
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2007

Prioritizing Satellite Payload Selection via Optimization Prioritizing Satellite Payload Selection via Optimization

Benjamin S. Kallemyn

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Other Operations Research, Systems Engineering and Industrial Engineering Commons,

and the Systems Engineering and Multidisciplinary Design Optimization Commons

Recommended Citation Recommended Citation
Kallemyn, Benjamin S., "Prioritizing Satellite Payload Selection via Optimization" (2007). Theses and
Dissertations. 3084.
https://scholar.afit.edu/etd/3084

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F3084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=scholar.afit.edu%2Fetd%2F3084&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3084?utm_source=scholar.afit.edu%2Fetd%2F3084&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

PRIORITIZING SATELLITE PAYLOAD SELECTION

VIA OPTIMIZATION

THESIS

Benjamin S. Kallemyn, Captain, USAF

AFIT/GOR/ENS/07-14

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense or

the United States Government.

AFIT/GOR/ENS/07-14

PRIORITIZING SATELLITE PAYLOAD SELECTION

VIA OPTIMIZATION

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Benjamin S. Kallemyn, B.S.

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/07-14

PRIORITIZING SATELLITE PAYLOAD SELECTION

VIA OPTIMIZATION

Benjamin S. Kallemyn, B.S.

Captain, USAF

Approved:

Dr. Jeffrey P. Kharoufeh
Thesis Advisor

Date

Major Gary W. Kinney, Ph.D.
Committee Member

Date

Dr. David P. Morton
Committee Member

Date

AFIT/GOR/ENS/07-14

Abstract

This thesis develops optimization models for prioritizing payloads for inclu-

sion on satellite buses with volume, power, weight and budget constraints. The

first model considers a single satellite launch for which the budget is uncertain and

constellation requirements are not considered. Subsequently, we include constella-

tion requirements and provide a more enhanced model. Both single-launch models

provide a prioritized list of payloads to include on the launch before the budget

is realized. The single-launch models are subsequently extended to a sequence of

multiple launches in two cases, both of which incorporate an explicit dependence

on the constellation composition at each launch epoch. The first case ignores fu-

ture launches and solves a series of independent single-launch problems. The second

case considers all launches simultaneously. The optimization models for single- and

multiple-launch cases are evaluated through a computational study. It was found

that, when the budget distribution is skewed, the prioritization model outperforms

a greedy payload selection heuristic in the single-launch model. For the multiple-

launch models, it was found that the consideration of future launches can significantly

improve the objective function values.

iv

Acknowledgements

I must acknowledge a handful of people whose help and support have been

invaluable during this thesis process. First, thank you to my advisor, Dr. Jeffrey

Kharoufeh, whose guidance and motivation were instrumental in the completion of

this work. Second, thanks to Dr. David Morton for his many insightful comments

and suggestions on this research. Likewise, many comments and discussions with

Major Gary Kinney were indispensable. Next, thank you to Mr. Justin Comstock

for the providing guidance on the realistic aspects of the problem. To my family,

thank you for always being there and for being understanding throughout our time

at AFIT. Finally, I must credit God with giving me the strength, wisdom, patience

and perseverance to complete this thesis.

Benjamin S. Kallemyn

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . ix

1. Introduction . 1-1

1.1 Background . 1-1

1.2 Problem Definition and Methodology 1-3

1.3 Thesis Outline . 1-5

2. Relevant Literature . 2-1

2.1 General Modelling Review 2-1

2.2 Satellite Payload Selection 2-6

2.3 Prioritization Models 2-10

3. Optimization Models for Payload Selection 3-1

3.1 General Model Assumptions and Definitions 3-1

3.2 Single-Launch Models with Certainty 3-4

3.3 Single-Launch Models with Uncertainty 3-7

3.3.1 Payload Prioritization 3-7

3.3.2 Payload Prioritization with Requirements . . . 3-11

3.4 Multiple-Launch Models 3-18

3.4.1 Sequential Payload Selection 3-20

3.4.2 Payload Prioritization Considering the Future 3-24

vi

Page

4. Computational Results . 4-1

4.1 Overview of Experiments 4-1

4.1.1 Single-Launch Overview 4-1

4.1.2 Multiple-Launch Overview 4-8

4.2 Numerical Results and Conclusions 4-9

4.2.1 Single-Launch Experiments 4-9

4.2.2 Multiple-Launch Experiments 4-11

5. Conclusions and Future Research 5-1

Bibliography . BIB-1

Appendix A. Single-Launch Code A-1

Appendix B. Multiple-Launch Code B-1

vii

List of Figures
Figure Page

3.1. Piecewise-linear reward functions for multi-source requirements. 3-13

3.2. Reward functions for the prioritization problem with require-

ments. 3-16

3.3. Time line for sequential satellite launches. 3-19

3.4. Reward functions for the memoryless prioritization problem. . 3-27

4.1. Low budget heuristic algorithm. 4-3

4.2. High budget heuristic algorithm. 4-4

4.3. Budget distributions used for Pearson-Tukey approximations. 4-7

4.4. Histogram of percent improvements for small problem instances. 4-10

4.5. Histogram of percent improvements for medium problem in-

stances. 4-10

4.6. Histogram of percent improvements for large problem instances. 4-11

4.7. Histogram of percent improvements for 5-launch problem in-

stances. 4-13

4.8. Histogram of percent improvements for 8-launch problem in-

stances. 4-13

viii

List of Tables
Table Page

3.1. Payload data for the single-launch problem with certain budget. . 3-6

3.2. Resources for the single-launch problem with certain budget. . . . 3-6

3.3. Optimal solution for the single-launch problem with certain budget. 3-6

3.4. Budgets for the single-launch prioritization example. 3-10

3.5. Optimal solution for the single-launch prioritization example. . . 3-10

3.6. Requirements for the prioritization problem with requirements. . 3-17

3.7. Payload data for the prioritization problem with requirements. . . 3-17

3.8. Resources for the prioritization problem with requirements. . . . 3-17

3.9. Budgets for the prioritization problem with requirements. 3-17

3.10. Optimal solution for the prioritization problem with requirements. 3-17

3.11. Payload data for the memoryless prioritization example. 3-28

3.12. Payload costs for the memoryless prioritization example. 3-29

3.13. Resources for the memoryless prioritization example. 3-29

3.14. Budgets for the memoryless prioritization example. 3-29

3.15. Solution for memoryless prioritization example, (a) launch 1; (b)
launch 2. 3-29

4.1. Problem sizes for random problem instances. 4-5

4.2. Payload parameter distributions. 4-6

4.3. Satellite bus capacity distributions. 4-6

4.4. Problem sizes for random problem instances. 4-8

4.5. Percent improvement for random, single-launch problem instances. 4-9

4.6. Number of single-launch solutions showing improvement. 4-10

4.7. Percent improvement for random, single-launch problem instances. 4-12

4.8. Number of single-launch solutions showing improvement. 4-12

ix

PRIORITIZING SATELLITE PAYLOAD SELECTION

VIA OPTIMIZATION

1. Introduction

1.1 Background

The development, deployment, and maintenance of satellite systems is a sig-

nificantly costly endeavor. In fiscal year 2006, the Department of Defense (DoD)

requested a budget of “more than $23 billion to develop, acquire, and operate

satellites”[12]. While it is not surprising that the military spends large amounts

of money on its programs, there is also significant spending on satellites in the pri-

vate telecommunications sector. According to its 2006 annual report, EchoStarr, a

commercial satellite communications corporation, spent more than $112 million on

satellite and transmission expenses in 2005 (see [8]). Clearly, satellites are critical

assets needed to accomplish certain missions in both the public and private sec-

tors. Selecting the right mix of capabilities to include on a satellite, subject to cost

and mission effectiveness constraints, is paramount. Because smaller, more powerful

satellites require cutting-edge technology, acquiring and launching satellite systems

is quite expensive. Moreover, satellite systems are launched relatively infrequently,

and the systems are custom built to specification. The proper implementation of

methodologies to effectively assign payloads to satellites can drastically reduce the

overall development, deployment, and maintenance costs.

Satellites play an assortment of roles both in the military and in the civilian

sphere of operations. The military maintains navigation, imaging, reconnaissance,

weather and communication satellites, among others. Meanwhile, telecommuni-

cations companies offer satellite television, radio, internet and telephone services.

1-1

Weather forecasting and climate and environmental monitoring (done by many re-

search agencies) are areas in which satellites play an integral role as well. Because

satellites are used in such a wide array of applications, it will be beneficial to pro-

vide a general framework within which decision makers can prioritize capabilities

that should be incorporated on satellites.

Satellites and satellite constellations are designed to perform specific missions.

The specific items included on a satellite, usually referred to as payloads, perform

specific functions (e.g, navigation, data communications, surveillance, etc.). The

satellite bus houses all of the payloads, the power supply, flight computer and other

necessary equipment not related to the payload. The physical space on the bus is

limited as is the available power and weight. The power supply in the bus provides

electricity to the payloads and is limited by the type of power supply and the amount

of power required by the non-mission functions of the satellite. Deciding which

payloads to include on new satellite launches is a nontrivial problem. Moreover,

when the number of payload alternatives is large, the budget resources are uncertain,

and sequential satellite launches exhibit functional or economic dependencies, the

problem becomes even more difficult.

A constellation is a group of satellites working in concert to “cover” a certain

geographical region and to accomplish specific mission requirements. For instance,

for the Global Positioning System (GPS) to generate a location, a constellation of

satellites in an area is needed to triangulate that location. Constellations are con-

structed and maintained by establishing a schedule of staggered satellite launches

that carry payloads into the constellation. Certain payloads enhance the effective-

ness of the constellation to perform its mission; however, at some point, the launch

of certain additional payloads yields diminishing returns. Deciding which payloads

to include on specific satellite launches based on the characteristics of the payload,

capacities of the satellite, and composition of the constellation, is of utmost impor-

tance.

1-2

Generally, the payload selection problem is solved either by a committee in

an ad-hoc manner or it is solved analytically. A group of subject matter experts

can decide which payloads to include on a satellite by coming to an agreement on

the value each payload brings to the constellation. Payloads are usually selected for

inclusion on the satellite in order of greatest importance as deemed by the committee.

Another approach is to select payloads with the intent of optimizing some measure

of importance. Common approaches include simulation modelling and optimization.

The use of a mathematical approach provides decision makers with an unbiased

viewpoint as to which payloads best meet the specific constellation objectives.

In this thesis, we provide optimization models to prioritize the candidate pay-

loads for inclusion on a satellite bus being launched into a pre-existing satellite

constellation. We will develop realistic models that allow for uncertain resource lev-

els to improve the existing optimization methods currently used. We also model the

payload prioritization problem from the viewpoint of maintaining mission require-

ment levels as opposed to the viewpoint of maintaining payload operability. These

models will allow decision makers to differentiate between the importance of satellite

payloads via the use of priority levels.

1.2 Problem Definition and Methodology

Consider a constellation into which a sequence of satellites are launched at

fixed, equal time intervals. Payloads which best satisfy the mission requirements of

the constellation are selected from a list of available payloads for inclusion on the bus

of each satellite to be launched. For each satellite launch, there exist multiple, po-

tential life-cycle budget scenarios and the payloads must be selected for inclusion on

the satellite bus prior to the budget realization. The main purpose of this thesis is to

provide optimization models which may be used to prioritize the multiple alternative

payloads for each satellite bus in a sequence of launches such that the reward to the

1-3

constellation is maximized. Using the solutions of the models, a decision maker can

select payloads for inclusion on satellite busses at each of the various launch epochs.

The payload prioritization problem is first modelled, in its simplest form, as a

knapsack problem to represent a single satellite with a certain budget. The knapsack

problem seeks to fill a backpack with candidate items so as to minimize the total

cost of the items while at the same time maximizing the space occupied by the

items placed in the pack. The satellite bus is considered as the knapsack and is

constrained by the available budget and the weight, power, and volume capacities

of the bus. The available payloads are selected for inclusion based on their reward

value. This simplistic single-launch model is extended to include uncertain budget

levels, to assign priority levels, and to satisfy mission requirements. The resulting

linear, integer mathematical programming model realistically captures the essence

of the payload prioritization problem for a single satellite launch. The single-launch

model can be solved using the branch-and-cut algorithm used in the CPlex solver by

ILOGr. The performance of this model will be tested by comparing the results of

randomly-generated problem instances with a simplistic payload selection strategy.

The single-launch prioritization model is subsequently extended to account for

a sequence of launches that carry payloads to the constellation in order to satisfy

the constellation’s mission requirements. Rewards are accrued for payloads included

on each satellite bus based on the satisfaction of mission objectives by the constel-

lation. We consider two models, both of which account for the current composition

of the constellation. The first considers each satellite launch sequentially and does

not account for the reward values on subsequent launches. The second model si-

multaneously selects payloads for all launches in the time horizon to maximize the

reward accrued for the entire launch horizon. Each of the multiple-launch models

can be solved using the branch-and-cut algorithm of CPlex solver by ILOGr. We

will evaluate the performance of the two model types by comparing the objective

1-4

function values of the model which considers the future with the model that does

not.

The main objective of this thesis is to provide an optimization tool with which

analysts can prioritize items to include in their respective “knapsacks” in the face

of uncertain budgets. The payload prioritization models developed herein can be

solved analytically using an off-the-shelf LP solver. This optimization technique for

prioritizing items finds wide applicability in both the public and private sectors,

including, but not limited to, aircraft loading, resource allocation, delivery route

selection and facility location problems.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. In Chapter 2, knapsack

problems, facility location problems and stochastic programming are reviewed along

with the current literature related to payload selection methodologies and prioritiza-

tion models. Chapter 3 presents the assumptions and mathematical models for the

single- and the multiple-launch payload prioritization models. Chapter 4 describes

the computational experiments conducted using random problem instances of the

payload prioritization problem and summarizes their results. Finally, Chapter 5

provides the conclusions of this thesis, some recommendations for using the models,

and suggestions for future extensions of the work.

1-5

2. Relevant Literature

This chapter discusses the literature pertinent to the selection of payloads to

include on a satellite bus. The first section reviews models that are used in this thesis:

the knapsack problem, the facility location problem and stochastic programming

models. The next section examines some existing payload selection methodologies

found in the literature. Finally, we conclude this chapter by discussing prioritization

models.

2.1 General Modelling Review

We now review some well-known optimization models pertaining to the re-

search approach of this thesis. First, we examine the knapsack problem (KP) and

variations thereof. Next, we review the facility location problem (FLP) and its vari-

ants. Both of these problems are known to be NP-hard [11]. A brief description

and the general mathematical programming model for each problem are provided.

Finally, we give a brief overview of stochastic programming and its application to

these models.

The knapsack problem (KP) [25] can be described as follows. Suppose a hiker

has a knapsack that holds a maximum of W pounds. Let I denote a finite set of n

items that the hiker can choose to carry in his pack. Each item, i ∈ I, has a weight

(wi) and a value (vi) to the hiker. The hiker selects items to place in the knapsack

so as to maximize the total value of the items in the pack. For each item i, the

decision variable xi assumes a value of 1 if item i is included in the knapsack and 0

2-1

otherwise. The mathematical programming formulation follows:

max
x

∑
i∈I

vixi (2.1a)

s.t.
∑
i∈I

wixi ≤ W, (2.1b)

xi ∈ {0, 1}, i ∈ I. (2.1c)

The objective (2.1a) is to maximize the total value to the hiker. Constraint (2.1b)

limits the total weight of the knapsack to its capacity, and (2.1c) is a binary restric-

tion on xi; either item i will be in the knapsack or it will not. Partial items are not

permissible.

A well-known variant of the KP is the multidimensional knapsack problem

(MDKP), in which there is more than one constraint (resource) affecting the selection

of items for inclusion in the knapsack, i.e., we have m resources as opposed to just

the one for weight. Let J denote the set of m resources. For j ∈ J , let bj denote the

capacity of resource j and aji denote the consumption of resource j by item i. The

decision variable xi again assumes a value of 1 if item i is included in the knapsack

and 0 otherwise. The formulation is as follows:

max
x

∑
i∈I

vixi (2.2a)

s.t.
∑
i∈I

ajixi ≤ bj, j ∈ J (2.2b)

xi ∈ {0, 1}, i ∈ I. (2.2c)

The objective (2.2a) maximizes the total value of the knapsack. Constraints (2.2b)

allow only items that fit within the capacity of the knapsack to be selected for

inclusion. As in the KP formulation, the binary constraint does not allow partial

items to be selected for inclusion in the knapsack. Both the knapsack problem and

2-2

the multidimensional knapsack problem can be solved to optimality using an off-the-

shelf solver such as the branch-and-cut algorithm in CPlex solver by ILOGr.

We now review the well-known facility location problem (FLP) [25]. Suppose

we must satisfy customer demand by choosing facility locations, e.g., we are building

a chain of stores (locations) to serve some geographical area. Let l ∈ L denote the

set of facility locations and k ∈ K represent the set of customer demands. Denote

by vlk the value obtained by serving customer k with location l. We select facility

locations so as to maximize the total value of serving demands with the facilities

used. We have a resource budget, b, and facility l uses cl units of the resource. For

each location l and customer demand k, the decision variable xlk assumes a value of

1 if facility location l serves customer demand k and 0 otherwise, and the decision

variable yl assumes a value of 1 if facility location l is used and 0 otherwise. The

mathematical programming formulation is as follows:

max
x,y

∑

l∈L

∑

k∈K

vlkxlk (2.3a)

s.t.
∑

l∈L

clyl ≤ b (2.3b)

∑

l∈L

xlk = 1, k ∈ K (2.3c)

xlk ≤ yl, l ∈ L, k ∈ K (2.3d)

xlk ∈ {0, 1}, l ∈ L, k ∈ K (2.3e)

yl ∈ {0, 1}, l ∈ L. (2.3f)

The objective (2.3a) maximizes the total value of serving customers with the facili-

ties. Constraint (2.3b) limits the locations selected to the resource capacity, (2.3c)

ensures each customer demand is filled exactly once, (2.3d) ensures that only selected

facilities will be used to fulfill demand, and (2.3f) and (2.3e) are binary restrictions

on xl and ylk, respectively. This model allows facilities to satisfy multiple customers.

2-3

It is noteworthy that the FLP has an embedded KP; i.e., Constraints (2.3b) and

(2.3f) are of the same form as Constraints (2.1b) and (2.1c).

We use stochastic programming to introduce uncertainty into mathematical

programming models [2]. This allows us to model real-world problems more accu-

rately since they are seldom entirely deterministic. We must make a set of decisions,

known as first-stage decisions, prior to the realization of the random information.

Any decisions that adjust the a priori decisions, after a realization of the random

parameters, are known as second-stage, or recourse decisions.

Using the context of a knapsack model as our base case, we illustrate how

stochastic programming adds uncertainty to a model. Suppose a hiker is borrowing

a backpack and does not know which of several backpack styles he will receive upon

arrival to a rental location. Each backpack type has a different weight capacity. Let

Ω represent the finite set of the possible (backpack capacity) scenarios. Assume each

scenario ω ∈ Ω, has an associated probability mass, qω. Let I denote the finite set

of n items being considered for inclusion. The hiker must select from among the

n initially available items those to include in his backpack before he rents it and

subsequently realizes its capacity; this is the first-stage decision. Each item, i ∈ I,

has a weight (wi) and a value (vi) to the hiker. We assume in this illustration that the

inclusion of the first stage items will not exceed the weight of the smallest backpack,

denoted b1.

Let J denote the finite set of m additional items available in the rental shop

that can consume the space in the pack not filled by the items decided upon in

the first-stage and which increase the total value of items in the backpack. Each

item j ∈ J has a weight of wj and a value of vj to the hiker. The decision of

which additional items from the shop to include is the recourse decision. For each

item i, the first-stage decision variable xi takes a value of 1 if item i is included

in the backpack and 0 otherwise. The recourse variable yω
j assumes a value of 1 if

item j is selected for inclusion in the pack under scenario ω and 0 otherwise. The

2-4

mathematical programming formulation follows:

max
x,y

∑
i∈I

vixi +
∑
j∈J

∑
ω∈Ω

qωvjy
ω
j (2.4a)

s.t.
∑
i∈I

wixi +
∑
j∈J

wjy
ω
j ≤ bω, ω ∈ Ω (2.4b)

∑
i∈I

wixi ≤ b1, (2.4c)

xi ∈ {0, 1}, i ∈ I, (2.4d)

yω
j ∈ {0, 1}, j ∈ J, ω ∈ Ω. (2.4e)

The objective function (2.4a) maximizes the sum of the expected reward from the

first-stage decision variables and the sum of the reward from the recourse variables.

Constraints (2.4b) limit the total weight of each backpack type to its capacity. Con-

straint (2.4c) ensures that the items selected prior to the realization of the backpack

size do not exceed the weight of the smallest backpack. Constraints (2.4d) and (2.4e)

are binary restrictions on the decision variables; i.e., partial items are not permissible

in the backpack. It is possible to formulate the multidimensional knapsack problem

and the facility location problem as stochastic programs by combining Formulation

(2.4) with Formulations (2.2) and (2.3), respectively.

The solution to the stochastic programming formulation, i.e. Model (2.4), con-

tains two lists. The first corresponds to the items that you take to the rental location

that will fit into all available backpacks. These items are determined based on the

decision variable xi. Upon realizing the backpack size rented, the decision variable

yω
j indicates which items should be purchased at the shop in order to maximize the

remaining space in the bag, given the backpack rented.

As we will show in the next section, the knapsack problem and the multidi-

mensional knapsack problem lend themselves well to the payload selection problem.

The candidate payloads can be viewed as items being considered for inclusion in the

2-5

knapsack, or satellite bus. The payload selection problem can also be thought of

as a facility location problem. We let the satellite mission objectives correspond to

the customer demands and the available payloads that will be launched to satisfy

those objectives correspond to the facility locations. We will use this framing of the

facility location problem in Chapter 3. Likewise, we will introduce uncertainty into

the payload selection model in the next chapter using stochastic programming to

make the model more tenable.

2.2 Satellite Payload Selection

Central to this thesis is an understanding of the current methodologies used

to select payloads for inclusion on satellite buses being launched into constellations.

The literature on when to launch satellite payloads based on reliability theory is

abundant; however, we are more concerned with the methodologies for selecting

payloads on satellites being launched at predetermined times. We will begin by

reviewing the design of satellite constellations followed by a review of methods used

to select payloads for individual satellites.

Diekelman [7] described a constellation design methodology based on business

objectives rather than technical aspects of the design. The potential for revenue from

the timeframe, services and market drive the design process. Based on these drivers,

the technical requirements (bandwidth, coverage, capacity, performance, etc.) are

derived. Design parameters, e.g., solar radiation, space debris, orbital geometry,

orbital path, etc., influence which candidate constellations are selected based on

an analysis of alternatives. After the decision of which constellation to utilize is

made, the design is fine-tuned to include secondary effects, i.e., orbit parameters

associated with the gravitational pull of the moon. The six requirements which

dominate the constellation selection process are (in order of importance): service

area coverage, spectrum sharing (bandwidth availability), capacity augmentation

(handling high usage for short time periods), satellite failure mitigation, service

2-6

link maintenance (hand-offs of service between satellites) and altitude considerations

(altitude, elevation angle, radiation, etc.). Each of the above requirements is assessed

based on the potential revenue generated.

Most design methodologies focus only on coverage, i.e., how to limit the num-

ber of satellites in the constellation and still achieve coverage of the desired area.

Lansard and Palmade [16] presented a methodology for designing constellations via

multi-criteria decision making. Using an optimization approach that minimizes the

number of satellites subject only to geographical coverage is not sufficient to optimize

a constellation. This approach leaves the constellation susceptible to failure since the

minimization of the number of satellites eliminates redundancy. The multi-criteria

decision making model handles three objectives: coverage (number of satellites),

availability (redundancy, capacity, production rates, etc.) and life-cycle costs. The

solutions for multi-objective problems vary greatly depending on the relative impor-

tance of each objective. A cost-effectiveness approach provides optimal constellation

design parameters in terms of constellation coverage and availability.

Wertz and Larson [24] discussed the elements of constellation design, but they

also suggested a process for selecting payloads on satellites. This process of defining

(selecting) a payload flows in the following manner. First, payload objectives are

based on the mission objectives and requirements. Then the performance thresholds

of the objectives are established, including how the end-user interfaces with the

payload. Based on the objectives, candidate payloads are identified and analyzed

by estimating candidate payload characteristics via analogy with existing systems,

scaling from existing systems and budgeting by components (the overall system is

estimated by the sum of the parts). Payloads are compared over key performance

measures, e.g., life-cycle cost, quality of payload, performance, etc. The selection

of satellite payloads based on analysis is difficult given the inability to quantify

the benefits of some design characteristics; therefore human insight serves as the

final judge as to which payloads are selected. While this general process guides

2-7

the selection of payloads, it offers no formal optimization techniques for payload

selection.

Jacobs, et al. [14] described a methodology using Monte-Carlo simulation

that indicates which payloads to launch and when to launch them. This model,

Operational Constellation Availability and Reliability Simulation (OSCARS), is used

by the U.S. Space Command Launch Services Office. OSCARS requires several

inputs: the lifetime distributions for each payload, the state of existing payloads at

start of the simulation, the availability of each payload and of launch vehicles over

the time horizon. In the simulation, payloads are launched into the constellation,

subject to availability and capacity restrictions, when an existing satellite in the

constellation fails. The output from OSCARS is a series of graphs and tables. The

most important output is the x% Launch Need Date which means that in x% of the

replications, the launch occurred on or before this date. Based on this figure, the

decision maker can schedule launches for each payload over the entire time horizon.

Bell [1] developed a model that selects 24 of 29 (in 1999) Global Positioning

System (GPS) satellites to detect nuclear detonations in the Earth’s atmosphere

via its secondary payload, a Nuclear Detonation Sensor (NDS). The model is a

specialized knapsack problem in which the constraint is the limit of 24 satellites.

