
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2007

An Efficient Metaheuristic for Dynamic Network Design and An Efficient Metaheuristic for Dynamic Network Design and

Message Routing Message Routing

Robert B. Hartlage

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Hartlage, Robert B., "An Efficient Metaheuristic for Dynamic Network Design and Message Routing"
(2007). Theses and Dissertations. 3082.
https://scholar.afit.edu/etd/3082

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3082?utm_source=scholar.afit.edu%2Fetd%2F3082&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AN EFFICIENT METAHEURISTIC FOR DYNAMIC

NETWORK DESIGN AND MESSAGE ROUTING

THESIS

Robert B. Hartlage, Captain, USAF

AFIT/GOR/ENS/07-10

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GOR/ENS/07-10

AN EFFICIENT METAHEURISTIC FOR DYNAMIC

NETWORK DESIGN AND MESSAGE ROUTING

THESIS

Presented to the Faculty

Department of Operational Sciences

 Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

 Air Education and Training Command

 In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Robert B. Hartlage, MS

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/07-10

AN EFFICIENT METAHEURISTIC FOR DYNAMIC

NETWORK DESIGN AND MESSAGE ROUTING

Robert B. Hartlage, MS
Captain, USAF

 Approved:

 ____________________________________ ___
 Gary W. Kinney Jr, Maj, USAF (Chairman) date

 ____________________________________ ___
 Scott R. Graham, Maj, USAF (Member) date

 ____________________________________ ___
 Dr. Kenneth M. Hopkinson (Member) date

iv

AFIT/GOR/ENS/07-10

Abstract

 The implementation of Net-centric warfare presents major challenges in terms of

effectively and efficiently delivering critical information across the Global Information

Grid. In many cases, the amount of information requested will exceed the capabilities of

the network. One challenge is to dynamically design the network (assign transceivers) to

maximize the amount of required information that can be transmitted and the quality of

service for those transmissions – to best implement the communications tasking order.

The problem is as follows: given a list of required message traffic, to include source,

destination, size, and priority, design the network to maximize the delivery of the

message traffic based on message priority and quality of service. Once the network is

designed, the routing for the messages must be determined. Due to the dynamic nature of

the problem and the combinatorial explosion in size as new network nodes are added, a

quick-running heuristic approach is needed. In this research, a metaheuristic is developed

to dynamically design the network based on the projected message traffic requirements

and efficiently route the required messages on the network, based on priority, maximizing

the number of messages successfully delivered and the quality of service of the delivery.

The meta-heuristic is tested against previous efforts and is shown to generate high quality

solutions in a very short amount of time relative to methods in the current literature.

v

AFIT/GOR/ENS/07-10

To my Wife & Daughter

vi

Acknowledgments

 I would first like to recognize the sacrifices made by my family during the time

we’ve spent here at AFIT. I am especially appreciative of my wife who has endured my

absence at our dinner table on more than one occasion. Attending many church, family,

and social events alone has, I’m sure, at times caused her to feel like a widow. It is to her

great credit and my esteem that she was willing to fill-in on my behalf during those

absences...thanks Babe for sticking with me, I love you! Although at the time this is

being written she is yet too young to realize it, my daughter has also been a source of

encouragement and support. Her ever sunny disposition and smiling face have lifted my

spirits each evening when I finally find my way home…daddy love’s you! To my

parents and siblings I’d like to express my appreciation for your continuing love, advice,

and support. Having a refuge from the slings and arrows of grad school was truly

priceless in more than just a “MasterCard” kind of way. I’d also like to express my

deepest appreciation to my thesis advisor Maj. Gary Kinney, for his endless patience,

leadership, and encouragement through this tedious process; you’re the best, Sir! Thanks

to Maj. Laura Suzuki for the hours she spent aiding me in debugging the MATLAB

“mess” in Appendix A. To my classmates, thanks for silently enduring my loud and

frequent “soapbox moments” about school, general injustices, and neighborly relations,

I’ll be seeing many of you again, much to your chagrin! A special thanks is due to Travis

for contributing to my expanding waistline through his exquisite baked goods. Finally, to

the fine folks at EPF I bestow the dubious honor of teaching me, through many a

poignant counterexample, that there are endeavors in life much more important than

onfxrgonyy, such as NGNPGPP. Ben Shrode would most certainly agree…

vii

Table of Contents

Page

Abstract…………………………………………………………………….……………..iv

Dedication…………………………………………………………………………………v

Acknowledgments……………………………………………………………………..…vi

List of Figures……………………………………………………..…………………..….ix

List of Tables………………………………………………………………………..…….x

I. Introduction .. 1

Background ... 1
Statement of the Problem.. 2
Research Approach ... 3
Scope & Limitations ... 3
Summary ... 5

II. Literature Review.. 7

Introduction... 7
Definition of Terms... 7
Telecommunication Networks .. 10
Network Design Problem (NDP) .. 11
Degree Constrained Minimum Spanning Tree Problem... 15
Bipartite Maximum Weight Matching.. 17
Network Metrics ... 18
The A* Heuristic... 19
Message Routing... 21
Greedy Matching Algorithm... 21
Metaheuristics ... 22
Summary ... 22

III. Methodology.. 24

User Inputs & Data Requirements .. 24
Simulation & Mission Planning.. 24
The NetDesign Metaheuristic ... 28
Solution Representation .. 31
Summary ... 33

viii

IV. Testing .. 35

Test Data Sets ... 35
Network Metrics ... 36
A* Factor Screening ... 44
Metrics for NetDesign Performance ... 52

V. Conclusions & Recommendations.. 55

Measurement of Success... 55
Summary of Test Implications.. 55
Recommendations for Future Work.. 56

