery, Peck, and Vining, 2001:445-446).   

An observation of a dichotomous response given x  is expressed as ( )y xπ ε= + , 

but the assumption of normality in the distribution of the error term ε  does not apply in 

this case, as it does in linear regression (Hosmer and Lemeshow, 2000:6).  Instead, the 

errors follow the binomial distribution, with a mean or expected value of zero and a 

variance equal to the product of the probability that 1y =  and the probability that 0y = .  

That is, 

( )1 xε π= −  with probability ( )xπ , for 1y = ,  (2.5) 

( )xε π= −  with probability ( )1 xπ− , for 0y = ,  (2.6) 

( ) 0E ε = , and                        (2.7) 

( ) ( ) ( )1Var x xε π π= −⎡ ⎤⎣ ⎦ .              (2.8) 
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 Constructing the likelihood function is the first step towards estimating the 

logistic regression model parameters.  Let ( ),j jx y  denote one observation out a set of n  

independent observations, where jy  is the thj  binary response, jx  is the value of the 

covariate for the thj  observation, and 1,2, ,j n= K  (Hosmer and Lemeshow, 2000:7).  

The contribution of ( ),j jx y  to the likelihood function is expressed as an independent 

Bernoulli trial, or  

( ) ( ) ( )1 1
1 1jj jj

yy yy
j j j jx xπ π π π

− −⎡ ⎤− = −⎣ ⎦    (2.9) 

Since there are n  independent Bernoulli trials, and each trial contributes to the likelihood 

function, then the likelihood function becomes the product of independent trials, or 

( ) ( )10 1
1

, 1 jj
n yy

j j
j

l β β π π
−

=

= −∏    (2.10) 

In order to find the values of 0β  and 1β  that maximize equation (2.10), the natural 

logarithm of equation (2.10), the log-likelihood function, is computed because it is easier 

to manipulate (Hosmer and Lemeshow, 2000:8).  Differentiating the log-likelihood 

function ( )0 1,L β β  with respect to 0β  and 1β , and setting each resulting partial 

differential equation to zero, yields the likelihood equations. 

( ) ( ) ( ) ( )0 1
1

, ln 1 ln 1
n

j j j j
j

L y yβ β π π
=

⎡ ⎤= + − −⎣ ⎦∑             (2.11) 

( )( )
1

0
n

j j
j

y xπ
=

− =∑             (2.12) 

 ( )( )
1

0
n

j j j
j

x y xπ
=

− =∑                         (2.13) 

Using vector notation, the form of the log-likelihood function for multivariate cases is 
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 ( ) ( )
1 1

ln 1 exp
n n

T T
j j j

j j

L y
= =

⎡ ⎤= − +⎣ ⎦∑ ∑x xβ β β    (2.14) 

(Montgomery, Peck, and Vining, 2001:448).  Because the likelihood equations are 

nonlinear in their parameters, a closed-form solution is not possible.  An iterative search 

method called iteratively reweighted least-squares (IRLS) is implemented to obtain 

solutions (Hosmer and Lemeshow, 2000:9). 

   Most modern statistical software packages that fit logistic regression models have 

this iterative search method programmed into them.  IRLS employs the Newton-Rhapson 

algorithm as a robust method to approximate solutions to the likelihood equations.  

Hosmer and Lemeshow do not describe the details of IRLS, but the interested reader 

should refer to Montgomery, Peck, and Vining for a complete explanation of IRLS 

(Montgomery, Peck, and Vining, 2001:610-613).   

 Let β̂  be the final IRLS estimate.  Then, the logit becomes ( ) ˆˆ T
j jg =x x β , and the 

fitted logistic regression model becomes 

ˆ jπ =
( )
( )

ˆexp
ˆ1 exp

T
j

T
j+

x

x

β

β
     (2.15) 

(Montgomery, Peck, and Vining, 2001:449). 

 

          Parameter Interpretation. 
 
 For the binary model, the fitted value of its logit at a particular value of its single 

covariate is ( ) 0 1
ˆ ˆˆ j jg x xβ β= + .  Let the value of the logit at 1jx +  
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be ( ) ( )0 1 0 1 1
ˆ ˆ ˆ ˆ ˆˆ 1 1j j jg x x xβ β β β β+ = + + = + + .  Therefore, the difference between the two 

fitted logit values is  

( ) ( ) 0 1 1 0 1 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ1j j j jg x g x x xβ β β β β β+ − = + + − − =      

or        

( ) ( ) ( )
( )

( )
( )

11
1 ln ln ln

1 1 1
j j j

j j
jj j

x x odds
g x g x

oddsx x

π π

π π
+

⎡ ⎤ ⎡ ⎤+ ⎛ ⎞
+ − = − =⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎜ ⎟− + −⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

   

If the antilogarithm of the above quantity is taken, then the result is called the odds ratio, 

 1̂1ˆ j
R

j

odds
O e

odds
β+= =      (2.16) 

which is the estimated change in π  per one-unit change in the covariate x .  For 

multivariate models, ˆ
RO  is the estimated change in π  per one-unit change in the thj  

covariate, given that the values for the remaining 1k −  covariates are constant 

(Montgomery, Peck, and Vining, 2001:452).   

Odds ratios, rather than the parameter estimates, are used to describe the results of 

a fitted binary logistic regression model.  For example, suppose that a binary logistic 

regression model on the winner of an intrastate war contains the length of the conflict as 

the predictor variable, and suppose Y denotes the binomial random variable for the 

winner.  Let 0Y = denote that the state actor wins the intrastate war, and let 1Y =  denote 

that the non-state actor, rebel faction, or insurgency wins the war.  In addition, suppose 

that 2.5 is found to be the odds ratio for this model when the duration of the war is 1440 

days.  It can then be said that the non-state belligerent is two and a half times more likely 

to win an intrastate war than is the state, given that the war lasts 1440 days.   
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          Goodness-of-Fit Testing. 
 
 Measuring the difference between observed and fitted values, or residuals, to 

assess a model’s goodness-of-fit can be performed by manipulating likelihood ratios.  

That is, the IRLS estimates for the parameters in equation (2.3) are substituted into the 

log-likelihood function (2.11), which maximizes the value of the log-likelihood function.  

By noting that a saturated model is one whose sample size is equal to the number of 

parameters it contains, or 1n k= + , the difference between the log-likelihood of this 

saturated model and the log-likelihood of the fitted model is examined to determine the 

fitted model’s adequacy. 

 The deviance D of the fitted model approximately possesses a chi-square 

distribution with ( 1)n k− +  degrees of freedom.  The test statistic is given by 

( ) ( )( )( ) ˆ2 ln 2ˆ( )
l saturatedD L saturated L

l
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠

β
β

   (2.17) 

Multiplying the natural logarithm of the likelihood ratio by 2 allows the deviance to 

approximate a chi-square distribution (Hosmer and Lemeshow, 2000:13).  If 2
, 1n kD αχ − −≤ , 

then the fitted model is appropriate; 2
, 1n kD αχ − −>  implies that the fitted model is 

incorrectly specified (Montgomery, Peck, and Vining, 2001:453).  The quantity α is the 

specified level of significance; 0.05 is the α level used for this research. 

 The second commonly conducted test is the Pearson chi-square statistic.  Let J be 

the number of distinct values of the covariate observed in the data set, and let jm  be the 

frequency of the thj  distinct covariate value, where 1,2, ,j J= K .  For the purpose of 
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computing Pearson residuals, let jy  be the frequency of the thj  distinct covariate value 

for which 1y = .  It follows that the sum of the jm fitted values is 

( )( )
( )( )

ˆexp
ˆ

ˆ1 exp
j

j j j
j

g x
m m

g x
π =

+
    (2.18) 

Thus, the Pearson residual for the thj distinct covariate value is given by 

( )
( )

ˆ
ˆ,

ˆ ˆ1
j j j

j j j

j j j

y m
r y r

m

π
π

π π

−
= =

−
    (2.19) 

The Pearson chi-square statistic, 2X , is the sum of the squares of the Pearson residuals. 

( )22

1

ˆ,
J

j j
j

X r y π
=

=∑      (2.20) 

As implied by its name, the Pearson chi-square statistic follows a 2χ distribution with 

( )1J k− + degrees of freedom.  The fitted model is said to be correctly specified if 

2 2
, 1J kX αχ − −≤  (Hosmer and Lemeshow, 2000:145-146).   

 To conduct the Hosmer-Lemeshow test, the observations are grouped using the 

following method.  Ten groups are created such that each group contains approximately 

' 10in n=  fitted values, where 1,2, ,10i = K .  The groups are tabulated in order of 

increasing fitted value.  That is, there are '
1n  subjects with the smallest fitted values in 

group 1, while there are '
10n  subjects with the largest fitted values in group 10.  The 

groups serve as the columns of a 2 10× table, where the rows are denoted by the two 

possible values of the dichotomous response.  For the 1y =  row, the expected 

frequencies for each group are computed as follows: 
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'

1

ˆ
in

ij
j

π
=
∑ ,  for 1,2, ,10i = K .   (2.21)  

Conversely, the expected frequencies for each group in the 0y =  row are given by 

( )
'

1

ˆ1
in

ij
j

π
=

−∑       (2.22) 

It is necessary to develop the elements of the Hosmer-Lemeshow statistic before stating 

its formula.  Let ic  be the number of distinct covariate values in the thi  group, and 

 
1

ic

i j
j

o y
=

=∑        

 is the sum of the number of responses over all distinct covariate values in the thi  group.  

The average fitted value is  

'
1

ˆic
j j

i
j i

m
n
π

π
=

=∑  ,      

and the Hosmer-Lemeshow statistic, Ĉ , is given by 

( )
( )

2'10

'
1

ˆ
1

i i i

i i i i

o n
C

n
π

π π=

−
=

−∑ .     (2.23) 

The use of 10 groups is not universal.  If the number of distinct covariate values is small 

or very large, then adjusting the number of groups may be necessary.  According to 

Hosmer and Lemeshow, the use of 10 groups provides an adequate approximation to the 

chi-square distribution in most applications (Hosmer and Lemeshow, 2000:148-149).  In 

this case, the Hosmer-Lemeshow statistic is distributed chi-square with 10 2 8− =  

degrees of freedom. 
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          Diagnostic Measures. 
 
 As with linear regression, leverage values for logistic regression are also derived 

from a hat matrix, H .  Let V be a J J×  diagonal matrix whose thj  diagonal element is 

given by 

( )ˆ ˆ1j j j jv m π π= − .      

Let the design matrix, X , be the ( )1J k× +  matrix containing all distinct covariate 

values.  The hat matrix is defined by 

( ) 11/ 2 1/ 2T T−
=H V X X VX X V     (2.24) 

It follows that the hat matrix in equation (2.24) is also of dimension J J×  (Hosmer and 

Lemeshow, 2000:168).  The leverage values are the diagonal elements, jh , of the hat 

matrix.  Instead of plotting the leverage values versus the fitted values, it is more useful 

to plot the fitted values against three different measures.   

 The standardized Pearson residual is central to each of the three measures.  

Recalling the Pearson residual from equation (2.19), the standardized Pearson residual for 

the thj distinct covariate value is 

1
j

sj
j

r
r

h
=

−
, for 1, 2, ,j J= K .   (2.25) 

A useful measure resulting from equation (2.25) is the standardized difference between 

β̂  and ( )
ˆ

j−β , where ( )
ˆ

j−β  is the maximum likelihood estimates of the model coefficients 

with the jm  observations for the thj  distinct covariate value removed.  This measure, 

denoted ˆ
jΔβ , is expressed as 
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( )( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆT
T

j j j− −Δ = − −X VXβ β β β β     

( )
2

1
sj j

j

r h
h

=
−

            (2.26) 

(Hosmer and Lemeshow, 2000:173).  Letting jd be the deviance of the model with the 

jm  observations for the thj  distinct covariate value removed, the difference in deviance, 

jDΔ , is given by 

( )
2

2

1
j j

j j
j

r h
D d

h
Δ = +

−
     (2.27) 

The change in the value of the Pearson chi-square statistic is shown to be equal to the 

square of the standardized Pearson residual of equation (2.25). 

( )
2

2 2

1
j

j sj
j

r
X r

h
Δ = =

−
     (2.28) 

Distinct covariate values that are inadequately fitted can be identified by large values of 

jDΔ , 2
jXΔ , or both.  Large values of ˆ

jΔβ  indicate influence points.  That is, distinct 

covariate values that exert a significant amount of influence on the estimated values of 

the model coefficients (Hosmer and Lemeshow, 2000:174).   

 

          Testing Significance of Individual Coefficients. 
 
       The likelihood ratio test, G, is a test of the hypothesis that all of the model 

coefficients are zero.  It is statistically equivalent to the global F test in linear regression.  

The Wald test, W, is statistically equivalent to the partial F test in linear regression.  It 
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assesses the individual significance of the thj  covariate.  The null and alternative 

hypotheses for the thj  coefficient are given by 

 0 : 0

: 0
j

A j

H

H

β

β

=

≠
     (2.29) 

 For a multivariate model, G can be computed by subtracting the deviance of the 

model containing the thj  variable from the deviance of the model that does not contain 

the thj  covariate.  Because the likelihood for the saturated model is included in both 

deviance calculations, G is typically expressed as two times the natural log of the 

likelihood ratio between the model containing the thj  covariate and the model that does 

not contain the thj  covariate.   

In the univariate case, the expected value, or probability of success, of the model 

that does not contain the single covariate becomes a simple proportion, or the ratio of the 

frequency of observations where 1y =  to the total number of observations n.  Similarly, 

the probability of failure becomes a ratio of the frequency of observations where 0y =  to 

the total number of observations.  Thus, the likelihood function for the model that does 

not contain the covariate is ( ) ( )1 0

1 0
n nn n n n , where 1 jn y=∑ , ( )0 1 jn y= −∑ , and 

1jy = .  The likelihood ratio test statistic G then becomes 

( )
01

1

1

01

ˆ ˆ1
2 ln

jj
n yy

j j
j

nnG
nn

n n

π π
−

=

⎛ ⎞
−⎜ ⎟

⎜ ⎟=
⎜ ⎟⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

∏
     (2.30) 

Further simplifying equation (2.30) yields an expression in which the outputs from 

MINITAB can easily be substituted. 
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( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 0 0
1

ˆ ˆ2 ln 1 ln 1 ln ln ln
n

j j j j
j

G y y n n n n n nπ π
=

⎛ ⎞
= + − − − + −⎜ ⎟

⎝ ⎠
∑      (2.31) 

 Since this is a test for the significance of a covariate, rather than a test for model 

adequacy, the test statistic G is distributed chi-square with one degree of freedom.  The 

rejection region criteria are 

2
,1G αχ≤ ,  fail to reject 0H , or     

2
,1G αχ> ,  covariate is significant.    

For multivariate models, rejection of the null hypothesis implies that at least one of the 

covariates is significant.  Additional hypothesis tests are needed to determine which 

one(s).  One might also use the p-value approach to evaluate the significance of a 

covariate.  That is, if ( )2
1P Gχ α> < , then sufficient evidence exists to imply the 

significance of the covariate under test (Hosmer and Lemeshow, 2000:14-15). 

  The Hessian matrix, or the ( ) ( )1 1k k+ × +  matrix of second partial derivatives of 

equation (2.14), is derived to support the Wald test.  The quantities of interest are the 

diagonal elements of the negative inverse of the Hessian, which are evaluated at the 

maximum likelihood estimators β̂ .  The square roots of these diagonal elements are the 

standard errors of the coefficients of equation (2.4), which MINITAB computes 

automatically.  The Wald test statistic, W, under the null hypothesis in equation (2.29) is 

( )
ˆ

ˆ
j

j

W
se

β

β
=      (2.32) 

where ( )ˆ
jse β denotes the standard error of the thj regression coefficient.  Two methods 

can be used to compare W, but MINITAB uses a p-value approach.  The Wald statistic 
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can be squared and compared to a chi-square distribution with one degree of freedom, as 

with the likelihood ratio test.  MINITAB examines a probability taken from the standard 

normal distribution.  That is, if ( )P z W α> < , then the thj covariate can be said to 

contribute significantly to the model (Montgomery, Peck, and Vining, 2001:458). 

 Confidence intervals (CIs) on both the estimated model parameters and the odds 

ratios can be computed.  A CI provides a degree of assurance about the accuracy of a 

maximum likelihood estimate (MLE).  The narrower the range of the CI, then the higher 

the confidence is that the MLE closely approximates the true parameter value.  

MINITAB, however, only outputs CIs for the estimated odds ratios.  Consequently, only 

the procedures for constructing CIs on odds ratios are described here, but inferences for 

CIs on the model coefficients can easily be made.  MINITAB constructs 95% CIs by 

default.  Thus, at the 0.05α =  level of significance, a 95% CI on the thj  odds ratio is 

expressed as 

( )( )1 0.05 2
ˆ ˆexp j jz seβ β−± ×     (2.33) 

(Hosmer and Lemeshow, 2000:52-53).  

 

     Multinomial Logistic Regression. 
 
   When the focus of a war termination study is placed on the methods by which 

wars end, rather than on the winners and losers of wars, examination of Pillar’s analyses 

alone show the response variable of interest to contain more than two categories, or 

methods of ending wars.  Hence, binary logistic regression cannot be used to analyze this 

situation because the response is polychotomous, rather than dichotomous.  Modifications 
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to the binary logistic regression model were made in 1974, and the result was the 

multinomial logistic regression model (Hosmer and Lemeshow, 2000:260). The term 

multinomial is used because the outcome variable, or type of war ending, is said to be 

nominal.  This follows from the fact that types of war endings cannot be ordered in any 

statistically meaningful way (Hosmer and Lemeshow, 2000:260).   

 The simplest way to demonstrate the theory behind multinomial logistic 

regression is through the case where the response contains 3p =  categories, though 

extensions of the model can easily be made for responses containing more than three 

categories.  Let the categories of the response variable, Y, be coded as 0, 1, and 2.  

MINITAB, however, allows the response code to begin with 1, rather than 0.  For any 

response with p categories, a reference category must be selected, to which the remaining 

1p −  categories are compared.  The 0Y =  category is selected as the reference category 

for explaining multinomial logistic regression theory here, which is the same assumption 

made by Hosmer and Lemeshow (Hosmer and Lemeshow, 2000:261). 

 While binary logistic regression makes use of only one logit function, 

multinomial logistic regression produces 1p −  logits.  Each logit is expressed as the 

natural logarithm of a ratio of conditional probabilities.  In general, the conditional 

probability for the thj  response category given x , where x  is a vector of k covariates plus 

a constant term, is given by 

( )
( )( )

( )( )
( )1

1

exp
|

1 exp

j
jp

i
i

g
P Y j

g
π−

=

= = =
+∑

x
x x

x
   (2.34) 

The thj  logit, for which MLEs are computed, is denoted as 



 

 31

( ) ( )
( )

|
ln

0 |j

P Y j
g

P Y
⎛ ⎞=

= ⎜ ⎟⎜ ⎟=⎝ ⎠

x
x

x
      

0 1 1 2 2j j j jk kx x xβ β β β= + + + +L     

T
j= x β      (2.35) 

where 1,2, , 1j p= −K .  It follows that the logit for Y i=  versus Y j=  can be computed 

by 

( ) ( ) ( ),i j i jg g g= −x x x         
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( )T
i j= −x β β  .      (2.36) 

For the purpose of clarifying the likelihood function, the response is coded using 

indicator, or dummy, variables (Montgomery, Peck, and Vining, 2001:265).  A p-

category response can be coded using p dummy variables as follows: 

If 0Y = , then 0 1v = , 1 0v = , 2 0v = , 1, 0pv − =K .    

If 1Y = , then 0 0v = , 1 1v = , 2 0v = , 1, 0pv − =K .    

If 2Y = , then 0 0v = , 1 0v = , 2 1v = , 1, 0pv − =K .    

M        

If 1Y p= − , then 0 0v = , 1 0v = , 2 0v = , 1, 1pv − =K .    
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1

0

1
p

j
j

v
−

=

=∑  for any 1,2, ,i n= K .      

Letting jiπ  denote the thj  conditional probability function corresponding to the response 

from the thi  observation, and letting jig  denote the thj  logit corresponding to the 

response from the thi  observation, the conditional likelihood function takes the form 

( )l =β ( )( )10 1 2
0 1 2 1

1

p
n

vv v v
i i i p i

i

π π π π −

−
=
∏ L .     