The reward (calculated using a classified simulation model) is a composite of the

total coverage of the Earth’s surface, the satellite’s orbital location and the type

of the nuclear sensor. A heuristic search algorithm provides a list of the 24 “best”

satellites to monitor for nuclear detonation monitoring.

Brown, et al. [3] presented a capital-planning model which optimally selects

the best candidate space systems to meet the requirements of U.S. Space Command

over a 24-year span. This tool, called Space and Missile Optimization Analysis

(SAMOA), is a collection of several analyses used to select which space systems

to fund from hundreds of candidate systems. Space Command Optimizer of Utility

Toolkit (SCOUT) is the linear-integer optimization model that selects the portfolio of

2-8

payloads, launches and funding period subject to several budget, system operational

and time-line constraints. The objective of SCOUT is to maximize the number

of requirements met by minimizing penalties for violating certain constraints (i.e.,

elastic constraints). These models were used to shape Space Command’s strategic

master plan in 1997 and 1999. The SCOUT model may be solved using commercial

optimization software on a personal computer in less than one hour.

Flory [10] developed a payload selection method using a multidimensional

knapsack (MDKP) model. The model uses the relative utility of each payload as

the reward for including the payload on the satellite bus. The relative utility is

calculated using three inputs: relative importance of the payload, the mean mission

duration (MMD) of the payload and the number of functional payloads of that type

in the constellation. The constraints for the MDKP correspond to the engineer-

ing specifications of weight, power and volume as well as a finite (known) budget.

The integer programming model was then extended to account for multiple launches

and solved to optimality using a commercial solver (XPRESSr). The model is also

formulated as a dynamic program and solved using an enumeration algorithm in

MATLABr. These exact solutions were then compared with several heuristics (sim-

ulated annealing, greedy and two norm-based methods) which were also solved using

MATLABr.

Farias and Van Roy [9] considered a dynamic resource allocation problem to

maximize the average utility over T time periods. Two linear integer models and their

linear programming relaxations were formulated. An optimal vertex approximation

algorithm, a randomized rounding approximation algorithm and a task-assignment

heuristic were compared for various time and resource levels. For large problem

instances the heuristic method fails to produce a feasible solution, while the two

algorithms performed comparably with respect to computation time.

The methodologies used in constellation design give insight as to how we can de-

termine potential constellation requirements which may be satisfied by the payloads

2-9

being launched. We use this concept to extend the state-of-the-art by embedding a

knapsack problem, which has been shown to be useful in payload selection, into a

facility location problem to satisfy the constellation requirements. To our knowledge,

this approach is unique for the payload selection problem.

2.3 Prioritization Models

Prioritization is the process of generating an ordering, a priority list, of items

that will be sequentially selected until a given resource is consumed. If the budget

level for the resource allows six items to be selected from the list, we take the first

six items on the priority list. If the budget allows only two, the first two items are

chosen, etc. The item of interest may be the items in a knapsack problem or the

cities to visit in a prize-collecting travelling salesperson problem.

Jung [15] developed a procedure that partitions a budget range for a knapsack

problem and identifies the associated optimal set of items to include under each

partition. The procedure consists of two steps that are repeated until the entire

budget is partitioned. The two integer programming formulations (one for each

step) follow:

max
x

Z0 =
∑
i∈I

vixi

s.t.
∑
i∈I

cixi ≤ b (2.5)

xi ∈ {0, 1}, i ∈ I.

2-10

min
x

Y0 =
∑
i∈I

cixi

s.t.
∑
i∈I

vjxi = Z∗
0 (2.6)

xi ∈ {0, 1}, i ∈ I.

The first step is to solve (2.5) with b = bmax, the maximum budget. The resulting

optimal solution and value are x∗ and Z∗
0 , respectively. The second step is to solve

(2.6) using the optimal value from the first step. The first partition of the budget

is Y ∗
0 ≤ b ≤ bmax with optimal solution x∗. Finally, the first step is repeated with

b = Y ∗
0 and the inequalities changed to strict inequalities. The process continues

until the minimum budget level is reached. This methodology is effective when

an uncertain budget will be realized early in the decision making process and the

selected items do not have to be consistent between various budget levels.

Morton et al. [19] developed stochastic network interdiction models that may

be used to determine the best sites at which to install nuclear detection sensors. Two

models were introduced, the stochastic network interdiction problem (SNIP) and the

perceived stochastic network interdiction problem (PSNIP). The objective of both

models is to minimize the probability that a smuggler will successfully traverse the

network without being detected. The difference in the models is that, in SNIP, both

the smuggler and the interdictor “agree” on the probabilities of detection, while in

PSNIP, the smuggler and the interdictor have different perceptions about the prob-

abilities of detection, e.g., the smuggler may not be aware of all the sensor locations.

Both models were implemented on bipartite networks where sensors are only located

at border crossings of a single country. In the case of SNIP, decomposition, duality

and reformulation were used to transform the problem into a tractable optimization

model. Step inequalities were introduced to tighten the relaxation and reduce the

computational time.

2-11

Pan and Morton [20] solved the network interdiction model, SNIP, using pri-

marily the L-shaped decomposition method [23]. A heuristic was used at certain

iterations of the decomposition to reduce the computational effort. Also, valid in-

equalities were developed to tighten the relaxed problem. Using the solution, decision

makers may determine where to install nuclear material detection devices. While the

solution to the model is not a prioritized list, the decision maker has enough infor-

mation to generate one in a post-processing step. However, there is no method for

ensuring the list of sensors is consistent in the presence of an uncertain budget.

Golden et al. [13] examined the orienteering problem, and Tang and Miller-

Hooks [22] and Laporte and Martello [17] discussed a similar problem, the selective

travelling salesperson problem. Consider a set of nodes that can be visited by the

traveller only once. A reward is accrued for visiting each node. The number of

nodes, or cities, a traveller can visit is limited by some predetermined distance or

time, e.g., a traveller is limited to travelling 45 miles, but the shortest distance

required to visit every city on his route is 75 miles. The orienteering problem deter-

mines the tour that maximizes reward subject to the limiting distance. This tour

can be considered a priority list. The solution technique used in [13] was a three-step

center-of-gravity heuristic. The steps are route construction, route improvement and

a center-of-gravity step. An exact branch-and-cut algorithm and a construct-and-

adjust heuristic were the solution techniques used in [22]. Laporte and Martello

[17] formulated the problem as a linear integer program, developed upper and lower

bounds for an exact algorithm and implemented the algorithm to analyze the re-

sults. Smith [21] outlined how the National Air and Space Agency (NASA) uses the

orienteering problem to determine an ordered subset of the vast programs NASA

plans which can be executed within a given time horizon and with limited resources.

There appears to be no literature pertaining to the orienteering problem with an

uncertain distance constraint, which would make a prioritized list of nodes to visit

worthwhile.

2-12

Dean et al. [5, 6] discussed the value of adaptivity in stochastic packing and

stochastic knapsack problems. In the stochastic knapsack problem, the objective is

to maximize the total reward when the weight of each item is not known (except

by its probability distribution) until it is selected for inclusion in the knapsack, at

which time its value is realized. Items are included in the knapsack until the budget is

exhausted; once an item’s addition exceeds the available budget, no additional items

can be added. The stochastic packing problem is similar except that the weights of

the items are vectors, like in the MDKP. Feasible items are not allowed to exceed the

capacity of any component. A non-adaptive model selects the items to include before

the realization of the uncertain data. This can be viewed as a priority list which is

used to select the items to include and the order in which they should be included.

An adaptive model can be thought of as a priority list that is updated after each

item was included and its value was realized. The adaptivity gap was evaluated,

which was the ratio of the expected optimal values of the adaptive method to the

non-adaptive method.

Mettu and Plaxton [18] examined the online median problem, which is a variant

of the k-median problem. The k-median and online median problems are similar to

the facility location problem. Consider a grid on which there is one customer at

each intersection. Assume the customer’s demand will be satisfied by the nearest

store. The objective is to minimize the total distance travelled by customers to

stores. The facility location problem determines the location of the stores assuming

all stores will be built at once. The k-median problem determines the best location

for k stores to be built all at once, where 0 < k < n. The online median problem

determines the locations of the stores and provides the order in which they should

be built (assuming they are built one at a time) when the number of stores to be

built is unknown. The objective of the online median problem is to minimize the

maximum competitive ratio which is defined as the ratio of the cost of the first k

ordered locations to the cost of the optimal k-median solution, where the maximum

2-13

is taken over all k. The problem was solved using an approximation algorithm, and

the solution is, in essence, a priority list.

There are several areas in the state-of-the-art that use the idea of prioritiza-

tion: the orienteering problem, the selective travelling salesperson problem and the

stochastic packing problem. However, these problems do not include uncertain infor-

mation, e.g., the cutoff for the orienteering problem is deterministic. The solution to

the online median problem yields a priority list over some uncertain data, however,

the model was developed using a worst-case analysis instead of assuming a proba-

bility distribution for the unknown parameter. The stochastic network interdiction

problem is one example where a prioritization model is especially beneficial to the

decision maker in the context of uncertain budget scenarios. It appears that very

little work has been done in regard to formal optimization procedures for selecting

satellite payloads. And so, in this thesis we will develop optimization models for

selecting and prioritizing payloads to include on a satellite that will be launched into

a pre-existing constellation.

2-14

3. Optimization Models for Payload Selection

This chapter presents mathematical programming formulations for optimally

selecting payloads to include on satellites being launched into constellations. In

particular, we prioritize satellite bus payloads to maximize the expected reward for

including these payloads in the constellation. We first describe the general model as-

sumptions and definitions for the payload prioritization problem. Next, we examine

a simple single-launch model with a known deterministic budget. The deterministic

single-launch model is then extended to a payload prioritization model with mission

requirements and an uncertain budget. In the fourth section, we discuss multiple-

launch models wherein the decision maker must select payloads over a finite time

horizon. In this extended model, multiple, sequential launches occur over a spec-

ified time period and the rewards depend on the payloads already present in the

constellation. As an illustrative example, we consider a telecommunications satellite

throughout this chapter.

3.1 General Model Assumptions and Definitions

Consider a constellation into which a sequence of satellites are launched at

fixed, equal time intervals. Let ∆ denote the fixed inter-launch time. The number of

functioning satellites and their respective payloads in the constellation are assumed

to be known. We define L as the set of launches in the sequence and let the subscript

l on any variable denote the dependence of the quantity on the given launch. The

subscript is dropped in the single-launch case.

Payloads (or capabilities) are included on each satellite launch. Assume that

only one payload of any given type may be included on a single launch. This restric-

tion can be circumvented, if the need arises, by including the payload in the set of

feasible payloads more than once. For instance, if it were possible for two high-gain

antennas to be included on a satellite, the set of available payloads for the satellite

3-1

would have two instances of a high-gain antenna. The mean mission life of a satellite

(and thus the payloads on the satellite) is assumed to be a fixed quantity which is a

multiple of ∆. This mean mission life has the form t∆, where the scalar t is defined

as the number of launches that occur during its life. The satellite’s mean mission life

accounts for the degradation of the components on the satellite over time. Rather

than make the models more complex by including a degradation process, we assume

that all satellites (and their payloads) are rendered useless t time units after they

are launched. In the mathematical models, let K denote the finite set of n available

payloads for any launch.

On each satellite, the satellite bus is constrained by its engineering specifica-

tions, i.e., the physical quantities that limit which payloads may be included in the

satellite bus. Due to the nature of satellite design, we assume the engineering specifi-

cations are known with certainty and remain constant. Since there may be numerous

engineering specifications which constrain the payload selection decision, the models

in this thesis generalize all specifications with one constraint type. Of the many

aspects of the satellite bus design which limit the inclusion of payloads, we will focus

on three. First, the weight of the payloads which might be included on the satellite

must be considered because the launch vehicles that lift the satellite into orbit have

a finite weight capacity. The second engineering specification we include is power.

The satellite bus allocates power to the included payloads from the satellite’s power

source which is recharged via solar panels. The power consumption of all payloads

included on the satellite bus cannot exceed its total power output. Finally, we incor-

porate the engineering specification of volume. The actual space that is available for

payloads in the satellite bus constrains which payloads can be included. Since the

satellite will be fabricated subsequent to the payload selection decision, and to make

the model more tractable, we account only for the volume required for each payload,

ignoring any geometric considerations. The following sets and notation pertaining

to the physical specifications will be used in the mathematical models to follow. Let

3-2

D denote the finite set of engineering specifications of interest for each launch in the

sequence. Let udl denote the capacity for engineering specification d on launch l and

let akd denote the consumption of engineering specification d by payload k.

Assume that there are m budget scenarios for each satellite launch. A budget

scenario is a possible life-cycle budget level that can be expected for a given satellite

launch. Let Ω denote the finite set of possible budget scenarios. For instance, Ω

= {High, Med, Low} means that there are three possible budget scenarios: a high

budget level, a medium budget level, and a low budget level. Each launch has an

independent set of budget levels, where bω
l is the budget level for launch l under

scenario ω. Assume budget scenarios bω
l have associated probability masses, qω, for

ω ∈ Ω, and that without loss of generality, the budget scenarios are ordered such that

b1
l < b2

l < · · · < bm
l . For instance, a high budget scenario could have a probability of

0.2, a medium, or average, budget level might occur with probability 0.6, and a low

budget scenario with probability of 0.2. The number of budget scenarios and their

respective probability masses are assumed to be equivalent over all launches. There

is no monetary carryover from the budget of one launch to the next. All launches are

assumed to be temporally dependent, i.e., each launch will see the same realization of

ω. If the budget level for the first launch is high, every other launch will receive the

high budget as well. In case the budget is known with certainty, the ω superscript is

omitted. Let ckl denote the life-cycle cost for including payload k on launch l. The

total life-cycle costs of the payloads selected for inclusion on the satellite bus cannot

exceed the budget level for any launch.

Assume that a separate priority list is generated for each launch since the bud-

get levels for each launch are separate and there is no budgetary carryover between

launches. Let I = {1, 2, . . . , n} denote the set of n priority levels for each launch.

The cardinality of the set I is the same as that of the set K, i.e., the number of prior-

ity levels equals the number of available payloads for each satellite launch. Although

there is a priority level for each payload, not every priority level is necessarily as-

3-3

signed. For every payload that is not included under the largest budget scenario for

the launch, there is a priority level which is not assigned. The models will determine

which payloads, and thus priority levels, are excluded.

3.2 Single-Launch Models with Certainty

We first consider the case of only a single satellite launch with a known budget.

The budget and engineering specifications (weight, power, volume, etc.) constrain

the number of distinct payloads that may be selected for inclusion on a satellite

bus. We assume that the monetary budget for a single-satellite launch is known

with certainty, i.e., the amount of money allocated for the satellite design is not

susceptible to change. Furthermore, this framework is suitable if the budget is not

known with certainty, but the payload selection decision can be postponed until the

budget becomes known, e.g., in the case where the full project budget is awarded only

after it is approved to be carried out. The single-launch problem with certain budget

can be modelled as a multidimensional knapsack problem (MDKP). The objective

is to select the set of payloads to include on a satellite bus in order to maximize the

reward, given a certain monetary budget.

In this model, we assume the reward gained by including any one of the pay-

loads on the bus is determined in advance and does not change. For k ∈ K, if

payload k is included on the satellite, a reward rk is accrued and the decision vari-

able xk assumes a value of 1 if payload k is included on the satellite and 0 otherwise.

A summary of the problem data follows:

Sets:

k ∈ K set of candidate payloads (capabilities)

d ∈ D set of included engineering specifications (weight, power, volume, etc.)

3-4

Data:

rk reward received for including payload k

ck cost of payload k

b maximum allowable budget for loading the bus

akd consumption of resource d by payload k

ud capacity of resource d

Decision Variables:

xk 1 if payload k included on the satellite bus; 0 otherwise

The mathematical programming formulation of this multidimensional knapsack

problem (MDKP) follows:

max
x

∑

k∈K

rkxk (3.1a)

s.t.
∑

k∈K

ckxk ≤ b (3.1b)

∑

k∈K

akdxk ≤ ud, d ∈ D (3.1c)

xk ∈ {0, 1}, k ∈ K. (3.1d)

Constraints (3.1b) and (3.1c) limit the inclusion of payloads to the available

budget and engineering specifications of the satellite. The binary variables ensure

that only a single unit of any payload type can be included. It should be noted that

Constraint (3.1c) can include any set of generic specifications and allows this and

subsequent adaptations of the model to be applied to other problem classes such as

the facility location problem, the travelling salesperson problem or the orienteering

problem.

We illustrate this simplistic single-launch model with a numerical example. We

seek to launch a telecommunications satellite into an existing telecom constellation.

The typical payloads included on this type of satellite are a receiving antenna, a

3-5

transmitting antenna and a transponder. Suppose there are two of each type of

payload available for the next launch. Let K = {1, 2, 3, 4, 5, 6} represent the set of

available payloads as noted in Table 3.1 along with the reward, cost, weight, power

and volume for each payload. Let D = {1, 2, 3} denote the engineering specifications

of interest (1 = weight, 2 = power consumption, 3 = volume). The available budget

and the weight, power and volume capacities for the satellite are summarized in

Table 3.2. The optimal solution was obtained using the CPlex solver by ILOGr

and is shown in Table 3.3. In this case, the decision maker should include receiving

antennas 1 and 2, transmitting antenna 2 and transponder 2 with a maximum reward

of 68 units.

Table 3.1 Payload data for the single-launch problem with certain budget.
Index (k) Payload Reward Cost Wgt (lb) Pow (W) Vol (ft3)

1 Rec Antenna 1 15 $400k 200 350 3
2 Rec Antenna 2 10 $200k 100 450 2
3 Tra Antenna 1 8 $600k 400 300 4
4 Tra Antenna 2 18 $500k 300 500 4
5 Transponder 1 23 $800k 900 750 9
6 Transponder 2 25 $950k 800 700 7

Table 3.2 Resources for the single-launch problem with certain budget.
Resource Budget Weight (lb) Power (W) Volume (ft3)
Capacity $2.5 M 1,900 2,600 20

Table 3.3 Optimal solution for the single-launch problem with certain budget.
Index (k) Payload xk Reward Accrued

1 Rec Antenna 1 1 15
2 Rec Antenna 2 1 10
3 Tra Antenna 1 0 0
4 Tra Antenna 2 1 18
5 Transponder 1 0 0
6 Transponder 2 1 25

3-6

3.3 Single-Launch Models with Uncertainty

3.3.1 Payload Prioritization

The single-launch payload selection model with certainty (3.1) simply deter-

mines the best set of payloads to include on the satellite and does not assign priorities

to the payloads. It is possible that with one (small) budget a desirable payload would

be excluded but under another (larger) budget, it would be selected for inclusion.

On the other hand, it is also possible that no matter what the budget level, an

extremely desirable payload will be selected under all budget scenarios. Finally, it

is also possible that a payload is selected at the smaller budget level but not at a

higher budget level. This can occur because at the lower budget level a more at-

tractive payload (in terms of reward) cannot fit within the budget, but it can fit

at the higher level. Because it is very possible that the budget will change, and

there is no guarantee that the selection decision will be consistent across all budget

scenarios, it is advantageous to generate a prioritized list of payloads for inclusion

on the satellite. The decision maker can then select payloads from the list until the

budget is exhausted.

We now relax the assumption that the budget is known. This approach is

appropriate when one must make payload selections prior to knowing which budget

scenario will be realized. In many cases, the budget is known only in the form of a

distributional forecast. A common approach is to build weighted budget scenarios

by requesting a possible range of values and a most likely value from a subject

matter expert. One possible set of scenarios consists of a low budget scenario with

probability 0.1, an average budget scenario with probability 0.8, and a high budget

scenario with probability 0.1. On the other hand, if the budget is known in the form

of a continuous probability distribution, we can use the extended Pearson-Tukey

method. This method approximates a continuous distribution using three discrete

points by assigning the 0.05 fractile a probability of 0.185, assigning the median

3-7

probability of 0.63, and assigning the 0.95 fractile probability of 0.185. It has been

shown that the Pearson-Tukey performs well as an approximation for a wide range

of probability distributions [4].

In this model, we maintain the assumption that the rewards are determined in

advance and do not change and there are n candidate payloads under consideration

for inclusion on the satellite bus. Let I = {1, 2, . . . , n} denote the set of priority

levels. For instance, a payload which is assigned priority level 1 receives the highest

priority on the list. The model will decide which payloads receive a priority level and

which are eliminated from consideration, if any. For k ∈ K, i ∈ I and ω ∈ Ω, the

decision variable xω
ki assumes a value of 1 if payload k has priority level i and level

i is funded under budget scenario ω and 0 otherwise. A summary of the additional

problem data follows:

Additional Sets:

ω ∈ Ω set of budget scenarios

i ∈ I set of priority levels

Data:

bω budget under scenario ω, b1 < b2 < · · · < bm

qω probability of budget scenario ω, ω ∈ Ω

Decision Variables:

xω
ki 1 if payload k has priority level i and level i is funded under budget

scenario ω; 0 otherwise

Boundary Conditions:

xω
k0 ≡ 1, k ∈ K,ω ∈ Ω

x0
ki ≡ 0, k ∈ K, i ∈ I

The payload prioritization formulation follows:

3-8

max
x

∑
ω∈Ω

∑

k∈K

∑
i∈I

qωrkx
ω
ki (3.2a)

s.t.
∑

k∈K

∑
i∈I

ckx
ω
ki ≤ bω, ω ∈ Ω (3.2b)

∑

k∈K

∑
i∈I

akdx
ω
ki ≤ ud, d ∈ D, ω ∈ Ω (3.2c)

∑

k∈K

xω
ki ≤ 1, i ∈ I, ω ∈ Ω (3.2d)

∑
i∈I

xω
ki ≤ 1, k ∈ K, ω ∈ Ω (3.2e)

xω
ki ≤

∑

v∈K,v 6=k

xω
v,i−1, k ∈ K, i ∈ I, ω ∈ Ω (3.2f)

xω−1
ki ≤ xω

ki, k ∈ K, i ∈ I, ω ∈ Ω (3.2g)

xω
ki ∈ {0, 1}, k ∈ K, i ∈ I, ω ∈ Ω. (3.2h)

The objective function (3.2a) is the expected reward obtained over all possible budget

scenarios. Constraints (3.2b) limit the cost of including payloads on the satellite to

each budget scenario ω. Constraints (3.2c) limit the inclusion of payloads under

budget scenario ω to the available specifications of the satellite. Constraints (3.2d)

and (3.2e) define the priority list; each included payload is assigned to at most one

priority level, and each priority level is assigned at most one payload. Constraints

(3.2f) allow priority level i to be funded under scenario ω only if the next higher

priority level is funded under the same scenario. Constraints (3.2g) allow payload

k to be assigned priority level i only if the payload is assigned to the priority level

under the next largest budget scenario.

We now illustrate the single-launch payload prioritization model with uncertain

budget via a numerical example. Recall from the telecommunications satellite exam-

ple that K = {1, 2, 3, 4, 5, 6} represents the set of available payloads and D = {1, 2, 3}
denotes the respective engineering specifications of weight, power and volume. We

maintain the reward, cost, weight, power and volume data for the payloads as well as

3-9

Table 3.4 Budgets for the single-launch prioritization example.
Index (ω) State Budget (bω) Probability (qω)

1 Low $2.0 M 0.2
2 Med $2.5 M 0.6
3 High $3.0 M 0.2

Table 3.5 Optimal solution for the single-launch prioritization example.
Priority (i) Payload Included Budgets Expected Reward

1 Transponder 2 Low, Med, High 25.0
2 Rec Antenna 1 Low, Med, High 15.0
3 Rec Antenna 2 Low, Med, High 10.0
4 Tra Antenna 2 Med, High 14.4
5 Tra Antenna 1 High 1.6
6 Transponder 1 - 0.0

the resource capacities for the satellite from Tables 3.1 and 3.2, respectively. Assume

there are three potential budget scenarios as depicted in Table 3.4. The optimal so-

lution was obtained using the CPlex solver by ILOGr and is summarized in Table

3.5. The payloads are in the prioritized order as indicated in the first column; the

third column (Included Budgets) indicates the budget scenario levels under which

the payload is included on the satellite; the last column is the expected reward ac-

crued for including each payload. For instance, Transmitting Antenna 2 receives

priority level 4, is included under the medium and high budget levels and has an

expected reward of (0.2 × 0) + (0.6 × 18) + (0.2 × 18) = 14.4 reward units. In this

case, the maximum expected reward is 66 units which is obtained by summing the

Expected Reward column. The solution is interpreted as follows. If the low budget

is realized, each of the first three items on the list are included on the satellite. If

the medium budget level is realized, the fourth payload is included in addition to

the three from the low budget scenario. Finally, if the high budget is realized, the

first five payloads on the priority list are included on the satellite bus.

By including an uncertain budget in the payload selection problem, we capture

reality: uncertain budgets are common because payload selection decisions must be

3-10

made before budgetary decisions are finalized. When the payload selection problem

is solved assuming a known budget, the optimal payload selection decision for a

different budget scenario is not likely to be optimal. The payload prioritization

model generates a rank-ordered list of payloads as opposed to the on/off decision of

the payload selection problem with certainty. While the priority list assigns payloads

distinct priority levels, all the payloads which are included under the same budget

scenario essentially receive the same priority level. For instance, in Table 3.5, the

payloads assigned to priority levels 1-3 all effectively receive the same (highest)

priority level because all three are funded under all budget scenarios. Not only is

the list prioritized, but the priority rankings apply to all budget scenarios.

3.3.2 Payload Prioritization with Requirements

We now assume there is a finite number of mission requirements that must be

accomplished by the constellation. These requirements are derived from the mission

of the constellation as defined in the design process described in Chapter 2. Thus,

each mission of the constellation is characterized using a set of requirements. We

select the payloads for inclusion on a satellite bus which best satisfy these require-

ments. When the satellite is replenishing a pre-existing constellation, the degrading

payloads already in orbit dictate the mission areas, and thus, requirements to be

included on the next satellite launch. The mission requirements of the constella-

tion that are the most in need become the requirements with the greatest reward.