Appendix A: MATLAB implementation of NetDesign .. 57

Appendix B: Tabulated Metrics for Test Cases... 95

Vita.. 106

ix

List of Figures

Page

Figure 1: A sample arc for a network addressed by this research. 4

Figure 2: A notional communication network with four vertices...................................... 5

Figure 3: Box-Cox plot to examine Residual Normality in A* 45

Figure 4: Normal probability factor plot for NetDesign using A* 46

Figure 5: Main Effects vs. Run Time A* plots.. 47

Figure 6: Two factor interaction plots for A*.. 48

Figure 7: Box-Cox plot to examine Residual Normality in Dijkstra’s 49

Figure 8: Normal probability factor plot for NetDesign using Dijkstra’s 50

Figure 9: Main Effects vs. Run Time Dijkstra’s plots ... 51

Figure 10: Two factor interaction plot for Dijkstra’s... 52

x

List of Tables

 Page

Table 1: User Defined Inputs... 25

Table 2: Data Requirements... 26

Table 3: Fields contained in “Post_match_comm_routing” solution structure 32

Table 4: Table of test cases with factor levels ... 36

Table 5: Test case results for A* and Dijkstra’s in NetDesign.. 40

Table 6: Summary statistics for objective function value and run time 41

Table 7: t-test for difference in mean objective function value .. 41

Table 8: t-test for difference in mean run time ... 42

Table 9: NetDesign center point test case.. 43

Table 10: Comparison of Factorial Averages with Center Point Averages...................... 43

Table 11: Network metrics breakout by Vertices and Transceivers. 53

Table 12: t-tests for difference in means in Network Metrics ... 54

1

AN EFFICIENT METAHEURISTIC FOR DYNAMIC NETWORK DESIGN AND

MESSAGE ROUTING

I. Introduction

Background

In the near future, military operations will rely heavily on network-centric warfare

(NCW) capabilities for communications and in establishing and maintaining information

superiority (Department of Defense 2000:8). In order for these capabilities to be fully

realized, methods for efficiently routing communications through a dynamic network

with limited bandwidth must be developed. As Erwin describes, the requirements placed

on military networks are unique (Erwin 2006:1). Communication requests are likely to

be very time sensitive and a majority of network nodes may be in motion. In such a

network, large segments could be disabled unless a method to quickly and dynamically

reconnect the network is developed.

Erwin’s research defined several concepts and methods that this research will

build upon. The goal of this research is to provide a theoretical construct and proof-of-

concept for the implementation of wireless network optimization within a military NCW

context. A software prototype will be created using MATLAB. The development of an

optimization tool is critical if the DoD is to transition to NCW on schedule as stated in

JV2020 (Department of Defense 2000:35).

2

Statement of the Problem

An integral part of intelligent preparation of the battlespace (IPB) is ensuring the

communication connectivity of all units in the campaign. The DoD recognizes that

current technology is capable of supporting this objective, but that robust doctrine for

NCW must be developed. An essential step in the development of this doctrine is in

creating a communications tasking order (CTO). For readers already familiar with the

concept of an air tasking order (ATO), the CTO is easily understood by recognizing the

natural parallels existing between the ATO and CTO. For instance, communications are

analogous to air assets, sorties flown are analogous to the Quality of Service (QoS),

sorties needed are analogous to the commodity flow requests, etc. CTO development is

done by the policy-makers in much the same way as the ATO.

It is assumed in any given period there are more commodity requests than the

communication network bandwidth can support. If the network were able to support all

communications requirements, then the problem would be reduced to maximizing QoS

for high priority message traffic.

Unfortunately, in many instances security concerns prevent the use of omni-

directional broadcast radio frequency (RF) and satellite communications. This research

considers two, more secure methods of transmission: directional RF and high-bandwidth

directional laser. These methods reduce the probability of communication interception

by the enemy. The drawback to using these methods is that they are directional; in order

for the communications to be effectively transmitted, both the transmitting unit and

receiving unit must be “pointed” at each other. Another disadvantage is transmission

distance. In order for two units to communicate, each must be within the others effective

radius or the signal might be too weak to be received.

3

Research Approach

This work will improve upon earlier results by making progress toward solving

realistic sized network instances in an acceptable amount of time. Additionally, several

methodological improvements over earlier work are introduced to more closely resemble

a realistic scenario. This research will present an updated objective function that

strengthens the connection between true objectives and the model representation. The

impact of strengthening this relationship is that the objective value of a given solution is a

better indicator of the true quality of the solution.

This research will also implement a more sophisticated metaheuristic search that

is significantly faster than the LP based method used by Erwin. The heuristic is tested on

a variety of network instances of varying size with varying characteristics for arc

capacity, message bandwidth, and average number of transceivers at each vertex. Two

versions of the metaheuristic are tested, each using different embedded shortest path

heuristics, to determine which method performs better for each set of problem

characteristics. Additionally, several metrics are developed based on upper bounds on

the network characteristics and average QoS of the network in order to provide a basis for

comparison.

Scope & Limitations

 The NDP is known to be NP-complete (Wong 1978:3). This research is intended

to address problem instances that are likely to arise in a typical military scenario. Several

assumptions have been made here regarding the characteristics of the network instances

that are considered here.

 First, the upper bound on transceivers to be located at a single vertex is nine. It is

also assumed that there are two possible transceiver types and that a single vertex may

4

have any combination of transceivers as long as the total number does not exceed nine

transceivers. Two transceivers are adjacent if they are the endpoints of a common edge.

Each transceiver may connect to at most one other transceiver.