   It follows that the log-likelihood function is 

( ) ( ) ( )
( )( )11 2

1 1 2 2 1 1
1

ln 1 p ii i

n
gg g

i i i i p i p i
i

L v g v g v g e e e −

− −
=

= + + + − + + + +∑ L Lβ . (2.37) 

Taking first partial derivatives yields ( )( )1 1p k− +  likelihood equations.  This result is 

shown by noting that a p-category response produces 1p −  logits, each containing 1k +  

parameters.  As with binary logistic regression, setting the likelihood equations to zero 

and solving for β  gives the MLEs, β̂ , which are again obtained via the IRLS procedure 

(Hosmer and Lemeshow, 2000:262-263). 

 Interpretation of the parameters is similar to that of the binary model.  There are 

( )1k p −  odds ratios to compute, in which each of the remaining 1p −  response values is 

compared to the reference category.  It is assumed here that the reference outcome is 

0Y = , but MINITAB allows the selection of any category as the reference.  For a 

continuous covariate, the odds ratio comparing Y j=  to 0Y =  associated with a one-unit 

change in x, is expressed as   
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=
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  (2.38) 

  (Hosmer and Lemeshow, 2000:265).   

 Calculations for the likelihood ratio statistic are similar to those for the binary 

logistic regression model.  The difference lies in the degrees of freedom associated with 

it.  For a continuous covariate, the likelihood ratio statistic, G, is distributed chi-square 

with 1p −  degrees of freedom.  For a categorical covariate, also called a factor, the 

degrees of freedom become ( )( )1 1r fp p− − , where rp is the number of categories in the 

response, and fp  is the number of categories in the factor (Hosmer and Lemeshow, 

2000:270).   

 Hosmer and Lemeshow note that ideas for extending diagnostic measures into 

multinomial models have been proposed.  Current statistical software packages, however, 

have not incorporated such proposals because the measures involved are computationally 

intensive (Hosmer and Lemeshow, 2000:281).  As a result, diagnostic measures and plots 

were not generated for the multinomial models on interstate wars in this study.  The odds 

ratios, goodness-of-fit tests, and likelihood ratio tests were considered sufficient to 

achieve the overarching goal of demonstrating the applicability of multinomial logistic 

regression to war termination investigations.   
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Summary 
 
 This thesis seeks to define probabilistic relationships between the outcomes or 

winners of wars and a single or group of explanatory variables.  Constructing the best 

descriptive and most parsimonious models from the available open-source data is also 

desired.  Logistic regression techniques provide readily interpretable ways of defining 

such relationships.  Because war is a complex endeavor and the conduct of war is highly 

dynamic, the termination of war is described best through conditional probabilities and 

likelihoods.  The results of logistic regression can also provide additional insights into 

what levels of which explanatory variables are either necessary or acceptable in order to 

either achieve a particular war ending or emerge victorious from a war.     
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III. Methodology 
 

Rationale 
 
 The goal of this research is to investigate and define, if possible, relationships 

between several independent variables and either the winner of a war or the manner in 

which a war ends.  Given the qualitative nature of the dependent variables of the selected 

data sets, a logistic regression approach is the preferred method to model such 

relationships.  The dependent variable is commonly called the response, and the 

independent variables are called covariates (Hosmer and Lemeshow, 2000:1).   

Unlike linear regression, the response for each data set is categorical.  For the 

interstate wars set, the response is denoted by the variable Outcome.  For both the 

intrastate wars and extra-state wars sets, the response is denoted by the variable Winner.  

Each of the response variables is nominal.  That is, no natural ordering of its categories 

exists, and numerical differences between categories are meaningless.  Each response 

contains six categories, so the resulting model is called a polychotomous or multinomial 

logistic regression model (Hosmer and Lemeshow, 2000:260).  The term multinomial is 

preferred in this thesis. 

 

Variable Selection 
 
 The data set concerning participants in interstate wars initially contained 28 

variables.  These variables and their COWP definitions are given in Appendix A.  The 

COWP assigned a unique number to each participant, called a country code, so it was 
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assumed that neither the country code nor the three-letter country abbreviation needed be 

included in the final data set.  The initial set also contained variables for the days, 

months, and years in which the individual wars began and ended.  The COWP included a 

second set of date columns for those wars in which there was a short break in the 

fighting, but the war started up again.  Existing war termination literature does not appear 

to emphasize the importance of dates. It was therefore believed that these variables were 

unnecessary for the analysis, so the date columns were not added to the final data set.  A 

similar assumption was made about the variables concerning the geographic location of 

the wars, although this may be an area for future investigation.  Ultimately, five variables 

were retained for analysis: the outcome of the war for the participating nation, the 

duration of the war in days, the participating nation’s population at the war’s outset, the 

participating nation’s military manpower at the war’s outset, and the number of combat 

deaths sustained during the war by the participating nation.  Identical assumptions were 

made for both the extra-state and intrastate war sets, and the same five variables were 

retained.  However, the response variable was defined by who won the conflict, rather 

than how the conflict ended.  

 

Variable Translation 
 
 Any nation, past or present, has or has had the potential to engage in armed 

conflict.  Some nations are small, and some are considered superpowers.  Therefore, it is 

not sufficient to analyze the raw data.  Measures that adequately describe the entire 

population of belligerents are needed.  Expressing the casualty, population, and armed 

forces data as proportions was believed to yield more meaningful and interpretable results 
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than the raw numbers. Three proportions were computed for each observation in each 

data set,    

 
_% _
_

C DeathsCasualties
Tot Deaths

=     (3.1) 

_/ _ % C DeathsDeaths Pop
PWarPop

=     (3.2) 

_/ _ % C DeathsDeaths Arm
PWarArm

=     (3.3) 

where C_Deaths is the number of casualties sustained by the participant during the war, 

Tot_Deaths is the sum of casualties sustained by all belligerents during the war, 

PWarPop is the participating nation’s population at the start of the war, and PWarArm is 

the size of the participating nation’s armed forces at the start of the war.  

An attempt was made to create a proxy measure of the economic costs of wars 

and include such a measure in the multinomial logistic regression model.  This proxy 

measure was derived from other data sets compiled by the COWP.  In their National 

Material Capabilities (NMC) data set, the COWP included yearly observations of military 

expenditures, in millions of 2001 US dollars (USD).  The variables for this set and their 

definitions are given in Appendix C.   

For each war participant, the average amount of military expenditures, denoted as 

Avg_Milex, was computed for the duration of each war.  The desire was to take that 

average and divide it by the average gross domestic product (GDP) for each war 

participant during each war, which would have given a proxy measure for the degree to 

which a nation’s industrial capacity is consumed by war.  Unfortunately, GDP figures 

could not be obtained for wars occurring earlier than 1870, and, of the GDP estimates 
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available, not enough countries contained GDP observations to cover the number of 

participants in the interstate wars data set.  It should be noted that while GDP figures 

might be obtained from other sources, one secondary objective of this study was only to 

use data from the same open source, the COWP.  As a result, another more available 

proxy economic indicator was used.  The COWP, in its data set on national trade, 

compiled total trade estimates for each of the countries in the interstate wars set.     

__ _
_

Avg MilexavgME as PTT
Avg TTrade

=     (3.4) 

The COWP computed total trade as a sum of a nation’s total imports and total 

exports for a given year, all in 2001 USD.  For each war participant, the average total 

trade, Avg_TTrade, was computed for the duration of each war, and this amount was used 

as the divisor in lieu of average GDP.  This proxy measure was defined as the average 

amount of military spending as a proportion of the average total trade for the war.  

Without consistent GDP estimates, this measure was proposed as the best economic 

activity indicator available for this analysis. 

The category definitions for the response Outcome in the interstate wars data set 

were revised from those given by the COWP, which are given in Table 1.  Determining 

the likelihood of one type of outcome over another was assumed to be more important to 

this study than knowing on which side a given country participated, so the new 

definitions were created by comparing the COWP definitions to those of Paul Pillar’s 

classifications.  The revised response categories for the interstate wars data are given in 

Table 2.  In contrast, the response categories for the intrastate and extra-state sets did not 

require revision, and the next section explains this case.    
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Table 1: COWP Outcomes for Interstate Wars 

Category COWP Definition 
1 On Winning Side 
2 On Losing Side 
3 On Side A of a Tie 
4 On Side B of a Tie 
5 On Side A of an Ongoing War 
6 On Side B of an Ongoing War 

 

 For the cases where either a total military conquest, which Pillar calls 

extermination or expulsion, or an imposed settlement ends a war, it was assumed that the 

victor’s military force was the dominant factor.  That is, the winning side inflicts military 

defeats upon his enemy to such an extent that his enemy must give up the fight through 

either unconditional surrender or capitulation to terms imposed upon him during an 

armistice or cease-fire.  These cases were subsequently defined, and thus categorized, as 

victory through military imposition (Pillar, 1983:14).   

 The converse of the aforementioned definition was assumed to be true when 

considering a martially defeated nation.  The losing country agrees to the demands of the 

victor, no matter in what manner such an agreement occurs.  Pillar’s description of this 

type of situation was considered accurate, so this category was called capitulation (Pillar, 

1983:15).   

 Defining the cases where no clear victor exists, or where a clear military victor 

emerges without the capitulation of the defeated, is difficult.  Pillar refers to a mutual 

withdrawal of military forces, either with or without an agreement (Pillar, 1983:14).  

However, in order to distinguish from a negotiation, it is assumed that fighting ceases 

without any resolution of the issues over which the war was waged.  The circumstances 

surrounding some cease-fires and armistices may cause them to fall into this category, 
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such as those of the cease-fires between Israel and one or more of the Arab states in 1949, 

1956, 1967, 1973, 1982, and 2006 (Pillar, 1983:22-23).  These cases constitute 

stalemates. 

 Another difficulty arose with the few observations where the participants began 

fighting a small war, but either the conflict grew into a major war through third-party 

intervention, or the participants joined allies in a larger war to fight for different aims.  

Pillar calls this absorption (Pillar, 1983:14).  Because there were so few of these cases in 

the data set, each observation exhibiting this result was examined to find conditions that 

would allow it to be placed in a previously defined category.  Such conditions existed in 

some of the observations, but not in all.  Since the sample size for the interstate wars set 

was larger than 200 observations, it was assumed that the two observations fitting the 

aforementioned description would inflate the range of the CIs for the resulting odds 

ratios, so the two observations were omitted from the data set.   

 When imposition, capitulation, or a stalemate does not occur, then the possibility 

exists for a mutual agreement between all belligerents to occur.  Such an agreement is not 

one-sided, but rather all sides make concessions in order to form a pact about which all 

can be satisfied.  In such situations of compromise, it is assumed that some form of 

negotiation between opposing nations must take place (Pillar, 1983:15).  Unlike Pillar, 

who makes a distinction between agreements between belligerents and third-party 

mediations, the fact that a compromise is struck is assumed to be more important than the 

manner in which it is struck. 

 The COWP also compiled a data set concerning international disputes, called 

Militarized Interstate Disputes (MID).  The variables for the MID set and their COWP 
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definitions are given in Appendix B.  The subset of the MID set where the disputes 

resulted in wars matched exactly to the observations in the interstate wars set.  The 

advantage to this was that the values for the outcome and settlement variables in the MID 

subset could be directly compared to the corresponding values for the response in the 

interstate wars set.  The purpose of this comparison was to distinguish between those 

participants who benefited the most, or won, through a negotiated settlement and those 

participants who gained the least, or lost, through a negotiated settlement.  That is, those 

observations whose MID outcome was a compromise and settlement was negotiated, but 

whose interstate wars outcome was a victory, are coded under the category of victory by 

negotiated settlement.  Those observations whose MID outcome was a compromise and 

settlement was negotiated, but whose interstate wars outcome was a yield, are coded 

under the category of defeat by negotiated settlement. 

 

Table 2: Revised Outcomes for Interstate Wars 

Category Revised Definition 
1 Victory by Military Imposition 
2 Capitulation 
3 Stalemate 
4 Victory by Negotiated Settlement 
5 Defeat by Negotiated Settlement 

 

Data Compression 
 
 The next obstacle was to deal with any missing data for each set.  Each variable 

had missing entries, but not all of the missing entries occurred in the same observation.  

Several statistical techniques could have been used to fill in the missing entries, but the 

sample sizes for each set remained sufficiently large with the observations corresponding 
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to the missing entries omitted.  The rule of 10, as discussed by Hosmer and Lemeshow, 

was used to justify eliminating the missing data points from the final sets (Hosmer and 

Lemeshow, 2000:346-347). 

 The objective of the rule of 10 is to determine the number of observations per 

estimated parameter needed to avoid poor model variance estimates.  Reviewing the 

observations per parameter also allows the flexibility to postulate higher-order models, as 

opposed to main effects models only.  Hosmer and Lemeshow use the quantity 

1 0min( , )m n n= , where n1 and n0 are the frequencies of those observations yielding 

responses of 1 and 0, respectively.  However, the above quantity is assuming the use of a 

typical dichotomous, or binomial, logistic regression model, where the outcome can only 

assume one of two values (Hosmer and Lemeshow, 2000:346).   

The response Outcome in the interstate wars set contains five categories, so the 

quantity used by Hosmer and Lemeshow is revised to reflect a multinomial logistic 

regression model. 

0 1 2 3 4min( , , , , )m n n n n n=      (3.5) 

For equation (3.5), n0 is the number of wars where the participant wins by military 

imposition, n1 is the number of wars where the participant loses through capitulation, n2 

is the number of wars ending by stalemate, n3 is the number of wars where the participant 

wins through a negotiated settlement, and n4 is the number of wars where the participant 

loses through a negotiated settlement.   After eliminating the observations containing 

missing data, 225 observations remained.  The least frequent response was 

min(87,53,31,26,28) 26m = = , or a victory through a negotiated settlement.  For k 

covariates, Hosmer and Lemeshow suggest that 1 /10k m+ ≤ parameters be included in 
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the model, where 1k +  is the number of covariates plus an intercept term (Hosmer and 

Lemeshow, 2000:346).  No more than 26 /10 2.6 2= ≈ parameters should be included in 

the interstate wars model, which corresponds to a univariate, or single-variable main 

effects, model.    

 For both the extra-state and intrastate wars sets, when the observations containing 

missing data were eliminated, their respective response categories reduced to the 

binomial case.  That is, the remaining response values corresponded to either the state 

winning or the non-state actor or insurgency winning.  Table 3 shows the resulting 

categories and definitions for both the extra-state and intrastate data sets. 

 

Table 3: Winner Categories for Extra/Intrastate Wars 

Category Definition 
1 State Wins 
2 Non-State Actor/Insurgency Wins 

 

Let m1 be the smaller frequency for the intrastate data set, and let m2 be the 

smaller frequency for the extra-state data set.  For the intrastate wars, 

1 min(49,24) 24m = = , so the model should contain no more than 

24 /10 2.4 2= ≈ parameters, which again corresponds to a univariate main-effects model.  

For the extra-state wars, 2 min(40,19) 19m = = , so its model should have 

19 /10 1.9 1= ≈ parameter, which would exclude any covariates and contain only a 

constant term. 

 It should be noted that the rule of 10 is not absolute.  Hosmer and Lemeshow 

insist that it be used as a guideline only.  Other considerations must be made, such as the 

balance of the distribution of the covariates, total sample size, and any previously stated 
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requirements.  If the distribution of multinomial response is skewed towards one category 

or a subset of its categories, then the applicability of the rule of 10 could be questionable 

(Hosmer and Lemeshow, 2000:347).  Skewed response variables were present in each of 

the three data sets analyzed.  Therefore, first-order main-effects models including all 

retained covariates were postulated initially for each data set such that the usefulness of 

the rule of 10, at least in this case, could be determined.   

 

Unit Normal Scaling 
 
 Unit normal data scaling was used to aid in interpretation of the odds ratios for the 

fitted models.  Unlike the responses, the covariates, once translated into proportions, were 

continuous, so it was assumed that each was approximately normally distributed.  The 

idea of a single-unit change in each covariate needed to be defined as well.  Unit normal 

scaling provided these definitions. 

 This technique involves transforming a normal random variable into a standard 

normal random variable.  For 1,2, ,i n= K ; and for 1,2, ,j k= K ; the thi  observation of 

the thj  covariate is expressed as  

ij j
ij

j

x x
z

s
−

=      (3.6) 

where the sample variance of the thj  covariate is given by 
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and the sample mean of the thj  covariate is 

1

1 n

j ij
i

x x
n =

= ∑ .       

As with the standard normal distribution, each scaled covariate has a mean of 0 and a 

standard deviation of 1 (Montgomery, Peck, and Vining, 2001:113). 

         

Trend Recognition 
 
 The observations in each of the three data sets analyzed covered nearly two 

centuries of warfare, from as early as 1816 to as late as 1997.  In addition to the obvious 

improvements in weapons and subsequent shifts in tactics, the question of whether or not 

similar shifts in war termination patterns could be found was addressed.  In order to 

identify such pattern changes, subsets of each data set needed to be analyzed, which 

prompted another question.  How should the data be divided?   

 Two methods of data division were considered.  Since the data covered two 

centuries of war, a proposed dividing line was the year 1900.  That is, all observations 

occurring before 1900 would be used to fit one model, while all observations occurring in 

1900 and after would be used to fit a separate model.  This division method could 

account for weapons technology changes between the nineteenth and twentieth centuries.  

Dividing the data by major shifts in tactics, such as the switch from Napoleonic-style 

combat to smaller squad-level maneuvers, was another proposal.  Typically, though not 

immediately, improvements in weapons technology necessarily prompt changes in how 

weapons are employed in war.  While certainly open to historical debate, the Spanish-

American War of 1898 was assumed to be the transition point from Napoleonic warfare 
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to modern, or mechanized, warfare.  Ultimately, the composition of the data sets allowed 

divisions such that both changes in century and changes in tactics could be 

simultaneously examined.   

           Using the above method, MINITAB was used to fit three logistic regression 

models to each of the three war data sets.  Multinomial logistic regression was employed 

for the interstate wars set, where the response Outcome contained five categories.  

Compressing and translating the data from both the intrastate and extra-state sets allowed 

the use of binary logistic regression, with Winner as the response in both cases.  The first 

models for each set were fit using the aggregated data in each set.  The second models 

were fit using the divided data from the 19th Century, while the last models used the 

divided data from the 20th Century. 

 

Variable Nomenclature 
 

Different names were given to each response and covariate for each data set.  The 

variable names in each set included a designator for the data scaling technique used, unit 

normal scaling (UNS).  The variables names were additionally distinguished by century.  