Given a predetermined launch time in the single-launch case, the degradation of the

payloads already in the constellation (and therefore the rewards) are considered as

known quantities.

We now shift the focus of the model from selecting payloads that best fit onto

the satellite bus to selecting payloads that best accomplish the mission requirements

of the constellation. Therefore, we alter the objective function to reflect this change.

Let J denote the finite set of mission requirements and let Kj denote the subset of

3-11

payloads that satisfy requirement j ∈ J . We partition the set J into two disjoint

subsets, JS and JM . Let JS represent the subset of requirements that have a sole-

source, i.e., the set of requirements that may be satisfied by a single payload. Let

JM denote the subset of multi-source requirements, i.e., the set of requirements that

may be satisfied by multiple, distinct payloads. The reward rj is accrued if sole-

source requirement j ∈ JS is satisfied on the satellite launch. Let zω
j denote the

number of payloads which satisfy multi-source requirement j that are included on

the satellite under budget scenario ω and let fj(z
ω
j) be a piecewise-linear function

such that the slope of each segment is the the marginal reward for increasing the

number of payloads that satisfy requirement j across the defined segment. Let βjs

denote the slope of the sth segment in the piecewise linear function fj(·). In this case,

using a standard formulation technique, the first included payload would receive a

reward equal to the slope of the segment having largest slope. Therefore, if fj(·)
is not concave, additional logical constraints need to be added to ensure that the

rewards are properly allocated, i.e., the first payload included on the satellite bus

must receive the reward equal to the slope of the first segment.

Figure 3.1 shows three possible reward functions for multi-source requirements.

It is important to note that the horizontal axis of the graphs is the discrete number of

payloads satisfying the requirement. Therefore, the function is evaluated at integral

points and the lines are drawn in order to illustrate the concavity or convexity of the

function. Figure 3.1(a) illustrates a typical concave piecewise-linear function where

there is a diminishing reward for each additional payload that satisfies requirement

1. This could be the case on a telecommunications satellite where the addition of

identical transmitting antennas increases the reward gained, but with each additional

antenna, the reward decreases. Figure 3.1(b) shows the case where requirement 2

demands at least three payloads to perform the mission since there is no reward

gained for including one or two payloads, but a reward is accrued once a third

payload is selected. Since this is a convex function, additional constraints must be

3-12

ω

f1(·)

β11

β12

β13

β21 β22

β23

1

1

2

2

3

4

5

1

2

3

4

5

1 2

f2(·)

3 3

f3(·)

β31

β32

β33

1

-2

2
-1

0

1

2

3

 (a) (b)

 (c)

z1 z2

z3

ω ω

Figure 3.1 Piecewise-linear reward functions for multi-source requirements.

added to ensure the reward is properly allocated. This example might correspond

to the case of imaging satellites from which images are required in three or more

spectrums, one payload (camera) for each specific spectrum. Figure 3.1(c) represents

the case where one or two payloads can perform the mission, but additional payloads

cause the mission to fail. The negative slope for the third segment can be viewed

as a penalty for having three payloads. This could be the case on a satellite where

including two transmitting antennas does not allow signal interference. However,

the addition of a third transmitting antenna causes enough signal interference so

as to render all three antennas useless. Allowing f(·) to be either increasing or

decreasing, and either concave or convex, makes the model more realistic since the

reward function allows the decision maker to account for the diminishing rewards

3-13

for multiple identical payloads and to ensure that requirements are appropriately

satisfied.

In this model, the objective is to maximize the reward obtained by satisfy-

ing the set of mission requirements. We assume that the rewards for sole-source

requirements are constant and do not depend on the reward values of the other re-

quirements. Likewise, the reward functions for the multi-source requirements are do

not depend on the other reward functions and known with certainty. Let Ω represent

the set of possible budget scenarios. Two decision variable types are introduced: for

j ∈ JM and ω ∈ Ω the decision variable zω
j is as defined above and for j ∈ JS, k ∈ Kj

and ω ∈ Ω the decision variable yω
kj assumes a value of 1 if payload k satisfies re-

quirement j under budget scenario ω and 0 otherwise. A summary of the additional

model data follows:

Additional Data:

rj reward received for satisfying sole-source requirement j

fj(·) piecewise-linear reward function for satisfying multi-source requirement j

Decision Variables:

xω
ki 1 if payload k has priority level i and level i is funded under budget

scenario ω; 0 otherwise

yω
kj 1 if payload k satisfies sole-source requirement j under budget scenario ω;

0 otherwise

zω
j number of payloads which satisfy multi-source requirement j under

budget scenario ω

3-14

The revised mathematical programming model follows:

max
x,y,z

∑
ω∈Ω

qω


∑

j∈JS

∑

k∈Kj

rjy
ω
kj +

∑
j∈JM

fj(z
ω
j)


 (3.3a)

s.t.
∑

k∈K

∑
i∈I

ckx
ω
ki ≤ bω, ω ∈ Ω (3.3b)

∑

k∈K

∑
i∈I

akdx
ω
ki ≤ ud, d ∈ D, ω ∈ Ω (3.3c)

∑

k∈K

xω
ki ≤ 1, i ∈ I, ω ∈ Ω (3.3d)

∑
i∈I

xω
ki ≤ 1, k ∈ K, ω ∈ Ω (3.3e)

xω
ki ≤

∑

v∈K,v 6=k

xω
v,i−1, k ∈ K, i ∈ I, ω ∈ Ω (3.3f)

xω−1
ki ≤ xω

ki, k ∈ K, i ∈ I, ω ∈ Ω (3.3g)
∑

k∈Kj

∑
i∈I

xω
ki ≤ 1, j ∈ JS, ω ∈ Ω (3.3h)

yω
kj ≤

∑
i∈I

xω
ki, j ∈ JS, k ∈ Kj, ω ∈ Ω (3.3i)

zω
j =

∑

k∈Kj

∑
i∈I

xω
ki, j ∈ JM , ω ∈ Ω (3.3j)

xω
ki ∈ {0, 1}, k ∈ K, i ∈ I, ω ∈ Ω (3.3k)

yω
kj ∈ {0, 1}, j ∈ JS, k ∈ Kj, ω ∈ Ω (3.3l)

zω
j ∈ Z+, j ∈ JM , ω ∈ Ω. (3.3m)

The objective function (3.3a) is the expected reward for satisfying both sole- and

multi-source requirements obtained over all possible budget scenarios. Constraints

(3.3b) - (3.3g) are the same as those of Formulation (3.2) and are not affected by

the adding of requirements to the model. Constraints (3.3h) ensure each sole-source

requirement is satisfied by at most one payload. Constraints (3.3i) allow payload

k to serve sole-source requirement j only if k is selected under budget scenario ω.

3-15

ω

f1(·)

β11 = 8

β12 = 2

1

3

2

6

9

12

15

z1
ω

f2(·)

β21 = 10

β22 = 5

1

3

2

6

9

12

15

z2

Figure 3.2 Reward functions for the prioritization problem with requirements.

Constraints (3.3j) count the number of payloads that satisfy multi-source require-

ment j under budget scenario ω. Constraints (3.3m) limit the number of payloads

which satisfy multi-source requirements to being a non-negative integer. (Note this

constraint is ensured to hold given (3.3j) and (3.3k).)

We continue our telecommunications satellite example to illustrate the single-

launch payload prioritization model with requirements and an uncertain budget.

Let J = {1, 2, 3} denote the set of requirements as defined in Table 3.6. Let K =

{1, 2, 3, 4, 5, 6} denote the set of available payloads which are listed in Table 3.7.

Table 3.8 shows the capacities of each of the engineering specifications denoted D =

{1, 2, 3}. Table 3.9 depicts the budget scenarios under consideration. The reward

functions for the multi-source requirements of receiving and transmitting antennas

are given in Figure 3.2. The reward for satisfying the sole-source requirement of

including a transponder capability (r3) is 14. The optimal solution was obtained

using CPlex solver by ILOGr and is shown in Table 3.10. The payloads are in the

prioritized order as indicated in the first column; the third column is the requirement

which is satisfied by including the payload; the fourth column (Included Budgets)

indicates the budget scenario levels under which the payload is included on the

satellite; the last column is the expected reward accrued for each payload.

3-16

Table 3.6 Requirements for the prioritization problem with requirements.
Index (j) Requirement Type (JS or JM) Satisfying Payloads (Kj)

1 Receiving Multi-Source Rc Ant 1, Rc Ant 2
2 Transmitting Multi-Source Tr Ant 1, Tr Ant 2
3 Transponding Sole-Source Transp 1, Transp 2

Table 3.7 Payload data for the prioritization problem with requirements.
Index (k) Payload Cost Wgt (lb) Pow (W) Vol (ft3)

1 Rec Antenna 1 $400k 200 350 3
2 Rec Antenna 2 $200k 100 450 2
3 Tra Antenna 1 $600k 400 300 4
4 Tra Antenna 2 $500k 300 500 4
5 Transponder 1 $800k 900 750 9
6 Transponder 2 $950k 800 700 7

Table 3.8 Resources for the prioritization problem with requirements.
Index (d) Resource Capacity (ud)

1 Weight (lb) 1,900
2 Power (W) 2,600
3 Volume (ft3) 22

Table 3.9 Budgets for the prioritization problem with requirements.
Index (ω) State Budget (bω) Probability (qω)

1 Low $1.5 M 0.2
2 Med $2.0 M 0.6
3 High $2.5 M 0.2

Table 3.10 Optimal solution for the prioritization problem with requirements.
Priority (i) Payload Satisfied Req Included Budgets Exp Reward

1 Transponder 1 Transponding Low, Med, High 14.0
2 Rec Antenna 2 Receiving Low, Med, High 8.0
3 Tra Antenna 2 Transmitting Low, Med, High 10.0
4 Rec Antenna 1 Receiving Med, High 1.6
5 Tra Antenna 1 Transmitting High 1.0
6 Transponder 2 - - 0.0

3-17

In this case, the maximum expected reward is 34.6 units which is calculated

by summing the Expected Reward column. The solution is interpreted in the same

manner as before. If the low budget is realized, each of the first three items on

the list are included on the satellite bus. If the medium budget level is realized,

the fourth payload is also included. Finally, if the high budget is realized, all five

payloads on the priority list are included on the satellite bus.

By including requirements in the payload selection problem, we link the mission

for which the constellation is designed to the decision of which payloads to include

on a satellite bus. This approach allows greater flexibility in assigning payloads. In

the payload selection problem with requirements, new or updated missions can easily

be added to the requirements of the constellation. The new mission is incorporated

by making the reward for satisfying the new requirement much larger than any

other requirement. The partitioning of the requirements into sole- and multi-source

requirements allows assigning payloads to the satellite in a more realistic manner.

3.4 Multiple-Launch Models

While the models of Section 3.3 account for uncertain budgets and mission

requirements, they consider only a single satellite launch in which the reward val-

ues are time-invariant. Consider now a sequence of launches which will populate

or replenish a satellite constellation in a finite time horizon. At fixed time epochs,

a satellite will be launched into orbit to help satisfy the constellation’s mission re-

quirements. Satellite mission planners must take into account the composition of

the constellation so that mission requirements are not neglected. Moreover, ignoring

the composition of the constellation can lead to large cost overruns due to excessive

payload redundancies. While redundancy can increase the probability of meeting the

mission requirement, launching too many payloads is incredibly expensive. There-

fore, reward values are tied to the constellation rather than the individual launches.

The payloads to be included on each subsequent launch will take into account the

3-18

payloads which have been launched on previous satellites and are still functioning in

the constellation at the time of the current launch. Consider a sole-source mission

requirement currently satisfied in the constellation. A reward is accrued for meeting

the requirement but no additional payloads are launched since we assume that only a

single payload satisfies these types of requirements. In the case of multi-source mis-

sion requirements, the constellation receives diminishing rewards for the launch of

additional payloads. Meanwhile, payloads which meet the requirements not already

satisfied in the constellation will be given larger reward values.

Figure (3.3) shows a graphical depiction of a time line for a sequence of

launches. Launch 1 occurs at time 0 and the satellite (and thus the payloads included

on the satellite) has a constant mean mission life. In this illustrative example, the

mean mission life is 3∆ time units, where ∆ represents the constant inter-launch

time. The first satellite functions until immediately before the fourth launch, at

which time the satellite is considered to no longer be functioning. In a similar fash-

ion, subsequent satellites are launched and operate for 3∆ time units before being

considered failed. At the time of the current launch, the constellation is comprised

of the payloads included on the two previous satellites launched.

∆

2∆

3∆

0 4∆

5∆

mean mission life

time

Figure 3.3 Time line for sequential satellite launches.

3-19

3.4.1 Sequential Payload Selection

We first consider a model in which the single-launch model is solved at each

launch epoch and rewards are based on the composition of the constellation. We

modify the single-launch prioritization model to account for the launch being con-

sidered and the composition of the constellation. This model is appropriate if the

satellite program is subject to termination without advanced notice since we max-

imize the reward accrued on the current launch. In other words, if the program

was cancelled, we would lose any reward that would otherwise have been accrued by

waiting to include the payload on a subsequent launch.

Let L denote the set of launches in a finite time horizon where l ∈ L denotes the

launch currently under consideration. In order to account for the payloads currently

in the constellation, we introduce two inventory decision variable types. Let IY ω
jl

indicate if sole-source requirement j is satisfied in the constellation at the time of

launch l under budget scenario ω, and let IZω
jl be the number of payloads which

satisfy multi-source requirement j in the constellation at the time of launch l under

budget scenario ω. We define the set Wl as the set of launch indices whose payloads

are currently operating in the constellation. Recall that t is the mean mission life in

number of launches. Thus, we define Wl = {l− t + 1, l − t + 2, . . . , l}. For instance,

if the current launch is launch 4 and the mean mission life is 3 launches, W4 =

{2, 3, 4}. The payloads included on launches two through four are functioning in the

constellation and included in the calculation of the reward values. The constellation

inventory variables are defined as follows:

IY ω
jl ≤

∑
w∈W

∑

k∈Kj

yω
kjw, (3.4)

IZω
jl =

∑
w∈W

zω
jw, (3.5)

3-20

where IY is binary and IZ is a nonnegative integer. We can account for the initial

status of the constellation by assigning values for negative l values. For instance,

yω
k,j,−1 = 1 implies that payload k satisfies sole-source requirement j in the constel-

lation under budget scenario ω and has a remaining lifetime of t− 2 launches.

In the sequential multiple-launch model, a single-launch prioritization model

is solved for each launch sequentially. The solutions from the previous launches are

used to account for the composition of the constellation. We assume that sole-source

requirements can be satisfied only once in the constellation and that multi-source

requirements can be satisfied by more than one payload from more than one satellite

in the constellation. A summary of the problem data follows.

Sets:

k ∈ K set of candidate payloads (capabilities)

d ∈ D set of included engineering specifications (weight, power, volume, etc.)

ω ∈ Ω set of budget scenarios

i ∈ I set of priority levels

l ∈ L set of launches

Data:

ckl unit cost of payload k on launch l

akd consumption of resource d by payload k

udl capacity of resource d on launch l

bω
l budget under scenario ω on launch l, b1

l < b2
l < · · · < bm

l

qω probability of budget scenario ω, ω ∈ Ω

rjl reward received for satisfying sole-source requirement j on launch l

fjl(·) piecewise-linear reward function for satisfying multi-source requirement j

on launch l

3-21

Decision Variables:

xω
kil 1 if payload k has priority level i and level i is funded under budget

scenario ω on launch l; 0 otherwise

yω
kjl 1 if payload k satisfies sole-source requirement j under budget scenario ω

on launch l; 0 otherwise

zω
jl number of payloads which satisfy multi-source requirement j under

budget scenario ω on launch l

IY ω
jl 1 if sole-source requirement j is satisfied in the constellation at the time

of launch l under budget scenario ω; 0 otherwise

IZω
jl number of payloads satisfying multi-source requirement j in the

constellation at the time of launch l under budget scenario ω

Boundary Conditions:

xω
k0l ≡ 1, k ∈ K, l ∈ L, ω ∈ Ω

x0
kil ≡ 0, k ∈ K, i ∈ I, l ∈ L

3-22

The revised mathematical programming model for launch l is as follows.

max
x,y,z,IY,IZ

∑
ω∈Ω

qω


∑

j∈JS

∑

k∈Kj

IY ω
jlrjl +

∑
j∈JM

fjl(IZω
jl)


 (3.6a)

s.t.
∑

k∈K

∑
i∈I

cklx
ω
kil ≤ bω

l , ω ∈ Ω (3.6b)

∑

k∈K

∑
i∈I

akdx
ω
kil ≤ udl, d ∈ D, ω ∈ Ω (3.6c)

∑

k∈K

xω
kil ≤ 1, i ∈ I, ω ∈ Ω (3.6d)

∑
i∈I

xω
kil ≤ 1, k ∈ K, ω ∈ Ω (3.6e)

xω
kil ≤

∑

v∈K,v 6=k

xω
v,i−1,l, k ∈ K, i ∈ I, ω ∈ Ω (3.6f)

xω−1
kil ≤ xω

kil, k ∈ K, i ∈ I, ω ∈ Ω (3.6g)
∑

k∈Kj

∑
i∈I

xω
kil ≤ 1, j ∈ JS, ω ∈ Ω (3.6h)

yω
kjl =

∑
i∈I

xω
kil, j ∈ JS, k ∈ Kj, ω ∈ Ω (3.6i)

IY ω
jl ≤

∑
w∈W

∑

k∈Kj

yω
kjw, j ∈ JS, ω ∈ Ω (3.6j)

zω
jl =

∑

k∈Kj

∑
i∈I

xω
kil, j ∈ JM , ω ∈ Ω (3.6k)

IZω
jl =

∑
w∈W

zω
jw, j ∈ JM , ω ∈ Ω (3.6l)

xω
kil ∈ {0, 1}, k ∈ K, i ∈ I, ω ∈ Ω (3.6m)

yω
kjl, IY ω

jl ∈ {0, 1}, j ∈ JS, k ∈ Kj, ω ∈ Ω (3.6n)

zω
jl, IZω

jl ∈ Z+, j ∈ JM , ω ∈ Ω (3.6o)

The objective function (3.6a) is the expected reward obtained for satisfying both

types of requirements over all possible budget scenarios on launch l. The total max-

imum expected reward for the entire launch horizon is computed by summing the

3-23

maximum expected reward for each launch. Constraints (3.6b) limit the cost of in-

cluding payloads on the satellite of launch l to each budget scenario ω. Constraints

(3.6c) limit the inclusion of payloads under budget scenario ω to the available re-

sources of the satellite for the launch. Constraints (3.6d) and (3.6e) ensure each

payload is assigned at most one priority level, and each priority level is assigned

at most one payload under each budget scenario. Constraints (3.6f) allow priority

level i to be funded under scenario ω only if the next higher priority level is funded

under the same scenario for launch l with the boundary condition that xω
k0l ≡ 1 for

k ∈ K and ω ∈ Ω. Constraints (3.6g) allow payload k to be assigned priority level

i only if the payload is assigned to the priority level under the next largest budget

scenario with the boundary condition that x0
kil ≡ 0 for k ∈ K and i ∈ I. Constraints

(3.6h) ensure each sole-source requirement is satisfied by at most one payload for

the launch. Constraints (3.6i) allow payload k to serve sole-source requirement j

only if k is selected under budget scenario ω for that launch. Constraints (3.6j) indi-

cate whether sole-source requirement j is satisfied in the constellation at the time of

launch l. Constraints (3.6k) count the number of payloads that satisfy multi-source

requirement j under budget scenario ω on the launch. Constraints (3.6l) count the

number of payloads satisfying multi-source requirement j in the constellation at the

time of launch l.

3.4.2 Payload Prioritization Considering the Future

In the previous subsection, we sequentially selected the best set of payloads to

include on the satellite bus for each launch. The use of this approach ensures that

the reward accrued for each launch is maximized, irrespective of the future launches

in the launch horizon. In practice, however, planners do not ignore future satellite

launches. They consider the benefit of excluding a payload on the current launch in

order to better meet mission requirements by including the payload on some future

3-24

launch. Likewise, a payload may be included on the current launch if the reward for

including it on subsequent launches decreases dramatically.

We now consider a model which solves the entire sequence of launches simulta-

neously. We extend the sequential multiple-launch model, Model (3.6), to accomplish

this. The revised mathematical programming model is as follows.

3-25

max
x,y,z,IY,IZ

∑
ω∈Ω

qω
∑

l∈L


∑

j∈JS

∑

k∈Kj

IY ω
jlrjl +

∑
j∈JM

fjl(IZω
jl)


 (3.7a)

s.t.
∑

k∈K

∑
i∈I

cklx
ω
kil ≤ bω

l , l ∈ L, ω ∈ Ω (3.7b)

∑

k∈K

∑
i∈I

akdx
ω
kil ≤ udl, d ∈ D, l ∈ L, ω ∈ Ω (3.7c)

∑

k∈K

xω
kil ≤ 1, i ∈ I, l ∈ L, ω ∈ Ω (3.7d)

∑
i∈I

xω
kil ≤ 1, k ∈ K, l ∈ L, ω ∈ Ω (3.7e)

xω
kil ≤

∑

v∈K,v 6=k

xω
v,i−1,l, k ∈ K, i ∈ I, l ∈ L, ω ∈ Ω (3.7f)

xω−1
kil ≤ xω

kil, k ∈ K, i ∈ I, l ∈ L, ω ∈ Ω (3.7g)
∑

k∈Kj

∑
i∈I

xω
kil ≤ 1, j ∈ JS, l ∈ L, ω ∈ Ω (3.7h)

yω
kjl =

∑
i∈I

xω
kil, j ∈ JS, k ∈ Kj, l ∈ L, ω ∈ Ω (3.7i)

IY ω
jl ≤

∑
w∈W

∑

k∈Kj

yω
kjw, j ∈ JS, l ∈ L, ω ∈ Ω (3.7j)

zω
jl =

∑

k∈Kj

∑
i∈I

xω
kil, j ∈ JM , l ∈ L, ω ∈ Ω (3.7k)

IZω
jl =

∑
w∈W

zω
jw, j ∈ JM , l ∈ L, ω ∈ Ω (3.7l)

xω
kil ∈ {0, 1}, k ∈ K, i ∈ I, l ∈ L, ω ∈ Ω (3.7m)

yω
kjl, IY ω

jl ∈ {0, 1}, j ∈ JS, k ∈ Kj, l ∈ L, ω ∈ Ω (3.7n)

zω
jl, IZω

jl ∈ Z+, j ∈ JM , l ∈ L, ω ∈ Ω (3.7o)

The objective function (3.7a) is the expected reward obtained for satisfying both

types of requirements over all possible budget scenarios for all launches. Constraints

3-26

ω

ω

f11(·)

β11 = 8

β12 = 2

1

3

2

6

9

12

15

z1
ω

f21(·)

β21 = 10

β22 = 5

1

3

2

6

9

12

15

z2

Launch 1

f12(·)

β11 = 9

β12 = 3

1

3

2

6

9

12

15

z1
ω

f22(·)

β21 = 5

β23 = 3

3

6

9

12

15

Launch 2

3 4

β13 = 1
β14 = 0

1 2 z2 3 4

β22 = 5

β24 = 1

Figure 3.4 Reward functions for the memoryless prioritization problem.

(3.7b) - (3.7o) are the same as those of the previous formulation with the exception

that the index l now spans all launches.

We illustrate the multiple-launch payload prioritization model using our telecom-

munications satellite example. Let L = {1, 2} denote the set of two launches in the

sequence and let J = {1, 2, 3} represent the set of mission requirements which are

defined in Table 3.6. Let K = {1, 2, 3, 4, 5, 6} denote the set of available payloads;

Table 3.11 lists these payloads and their respective specifications. The cost of each

payload on each launch is depicted in Table 3.12. Let D = {1, 2, 3} denote the set

of engineering specifications whose capacities are listed in Table 3.13. Table 3.14

3-27

lists budget scenarios for each launch. The reward functions for the multi-source

requirements of receiving and transmitting antennas for each launch are shown in

Figure 3.4. The reward functions for launch 2 have four segments so rewards can

be accrued for satisfying the requirement in the constellation, i.e., there is a reward

value for the maximum number of payloads that can satisfy the requirement in the

constellation. The rewards for satisfying the sole-source requirement of including a

transponder capability on launch 1 is r31 = 14 and r32 = 21 for launch 2. The opti-

mal solution was obtained using the CPlex solver by ILOGr and is shown in Table

3.15. The payloads are in the prioritized order as indicated in the first column; the

third column (Included Budgets) indicates the budget scenario levels under which

the payload is included on the satellite. The solution is interpreted as follows. If

the low budget is realized, each of the first three items on the list are included on

the satellite bus of launch 1 and the first two payloads are included on launch 2.

If the medium budget level is realized, the fourth payload is also included on the

first launch and the third payload is included on the second. Finally, if the high

budget is realized, all five payloads on the priority list are included on the first satel-

lite bus while no additional payloads are included on the final launch. There is no

transponding capability included on the second launch since it is still functioning in

the constellation as a result of being included on the launch 1. In this case, the max-

imum expected reward is 81.8 units. Rewards are accrued on launch 2 for satisfying

requirements in the constellation in addition to the rewards accrued for including

payloads on the satellite bus.