The vertices in the network only communicate through transceivers. Two vertices

are adjacent only if they are able to communicate through an adjacent pair of

transceivers. Vertices may be adjacent to one another through more than one pair of

transceivers. If two vertices are adjacent through more than one set of transceivers than

the capacity available between the set of vertices is equivalent to the sum of the

capacities of the arcs connecting them.

Each arc has associated with it both a capacity and a QoS. The commodity that is

being flowed through the networks in this research is communications requests. For this

research it is assumed that both arc capacities and message bandwidth to include packets

assume integer values. Each communication request has a unique ID, an assigned

priority, and a positive bandwidth. The priority scale used is integer values in the set [1,

5] with 5 being the highest priority. A sample arc is presented below along with a

notional four vertex example of a network addressed by this research. Both graphics

were originally presented by Erwin (Erwin 2006:22-23).

Figure 1: A sample arc for a network addressed by this research.

ui1 ui2

cij1,capij1

i j

uj1

cji1,capji1

cij2,capij2

cji2,capji2

uj2

5

Figure 2: A notional communication network with four vertices.

Summary

The preceding sections present the motivation for this research. With these ideas

in place, the following chapter will provide several concepts and relevant formulations

that are either used directly in this research or have proven to be conceptually significant

in the methodology upon which this work is based.

Chapter 3 will then describe the detailed methodology developed by this research

and discuss several issues with transforming the methodology into prototype code.

Chapter 4 develops a test plan and discusses the relevant test parameters. A majority of

this chapter is dedicated to discussing appropriate heuristic testing procedures used and

2 2

1 0 1

3

1 2

4

1

2 0

1,46

1,46

5,28

5,28

6,46
6,46

6,44

6,44
7,88

7,88
1,42

1,42

9,47

9,47

6

how these procedures are implemented. Finally, Chapter 5 concludes with a brief

summary of the research and several suggestions regarding potential areas of future

research.

7

II. Literature Review

Introduction

Before delving into the formulations applied to the network structures in this

problem, it is important to first characterize the communications networks used in this

research. Following this review, several network formulations are presented. Each

formulation has aspects that are useful either conceptually or directly within the special

Network Design Problem (NDP) presented in this research. Next promising solution

methods for the NDP are explored. This is followed by a general description of meta-

heuristics. Finally, network metrics are explored to determine which are most suitable

for measuring the quality of directional hybrid wireless networks.

Definition of Terms

In order to discuss network concepts it is necessary to provide formal definitions

for the tenant graph theory concepts that are foundational to defining network structures.

This section is provided as a quick reference for the reader to refer to in the following

sections. For a more thorough treatment of any topic listed here the reader will find the

source for these definitions to be instructive (West 2001).

Definition 1: A graph G is a triple consisting of a vertex set V(G), an

edge set E(G), and a relation that associates with each edge two (not

necessarily distinct) vertices called its endpoints.

Definition 2: Let G be a loopless graph with vertex set V(G) = {v1,…,vn}

and edge set E(G) = {e1,…,em}. The incidence matrix M(G) is the n-by-m

matrix in which entry mi,j is 1 if vi is an endpoint of ej and otherwise is 0.

If vertex v is an endpoint of edge e, then v and e are incident. The degree

of a vertex v (in a loopless graph) is the number of incident edges.

8

Definition 3: When u and v are the endpoints of an edge, they are

adjacent and are neighbors.

Definition 4: An adjacency matrix of G, written A(G), is the n-by-n

matrix in which entry ai,j is the number of edges in G with endpoints {vi,

vj}.

Definition 5: A matching in a graph G is a set of non-loop edges with no

shared endpoints.

Definition 6: A maximal matching in a graph is a matching that cannot

be enlarged by adding an edge.

Definition 7: In general, a network is a digraph with a non-negative

capacity c(e) on each edge e and a distinguished source vertex s and sink

vertex t. However, for the purposes of this paper a network is treated as

an undirected graph.

Definition 8: The connectivity of a graph G is the minimum size of a vertex set

S, such that (G – S) is disconnected or has only one vertex. In the context of this

research, connectivity is used as a measure of a particular networks’ “robustness.”

Definition 9: A flow f assigns a value f(e) to each edge e.

Definition 10: A walk in a graph G, is a list 0 1 1, , ,..., ,k kv e v e v of vertices and edges

such that for 1 i k≤ ≤ the edge ei has endpoints vi-1 and vi.

Definition 11: A path in a graph G, is a walk with no repeated vertices.

In order to formulate a communications network several conventions regarding

vertices and edges and how they relate to the physical network structures in question are

adopted. In the context of this research, a vertex in a network is defined as a group of

9

transceivers with the ability to send, receive and route communications to other adjacent

vertices. An edge in the network represents a transceiver pairing. Each edge has a

commodity flow capacity. If two transceivers are connected by an edge then they are

able to send and receive communications to one another. Each vertex may have multiple

transceiver types and/or multiple units of the same transceiver as such vertices may share

several common edges. The degree of a vertex is the number of transceivers at that

vertex. In other words, it is the number of possible connections that can be made to/from

the vertex. The upper bound on total transceiver units at each vertex is 20 implying the

degree of every vertex in the network is constrained to be ≤ 20.

For an edge to connect two transceivers neither can be outside of the radius of

communication of the other. The radius of communication, r, is the effective range of the

transceiver. Although the communications are directional, the direction of the connection

may be chosen as needed where the possible choices are in the degree range 0 0{0 , 360 }.

Now a formal definition of communication radius is provided.