The variable names in the aggregated models, however, did not contain century 

designators.  Table 4 contains each response variable name included in this study and its 

corresponding definition.  The names and definitions for the extra-systemic war 

covariates used in this study are shown in Table 5.  The names and definitions for the 

intrastate war covariates used in this study are shown in Table 6.  The names and 

definitions for the interstate war covariates used in this study are given in Table 7.   
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Table 4: Response Variable Nomenclature 

Response Definition 
Extra-systemic War Winner,Winner_ES_UNS_19 

19th Century Wars
  

Extra-systemic War Winner,Winner_ES_UNS_20 
20th Century Wars

  
Extra-systemic War Winner,Winner_ES_UNS 

Aggregated Wars
  

Intrastate War Winner,Winner_IS_UNS_19 
19th Century Wars

  
Intrastate War Winner,Winner_IS_UNS_20 

20th Century Wars
  

Intrastate War Winner,Winner_IS_UNS 
Aggregated Wars

  
Outcome of Interstate War,Outcome(PR2)_19 

19th Century Wars
  

Outcome of Interstate War,Outcome(PR2)_20 
20th Century Wars

  
Outcome of Interstate War,Outcome(PR2) 

Aggregated Wars
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Table 5: Covariate Nomenclature for Extra-Systemic Wars 

Covariate Definition 
Duration of 19th Century Extra-SystemicDur_ES_UNS_19 

War, Unit Normally Scaled
    

Proportion of State Deaths to Its Pre-war Population,C_Dths/Pop_ES_UNS_19 
19th Century Extra-Systemic Wars, Unit Normally Scaled

    
Proportion of State Deaths to Its Pre-war Armed Force Size,C_Dths/Arm_ES_UNS_19 

19th Century Extra-Systemic Wars, Unit Normally Scaled
    

Proportion of Total Deaths Sustained by Participant,C_Dths/TDths_ES_UNS_19 
19th Century Extra-Systemic Wars, Unit Normally Scaled

    
Duration of 20th Century Extra-SystemicDur_ES_UNS_20 

War, Unit Normally Scaled
    

Proportion of State Deaths to Its Pre-war Population,C_Dths/Pop_ES_UNS_20 
20th Century Extra-Systemic Wars, Unit Normally Scaled

    
Proportion of State Deaths to Its Pre-war Armed Force Size,C_Dths/Arm_ES_UNS_20 

20th Century Extra-Systemic Wars, Unit Normally Scaled
    

Proportion of Total Deaths Sustained by Participant,C_Dths/TDths_ES_UNS_20 
20th Century Extra-Systemic Wars, Unit Normally Scaled

    
Proportion of State Deaths to Its Pre-war Population,C_Deaths/Pop_ES_UNS 

Aggregated Extra-Systemic Wars, Unit Normally Scaled
    

Proportion of State Deaths to Its Pre-war Armed Force Size,C_Deaths/Arm_ES_UNS 
Aggregated Extra-Systemic Wars, Unit Normally Scaled

    
Proportion of Total Deaths Sustained by Participant,C_Deaths/TotDeaths_ES_UNS 

Aggregated Extra-Systemic Wars, Unit Normally Scaled
    

Duration of Aggregated Extra-Systemic Wars,Duration_ES_UNS 
Unit Normally Scaled
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Table 6: Covariate Nomenclature for Intrastate Wars 

Covariate Definition 
Duration of 19th Century IntrastateDuration_IS_UNS_19 

War, Unit Normally Scaled
    

Proportion of State Deaths to Its Pre-war Population,Dead/Pop_IS_UNS_19 
19th Century Intrastate Wars, Unit Normally Scaled

    
Proportion of State Deaths to Its Pre-war Armed Force Size,Dead/Arm_IS_UNS_19 

19th Century Intrastate Wars, Unit Normally Scaled
    

Proportion of Total Deaths Sustained by Participant,C_Dead/TotDead_IS_UNS_19 
19th Century Intrastate Wars, Unit Normally Scaled

    
Duration of 20th Century IntrastateDuration_IS_UNS_20 

War, Unit Normally Scaled
    

Proportion of State Deaths to Its Pre-war Population,Dead/Pop_IS_UNS_20 
20th Century Intrastate Wars, Unit Normally Scaled

    
Proportion of State Deaths to Its Pre-war Armed Force Size,Dead/Arm_IS_UNS_20 

20th Century Intrastate Wars, Unit Normally Scaled
    

Proportion of Total Deaths Sustained by Participant,C_Dead/TotDead_IS_UNS_20 
20th Century Intrastate Wars, Unit Normally Scaled

    
Proportion of State Deaths to Its Pre-war Population,Duration_IntS_UNS 

Aggregated Intrastate Wars, Unit Normally Scaled
    

Proportion of State Deaths to Its Pre-war Armed Force Size,Dead/Pop_IntS_UNS 
Aggregated Intrastate Wars, Unit Normally Scaled

    
Proportion of Total Deaths Sustained by Participant,Dead/Arm_IntS_UNS 

Aggregated Intrastate Wars, Unit Normally Scaled
    

Duration of Aggregated Intrastate Wars,C_Dead/TotDead_IntS_UNS 
Unit Normally Scaled
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Table 7: Covariate Nomenclature for Interstate Wars 

Covariate Definition  
Duration_UNS_19 Duration of 19th Century Interstate War, Unit Normally Scaled 
      

Proportion of State Deaths to Its Pre-war Population,Dths/Pop_UNS_19 
19th Century Interstate Wars, Unit Normally Scaled

      
Proportion of State Deaths to Its Pre-war Armed Force Size,Dths/Arm_UNS_19 

19th Century Interstate Wars, Unit Normally Scaled
      

Proportion of Average State Military Expenditures 
(2001 USD) to Average State Total Trade (2001 USD),MilEx/TT_UNS_19 

19th Century Interstate Wars, Unit Normally Scaled
      

Proportion of Total Deaths Sustained by Participant,Dths/TDeaths_UNS_19 
19th Century Interstate Wars, Unit Normally Scaled

      
Duration_UNS_20 Duration of 20th Century Interstate War, Unit Normally Scaled
      

Proportion of State Deaths to Its Pre-war Population,Dths/Pop_UNS_20 
20th Century Interstate Wars, Unit Normally Scaled

      
Proportion of State Deaths to Its Pre-war Armed Force Size,Dths/Arm_UNS_20 

20th Century Interstate Wars, Unit Normally Scaled
      

Proportion of Average State Military Expenditures 
(2001 USD) to Average State Total Trade (2001 USD),MilEx/TT_UNS_20 

20th Century Interstate Wars, Unit Normally Scaled
      

Proportion of Total Deaths Sustained by Participant,Dths/TDeaths_UNS_20 
20th Century Interstate Wars, Unit Normally Scaled

      
Duration_UNS Duration of Aggregated Interstate Wars, Unit Normally Scaled
      

Proportion of State Deaths to Its Pre-war Population,Deaths/Pop_UNS 
Aggregated Interstate Wars, Unit Normally Scaled

      
Proportion of State Deaths to Its Pre-war Armed Force Size,Deaths/Arm_UNS 

Aggregated Interstate Wars, Unit Normally Scaled
      

Proportion of Total Deaths Sustained by Participant,Deaths/TotDeaths_UNS 
Aggregated Interstate Wars, Unit Normally Scaled

         
Proportion of Average State Military Expenditures 

(2001 USD) to Average State Total Trade (2001 USD),MilEx/TotTrade_UNS 
Aggregated Interstate Wars, Unit Normally Scaled
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Stepwise Regression 
 
 Stepwise regression is a robust procedure commonly used in both linear and 

logistic regression as a model-building technique.  This is an effective technique to use 

when the true relationship between the covariates and the response is either unknown or 

unclear (Hosmer and Lemeshow, 2000:116).  Stepwise regression was employed for this 

research because, as an initial investigation, the associations within the COWP data were 

unknown.  They were also unclear in the sense that war termination literature has 

identified several factors, some of which were included in the COWP data, as directly 

related to the outcome of a conflict, but the extent to which such factors were statistically 

relevant had not previously been determined.   

 As noted in the previous chapter, significance of a covariate in logistic regression 

is identified by the likelihood ratio test.  Thus, the most significant covariate is the one 

with the largest likelihood ratio statistic, G (Hosmer and Lemeshow, 2000:116).  The 

stepwise procedure begins with a pool of k covariates.  The covariates can be either 

categorical or continuous, but because the covariates for this research are continuous, the 

notation presented here reflects that used for continuous covariates only.  Stepwise 

regression for logistic models is described here as a series of steps. 

 Step 0: Fit a constant only model.  Let 0L  be the log-likelihood value for the 

constant only model.  Estimate k univariate logistic regression models, one for each 

covariate in the pool.  Let ( )0
jL  be the log-likelihood value for the model containing the 

thj  covariate in Step 0, where 1,2, ,j k= K .  Using equation (2.31), the likelihood ratio 

test is expressed as  
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( ) ( )( )0 0
02j jG L L= − .     (3.7) 

Let the p-value for the thj  likelihood ratio statistic be  

( )( ) ( )0 02
,1 j jP G pαχ > = .     (3.8) 

Since the most significant covariate is that with the largest likelihood ratio statistic, then 

the covariate with the smallest p-value yields the same conclusion.  Let 

( ) ( ) ( ) ( )( )1

0 0 0 0
1 2min , , ,e kp p p p= K  ,   (3.9) 

where ( )
1

0
ep  denotes the p-value corresponding to the covariate selected to enter the model 

at Step 1, provided that the value does not equal or exceed the p-value corresponding to a 

previously defined significance level (Hosmer and Lemeshow, 2000:117).  Let Ep  be the 

p-value for entry such that ( )
1

0
e Ep p< .  If ( )

1

0
e Ep p≥ , then end the procedure because no 

covariates enter the model.  Otherwise, let 
1e

x denote the covariate corresponding to the 

minimum p-value, ( )
1

0
ep , and go to Step 1 (Hosmer and Lemeshow, 2000:118).  

 Step 1: Estimate the logistic regression model containing
1e

x , and let ( )
1

1
eL  be the 

resulting log-likelihood of the model.  Estimate 1k −  models that contain both 
1e

x and jx , 

where 1,2, ,j k= K  and 1j e≠ .  For each of these 1k −  models, let ( )
1

1
,e jL  denote its log-

likelihood value.  The thj  likelihood ratio statistic becomes  

( ) ( ) ( )( )1 1

1 1 1
,2j e j eG L L= − ,     (3.10) 

and its p-value is denoted by ( )1
jp .  Let the covariate corresponding to the smallest p-

value be denoted by
2ex , where the smallest p-value is determined by 
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( ) ( ) ( ) ( )( )2

1 1 1 1
1 2 1min , , ,e kp p p p −= K .    (3.11) 

If ( )
2

1
e Ep p< , then add 

2ex to the model and go to Step 2.  Otherwise, end the procedure. 

 Step 2: This step includes a provision for backward elimination.  The 

incorporation of a backward elimination check within what would normally be classified 

as a forward selection method gives the stepwise logistic regression procedure its name.  

For this step, the backward elimination check examines the possibility that once 
2ex is 

added to the model, 
1e

x may no longer be significant.  First, estimate a model containing 

both 
1e

x  and
2ex , and let ( )

1 2

2
,e eL denote the log-likelihood of this model.  Let ( )2

jeL− denote the 

log-likelihood of a model that does not contain 
jex , where 1,2j = .  The likelihood ratio 

test statistic is now expressed as  

( ) ( ) ( )( )1 2

2 2 2
,2

j je e e eG L L− −= −      (3.12) 

Before deciding if a covariate should be removed from the model, a p-value for removal 

is defined, denoted Rp .  This p-value must be assigned such that R Ep p>  so that the 

stepwise procedure does not admit and expel the same covariate in consecutive steps.  

Converse to the task of admitting a covariate, the decision to remove a covariate from the 

model is made by identifying the largest p-value computed from the results of equation 

(3.12).  This p-value is computed as 

( ) ( ) ( )( )2 1 2

2 2 2max ,r e ep p p− −= ,    (3.13) 

and the covariate associated with ( )
2

2
rp is denoted by 

2r
x .  If ( )

2

2
r Rp p> , then 

2r
x is removed 

from the model.  Otherwise, 
2r

x remains in the model, and Step 2 continues with the 
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forward selection phase.  Now, estimate 2k −  models, each containing 
1e

x , 
2ex , and jx , 

where 1,2, ,j k= K  and 1 2,j e e≠ .  Compute the log-likelihood for each of the 2k −  

models, and let 
3ex denote the covariate associated with the smallest p-value, where 

( ) ( ) ( ) ( )( )3

2 2 2 2
1 2 2min , , ,e kp p p p −= K .   (3.14) 

If ( )
3

2
e Ep p< , then 

3ex add to the model and go to Step 3.  Otherwise, end the procedure. 

 Step 3: The computations, model entry checks, and model removal checks are 

virtually the same as those of Step 2.  The full model is estimated, using all of the 

covariates entered from previous steps.  Reduced models are then fit by deleting each of 

the covariates from the full model, one at a time, with replacement.  For example, if the 

thk  reduced model is estimated by deleting the thi  covariate from the full model, then the 

( )1 thk +  reduced model is estimated by deleting the ( 1)thi + , or ( )1 thi − , covariate from 

the full model, but including the thi  covariate.  Log-likelihood values are computed for 

the full and reduced models, and likelihood ratio statistics comparing the full model to 

each of the reduced model are computed.  The p-values corresponding to the likelihood 

ratio statistics are examined for both the backward elimination and forward selection 

phases.  If the maximum p-value is greater than Rp , then the covariate corresponding to 

the maximum p-value is expelled from the model.  Otherwise, the covariate 

corresponding to the maximum p-value is retained.  If the minimum p-value is smaller 

than Ep , then the covariate corresponding to the minimum p-value is added to the model.  

Otherwise, the stepwise procedure ends.   

 Step 3 is repeated until one of two situations exist: either all k covariates have 

been added to the model, or all covariates in the model have p-values which are smaller 
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than Rp .  In the latter situation, it must also be the case that all covariates not included in 

the model have p-values greater than Ep . 

 

Summary 
 

This chapter described the methodology used in this study.  In addition to the 

logistic regression techniques presented in the previous chapter, the methods of data and 

variable manipulation were presented in detail in this chapter.  All assumptions made 

about the data, as well as scaling and covariate selection techniques, were also presented.  

Chapter IV presents the results from the analyses conducted.     
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IV. Results and Analysis 

 

Stepwise Regression 
 

Because it contained the smallest sample size out of the three sets examined, the 

extra-state wars set was analyzed first.  The analysis began first by dividing the data 

between 19th and 20th Century observations.  Then, a model constructed from all 59 

observations was obtained.  Stepwise regression was performed on all cases for two 

purposes.  One, the stepwise procedure fulfilled its customary role of identifying those 

covariates necessary to build an adequate logistic regression model on the response.  

Two, stepwise regression provided an adequate test for the rule of 10 described in the 

previous chapter.  The results from stepwise regression are presented first. 

 

     Extra-State Wars (19th Century). 
 

Hosmer and Lemeshow state that results from previous research on stepwise 

regression significance levels indicate that selecting Ep  and Rp  from the closed interval 

[ ]0.15,0.20  yields the best results (Hosmer and Lemeshow, 2000:118).  In addition, 

Hosmer’s and Lemeshow’s selections of Ep  and Rp  for an example experiment heavily 

influenced the entry and removal p-values selected for this research (Hosmer and 

Lemeshow, 2000:121).  Using the values of 0.15Ep =  and 0.2Rp =  in MINITAB, the 

output of the analysis is shown in Figure 1 
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Stepwise Regression: Winner_ES_UN versus Dur_ES_UNS_1, C_Dths/Pop_E, ... 
  
Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.2 

Response is Winner_ES_UNS_19 on 4 predictors, with N = 35 

No variables entered or removed 

Figure 1: Stepwise Results for 19th Century Extra-Systemic Wars 

   

 The fact that none of the covariates entered the model implied that each of the 

four p-values, corresponding to the likelihood ratio test statistic, was larger than Ep .  The 

quantity for Ep  could have been iteratively increased until at least one covariate entered 

the model.  However, increasing Ep  would have inflated the risk of allowing 

insignificant covariates to enter the model.  This risk was already present, given that Ep  

was already larger than the overall significance level of 0.05α = , but 0.15Ep =  was 

large enough such that a likelihood ratio test for an initial model would be significant at 

the 0.05 level.  This was confirmed by fitting four univariate models in MINITAB and 

obtaining p-values for each likelihood ratio test.  The MINITAB outputs for the four 

models are given in Figure 2 through Figure 5.  The last p-value given for each model 

was the value in question.     
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Binary Logistic Regression: Winner_ES_UNS_19 versus Dur_ES_UNS_19  
  
Variable          Value  Count 

Winner_ES_UNS_19  1         27  (Event) 

                  2          8 

                  Total     35 

  

Logistic Regression Table 

                                                 Odds     95% CI 

Predictor          Coef   SE Coef     Z      P  Ratio  Lower  Upper 

Constant        1.25577  0.437887  2.87  0.004 

Dur_ES_UNS_19  0.144370  0.583536  0.25  0.805   1.16   0.37   3.63 

  

Log-Likelihood = -18.782 

Test that all slopes are zero: G = 0.064, DF = 1, P-Value = 0.800 

Figure 2: Univariate Logit Model (War Duration is Covariate) 

 

 The sample model with duration as its covariate had a 0.8 likelihood ratio p-value.  

Because 0.8 0.05> , the null hypothesis that all model coefficients are zero was not 

rejected.  Thus, duration was not sufficient to explain the winner of a 19th Century extra-

systemic war.  

 

Binary Logistic Regression: Winner_ES_UNS_19 versus C_Dths/Pop_ES_UNS_19  
  
Variable          Value  Count 

Winner_ES_UNS_19  1         27  (Event) 

                  2          8 

                  Total     35 

  

Logistic Regression Table 

                                                          Odds     95% CI 

Predictor                  Coef   SE Coef      Z      P  Ratio  Lower  Upper 

Constant                1.21918  0.403617   3.02  0.003 

C_Dths/Pop_ES_UNS_19  -0.132086  0.408161  -0.32  0.746   0.88   0.39   1.95 

  

Log-Likelihood = -18.764 

Test that all slopes are zero: G = 0.099, DF = 1, P-Value = 0.753 

Figure 3: Univariate Logit Model (Proportion of State Population Killed is Covariate) 
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The sample model with the number of state combat deaths as a proportion of its 

population as the covariate had a 0.753 likelihood ratio p-value.  Because 0.753 0.05> , 

the null hypothesis that all model coefficients are zero was not rejected.  Thus, the 

number of state combat deaths as a proportion of its population was not sufficient to 

explain the winner of a 19th Century extra-systemic war.  

 
 

Binary Logistic Regression: Winner_ES_UNS_19 versus C_Dths/Arm_ES_UNS_19  
  
Variable          Value  Count 

Winner_ES_UNS_19  1         27  (Event) 

                  2          8 

                  Total     35 

  

Logistic Regression Table 

                                                           Odds     95% CI 

Predictor                   Coef   SE Coef      Z      P  Ratio  Lower  Upper 

Constant                 1.21314  0.403845   3.00  0.003 

C_Dths/Arm_ES_UNS_19  -0.0552200  0.602345  -0.09  0.927   0.95   0.29   3.08 

  

Log-Likelihood = -18.810 

Test that all slopes are zero: G = 0.008, DF = 1, P-Value = 0.928 

Figure 4: Univariate Logit Model (Proportion of State’s Military Killed is Covariate) 

 

The sample model with the number of state combat deaths as a proportion of its 

armed force size as the covariate had a 0.928 likelihood ratio p-value.  Because 

0.928 0.05� , the null hypothesis that all model coefficients are zero was not rejected.  

Thus, the number of state combat deaths as a proportion of its armed force size was not 

sufficient to explain the winner of a 19th Century extra-systemic war.  
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Binary Logistic Regression: Winner_ES_UNS_19 versus C_Dths/TDths_ES_  
  
Variable          Value  Count 

Winner_ES_UNS_19  1         27  (Event) 

                  2          8 

                  Total     35 

  

Logistic Regression Table 

                                                          Odds     95% CI 

Predictor                   Coef   SE Coef     Z      P  Ratio  Lower  Upper 

Constant                 1.24049  0.434328  2.86  0.004 

C_Dths/TDths_ES_UNS_19  0.559073   1.43888  0.39  0.698   1.75   0.10  29.35 

  

Log-Likelihood = -18.537 

Test that all slopes are zero: G = 0.555, DF = 1, P-Value = 0.456 

Figure 5: Univariate Logit Model (State’s Proportion of Total Deaths is Covariate) 
  

The sample model with the proportion of total combat deaths sustained by the 

participant as the covariate had a 0.456 likelihood ratio p-value.  Because 0.456 0.05> , 

the null hypothesis that all model coefficients are zero was not rejected.  Thus, the 

proportion of total combat deaths sustained by the participant was not sufficient to 

explain the winner of a 19th Century extra-systemic war. 

The results clearly showed that each of the p-values was larger than 0.15Ep = , so 

the results from the stepwise procedure were confirmed.  The focus then shifted to 

implications from the rule of 10.  Out of 35n =  observations, 1 27n = , 2 8n = , and 

( )1 2min , 8m n n= = .  Therefore, the resulting model should contain 

( )1 10 0.8 0k m+ ≤ = ≈  parameters.  The rule of 10 proved effective in this case.  As 

such, similar results were expected for the 20th Century observations. 

 While the p-value significance levels were chosen along the closed interval 

[ ]0.15,0.2 , the significance of model coefficients was determined by the p-values 
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corresponding to their individual Wald statistics.  Each Wald statistic, as computed from 

equation (2.32), is given under the “Z” column in the MINITAB outputs.  The values 

under the “P” column are the p-values for each Wald statistic, which should be smaller 

than 0.05α =  in order to imply significance.  Because each of these p-values for each of 

the covariates in the univariate models in Figures 4.1.1-2 – 4.1.1-5 was larger than 0.05, 

the implication was that not even an adequate univariate model could be fit using any of 

the available covariates for 19th Century extra-state wars.  That is, a statistically 

significant relationship could not be established between the winner of a 19th Century 

extra-systemic war and the covariates selected from the COWP data.  While 

discouraging, these results gave additional support to the results from the rule of 10. 