Table 3.11 Payload data for the memoryless prioritization example.
Index (k) Payload Wgt (lb) Pow (W) Vol (ft3)

1 Rec Antenna 1 200 350 3
2 Rec Antenna 2 100 450 2
3 Tra Antenna 1 400 300 4
4 Tra Antenna 2 300 500 4
5 Transponder 1 900 750 9
6 Transponder 2 800 700 7

3-28

Table 3.12 Payload costs for the memoryless prioritization example.
Index (k) Payload Launch 1 Launch 2

1 Rec Antenna 1 $400k $400k
2 Rec Antenna 2 $200k $300k
3 Tra Antenna 1 $600k $700k
4 Tra Antenna 2 $500k $600k
5 Transponder 1 $800k $800k
6 Transponder 2 $950k $900k

Table 3.13 Resources for the memoryless prioritization example.
Index (d) Resource Launch 1 Launch 2

1 Weight (lb) 1,900 1,500
2 Power (W) 2,600 2,300
3 Volume (ft3) 22 18

Table 3.14 Budgets for the memoryless prioritization example.
Index (ω) State Probability (qω) Launch 1 Launch 2

1 Low 0.2 $1.5 M $1.2 M
2 Med 0.6 $2.0 M $1.6 M
3 High 0.2 $2.5 M $2.0 M

Table 3.15 Solution for memoryless prioritization example, (a) launch 1; (b) launch 2.
Priority (i) Payload Satisfied Req Included Budgets

(a)
1 Transponder 1 Transponding Low, Med, High
2 Tra Antenna 2 Transmitting Low, Med, High
3 Rec Antenna 2 Receiving Low, Med, High
4 Rec Antenna 1 Receiving Med, High
5 Tra Antenna 1 Transmitting High
6 Transponder 2 - -

(b)
1 Rec Antenna 2 Receiving Low, Med, High
2 Tra Antenna 1 Transmitting Low, Med, High
3 Tra Antenna 2 Transmitting Med, High
4 Rec Antenna 1 - -
5 Transponder 1 - -
6 Transponder 2 - -

3-29

In this chapter, we have developed optimization models for prioritizing pay-

load launches which take into account uncertain budgets, mission requirements and

constellation dependence. In the next chapter, we will evaluate the benefit of using

these models by first comparing the single-launch prioritization model to a payload

selection heuristic. We also evaluate the multiple-launch models to demonstrate the

benefit of considering the future.

3-30

4. Computational Results

In this chapter, we compare the single-launch payload prioritization model

to a greedy payload selection heuristic. Small, medium and large problem instances

are randomly-generated, solved, and their objective function values are compared

based on mean, median and maximum percent improvement. We also compare the

multiple-launch prioritization models with and without consideration of the future.

Various launch horizon and mean mission life values are used in randomly-generated

problem instances to compare the optimal objective function values for each of the

two types of multiple-launch models.

4.1 Overview of Experiments

In the single-launch experiments, we will demonstrate the advantages of using

the prioritization model rather than a greedy payload selection heuristic. In the

multiple-launch experiments, we demonstrate the benefit of considering the future

in the multiple-launch prioritization models. All experiments were conducted on an

IBMr Thinkpad with a 1.86 GHz Intelr Centrino processor and 0.99 GB of memory.

4.1.1 Single-Launch Overview

In order to analyze the results of the single-launch payload prioritization model,

Model (3.3), we employ a greedy heuristic that might be used in a realistic payload

selection strategy. The expected budget for the launch is first computed and used in

a modified payload prioritization formulation, Model (3.3) with only a single budget

scenario. The problem, solved using CPlex solver by ILOGr, yields the optimal

reward for the expected budget and the list of payloads that should be included

on the satellite bus. After a budget realization, we use one of two heuristics to

adjust the payloads. In the first, we remove payloads from the list incrementally to

drive the cost below the budgets which are less than the expected budget. In the

4-1

second, we add payloads to the list within the confines of the engineering specification

constraints and ensuring the total cost remains less than the higher budget.

The following notation is used in both the low and high budget heuristics.

Let R denote the optimal reward value obtained when the model is solved using the

expected budget level, and let x, y and z denote the optimal solution with respective

definitions,

xk =





1 if payload k is included

0 otherwise

,

ykj =





1 if payload k satisfies sole-source requirement j

0 otherwise

,

zj = the number of payloads that satisfy multi-source requirement j.

Define C =
∑

k∈K ckxk as the total cost of the payloads selected for inclusion on the

satellite bus.

We first describe the low budget heuristic, i.e., that used to remove payloads

from the solution of the mean-value problem, when the budget realization is lower

than the mean. The objective of the heuristic is to remove payloads from the bus

until C is less than B, the realized budget level. Define m = [m1,m2, . . . , mn] as the

row vector of the marginal reward contributed by each payload to the total where n

denotes the number of payloads being considered and mk is the marginal reward con-

tributed by payload k. If payload k satisfies a sole-source mission requirement j, the

minimum contributed reward is equal to the reward for satisfying the requirement,

i.e., mk = rj. Otherwise, if payload k satisfies multi-source mission requirement

j, we use zj, the number of included payloads which satisfy the requirement, from

the solution to determine the marginal reward. The marginal reward contributed

is equal to βj,zj
. We select the smallest marginal reward, mv; ties are broken by

4-2

Given: x, z, R, B, C, ck ∀ k ∈ K,
rj ∀ j ∈ JS, βj,zj

∀ j ∈ JM

while B < C do
for xk = 1, k ∈ Kj, j ∈ JS do

mk ← rj

end for
for xk = 1, k ∈ Kj, j ∈ JM do

mk ← βj,zj

end for
Let: v ← argmin{mk : xk = 1}
xv ← 0
R ← R−mv

C ← C − cv

end while

Figure 4.1 Low budget heuristic algorithm.

selecting the payload with the higher cost. To remove the payload from the satellite

bus we set xv = 0. Finally, we update the total cost, C = C − cv, and the total

reward, R = R − mv. This process continues until the total cost of the payloads

on the satellite bus is within the desired budget level. The low budget heuristic

algorithm is outlined in Figure 4.1.

We now describe the high budget heuristic. The objective is to add payloads

to the bus without violating the realized budget, B, or engineering specification

constraints. We use H to denote the set of eligible payloads. If payload k satisfies a

multi-source requirement, i.e., k ∈ Kj and j ∈ JM , then k is included in H if xk = 0.

If k satisfies a sole-source requirement, i.e., k ∈ Kj and j ∈ JS, then k is included

in H only if ykj = 0 for all k ∈ Kj, j ∈ JS, i.e., no other payload is satisfying j.

Let m = [m1,m2, . . . , mn] denote the marginal reward contributed by each eligible

payload to the total where n denotes the number of payloads under consideration

and mk denotes the marginal reward contributed by payload k. If payload k satisfies

a sole-source mission requirement j, the marginal reward is equal to the reward for

satisfying the requirement, i.e., mk = rj. Otherwise, if payload k satisfies multi-

source mission requirement j, we use zj, the number of included payloads which

4-3

Given: x, y, z, R, B, C, ck ∀ k ∈ K, rj ∀ j ∈ JS,
βj,zj

∀ j ∈ JM , Ad ∀ d ∈ D, akd ∀ k ∈ K, d ∈ D
Set: H = {k : xk = 0, k ∈ Kj, j ∈ JM}∪

{k : ykj = 0, k ∈ Kj, j ∈ JS}
while H 6= ∅ do

for k ∈ H do
if k ∈ Kj, j ∈ JS then

mk ← rj

else if k ∈ Kj, j ∈ JM then
mk ← βj,zj+1

end if
end for
Let: v ← argmax{mk : k ∈ H}
if B ≥ C + cv, Ad ≥

∑
k akdxk + avd then

xv ← 1
H = H \ {v}
R ← R + mv

C ← C + cv

else
H = H \ {v}

end if
end while

Figure 4.2 High budget heuristic algorithm.

satisfy the requirement, from the solution to determine the marginal reward. The

marginal reward contributed is βj,zj+1. We select the largest marginal reward, mv.

If the addition of payload v does not exceed the realized budget (i.e., if C + cv < B)

or the engineering specifications (i.e., if
∑

k akdxk + avd < Ad), then payload v is

added to the satellite bus, i.e., xv = 1. We update the total cost, C = C +cv, update

the total reward, R = R + mv, and remove payload v from the eligible payload list,

H = H \ {v}. If the addition of payload v does violate the budget or engineering

specification constraints, we remove payload v from the eligible list, H = H \ {v}.
This process continues until all payloads are removed from the eligible list. The high

budget heuristic algorithm is outlined in Figure 4.2.

We compute the expected reward of the payload selection heuristic using the

weighted sum of the reward for each of the three budget scenarios. For instance, if

4-4

the low budget reward is 20, the medium reward 50 and the high reward 100 with

respective probabilities 0.2, 0.6, and 0.2, the total expected reward is (0.2 × 20) +

(0.6× 50) + (0.2× 100) = 54 reward units. We treat the payload selection heuristic

objective function value as a baseline and measure the percent improvement in the

objective function value obtained by using the payload prioritization model. Let

H∗ denote the expected reward of the payload selection heuristic and let P ∗ denote

the optimal expected reward obtained from the payload prioritization model. The

percent improvement is given by

(
P ∗

H∗ − 1

)
× 100%. (4.1)

The solution to the payload selection heuristic will always yield a feasible solution

to the single-launch prioritization model. However, the objective function value will

only sometimes be optimal. Therefore, P ∗ ≥ H∗, and we always see nonnegative

percentage improvements. We compare the mean, median and maximum percent

improvement in our numerical experiments.

One hundred problem instances were randomly-generated to compare the pay-

load selection heuristic and the payload prioritization model. We consider three

problem sizes: small (0 - 250 variables), medium (250 - 1,000 variables), and large

(1,000+ variables). The problem size, number of payloads, sole-source requirements

and multi-source requirements considered in this experiment are listed in Table 4.1.

Payloads are divided evenly among the requirements, i.e., each mission requirement

has the same number of payloads with which it can be satisfied. For instance, in the

large problem there are three payloads for each mission requirement. The number

Table 4.1 Problem sizes for random problem instances.
Problem Size # Pylds S.S. Reqs M.S. Reqs Integer Vars Binary Vars
Small 6 1 2 6 117
Medium 12 2 2 6 468
Large 18 2 4 12 1008

4-5

of integer and binary decision variables in the prioritization model for each case are

listed in the last two columns.

The payload parameter distributions are summarized in Table 4.2. For exam-

ple, each cost ck is selected by drawing a realization from a continuous U(250,1000)

distribution, independent of the other parameter values. The cost, weight, power

and volume ranges are based on realistic payload information obtained from Wertz

and Larson[24]. The sole-source rewards are assigned a continuous uniform value

between 0 and 50. We assume that the reward functions for all multi-source re-

quirements are concave. The multi-source requirements are assigned a continuous

uniformly distributed initial reward on the range 0 to 50. Subsequent rewards are

assigned uniformly between 0 and the previous reward to account for the diminishing

reward accrued.

The satellite bus capacities are based on the randomly-generated payload data.

Let C, W,P , and V denote the total cost, weight, power and volume of the randomly-

generated payloads, respectively. The distributions of the satellite bus capacities are

shown in Table 4.3. We bound the engineering specifications below by 25 percent of

the total physical needs of the randomly-generated payloads, C. This ensures that

Table 4.2 Payload parameter distributions.
Parameter Distribution
Cost ($100k) U(250, 1,000)
Weight (lbs) U(50, 1,000)
Power (W) U(50, 1,000)
Volume (ft3) U(2, 15)
Sole-Source Reward U(0, 50)
Multi-Source Reward U(0, 50)

Table 4.3 Satellite bus capacity distributions.
Parameter Distribution
Weight (lbs) U(0.25W , W)
Power (W) U(0.25P , P)
Volume (ft3) U(0.25V , V)

4-6

there will be enough space on the satellite bus to include payloads. The specifications

are bounded above by the total consumption of all the randomly-generated payloads.

Randomly choosing the satellite bus capacities allows each problem instance to be

constrained by at least one of the engineering specifications.

We assume that the budget for each launch is beta distributed with scale

parameter α and shape parameter β, and the range is scaled to the total cost of

the available payloads. We consider three possible parameter combinations for the

continuous budget distributions. First, we set α = 1 and β = 1 and scale the

range of the distribution to cover the interval [250, C]. This is equivalent to using a

continuous uniform distribution on the budget interval. For the right-skewed budget

scenario, we use α = 1.5 and β = 3 scaled to the same budget interval. Finally, we

consider α = 5 and β = 5 to obtain a truncated normal distribution. The three beta

distributions are depicted over the range [0, 1] in Figure 4.3. We use the extended

Pearson-Tukey method[4] to approximate each of the three continuous distributions

using three discrete points. The 0.05 and 0.95 fractiles are assigned a probability

of 0.185 and the median is assigned probability 0.63. The MATLABr and GAMSr

codes for the single-launch experiments are included in Appendix A.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1

x

f(
x
)

Beta(1,1) Beta(1.5,3) Beta(5,5)

Figure 4.3 Budget distributions used for Pearson-Tukey approximations.

4-7

4.1.2 Multiple-Launch Overview

We compare the optimal objective function values of the sequential multiple-

launch prioritization model and the multiple-launch prioritization model which con-

siders the future to determine the benefit of accounting for future launches. We

measure the percent improvement of the model considering the future over that of

the sequential model. The optimal objective function value of the model consider-

ing future launches is denoted F ∗ and the optimal objective function value of the

sequential model is denoted S∗. We compute the percent improvement by

(
F ∗

S∗
− 1

)
× 100%. (4.2)

It is worth noting that the model which considers the future will never yield a smaller

objective function value than the sequential multiple-launch model since the latter

always yields a feasible solution to the former. In other words, F ∗ ≥ S∗. Thus, as

in the single-launch experiment, we will always see nonnegative improvement.

Problem instances were generated for twelve potential payloads using the pa-

rameters listed in Tables 4.2 and 4.3. We consider only the right-skewed Pearson-

Tukey approximation of the budget distribution. We use mean mission lives of 3, 4

and 5 launches and launch horizons of 5 and 8 launches. If ∆ = 2, the horizon is 10 or

16 years and the payload lifetimes are 6, 8 or 10 years, respectively. We assume the

constellation is empty at the time of the first launch. Table 4.4 shows the problem

size for each launch horizon; the sequential model and the model which considers

the future have the same number of variables. The MATLABr and GAMSr codes

for the multiple-launch experiments are included in Appendix B.

Table 4.4 Problem sizes for random problem instances.
Pylds Launches S.S. Reqs M.S. Reqs Integer Vars Binary Vars

12 5 2 2 120 2940
12 8 2 2 192 4704

4-8

4.2 Numerical Results and Conclusions

4.2.1 Single-Launch Experiments

We consider three cases: six payloads, 12 payloads and 18 payloads. In each

case, 100 randomly-generated problem instances were solved by both the payload

selection heuristic and the payload prioritization model. The percent improvement

was calculated using the heuristic as the baseline value and the prioritization scheme

as the improved solution. The mean, median, and maximum percent improvements

are summarized in Table 4.5. If the heuristic yielded the optimal objective function

value, the instance is counted in the ‘No Improvement’ column. The number of

instances whose solutions lied within various ranges of improvement is provided in

Table 4.6. Histograms for the percent improvement under each budget distribution

approximation are shown in Figures 4.4 - 4.6. The areas shaded with upward lines (/)

correspond to the uniformly distributed budget scenarios, the areas which are shaded

in solid gray correspond to the right-skewed budget scenarios, and the areas shaded

with downward lines (\) correspond to the truncated normal budget scenarios.

Table 4.5 Percent improvement for random, single-launch problem instances.
Pylds. Bgt. Wght. Mean Median Max

Uniform 2.863 2.695 15.670
6 Right-skewed 7.376 7.907 81.420

Truncated normal 1.712 2.415 9.500
Uniform 2.304 1.450 13.120

12 Right-skewed 5.183 5.206 28.920
Truncated normal 1.278 1.927 7.820

Uniform 2.142 3.182 10.080
18 Right-skewed 4.568 3.860 17.970

Truncated normal 0.644 1.127 3.520

4-9

Table 4.6 Number of single-launch solutions showing improvement.
Pylds. Bgt. Wght. No Imp. 0 - 5% 5 - 10% >10%

Uniform 54 15 20 11
6 Right-skewed 46 10 20 24

Truncated normal 61 24 15 0
Uniform 46 29 22 3

12 Right-skewed 27 30 24 19
Truncated normal 43 53 4 0

Uniform 35 51 13 1
18 Right-skewed 13 53 22 12

Truncated normal 40 60 0 0

54

15
20

11

46

10

20
24

61

24

15

0
0

10

20

30

40

50

60

70

80

90

100

None 0-5% 5-10% >10%

Improvement

#
 o
f
in
s
ta
n
c
e
s

Uniform

Right-skewed

Normal truncated

 Figure 4.4 Histogram of percent improvements for small problem instances.

46

29
22

3

27 30
24

19

43

53

4
0

0

10

20

30

40

50

60

70

80

90

100

None 0-5% 5-10% >10%

Improvement

#
 o
f
in
s
ta
n
c
e
s

Uniform

Right-skewed

Normal truncated

 Figure 4.5 Histogram of percent improvements for medium problem instances.

4-10

46

29
22

3

27 30
24

19

43

53

4
0

0

10

20

30

40

50

60

70

80

90

100

None 0-5% 5-10% >10%

Improvement

#
 o
f
in
s
ta
n
c
e
s

Uniform

Right-skewed

Normal truncated

 Figure 4.6 Histogram of percent improvements for large problem instances.

Overall, the payload prioritization model outperforms the payload selection

heuristic. For the medium and large problem instances, the model had improvement

over the heuristic greater than 50% of the instances. The payload prioritization

model shows the most improvement when the budget distribution is skewed. In the

presence of right-skewed budget scenarios, the model had a more considerable (>

5%) mean improvement than did the heuristic. The uniform and truncated normal

budget scenarios also showed improvement, but to a lesser extent. Likewise, the

number of problem instances in which the heuristic yielded the optimal solution

was substantially smaller when the budget distribution was skewed to the left. A

considerable number of problem instances yielded percent improvements greater than

ten percent. In general, the experiments that assumed right-skewed budget scenarios

appear to yield greater improvements than the other budget distributions.

4.2.2 Multiple-Launch Experiments

For the multiple-launch experiment, we consider two launch horizons and three

payload mean mission lives. For every launch-lifetime combination, we solved the

sequential payload prioritization model and the model which accounts for the future

using 100 randomly-generated problem instances with twelve payloads each. We

used the right-skewed budget scenario approximations as they showed the greatest

4-11

improvement for the single-launch model. The percent improvement was calculated

using the sequential launch model as the baseline value and the model which considers

the future as the improved solution. The mean, median, and maximum percent

improvements are summarized in Table 4.7. If the sequential model yielded the

optimal objective function value, the instance is counted in the ‘No Improvement’

column. The number of instances whose solutions lied within various ranges of

improvement is provided in Table 4.8. Histograms for the percent improvement

under each launch horizon for each mean mission life are shown in Figures 4.7 and

4.8. The areas shaded with upward lines (/) correspond to the experiments with a

mean mission life of 3 launches, the areas which are shaded in solid gray correspond

to a mean mission life of 4, and the areas shaded with downward lines (\) correspond

to instances in which the mean mission life is 5.

Table 4.7 Percent improvement for random, single-launch problem instances.
Pylds. Bgt. Wght. Mean % Median % Max % Min %

3 1.911 2.829 11.134
5 4 2.182 1.683 16.589

5 2.607 2.794 20.004
3 1.879 2.334 6.918

8 4 1.774 1.650 7.283
5 2.139 2.374 10.060

Table 4.8 Number of single-launch solutions showing improvement.
Pylds. Bgt. Wght. No Imp. 0 - 5% 5 - 10% >10%

3 9 82 7 2
5 4 6 82 8 4

5 10 74 9 7
3 3 93 4 0

8 4 3 92 5 0
5 3 92 4 1

4-12

9

82

7
2

6

82

8
4

10

74

9 7

0

10

20

30

40

50

60

70

80

90

100

None 0-5% 5-10% >10%

Improvement

#
 o
f
in
s
ta
n
c
e
s

Mean mission life - 3

Mean mission life - 4

Mean mission life - 5

 Figure 4.7 Histogram of percent improvements for 5-launch problem instances.

3 4
0

3 5
0

3 4
1

93 92 92

0

10

20

30

40

50

60

70

80

90

100

None 0-5% 5-10% >10%

Improvement

#
 o
f
in
s
ta
n
c
e
s

Mean mission life - 3

Mean mission life - 4

Mean mission life - 5

 Figure 4.8 Histogram of percent improvements for 8-launch problem instances.

Overall, the model which considers the future outperforms the sequential model.

The model which considers the future yielded an improved objective function value

in over 90% of the problem instances for the five-launch horizon and 97% of the prob-

lem instances for the eight-launch horizon when considering a right-skewed budget

distribution. While the mean percent improvement is relatively small, recall that the

improvement is in addition to the larger percent improvements seen in the single-

launch experiments over the same budget distribution.

The problem of selecting which payloads to include on a satellite is complex.

When the budget distribution is symmetric for a single satellite launch, a simplistic

greedy heuristic can be used for the selection process. However, when the budget dis-

4-13

tribution is skewed, the payload prioritization model shows substantial improvement

over the selection heuristic. With skewed budget scenarios, incorporating multiple

launches and consideration of future launches in the prioritization model further

improves the objective function value over solving a sequence of launches without

regard for the future. In the next chapter, we summarize the conclusions, offer some

recommendations, and provide suggestions for future extensions of this work.

4-14

5. Conclusions and Future Research

We developed an optimization model which prioritizes the available payloads

for each satellite bus in a sequence of launches such that the reward to the constel-

lation is maximized. The models progressed in complexity from a simple, determin-

istic single-launch payload selection model to a complex, multiple-launch payload

prioritization model which accounts for the constellation’s mission requirements, an

uncertain budget and a dependence on the composition of the constellation. We

then compared the single-launch prioritization model to a greedy payload selection

heuristic. We also compared two multiple-launch models in order to demonstrate the

improvements gained when future launches are, or are not, considered. The models

provided herein can be used in a variety of applications for which analysts have a

need to prioritize item selections.

We first demonstrated that including priority levels in the formulation of a

single-launch payload selection model improves the solution obtained by a greedy

heuristic when uncertain budget scenarios prevail. The heuristic to which we com-

pared the prioritization model used the optimal set of payloads under the expected

budget. The heuristic removed payloads from the satellite to drive the cost below the

realized budget or added payloads without exceeding the realized budget level while

maintaining feasibility. When the budget scenario distribution is skewed, the single-

launch payload prioritization model substantially outperforms the payload selection

heuristic.

Next we extended the prioritization model to include multiple launches. Two

formulations of this model were presented: the sequential prioritization model and

the multiple-launch prioritization model which considers future launches. The differ-

ence in these models is that, in the sequential case, we do not account for payloads

included on future launches. Whereas in the model that considers the future, we se-

lect payloads for all the launches in the time horizon simultaneously. In both models,

5-1

rewards are accrued for payloads existing in the constellation. When skewed budget

scenario distributions are considered, the multiple-launch prioritization model that

considers the future outperforms the model that does not.

Although the prioritization model captures the essence of the payload selection

problem, there are many ways in which the methodology can be improved. We

made several simplifying assumptions in our model: constant inter-launch times,

constant payload mean mission lives, and temporal dependence. The introduction

of uncertain inter-launch times would make the model more realistic in the sense that

launch schedules are not fixed. In particular, manufacturing delays significantly add

uncertainty that is not accounted for in the present models. Likewise, the mean

mission life of each satellite payload was assumed to be constant. Incorporating

a more realistic degradation process may prove worthwhile. Finally, we assumed

that budget scenarios had temporal dependence. In reality, satellite launch budgets

are independent and, therefore, so are their realized budget scenarios. Introducing

temporal independence, i.e., each launch can realize a different budget scenario (e.g.,

high, medium, low), may improve the model. While each of these enhancements may

drastically increase the complexity of the formulation, they may also increase realism

of the prioritization models.

5-2

Bibliography

1. Bell, A.J. (2002). Analysis of GPS Satellite Allocation for the United States
Nuclear Detonation Detection System (USNDS). M.S. Thesis, Air Force Institute
of Technology, Wright-Patterson AFB, OH.

2. Birge, J.R. and F. Louveaux (1997). Introduction to Stochastic Programming.
Springer-Verlag, New York, NY.

3. Brown, G., Dell R., Holtz H. and A. Newman (2003). How Space Command
optimizes long term investment in space systems. Interfaces, 33, (4), 1-14.

4. Clemen, R.T. and T. Reilly (2001). Making Hard Decisions. Duxbury, USA.

5. Dean, B.C., Goemans, M.X. and J. Vondrak (2004). Approximating the stochas-
tic knapsack problem: The benefit of adaptivity. Proceedings - Annual IEEE
Symposium on Foundations of Computer Science, FOCS, Rome, Italy, October
2004, 208-217.

6. Dean, B. C., Goemans, M.X. and J. Vondrak (2005). Adaptivity and approxi-
mation for stochastic packing problems. Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, Vancouver, BC, Canada, January 2005, 395-
404.

7. Diekelman, D. (1998). Design guidelines for post-2000 constellations. Proceedings
of Mission Design and Implementation of Satellite Constellations Workshop,
Toulouse, France, November 1997, 11-21.

8. EchoStar Communications Corporation. (2006). 2005 Annual Report. Engle-
wood, CO.

9. Farias, V.F. and B. Van Roy (2005). Approximation algorithms for dynamic
resource allocation. Operations Research Letters. 34, 180-190.

10. Flory, J.A. (2006). Optimizing Mean Mission Duration for Multiple-Payload
Satellites. M.S. Thesis, Air Force Institute of Technology, Wright-Patterson
AFB, OH.

11. Garey, M.R. and D.S. Johnson (1979). Computers and Intractability : A Guide
to the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA.

12. General Accounting Office (2005). Defense Acquisitions: Incentives and Pres-
sures That Drive Problems Affecting Satellite and Related Acquisitions. Wash-
ington D.C., GPO.