Let (,) = distance from vertex to vertex
Let (,) maximum radial communication distance from vertex
 of transceiver type

k

d i j i j
r i t i

k
=

Two vertices may be connected by an edge iff:

(,) max((,), (,))k kk
d i j r i t r j t≤

 Now that the defining characteristics of the real-world network have been given,

it is appropriate to focus attention on the commodities that flow across the network. In

this network instance, the commodity of interest is communication or rather the data

streams that are transmitted through the network in order to relay communication. Each

desired communication is referred to as a commodity flow request or simply a request.

10

This research assumes, at any given instance in time, commodity flow requests exceed

network flow capacity. The requests are assigned a priority to indicate relative

importance. Each request has a required bandwidth. Any request may be parsed into

data streams (not necessarily of uniform bandwidth) that flow separately through the

network from origin to destination. However, all streams of a single request must reach

the destination or the request is considered “dropped” and the communication is not

transmitted.

For each request, a path of maximum Quality of Service (QoS) is preferred. QoS

has many definitions depending upon the application and context of the network. For the

purposes of this research QoS is not defined but is characterized as an edge rating ranging

from 0 (worst) to 1 (best). The QoS realized for a successfully transmitted request is

equal to the lowest QoS edge among all paths carrying some fraction of the request.

Telecommunication Networks

 A telecommunication network is a graph having the properties listed in definition

7 above. However, in a telecommunication network the flow assigned to each edge is

information flow. Flow is assigned to a path based on the need to relay information from

some original vertex called the source to some destination vertex called the sink. With

many contexts, including military applications, there exist the potential to have multiple

source vertices and multiple sink vertices. A natural question at this point is “What is the

best design for the network?” The best design depends on the goals and needs of the end

user.

11

Network Design Problem (NDP)

A network design involves choosing which vertices to connect in order to satisfy

the information flow requirements. Ideally, every network should be complete, that is, all

vertices in the network to be pairwise adjacent. In this situation, connectivity would be

maximized and the NDP would be relatively easy to solve since bandwidth would most

likely be plentiful.

 However, connecting two vertices usually seizes some scarce resource, such as

transceivers, of which there is an insufficient supply to connect the entire network.

Additionally with wireless networks, weather, ground obstacles, and distance often

preclude the possibility of a connection between every pair of vertices. In spite of these

restrictions, finding an optimum configuration to satisfy information flow is still

desirable.

 There are several objectives to consider when designing a network. These are

reliability, transparency, economy, convenience, and security (Pooch et al 1991). The

reliability of a network is its ability to provide service without errors or interruption. The

economy of a network is how well the resources available within the network are utilized.

Network transparency refers to the ability of a user to access the networks resources

without needing to know exactly where the resources are located. For example, a

university student being able to utilize MATLAB simply by being logged onto the

network without needing to understand where the application is physically stored.

Convenience and security are self-explanatory and are not a concern in this context. This

research deals with wireless technology assumed to be secure because of the two

transceiver types being used. Additionally, the users of the network are aircraft, ground

units and SOF teams, so convenience and transparency are assumed to be sufficient to

12

serve the purposes of each user. In fact, reliability and economy are the only suitable

network quality design characteristics within the context of this research and therefore the

metrics for quality will measure these two objectives.

One possible solution method is the NDP mixed-integer formulation. Although a

solution to the NDP mixed-integer formulation would be optimum, the problem is NP-

complete, thus no polynomial-time algorithm exists for generating an optimum solution.

The mixed-integer formulation minimizing the total cost of the network is as follows

(Ahuja et al 1993):

 Let denote the fraction of the required flow of commodity to be routed from
 the source to the destination that flows on arc (,).
 Let deno

k
ij

k k

k

x k
s d i j

c te the cost vector for commodity (is the per unit cost for
 commodity on arc (,)).
 Let denote the fixed cost vector for the construction of each arc in the

k
ijk c

k i j
f network.

 Let be a zero-one variable indicating whether arc (,) is selected as part of the
 network design.

ijy i j

1
Minimize k k

k K
c x fy

≤ ≤

+∑ (2.1)

Subject to

{ :(,) } { :(,) }

1 if
1 if , 1, 2,...,

0 otherwise

k

k k k
ij ji

j i j A j j i A

i s
x x i d i N k K

∈ ∈

⎧ =
⎪

− = − = ∀ ∈ =⎨
⎪
⎩

∑ ∑ (2.2)

 (,) , 1, 2,...,k
ij ijx y i j A k K≤ ∀ ∈ = (2.3)

0 (,) , 1, 2,...,k
ijx i j A k K≥ ∀ ∈ = (2.4)

 is binary (,)ijy i j A∀ ∈ (2.5)

In this basic formulation, the objective function seeks to minimize the total cost of

constructing the edges and assigning flow to the edges. Constraints (2.2) are the flow

13

balance constraints. These constraints specify that total flow into a vertex, less flow out

of a vertex must be equal to 1 if the vertex is a source vertex, 0 if the vertex is a

transshipment vertex and -1 if the vertex is a destination vertex. Constraints (2.3) are

logical constraints that prevent flow on an arc if the arc is not included in the topology.

Constraints (2.4) specify that all flows must be non-negative. Finally, constraints (2.5)

specify that variables corresponding to arcs in the topology are binary. That is, an arc is

either included in the topology or it is not.

Although this may be a useful formulation, there are several modifications that

would need to be made to model the specific situation explored in this research. First,

this formulation is an example of the uncapacitated network design problem in which the

assumption is made that every edge in the network has an unlimited capacity for handling

flow assigned to it. Second, the objective function that is used in this formulation may

not reflect the objectives that would be most important in a military wireless context. As

presented there is a fixed cost associated with making a connection between two vertices

and a unit cost associated with assigning flow to an edge. The objective function seeks to

minimize the total cost of constructing the edges and assigning flow to the edges.