 

     Extra-State Wars (20th Century). 
 

The results from the stepwise procedure in MINITAB for 20th Century extra-state 

wars are shown in Figure 6.  The duration of the war and the proportion of the state’s 

armed forces killed were selected by the stepwise process for entry into the model.  The 

p-value for duration in Step 2 was very low, which implied that duration should prove 

significant in any main-effects models of the available covariates.  The p-value for 

C_Dths/Arm_ES_UNS_20, however, was just barely smaller than the p-value for entry 

into the model.  A model containing both of these covariates was estimated.  It was 

expected that at least one of these covariates would be significant.  The Wald statistics for 

this initial model were inspected to determine if one of the covariates should be 

eliminated.  This model is discussed in a later section of this thesis. 
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Stepwise Regression: Winner_ES_UN versus Dur_ES_UNS_2, C_Dths/Pop_E, ...  
       
Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.2  
       
Response is Winner_ES_UNS_20 on 4 predictors, with N = 24   
       
Step 1 2   
Constant 1.365 1.355   
       
Dur_ES_UNS_20 0.231 0.229   
T-Value 3.06 3.14   
P-Value 0.006 0.005   
       
C_Dths/Arm_ES_UNS_20 0.105   
T-Value 1.66   
P-Value 0.112     

Figure 6: MINITAB Results for 20th Century Extra-State Wars 

 

 It was also interesting to note that while the rule of 10 proved valid for the 19th 

Century extra-state wars, it did not for the 20th Century data.  From MINITAB, 1 13n = , 

2 11n = , and ( )min 13,11 11m = = .  Therefore, the resulting model should contain no 

more than ( )1 10 1.1 1k m+ ≤ = ≈  parameter.  This implied that the model should contain 

0k =  covariates; that is, a constant only model.  It should be reiterated, however, that the 

rule of 10 is not absolute.     

 

     Extra-State Wars (Aggregated Data). 
 

In addition to dividing up the observations between those of the 19th Century and 

those of the 20th Century, stepwise regression was also performed on extra-state wars 

using all 59n =  observations.  The results are shown in Figure 7. 
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Stepwise Regression: Winner_ES_UN versus Duration_ES_, C_Deaths/Pop, ...  
       
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.2   

       

       

Response is Winner_ES_UNS on 4 predictors, with N = 59   

       

       

Step 1    

Constant 1.32    

       

Duration_ES_UNS 0.161    

T-Value 2.75    

P-Value 0.008      

Figure 7: Stepwise Results for Full Extra-State Wars Set 

  

Here, the duration of the war was the only covariate significant enough to be included in 

the model at the settings used for this study.  Furthermore, its p-value for the likelihood 

ratio test was again very small.  It was expected that Duration_ES_UNS would 

demonstrate high significance in the estimated univariate model for predicting the winner 

of an extra-systemic war, which is discussed in a later section. 

 The rule of 10 provided a nearly accurate assessment in this case.  Out of 59 

observations, ( ) ( )1 2min , min 40,19 19m n n= = =  was the minimum frequency, so the 

model should contain no more than ( )1 19 10 1.9 1k + ≤ = ≈  parameter.  However, this 

result is so close to 2 that a univariate model, with duration as the independent variable, 

was believed to be adequate. 
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     Intrastate Wars (19th Century). 
 

The results from the stepwise regression procedure on 19th Century intrastate wars 

are given in Figure 8.  As with the 19th Century extra-state wars, this implied that none of 

the four univariate models estimated possessed likelihood ratio p-values smaller than 

0.15.  Four univariate models, one for each of the covariates, were fit to show these large 

p-values.  Figure 9 through Figure 12 give the MINITAB outputs for each of these four 

models, and the likelihood ratio p-values can be seen at the bottom of each figure.  These 

figures showed that none of the covariates from the COWP data could be used to form a 

model predicting the winner of a 19th Century intrastate war. 

 

Stepwise Regression: Winner_IS_UN versus Duration_IS_, Dead/Pop_IS_, ... 
  
Alpha-to-Enter: 0.15  Alpha-to-Remove: 0.2 

Response is Winner_IS_UNS_19 on 4 predictors, with N = 30 

No variables entered or removed 

Figure 8: Stepwise Results for 19th Century Intrastate Wars 

 

Binary Logistic Regression: Winner_IS_UNS_19 versus Duration_IS_UNS_19   
          
Variable Value Count      

Winner_IS_UNS_19 1 23 (Event)     

  2 7      

  Total 30      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 1.32 0.602988 2.19 0.029    

Duration_IS_UNS_19 0.249261 0.765408 0.33 0.745 1.28 0.29 5.75

          

Log-Likelihood = -16.241        

Test that all slopes are zero: G =  0.114, DF = 1, P-Value = 0.735 

Figure 9: Univariate Logit Model (Duration is Covariate) 
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 The univariate model containing the duration of the conflict as the sole predictor 

of the winner possessed a 0.735 likelihood ratio p-value.  Because 0.735 0.05> , the null 

hypothesis that all model coefficients are zero was not rejected.  Thus, duration was not 

sufficient to explain the winner of a 19th Century intrastate war. 

 

Binary Logistic Regression: Winner_IS_UNS_19 versus Dead/Pop_IS_UNS_19 
          
Variable Value Count      

Winner_IS_UNS_19 1 23 (Event)     

  2 7      

  Total 30      

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 1.98819 1.61659 1.23 0.219    

Dead/Pop_IS_UNS_19 3.63592 6.48808 0.56 0.575 37.94 0 12642267

          

Log-Likelihood =  -15.819       

Test that all slopes are zero: G = 0.958, DF = 1, P-Value =  0.328 

Figure 10: Univariate Logit Model (Deaths per Population) 

 

The univariate model containing the number of state combat deaths as a 

proportion of its population as the sole predictor of the winner possessed a 0.328 

likelihood ratio p-value.  Because 0.328 0.05> , the null hypothesis that all model 

coefficients are zero was not rejected.  Thus, the proportion of state combat deaths to its 

population was not sufficient to explain the winner of a 19th Century intrastate war. 
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Binary Logistic Regression: Winner_IS_UNS_19 versus Dead/Arm_IS_UNS_19 
        
Variable Value Count     

Winner_IS_UNS_19 1 23 (Event)    

 2 7     

 Total 30     

     Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 2.16014 2.04746 1.06 0.291   

Dead/Arm_IS_UNS_19 3.09775 6.13261 0.51 0.613 22.15 0 3677249

        

Log-Likelihood =  -16.029      

Test that all slopes are zero: G = 0.539, DF = 1, P-Value = 0.463

Figure 11: Univariate Logit Model (Deaths per Total Armed Forces) 

 

The univariate model containing the number of state combat deaths as a 

proportion of its armed force size as the sole predictor of the winner possessed a 0.463 

likelihood ratio p-value.  Because 0.463 0.05> , the null hypothesis that all model 

coefficients are zero was not rejected.  Thus, the proportion of state combat deaths to its 

armed force size was not sufficient to explain the winner of a 19th Century intrastate war. 

 

Binary Logistic Regression: Winner_IS_UNS_19 versus C_Dead/TotDead_IS_UNS_19 
        
Variable Value Count     

Winner_IS_UNS_19 1 23 (Event)    

 2 7     

 Total 30     

     Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 1.39879 0.508392 2.75 0.006   

C_Dead/TotDead_IS_UNS_19 -0.40011 0.398705 -1 0.316 0.67 0.31 1.46

        

Log-Likelihood = -15.786      

Test that all slopes are zero: G = 1.025, DF = 1, P-Value = 0.31

Figure 12: Univariate Logit Model (Proportion of Total Casualties) 
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The univariate model containing the proportion of total combat deaths sustained 

by the participant as the sole predictor of the winner possessed a 0.31 likelihood ratio p-

value.  Because 0.31 0.05> , the null hypothesis that all model coefficients are zero was 

not rejected.  Thus, the proportion of total combat deaths sustained by the participant was 

not sufficient to explain the winner of a 19th Century intrastate war. 

As expected, each of the likelihood ratio p-values for each of the above models 

was larger than 0.15.  The above figures also demonstrated that not even a statistically 

significant univariate model could be estimated for the 19th Century intrastate wars, as 

seen from the Wald statistic p-values being each much larger than the selected α  

significance level, 0.05. 

 In this case, the rule of 10 resisted scrutiny.  That is, the results from the rule of 

10 followed those obtained by stepwise regression.  A model for the 19th Century 

intrastate wars should contain no more than ( )10 0.7 0m = ≈  parameters, 

where ( ) ( )1 2min , min 23,7 7m n n= = = .   Since each of the Wald statistic p-values was 

larger than 0.05, each of which failed to reject the null hypothesis of equation (2.29), no 

final model for the 19th Century intrastate war data was estimated.  That is, a statistically 

significant relationship could not be established between the winner of a 19th Century 

intrastate war and the covariates derived from the COWP data.   
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     Intrastate Wars (20th Century). 
 

A total of 43n =  observations were available for analysis of 20th Century 

intrastate wars.  The stepwise regression procedure suggested using three covariates in 

the model.  The MINITAB output is shown in Figure 13.  A binary logistic regression 

model, containing the three covariates suggested by the stepwise procedure, was 

estimated.  The resulting parameter estimates, goodness-of-fit, and diagnostic measures 

are examined in a later section.  The values for these measures influenced the substance 

of the final model. 

 

Stepwise Regression: Winner_IS_UN versus Duration_IS_, Dead/Pop_IS_, ...  
      
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.2 

      

Response is Winner_IS_UNS_20 on 4 predictors, with N = 43 

      

Step 1 2 3

Constant 1.317 1.322 1.334

      

Duration_IS_UNS_20 0.225 0.262 0.246

T-Value 3.56 3.94 3.77

P-Value 0.001 0 0.001

      

Dead/Arm_IS_UNS_20  -0.088 -0.214

T-Value  -1.56 -2.5

P-Value  0.127 0.017

      

Dead/Pop_IS_UNS_20   0.162

T-Value   1.92

P-Value     0.062

Figure 13: Stepwise Regression (20th Century Intrastate Wars) 
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 It was also interesting to note that the stepwise results contradicted the rule of 10.  

Given that 1 26n =  and 2 17n = , the rule of 10 indicated that the model should only 

contain up to ( ) ( )10 17 10 1.7 1m = = ≈  parameter.  If this result was accurate, then the 

stepwise regression should not have allowed any covariates to enter the model.   

 

     Intrastate Wars (Aggregated). 
 

Stepwise regression was again conducted on aggregated data, this time for the 

73n =  observations in the entire intrastate wars data set.  It was interesting to confirm 

that the same single covariate, duration, was entered into the model for both this case and 

for the aggregated extra-state wars case.  The results are shown in Figure 14.  A 

possibility considered here was that a general relationship between the duration of both 

intrastate and extra-state wars and the winners of both may exist.  The extent of such a 

relationship was examined after fitting the final models for both types of wars. 

 

Stepwise Regression: Winner_IntS versus C_Dead/TotDe, Dead/Arm_... 
      
Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.2 

      

Response is Winner_IntS on 4 predictors, with N = 73   

      

Step 1   

Constant 1.329   

      

Duration_IntS_UNS 0.176   

T-Value 3.38   

P-Value 0.001    

Figure 14: Stepwise Results (Aggregated Intrastate Wars) 
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 In this case, the stepwise results correspond to those of the rule of 10.  Given that 

1 49n =  and 2 24n m= = , the rule of 10 suggests that the model can contain up to 2 

parameters.  Thus, it was expected that the univariate model using the duration of the 

conflict to predict the winner of an intrastate war would exhibit an adequate fit, and the 

length of the war would show statistical significance through its Wald p-value.   

 

     Interstate Wars (19th Century). 
 

Using the values of 0.15Ep =  and 0.2Rp = , no covariates were entered into the 

model from the stepwise procedure, shown in Figure 15.  As a test, the p-values for entry 

and removal were then incremented by 0.01 to determine just how large the entry p-value 

needed to be in order to admit even one covariate.  It was found that the p-value for entry 

needed to be at least 0.31, and only the covariate Dths/TDths_UNS_19 was admitted 

at 0.31Ep = , which is given in Figure 16.  This result gave both additional support to the 

validity of the stepwise procedure and justification to the default level of Ep .  In general, 

the Ep  level necessary to include even one covariate in a multinomial model for 

predicting the outcome of an interstate war was too large to suggest that the resulting 

model correctly described the relationship between the outcome of an interstate war and 

the single predictor variable.     
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Stepwise Regression: Outcome(PR2) versus MilEx/TT_UNS, 
Duration_UNS,… 
      

Alpha-to-Enter: 0.15 Alpha-to-Remove: 0.2 

Response is Outcome(PR2)_19 on 5 predictors, with N=58   

No variables entered or removed.     

Figure 15: Stepwise Results (Default Entry P-Value) 

   

Stepwise Regression: Outcome(PR2) versus MilEx/TT_UNS, 
Duration_UNS,… 
      
Alpha-to-Enter: 0.31 Alpha-to-Remove: 0.35 

      

Response is Outcome(PR2)_19 on 5 predictors, with N=58 

      

Step 1   

Constant 2.169   

      

Dths/TDeaths_UNS_19 0.2   

T-Value 1.04   

P-Value 0.304    

Figure 16: Stepwise Results (Incremented Entry P-Value) 
 

 

 It was found that the rule of 10 was again applicable in this case.  The five 

outcome category frequencies were 1 25n = , 2 16n = , 3 2n = , 4 10n = , and 5 5n = .  Given 

that the smallest frequency was 2, the rule of 10 indicated that the model contain 0 

parameters.  That is, a correctly specified univariate multinomial model for predicting the 

outcome of a 19th Century interstate war could not be obtained using any of the covariates 

derived from the COWP data.  The observations from the two outcomes with the lowest 

frequencies, 2 and 5, could have been eliminated and the stepwise procedure repeated.  

However, the rule of 10 would have then suggested at most a constant only model.  The 

only way to have had the rule of 10 results reflect a model with at least 2 parameters; that 

is, a covariate and intercept, was to eliminate all 19th Century interstate war observations 
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except those corresponding to the first outcome.  The problem would have then ceased to 

be a logistic regression problem, since a logistic regression problem requires a response 

variable with at least two categories.  These limitations were only present in the COWP 

data.  The COWP data on interstate wars contained too many missing entries, and the 

complete data were skewed in favor of victory by military imposition.  Therefore, no 

further elimination of observations was performed, and no model for the 19th Century 

interstate wars was estimated. 

 Just as with binomial outcomes, the likelihood ratio test is also the basis of 

comparison in stepwise regression for multinomial outcomes.  Univariate multinomial 

models were estimated, one for each of the five available covariates, and the MINITAB 

outputs for each model are shown in Figure 17 through Figure 21.  The likelihood ratio 

statistic and its p-value is shown at the bottom of each figure.  The purpose of estimating 

these models was to confirm the results from the stepwise procedure.   
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Nominal Logistic Regression: Outcome(PR2)_19 versus Dths/Pop_UNS_19   
          
Response Information        

          

Variable Value Count      

Outcome(PR2)_19 1 25(Reference Event)    

  5 5      

  4 10      

  3 2      

  2 16      

  Total 58      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Logit 1: (5/1)         

Constant -1.54404 0.841252 -1.84 0.066    

Dths/Pop_UNS_19 0.292128 3.08618 0.09 0.925 1.34 0 567.39

Logit 2: (4/1)         

Constant -1.32853 0.904292 -1.47 0.142    

Dths/Pop_UNS_19 -1.69837 3.28726 -0.52 0.605 0.18 0 114.97

Logit 3: (3/1)         

Constant -8.30628 10.1307 -0.82 0.412    

Dths/Pop_UNS_19 -20.4914 34.2286 -0.6 0.549 0 0 1.72E+20

Logit 4: (2/1)         

Constant -0.702933 0.679463 -1.03 0.301    

Dths/Pop_UNS_19 -1.07874 2.48216 -0.43 0.664 0.34 0 44.09

          

Log-Likelihood = -77.503       

Test that all slopes are zero:  G =  1.419, DF = 4, P-Value = 0.841

Figure 17: Univariate Multinomial Model (Deaths/Population) 

 

 The univariate multinomial model containing the proportion of participant combat 

deaths to its population exhibited a 0.841 likelihood ratio p-value.  Because 0.841 0.05> , 

the null hypothesis that the coefficients in each logit are zero was not rejected.  Thus, the 

proportion of participant combat deaths to its population was not sufficient to predict the 

outcome of a 19th Century interstate war.      
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Nominal Logistic Regression: Outcome(PR2)_19 versus Dths/Arm_UNS_19 
          
Response Information        

          

Variable Value Count      

Outcome(PR2)_19 1 25 (Reference Event)    

  5 5      

  4 10      

  3 2      

  2 16      

  Total 58      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Logit 1: (5/1)         

Constant -1.94081 1.12036 -1.73 0.083    

Dths/Arm_UNS_19 -2.11182 5.94128 -0.36 0.722 0.12 0 13809.2

Logit 2: (4/1)         

Constant -1.51576 1.38604 -1.09 0.274    

Dths/Arm_UNS_19 -3.6547 7.63922 -0.48 0.632 0.03 0 82304.04

Logit 3: (3/1)         

Constant -3.99637 4.71273 -0.85 0.396    

Dths/Arm_UNS_19 -8.52392 25.738 -0.33 0.741 0 0 1.61E+18

Logit 4: (2/1)         

Constant -1.23185 1.43243 -0.86 0.39    

Dths/Arm_UNS_19 -4.70731 7.939 -0.59 0.553 0.01 0 51695.18

          

Log-Likelihood = -77.314        

Test that all slopes are zero:  G = 1.799, DF = 4, P-Value = 0.773   

Figure 18: Univariate Multinomial Model (Deaths/Armed Forces) 

 

The univariate multinomial model containing the proportion of participant combat 

deaths to its armed force size exhibited a 0.773 likelihood ratio p-value.  Because 

0.773 0.05> , the null hypothesis that the coefficients in each logit are zero was not 

rejected.  Thus, the proportion of participant combat deaths to its armed force size was 

not sufficient to predict the outcome of a 19th Century interstate war.   
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Nominal Logistic Regression: Outcome(PR2)_19 versus Dths/Tdeaths_UNS_19 
          
Response Information        

          

Variable Value Count       

Outcome(PR2)_19 1 25 (Reference Event)    

  5 5      

  4 10      

  3 2      

  2 16      

  Total 58      

          

Logistic Regression Table        

  Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Logit 1: (5/1)         

Constant -1.90113 0.596498 -3.19 0.001    

Dths/TDeaths_UNS_19 0.747108 0.51968 1.44 0.151 2.11 0.76 5.85

Logit 2: (4/1)         

Constant -0.91742 0.375327 -2.44 0.015    

Dths/TDeaths_UNS_19 0.0167269 0.417589 0.04 0.968 1.02 0.45 2.31

Logit 3: (3/1)         

Constant -2.80629 0.902243 -3.11 0.002    

Dths/TDeaths_UNS_19 0.731972 0.759506 0.96 0.335 2.08 0.47 9.21

Logit 4: (2/1)         

Constant -0.471784 0.325654 -1.45 0.147    

Dths/TDeaths_UNS_19 0.185769 0.350366 0.53 0.596 1.2 0.61 2.39

          

          

Log-Likelihood = -76.755        

Test that all slopes are zero:  G = 2.917, DF = 4, P-Value = 0.572 

Figure 19: Univariate Multinomial Model (Proportion of Total Dead) 

 

The univariate multinomial model containing the proportion of total combat 

deaths sustained by the participant exhibited a 0.572 likelihood ratio p-value.  Because 

0.572 0.05> , the null hypothesis that the coefficients in each logit are zero was not 

rejected.  Thus, the proportion of total combat deaths sustained by the participant was not 

sufficient to predict the outcome of a 19th Century interstate war.      
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Nominal Logistic Regression: Outcome(PR2)_19 versus Duration_UNS_19 
        
Response Information       

        

Variable Value Count     

Outcome(PR2)_19 1 25 (Reference Event)   

 5 5     

 4 10     

 3 2     

 2 16     

 Total 58     

        