13. Golden, B.L., Levy, L. and R. Vohra (1987). The orienteering problem. Naval
Research Logistics, 34, 307-318.

BIB-1

14. Jacobs, J.L., Amato, A.J., Bolduc, M.D., Butler, S.P. and J.E. Caspero
(1992). OSCARS - Operational Constellation Availability and Reliability Simu-
lation. Proceedings of the 1992 Summer Computer Simulation Conference, Reno,
Nevada, July 27-30, 878-882.

15. Jung, Ho-Won (1998). Optimizing value and cost in requirements analysis. IEEE
Software, 15, 4, 74-78.

16. Lansard, E. and J.-L. Palmade (1998). Satellite constellation design: searching
for global cost-efficiency trade-offs. Proceedings of Mission Design and Imple-
mentation of Satellite Constellations Workshop, Toulouse, France, November
1997, 23-31.

17. Laporte, G. and S. Martello (1990). The selective travelling salesman problem.
Discrete Applied Mathematics, 26, 193-207.

18. Mettu, R.R. and G.C. Plaxton (2003). The online median problem. SIAM
Journal on Computing, 32, 2, 816-832.

19. Morton, D.P., Pan, F. and K.J. Saeger. (2007) Models for nuclear smuggling
interdiction. IIE Transactions, 38, 3-14.

20. Pan, F. and D.P. Morton. Minimizing a stochastic maximum-reliability path.
Networks. To appear.

21. Simth, D.E. (2004). Choosing objectives in over-subscription planning. Proceed-
ings - International Conference on Automated Planning and Scheduling, ICAPS,
Whistler, BC, Canada, June 2004, 393-401.

22. Tang, H. and E. Miller-Hooks (2005). Algorithms for a stochastic selective trav-
elling salesperson problem. Journal of the Operational Research Society, 56,
439452.

23. Van Slyke, R.M. and R.J.-B. Wets (1969). L-shaped linear programs with ap-
plications to optimal control and stochastic programming. SIAM Journal on
Applied Mathematics, 17, 638-663.

24. Wertz, J. and W. Larson (1999). Space Mission Analysis and Design. Microcosm
Press, Torrance, CA.

25. Wolsey, L.A. (1998). Integer Programming. John Wiley & Sons, Inc., New York.

BIB-2

Appendix A. Single-Launch Code
1 % %%%

2 % AUTHOR: Capt Ben Kallemyn

3 % AFIT/ENS

4 % March 2007

5 %

6 % This program sets up the problem data for the

7 %

8 % SINGLE-LAUNCH Model vs HEURISTIC

9 %

10 % payload prioritization problem and

11 % calls GAMS to solve the model.

12 %

13 % There are 10 available requirements (not all must be used).

14 % 5 are multi-source requirements,

15 % 5 are sole-source requirements.

16 % There is space for up to 10 payloads for each requirement.

17 %

18 % %%%

19

20 clear

21 format compact

22

23 %set the budget levels and probability masses

24 budgets = [1000; 1500; 2000];

25 qs = [0.185; 0.63; 0.185];

26

27 Values = [];

28

29 tic

30

31 for i = 1:100

32

33 %randomly generate payload data

34 [payloads,as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s] = randomizer(18);

35

36 %calculate the total cost, weight power and volume of payloads

37 totcost = sum(cs);

38 rng = totcost - 250;%budget range

39 totwei = sum(as(:,1));

40 totpow = sum(as(:,2));

41 totvol = sum(as(:,3));

A-1

42

43 %generate the bus capacities

44 bws(1) = .25*totwei+(totwei-.25*totwei)*rand;

45 bws(2) = .25*totpow+(totpow-.25*totpow)*rand;

46 bws(3) = .25*totvol+(totvol-.25*totvol)*rand;

47

48 %budgets for large variance scenarios

49 % budgets(1) = 250+(.1*totcost-250)*rand;

50 % budgets(2) = .2*totcost+(.4*totcost-.2*totcost)*rand;

51 % budgets(3) = .9*totcost+(totcost-.9*totcost)*rand;

52

53 %budgets for low variance scenarios

54 % budgets(2) = 250+(totcost-250)*rand;

55 % budgets(1) = .85*budgets(2);

56 % budgets(3) = 1.15*budgets(2);

57

58 %compute budgets using betainv (1,1), p = .05, .5, .95 for Pearson Tukey

59 %Uniform

60 budgets(1) = rng*betinv(.05,1,1)+250;

61 budgets(2) = rng*betinv(.5,1,1)+250;

62 budgets(3) = rng*betinv(.95,1,1)+250;

63 [Value1] = solver(budgets,qs,bws,payloads,as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s);

64

65 %compute budgets using betainv (1.5,3), p = .05, .5, .95 for Pearson Tukey

66 %Left-Skewed

67 budgets(1) = rng*betinv(.05,1.5,3)+250;

68 budgets(2) = rng*betinv(.5,1.5,3)+250;

69 budgets(3) = rng*betinv(.95,1.5,3)+250;

70 [Value2] = solver(budgets,qs,bws,payloads,as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s);

71

72

73 %compute budgets using betainv (5,5), p = .05, .5, .95 for Pearson Tukey

74 %Bell-Shaped

75 budgets(1) = rng*betinv(.05,5,5)+250;

76 budgets(2) = rng*betinv(.5,5,5)+250;

77 budgets(3) = rng*betinv(.95,5,5)+250;

78 [Value3] = solver(budgets,qs,bws,payloads,as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s);

79

80 disp(i)

81

82 %store all results in one matrix

83 Values = [Values; Value1 Value2 Value3];

84

A-2

85

86 end

87

88 toc

1 function[payloads,as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s]=randomizer(p)

2

3 %bounds for requirements

4

5 %6 payloads

6 if p == 6

7 % Req 1 2 3 4 5 6 7 8 9 10

8 bnd = [2 2 0 0 0 2 0 0 0 0;%lb of # of pylds

9 2 2 0 0 0 2 0 0 0 0;%ub of # of pylds

10 0 0 0 0 0 10 10 10 10 10;%lb of reward

11 50 50 50 50 50 50 50 50 50 50;%ub of reward

12 5 5 5 5 5 5 5 5 5 1;%lb of cost * 50

13 20 20 20 20 20 20 20 20 20 20;%ub of cost * 50

14 1 1 1 1 1 1 1 1 1 1;%lb of weight * 50

15 20 20 20 20 20 20 20 20 20 20;%ub of weight * 50

16 1 1 1 1 1 1 1 1 1 1;%lb of power * 50

17 20 20 20 20 20 20 20 20 20 20;%ub of power * 50

18 2 2 2 2 2 2 2 2 2 2;%lb of volume

19 15 15 15 15 15 15 15 15 15 15];%ub of volume

20

21 elseif p == 9

22 %12 payloads

23 % Req 1 2 3 4 5 6 7 8 9 10

24 bnd = [3 3 0 0 0 3 0 0 0 0;%lb of # of pylds

25 3 3 0 0 0 3 0 0 0 0;%ub of # of pylds

26 0 0 0 0 0 10 10 10 10 10;%lb of reward

27 50 50 50 50 50 50 50 50 50 50;%ub of reward

28 5 5 5 5 5 5 5 5 5 1;%lb of cost * 50

29 20 20 20 20 20 20 20 20 20 20;%ub of cost * 50

30 1 1 1 1 1 1 1 1 1 1;%lb of weight * 50

31 20 20 20 20 20 20 20 20 20 20;%ub of weight * 50

32 1 1 1 1 1 1 1 1 1 1;%lb of power * 50

33 20 20 20 20 20 20 20 20 20 20;%ub of power * 50

34 2 2 2 2 2 2 2 2 2 2;%lb of volume

35 15 15 15 15 15 15 15 15 15 15];%ub of volume

36

37 elseif p == 12

38 %12 payloads

39 % Req 1 2 3 4 5 6 7 8 9 10

A-3

40 bnd = [3 3 0 0 0 3 3 0 0 0;%lb of # of pylds

41 3 3 0 0 0 3 3 0 0 0;%ub of # of pylds

42 0 0 0 0 0 10 10 10 10 10;%lb of reward

43 50 50 50 50 50 50 50 50 50 50;%ub of reward

44 5 5 5 5 5 5 5 5 5 1;%lb of cost * 50

45 20 20 20 20 20 20 20 20 20 20;%ub of cost * 50

46 1 1 1 1 1 1 1 1 1 1;%lb of weight * 50

47 20 20 20 20 20 20 20 20 20 20;%ub of weight * 50

48 1 1 1 1 1 1 1 1 1 1;%lb of power * 50

49 20 20 20 20 20 20 20 20 20 20;%ub of power * 50

50 2 2 2 2 2 2 2 2 2 2;%lb of volume

51 15 15 15 15 15 15 15 15 15 15];%ub of volume

52

53 elseif p == 18

54 %20 payloads

55 % Req 1 2 3 4 5 6 7 8 9 10

56 bnd = [3 3 3 3 0 3 3 0 0 0;%lb of # of pylds

57 3 3 3 3 0 3 3 0 0 0;%ub of # of pylds

58 0 0 0 0 0 0 0 0 0 0;%lb of reward

59 50 50 50 50 50 50 50 50 50 50;%ub of reward

60 5 5 5 5 5 5 5 5 5 1;%lb of cost * 50

61 20 20 20 20 20 20 20 20 20 20;%ub of cost * 50

62 1 1 1 1 1 1 1 1 1 1;%lb of weight * 50

63 20 20 20 20 20 20 20 20 20 20;%ub of weight * 50

64 1 1 1 1 1 1 1 1 1 1;%lb of power * 50

65 20 20 20 20 20 20 20 20 20 20;%ub of power * 50

66 2 2 2 2 2 2 2 2 2 2;%lb of volume

67 15 15 15 15 15 15 15 15 15 15];%ub of volume

68 end

69

70 %count the number of available payloads

71 k = zeros(1,10);

72 for i = 1:10

73 k(i) = floor(bnd(1,i) + (bnd(2,i) - bnd(1,i) + 1) * rand);

74 end

75 payloads = sum(k);

76

77 %initialize multi-source reward values

78 beta1s = zeros(10,2);

79 beta2s = zeros(10,2);

80 beta3s = zeros(10,2);

81 beta4s = zeros(10,2);

82 beta5s = zeros(10,2);

A-4

83

84 %randomly generate multi-source rewards (diminishing)

85 for i = 1:5

86 u = bnd(4,i);

87 switch i

88 case 1

89 for j = 1:k(i)

90 beta1s(j,1) = bnd(3,i)+(u-bnd(3,i)+1)*rand;

91 u = beta1s(j,1);

92 end

93 case 2

94 for j = 1:k(i)

95 beta2s(j,1) = bnd(3,i)+(u-bnd(3,i)+1)*rand;

96 u = beta2s(j,1);

97 end

98 case 3

99 for j = 1:k(i)

100 beta3s(j,1) = bnd(3,i)+(u-bnd(3,i)+1)*rand;

101 u = beta3s(j,1);

102 end

103 case 4

104 for j = 1:k(i)

105 beta4s(j,1) = bnd(3,i)+(u-bnd(3,i)+1)*rand;

106 u = beta4s(j,1);

107 end

108 case 5

109 for j = 1:k(i)

110 beta5s(j,1) = bnd(3,i)+(u-bnd(3,i)+1)*rand;

111 u = beta5s(j,1);

112 end

113 end

114 end

115

116 %initialize sole-source rewards values

117 rs = zeros(5,1);

118

119 %generate sole-source reward values

120 for i = 1:5

121 if k(i+5) > 0

122 rs(i) = bnd(3,i+5)+(bnd(4,i+5)-bnd(3,i+5)+1)*rand;

123 end

124 end

125

A-5

126 %initialize payload parameters and costs

127 as = zeros(100,3);

128 cs = zeros(100,1);

129

130 %generate payload parameters and costs

131 for i = 1:10

132 for j = 1:k(i)

133 p = (10 * (i - 1)) + j;

134 as(p,1) = 50*(bnd(7,i)+(bnd(8,i)-bnd(7,i)+1)*rand);

135 as(p,2) = 50*(bnd(9,i)+(bnd(10,i)-bnd(9,i)+1)*rand);

136 as(p,3) = (bnd(11,i)+(bnd(12,i)-bnd(11,i)+1)*rand);

137 cs(p) = 50*(bnd(5,i)+(bnd(6,i)-bnd(5,i)+1)*rand);

138 end

139 end

140

1 function [Value] = solver(budgets,qs,bws,payloads,as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s)

2

3 %K is the row matrix of payload indices

4 K = [];

5 for k = 1:100

6 if cs(k) ~= 0

7 K = [K k];

8 end

9 end

10

11 %number of payloads and scenarios for this instance

12 [z payloads] = size(K);

13 [scenarios z] = size(qs);

14

15 %Call the callgams function which invokes GAMS/CPLEX to solve the problem

16 [X1,T1,t1,X3,T3,t3] = callgams(payloads,scenarios,budgets,qs,bws,...

17 as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s);

18

19 %We need to compare the reward from GAMS (T3) to the expression q1*lorew +

20 %q2*medrew + q3*hirew also store the payload lists lolist, medlist, hilist

21

22

23 %Useful values for heuristics

24 pay = sum(X1.val,2);

25 cost = sum(pay.*cs);

26 wei = sum(pay.*as(:,1));

27 pow = sum(pay.*as(:,2));

28 vol = sum(pay.*as(:,3));

A-6

29 lobud = budgets(1);

30 medbud = budgets(2);

31 hibud = budgets(3);

32 ebud = sum(budgets.*qs);

33 reward = T1.val;

34

35 %Start the timer for the heuristic

36 tstart = clock;

37

38 %Run the low heuristic for the low budget

39 [lolist,loreward,locost] = lowheur(payloads,pay,reward,cost,...

40 lobud,beta1s,beta2s,beta3s,beta4s,beta5s,rs,cs);

41

42 %Run the low heuristic for the med budget if it is lower than the expected

43 %budget and the high heuristic if it is greater

44 if medbud < ebud

45 [medlist,medreward,medcost] = lowheur(payloads,pay,reward,cost,...

46 medbud,beta1s,beta2s,beta3s,beta4s,beta5s,rs,cs);

47 elseif medbud > ebud

48 [medlist,medreward,medcost] = hiheur(payloads,pay,reward,cost,...

49 medbud,as,bws,beta1s,beta2s,beta3s,beta4s,beta5s,rs,cs);

50 else

51 medlist = pay;

52 medreward = reward;

53 medcost = cost;

54 end

55

56 %Run the high heuristic for the high budget

57 [hilist,hireward,hicost]=hiheur(payloads,pay,reward,cost,hibud,...

58 as,bws,beta1s,beta2s,beta3s,beta4s,beta5s,rs,cs);

59

60 %Stop the timer and update the computation time for the PS

61 timed = clock;

62 time = etime(clock,tstart);

63 t1.val = t1.val + time;

64

65 %The list of payloads and reward for the model are

66 list3 = sum(X3.val,2);

67 reward3 = T3.val;

68

69 %The reward vector for the heuristic is

70 rewards1 = [loreward; medreward; hireward];

71

A-7

72 %The weighted reward for the PS is

73 reward1 = sum(qs.*rewards1);

74

75 %Generate an output table summarizing results

76 rdiff = (reward3 - reward1)/reward1;

77 tdiff = abs(t3.val - t1.val)/t1.val;

78 Value = [reward3 reward1 rdiff];

1 function [X1,T1,t1,X3,T3,t3] = callgams(payloads,scenarios,budgets,qs,...

2 bws,as,cs,rs,beta1s,beta2s,beta3s,beta4s,beta5s)

3

4 %Generate the arrays for the labels to be passed to GAMS

5 pay = num2str(payloads);

6 K = {};

7 I = {};

8 for i = 1:100

9 k = [’K’ int2str(i)];

10 K = [K k];

11 end

12 for i = 1:payloads

13 p = [’I’ int2str(i)];

14 I = [I p];

15 end

16 W = {};

17 for i = 1:scenarios

18 w = [’W’ int2str(i)];

19 W = [W w];

20 end

21 S = {’WEI’,’POW’,’VOL’};

22 J = {’J6’,’J7’,’J8’,’J9’,’J10’};

23 P = {};

24 for i = 1:10

25 p = [’P’ int2str(i)];

26 P = [P p];

27 end

28

29 %B3 is the budget levels for the PPR problem

30 B3.name = ’B’;

31 B3.val = budgets;

32 B3.labels = {W};

33

34 %Q is the probability masses

35 Q.name = ’Q’;

36 Q.val = qs;

A-8

37 Q.labels = {W};

38

39 %Calculate the expected budget

40 ebud = sum(budgets.*qs);

41

42 %B is the expected budget for the PS problem

43 B1.name = ’B’;

44 B1.val = [ebud];

45

46 %BW is the engineering specification capacities for the satellite bus

47 BW.name = ’BW’;

48 BW.val = bws;

49 BW.labels = {S};

50

51 %C is the costs for each payload

52 C.name = ’C’;

53 C.val = cs;

54 C.labels = {K};

55

56 %A is the resource consumption for each payload

57 A.name = ’A’;

58 A.val = as;

59 A.labels = {K,S};

60

61 %R is the sole-source reward

62 R.name = ’R’;

63 R.val = rs;

64 R.labels = {J};

65

66 %BETA1 is reward for multi-source reward 1

67 BETA1.name = ’BETA1’;

68 BETA1.val = beta1s;

69 BETA1.labels = {P,{’J1’,’J0’}};

70

71 %BETA2 is reward for multi-source reward 2

72 BETA2.name = ’BETA2’;

73 BETA2.val = beta2s;

74 BETA2.labels = {P,{’J2’,’J0’}};

75

76 %BETA3 is reward for multi-source reward 3

77 BETA3.name = ’BETA3’;

78 BETA3.val = beta3s;

79 BETA3.labels = {P,{’J3’,’J0’}};

A-9

80

81 %BETA4 is reward for multi-source reward 4

82 BETA4.name = ’BETA4’;

83 BETA4.val = beta4s;

84 BETA4.labels = {P,{’J4’,’J0’}};

85

86 %BETA5 is reward for multi-source reward 5

87 BETA5.name = ’BETA5’;

88 BETA5.val = beta5s;

89 BETA5.labels = {P,{’J5’,’J0’}};

90

91 %Call GAMS to solve the PPR(3) and PS(1) problems

92 %X is the solution for the decision variable Xkiw

93 %T is the maximum reward

94 %t is the computational time to solve the problem

95 [X3,T3,t3]=gams(’J100’,’pay’,B3,Q,BW,C,A,R,BETA1,BETA2,BETA3,BETA4,BETA5);

96 [X1,T1,t1]=gams(’J100_1b’,’pay’,B1,BW,C,A,R,BETA1,BETA2,BETA3,BETA4,BETA5);

1 ***

2 *

3 * AUTHOR: Capt Ben Kallemyn

4 * AFIT/ENS

5 * March 2007

6 *

7 * This program solves the payload prioritization problem with requirements

8 *

9 * The following assumptions/limitations hold for this program:

10 * 1. There is a maximum of 10 requirements evenly split between

11 * sole-source and multi-source types.

12 * 2. Associated with each requirement is space for 10 payloads.

13 * If there is a need for fewer, fill in the spaces with zeros.

14 * 3. The reward functions for the multi-source requirements are

15 * concave, piecewise linear. The slopes must be non-increasing.