The formulation is modified below to more closely model the network type used

in this research (Erwin 2006:26-27). The formulation still does not fully capture the

nature of the problem but provides a foundation for comparing the approach presented in

this research with that presented in Erwin. However, these two formulations for the basis

of the problem addressed by this research and are presented in their entirety. In Chapter

3 an updated objective function is presented that more closely evaluates the true

objectives of the NDP in a military wireless network.

14

 Let denote the set of nodes, the number of commodities, and the number
 of interface types.
 Let (, ,) denote the arc connecting node to node b

N K F

i j f i j y interface type .
 Let denote the node-incidence matrix where 1 if node is incident to node
 via interface type , and 0 otherwise.

 Let

ijf

ijf

i

f
A a i

j f a

x

=
=

 denote the fraction of the required flow of commodity to be routed from
 the source to the destination that flows on arc (, ,).
 Let denote the bina

k
jf

k k

ijf

k
s d i j f

y ry variable indicating whether arc (, ,) is selected as part
 of the network topology.
 Let denote the per unit cost for commodity on arc (, ,).

k
ijf

i j f

v k i j f

 Let denote the fixed cost of including arc (, ,) in the network.

 Let denote the number of interfaces of type at node .

 Let denote the the required bandwidth for

ijf

if

k

c i j f

u f i

b commodity .
 Let denote the capacity of arc (, ,).

 Let be the total bandwidth of commodity .
ijf

k

k
cap i j f

r k

{(, ,): , 1} {(, ,): , 1}
Minimize

ijf ijf

k k
ijf ijf ijf ijf

k i j f i j a i j f i j a
v x c y

< = < =

+∑ ∑ ∑ (2.6)

 Subject to

{ , : 1} { , : 1}

1 if
1 if , 1,...,

0 otherwiseijf jif

k

k k k
ijf jif

j f a j f a

i s
x x i d i N k K

= =

⎧ =
⎪

− = − = ∀ ∈ =⎨
⎪
⎩

∑ ∑ (2.7)

 (, ,) 1k k
ijf ijf ijf

k
r x cap i j f A a≤ ∀ ∈ ∋ =∑ (2.8)

 , 1,...,ijf if
j N

y u i N f F
∈

≤ ∀ ∈ =∑ (2.9)

 (, ,) 1, 1,...,k
ijf ijf ijfx y i j f A a k K≤ ∀ ∈ ∋ = = (2.10)

 (, ,) 1ijf jif ijfy y i j f A a= ∀ ∈ ∋ = (2.11)

0 (, ,) 1, 1,...,k
ijf ijfx i j f A a k K≥ ∀ ∈ ∋ = = (2.12)

 is binary (, ,) 1ijf ijfy i j f A a∀ ∈ ∋ = (2.13)

15

Because of equations 2.7 and 2.8, this formulation only has a feasible solution if the

network contains sufficient capacity to route all of the commodities (Erwin 2006:27).

Degree Constrained Minimum Spanning Tree Problem

In any network it may be desirable that the network is connected - a path exists

between every two vertices in the network. One way to ensure that a network is

connected is by solving the Minimum Spanning Tree (MST) problem. However an MST

may produce an infeasible solution if there are degree constraints associated with the

vertices. In this case, it would be necessary to solve the degree constrained Minimum

Spanning Tree Problem (dcMST). Each vertex in the network has associated with it a

maximum degree which is equivalent to the number of transceivers located at that vertex.

Since every transceiver can communicate with at most one other transceiver, the number

of edges connected to any vertex in the network is at most k where k is the number of

transceivers located at that vertex. The dcMST ensures connectivity by building a

backbone tree structure in which a path exists between every vertex and, since the final

structure is a tree, no cycles are present in the solution. The integer linear program

formulation for the dcMST is originally presented by Guéret and Christelle (Guéret et al.

2000):

16

Let {1,2,..., } be the set of all nodes in the network.
Let {1,2,..., } denote the set of different types of interfaces used in
 the network.
Let be the () node-incidence

N N

F F

N N F

N n n
F n n

A n n n

=

=

× × matrix with 1 if node is incident
 to node by interface type and 0 otherwise.

Let denote the binary decision variable indicating whether or not edge (, ,)
 i

ijf

ijf

ijf

a i
j f a

y i j f

=
=

s chosen. 1 if chosen, 0 otherwise.

Let denote the cost of including edge (, ,) in the network.

Let denote the number of interfaces of type at node .

Let denote the intege

ijf ijf

ijf

if

i

y y

c i j f

u f i

Level

= =

r value that corresponds to the number of links in the
 path from the root node to node .i

{(, ,): 1}
Minimize

ijf

ijf ijf
i j f a

z c y
=

= ∑ (2.14)

 Subject to

{(, ,): 1}
(1)

ijf

ijf N
i j f a

y n
=

= −∑ (2.15)

1 () , 0j i N N ijf ijf
f f

Level Level n n y i j N a≥ + − + ∀ ∈ ∋ ≠∑ ∑ (2.16)

{(,): 1}
1 {2,3,..., }

ijf

ijf N
j f a

y i n
=

= ∀ ∈∑ (2.17)

 is binary (, ,)ijfy i j f A∀ ∈ (2.18)

0 is integer iLevel i N≥ ∀ ∈ (2.19)

The objective in this formulation is to minimize the total cost of building the

minimum spanning tree. Equation (2.15) ensures that the number of edges included in

the solution is exactly one less than the total number of vertices; a necessary condition for

discerning whether the network in question is in fact a tree. Constraints (2.16) ensure

that no solution will contain either directed or undirected cycles and constraints (2.17)

ensure that every vertex is included in the tree.