Logistic Regression Table       

     Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper 

Logit 1: (5/1)        

Constant -1.75906 0.595328 -2.95 0.003   

Duration_UNS_19 -0.488181 0.888294 -0.55 0.583 0.61 0.11 3.5 

Logit 2: (4/1)        

Constant -0.911427 0.385027 -2.37 0.018   

Duration_UNS_19 0.0259329 0.492012 0.05 0.958 1.03 0.39 2.69 

Logit 3: (3/1)        

Constant -3.02605 1.40983 -2.15 0.032   

Duration_UNS_19 -1.23568 2.32598 -0.53 0.595 0.29 0 27.75 

Logit 4: (2/1)        

Constant -0.520875 0.35039 -1.49 0.137   

Duration_UNS_19 -0.28124 0.485538 -0.58 0.562 0.75 0.29 1.96 

        

Log-Likelihood = -77.644       

Test that all slopes are zero:  G = 1.139,  DF = 4,  P-Value = 0.888 

Figure 20: Univariate Multinomial Model (War Duration) 

 

The univariate multinomial model containing the duration of a 19th Century 

interstate war exhibited a 0.888 likelihood ratio p-value.  Because 0.888 0.05> , the null 

hypothesis that the coefficients in each logit are zero was not rejected.  Thus, the duration 

of a 19th Century interstate war was not sufficient to predict the outcome of a 19th 

Century interstate war.      
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Nominal Logistic Regression: Outcome(PR2)_19 versus MilEx/TT_UNS_19 
         
Response Information       

         

Variable Value Count     

Outcome(PR2)_19 1 25 (Reference Event)   

  5 5     

  4 10     

  3 2     

  2 16     

  Total 58     

         

Logistic Regression Table       

     Odds 95% CI 

Predictor Coef SE Coef P Ratio Lower Upper

Logit 1: (5/1)        

Constant -25.8416 33.853 0.445    

MilEx/TT_UNS_19 -164.655 229.265 0.473 0 0 4.42E+123

Logit 2: (4/1)        

Constant -20.2078 22.6403 0.372    

MilEx/TT_UNS_19 -131.193 153.546 0.393 0 0 5.30E+73

Logit 3: (3/1)        

Constant 5.79748 11.8392 0.624    

MilEx/TT_UNS_19 57.4596 82.236 0.485 9.00E+24 0 9.02E+94

Logit 4: (2/1)        

Constant 0.609505 8.56002 0.943    

MilEx/TT_UNS_19 7.23107 58.5934 0.902 1381.7 0 1.04E+53

         

Log-Likelihood = -76.989       

Test that all slopes are zero:  G = 2.447,  DF = 4,  P-Value = 0.654 

Figure 21: Univariate Multinomial Model (Military Expenditures/Total Trade) 

 

The univariate multinomial model containing the average amount of military 

spending as a proportion of the average total trade for a 19th Century interstate war 

exhibited a 0.654 likelihood ratio p-value.  Because 0.654 0.05> , the null hypothesis that 

the coefficients in each logit are zero was not rejected.  Thus, the average amount of 

military spending as a proportion of the average total trade for a 19th Century interstate 

war was not sufficient to predict the outcome of a 19th Century interstate war.      
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For Figure 21, the Z column was removed for two reasons.  One, the values under 

the Z column were irrelevant to what was being demonstrated.  That is, the likelihood 

ratio p-value for the model was the quantity of interest in each figure.  Two, if the values 

under the Z column were needed, then they could be computed directly using equation 

(2.32), because the values labeled Z in MINITAB are equivalent to the Wald statistic, W.   

It should be noted that the aforementioned stepwise selection results only applied 

to the available COWP data.  Investigations of the outcomes of 19th Century interstate 

wars using other data sources may yield different stepwise selection results.  It is 

imperative that the primary and secondary goals of this study be reiterated.  The findings 

in this thesis appear only as a consequence of strictly using the COWP data.  The purpose 

of subjecting the COWP data on interstate wars to stepwise selection was both to 

demonstrate the applicability of logistic regression to war termination studies and to 

expose the limitations of using open-source data.  

 

     Interstate Wars (20th Century). 
 

The results from the rule of 10 for the 167n =  observations on 20th Century 

interstate wars did not match those from the stepwise selection, which admitted two 

covariates to the model.  In this case, 1 62n = , 2 37n = , 3 29n = , 4 16n = , and 5 23n = .  

With the fourth outcome having the smallest frequency, 16, the rule of 10 showed that the 

model should contain no more than 1 parameter.  The results from stepwise selection in 

MINITAB, which are given in Figure 22, indicated otherwise. 
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Stepwise Regression: Outcome(PR2) versus MilEx/TT_UNS, Duration_UNS,...  
         
Alpha-to-Enter:  0.15 Alpha-to-Remove:  0.2    
         
Response is Outcome(PR2)_20 on 5 predictors, with N = 167   
         
Step 1 2      
Constant 2.44 2.452      
         
Dths/TDeaths_UNS_20 0.51 0.48      
T-Value 4.99 4.67      
P-Value 0 0      
         
Duration_UNS_20  -0.147      
T-Value  -1.51      
P-Value   0.133         

Figure 22: Stepwise Selection (20th Century Interstate Wars) 

 

 Two covariates were selected for inclusion into the model: the duration of the war 

and the proportion of total deaths borne by the participant.   Presented in a later section, 

this bivariate model was estimated, and the Wald statistics were examined to assess the 

individual significance of each covariate in the model.  Once the final model was 

established, then the goodness-of-fit tests and diagnostic measures were analyzed. 

 The results in Figure 22 provided a starting point for constructing a multinomial 

prediction model for the outcome of 20th Century interstate wars.  The two covariates, 

duration and the proportion of total deaths borne by the participant, were used to estimate 

an initial model.  It was expected that the goodness-of-fit statistics for the initial model 

would show it to be adequate.  It was also expected that the likelihood ratio p-value for 

the initial model would support the notion that at least one of the included covariates was 

significant to predicting the outcome of a 20th Century interstate war.  The p-values for 

the Wald statistics suggested which covariate, if not both, was to be retained in the final 

model.  
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     Interstate Wars (Aggregated). 
 

Considering all 225n =  observations in the interstate wars data set, stepwise 

regression selected only one covariate: the proportion of total deaths borne by the 

participant, or Deaths/TotDeaths_UNS.  Figure 23 shows the results from MINITAB.  

Additionally, computations from the rule of 10 supported the stepwise results.  That is, 

the smallest outcome frequency was 26, so the rule of 10 concluded that the model could 

contain up to 2 parameters, making it at most a univariate multinomial model.  

 

Stepwise Regression: Outcome(PR2) versus Deaths/Pop_U, Deaths/Arm_U,… 
         

Alpha-to-Enter:  0.15 Alpha-to-Remove:  0.2     

         

Response is Outcome(PR2) on 5 predictors, with N = 225    

         

Step 1       

Constant 2.356       

         

Deaths/TotDeaths_UNS 0.421       

T-Value 4.67       

P-Value 0           

Figure 23: Stepwise Results (225 Interstate Wars) 

 

Given that the covariate concerning casualty proportions was admitted in the 

stepwise results for both the aggregated interstate wars set and the 20th Century interstate 

wars set, the possibility that this covariate would be highly significant in both 

multinomial models was considered.  The extent of this significance is discussed in later 

sections, where tests on individual model coefficients are conducted.  

When the model for predicting the outcome of an interstate war was estimated, it 

was expected that the goodness-of-fit tests would show the model to be correctly 

specified.  Additionally, the likelihood ratio test and Wald test was expected to indicate 
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the statistical significance of the casualty proportion covariate in predicting the outcomes 

of interstate wars.   

 

Binary Logistic Regression Models on Winner 
 

A total of four binary logistic regression models were estimated and analyzed.  

Instead of six models, as was postulated in the previous chapter, only four models were 

fit because in two out of the six possible cases, the stepwise regression procedure did not 

allow any covariates to enter the model.  This result implied that in any univariate model 

for those cases, the resulting p-value for its likelihood ratio test statistic, G, was larger 

than the defined significance level for this research, 0.05α = , the fact that it was also 

larger than 0.15Ep =  notwithstanding.  Two binary models were estimated for the extra-

state wars data: one for the 20th Century observations and the other for the aggregated 

data.  The same was also done for the intrastate wars data.  The results for the extra-state 

models are presented first. 

 

     20th Century Extra-State Wars Model. 
 

The initial model estimated for the 20th Century extra-state wars data followed the 

recommendations from the stepwise selection procedure and contained two covariates: 

Dur_ES_UNS_20 and C_Dths/Arm_ES_UNS_20.  That is, stepwise regression considered 

the length of an extra-state war and the number of state deaths as a proportion of the 

state’s military manpower as significant in predicting the winner of an extra-systemic 

war.  The initial model fit from MINITAB is shown in Figure 24. 
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The initial model estimated for the 20th Century extra-state wars data contained 

those covariates identified by the stepwise procedure.  Thus, the initial model was 

bivariate, containing the covariates concerning the duration of the conflict, 

Dur_ES_UNS_20, and the number of state deaths as a proportion of the state’s military 

manpower, C_Dths/Arm_ES_UNS_20.  Figure 24 shows the parameter estimates, Wald 

statistics, odds ratios, likelihood ratio test, deviance, Pearson chi-square test, and the 

Hosmer-Lemeshow test for the initial model.   

 

Binary Logistic Regression: Winner_ES_ UN versus Dur_ES_U, C_Dths/Arm_E 
          
Response Information       

          

Variable Value Count      

Winner_ES_UNS_20 1 13 (Event)     

  2 11      

  Total 24      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 0.478616 0.717177 0.67 0.505    

Dur_ES_UNS_20 -1.08089 0.511024 -2.12 0.034 0.34 0.12 0.92

C_Dths/Arm_ES_UNS_20 -1.2966 2.11985 -0.61 0.541 0.27 0 17.43

          

Log-Likelihood = -11.31        

Test that all slopes are zero:  G = 10.485,  DF = 2,  P-Value = 0.005 

          

Goodness-of-Fit Tests         

          

Method Chi-Square DF P     

Pearson 22.5125 21 0.371     

Deviance 22.6194 21 0.365     

Hosmer-Lemeshow 6.0479 8 0.642        

Figure 24: MINITAB Output (Initial Model) 

 



 

 83

The p-value 0.371 for the Pearson chi-square statistic was larger than α , which 

implied that the model using the duration of a 20th Century extra-systemic war and the 

proportion of state combat deaths to its armed force size to predict the winner of a 20th 

Century extra-state war was adequately fit.  Similar implications were made from the p-

values for the Deviance and Hosmer-Lemeshow statistics, which were 0.365 0.05>  and 

0.642 0.05> , respectively.   

Because the p-value for the likelihood ratio statistic was 0.005 0.05α< = , the 

null hypothesis from equation (2.29) was rejected in favor of the alternative hypothesis, 

AH .  That is, there was sufficient evidence to suggest that at least one of the model 

coefficients was nonzero.  The Wald statistics for each of the two covariates in the initial 

model were examined to determine which covariate, if not both, needed to be retained in 

the final model.   

From the discussion of Wald statistics in Chapter 2 and equation (2.32), it follows 

that a Wald statistic with a p-value smaller than 0.05α =  implies significance of the 

covariate under test.  While the Wald p-value for Dur_ES_UNS_20 was 0.034, the p-

value for C_Dths/Arm_ES_UNS_20 was 0.541, which suggested that the number of state 

deaths as a proportion of the state’s military manpower was not significant to the model 

at an 0.05α =  level.  This result implied that a reduced model needed to be estimated.  In 

spite of the initial model proving adequate, a reduced model was estimated that included 

only the Dur_ES_UNS_20 covariate.  A likelihood ratio test was then performed to 

compare the two models.  The results of this comparison determined whether or not the 

reduced model was adequate enough to continue with odds ratio interpretation and 

diagnostics.        
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The logistic regression table along with the likelihood ratio test and goodness-of-

fit tests for the reduced extra-state wars model is given in Figure 25.   

 

Binary Logistic Regression: Winner_ES_UNS_20 versus Dur_ES_UNS_20  
          
Response Information         

          

Variable Value Count      

Winner_ES_UNS_20 1 13 (Event)     

  2 11      

  Total 24      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 0.568524 0.500277 1.14 0.256    

Dur_ES_UNS_20 -1.18758 0.516323 -2.3 0.021 0.3 0.11 0.84

          

Log-Likelihood = -12.575        

Test that all slopes are zero: G = 7.953, DF = 1, P-Value = 0.005 

          

Goodness-of-Fit Tests         

          

Method Chi-Square DF P     

Pearson 25.3187 20 0.19     

Deviance 25.1509 20 0.196     

Hosmer-Lemeshow 11.8916 8 0.156        

Figure 25: Reduced Model Results 

 

As with the initial model, the p-value of the Wald statistic for Dur_ES_UNS_20 was 

0.021, which indicated that the duration of the conflict maintained its significance as a 

covariate.  A likelihood ratio test was performed using the computation described in 

Section 0 to compare the reduced model to the initial model.  This comparison was 

computed as two times the difference between the log-likelihood of the initial model and 

the log-likelihood of the reduced model.  That is, ( )( )2 11.31 12.575 2.53G = − − − = .  The 
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critical chi-square value for this comparison was 2
0.05,2 5.99χ = .  Because the likelihood 

ratio statistic was smaller than the critical chi-square value, the reduced model, like the 

initial model, proved to be adequate.  It was also noted that the likelihood ratio p-value 

for the reduced model in Figure 25 was 0.005 0.05< , which implied that at least one of 

the reduced model parameters was nonzero.   

Since the three goodness-of-fit tests are statistically equivalent, the interpretation 

of the MINITAB output for each test was straight forward.  MINITAB displayed the p-

value for each statistic, which needed to be larger than 0.05α =  to imply model 

adequacy.  The deviance, Pearson chi-square, and Hosmer-Lemeshow statistics are each 

approximately distributed chi-square, and the computations differ only in their respective 

degrees of freedom.  Each of the goodness-of-fit p-values was larger than α , which 

implied that the reduced model was also adequately fit.  Thus, the final logit for the 20th 

Century extra-state data was expressed as 

( ) ( )_ _ _ 20 0.57 1.19* _ _ _ 20g Dur ES UNS Dur ES UNS= − ,     (4.1) 

and the logistic regression model for predicting the probability of Winner_ES_UNS_20 

was given by 

( )
( )

( )

0.57 1.19*

0.57 1.19*|
1

Duration

Duration

eP Winner Duration
e

−

−
=

+
.   (4.2) 

The covariate names for Winner_ES_UNS_20 and Dur_ES_UNS_20 were truncated to 

Winner and Duration for the purpose of explicitly stating the model in equation (4.2). 

 

 

 



 

 86

          Odds Ratio Interpretation. 
 

Since the reduced model was shown to be correctly specified, sufficient 

justification existed to continue with odds ratio interpretation.  The odds ratio for the 

reduced model, at 0.3, implied an increased likelihood of the non-state actor emerging as 

the winner.  Using the description surrounding equation (2.16) in Chapter 2, the odds 

ratio of 0.3 suggested that an extra-state war was 0.3 times as likely to end with the state 

as the victor than with the non-state participant as the winner, given a single-unit increase 

in the duration of the conflict.  The 95% CI showed that this ratio could be as small as 

0.11 or as large as 0.84.  The tight range of the CI demonstrated a high level of 

confidence in the accuracy of the estimated odds ratio.  The odds ratio was smaller than 

1, so it actually implied that the non-state actor was more likely to win in a long war 

rather than the state.  Defining a one-unit increase in war duration allowed a more 

accurate assessment of the odds ratio.  Since unit normal scaling was used, the length of a 

single unit of war duration was denoted by the sample standard deviation of the extra-

state wars duration data, which was computed to be 1426.19.  By inverting the odds ratio, 

it followed that for about every 1426 days that an extra-state war lasts, the non-state 

participant is approximately 3.33 times as likely to emerge as the winner than the state 

participant.  Therefore, in general, this result suggests that a long extra-systemic war 

favors the insurgency.  This was a particularly unsettling finding, given that the United 

States has been engaged in the current war in Iraq for nearly 1460 days.   
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          Diagnostics and Plots. 
 

Three diagnostic plots were examined: jDΔ  versus ˆ jπ , 2
jXΔ  versus ˆ jπ , and ˆ

jβΔ  

versus ˆ jπ .  Large values of jDΔ  and 2
jXΔ  indicated covariate patterns which were 

poorly fit.  These values could be identified by being located in the top left or top right 

corners of the plots.  Additionally, points far separated from the general pattern of the 

remaining points could also be classified as poorly fit (Hosmer and Lemeshow, 

2000:176-179).  Figure 26 is the plot of the change in model deviance versus the 

estimated probability of Winner_ES_UNS_20.  The plot was examined for large values 

of jDΔ .  However, given that the goodness-of-fit tests showed the reduced model to be 

correctly specified, very few poorly fit covariate patterns were expected to appear. 
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Figure 26: Deviance Change Plot for 20th Century Extra-State Wars Model 
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Three data points stood out as having large values for jDΔ .  This implied that the 

five observations corresponding to these three distinct values for Dur_ES_UNS_20 were 

inadequately fit.  The five observations were from the Italo-Libyan War of 1920, the 

Indonesian War of 1945, and the Western Saharan War of 1975.  Their respective 

durations were 4444, 340, and 1334 days.  These distinct values for duration exerted 

leverage on the fit of the model.  Only 3 covariate patterns out of 20 were identified as 

poorly fit.  Therefore, it was unnecessary to remove the 5 observations corresponding to 

these 3 covariate patterns and estimate a new model.  Nonetheless, the extra-systemic 

wars identified above are generally unfamiliar in historical studies, and it could be 

beneficial to devote future statistical investigations to them.   

 The plot for the change in the Pearson chi-square statistic versus the estimated 

probability, shown in Figure 27, was also examined for inadequately fit data points.  This 

plot indicated the same inadequately fit observations for duration as did the plot for the 

change in deviance.  The model was assessed to be correctly fit, so having only 5 poorly 

fit observations out of 24n =  was considered acceptable.  That is, sufficient evidence did 

not exist to imply that the model needed to be estimated again with the five observations 

removed.   



 

 89

Probability

D
el

ta
 C

hi
-S

qu
ar

e

0.90.80.70.60.50.40.30.20.10.0

10

8

6

4

2

0

Pearson Chi-Square Change Plot (Univariate Extra-State Wars)

 

Figure 27: Pearson Statistic Change Plot for 20th Century Extra-State Wars Model 

 

Large values of ˆ
jβΔ  were expected to exhibit similar characteristics within the 

plot in Figure 28 as both the large values of jDΔ  in Figure 26 and the large values of 

2
jXΔ  in Figure 27.  In contrast to the implications from large values of jDΔ  and 2

jXΔ , 

values of ˆ
jβΔ  that were both large and distanced from the general clustering of the 

remaining plotted points were flagged as influence points.  Specifically, these flagged 

points corresponded to covariate patterns which had a significant effect on the values of 

the model parameters.  Any influence diagnostic larger than 1 provided sufficient 

justification for deleting all observations corresponding to it and estimating a new model 

(Hosmer and Lemeshow, 2000:180).     
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Figure 28: Coefficient Change Plot for 20th Century Extra-State Wars 

 

 There were two such covariate patterns in Figure 28 which were considered 

highly influential in parameter estimation.  Three observations were identified by these 

covariate patterns: Italian participation in the Italo-Libyan War of 1920, British 

participation in the Indonesian War of 1945, and Dutch participation in the Indonesian 

War of 1945.  Because of the high degree of influence these wars appeared to exert on the 

estimation of the model parameters, a future statistical investigation of these wars using a 

source with more complete and comprehensive data could be beneficial.  Such an 

investigation could unveil the basis of the influence these wars had on the 20th Century 

model in this study.  Considering that only two covariate patterns out of twenty were 

highly influential, the reduced model was deemed to be a generally good predictor of the 

winner in a 20th Century extra-state war.    
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 The aforementioned observations were removed and a new model was estimated.  

Summary figures and diagnostic plots for this model are not given because only the 

changes in both the coefficients and odds ratios were of interest.  The coefficient for 

duration in Figure 25 was 1̂ 1.19β = − .  The coefficient in the revised model was 

computed to be 1̂ 4.96β = − , which was a notable change.  The more drastic change, 

however, was in the odds ratio.  The odds ratio for duration in Figure 25 was 0.3, but the 

odds ratio for duration in the revised model was 0.01.  The odds ratio in the revised 

model showed that, with the influential observations deleted, the non-state faction was 

100 times more likely to win a prolonged extra-systemic war in the 20th Century than was 

the state.   