16 *

17 ***

18

19 *This sets the solver to CPLEX

20 OPTIONS MIP=CPLEX;

21

22 *This sets the global variable for the # of payloads

23 $setglobal pay 6

24 $if exist matglobs.gms $include matglobs.gms

25

26 *Define the sets

A-10

27 SETS

28 K available payload spaces / K1*K100 /

29 I priority levels / 1 * %pay% /

30 J requirements / J1*J10 /

31 W budget scenarios / W1*W3 /

32 SPEC engineering specifications / WEI, POW, VOL /

33 KK(K) payloads which are actually available

34 V(K) another name for the set of payloads

35 JM1(J) multi-source requirement 1

36 JM2(J) multi-source requirement 2

37 JM3(J) multi-source requirement 3

38 JM4(J) multi-source requirement 4

39 JM5(J) multi-source requirement 5

40 JS(J) sole-source requirements / J6*J10 /

41 JS6(JS) sole-source requirement 1

42 JS7(JS) sole-source requirement 2

43 JS8(JS) sole-source requirement 3

44 JS9(JS) sole-source requirement 4

45 JS10(JS) sole-source requirement 5

46 KJ(K) the set of payloads which satisfy the sole-source reqs

47 KJ1(K) the set of payloads which satisfy req 1

48 KJ2(K) the set of payloads which satisfy req 2

49 KJ3(K) the set of payloads which satisfy req 3

50 KJ4(K) the set of payloads which satisfy req 4

51 KJ5(K) the set of payloads which satisfy req 5

52 KJ6(K) the set of payloads which satisfy req 6

53 KJ7(K) the set of payloads which satisfy req 7

54 KJ8(K) the set of payloads which satisfy req 8

55 KJ9(K) the set of payloads which satisfy req 9

56 KJ10(K) the set of payloads which satisfy req 10

57 P counter for peicewise linear functions / P1*P10 / ;

58

59 PARAMETERS

60 B(W) budget scenarios

61 / W1 1500

62 W2 2000

63 W3 6000 /

64 BW(SPEC) specifications

65 / WEI 1900

66 POW 2600

67 VOL 22 /

68 C(K) cost of each payload

69 / K1 400

A-11

70 K2 200

71 K11 600

72 K12 500

73 K51 800

74 K52 950 /

75 Q(W) chance of budget scenario w

76 / W1 .2

77 W2 .6

78 W3 .2 /

79 R(JS) reward data

80 / J6 14

81 J7 0

82 J8 0

83 J9 0

84 J10 0 / ;

85

86 *Define set KK - the set of available payloads

87 LOOP(K$(C(K) NE 0), KK(K) = YES; V(K) = YES);

88

89 *Define the Kj subsets - the subset of payloads which satisfy each req

90 LOOP(K$(C(K) NE 0 AND ORD(K) GE 1 AND ORD(K) LE 10), KJ1(K) = YES);

91 LOOP(K$(C(K) NE 0 AND ORD(K) GE 11 AND ORD(K) LE 20), KJ2(K) = YES);

92 LOOP(K$(C(K) NE 0 AND ORD(K) GE 21 AND ORD(K) LE 30), KJ3(K) = YES);

93 LOOP(K$(C(K) NE 0 AND ORD(K) GE 31 AND ORD(K) LE 40), KJ4(K) = YES);

94 LOOP(K$(C(K) NE 0 AND ORD(K) GE 41 AND ORD(K) LE 50), KJ5(K) = YES);

95 LOOP(K$(C(K) NE 0 AND ORD(K) GE 51 AND ORD(K) LE 60), KJ6(K) = YES);

96 LOOP(K$(C(K) NE 0 AND ORD(K) GE 61 AND ORD(K) LE 70), KJ7(K) = YES);

97 LOOP(K$(C(K) NE 0 AND ORD(K) GE 71 AND ORD(K) LE 80), KJ8(K) = YES);

98 LOOP(K$(C(K) NE 0 AND ORD(K) GE 81 AND ORD(K) LE 90), KJ9(K) = YES);

99 LOOP(K$(C(K) NE 0 AND ORD(K) GE 91 AND ORD(K) LE 100), KJ10(K)= YES);

100

101 LOOP(KJ1$(C(KJ1) NE 0), JM1("J1") = YES);

102 LOOP(KJ2$(C(KJ2) NE 0), JM2("J2") = YES);

103 LOOP(KJ3$(C(KJ3) NE 0), JM3("J3") = YES);

104 LOOP(KJ4$(C(KJ4) NE 0), JM4("J4") = YES);

105 LOOP(KJ5$(C(KJ5) NE 0), JM5("J5") = YES);

106 LOOP(KJ6$(C(KJ6) NE 0), JS6("J6") = YES);

107 LOOP(KJ7$(C(KJ7) NE 0), JS7("J7") = YES);

108 LOOP(KJ8$(C(KJ8) NE 0), JS8("J8") = YES);

109 LOOP(KJ9$(C(KJ9) NE 0), JS9("J9") = YES);

110 LOOP(KJ10$(C(KJ10) NE 0), JS10("J10") = YES);

111

112 *Define set KJ - the set of payloads satisfying sole-source reqs

A-12

113 LOOP(K$(C(K) NE 0 AND ORD(K) GE 51), KJ(K)= YES);

114

115 TABLE A(K,SPEC) payload data

116 WEI POW VOL

117 K1 200 350 3

118 K2 100 450 2

119 K11 400 300 4

120 K12 300 500 4

121 K51 900 750 9

122 K52 800 700 7 ;

123

124 TABLE BETA1(P,J) slopes for peicewise liner reward function for req 1

125 J1

126 P1 8

127 P2 2 ;

128

129 TABLE BETA2(P,J) slopes for peicewise liner reward function for req 2

130 J2

131 P1 10

132 P2 5 ;

133

134 TABLE BETA3(P,J) slopes for peicewise liner reward function for req 3

135 J3

136 P1 0

137 P2 0 ;

138

139 TABLE BETA4(P,J) slopes for peicewise liner reward function for req 4

140 J4

141 P1 0

142 P2 0 ;

143

144 TABLE BETA5(P,J) slopes for peicewise liner reward function for req 5

145 J5

146 P1 0

147 P2 0 ;

148

149 VARIABLES

150 X(K,I,W) if payload k has priority level i and i is funded under scenario w

151 Y(K,J,W) if payload k satisfies requiremnt j under scenario w

152 Z(J,P,W) number of payloads which satisfy multi-source req j

153 T total expected reward ;

154

155 BINARY VARIABLES X,Y,Z;

A-13

156

157

158 EQUATIONS

159 REWARD define objective function

160 BUDGET(W) limit budget

161 SPECS(SPEC,W) limit specifications

162 PAYPRI(I,W) each priority level gets only 1 payload

163 ONEPRI(K,W) each payload has at most 1 priority level

164 CONSPRI(K,I,W) consecutive priority levels must be on list

165 CONSBUD(K,I,W) consecutive budget scenarios mmust be on list

166 ONEREQ6(JS,W) requirements 6 filled at most once per scenario

167 ONEREQ7(JS,W) requirements 7 filled at most once per scenario

168 ONEREQ8(JS,W) requirements 8 filled at most once per scenario

169 ONEREQ9(JS,W) requirements 9 filled at most once per scenario

170 ONEREQ10(JS,W) requirements 10 filled at most once per scenario

171 ONESOLE6(W)

172 ONESOLE7(W)

173 ONESOLE8(W)

174 ONESOLE9(W)

175 ONESOLE10(W)

176 DEFZ1(J,W) define decision variable z for req 1

177 DEFZ2(J,W) define decision variable z for req 2

178 DEFZ3(J,W) define decision variable z for req 3

179 DEFZ4(J,W) define decision variable z for req 4

180 DEFZ5(J,W) define decision variable z for req 5

181 LINKXY6(K,J,W) link decision variable y to x for req 6

182 LINKXY7(K,J,W) link decision variable y to x for req 7

183 LINKXY8(K,J,W) link decision variable y to x for req 8

184 LINKXY9(K,J,W) link decision variable y to x for req 9

185 LINKXY10(K,J,W) link decision variable y to x for req 10 ;

186

187

188 REWARD.. T =E= SUM(W, Q(W)*(

189 SUM((JM1,P),BETA1(P,JM1)*Z(JM1,P,W)) +

190 SUM((JM2,P),BETA2(P,JM2)*Z(JM2,P,W)) +

191 SUM((JM3,P),BETA3(P,JM3)*Z(JM3,P,W)) +

192 SUM((JM4,P),BETA4(P,JM4)*Z(JM4,P,W)) +

193 SUM((JM5,P),BETA5(P,JM5)*Z(JM5,P,W)) +

194 SUM((JS6,KJ6),R(JS6)*Y(KJ6,JS6,W)) +

195 SUM((JS7,KJ7),R(JS7)*Y(KJ7,JS7,W)) +

196 SUM((JS8,KJ8),R(JS8)*Y(KJ8,JS8,W)) +

197 SUM((JS9,KJ9),R(JS9)*Y(KJ9,JS9,W)) +

198 SUM((JS10,KJ10),R(JS10)*Y(KJ10,JS10,W)))) ;

A-14

199 BUDGET(W).. SUM((KK,I), C(KK)*X(KK,I,W)) =L= B(W) ;

200 SPECS(SPEC,W).. SUM((KK,I), A(KK,SPEC)*X(KK,I,W)) =L= BW(SPEC) ;

201 PAYPRI(I,W).. SUM(KK, X(KK,I,W)) =L= 1 ;

202 ONEPRI(KK,W).. SUM(I, X(KK,I,W)) =L= 1 ;

203 CONSPRI(KK,I,W).. X(KK,I,W) =L= SUM(V, X(V,I-1,W)) + 1$(ORD(I) EQ 1) ;

204 CONSBUD(KK,I,W).. X(KK,I,W-1) =L= X(KK,I,W) ;

205 ONEREQ6(JS6,W).. SUM(KJ6, Y(KJ6,JS6,W)) =L= 1 ;

206 ONEREQ7(JS7,W).. SUM(KJ7, Y(KJ7,JS7,W)) =L= 1 ;

207 ONEREQ8(JS8,W).. SUM(KJ8, Y(KJ8,JS8,W)) =L= 1 ;

208 ONEREQ9(JS9,W).. SUM(KJ9, Y(KJ9,JS9,W)) =L= 1 ;

209 ONEREQ10(JS10,W).. SUM(KJ10, Y(KJ10,JS10,W)) =L= 1 ;

210 ONESOLE6(W).. SUM((KJ6,I), X(KJ6,I,W)) =L= 1 ;

211 ONESOLE7(W).. SUM((KJ7,I), X(KJ7,I,W)) =L= 1 ;

212 ONESOLE8(W).. SUM((KJ8,I), X(KJ8,I,W)) =L= 1 ;

213 ONESOLE9(W).. SUM((KJ9,I), X(KJ9,I,W)) =L= 1 ;

214 ONESOLE10(W).. SUM((KJ10,I), X(KJ10,I,W)) =L= 1 ;

215 DEFZ1(JM1,W).. SUM(P,Z(JM1,P,W)) =E= SUM((KJ1,I), X(KJ1,I,W)) ;

216 DEFZ2(JM2,W).. SUM(P,Z(JM2,P,W)) =E= SUM((KJ2,I), X(KJ2,I,W)) ;

217 DEFZ3(JM3,W).. SUM(P,Z(JM3,P,W)) =E= SUM((KJ3,I), X(KJ3,I,W)) ;

218 DEFZ4(JM4,W).. SUM(P,Z(JM4,P,W)) =E= SUM((KJ4,I), X(KJ4,I,W)) ;

219 DEFZ5(JM5,W).. SUM(P,Z(JM5,P,W)) =E= SUM((KJ5,I), X(KJ5,I,W)) ;

220 LINKXY6(KJ6,JS6,W).. Y(KJ6,JS6,W) =L= SUM(I, X(KJ6,I,W)) ;

221 LINKXY7(KJ7,JS7,W).. Y(KJ7,JS7,W) =L= SUM(I, X(KJ7,I,W)) ;

222 LINKXY8(KJ8,JS8,W).. Y(KJ8,JS8,W) =L= SUM(I, X(KJ8,I,W)) ;

223 LINKXY9(KJ9,JS9,W).. Y(KJ9,JS9,W) =L= SUM(I, X(KJ9,I,W)) ;

224 LINKXY10(KJ10,JS10,W).. Y(KJ10,JS10,W) =L= SUM(I, X(KJ10,I,W)) ;

225

226 MODEL SATELLITE /ALL/ ;

227

228 SATELLITE.OPTCR = 0.01;

229

230 $if exist matdata.gms $include matdata.gms

231

232 SOLVE SATELLITE USING MIP MAXIMIZING T ;

233

234 SCALAR COMPTIME time in CPU seconds to solve the model using CPLEX ;

235 COMPTIME = SATELLITE.RESUSD;

236

237 $libinclude matout X.l K I W

238 $libinclude matout T.l

239 $libinclude matout COMPTIME

240

A-15

241 DISPLAY X.L;

242 DISPLAY COMPTIME;

1 ***

2 *

3 * AUTHOR: Capt Ben Kallemyn

4 * AFIT/ENS

5 * March 2007

6 *

7 * This program solves the payload prioritization problem with requirements

8 *

9 * The following assumptions/limitations hold for this program:

10 * 1. There is a maximum of 10 requirements evenly split between

11 * sole-source and multi-source types.

12 * 2. Associated with each requirement is space for 10 payloads.

13 * If there is a need for fewer, fill in the spaces with zeros.

14 * 3. The reward functions for the multi-source requirements are

15 * concave, piecewise linear. The slopes must be non-increasing.

16 *

17 ***

18

19 *This sets the solver to CPLEX

20 OPTIONS MIP=CPLEX;

21

22 *This sets the global variable for the # of payloads

23 $setglobal pay 6

24 $if exist matglobs.gms $include matglobs.gms

25

26 *Define the sets

27 SETS

28 K available payload spaces / K1*K100 /

29 I priority levels / 1 * %pay% /

30 J requirements / J1*J10 /

31 SPEC engineering specifications / WEI, POW, VOL /

32 KK(K) payloads which are actually available

33 V(K) another name for the set of payloads

34 JM1(J) multi-source requirement 1

35 JM2(J) multi-source requirement 2

36 JM3(J) multi-source requirement 3

37 JM4(J) multi-source requirement 4

38 JM5(J) multi-source requirement 5

39 JS(J) sole-source requirements / J6*J10 /

40 JS6(JS) sole-source requirement 1

41 JS7(JS) sole-source requirement 2

A-16

42 JS8(JS) sole-source requirement 3

43 JS9(JS) sole-source requirement 4

44 JS10(JS) sole-source requirement 5

45 KJ(K) the set of payloads which satisfy the sole-source reqs

46 KJ1(K) the set of payloads which satisfy req 1

47 KJ2(K) the set of payloads which satisfy req 2

48 KJ3(K) the set of payloads which satisfy req 3

49 KJ4(K) the set of payloads which satisfy req 4

50 KJ5(K) the set of payloads which satisfy req 5

51 KJ6(K) the set of payloads which satisfy req 6

52 KJ7(K) the set of payloads which satisfy req 7

53 KJ8(K) the set of payloads which satisfy req 8

54 KJ9(K) the set of payloads which satisfy req 9

55 KJ10(K) the set of payloads which satisfy req 10

56 P counter for peicewise linear functions / P1*P10 / ;

57

58 PARAMETERS

59 B budget scenarios

60 / 6000 /

61 BW(SPEC) specifications

62 / WEI 1900

63 POW 2600

64 VOL 22 /

65 C(K) cost of each payload

66 / K1 400

67 K2 200

68 K11 600

69 K12 500

70 K51 800

71 K52 950 /

72 R(JS) reward data

73 / J6 14

74 J7 0

75 J8 0

76 J9 0

77 J10 0 / ;

78

79 *Define set KK - the set of available payloads

80 LOOP(K$(C(K) NE 0), KK(K) = YES; V(K) = YES);

81

82 *Define the Kj subsets - the subset of payloads which satisfy each req

83 LOOP(K$(C(K) NE 0 AND ORD(K) GE 1 AND ORD(K) LE 10), KJ1(K) = YES);

84 LOOP(K$(C(K) NE 0 AND ORD(K) GE 11 AND ORD(K) LE 20), KJ2(K) = YES);

A-17

85 LOOP(K$(C(K) NE 0 AND ORD(K) GE 21 AND ORD(K) LE 30), KJ3(K) = YES);

86 LOOP(K$(C(K) NE 0 AND ORD(K) GE 31 AND ORD(K) LE 40), KJ4(K) = YES);

87 LOOP(K$(C(K) NE 0 AND ORD(K) GE 41 AND ORD(K) LE 50), KJ5(K) = YES);

88 LOOP(K$(C(K) NE 0 AND ORD(K) GE 51 AND ORD(K) LE 60), KJ6(K) = YES);

89 LOOP(K$(C(K) NE 0 AND ORD(K) GE 61 AND ORD(K) LE 70), KJ7(K) = YES);

90 LOOP(K$(C(K) NE 0 AND ORD(K) GE 71 AND ORD(K) LE 80), KJ8(K) = YES);

91 LOOP(K$(C(K) NE 0 AND ORD(K) GE 81 AND ORD(K) LE 90), KJ9(K) = YES);

92 LOOP(K$(C(K) NE 0 AND ORD(K) GE 91 AND ORD(K) LE 100), KJ10(K)= YES);

93

94 LOOP(KJ1$(C(KJ1) NE 0), JM1("J1") = YES);

95 LOOP(KJ2$(C(KJ2) NE 0), JM2("J2") = YES);

96 LOOP(KJ3$(C(KJ3) NE 0), JM3("J3") = YES);

97 LOOP(KJ4$(C(KJ4) NE 0), JM4("J4") = YES);

98 LOOP(KJ5$(C(KJ5) NE 0), JM5("J5") = YES);

99 LOOP(KJ6$(C(KJ6) NE 0), JS6("J6") = YES);

100 LOOP(KJ7$(C(KJ7) NE 0), JS7("J7") = YES);

101 LOOP(KJ8$(C(KJ8) NE 0), JS8("J8") = YES);

102 LOOP(KJ9$(C(KJ9) NE 0), JS9("J9") = YES);

103 LOOP(KJ10$(C(KJ10) NE 0), JS10("J10") = YES);

104

105 *Define set KJ - the set of payloads satisfying sole-source reqs

106 LOOP(K$(C(K) NE 0 AND ORD(K) GE 51), KJ(K)= YES);

107

108 TABLE A(K,SPEC) payload data

109 WEI POW VOL

110 K1 200 350 3

111 K2 100 450 2

112 K11 400 300 4

113 K12 300 500 4

114 K51 900 750 9

115 K52 800 700 7 ;

116

117 TABLE BETA1(P,J) slopes for peicewise liner reward function for req 1

118 J1

119 P1 8

120 P2 2 ;

121

122 TABLE BETA2(P,J) slopes for peicewise liner reward function for req 2

123 J2

124 P1 10

125 P2 5 ;

126

127 TABLE BETA3(P,J) slopes for peicewise liner reward function for req 3

A-18

128 J3

129 P1 0

130 P2 0 ;

131

132 TABLE BETA4(P,J) slopes for peicewise liner reward function for req 4

133 J4

134 P1 0

135 P2 0 ;

136

137 TABLE BETA5(P,J) slopes for peicewise liner reward function for req 5

138 J5

139 P1 0

140 P2 0 ;

141

142 VARIABLES

143 X(K,I) if payload k has priority level i and i is funded under scenario w

144 Y(K,J) if payload k satisfies requiremnt j under scenario w

145 Z(J,P) number of payloads which satisfy multi-source req j

146 T total expected reward ;

147

148 BINARY VARIABLES X,Y,Z;

149 *1,Z2,Z3,Z4,Z5;

150

151 EQUATIONS

152 REWARD define objective function

153 BUDGET limit budget

154 SPECS(SPEC) limit specifications

155 PAYPRI(I) each priority level gets only 1 payload

156 ONEPRI(K) each payload has at most 1 priority level

157 CONSPRI(K,I) consecutive priority levels must be on list

158 ONEREQ6(JS) requirements 6 filled at most once per scenario

159 ONEREQ7(JS) requirements 7 filled at most once per scenario

160 ONEREQ8(JS) requirements 8 filled at most once per scenario

161 ONEREQ9(JS) requirements 9 filled at most once per scenario

162 ONEREQ10(JS) requirements 10 filled at most once per scenario

163 ONESOLE6

164 ONESOLE7

165 ONESOLE8

166 ONESOLE9

167 ONESOLE10

168 DEFZ1(J) define decision variable z for req 1

169 DEFZ2(J) define decision variable z for req 2

170 DEFZ3(J) define decision variable z for req 3

A-19

171 DEFZ4(J) define decision variable z for req 4

172 DEFZ5(J) define decision variable z for req 5

173 LINKXY6(K,J) link decision variable y to x for req 6

174 LINKXY7(K,J) link decision variable y to x for req 7

175 LINKXY8(K,J) link decision variable y to x for req 8

176 LINKXY9(K,J) link decision variable y to x for req 9

177 LINKXY10(K,J) link decision variable y to x for req 10 ;

178

179

180 REWARD.. T =E= SUM((JM1,P),BETA1(P,JM1)*Z(JM1,P)) +

181 SUM((JM2,P),BETA2(P,JM2)*Z(JM2,P)) +

182 SUM((JM3,P),BETA3(P,JM3)*Z(JM3,P)) +

183 SUM((JM4,P),BETA4(P,JM4)*Z(JM4,P)) +

184 SUM((JM5,P),BETA5(P,JM5)*Z(JM5,P)) +

185 SUM((JS6,KJ6),R(JS6)*Y(KJ6,JS6)) +

186 SUM((JS7,KJ7),R(JS7)*Y(KJ7,JS7)) +

187 SUM((JS8,KJ8),R(JS8)*Y(KJ8,JS8)) +

188 SUM((JS9,KJ9),R(JS9)*Y(KJ9,JS9)) +

189 SUM((JS10,KJ10),R(JS10)*Y(KJ10,JS10)) ;

190 BUDGET.. SUM((KK,I), C(KK)*X(KK,I)) =L= B ;

191 SPECS(SPEC).. SUM((KK,I), A(KK,SPEC)*X(KK,I)) =L= BW(SPEC) ;

192 PAYPRI(I).. SUM(KK, X(KK,I)) =L= 1 ;

193 ONEPRI(KK).. SUM(I, X(KK,I)) =L= 1 ;

194 CONSPRI(KK,I).. X(KK,I) =L= SUM(V, X(V,I-1)) + 1$(ORD(I) EQ 1) ;

195 ONEREQ6(JS6).. SUM(KJ6, Y(KJ6,JS6)) =L= 1 ;

196 ONEREQ7(JS7).. SUM(KJ7, Y(KJ7,JS7)) =L= 1 ;

197 ONEREQ8(JS8).. SUM(KJ8, Y(KJ8,JS8)) =L= 1 ;

198 ONEREQ9(JS9).. SUM(KJ9, Y(KJ9,JS9)) =L= 1 ;

199 ONEREQ10(JS10).. SUM(KJ10, Y(KJ10,JS10)) =L= 1 ;

200 ONESOLE6.. SUM((KJ6,I), X(KJ6,I)) =L= 1 ;

201 ONESOLE7.. SUM((KJ7,I), X(KJ7,I)) =L= 1 ;

202 ONESOLE8.. SUM((KJ8,I), X(KJ8,I)) =L= 1 ;

203 ONESOLE9.. SUM((KJ9,I), X(KJ9,I)) =L= 1 ;

204 ONESOLE10.. SUM((KJ10,I), X(KJ10,I)) =L= 1 ;

205 DEFZ1(JM1).. SUM(P,Z(JM1,P)) =E= SUM((KJ1,I), X(KJ1,I)) ;

206 DEFZ2(JM2).. SUM(P,Z(JM2,P)) =E= SUM((KJ2,I), X(KJ2,I)) ;

207 DEFZ3(JM3).. SUM(P,Z(JM3,P)) =E= SUM((KJ3,I), X(KJ3,I)) ;

208 DEFZ4(JM4).. SUM(P,Z(JM4,P)) =E= SUM((KJ4,I), X(KJ4,I)) ;

209 DEFZ5(JM5).. SUM(P,Z(JM5,P)) =E= SUM((KJ5,I), X(KJ5,I)) ;

210 LINKXY6(KJ6,JS6).. Y(KJ6,JS6) =L= SUM(I, X(KJ6,I)) ;

211 LINKXY7(KJ7,JS7).. Y(KJ7,JS7) =L= SUM(I, X(KJ7,I)) ;

212 LINKXY8(KJ8,JS8).. Y(KJ8,JS8) =L= SUM(I, X(KJ8,I)) ;

213 LINKXY9(KJ9,JS9).. Y(KJ9,JS9) =L= SUM(I, X(KJ9,I)) ;

A-20

214 LINKXY10(KJ10,JS10).. Y(KJ10,JS10) =L= SUM(I, X(KJ10,I)) ;

215

216 MODEL SATELLITE /ALL/ ;

217

218 SATELLITE.OPTCR = 0.01;

219

220 $if exist matdata.gms $include matdata.gms

221

222 SOLVE SATELLITE USING MIP MAXIMIZING T ;

223

224 SCALAR COMPTIME time in CPU seconds to solve the model using CPLEX ;

225 COMPTIME = SATELLITE.RESUSD;

226

227 $libinclude matout X.l K I

228 $libinclude matout T.l

229 $libinclude matout COMPTIME

230

231 DISPLAY X.L;

232 DISPLAY COMPTIME;

1 function [lolist,loreward,locost] = lowheur(payloads,lolist,...

2 loreward,locost,lobud,beta1s,beta2s,beta3s,beta4s,beta5s,rs,cs)

3

4 logoal = locost-lobud;

5

6 %loop until the cost is lower than the desired budget

7 while lobud < locost

8 flag = 0;

9 %calculate the minimum reward for each payload

10 minrew = inf.*ones(100,1);

11

12 %multi-source requirement min rewards

13 for i = 1:5 %cycle through sole-source reqs

14 num = 0; %initiate the counter

15 for j = (10*(i-1))+1 : (10*i)

16 num = num + lolist(j); %count the number of included payloads

17 end

18 switch i

19 case 1 %update the min rewards for req 1

20 for j = 1:10

21 if lolist(j) == 1 %only update minrew if available

22 %update with pw-linear function vals

23 minrew(j) = beta1s(num,1);

24 end

A-21

25 end

26 case 2 %update the min rewards for req 2

27 for j = 11:20

28 if lolist(j) == 1 %only update minrew if available

29 %update with pw-linear function vals

30 minrew(j) = beta2s(num,1);

31 end

32 end

33 case 3 %update the min rewards for req 3

34 for j = 21:30

35 if lolist(j) == 1 %only update minrew if available

36 %update with pw-linear function vals

37 minrew(j) = beta3s(num,1);

38 end

39 end

40 case 4 %update the min rewards for req 4

41 for j = 31:40

42 if lolist(j) == 1 %only update minrew if available

43 %update with pw-linear function vals

44 minrew(j) = beta4s(num,1);

45 end

46 end

47 case 5 %update the min rewards for req 5

48 for j = 41:50

49 if lolist(j) == 1 %only update minrew if available

50 %update with pw-linear function vals

51 minrew(j) = beta5s(num,1);

52 end

53 end

54 end

55 end

56

57 %sole-source requirement min rewards

58 for i = 6:10 %cycle through the sole-source reqs

59 for j = (10*(i-1))+1 : (10*i) %cycle through payloads for the req

60 if lolist(j) == 1 %if payload is included update the min reward

61 minrew(j) = rs(i-5);

62 end

63 end

64 end

65

66 lo = min(minrew); %find the min of the min rewards

67

A-22

68 %Generate lorew - the list of payload indices which have the minimal

69 %reward

70 lorew = [];

71 for i = 1:100

72 if minrew(i) == lo

73 kp = i;

74 lorew = [lorew kp]; %row vector of payload indices

75 end

76 end

77

78 %Iterate through lolist to find largest payload cost

79 mcost = 0;

80 for i = lorew

81 if cs(i) > mcost

82 %track the least cost payload

83 mcost = cs(i);

84 maxcost = i;

85 end

86 end

87

88 lolist(maxcost) = 0;

89 loreward = loreward - lo;

90

91 %Update the locost

92 locost = sum(lolist.*cs);

93

94 end

1 function [hilist,hireward,hicost] = hiheur(payloads,hilist,hireward,...

2 hicost,hibud,as,bws,beta1s,beta2s,beta3s,beta4s,beta5s,rs,cs)

3

4 %Generate list of available payloads

5 %Only multi-source payloads and sole-source reqs whose payloads haven’t

6 %already been included

7 avail = zeros(100,1);

8

9 %if payload satisfies multi-source req add it to avail list

10 for i = 1:50

11 if hilist(i) == 0 & cs(i) > 0 %check if payload exists & not included

12 avail(i) = 1;

13 end

14 end

15

16 %if payload satisfies sole-source req add it to avail list

A-23

17 for i = 6:10

18 num = 0;

19 cst = 0;

20 %Check to see if payload exists and none are included for each req

21 for j = (10*(i-1))+1 : (10*i)

22 num = num + hilist(j); %the number of included payloads

23 cst = cst + cs(j); % the cost of the included payloads

24 end

25 %if the req is not satisfied and there are payloads available

26 if num ~= 1 & cst > 0

27 for j = (10*(i-1))+1 : (10*i)

28 if cs(j) > 0 %if the payload exists

29 avail(j) = 1; %add the payload to the avail list

30 end

31 end

32 end

33 end

34

35 %while there are still payloads available

36 while sum(avail) ~= 0

37

38 %calculate the maximum reward for each payload

39 maxrew = zeros(100,1);

40

41 %multi-source requirement min rewards

42 for i = 1:5 %cycle through sole-source reqs

43 num = 0; %initiate the counter

44 for j = (10*(i-1))+1 : (10*i)

45 num = num + hilist(j); %count the number of included payloads

46 end

47 switch i

48 case 1 %update the max rewards for req 1

49 for j = 1:10

50 if avail(j) == 1 %only update maxrew if available

51 %update with pw-linear function vals

52 maxrew(j) = beta1s(num+1,1);

53 end

54 end

55 case 2 %update the max rewards for req 2

56 for j = 11:20

57 if avail(j) == 1 %only update maxrew if available

58 %update with pw-linear function vals

59 maxrew(j) = beta2s(num+1,1);

A-24

60 end

61 end

62 case 3 %update the max rewards for req 3

63 for j = 21:30

64 if avail(j) == 1 %only update maxrew if available

65 %update with pw-linear function vals

66 maxrew(j) = beta3s(num+1,1);

67 end

68 end

69 case 4 %update the max rewards for req 4

70 for j = 31:40

71 if avail(j) == 1 %only update maxrew if available

72 %update with pw-linear function vals

73 maxrew(j) = beta4s(num+1,1);

74 end

75 end

76 case 5 %update the max rewards for req 5

77 for j = 41:50

78 if avail(j) == 1 %only update maxrew if available

79 %update with pw-linear function vals

80 maxrew(j) = beta5s(num+1,1);

81 end

82 end

83 end

84 end

85

86 %sole-source requirement max rewards

87 for i = 6:10 %cycle through the sole-source reqs

88 for j = (10*(i-1))+1 : (10*i) %cycle through payloads for the req

89 if avail(j) == 1 %if payload is included update the max reward

90 maxrew(j) = rs(i-5);

91 end

92 end

93 end

94

95 hi = max(maxrew);

96

97 if hi == 0

98 avail = zeros(100,1);

99 else

100

101 %Generate hirew - the list of payload indices which have maximal reward

102 hirew = [];

A-25

103 for i = 1:100

104 if maxrew(i) == hi

105 kp = i;

106 hirew = [hirew kp];

107 end

108 end

109

110 %Iterate through hilist to find least payload cost

111 mcost = inf;

112 for i = hirew

113 if cs(i) < mcost

114 %track the least cost payload

115 mcost = cs(i);

116 mincost = i;

117 end

118 end

119

120 %Check feasibility of budget, weight, power and volume

121 if hibud >= hicost + cs(mincost) &...

122 bws(1) >= sum(hilist.*as(:,1)) + as(mincost,1) &...

123 bws(2) >= sum(hilist.*as(:,2)) + as(mincost,2) &...