17

The formulation for the dcMST adds constraints that dictate the maximum

number of edges connected to each vertex. This set of constraints is given by:

 Nijf
i N
f F

y k j
∈
∈

≤ ∀ ∈∑ (2.20)

 Where k is the number of transceivers at vertex j for j N∀ ∈

 Although solving the previous dcMST ensures network connectivity, a more

accurate measure of quality in a communication network is the extent to which the

network topology is able to support the required commodity flow.

Bipartite Maximum Weight Matching

 Every vertex in the network represents a group of transceivers. A connection

between two vertices may be composed of several edges between the transceivers at these

vertices. If a connection between vertex i and vertex j is included in the network, it

should be the best subset of edges from i to j. The bipartite maximum weight matching

(BMWM) problem can be employed to guarantee that the best possible connection from i

to j has been obtained. The BMWM can be formulated as an assignment problem simply

by adding “dummy” transceivers to the partite set (vertex) that is of smaller cardinality

and the proceeding to solve the assignment problem given below (Wolsey 1998).

18

x y

x y

Let G = (V , V , E) be a graph representation of the node pair (x, y) in question

Let V and V be the partite sets of transceiver interfaces at vertices x and y
 respectively.
Let be the ec weight assigned to arc for E
Let () be the set of potential arcs for

Let be the binary variable indicating if arc is included in the matching
x y

e

e e
i i V V

x e E

δ
∀ ∈

∈ ∪

∈

 e e
e E

Max z c x
∈

=∑ (2.21)

Subject to

()

1 for e x y
e i

x i V V
δ∈

≤ ∈ ∪∑ (2.22)

0 for ex e E≥ ∈ (2.23)

Network Metrics

Below is a definition for metric space used in this research (Marsden & Hoffman

1993):

1A (,) is a set and a function : such that :

. (,) 0 , .
. (,) 0 .
. (,) (,) , .
. (,) (,) (,) , , .

metric space M d M d M M R

i d x y for all x y M
ii d x y iff x y
iii d x y d y x for every x y M
iv d x y d x z d z y for all x y z M

× →

≥ ∈
= =
= ∈
≤ + ∈

A metric is the distance function defined over a metric space. The metric used for

rating the quality of a particular network design is based on QoS, packet priority, and

packet bandwidth. While two of these quantities are intuitive, QoS has many definitions

depending upon the application. We shall define QoSij in this research as “the probability

that flow assigned to arc (i,j) successfully completes the traversal from vertex i to vertex j

without being lost.” In this research, the traffic contract is the commodity flow requests

generated by the users located at various nodes throughout the network.

19

The objective functions presented in the NDP formulations above do not

accurately reflect the goals of a military wireless network. For instance, there is

generally no fixed cost for establishing a link in a wireless network. The same is true of

the variable cost associated with transmitting a message. Instead, QoS is a concern since

it acts as a proxy for network reliability. The priority of one message relative to other

messages is also not addressed in the previous objective functions. A more suitable

objective function for the application of military networks is:

()*()*()k k k
k message routing

QoS Priority Bandwidth
∈
∑ (2.24)

where message routing is the set of requests successfully routed over the current network

topology, QoSi is the quality of service obtained by message i, and Bandwidthi is the

bandwidth of message i. Since a message in the routing may be split into two or more

packets, QoSi is taken to be the minimum QoS of any packet of message i in the routing.

Also, Bandwidthi is the sum of the bandwidths of all packets for message i. A solution to

this problem is therefore a topology and routing together that maximizes equation (2.24).

The A* Heuristic

 A* is a shortest-path heuristic that is similar to Dijkstra’s algorithm but includes a

heuristic pricing function to estimate the distance to the end node. A* is preferable to

Dijkstra’s algorithm in some applications. Dijkstra’s algorithm has a run time bound of

order O(n2) while A* is O(n). This savings in computational time is important for

dynamic military applications. The tradeoff for this reduction in computational

complexity is that the guarantee of optimality is lost. A* becomes Dijkstra’s algorithm if

the heuristic pricing function value is omitted at each iteration forcing the actual distance

to be calculated. It is important to note that the optimality guarantee of Dijkstra’s

20

algorithm only applies to the path that is found. Within the context of the NDP

formulation that is addressed by this research, Dijkstra’s algorithm may or may not

produce better results than A*. Comparing the two path finding approaches will be a

main focus of Chapter 4. The basic steps of the A* heuristic are outlined below:

1. Create a search graph, G consisting only of the start node.

2. Create a list called “OPEN” which contains only the start node.

3. Create a list called “CLOSED” that is empty.

4. If OPEN is empty then exit with failure.

5. Select the first node on OPEN, remove it from OPEN and place it on CLOSED.

Call this node n.

6. If n is the destination node then exit successfully with a solution obtained by

tracing a path along the pointers from n to the start node in G.

7. Expand node n, generating the set, M, of its successors that are not already

ancestors of n in G. Install these members of M as successors of n in G.

8. Establish a pointer to n from each of those members of M that were not already in

G (not already on either OPEN or CLOSED). Add these members of M to OPEN.

For each member, m, that was already on OPEN or CLOSED, redirect its pointer

to n if the best path to m found so far is through n.

9. Reorder the list OPEN in non-decreasing order by pricing function value.

10. Go to step 4.

In the A* heuristic the pricing function is given by i i if g h= + where gi is a

function that returns a value denoting the shortest distance from the start node to node i

found by A* so far and hi is the estimate of the distance remaining from node i to the

destination node. In order to compare the performance of the A* heuristic and Dijkstra’s

21

algorithm, the set of test cases discussed in Chapter 4 will be solved with a metaheuristic

using A* and then solved using Dijkstra’s algorithm by turning off the heuristic pricing

function (i.e. setting 0 ih i OPEN= ∀ ∈).