 The drastic change in odds ratios from the reduced model to the revised model 

demonstrated the significant amount of influence that the two identified colonial wars had 

on a logistic regression model using duration to predict the winner of a 20th Century 

extra-systemic war.  It is possible that other unidentified conditions existed within both 

the Italo-Libyan War and the Indonesian War that could account for their influence on the 

results of the model in this study.  However, comprehensive data concerning these 

particular wars were not available from the COWP. 

   

     Aggregated Extra-State Wars Model. 
 

The results from the stepwise procedure were use to justify estimating a univariate 

model with Duration_ES_UNS as the covariate.  The logistic regression table is given in 

the MINITAB output of Figure 29. 
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Binary Logistic Regression: Winner_ES_UNS versus Duration_ES_UNS  
          
Response Information        

          

Variable Value Count      

Winner_ES_UNS 1 40 (Event)     

  2 19      

  Total 59      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 0.807665 0.298188 2.71 0.007    

Duration_ES_UNS -0.718876 0.295601 -2.43 0.015 0.49 0.27 0.87

          

Log-Likelihood = -33.768        

Test that all slopes are zero: G = 6.614, DF = 1, P-Value = 0.010   

          

Goodness-of-Fit Tests        

          

Method Chi-Square DF P     

Pearson 55.4676 54 0.419     

Deviance 64.7634 54 0.15     

Hosmer-Lemeshow 5.1319 8 0.743        

Figure 29: Logistic Regression Results for Aggregated Extra-State Wars 

 

The p-value for the likelihood ratio test was 0.01, which suggested that at least one of the 

estimated parameters was nonzero, since 0.01 0.05< .  The p-value for the Wald statistic 

on duration confirmed that Duration_ES_UNS was significant to the model, because 

0.015 0.05< .  Furthermore, the goodness-of-fit tests showed the model to be correctly 

specified, as each of the p-values was larger than 0.05α = .  The p-value for the deviance 

statistic, 0.15D = , was much smaller than that for both the Pearson chi-square and 

Hosmer-Lemeshow statistics.  However, the degrees of freedom for both 2X  and D  

were identical, and the deviance statistic was larger than the Pearson chi-square statistic, 

so the smaller p-value for the deviance was understandable.  The logit for this model is  

( ) ( )0.807665 0.718876*g Duration Duration= −    (4.3) 
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The covariate label is truncated in equation (4.3) for the purpose of expressing the form 

of the logit.  The covariate and response labels are truncated also to express the form of 

the logistic regression model for this case, which is 

( )
( )

( )|
1

g Duration

g Duration

eP Winner Duration
e

=
+

   (4.4) 

Equation (4.4) yields the conditional probability of the winner of an extra-systemic war, 

given that the war lasts a certain number of days.  In general, the results in Figure 29 

confirmed that the logistic regression model containing only the duration of the conflict 

was a good predictor of the winner of an extra-systemic war. 

          Odds Ratio Interpretation. 
 

The odds ratio for the aggregated model was slightly larger than that for the 20th 

Century model.  However, the odds ratio still favored the non-state actor.  The state 

participant was 0.49 times as likely, or nearly half as likely, to win an extra-state war, for 

every approximate 1426-day increase in the duration of the war.  Equivalently, the non-

state participant was almost twice as likely to defeat the state force, for every 1426 days 

that the conflict continued.  As with the 20th Century model, though to a lesser degree, it 

appeared that a long war strongly favored the non-state actor in an extra-systemic war. 

Why was the non-state actor less likely to be victorious when the data were 

aggregated than when the 20th Century data were considered separately?  One possible 

explanation involved considering the response frequencies between the two models.  

Specifically, for the 20th Century model, there were 11 observations in which the non-

state actor won, while for the aggregated model, there were 19.  Hence, the distribution of 

that response category between the two centuries was already skewed in favor of the 20th 
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Century.  The addition of 8 observations where the non-state actor won in the aggregated 

model simply increased the likelihood of a non-state victory. 

Another explanation could come from the specifics of the 19th Century extra-state 

wars, since most of these were colonial wars.  Because the state participant was 

victorious in most of the 19th Century wars, additional statistical studies into the tactics 

and techniques used by these states may reveal the secrets to their successes.   

 

          Diagnostics and Plots. 
 

The ˆ
jβΔ  plot, Figure 30, was examined first.  It displayed a greater degree of 

separation between the influence points and the remaining observations.  That is, the 

influence points were easier to identify in the ˆ
jβΔ  plot than the poorly fit covariate 

patterns were in either the 2
jXΔ  or jDΔ  plots. 
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Figure 30: Beta Change Plot for Extra-State Wars (all n = 59 observations) 

 

Four observations were designated as influence points.  Their respective values 

for ˆ
jβΔ  were larger than those of the remaining data points.  Three of these influence 

points corresponded to the same wars identified from the influence points for the 20th 

Century model.  The fourth corresponded to the Franco-Tonkin War of 1873.  These 

same influence points were identified in both the 2
jXΔ  and jDΔ  plots, which are given in 

Figure 31 and Figure 32.   
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Figure 31: Deviance Change Plot for Extra-State Wars (all n = 59 observations) 
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Figure 32: Chi-Square Change Plot for Extra-State Wars (n = 59 observations) 

 

  One course of action could have been to delete the influence points and estimate a 

new model.  The four influence points only covered a range of  ˆ 0.15jβΔ =  to 

ˆ 0.35jβΔ = .  Based on the recommendation by Hosmer and Lemeshow that values of 

ˆ 1jβΔ >  generally indicate the necessity for a new model, the influence points above 

were insufficiently large to justify fitting a new model (Hosmer and Lemeshow, 

2000:180).  Nonetheless, the six observations corresponding to the four influential 

covariate patterns were deleted, and a new model was estimated only to assess the change 

in odds ratios. 

 The odds ratio for this revised model, 0.27, revealed an even greater favor 

towards an insurgent victory than that of the original model.  Rather than the non-state 
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faction being nearly two times more likely to win a long war, as was explained by the 

0.49 odds ratio in the original model, the insurgency was now more than four times more 

likely to win a long war.  Granted, the change in likelihood here was not as large as that 

from the 20th Century model, but the results were still disconcerting.  It continually 

appears that some useful insights could be gained from additional investigations into the 

19th Century extra-systemic wars, particularly those which were identified as influential 

in this study.        

 

     20th Century Intrastate Wars. 
 

The initial model estimated for the 20th Century intrastate wars data followed the 

recommendations from the stepwise selection procedure and contained three covariates: 

Duration_IS_UNS_20, C_Dead/TotDead_IS_UNS_20, and Dead/Pop_IS_UNS_20.  That 

is, stepwise regression considered the length of an intrastate war, the proportion of total 

deaths borne by the state participant, and the proportion of the total population of the 

state consumed by war deaths as significant in predicting the winner of an intrastate war.  

The initial model fit from MINITAB is shown in Figure 33. 
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Binary Logistic Regression: Winner_IS_UN versus Duration_IS_, Dead/Pop_IS_, ...  
          
Response Information         

          

Variable Value Count      

Winner_IS_UNS_20 1 26 (Event)     

  2 17      

  Total 43      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 1.26777 0.534039 2.37 0.018    

Duration_IS_UNS_20 -1.12622 0.411762 -2.74 0.006 0.32 0.14 0.73

Dead/Pop_IS_UNS_20 -0.359294 0.420409 -0.85 0.393 0.7 0.31 1.59

C_Dead/TotDead_IS_UNS_20 0.9499 0.699907 1.36 0.175 2.59 0.66 10.19

          

Log-Likelihood = -22.436        

Test that all slopes are zero: G = 12.841, DF = 3, P-Value = 0.005 

          

Goodness-of-Fit Tests         

          

Method Chi-Square DF P     

Pearson 39.8724 39 0.431     

Deviance 44.8716 39 0.239     

Hosmer-Lemeshow 4.5651 8 0.803        

Figure 33: Results for Initial Intrastate Wars Model (20th Century) 
 

Each of the p-values for the goodness-of-fit tests were larger than 0.05, so those statistics 

showed the model to be adequately fit.  Additionally, the p-value for the likelihood ratio 

test was 0.005, which was smaller than 0.05α = .  This result rejected the null hypothesis 

of equation (2.29) and indicated that at least one ˆ
jβ  was nonzero.  The next task was to 

determine which of the three covariates were significant to the model.  Thus, the p-value 

for each Wald statistic, from equation (2.32), was examined to determine covariate 

significance.   

The p-value for each Wald statistic is found in the fourth column of the logistic 

regression table in Figure 33.  Only one of the three covariates was found to be 
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significant.  The p-values for C_Dead/TotDead_IS_UNS_20 and Dead/Pop_IS_UNS_20 

were 0.175 and 0.393, respectively.  Since 0.175 0.05>  and 0.393 0.05> , neither of 

these covariates were significant.  The question was raised as to why these two covariates 

were allowed to enter the model in the stepwise selection procedure but were not truly 

significant to it.  The purpose of stepwise selection was to provide guidance in 

constructing an adequate model.  That is, the results from stepwise regression provided a 

set of covariates which would yield a logistic regression model deemed adequate by the 

goodness-of-fit tests.  Consequently, individual significance was not part of the stepwise 

assessment.   The p-value for Duration_IS_UNS_20, however, did imply significance, 

since 0.006 0.05< .  The next logical step was to fit a new logistic regression model 

containing only Duration_IS_UNS_20. 

The MINITAB output for the reduced model is given in Figure 34.  The model 

was univariate and took the form of equation (2.1).  The goodness-of-fit p-values were 

each again larger than 0.05α = , which implied model adequacy.  The p-value for the 

Wald statistic of Duration _IS_UNS_20 was 0.004, which confirmed that Duration 

_IS_UNS_20 maintained its position as a significant predictor of the winner of a 20th 

Century intrastate war.  The results from the goodness-of-fit and Wald tests showed that 

not only was the reduced model adequate, but also that it was correctly specified from the 

available COWP data. 
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Binary Logistic Regression: Winner_IS_UNS_20 versus Duration_IS_UNS_20  
          
Response Information        

          

Variable Value Count      

Winner_IS_UNS_20 1 26 (Event)     

  2 17      

  Total 43      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 0.867621 0.390469 2.22 0.026    

Duration_IS_UNS_20 -1.08163 0.375676 -2.88 0.004 0.34 0.16 0.71

          

Log-Likelihood = -23.504        

Test that all slopes are zero: G = 10.706, DF = 1, P-Value = 0.001 

          

Goodness-of-Fit Tests        

          

Method Chi-Square DF P     

Pearson 42.6244 39 0.318     

Deviance 47.0073 39 0.177     

Hosmer-Lemeshow 8.4269 8 0.393        

Figure 34: Reduced Model Results 

 

          Odds Ratio Interpretation. 
 
 The odds ratio, at 0.34, suggested that the rebel or insurgent faction was more 

likely to win an intrastate war, given a single-step increase in the duration of the conflict.  

The reference category for Winner_IS_UNS_20 was 1, corresponding to a state victory.  

Therefore, the odds ratio needed to be larger than 1 in order to imply a greater likelihood 

of the state winning an intrastate war than the non-state actor.  Just as with the extra-state 

models, a unit-length increase in duration needed to be defined such that the odds ratio 

could be accurately interpreted.  After reversing the unit normal scaling procedure 

described by equation (3.6), a one-step change in intrastate war duration was found to be 
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approximately 1679 days.  Thus, given a duration of slightly more than four and a half 

years, the rebel faction was nearly three times more likely to emerge victorious than the 

state from an intrastate war in the 20th Century.   

 The combination of goodness-of-fit tests, diagnostic plot examination, and odds 

ratio interpretation demonstrated that for the variables and data available from the 

COWP, a univariate model containing the duration of an intrastate war adequately 

predicted the winner of the conflict.  The logit for the reduced model was expressed as 

( ) ( )0.86762 1.08163*g Duration Duration= − ,      (4.5) 

and the binary logistic regression model for 20th Century intrastate wars was given by 

( )
( )

( )|
1

g Duration

g Duration

eP Winner Duration
e

=
+

 .   (4.6) 

Again, the covariate labels Duration_IS_UNS_20 and Winner_IS_UNS_20 were 

truncated for the purpose of explicitly expressing the logit and binary model.  Equation 

(4.6) yields the conditional probability of the winner of an intrastate war, given that the 

war lasts a certain number of days. 

 

          Diagnostics and Plots. 
 
 The diagnostic plots were examined next to locate influence points.  The plots for 

2
jXΔ , jDΔ , and ˆ

jβΔ  are given in Figure 35, Figure 36, and Figure 37, respectively.   
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Figure 35: Chi-Square Change Plot for Reduced Intrastate Wars Model 
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Figure 36: Deviance Change Plot for Reduced Intrastate Wars Model 
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Figure 37: Beta Change Plot for Reduced Intrastate Wars Model 

 

It was easy to identify six influence points from the ˆ
jβΔ  plot.  The poorly fit points were 

not as apparent in either the 2
jXΔ  plot or the jDΔ  plot.  The six influence points 

corresponded to five 20th Century intrastate wars: the Cambodia-Khmer Rouge War of 

1970, the Pinochet Rebellion in Chile in 1973, the Somali Secession from Ethiopia in 

1976, the Communist Rebellion in El Salvador in 1979, and the Renamo Rebellion in 

Mozambique in 1979.  The data for this research were organized at the participant level, 

so the six influence points concerned specific actors in the aforementioned intrastate 

wars.  Table 8 gives the war, participant, ˆ
jβΔ  value, and duration of involvement 

identified from the influence points. 
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Table 8: Observations Identified by Influence Points 

  Beta Duration
Intrastate War Participant Change (days) 

United States 0.147369 977 Cambodia vs. Khmer Rouge 
Republic of Vietnam 0.178397 766 

Chile vs. Pinochet Rebels Chile 0.335365 5 
Ethiopia vs. Somali Rebels Somali Rebels 0.225726 2376 

El Salvador vs. Salvadorean Democratic Front El Salvador 0.242076 4599 
Mozambique vs. Renamo Mozambique 0.275127 4733 

 

The largest of these ˆ
jβΔ  values was about 0.34, which is smaller than 1, so the 

magnitudes of the influence points were not sufficient to justify deleting the six 

observations and fitting a new model.         

 

     Aggregated Intrastate Wars. 

  
The aggregated intrastate was a univariate model containing Duration_IntS_UNS 

as the independent variable, as recommended from the stepwise selection procedure.  The 

results from the model estimation are given in Figure 38.  The Pearson chi-square, 

Deviance, and Hosmer-Lemeshow goodness-of-fit tests showed the model to be 

adequate.  Each of the p-values for the goodness-of-fit statistics was larger than 0.05α = , 

as required for implying a good model fit.  The p-value for the likelihood ratio test was 

0.002, so the null hypothesis that all model coefficients are zero was rejected.  Thus, the 

p-value for the Wald statistic on Duration_IntS_UNS was examined to determine the 

individual significance of the covariate.  Since 0.003 0.05< , it was concluded that the 

duration of the conflict was significant to the model predicting the winner. 
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Binary Logistic Regression: Winner_IntS versus Duration_IntS_UNS  
          
Response Information        

          

Variable Value Count      

Winner_IntS 1 49 (Event)     

  2 24      

  Total 73      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Constant 0.784946 0.270836 2.9 0.004    

Duration_IntS_UNS -0.804099 0.271266 -2.96 0.003 0.45 0.26 0.76

          

Log-Likelihood = -41.264        

Test that all slopes are zero: G = 9.934, DF = 1, P-Value = 0.002 

          

Goodness-of-Fit Tests        

          

Method Chi-Square DF P     

Pearson 73.2111 68 0.311     

Deviance 82.5286 68 0.111     

Hosmer-Lemeshow 4.4029 8 0.819        

Figure 38: Results for Univariate Intrastate Wars Model 

 
 

          Odds Ratio Interpretation. 
 

The odds ratio, at 0.45, suggested that the non-state actor was still more likely to 

win an intrastate war, given a single-step increase in the duration of the conflict.  Just as 

with the 20th Century intrastate model, a unit-length increase in duration was 

approximately 1679 days.  Thus, given a duration of slightly more than four and a half 

years, the rebel faction was over two times more likely to emerge victorious than the state 

from an intrastate war.   

 The combination of goodness-of-fit tests, diagnostic plot examination, and odds 

ratio interpretation demonstrated that for the variables and data available from the 
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COWP, a univariate model containing the duration of an intrastate war adequately 

predicted the winner of the conflict.  The logit for the reduced model was expressed as 

( ) ( )0.78 0.8*g Duration Duration= − ,       (4.7) 

and the binary logistic regression model for aggregated intrastate wars was given by 

( )
( )

( )|
1

g Duration

g Duration

eP Winner Duration
e

=
+

 .   (4.8) 

Again, the covariate labels Duration_IntS_UNS and Winner_IS_UNS were truncated for 

the purpose of explicitly expressing the logit and binary model.  Equation (4.8) yields the 

conditional probability of the winner of an intrastate war, given that the war lasts a 

certain number of days. 

 

          Diagnostics and Plots. 
 
 The diagnostic plot for ˆ

jβΔ  is given in Figure 39.  Four influence points were 

clearly distinguished in the plot.  The four influence points corresponded to the following 

intrastate wars: the Russo-Circasian War of 1829, the Somali Secession from Ethiopia in 

1976, the Communist Rebellion in El Salvador in 1979, and the Renamo Rebellion in 

Mozambique in 1979.  The observations corresponding to the influence points concerned 

the following participants: Russia, Somali rebels, El Salvador, and Mozambique.  

However, the ˆ
jβΔ  values for these influence points were much smaller than 1, so there 

was insufficient evidence to suggest deleting these observations and fitting a new model. 
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Figure 39: Beta Change Plot for Aggregated Intrastate Wars Model 

   

 The poorly fit covariate patterns were not as easily identified in either the jDΔ  

plot or the 2
jXΔ  plot.  Two patterns were identified as poorly fit.  That is, 2 of the 68   

distinct covariate values did not follow the general pattern of the plots as did the 

remaining 66.  Four observations corresponded to these poorly fit covariate patterns.  The 

plot for jDΔ is shown in Figure 40, and the plot for 2
jXΔ  is shown in Figure 41. 
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Figure 40: Deviance Change Plot for Aggregated Intrastate Wars 

 



 

 111

Probability

D
el

ta
 C

hi
-S

qu
ar

e

0.90.80.70.60.50.40.30.20.1

5

4

3

2

1

0

Pearson Chi-Square Change for Aggregated Intrastate Wars Model

 

Figure 41: Pearson Chi-Square Change Plot for Intrastate Wars 

 

The intrastate wars corresponding to the two poorly fit patterns were the War 

Between the States and the Somali Secession from Ethiopia in 1976.  Since only 4 out of 

73n =  observations were associated with these patterns, there was insufficient evidence 

to suggest deleting the 4 data points and estimating a new model.  Furthermore, the jDΔ  

and 2
jXΔ  values for these 2 patterns were moderate in relation to the rest of the points on 

the plots, so noting the range on which their estimated probabilities lied gave additional 

insights into the amount of leverage they exerted on the estimation of the model 

coefficients.   

For Figure 41, the data point for Union involvement in the War Between the 

States possessed a delta chi-square value of 2
23 0.86XΔ = , delta deviance value of 
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23 1.43DΔ = , and a leverage value of 23 0.03h = .  Its estimated probability falling within 

the region ( )23ˆ0.7 0.9xπ< <  implied that its leverage was moderate, compared to the 

other observations (Hosmer and Lemeshow, 2000:175).  An examination of the plots of 

2
jXΔ  versus jh  and jDΔ  versus jh  , given in Figure 42 and Figure 43, respectively, 

showed this to be the case.  That is, its leverage value was sufficiently large to have a 

moderate effect on the estimation of the model parameters.   
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Figure 42: Pearson Chi-Square Change vs. Leverage Plot for Intrastate Wars 
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Figure 43: Deviance Change vs. Leverage Plot for Intrastate Wars 

 

In contrast, the observation concerning the Somali rebels possessed the values 

2
59 2.06XΔ = , 59 3.12DΔ = , and 59 0.06h = .  Its estimated probability, however, lied on 

the range ( )59ˆ0.3 0.7xπ< < .  These values, with the exception of its estimated 

probability, were larger than those for the aforementioned observation, and its leverage 

fell within a cluster of 11 data points whose leverages were considered large in 

comparison to those of the remaining 62 observations.  Therefore, this observation was 

not only an influence point, but it also exerted a greater amount of leverage on the 

estimation of the model coefficients than did the aforementioned observation.     