124 bws(3) >= sum(hilist.*as(:,3)) + as(mincost,3)

125 %update the list and reward

126 hilist(mincost) = 1;

127 hicost = hicost + cs(mincost);

128 hireward = hireward + hi;

129 maxrew(mincost) = 0;

130 avail(mincost) = 0;

131 %remove all sole-source payloads from available list if one is added

132 if mincost >= 91

133 for z = 91:100

134 avail(z) = 0;

135 end

136 elseif mincost >= 81

137 for z = 81:90

138 avail(z) = 0;

139 end

140 elseif mincost >= 71

141 for z = 71:80

142 avail(z) = 0;

143 end

144 elseif mincost >= 61

145 for z = 61:70

A-26

146 avail(z) = 0;

147 end

148 elseif mincost >= 51

149 for z = 51:60

150 avail(z) = 0;

151 end

152 end

153 else %just remove the payload from the available list

154 avail(mincost) = 0;

155 end

156 end

157 end

A-27

Appendix B. Multiple-Launch Code
1 % %%%

2 % AUTHOR: Capt Ben Kallemyn

3 % AFIT/ENS

4 % March 2007

5 %

6 % This program sets up the problem data for the

7 %

8 % MULTIPLE-LAUNCH

9 %

10 % payload prioritization problem and

11 % calls GAMS to solve the model.

12 %

13 % There are 10 available requirements (not all must be used).

14 % 5 are multi-source requirements,

15 % 5 are sole-source requirements.

16 % There is space for up to 10 payloads for each requirement.

17 %

18 % %%%

19

20 clear

21 clc

22 format compact

23

24 %Enter the number of payloads, scenarios and launches for this instance

25 payloads = 12;

26 scenarios = 3;

27 launches = 8;

28 life=3;

29 pws = 3;

30 qs = [.185 .63 .185];

31

32 Values = [];

33

34 for n = 1:100

35 n

36

37 %initialize reward values

38 beta1sL = zeros(2,2,launches);

39 beta2sL = zeros(2,2,launches);

40 beta3sL = zeros(2,2,launches);

41 beta4sL = zeros(2,2,launches);

B-1

42 beta5sL = zeros(2,2,launches);

43 rsL = zeros(5,launches);

44

45 %generate the payload and reward data

46 [payloads,as,cs,rsL,beta1sL,beta2sL,beta3sL,...

47 beta4sL,beta5sL] = multrand(12,launches,life);

48

49 %check the size of the reward matrices - if the rewards are empty, fill with zeros

50 [m1 n] = size(beta1sL);

51 [m2 n] = size(beta2sL);

52 [m3 n] = size(beta3sL);

53 [m4 n] = size(beta4sL);

54 [m5 n] = size(beta5sL);

55 if m2 == 0

56 beta2sL=zeros(m1,2,launches);

57 end

58 if m3 == 0

59 beta3sL=zeros(m1,2,launches);

60 end

61 if m4 == 0

62 beta4sL=zeros(m1,2,launches);

63 end

64 if m5 == 0

65 beta5sL=zeros(m1,2,launches);

66 end

67

68 %calculate the total cost, weight power and volume of payloads

69 totcost = sum(cs);

70 totwei = sum(as(:,1));

71 totpow = sum(as(:,2));

72 totvol = sum(as(:,3));

73

74 %initialize budget ranges

75 rng = zeros(1,launches);

76

77 for l = 1:launches

78 %budgets for large variance scenarios

79 % budgets(l,1) = 50*(5+(.1*totcost(l)-5)*rand);

80 % budgets(l,2) = 50*(.2*totcost(l)+(.4*totcost(l)-.2*totcost(l))*rand);

81 % budgets(l,3) = 50*(.9*totcost(l)+(totcost(l)-.9*totcost(l))*rand);

82

83 rng(l) = totcost(l) - 250;%budget range

84

B-2

85 %compute budgets using betainv (1.5,3), p = .05, .5, .95 for Pearson Tukey

86 %Left-Skewed

87 budgets(l,1) = rng(l)*betinv(.05,1.5,3)+250;

88 budgets(l,2) = rng(l)*betinv(.5,1.5,3)+250;

89 budgets(l,3) = rng(l)*betinv(.95,1.5,3)+250;

90

91 %generate the bus capacities

92 bws(l,1) = (.25*totwei+(totwei-.25*totwei)*rand);

93 bws(l,2) = (.25*totpow+(totpow-.25*totpow)*rand);

94 bws(l,3) = (.25*totvol+(totvol-.25*totvol)*rand);

95 end

96

97 %Solve the problem for three lives

98 life = 3;

99 [Xf,Tf,tf,Xs,Ts,ts]=gamscall(payloads,scenarios,launches,life,budgets,...

100 pws,qs,bws,as,cs,rsL,beta1sL,beta2sL,beta3sL,beta4sL,beta5sL);

101 imp = 100*(Tf.val/Ts.val - 1);

102 Value1 = [Tf.val Ts.val imp];

103

104 life = 4;

105 [Xf,Tf,tf,Xs,Ts,ts]=gamscall(payloads,scenarios,launches,life,budgets,...

106 pws,qs,bws,as,cs,rsL,beta1sL,beta2sL,beta3sL,beta4sL,beta5sL);

107 imp = 100*(Tf.val/Ts.val - 1);

108 Value2 = [Tf.val Ts.val imp];

109

110 life = 5;

111 [Xf,Tf,tf,Xs,Ts,ts]=gamscall(payloads,scenarios,launches,life,budgets,...

112 pws,qs,bws,as,cs,rsL,beta1sL,beta2sL,beta3sL,beta4sL,beta5sL);

113 imp = 100*(Tf.val/Ts.val - 1);

114 Value3 = [Tf.val Ts.val imp];

115

116 %store all results in one matrix

117 Values = [Values; Value1 Value2 Value3];

118 end

1 function[payloads,as,cs,rsL,beta1sL,beta2sL,beta3sL,...

2 beta4sL,beta5sL] = multrand(p,launches,life)

3

4 %bounds for requirements

5

6 %6 payloads

7 if p == 6

8 % Req 1 2 3 4 5 6 7 8 9 10

9 bnd = [2 2 0 0 0 2 0 0 0 0;%lb of # of pylds

B-3

10 2 2 0 0 0 2 0 0 0 0;%ub of # of pylds

11 0 0 0 0 0 10 10 10 10 10;%lb of reward

12 50 50 50 50 50 50 50 50 50 50;%ub of reward

13 5 5 5 5 5 5 5 5 5 1;%lb of cost * 50

14 20 20 20 20 20 20 20 20 20 20;%ub of cost * 50

15 1 1 1 1 1 1 1 1 1 1;%lb of weight * 50

16 20 20 20 20 20 20 20 20 20 20;%ub of weight * 50

17 1 1 1 1 1 1 1 1 1 1;%lb of power * 50

18 20 20 20 20 20 20 20 20 20 20;%ub of power * 50

19 2 2 2 2 2 2 2 2 2 2;%lb of volume

20 15 15 15 15 15 15 15 15 15 15];%ub of volume

21

22 elseif p == 12

23 %12 payloads

24 % Req 1 2 3 4 5 6 7 8 9 10

25 bnd = [3 3 0 0 0 3 3 0 0 0;%lb of # of pylds

26 3 3 0 0 0 3 3 0 0 0;%ub of # of pylds

27 0 0 0 0 0 10 10 10 10 10;%lb of reward

28 50 50 50 50 50 50 50 50 50 50;%ub of reward

29 5 5 5 5 5 5 5 5 5 1;%lb of cost * 50

30 20 20 20 20 20 20 20 20 20 20;%ub of cost * 50

31 1 1 1 1 1 1 1 1 1 1;%lb of weight * 50

32 20 20 20 20 20 20 20 20 20 20;%ub of weight * 50

33 1 1 1 1 1 1 1 1 1 1;%lb of power * 50

34 20 20 20 20 20 20 20 20 20 20;%ub of power * 50

35 2 2 2 2 2 2 2 2 2 2;%lb of volume

36 15 15 15 15 15 15 15 15 15 15];%ub of volume

37

38 elseif p == 18

39 %20 payloads

40 % Req 1 2 3 4 5 6 7 8 9 10

41 bnd = [3 3 3 3 0 3 3 0 0 0;%lb of # of pylds

42 3 3 3 3 0 3 3 0 0 0;%ub of # of pylds

43 0 0 0 0 0 0 0 0 0 0;%lb of reward

44 50 50 50 50 50 50 50 50 50 50;%ub of reward

45 5 5 5 5 5 5 5 5 5 1;%lb of cost * 50

46 20 20 20 20 20 20 20 20 20 20;%ub of cost * 50

47 1 1 1 1 1 1 1 1 1 1;%lb of weight * 50

48 20 20 20 20 20 20 20 20 20 20;%ub of weight * 50

49 1 1 1 1 1 1 1 1 1 1;%lb of power * 50

50 20 20 20 20 20 20 20 20 20 20;%ub of power * 50

51 2 2 2 2 2 2 2 2 2 2;%lb of volume

52 15 15 15 15 15 15 15 15 15 15];%ub of volume

B-4

53 end

54

55 %count the number of available payloads

56 k = zeros(1,10);

57 for i = 1:10

58 k(i) = floor(bnd(1,i) + (bnd(2,i) - bnd(1,i) + 1) * rand);

59 end

60 payloads = sum(k);

61

62 %initialize reward values

63 beta1sL = zeros(k(1)*life,2,launches);

64 beta2sL = zeros(k(2)*life,2,launches);

65 beta3sL = zeros(k(3)*life,2,launches);

66 beta4sL = zeros(k(4)*life,2,launches);

67 beta5sL = zeros(k(5)*life,2,launches);

68 rsL = zeros(5,launches);

69

70 %randomly generate multi-source rewards (diminishing)

71 for l = 1:launches

72 for i = 1:5

73 u = bnd(4,i);

74 switch i

75 case 1

76 for j = 1:(k(i)*life)

77 beta1sL(j,1,l) = (bnd(3,i)+(u-bnd(3,i)+1)*rand);

78 u = beta1sL(j,1,l);

79 end

80 case 2

81 for j = 1:(k(i)*life)

82 beta2sL(j,1,l) = (bnd(3,i)+(u-bnd(3,i)+1)*rand);

83 u = beta2sL(j,1,l);

84 end

85 case 3

86 for j = 1:(k(i)*life)

87 beta3sL(j,1,l) = (bnd(3,i)+(u-bnd(3,i)+1)*rand);

88 u = beta3sL(j,1,l);

89 end

90 case 4

91 for j = 1:(k(i)*life)

92 beta4sL(j,1,l) = (bnd(3,i)+(u-bnd(3,i)+1)*rand);

93 u = beta4sL(j,1,l);

94 end

95 case 5

B-5

96 for j = 1:(k(i)*life)

97 beta5sL(j,1,l) = (bnd(3,i)+(u-bnd(3,i)+1)*rand);

98 u = beta5sL(j,1,l);

99 end

100 end

101 end

102

103 %generate sole-source reward values

104 for i = 1:5

105 if k(i+5) > 0

106 rsL(i,l) = (bnd(3,i+5)+(bnd(4,i+5)-bnd(3,i+5)+1)*rand);

107 end

108 end

109 end

110

111 %initialize payload parameters and costs

112 as = zeros(100,3);

113 cs = zeros(100,launches);

114

115 %generate payload parameters and costs

116 for i = 1:10

117 for j = 1:k(i)

118 p = (10 * (i - 1)) + j;

119 as(p,1) = 50*(bnd(7,i)+(bnd(8,i)-bnd(7,i)+1)*rand);

120 as(p,2) = 50*(bnd(9,i)+(bnd(10,i)-bnd(9,i)+1)*rand);

121 as(p,3) = (bnd(11,i)+(bnd(12,i)-bnd(11,i)+1)*rand);

122 for l = 1:launches

123 cs(p,l) = 50*(bnd(5,i)+(bnd(6,i)-bnd(5,i)+1)*rand);

124 end

125 end

126 end

127

1 function[Xf,Tf,tf,Xs,Ts,ts] = gamscall(payloads,scenarios,launches,life,...

2 budgets,pws,qs,bws,as,cs,rsL,beta1sL,beta2sL,beta3sL,beta4sL,beta5sL)

3

4 %Generate the arrays for the labels to be passed to GAMS

5 pay = num2str(payloads);

6 launch = num2str(launches);

7 [m n] = size(beta1sL);

8

9 K = {};

10 for i = 1:100

11 k = [’K’ int2str(i)];

B-6

12 K = [K k];

13 end

14 W = {};

15 for i = 1:scenarios

16 w = [’W’ int2str(i)];

17 W = [W w];

18 end

19 L = {};

20 for i = 1:launches

21 l = [int2str(i)];

22 L = [L l];

23 end

24 S = {’WEI’,’POW’,’VOL’};

25 J = {’J6’,’J7’,’J8’,’J9’,’J10’};

26 P = {};

27 for i = 1:m

28 p = [int2str(i)];

29 P = [P p];

30 end

31

32 %B3 is the budget levels

33 B3.name = ’B’;

34 B3.val = budgets;

35 B3.labels = {L,W};

36

37 %Q is the probability masses

38 Q.name = ’Q’;

39 Q.val = qs;

40 Q.labels = {W};

41

42 %BW is the engineering specification capacities for the satellite bus

43 BW.name = ’BW’;

44 BW.val = bws;

45 BW.labels = {L,S};

46

47 %C is the costs for each payload

48 C.name = ’C’;

49 C.val = cs;

50 C.labels = {K,L};

51

52 %A is the resource consumption for each payload

53 A.name = ’A’;

54 A.val = as;

B-7

55 A.labels = {K,S};

56

57 %R is the sole-source reward

58 R.name = ’R’;

59 R.val = rsL;

60 R.labels = {J,L};

61

62 %BETA1 is reward for multi-source reward 1

63 BETA1.name = ’BETA1’;

64 BETA1.val = beta1sL;

65 BETA1.labels = {P,{’J1’,’J0’},L};

66

67 %BETA2 is reward for multi-source reward 2

68 BETA2.name = ’BETA2’;

69 BETA2.val = beta2sL;

70 BETA2.labels = {P,{’J2’,’J0’},L};

71

72 %BETA3 is reward for multi-source reward 3

73 BETA3.name = ’BETA3’;

74 BETA3.val = beta3sL;

75 BETA3.labels = {P,{’J3’,’J0’},L};

76

77 %BETA4 is reward for multi-source reward 4

78 BETA4.name = ’BETA4’;

79 BETA4.val = beta4sL;

80 BETA4.labels = {P,{’J4’,’J0’},L};

81

82 %BETA5 is reward for multi-source reward 5

83 BETA5.name = ’BETA5’;

84 BETA5.val = beta5sL;

85 BETA5.labels = {P,{’J5’,’J0’},L};

86

87 %Call GAMS to solve the PPR(3) and PS(1) problems

88 %X is the solution for the decision variable Xkiw

89 %T is the maximum reward

90 %t is the computational time to solve the problem

91 pw = num2str(pws*life);

92 life = num2str(life);

93 [Xf,Tf,tf]= gams(’FMLP’,’pay’,’launch’,’life’,’pw’,B3,Q,BW,C,A,R,BETA1,BETA2,BETA3,BETA4,BETA5);

94 [Xs,Ts,ts]= gams(’SMLP’,’pay’,’launch’,’life’,’pw’,B3,Q,BW,C,A,R,BETA1,BETA2,BETA3,BETA4,BETA5);

1 ***

2 *

3 * AUTHOR: Capt Ben Kallemyn

B-8

4 * AFIT/ENS

5 * March 2007

6 *

7 * This program solves the multiple-launch memoryless prioritization problem

8 *

9 * The following assumptions/limitations hold for this program:

10 * 1. There is a maximum of 10 requirements evenly split between

11 * sole-source and multi-source types.

12 * 2. Associated with each requirement is space for 10 payloads.

13 * If there is a need for fewer, fill in the spaces with zeros.

14 * 3. The reward functions for the multi-source requirements are

15 * concave, piecewise linear. The slopes must be non-increasing.

16 * 4. If a payload is available, it is available for all launches.

17 * There should be a cost for each launch for each included payload.

18 *

19 ***

20

21 *This sets the solver to CPLEX

22 OPTIONS MIP=CPLEX;

23

24 *This sets the global variable for the # of payloads

25 $setglobal pay 6

26 $setglobal launch 2

27 $setglobal life 2

28 $setglobal pw 4

29 *pw is the number of reqs that can be in const (# payloads per req * life)

30 $if exist matglobs.gms $include matglobs.gms

31

32 *Define the sets

33 SETS

34 K available payload spaces / K1*K100 /

35 I priority levels / 1 * %pay% /

36 J requirements / J1*J10 /

37 L launches / 1 * %launch% /

38 W budget scenarios / W1*W3 /

39 SPEC engineering specifications / WEI, POW, VOL /

40 KK(K) payloads which are actually available

41 V(K) another name for the set of payloads

42 JM1(J) multi-source requirement 1

43 JM2(J) multi-source requirement 2

44 JM3(J) multi-source requirement 3

45 JM4(J) multi-source requirement 4

46 JM5(J) multi-source requirement 5

B-9

47 JS(J) sole-source requirements / J6*J10 /

48 JS6(JS) sole-source requirement 1

49 JS7(JS) sole-source requirement 2

50 JS8(JS) sole-source requirement 3

51 JS9(JS) sole-source requirement 4

52 JS10(JS) sole-source requirement 5

53 KJ(K) the set of payloads which satisfy the sole-source reqs

54 KJ1(K) the set of payloads which satisfy req 1

55 KJ2(K) the set of payloads which satisfy req 2

56 KJ3(K) the set of payloads which satisfy req 3

57 KJ4(K) the set of payloads which satisfy req 4

58 KJ5(K) the set of payloads which satisfy req 5

59 KJ6(K) the set of payloads which satisfy req 6

60 KJ7(K) the set of payloads which satisfy req 7

61 KJ8(K) the set of payloads which satisfy req 8

62 KJ9(K) the set of payloads which satisfy req 9

63 KJ10(K) the set of payloads which satisfy req 10

64 P counter for peicewise linear functions / 1 * %pw% /

65 NK(K);

66

67 ALIAS (L,LW) ;

68 V(K) = YES;

69

70 PARAMETERS

71 Q(W) chance of budget scenario w

72 / W1 .2

73 W2 .6

74 W3 .2 / ;

75

76 TABLE C(K,L)

77 1 2

78 K1 400 400

79 K2 200 300

80 K11 600 700

81 K12 500 600

82 K51 800 800

83 K52 950 900 ;

84

85 *Define set KK - the set of available payloads

86 LOOP(K$(C(K,’1’) NE 0), KK(K) = YES; V(K) = YES);

87 LOOP(K$(C(K,’1’) EQ 0), NK(K) = YES);

88

89 *Define the Kj subsets - the subset of payloads which satisfy each req

B-10

90 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 1 AND ORD(K) LE 10), KJ1(K) = YES);

91 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 11 AND ORD(K) LE 20), KJ2(K) = YES);

92 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 21 AND ORD(K) LE 30), KJ3(K) = YES);

93 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 31 AND ORD(K) LE 40), KJ4(K) = YES);

94 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 41 AND ORD(K) LE 50), KJ5(K) = YES);

95 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 51 AND ORD(K) LE 60), KJ6(K) = YES);

96 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 61 AND ORD(K) LE 70), KJ7(K) = YES);

97 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 71 AND ORD(K) LE 80), KJ8(K) = YES);

98 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 81 AND ORD(K) LE 90), KJ9(K) = YES);

99 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 91 AND ORD(K) LE 100), KJ10(K)= YES);

100

101 LOOP(KJ1$(C(KJ1,’1’) NE 0), JM1("J1") = YES);

102 LOOP(KJ2$(C(KJ2,’1’) NE 0), JM2("J2") = YES);

103 LOOP(KJ3$(C(KJ3,’1’) NE 0), JM3("J3") = YES);

104 LOOP(KJ4$(C(KJ4,’1’) NE 0), JM4("J4") = YES);

105 LOOP(KJ5$(C(KJ5,’1’) NE 0), JM5("J5") = YES);

106 LOOP(KJ6$(C(KJ6,’1’) NE 0), JS6("J6") = YES);

107 LOOP(KJ7$(C(KJ7,’1’) NE 0), JS7("J7") = YES);

108 LOOP(KJ8$(C(KJ8,’1’) NE 0), JS8("J8") = YES);

109 LOOP(KJ9$(C(KJ9,’1’) NE 0), JS9("J9") = YES);

110 LOOP(KJ10$(C(KJ10,’1’) NE 0), JS10("J10") = YES);

111

112 *Define set KJ - the set of payloads satisfying sole-source reqs

113 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 51), KJ(K)= YES);

114

115 TABLE A(K,SPEC) payload data

116 WEI POW VOL

117 K1 200 350 3

118 K2 100 450 2

119 K11 400 300 4

120 K12 300 500 4

121 K51 900 750 9

122 K52 800 700 7 ;

123

124 TABLE R(JS,L)

125 1 2

126 J6 14 21

127 J7 0 0

128 J8 0 0

129 J9 0 0

130 J10 0 0 ;

131

132

B-11

133

134 TABLE BW(L,SPEC)

135 WEI POW VOL

136 1 1900 2600 22

137 2 1500 2300 18 ;

138

139 TABLE B(L,W)

140 W1 W2 W3

141 1 1500 2000 2500

142 2 1200 1600 2000 ;

143

144 TABLE BETA1(P,J,L)

145 J1.1 J1.2

146 1 8 10

147 2 2 5

148 3 0 0

149 4 0 0 ;

150

151 TABLE BETA2(P,J,L)

152 J2.1 J2.2

153 1 9 5

154 2 3 5

155 3 1 3

156 4 0 1 ;

157

158 TABLE BETA3(P,J,L)

159 J3.1 J3.2

160 1 0 0

161 2 0 0 ;

162

163 TABLE BETA4(P,J,L)

164 J4.1 J4.2

165 1 0 0

166 2 0 0 ;

167

168 TABLE BETA5(P,J,L)

169 J5.1 J5.2

170 1 0 0

171 2 0 0 ;