Message Routing

The product of the A* shortest path heuristic is a path that connects the source

and destination for the communication request being routed. In this case, the “shortest

path” is a path that maximizes the minimum QoS connecting source to destination. Once

a path is located in the search then message bandwidth is assigned to the path until either

the entire message is routed or the bandwidth on the path is exhausted. If the bandwidth

on the path is exhausted before the entire message is routed then the A* heuristic is

repeated to find another path connecting source and destination for the current message.

Greedy Matching Algorithm

 This research adopts a simple greedy heuristic approach to choose the arcs in the

initial solution with the weights assigned to each edge calculated in the following

manner:

Let be the quality of service for arc (,).

Let be the units of bandwidth of message that
 is routed over arc (,).
Let be the priority of message .

ij

ijk

k

QoS i j

x k
i j

Priority k

 message routing (,)
_ * *10 kPriority

ij ij ijk
k i j A

arc weight QoS x
∈ ∈

= ∑ ∑ (2.25)

These edge weights attempt to capture the contribution each edge is making to the

overall objective function value. Once the edge weights have been assigned to the

22

feasible edges in the network, the greedy heuristic operates to develop a maximum

weight matching between transceivers as follows (Wolsey 1998):

1. Initialize the set M, the set of arcs included in the matching which is empty

initially.

2. Select the maximum weight arc (i,j) from the transceiver adjacency matrix and

assign the corresponding arc to the set M.

3. Set all non-zero elements in row i, row j, column i, and column j to zero since

these transceivers have been matched and may not be included in any other

matching.

4. Return to step 2 and iterate until all entries in the transceiver adjacency matrix are

found to be zero.

Metaheuristics

 A metaheuristic is a heuristic that guides one or more other heuristics. The A*

shortest path finding heuristic uses a heuristic pricing function as previously discussed.

The concept of a heuristic is similar to that of a “rule of thumb”. A rule of thumb is

simple rule used to guide decisions when an optimal policy is unknown or cannot be

determined. In the case of A* the distance remaining to the destination is unknown so it

is estimated by simply averaging the QoS on all arcs emanating from the current vertex.

Since the heuristic developed in Chapter 3 guides both a greedy matching heuristic and

an A* path finding heuristic, it is an example of a metaheuristic.

Summary

 This section has presented several formulations that are important to the

formulation of the military wireless NDP. Not all of the formulations here are used

23

directly in the final implementation but all formulations help provide conceptual insights

useful in creating the appropriate problem representation.

A military network is dynamic and has several additional constraints not usually

present in a standard NDP. These constraints combined with the size of a typical military

network employed in network-centric warfare, require the development of efficient

solution methods to provide nearly uninterrupted service throughout the network. One

advantage of using heuristics is that they generally provide a near-optimal solution in a

very reasonable amount of time. Although optimality is not guaranteed they perform

exceedingly well in many practical applications.

In Chapter 3 a metaheuristic called NetDesign is developed to solve the NDP

discussed earlier. NetDesign begins by assigning each potential arc in the network a

weight. Using these weights, a greedy matching heuristic forms a matching which

represents a feasible network topology. Once the topology is developed, the shortest path

is found for each the prioritized communications requests using either the A* heuristic or

Dijkstra’s algorithm. The message is routed along this path until the capacity of the path

is gone. The routing along with the topology represents a feasible solution. A local

improvement scheme is employed to examine the current solution and reweigh the

potential arcs.

In addition to presenting the development of NetDesign, several graph theoretic

lemmas and corollaries used in the implementation of NetDesign to check for existence

of a path and address the topology generated by the greedy matching are provided.

Finally, to illustrate the operation of NetDesign a brief example is also provided.

24

III. Methodology

 The NetDesign metaheuristic developed in this research combines the A*

shortest-path heuristic with a greedy matching heuristic. An arc weighting scheme is

used to produce the greedy matching that represents the network topology portion of the

solution. This chapter presents the detailed methodology and some important aspects of

the software implementation. For reference, the reader is directed to Appendix A which

contains the MATLAB functions necessary to implement the NetDesign metaheuristic.

User Inputs & Data Requirements

 All of the data, including network characteristics are randomly generated. The

network characteristics are taken from a uniform distribution between the user-specified

upper and lower bounds.

Simulation & Mission Planning

Several functions were written to provide the necessary data inputs or to format

those inputs for use in the program. The NetDesign metaheuristic can be used in two

ways. First, based on user-specified inputs, the software is capable of generating

networks for the purpose of simulation or testing. This function may be important if

general characteristics of the network are known but no specific instance is given. This

functionality can be used to determine the nature and quality of solutions based on a

particular set of network characteristics. The list of user-specified inputs is described in

Table 1.

25

Table 1: User Defined Inputs

User Defined Inputs Description

MAX_TRANSCEIVERS
The maximum number of transceivers to be located at any given
vertex.

MAX_COMM_RAD
The upper bound on communication radius for any transceiver.

MAX_COMM_REQ
The maximum number of communications requests to be
generated for transmission across the network.

PRIORITY_SCALE
Assigns the maximum priority (this number determines the scale).
1 is the lowest priority and 5 is the highest priority.

AVAILABLE_BANDWIDTH

The maximum bandwidth capacity of an edge in the network.
Capacity is a randomly generated number between 1 and
AVAILABLE_BANDWIDTH for each edge.