Overall, the aggregated model for intrastate wars was considered to be a good 

predictor of the winner.  It was not necessary to delete the observations identified from 
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the diagnostic plots and estimate a new model, because their respective values of ˆ
jβΔ , 

jDΔ , and 2
jXΔ  were not large enough to justify such an action.  However, additional 

investigations into the aforementioned influential wars may be necessary to determine the 

nature of their effects on the model presented in this study.   

 

Multinomial Logistic Regression Models on Outcome 
 

Two multinomial models were estimated for predicting the outcome of an 

interstate war.  An initial model for the 20th Century interstate wars data set contained the 

covariates for conflict duration and the proportion of total deaths borne by the participant, 

or Duration_UNS_20 and Dths/TDeaths_UNS_20.  The two covariates included in the 

initial 20th Century model resulted from the stepwise selection recommendation.  

Examination of their Wald statistics determined which, if not both, covariates was truly 

significant to the interstate wars model at the 0.05α =  level.  The model for the 

aggregated interstate wars contained only one covariate: Deaths/TotDeaths_UNS.  The 

results for the 20th Century data are presented first.  The Pearson chi-square and Deviance 

goodness-of-fit tests were computed for each of these multinomial models.   

The ultimate objective of this investigation was to demonstrate the applicability of 

multinomial logistic regression to war termination studies.  The summary figures from 

the MINITAB outputs were considered sufficient to accomplish this goal.  Each figure 

contains the coefficient value, standard error of the coefficient, Wald statistic, p-value of 

the Wald statistic, odds ratio, and 95% confidence limits on the odds ratio for each of the 

covariates in each of the logits in the multinomial model.   The frequency of each 
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outcome can be found at the top of each figure.  The log-likelihood, likelihood ratio 

statistic, p-value of the likelihood ratio statistic, Pearson chi-square statistic, p-value of 

the Pearson chi-square statistic, Deviance statistic, and p-value of the Deviance statistic 

for the multinomial model are given at the bottom of each figure.    

Each logit was referenced to the first outcome, or Victory by Military Imposition.  

As such, each odds ratio was a comparison of the outcome in question to the reference 

outcome.  The odds ratio quantified how much more or less likely the outcome in 

question was to occur than the reference outcome, given a unit increase in the covariate 

values.  The odds ratios were important to detecting patterns within the COWP data. 

 

20th Century Interstate Wars 

The initial model for the 20th Century data was bivariate.  This model was 

estimated in response to the results from the stepwise selection procedure.  The goodness-

of-fit statistics and the individual Wald statistics were examined to determine if the initial 

model was sufficient to warrant further analysis.  The initial model results are given in 

Figure 44.   

The p-values for the two goodness-of-fit statistics were very high, which 

suggested the initial model to be adequately estimated.  This was expected, in light of the 

results from the stepwise procedure in Chapter II.  The p-value for the likelihood ratio 

statistic was smaller than 0.001, which rejected the null hypothesis in equation (2.29) and 

suggested that at least one ˆ
jβ  was nonzero.   

The p-values for the Wald statistics, however, indicated that only one of the 

covariates was significant to the model at the 0.05 significance level.  Each of the p-
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values for the Wald statistics concerning Dths/TDeaths_UNS_20 was smaller than 0.001.  

This implied that the proportion of total combat deaths sustained by the participant 

should be the only covariate, among the available COWP data, included in a multinomial 

model for 20th Century interstate wars.  In contrast, each of the Wald statistic p-values for 

the duration of the conflict was larger than α .  Thus, a reduced model containing only 

Dths/TDeaths_UNS_20 was estimated.  The implication from the statistics in Figure 44 

was that the duration of an interstate war was not important to the outcome of a 20th 

Century interstate conflict.  The length of the war may actually be important, but the 

COWP data did not reveal such a trend.  Therefore, it should be stated that additional 

studies into interstate wars using other data sources may be necessary to identify other 

relevant variables which were not available in the COWP data. 

Figure 45 shows the results from fitting the reduced multinomial model.  Not only 

did both goodness-of-fit statistics show the model to be adequate, but also the Wald 

statistic p-value for Dths/TDeaths_UNS_20 was smaller than 0.001, which implied that 

the single covariate maintained its significance to the model. 

The odds ratios were interpreted individually.  A one-unit change in 

Dths/TDeaths_UNS_20 was defined for the purpose of interpreting the odds ratios.  The 

standard deviation for the proportion of total deaths borne by the participant was 

computed to be 0.26, so each odds ratio was interpreted for an approximate 26% increase 

in Dths/TDeaths_UNS_20. 
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Nominal Logistic Regression: Outcome(PR2) versus Dths/TDeaths, Duration_UNS 
          
Response Information        

          

Variable Value Count      

Outcome(PR2)_20 1 62 (Reference Event)    

  5 23      

  4 16      

  3 29      

  2 37      

  Total 167      

          

Logistic Regression Table        

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Logit 1: (5/1)         

Constant -0.72514 0.286304 -2.53 0.011    

Dths/TDeaths_UNS_20 1.25622 0.305132 4.12 0 3.51 1.93 6.39

Duration_UNS_20 -0.24161 0.270117 -0.89 0.371 0.79 0.46 1.33

Logit 2: (4/1)         

Constant -1.20834 0.351733 -3.44 0.001    

Dths/TDeaths_UNS_20 1.3249 0.334455 3.96 0 3.76 1.95 7.25

Duration_UNS_20 -0.598418 0.42479 -1.41 0.159 0.55 0.24 1.26

Logit 3: (3/1)         

Constant -0.425834 0.259768 -1.64 0.101    

Dths/TDeaths_UNS_20 0.984011 0.292405 3.37 0.001 2.68 1.51 4.75

Duration_UNS_20 -0.118238 0.221858 -0.53 0.594 0.89 0.58 1.37

Logit 4: (2/1)         

Constant -0.212314 0.247951 -0.86 0.392    

Dths/TDeaths_UNS_20 1.12896 0.278471 4.05 0 3.09 1.79 5.34

Duration_UNS_20 0.0069449 0.196298 0.04 0.972 1.01 0.69 1.48

          

Log-Likelihood = -231.512 

Test that all slopes are zero: G = 39.155, DF = 8, P-Value = 0.000 

          

Goodness-of-Fit Tests 

          

Method Chi-Square DF P     

Pearson 624.98 636 0.615     

Deviance 460.251 636 1        

Figure 44: Results for Initial 20th Century Interstate Wars Model 
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Nominal Logistic Regression: Outcome(PR2)_20 versus 
Dths/TDeaths_UNS_20  
          
Response Information        

          

Variable Value Count      

Outcome(PR2)_20 1 62(Reference Event)    

  5 23      

  4 16      

  3 29      

  2 37      

  Total 167      

          

Logistic Regression Table 

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Logit 1: (5/1)        

Constant -0.729073 0.285224 -2.56 0.011    

Dths/TDeaths_UNS_20 1.30012 0.303297 4.29 0 3.67 2.03 6.65

Logit 2: (4/1)         

Constant -1.1367 0.328547 -3.46 0.001    

Dths/TDeaths_UNS_20 1.40105 0.329295 4.25 0 4.06 2.13 7.74

Logit 3: (3/1)         

Constant -0.433706 0.259406 -1.67 0.095    

Dths/TDeaths_UNS_20 1.01319 0.291191 3.48 0.001 2.75 1.56 4.87

Logit 4: (2/1)         

Constant -0.207563 0.246254 -0.84 0.399    

Dths/TDeaths_UNS_20 1.14257 0.277783 4.11 0 3.13 1.82 5.4

          

Log-Likelihood = -233.321 

Test that all slopes are zero: G = 35.536, DF = 4, P-Value = 0.000 

          

Goodness-of-Fit Tests        

          

Method Chi-Square DF P     

Pearson 543.695 556 0.637     

Deviance 407.684 556 1        

Figure 45: Summary of Results for 20th Century Interstate Wars 

  

   

In Logit 1, the outcome Defeat by Negotiated Settlement was compared to the 

reference outcome Victory by Military Imposition.  Its odds ratio was 3.67, which was 

expressed using equation (2.38). 
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( )
( )

( )
( )

5

5 |
1|ˆ 3.67

5 | 0.26
1| 0.26

R

P Y x i
P Y x i

O
P Y x i

P Y x i

= =
= =

= =
= = +

= = +

   (4.9) 

In other words, a participant in an interstate war is about three and a half times more 

likely to lose the war through a negotiated settlement than he is to win through military 

imposition, assuming that he bears more than one quarter of the total casualties.   

 In Logit 2, the outcome Victory by Negotiated Settlement was compared to the 

reference outcome.  With an odds ratio of 4.06, equation (2.38) became 

( )
( )

( )
( )

4

4 |
1|ˆ 4.06

4 | 0.26
1| 0.26

R

P Y x i
P Y x i

O
P Y x i

P Y x i

= =
= =

= =
= = +

= = +

.  (4.10) 

That is, an interstate war actor is about four times more likely to win the war through a 

negotiated settlement than through military imposition, assuming that he bears more than 

one quarter of the total casualties.   

 In Logit 3, the outcome Stalemate was compared to the reference outcome.  Its 

odds ratio was 2.75, so equation (2.38) became 

( )
( )

( )
( )

3

3 |
1|ˆ 2.75

3 | 0.26
1| 0.26

R

P Y x i
P Y x i

O
P Y x i

P Y x i

= =
= =

= =
= = +

= = +

.  (4.11) 

Therefore, an interstate war participant is 2.75 times more likely to accept the war as a 

stalemate than he is to win it by military imposition, assuming that he bears more than 

one quarter of the total casualties. 
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 In the fourth and final logit, the outcome Capitulation was compared to the 

reference outcome.  It possessed a 3.13 odds ratio, which was substituted into equation 

(2.38). 

( )
( )

( )
( )

4

2 |
1|ˆ 3.13

2 | 0.26
1| 0.26

R

P Y x i
P Y x i

O
P Y x i

P Y x i

= =
= =

= =
= = +

= = +

  (4.12) 

Thus, a participant in an interstate war is over three times more likely to capitulate to the 

demands of his enemy than he is to win the war through military imposition, assuming 

that he bears more than one quarter of the total casualties.    

 It was interesting to notice that 4
ˆ 4.06RO =  was the largest of the odds ratios.  It 

can be said that a nation involved in an interstate war is most likely to be on the side that 

wins through a negotiated settlement rather than win by military imposition, provided 

that the nation in question bears no more than one quarter of the total combat deaths.  In 

other words, once a belligerent in an interstate war has taken about 26% of the total 

casualties, he should begin the process of negotiations to end the war on terms more 

favorable to him than to his enemy.  This appeared to be the trend when 20th Century 

interstate wars were considered alone. 

 

     Aggregated Interstate Wars Model. 
 

The stepwise selection procedure in Chapter II suggested that an aggregated 

interstate wars multinomial model be univariate.  This recommendation left no room for a 

reduced model, so the univariate model was estimated with Deaths/TotDeaths_UNS as 

the single covariate.  The Pearson chi-square and Deviance goodness-of-fit tests were 



 

 121

examined to assess overall model adequacy, and the p-value for the Wald statistic in each 

of the four logits was examined to determine the significance of Deaths/TotDeaths_UNS.  

Each of the four odds ratios was also interpreted to identify the most likely outcome for a 

nation involved in an interstate war, given that the nation has accepted a certain 

percentage of the total battle deaths.  Figure 46 shows the MINTAB output for this 

multinomial model. 

The p-values for both goodness-of-fit tests were much larger than 0.05α = , which 

implied that the model was adequate.  Each of the Wald statistic p-values was much 

smaller than 0.05α = , which confirmed additionally that the covariate 

Deaths/TotDeaths_UNS was highly significant to the multinomial model.  In fact, its 

Wald statistic p-value in all but one of the logits was very close to zero.   

  A one-unit change in Deaths/TotDeaths_UNS had to be defined for the 

purpose of interpreting the odds ratios.  Because unit normal scaling was the data scaling 

technique used, the sample standard deviation for all 225n =  observations of 

Deaths/TotDeaths_UNS was defined as a single-step change in the value of the covariate.  

The sample standard deviation for the proportion of total deaths borne by the participant 

was computed to be 0.258, so each odds ratio was again interpreted for an approximate 

26% increase in Deaths/TotDeaths_UNS.  As with the 20th Century model, the reference 

outcome for the aggregated model was also Victory by Military Imposition, or category 1. 
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Nominal Logistic Regression: Outcome(PR2) versus Deaths/TotDeaths_UNS  
          
Response Information         

          

Variable Value Count      

Outcome(PR2) 1 87(Reference Event)    

  5 28      

  4 26      

  3 31      

  2 53      

  Total 225      

          

Logistic Regression Table 

      Odds 95% CI 

Predictor Coef SE Coef Z P Ratio Lower Upper

Logit 1: (5/1)         

Constant -1.1022 0.238411 -4.62 0    

Deaths/TotDeaths_UNS 0.975947 0.236328 4.13 0 2.65 1.67 4.22

Logit 2: (4/1)         

Constant -1.13879 0.239475 -4.76 0    

Deaths/TotDeaths_UNS 0.880387 0.241627 3.64 0 2.41 1.5 3.87

Logit 3: (3/1)         

Constant -0.915293 0.218258 -4.19 0    

Deaths/TotDeaths_UNS 0.666398 0.23343 2.85 0.004 1.95 1.23 3.08

Logit 4: (2/1)         

Constant -0.393903 0.18603 -2.12 0.034    

Deaths/TotDeaths_UNS 0.760406 0.202088 3.76 0 2.14 1.44 3.18

          

Log-Likelihood = -321.021 

Test that all slopes are zero: G = 28.353, DF = 4, P-Value = 0.000 

          

Goodness-of-Fit Tests        

          

Method Chi-Square DF P     

Pearson 688.882 696 0.569     

Deviance 524.608 696 1        

Figure 46: Results for Aggregated Interstate Wars Model 

 

    

In Logit 1, the outcome Defeat by Negotiated Settlement was compared to the 

reference outcome Victory by Military Imposition.  Its odds ratio was 2.65, which was 

expressed using equation (2.38). 



 

 123

( )
( )

( )
( )

5

5 |
1|ˆ 2.65

5 | 0.26
1| 0.26

R

P Y x i
P Y x i

O
P Y x i

P Y x i

= =
= =

= =
= = +

= = +

  (4.13) 

In other words, a participant in an interstate war is over two and a half times more likely 

to lose the war through a negotiated settlement than he is to win through military 

imposition, assuming that he bears more than one quarter of the total casualties.   

 In Logit 2, the outcome Victory by Negotiated Settlement was compared to the 

reference outcome.  With an odds ratio of 2.41, equation (2.38) became 

( )
( )
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4 |
1|ˆ 2.41

4 | 0.26
1| 0.26

R

P Y x i
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= =

= =
= = +

= = +

  (4.14). 

That is, an interstate war actor is nearly two and a half times more likely to win the war 

through a negotiated settlement than through military imposition, assuming that he bears 

more than one quarter of the total casualties.   

 In Logit 3, the outcome Stalemate was compared to the reference outcome.  Its 

odds ratio was 1.95, so equation (2.38) became 

( )
( )

( )
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3

3 |
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3 | 0.26
1| 0.26

R

P Y x i
P Y x i

O
P Y x i
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= =
= =

= =
= = +

= = +

.  (4.15) 

Therefore, an interstate war participant is nearly two times more likely to accept the war 

as a stalemate than he is to win it by military imposition, assuming that he bears more 

than one quarter of the total casualties. 
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 In the fourth and final logit, the outcome Capitulation was compared to the 

reference outcome.  It possessed a 2.14 odds ratio, which was substituted into equation 

(2.38). 
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= =
= = +

= = +

  (4.16) 

Thus, a participant in an interstate war is over two times more likely to capitulate to the 

demands of his enemy than he is to win the war through military imposition, assuming 

that he bears more than one quarter of the total casualties.    

 The largest odds ratio of 2.65 implied that a nation would most likely be defeated 

through a negotiated settlement, assuming that the nation in question bore more than one 

quarter of the total casualties. A stalemate turned out to be the least likely outcome for 

the same conditions.  The switch from victory to defeat by negotiated settlement between 

the 20th Century and aggregated analyses likely resulted from the effects that the 19th 

Century data had on the odds ratio calculations in the aggregated model.  Approximately 

88% of the 19th Century interstate wars identified in the COWP data ended by force of 

arms.  This proportion dropped to 69% when the interstate wars from both centuries were 

considered together.  One might conclude that a far greater prominence was placed on 

military force in the 19th Century than in the 20th Century.        

A general trend of ending interstate wars by a negotiated settlement presented 

itself through the analyses of all interstate wars in the COWP data and the 20th Century 

interstate wars alone.  This result supports a similar assertion made by Walker in his 

Naval War College study (Walker, 1996:1).  It was also interesting to note that the 

casualty proportions necessary for prompting both outcomes were virtually equal.  Thus, 
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a nation involved in an interstate war should move quickly for a favorable negotiated 

settlement once it sustains more than one quarter of all combat deaths. 

 

Summary 
 

The results in this chapter demonstrated that logistic regression techniques can be 

successfully applied to war termination problems.  Stepwise selection fulfilled its usual 

purpose as a robust technique for identifying the covariates necessary to build an 

adequate logistic regression model on the response.  For the 19th Century, 20th Century, 

and aggregated data on extra-systemic, intrastate, and interstate wars, the stepwise 

regression results were examined for accuracy.  No logistic regression models for the 19th 

Century COWP data on any of the three types of wars were estimated because of the 

results from stepwise regression.  Consequently, two models were fit for each war type: 

one for the 20th Century COWP data and one for the aggregated COWP data.     

The final models estimated from extra-systemic war data were found to be good 

predictors of the winner.  The models were parsimonious, and the winner was dependent 

only on the length of the war.  Interpretation of their odds ratios revealed that the non-

state belligerent was most likely to win a long extra-state war than the state actor.  The 

United States has been engaged in the current war in Iraq for nearly four years, which is 

longer than the 1426-day duration change identified by the models.  The Franco-Tonkin 

War of 1873, the Italo-Libyan War of 1920 and the Indonesian War of 1945 were found 

to be influential to the estimation of model parameters.  Future statistical studies of these 

wars using a source with more complete and comprehensive data may reveal the reasons 

for their influences on the models in this study. 
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The two models estimated from the COWP data on intrastate wars were also good 

predictors of the winner.  Again, the duration of the conflict was found to be the only 

available covariate significant to predicting the winner.  The odd ratios for these models 

showed that the insurgent faction was even more likely to win an intrastate war than they 

were an extra-systemic war.  However, the war duration requirement was longer than that 

for the extra-state models, about four and a half years.  The influential secession 

movements and rebellions identified from the diagnostic plots of both models could be 

subjects of future investigations for further insights into their influence on the results of 

this study.    

A general trend of ending interstate wars by a negotiated settlement presented 

itself through the results of both the 20th Century and aggregated models.  As was the 

case with the models on extra-systemic and intrastate wars, the final multinomial models 

on interstate wars were also univariate.  The single covariate significant to predicting the 

outcome of an interstate war, however, was not the length of the war but the percentage 

of total casualties sustained by a participating nation.  The odds ratios from both models 

implied that an interstate war participant should seek a favorable negotiated peace once 

he has incurred more than 25% of the total battle deaths. 
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V. Discussion 
 
 

Assessment of Current Findings 
 

No models were fit using any of the 19th Century data.  As a result, little can be 

said statistically regarding shifts in war termination trends between centuries.  On the 

other hand, the degree to which the parameters, significance tests, and odds ratios 

differed between the 20th Century and aggregated models did demonstrate the amount of 

influence that 19th Century wars exerted on overall war termination trends.        