172

173 VARIABLES

174 X(K,I,L,W) if payload k has priority level i and i is funded under scenario w

175 Y(K,J,L,W) if payload k satisfies requiremnt j under scenario w

B-12

176 IY(J,L,W) if sole-source req j is satisfied in const at launch l

177 Z(J,L,W) number of payloads which satisfy multi-source req j on launch l

178 IZ(J,P,L,W) number of payloads which satisfy multi-source req j in const at l

179 T total expected reward ;

180

181 BINARY VARIABLES X,Y,IY,IZ;

182

183 EQUATIONS

184 REWARD define objective function

185 BUDGET(L,W) limit budget

186 SPECS(SPEC,L,W) limit specifications

187 PAYPRI(I,L,W) each priority level gets only 1 payload

188 ONEPRI(K,L,W) each payload has at most 1 priority level

189 CONSPRI(K,I,L,W) consecutive priority levels must be on list

190 CONSBUD(K,I,L,W) consecutive budget scenarios mmust be on list

191 ONEREQ6(JS,L,W)

192 ONEREQ7(JS,L,W)

193 ONEREQ8(JS,L,W)

194 ONEREQ9(JS,L,W)

195 ONEREQ10(JS,L,W)

196 ONESOLE6(L,W)

197 ONESOLE7(L,W)

198 ONESOLE8(L,W)

199 ONESOLE9(L,W)

200 ONESOLE10(L,W)

201 DEFZ1(J,L,W) define decision variable z for req 1

202 DEFZ2(J,L,W) define decision variable z for req 2

203 DEFZ3(J,L,W) define decision variable z for req 3

204 DEFZ4(J,L,W) define decision variable z for req 4

205 DEFZ5(J,L,W) define decision variable z for req 5

206 LINKXY6(K,J,L,W) link decision variable y to x for req 6

207 LINKXY7(K,J,L,W) link decision variable y to x for req 7

208 LINKXY8(K,J,L,W) link decision variable y to x for req 8

209 LINKXY9(K,J,L,W) link decision variable y to x for req 9

210 LINKXY10(K,J,L,W) link decision variable y to x for req 10

211 DEFIZ1(J,L,W)

212 DEFIZ2(J,L,W)

213 DEFIZ3(J,L,W)

214 DEFIZ4(J,L,W)

215 DEFIZ5(J,L,W)

216 DEFIY6(J,L,W)

217 DEFIY7(J,L,W)

218 DEFIY8(J,L,W)

B-13

219 DEFIY9(J,L,W)

220 DEFIY10(J,L,W)

221 XNK(K,I,L,W) ;

222

223

224 REWARD.. T =E= SUM(W, Q(W)*SUM(L,(

225 SUM((JM1,P),BETA1(P,JM1,L)*IZ(JM1,P,L,W)) +

226 SUM((JM2,P),BETA2(P,JM2,L)*IZ(JM2,P,L,W)) +

227 SUM((JM3,P),BETA3(P,JM3,L)*IZ(JM3,P,L,W)) +

228 SUM((JM4,P),BETA4(P,JM4,L)*IZ(JM4,P,L,W)) +

229 SUM((JM5,P),BETA5(P,JM5,L)*IZ(JM5,P,L,W)) +

230 SUM(JS6,R(JS6,L)*IY(JS6,L,W)) +

231 SUM(JS7,R(JS7,L)*IY(JS7,L,W)) +

232 SUM(JS8,R(JS8,L)*IY(JS8,L,W)) +

233 SUM(JS9,R(JS9,L)*IY(JS9,L,W)) +

234 SUM(JS10,R(JS10,L)*IY(JS10,L,W))))) ;

235 BUDGET(L,W).. SUM((KK,I), C(KK,L)*X(KK,I,L,W)) =L= B(L,W) ;

236 SPECS(SPEC,L,W).. SUM((KK,I), A(KK,SPEC)*X(KK,I,L,W)) =L= BW(L,SPEC) ;

237 PAYPRI(I,L,W).. SUM(KK, X(KK,I,L,W)) =L= 1 ;

238 ONEPRI(KK,L,W).. SUM(I, X(KK,I,L,W)) =L= 1 ;

239 CONSPRI(KK,I,L,W).. X(KK,I,L,W) =L= SUM(V, X(V,I-1,L,W)) + 1$(ORD(I) EQ 1) ;

240 CONSBUD(KK,I,L,W).. X(KK,I,L,W-1) =L= X(KK,I,L,W) ;

241 ONEREQ6(JS6,L,W).. SUM((KJ6,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

242 Y(KJ6,JS6,LW,W)) =L= 1 ;

243 ONEREQ7(JS7,L,W).. SUM((KJ7,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

244 Y(KJ7,JS7,LW,W)) =L= 1 ;

245 ONEREQ8(JS8,L,W).. SUM((KJ8,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

246 Y(KJ8,JS8,LW,W)) =L= 1 ;

247 ONEREQ9(JS9,L,W).. SUM((KJ9,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

248 Y(KJ9,JS9,LW,W)) =L= 1 ;

249 ONEREQ10(JS10,L,W).. SUM((KJ10,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

250 Y(KJ10,JS10,LW,W)) =L= 1 ;

251 ONESOLE6(L,W).. SUM((KJ6,I), X(KJ6,I,L,W)) =L= 1 ;

252 ONESOLE7(L,W).. SUM((KJ7,I), X(KJ7,I,L,W)) =L= 1 ;

253 ONESOLE8(L,W).. SUM((KJ8,I), X(KJ8,I,L,W)) =L= 1 ;

254 ONESOLE9(L,W).. SUM((KJ9,I), X(KJ9,I,L,W)) =L= 1 ;

255 ONESOLE10(L,W).. SUM((KJ10,I), X(KJ10,I,L,W)) =L= 1 ;

256 DEFZ1(JM1,L,W).. Z(JM1,L,W) =E= SUM((KJ1,I), X(KJ1,I,L,W)) ;

257 DEFZ2(JM2,L,W).. Z(JM2,L,W) =E= SUM((KJ2,I), X(KJ2,I,L,W)) ;

258 DEFZ3(JM3,L,W).. Z(JM3,L,W) =E= SUM((KJ3,I), X(KJ3,I,L,W)) ;

259 DEFZ4(JM4,L,W).. Z(JM4,L,W) =E= SUM((KJ4,I), X(KJ4,I,L,W)) ;

260 DEFZ5(JM5,L,W).. Z(JM5,L,W) =E= SUM((KJ5,I), X(KJ5,I,L,W)) ;

261 LINKXY6(KJ6,JS6,L,W).. Y(KJ6,JS6,L,W) =E= SUM(I, X(KJ6,I,L,W)) ;

B-14

262 LINKXY7(KJ7,JS7,L,W).. Y(KJ7,JS7,L,W) =E= SUM(I, X(KJ7,I,L,W)) ;

263 LINKXY8(KJ8,JS8,L,W).. Y(KJ8,JS8,L,W) =E= SUM(I, X(KJ8,I,L,W)) ;

264 LINKXY9(KJ9,JS9,L,W).. Y(KJ9,JS9,L,W) =E= SUM(I, X(KJ9,I,L,W)) ;

265 LINKXY10(KJ10,JS10,L,W).. Y(KJ10,JS10,L,W) =E= SUM(I, X(KJ10,I,L,W)) ;

266 DEFIZ1(JM1,L,W).. SUM(P,IZ(JM1,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

267 AND ORD(LW) LE ORD(L)), Z(JM1,LW,W)) ;

268 DEFIZ2(JM2,L,W).. SUM(P,IZ(JM2,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

269 AND ORD(LW) LE ORD(L)), Z(JM2,LW,W)) ;

270 DEFIZ3(JM3,L,W).. SUM(P,IZ(JM3,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

271 AND ORD(LW) LE ORD(L)), Z(JM3,LW,W)) ;

272 DEFIZ4(JM4,L,W).. SUM(P,IZ(JM4,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

273 AND ORD(LW) LE ORD(L)), Z(JM4,LW,W)) ;

274 DEFIZ5(JM5,L,W).. SUM(P,IZ(JM5,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

275 AND ORD(LW) LE ORD(L)), Z(JM5,LW,W)) ;

276 DEFIY6(JS6,L,W).. IY(JS6,L,W) =L= SUM((KJ6,LW)$(ORD(LW) GT ORD(L) - %life%

277 AND ORD(LW) LE ORD(L)), Y(KJ6,JS6,LW,W)) ;

278 DEFIY7(JS7,L,W).. IY(JS7,L,W) =L= SUM((KJ7,LW)$(ORD(LW) GT ORD(L) - %life%

279 AND ORD(LW) LE ORD(L)), Y(KJ7,JS7,LW,W)) ;

280 DEFIY8(JS8,L,W).. IY(JS8,L,W) =L= SUM((KJ8,LW)$(ORD(LW) GT ORD(L) - %life%

281 AND ORD(LW) LE ORD(L)), Y(KJ8,JS8,LW,W)) ;

282 DEFIY9(JS9,L,W).. IY(JS9,L,W) =L= SUM((KJ9,LW)$(ORD(LW) GT ORD(L) - %life%

283 AND ORD(LW) LE ORD(L)), Y(KJ9,JS9,LW,W)) ;

284 DEFIY10(JS10,L,W).. IY(JS10,L,W) =L= SUM((KJ10,LW)$(ORD(LW) GT ORD(L) - %life%

285 AND ORD(LW) LE ORD(L)), Y(KJ10,JS10,LW,W)) ;

286 XNK(NK,I,L,W).. X(NK,I,L,W) =E= 0;

287

288 option limrow=6;

289 MODEL SATELLITE /ALL/ ;

290

291 SATELLITE.OPTCR = 0.01;

292

293 $if exist matdata.gms $include matdata.gms

294

295 SOLVE SATELLITE USING MIP MAXIMIZING T ;

296

297

298 SCALAR COMPTIME time in CPU seconds to solve the model using CPLEX ;

299 COMPTIME = SATELLITE.RESUSD;

300

301 $libinclude matout X.l K I L W

302 $libinclude matout T.l

303 $libinclude matout COMPTIME

304

B-15

305 DISPLAY X.L;

306 DISPLAY COMPTIME;

1 ***

2 *

3 * AUTHOR: Capt Ben Kallemyn

4 * AFIT/ENS

5 * March 2007

6 *

7 * This program solves the multiple-launch memoryless prioritization problem

8 *

9 * The following assumptions/limitations hold for this program:

10 * 1. There is a maximum of 10 requirements evenly split between

11 * sole-source and multi-source types.

12 * 2. Associated with each requirement is space for 10 payloads.

13 * If there is a need for fewer, fill in the spaces with zeros.

14 * 3. The reward functions for the multi-source requirements are

15 * concave, piecewise linear. The slopes must be non-increasing.

16 * 4. If a payload is available, it is available for all launches.

17 * There should be a cost for each launch for each included payload.

18 *

19 ***

20

21 *This sets the solver to CPLEX

22 OPTIONS MIP=CPLEX;

23

24 *This sets the global variable for the # of payloads

25 $setglobal pay 6

26 $setglobal launch 2

27 $setglobal life 2

28 $setglobal pw 4

29 *pw is the number of reqs that can be in const (# payloads per req * life)

30 $if exist matglobs.gms $include matglobs.gms

31

32 *Define the sets

33 SETS

34 K available payload spaces / K1*K100 /

35 I priority levels / 1 * %pay% /

36 J requirements / J1*J10 /

37 L launches / 1 * %launch% /

38 W budget scenarios / W1*W3 /

39 SPEC engineering specifications / WEI, POW, VOL /

40 KK(K) payloads which are actually available

41 V(K) another name for the set of payloads

B-16

42 JM1(J) multi-source requirement 1

43 JM2(J) multi-source requirement 2

44 JM3(J) multi-source requirement 3

45 JM4(J) multi-source requirement 4

46 JM5(J) multi-source requirement 5

47 JS(J) sole-source requirements / J6*J10 /

48 JS6(JS) sole-source requirement 1

49 JS7(JS) sole-source requirement 2

50 JS8(JS) sole-source requirement 3

51 JS9(JS) sole-source requirement 4

52 JS10(JS) sole-source requirement 5

53 KJ(K) the set of payloads which satisfy the sole-source reqs

54 KJ1(K) the set of payloads which satisfy req 1

55 KJ2(K) the set of payloads which satisfy req 2

56 KJ3(K) the set of payloads which satisfy req 3

57 KJ4(K) the set of payloads which satisfy req 4

58 KJ5(K) the set of payloads which satisfy req 5

59 KJ6(K) the set of payloads which satisfy req 6

60 KJ7(K) the set of payloads which satisfy req 7

61 KJ8(K) the set of payloads which satisfy req 8

62 KJ9(K) the set of payloads which satisfy req 9

63 KJ10(K) the set of payloads which satisfy req 10

64 P counter for peicewise linear functions / 1 * %pw% /

65 NK(K);

66

67 ALIAS (L,LW) ;

68 V(K) = YES;

69

70 PARAMETERS

71 Q(W) chance of budget scenario w

72 / W1 .2

73 W2 .6

74 W3 .2 / ;

75

76 TABLE C(K,L)

77 1 2

78 K1 400 400

79 K2 200 300

80 K11 600 700

81 K12 500 600

82 K51 800 800

83 K52 950 900 ;

84

B-17

85 *Define set KK - the set of available payloads

86 LOOP(K$(C(K,’1’) NE 0), KK(K) = YES; V(K) = YES);

87 LOOP(K$(C(K,’1’) EQ 0), NK(K) = YES);

88

89 *Define the Kj subsets - the subset of payloads which satisfy each req

90 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 1 AND ORD(K) LE 10), KJ1(K) = YES);

91 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 11 AND ORD(K) LE 20), KJ2(K) = YES);

92 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 21 AND ORD(K) LE 30), KJ3(K) = YES);

93 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 31 AND ORD(K) LE 40), KJ4(K) = YES);

94 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 41 AND ORD(K) LE 50), KJ5(K) = YES);

95 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 51 AND ORD(K) LE 60), KJ6(K) = YES);

96 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 61 AND ORD(K) LE 70), KJ7(K) = YES);

97 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 71 AND ORD(K) LE 80), KJ8(K) = YES);

98 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 81 AND ORD(K) LE 90), KJ9(K) = YES);

99 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 91 AND ORD(K) LE 100), KJ10(K)= YES);

100

101 LOOP(KJ1$(C(KJ1,’1’) NE 0), JM1("J1") = YES);

102 LOOP(KJ2$(C(KJ2,’1’) NE 0), JM2("J2") = YES);

103 LOOP(KJ3$(C(KJ3,’1’) NE 0), JM3("J3") = YES);

104 LOOP(KJ4$(C(KJ4,’1’) NE 0), JM4("J4") = YES);

105 LOOP(KJ5$(C(KJ5,’1’) NE 0), JM5("J5") = YES);

106 LOOP(KJ6$(C(KJ6,’1’) NE 0), JS6("J6") = YES);

107 LOOP(KJ7$(C(KJ7,’1’) NE 0), JS7("J7") = YES);

108 LOOP(KJ8$(C(KJ8,’1’) NE 0), JS8("J8") = YES);

109 LOOP(KJ9$(C(KJ9,’1’) NE 0), JS9("J9") = YES);

110 LOOP(KJ10$(C(KJ10,’1’) NE 0), JS10("J10") = YES);

111

112 *Define set KJ - the set of payloads satisfying sole-source reqs

113 LOOP(K$(C(K,’1’) NE 0 AND ORD(K) GE 51), KJ(K)= YES);

114

115 TABLE A(K,SPEC) payload data

116 WEI POW VOL

117 K1 200 350 3

118 K2 100 450 2

119 K11 400 300 4

120 K12 300 500 4

121 K51 900 750 9

122 K52 800 700 7 ;

123

124 TABLE R(JS,L)

125 1 2

126 J6 14 21

127 J7 0 0

B-18

128 J8 0 0

129 J9 0 0

130 J10 0 0 ;

131

132

133

134 TABLE BW(L,SPEC)

135 WEI POW VOL

136 1 1900 2600 22

137 2 1500 2300 18 ;

138

139 TABLE B(L,W)

140 W1 W2 W3

141 1 1500 2000 2500

142 2 1200 1600 2000 ;

143

144 TABLE BETA1(P,J,L)

145 J1.1 J1.2

146 1 8 13

147 2 7 7

148 3 5 5

149 4 4 3 ;

150

151 TABLE BETA2(P,J,L)

152 J2.1 J2.2

153 1 10 7

154 2 5 7

155 3 5 5

156 4 4 3 ;

157

158 TABLE BETA3(P,J,L)

159 J3.1 J3.2

160 1 0 0

161 2 0 0 ;

162

163 TABLE BETA4(P,J,L)

164 J4.1 J4.2

165 1 0 0

166 2 0 0 ;

167

168 TABLE BETA5(P,J,L)

169 J5.1 J5.2

170 1 0 0

B-19

171 2 0 0 ;

172

173 VARIABLES

174 X(K,I,L,W) if payload k has priority level i and i is funded under scenario w

175 Y(K,J,L,W) if payload k satisfies requiremnt j under scenario w

176 IY(J,L,W) if sole-source req j is satisfied in const at launch l

177 Z(J,L,W) number of payloads which satisfy multi-source req j on launch l

178 IZ(J,P,L,W) number of payloads which satisfy multi-source req j in const at l

179 T total expected reward ;

180

181 BINARY VARIABLES X,Y,IY,IZ;

182

183 set ld(l);

184

185 EQUATIONS

186 REWARD define objective function

187 BUDGET(L,W) limit budget

188 SPECS(SPEC,L,W) limit specifications

189 PAYPRI(I,L,W) each priority level gets only 1 payload

190 ONEPRI(K,L,W) each payload has at most 1 priority level

191 CONSPRI(K,I,L,W) consecutive priority levels must be on list

192 CONSBUD(K,I,L,W) consecutive budget scenarios mmust be on list

193 ONEREQ6(JS,L,W)

194 ONEREQ7(JS,L,W)

195 ONEREQ8(JS,L,W)

196 ONEREQ9(JS,L,W)

197 ONEREQ10(JS,L,W)

198 ONESOLE6(L,W)

199 ONESOLE7(L,W)

200 ONESOLE8(L,W)

201 ONESOLE9(L,W)

202 ONESOLE10(L,W)

203 DEFZ1(J,L,W) define decision variable z for req 1

204 DEFZ2(J,L,W) define decision variable z for req 2

205 DEFZ3(J,L,W) define decision variable z for req 3

206 DEFZ4(J,L,W) define decision variable z for req 4

207 DEFZ5(J,L,W) define decision variable z for req 5

208 LINKXY6(K,J,L,W) link decision variable y to x for req 6

209 LINKXY7(K,J,L,W) link decision variable y to x for req 7

210 LINKXY8(K,J,L,W) link decision variable y to x for req 8

211 LINKXY9(K,J,L,W) link decision variable y to x for req 9

212 LINKXY10(K,J,L,W) link decision variable y to x for req 10

213 DEFIZ1(J,L,W)

B-20

214 DEFIZ2(J,L,W)

215 DEFIZ3(J,L,W)

216 DEFIZ4(J,L,W)

217 DEFIZ5(J,L,W)

218 DEFIY6(J,L,W)

219 DEFIY7(J,L,W)

220 DEFIY8(J,L,W)

221 DEFIY9(J,L,W)

222 DEFIY10(J,L,W)

223 XNK(K,I,L,W) ;

224

225

226 REWARD.. T =E= SUM(W, Q(W)*SUM(L$(LD(L)),(

227 SUM((JM1,P),BETA1(P,JM1,L)*IZ(JM1,P,L,W)) +

228 SUM((JM2,P),BETA2(P,JM2,L)*IZ(JM2,P,L,W)) +

229 SUM((JM3,P),BETA3(P,JM3,L)*IZ(JM3,P,L,W)) +

230 SUM((JM4,P),BETA4(P,JM4,L)*IZ(JM4,P,L,W)) +

231 SUM((JM5,P),BETA5(P,JM5,L)*IZ(JM5,P,L,W)) +

232 SUM(JS6,R(JS6,L)*IY(JS6,L,W)) +

233 SUM(JS7,R(JS7,L)*IY(JS7,L,W)) +

234 SUM(JS8,R(JS8,L)*IY(JS8,L,W)) +

235 SUM(JS9,R(JS9,L)*IY(JS9,L,W)) +

236 SUM(JS10,R(JS10,L)*IY(JS10,L,W))))) ;

237 BUDGET(L,W)$(LD(L)).. SUM((KK,I), C(KK,L)*X(KK,I,L,W)) =L= B(L,W) ;

238 SPECS(SPEC,L,W)$(LD(L)).. SUM((KK,I), A(KK,SPEC)*X(KK,I,L,W)) =L= BW(L,SPEC) ;

239 PAYPRI(I,L,W)$(LD(L)).. SUM(KK, X(KK,I,L,W)) =L= 1 ;

240 ONEPRI(KK,L,W)$(LD(L)).. SUM(I, X(KK,I,L,W)) =L= 1 ;

241 CONSPRI(KK,I,L,W)$(LD(L)).. X(KK,I,L,W) =L= SUM(V, X(V,I-1,L,W)) + 1$(ORD(I) EQ 1) ;

242 CONSBUD(KK,I,L,W)$(LD(L)).. X(KK,I,L,W-1) =L= X(KK,I,L,W) ;

243 ONEREQ6(JS6,L,W)$(LD(L)).. SUM((KJ6,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

244 Y(KJ6,JS6,LW,W)) =L= 1 ;

245 ONEREQ7(JS7,L,W)$(LD(L)).. SUM((KJ7,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

246 Y(KJ7,JS7,LW,W)) =L= 1 ;

247 ONEREQ8(JS8,L,W)$(LD(L)).. SUM((KJ8,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

248 Y(KJ8,JS8,LW,W)) =L= 1 ;

249 ONEREQ9(JS9,L,W)$(LD(L)).. SUM((KJ9,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

250 Y(KJ9,JS9,LW,W)) =L= 1 ;

251 ONEREQ10(JS10,L,W)$(LD(L)).. SUM((KJ10,LW)$(ORD(LW) GT ORD(L) - %life% AND ORD(LW) LE ORD(L)),

252 Y(KJ10,JS10,LW,W)) =L= 1 ;

253 ONESOLE6(L,W)$(LD(L)).. SUM((KJ6,I), X(KJ6,I,L,W)) =L= 1 ;

254 ONESOLE7(L,W)$(LD(L)).. SUM((KJ7,I), X(KJ7,I,L,W)) =L= 1 ;

255 ONESOLE8(L,W)$(LD(L)).. SUM((KJ8,I), X(KJ8,I,L,W)) =L= 1 ;

256 ONESOLE9(L,W)$(LD(L)).. SUM((KJ9,I), X(KJ9,I,L,W)) =L= 1 ;

B-21

257 ONESOLE10(L,W)$(LD(L)).. SUM((KJ10,I), X(KJ10,I,L,W)) =L= 1 ;

258 DEFZ1(JM1,L,W)$(LD(L)).. Z(JM1,L,W) =E= SUM((KJ1,I), X(KJ1,I,L,W)) ;

259 DEFZ2(JM2,L,W)$(LD(L)).. Z(JM2,L,W) =E= SUM((KJ2,I), X(KJ2,I,L,W)) ;

260 DEFZ3(JM3,L,W)$(LD(L)).. Z(JM3,L,W) =E= SUM((KJ3,I), X(KJ3,I,L,W)) ;

261 DEFZ4(JM4,L,W)$(LD(L)).. Z(JM4,L,W) =E= SUM((KJ4,I), X(KJ4,I,L,W)) ;

262 DEFZ5(JM5,L,W)$(LD(L)).. Z(JM5,L,W) =E= SUM((KJ5,I), X(KJ5,I,L,W)) ;

263 LINKXY6(KJ6,JS6,L,W)$(LD(L)).. Y(KJ6,JS6,L,W) =E= SUM(I, X(KJ6,I,L,W)) ;

264 LINKXY7(KJ7,JS7,L,W)$(LD(L)).. Y(KJ7,JS7,L,W) =E= SUM(I, X(KJ7,I,L,W)) ;

265 LINKXY8(KJ8,JS8,L,W)$(LD(L)).. Y(KJ8,JS8,L,W) =E= SUM(I, X(KJ8,I,L,W)) ;

266 LINKXY9(KJ9,JS9,L,W)$(LD(L)).. Y(KJ9,JS9,L,W) =E= SUM(I, X(KJ9,I,L,W)) ;

267 LINKXY10(KJ10,JS10,L,W)$(LD(L)).. Y(KJ10,JS10,L,W) =E= SUM(I, X(KJ10,I,L,W)) ;

268 DEFIZ1(JM1,L,W)$(LD(L)).. SUM(P,IZ(JM1,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

269 AND ORD(LW) LE ORD(L)), Z(JM1,LW,W)) ;

270 DEFIZ2(JM2,L,W)$(LD(L)).. SUM(P,IZ(JM2,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

271 AND ORD(LW) LE ORD(L)), Z(JM2,LW,W)) ;

272 DEFIZ3(JM3,L,W)$(LD(L)).. SUM(P,IZ(JM3,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

273 AND ORD(LW) LE ORD(L)), Z(JM3,LW,W)) ;

274 DEFIZ4(JM4,L,W)$(LD(L)).. SUM(P,IZ(JM4,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

275 AND ORD(LW) LE ORD(L)), Z(JM4,LW,W)) ;

276 DEFIZ5(JM5,L,W)$(LD(L)).. SUM(P,IZ(JM5,P,L,W)) =E= SUM(LW$(ORD(LW) GT ORD(L) - %life%

277 AND ORD(LW) LE ORD(L)), Z(JM5,LW,W)) ;

278 DEFIY6(JS6,L,W)$(LD(L)).. IY(JS6,L,W) =L= SUM((KJ6,LW)$(ORD(LW) GT ORD(L) - %life%

279 AND ORD(LW) LE ORD(L)), Y(KJ6,JS6,LW,W)) ;

280 DEFIY7(JS7,L,W)$(LD(L)).. IY(JS7,L,W) =L= SUM((KJ7,LW)$(ORD(LW) GT ORD(L) - %life%

281 AND ORD(LW) LE ORD(L)), Y(KJ7,JS7,LW,W)) ;

282 DEFIY8(JS8,L,W)$(LD(L)).. IY(JS8,L,W) =L= SUM((KJ8,LW)$(ORD(LW) GT ORD(L) - %life%

283 AND ORD(LW) LE ORD(L)), Y(KJ8,JS8,LW,W)) ;

284 DEFIY9(JS9,L,W)$(LD(L)).. IY(JS9,L,W) =L= SUM((KJ9,LW)$(ORD(LW) GT ORD(L) - %life%

285 AND ORD(LW) LE ORD(L)), Y(KJ9,JS9,LW,W)) ;

286 DEFIY10(JS10,L,W)$(LD(L)).. IY(JS10,L,W) =L= SUM((KJ10,LW)$(ORD(LW) GT ORD(L) - %life%

287 AND ORD(LW) LE ORD(L)), Y(KJ10,JS10,LW,W)) ;

288 XNK(NK,I,L,W)$(LD(L)).. X(NK,I,L,W) =E= 0;

289

290 option limrow=6;

291 MODEL SATELLITE /ALL/ ;

292

293 SATELLITE.OPTCR = 0.01;

294

295 $if exist matdata.gms $include matdata.gms

296

297 set iter /1* %launch% /;

298

299 loop(iter,

B-22

300

301 ld(l)=no;

302 ld(l)$(ord(l) le ord(iter))=yes;

303

304 SOLVE SATELLITE USING MIP MAXIMIZING T ;

305

306 x.fx(k,i,ld,w)=x.l(k,i,ld,w);

307

308);

309

310 SCALAR COMPTIME time in CPU seconds to solve the model using CPLEX ;

311 COMPTIME = SATELLITE.RESUSD;

312

313 $libinclude matout X.l K I L W

314 $libinclude matout T.l

315 $libinclude matout COMPTIME

316

317 DISPLAY X.L;

318 DISPLAY COMPTIME;

B-23

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2007 Master’s Thesis Mar 2006 — Mar 2007

Prioritizing Satellite Payload Selection via Optimization

Kallemyn, Benjamin S., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GOR/ENS/07-14

National Reconnaissance Office
Attn: William J. Comstock
Welkin Associates, Ltd.
4801 Stonecroft Blvd., Suite 210
Chantilly, VA 20151; COMM: (703)863-8163

Approval for public release; distribution is unlimited.

This thesis develops optimization models for prioritizing payloads for inclusion on satellite buses with
volume, power, weight and budget constraints. The first model considers a single satellite launch for which the budget is
uncertain and constellation requirements are not considered. Subsequently, we include constellation requirements and
provide a more enhanced model. Both single-launch models provide a prioritized list of payloads to include on the launch
before the budget is realized. The single-launch models are subsequently extended to a sequence of multiple launches in
two cases, both of which incorporate an explicit dependence on the constellation composition at each launch epoch. The
first case ignores future launches and solves a series of independent single-launch problems. The second case considers all
launches simultaneously. The optimization models for single- and multiple-launch cases are evaluated through a
computational study. It was found that, when the budget distribution is skewed, the prioritization model outperforms a
greedy payload selection heuristic in the single-launch model. For the multiple-launch models, it was found that the
consideration of future launches can significantly improve the objective function values.

Prioritization, Satellite payloads, Optimization

U U U UU 128

Jeffrey P. Kharoufeh, Phd, (ENS)

(937) 255-3636 x4603; jeffrey.kharoufeh@afit.edu

	Prioritizing Satellite Payload Selection via Optimization
	Recommended Citation

	tmp.1589470543.pdf.bATXL