It was interesting to see that the length of the conflict was most relevant for both 

intrastate and extra-state wars.  The odds ratios between the 20th Century and aggregated 

extra-state wars model revealed a pattern favoring the insurgency faction over time.  The 

non-state actor was over three times more likely to win when the 20th Century data were 

considered separately.  This likelihood decreased for the aggregated model, and the 

insurgency became less than two times as likely to win.  Thus, when duration is 

considered alone, an insurgency is more likely to win a prolonged war than the state 

which it is fighting.   

The proportion of the total number of combat deaths borne by a nation involved in 

an interstate war was the most relevant variable for both multinomial models concerning 

interstate wars.  Each outcome was referenced to the most frequent outcome of victory 

through force of arms.  It was discovered that the odds ratios for the remaining outcomes 

were larger when the 20th Century data were considered alone than when the entire data 

set was analyzed.  The implications for each case, however, were different.  Given that a 

participating nation took about 26% of the total casualties, that nation was more likely to 
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win a 20th Century interstate war through a negotiated settlement than through military 

imposition.  Pillar reached a similar conclusion by stating that explicit agreements are the 

most common form of terminating interstate wars (Pillar, 1983:16-17).  His assertion, 

however, is broad in the sense that he grouped wars ending in imposed settlements and 

wars ending by negotiated settlements together, whereas this research analyzed these two 

outcomes separately.   

 The odds ratios for the aggregated interstate wars model were not as different 

from each other as those for the 20th Century model.  Negotiated settlements still proved 

prevalent, as defeat and victory by negotiated settlement possessed the largest odds ratios 

of 2.65 and 2.41, respectively.  The proportion of total casualties necessary for the 

likelihood of these outcomes was only slightly less than that for the 20th Century model, 

at about 25%.  The pattern identified here was that nations involved in modern interstate 

wars could accept larger shares of the total casualties and still emerge victorious through 

negotiations than could those nations from 19th Century interstate wars.          

 

Opportunities for Future Research 
 

Advanced statistical techniques may be applied to the diagnostic results from this 

research.  Specifically, the extra-state and intrastate wars identified as influential to 

model estimation could be tagged for more in-depth studies.  Case-study approaches for 

these wars may help address the question of why these wars proved so influential in this 

research.  This may be especially important when studying wars that have historically 

received scant attention. 
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The Italo-Libyan War of 1920, the Indonesian War of 1945, the Western Saharan 

War of 1975, and the Franco-Tonkin War of 1873 were identified in this research as 

influential to estimating the extra-systemic wars models.  These wars were 

geographically focused in Africa and Southeast Asia, which may prove significant in 

discriminant studies on extra-state wars.  Rather than emphasizing the importance of 

geography, one might discriminate between the combatants in these wars.  The combat 

records of these belligerents may be of interest.  Perhaps a multiple discriminant analysis 

(MDA) could be performed on both combatants and geography of these wars. 

 The Cambodia-Khmer Rouge War of 1970, the Pinochet Rebellion in Chile in 

1973, the Somali Secession from Ethiopia in 1976, the Communist Rebellion in El 

Salvador in 1979, the Renamo Rebellion in Mozambique in 1979, and the Russo-

Circasian War of 1829 were influential to estimating the intrastate wars model.  Case-

studies on these wars may provide additional insights into the reasons for their influences 

in this research.  Opportunities for discriminant analyses also exist for these wars.  One 

might investigate the factors that separate civil wars from secession wars. 

 With the United States engaged in the Global War on Terror (GWOT), which can 

be considered an extra-systemic war or series of extra-systemic wars, future studies on 

conventional interstate wars might not prove as significant to contemporary military 

operations as would studies on intrastate and extra-state wars.  However, additional 

applications of logistic regression techniques exist for interstate wars.  Additional 

relevant variables would need to be identified in order to expand upon the univariate 

main effects models presented in this thesis.  Instead of a single multinomial logistic 

regression model, one might pair the possible outcomes of interstate wars and construct 



 

 130

binary logistic regression models for each pair.  Using this approach, one might 

accurately identify influential interstate wars that warrant further statistical studies.     
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Appendix A. 
 

Table 9: Variables and Definitions for COWP Interstate Wars Set 

WarNo War number 
StateNum COW country code of participant 
StateAbb Abbreviated name of participant 
YrBeg1 First beginning year of participant's involvement 
MonBeg1 First beginning month of participant's involvement 
DayBeg1 First beginning day of participant's involvement 
YrEnd1 First ending year of participant's involvement 
MonEnd1 First ending month of participant's involvement 
DayEnd1 First ending day of participant's involvement 
YrBeg2 Second beginning year of participant's involvement (-999 = NA) 
MonBeg2 Second beginning month of participant's involvement (-999 = NA) 
DayBeg2 Second beginning day of participant's involvement (-999 = NA) 
YrEnd2 Second ending year of participant's involvement (-999 = NA) 
MonEnd2 Second ending month of participant's involvement (-999 = NA) 
DayEnd2 Second ending day of participant's involvement (-999 = NA) 
Duration Length of war participation in days 
Deaths Number of battle related deaths sustained by participant's armed  
  forces in war (-999 = missing) 
Outcome War outcome for participant (1 = on winning side, 2 = on losing side,  
  3 = on side A of a tie, 4 = on side B of a tie, 5 = on side A of an  
  ongoing war, 6 = on side B of an ongoing war) 
Initiate Did state initiate war? (0 = no, 1 = yes) 
SysStat System membership status of state (1 = neither central sub-system  
  member nor major power, 2 = central sub-system member only  
  [only relevant 1816 through 1919], 3 = central sub-system member 
  & a major power [only relevant 1816 through 1919], 4 = major power only) 
PrWarPop Pre-war population in thousands (number from year war begun, -999 = missing) 
PrWarArm Pre-war armed forces in thousands (number from year war begun, -999 = missing) 
WestHem Did state participant engage in fighting in war in Western Hemisphere? (0 = no, 1 = 

yes) 
Europe Did state participant engage in fighting in war in Europe? (0 = no, 1 = yes) 
Africa Did state participant engage in fighting in war in Africa? (0 = no, 1 = yes) 
MidEast Did state participant engage in fighting in war in Middle East? (0 = no, 1 = yes) 
Asia Did state participant engage in fighting in war in Asia? (0 = no, 1 = yes) 
Oceania Did state participant engage in fighting in war in Oceania? (0 = no, 1 = yes) 
Version Version number of data set 
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Table 10: Variables and Definitions for COWP Extra-Systemic Wars Set 

WarNo War number 
StateNum COW country code of participant 
StateAbb Abbreviated name of participant 
YrBeg1 First beginning year of participant's involvement 
MonBeg1 First beginning month of participant's involvement (-999 = missing) 
DayBeg1 First beginning day of participant's involvement (-999 = missing) 
YrEnd1 First ending year of participant's involvement 
MonEnd1 First ending month of participant's involvement (-999 = missing) 
DayEnd1 First ending day of participant's involvement (-999 = missing) 
YrBeg2 Second beginning year of participant's involvement (-999 = NA) 
MonBeg2 Second beginning month of participant's involvement (-999 = NA or missing) 
DayBeg2 Second beginning day of participant's involvement (-999 = NA or missing) 
YrEnd2 Second ending year of participant's involvement (-999 = NA) 
MonEnd2 Second ending month of participant's involvement (-999 = NA or missing) 
DayEnd2 Second ending day of participant's involvement (-999 = NA or missing) 
MinDur Minimum length of war participation in days* 
MaxDur Maximum length of war participation in days* 
Deaths Number of battle related deaths sustained by participant's armed forces in war  
  (-999 = missing) 
IntSide On which side did participant intervene? (0 = NA/state is primary actor in war,  
  1 = on side of state; 2 = on side of colony/non-state, 3 = on neither side) 
Initiate Did state initiate war? (0 = no, 1 = yes) 
SysStat System membership status of state (1 = neither central sub-system member nor major  
  power, 2 = central sub-system member only [only relevant 1816 through 1919],  
  3 = central sub-system member & a major power [only relevant 1816 through 1919],  
  4 = major power only) 
PrWarPop Pre-war population in thousands (number from year war begun, -999 = missing) 
PrWarArm Pre-war armed forces in thousands (number from year war begun, -999 = missing) 
WestHem Did state participant engage in fighting in war in Western Hemisphere? (0 = no, 1 = 

yes) 
Europe Did state participant engage in fighting in war in Europe? (0 = no, 1 = yes) 
Africa Did state participant engage in fighting in war in Africa? (0 = no, 1 = yes) 
MidEast Did state participant engage in fighting in war in Middle East? (0 = no, 1 = yes) 
Asia Did state participant engage in fighting in war in Asia? (0 = no, 1 = yes) 
Oceania Did state participant engage in fighting in war in Oceania? (0 = no, 1 = yes) 
Version Version number of data set 
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Table 11: Variables and Definitions for COWP Intrastate Wars Set 

WarNo War number 
StateNum COW country code of participant 
StateAbb Abbreviated name of participant 
YrBeg1 First beginning year of participant's involvement 
MonBeg1 First beginning month of participant's involvement (-999 = missing) 
DayBeg1 First beginning day of participant's involvement (-999 = missing) 
YrEnd1 First ending year of participant's involvement 
MonEnd1 First ending month of participant's involvement (-999 = missing) 
DayEnd1 First ending day of participant's involvement (-999 = missing) 
YrBeg2 Second beginning year of participant's involvement (-999 = NA) 
MonBeg2 Second beginning month of participant's involvement (-999 = NA or missing) 
DayBeg2 Second beginning day of participant's involvement (-999 = NA or missing) 
YrEnd2 Second ending year of participant's involvement (-999 = NA) 
MonEnd2 Second ending month of participant's involvement (-999 = NA or missing) 
DayEnd2 Second ending day of participant's involvement (-999 = NA or missing) 
MinDur Minimum length of war participation in days* 
MaxDur Maximum length of war participation in days* 
Deaths Number of battle related deaths sustained by participant's armed forces in war (-999= 

missing) 
IntSide On which side did participant intervene? (0 = NA/state is undergoing intra-state war, 1 

= on side of state; 2 = on side of opposition, 3 = on neither side) 
SysStat System membership status of state (1 = neither central sub-system member nor major 

power, 2 = central sub-system member only [only relevant 1816 through 1919], 3 = 
central sub-system member & a major power [only relevant 1816 through 1919], 4 = 
major power only) 

PrWarPop Pre-war population in thousands (number from year war begun, -999 = missing) 
PrWarArm Pre-war armed forces in thousands (number from year war begun, -999 = missing) 
Version Version number of data set 
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Appendix B. 
 
 
 

Table 12: Variables and Definitions for COWP MID Data Set 

Variable Variable Variable 
Number Name Description 

1 DispNum Dispute Number 
2 StDay Start day of dispute (-9 = missing) 
3 StMon Start month of dispute (-9 = missing) 
4 StYear Start year of dispute (-9 = missing) 
5 EndDay End day of dispute (-9 = missing) 
6 EndMon End month of dispute (-9 = missing) 
7 EndYear End year of dispute (-9 = missing) 
8 Outcome Outcome of dispute:   
   1 Victory for side A 
   2 Victory for side B 
   3 Yield by side A 
   4 Yield by side B 
   5 Stalemate 
   6 Compromise 
   7 Released 
   8 Unclear 
   9 Joins ongoing war 
   -9 Missing 
9 Settle Settlement of dispute:   
   1 Negotiated   
   2 Imposed   
   3 None   
   4 Unclear   
   -9 Missing   

10 Fatality Fatality level of dispute:   
   0 None    
   1 < 26 deaths    
   2 26-100 deaths    
   3 101-250 deaths    
   4 251-500 deaths    
   5 501-999 deaths    
   6 > 999 deaths    
   -9 Missing    

11 FatalPre Precise Fatalities, if known (-9 = missing) 
12 MaxDur Maximum duration of dispute 
13 MinDur Minimum duration of dispute 
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Table 13: Variables and Definitions for MID Set (cont.) 

Variable Variable Variable 
Number Name Description 

14 HiAct Highest action in dispute [bracketed  
   numbers refer to corresponding hostility level]: 
   0 No militarized action [1] 
   1 Threat to use force [2] 
   2 Threat to blockade [2] 
   3 Threat to occupy territory [2] 
   4 Threat to declare war [2] 
        
   5 Threat to use CBR weapons [2] 
        
        
   6 Threat to join war 
   7 Show of force [3] 
        
        
        
   8 Alert [3] 
   9 Nuclear alert [3] 
   10 Mobilization [3] 
   11 Fortify border [3] 
   12 Border violation [3] 
   13 Blockade [4] 
   14 Occupation of territory [4] 
   15 Seizure [4] 
   16 Attack [4] 
   17 Clash [4] 
   18 Declaration of war [4] 
   19 Use of CBR weapons [4] 
   20 Begin interstate war [5] 
   21 Join interstate war [5] 
   -9 Missing [-9] 

15 HostLev Hostility level of dispute: 
   1 No militarized action   
   2 Threat to use force   
   3 Display of force  
   4 Use of force  
   5 War 
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Table 14: Variables and Definitions for MID Set (cont.) 

Variable Variable Variable 
Number Name Description 

16 Recip Reciprocated dispute? (1 = yes, 0 = no) 
17 NumA Number of states on side A 
18 NumB Number of states on side B 
19 Link1 Links to other disputes/wars #1 (contains dispute 
   number [variable "DispNum"] of other dispute; 
   links to war indicated by code "W" e.g. "167W" 
   is link to war number 167) 

20 Link2 Links to other disputes/wars #2 
21 Link3 Links to other disputes/wars #3 
22 Ongo2001 Ongoing after 2001? (0 = concluded before 12/31/2001,  
   1 = continuing as of 12/31/2001 

23 Version Version number of data set 
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Appendix C. 
        

 

Table 15: Variables and Definitions for National Materiel Capabilities 

StateAbb 3 letter country abbreviation 
Ccode COW Country code 
Year Year of Observation 
IrSt Iron and steel production (thousands of tons) 

MilEx Military expenditures (thousands of 2001 US dollars) 
MilPer Military Personnel (thousands) 
Energy Energy consumption (thousands of coal-ton equivalents) 
Tpop Total Population (thousands) 
Upop Urban Population (population living in cities with population greater than 100,000)
CINC Composite Index of National Capability (CINC) score 

Version Version number of the data set 
 

    



 

 138

Bibliography 
 

Agresti, Alan.  Categorical Data Analysis.  Hoboken NJ: John Wiley & Sons, 2002. 

Barringer, Richard E.  War: Patterns of Conflict.  Cambridge MA: The Massachusetts  
 Institute of Technology, 1972. 
 
Correlates of War Project.  Available Data Sets.  Urbana IL, 2005. Online, 3 December  
 2006, http://correlatesofwar.org. 
 
Engelbrecht, Joseph A., Jr.  War Termination: Why Does a State Decide to Stop 

Fighting?  PhD dissertation.  Columbia University, 1992. 
 
Fuller, Graham E. and Ian O. Lesser.  A Sense of Siege: The Geopolitics of Islam and 

the West.  Boulder CO: Westview Press, 1995. 
 
Higgins, James J.  An Introduction to Modern Nonparametric Statistics.  Belmont CA:  
 Duxbury Press, 2004. 
 
Hosmer, David W. and Stanley Lemeshow.  Applied Logistic Regression.  New York: 
 John Wiley & Sons, 2000. 
 
Jenkins, Brian Michael.  Unconquerable Nation: Knowing Our Enemy, Strengthening 
 Ourselves.  Santa Monica CA: RAND Corporation, 2006. 
 
Montgomery, Douglas C., Elizabeth Peck, and Geoffrey Vining.  Introduction to Linear 

Regression Analysis.  New York: John Wiley & Sons, 2001. 
 

Pillar, Paul R.  Negotiating Peace: War Termination as a Bargaining Process.  Princeton 
NJ: Princeton University Press, 1983. 

 
Regression.  MINITAB 14 Help-to-Go Files.  State College PA: Minitab Inc, 2005.         
 12 December 2006, http://www.minitab.com/support/docs/rel 14/14helpfiles/.   
 
United States Joint Forces Command.  Joint Operations.  JP 3-0.  Suffolk VA: JWFC, 
 17 September 2006. 
 
United States Joint Forces Command.  Joint Operation Planning.  JP 5-0.  Suffolk VA: 
 JWFC, 26 December 2006. 
 
Soucy, Robert R. II, Kevin A. Shwedo, and John S. Haven II.  “War Termination and 

Joint Planning,” Joint Force Quarterly, 8: 95-101 (Summer 1995). 
 
Walker, James C.  War Termination: Why, When, Who, What, Where, and How.  Report. 

Naval War College, Newport, RI.  1996.  



 

 139

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, 
including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

22-03-2007 
2. REPORT TYPE  

Master’s Thesis 
     

3. DATES COVERED (From – To) 

Aug 2006 – Mar 2007 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
 

 Patterns of War Termination: A Statistical Approach  
  
 5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 

 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 

Robinson, Paul, D. II, Captain, USAF 
 
 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

     AFIT/GOR/ENS/07-23 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
USSTRATCOM/GISC 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
   United States Strategic Command / Global Innovation and Strategy Center 
    6805 Pine Street  
    Omaha, NE 68106-2849  
     
 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 
 
14. ABSTRACT  
 This research uses an advanced statistical technique to expand upon the current understanding of war termination.  Specifically, this thesis 
addressed questions concerning the most relevant factors toward predicting both the outcomes of interstate wars and the winners of intrastate and 
extra-systemic wars, within the limitations of the available data.  Open-source war data from the Correlates of War Project was analyzed using both 
binary and multinomial logistic regression techniques.  While the Correlates of War Project did not necessarily focus its data collection efforts on 
those variables historically associated with war termination, it did provide a sufficient number of variables with which to demonstrate the applicability 
of logistic regression techniques to war termination analyses.  As a consequence, every significant logistic regression model contains a single relevant 
variable.  For both intrastate and extra-systemic wars, the duration of the conflict was found to be most relevant to predicting the winner.  In contrast, 
the proportion of total casualties borne by a nation in an interstate war was most relevant to predicting the manner in which an interstate war ends.  
Conclusions drawn from this research and suggestions for future statistical applications to war termination studies were also discussed.  
15. SUBJECT TERMS 

       War Termination, Statistical Analysis, Regression, Logistic Regression Analysis, Maximum Likelihood 
Estimation, Interstate War, Extra-systemic War, Intrastate War 
16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 

Richard F. Deckro, DBA (ENS) 
a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

150 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4325; e-mail:  Richard.Deckro@afit.edu 



 

 140

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 
 

 

       


	Patterns of War Termination: A Statistical Approach
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	I. Introduction
	Background
	Problem Statement
	Research Objectives
	Limitations 
	Research Focus

	II. Literature Review
	General
	Correlates of War Project (COWP)
	Statistical Application
	Logistic Regression
	     Binary Logistic Regression.
	          Parameter Interpretation.
	          Goodness-of-Fit Testing.
	          Diagnostic Measures.
	          Testing Significance of Individual Coefficients.

	     Multinomial Logistic Regression.

	Summary

	III. Methodology
	Rationale
	Variable Selection
	Variable Translation
	Data Compression
	Unit Normal Scaling
	Trend Recognition
	Variable Nomenclature
	Stepwise Regression
	Summary

	IV. Results and Analysis
	Stepwise Regression
	     Extra-State Wars (19th Century).
	     Extra-State Wars (20th Century).
	     Extra-State Wars (Aggregated Data).
	     Intrastate Wars (19th Century).
	     Intrastate Wars (20th Century).
	     Intrastate Wars (Aggregated).
	     Interstate Wars (19th Century).
	     Interstate Wars (20th Century).
	     Interstate Wars (Aggregated).

	Binary Logistic Regression Models on Winner
	     20th Century Extra-State Wars Model.
	          Odds Ratio Interpretation.
	          Diagnostics and Plots.

	     Aggregated Extra-State Wars Model.
	          Odds Ratio Interpretation.
	          Diagnostics and Plots.

	     20th Century Intrastate Wars.
	          Odds Ratio Interpretation.
	          Diagnostics and Plots.

	     Aggregated Intrastate Wars.
	 
	          Odds Ratio Interpretation.
	          Diagnostics and Plots.


	Multinomial Logistic Regression Models on Outcome
	20th Century Interstate Wars
	     Aggregated Interstate Wars Model.

	Summary

	V. Discussion
	Assessment of Current Findings
	Opportunities for Future Research


	Appendix A.
	Appendix B.
	Appendix C.
	Bibliography