COMM_BANDWIDTH

The maximum size of a communication request to be sent over
the network. Communication request size is a randomly
generated number between 1 and COMM_BANDWIDTH for
each request.

The second and primary application is to find high-quality feasible solutions to

the NDP for a predefined network instance. This type of application will be used for

mission planning. The data required by NetDesign for this application are described

below. All of the data are assumed to be available and in the correct formatted.

26

Table 2: Data Requirements
NetDesign data requirements Description

M
The matrix containing information on the total
number of transceivers of each type located at
each vertex. Each row represents a different
vertex.

Trans_Char
The structure containing information about each
individual transceiver. There is one element of
Trans_Char for each transceiver in the network.
Trans_Char has the following fields.

Trans_Char.Vertex_ID The unique ID of the vertex at which the
transceiver is located.

Trans_Char.Transceiver_ID The unique ID associated with the transceiver.

Trans_Char.Transceiver_type The integer (either 1 of 2) indicating the type of
transceiver.

Trans_Char.CommRadius The effective communication radius of the
transceiver.

Trans_Char.Xloc In Euclidean space this is the abscissa of the
vertex associated with the transceiver.

Trans_Char.Yloc In Euclidean space this is the ordinate of the
vertex associated with this transceiver.

Trans_Char.XPlotLocation/YPlotLocation

Used for graphical representation and visual
clarification. Each transceiver is given a slightly
different plot location based on the perimeter of
an imaginary circle centered at the vertex
coordinates.

A The matrix of ordered pairs denoting the location
of the vertices.

Num_Vertices The total number of vertices in the network.

Num_Transceivers The total number of transceivers in the network.

I The transceiver adjacency matrix filtered for
communication radius and transceiver type.

P
The structure storing information about the
communication requests to be routed. This
structure has fields for ID, Bandwidth, Origin,
Destination, and Priority.

QoS The matrix whose entries represent the QoS for
each potential edge in the network.

Bandwidth The matrix whose entries represent the
bandwidth of each potential arc in the network.

Once the data are established, by either of the preceding two methods, the

remainder of the metaheuristic operates in the same manner. There are several

preprocessing steps that the data must undergo to produce the essential meta-data used to

make critical decisions in the metaheuristic.

27

 Prior to producing a topology, limitations on the network connectivity must be

determined. Specifically due to communication radius of transceivers or incompatibility

of transceiver types it is possible that no path exist between a pair of vertices. Therefore

NetDesign determines if a path exists between successive source/destination pairings

based on the prioritized communication request list. Any such path will contain at most

Num_Vertices-1 edges. Connectivity between vertices is verified by summing successive

powers of the adjacency matrix in a matrix geometric series.

Lemma 1: Given a vertex adjacency matrix A of a graph G, the total number of paths of

length n, connecting vertex i and j is given by:

1 1 2 2 1 1

1 2 1, ,..., 1
[] ...

n n n

n

n
ij ik k k k k k j

k k k
A a a a a

− − −

− =

= ∑ (Meyer 2000).

Corollary 1: In a graph G the total number of paths connecting vertices i and j of length

less than or equal to n is given by

2 3 2 3[] [] [] [] []n n
ij ij ij ij ijA A A A A A A A+ + + ⋅⋅⋅ + = + + + ⋅⋅⋅ + (Meyer 2000)

Proofs for Lemma 1 and Corollary 1 are provided in Meyer (2000).

Proposition 1: Let n be the number of vertices in a graph G. Given a symmetric vertex

adjacency matrix A, then for , ()i j V G∈ with i j≠ , if an i, j-path exists then the length of

that path is at most n-1.

Proof

 Given an i,j-path in G of length n such that all vertices are distinct. The length of

a path is defined to be the number of edges in the path. Since a path begins and ends at a

vertex there must always be one more vertex than the number of arcs in the path. Thus,

the i,j-path must contain n+1 distinct vertices. However G contains only n vertices and

28

therefore the maximum length of a path in a graph G such that all vertices are distinct is

n-1.

 Now by Corollary 1 and Proposition 1 it is possible to determine if a path exists

between any two vertices by examining the matrix
1

2 3 1

1
...

n
n i

i
V A A A A A

−
−

=

= + + + + =∑ for

a zero entry. If Vij = 0 then no i,j-path exists in G. If no path exist between the source

and sink for a message request, the request is removed from the list. This step prevents

unnecessary calculations in later segments of the program.

 The last item of pre-processing is to sort the communications requests in non-

decreasing order by priority. Each request is assumed to have a priority associated with

it. The notional priority scale used in this research is the set of integers 1,2,3,4, and 5

with 5 being the highest priority. The relationship between elements in the priority scale

is an important factor in calculating the objective function. For the purposes of this

research it is assumed a priority 5 request is infinitely more important than a priority 4

request, a priority 4 request is infinitely more important than a priority 3 request, and so

on. Within priority groupings the requests are sorted by bandwidth based on the belief

larger messages should be routed early in the search process while paths of sufficient

bandwidth still exist.

After all data items have been established and the required pre-processing is

completed, it is possible to run NetDesign. The following section provides a description

of the NetDesign metaheuristic and the solutions that are generated.

The NetDesign Metaheuristic

 The NetDesign metaheuristic contains two principal components: an A* shortest-

path heuristic and a simple greedy matching heuristic. The table below provides an

29

overview of the basic steps of NetDesign. Note that steps 1, 2, and 3 are the pre-

processing steps discussed above.

1. Determine the nonexistent paths in the network.

2. Build QoS, Bandwidth, and Prioritized_Requests matrices.

3. Determine the messages that are not transmittable and remove these messages

from the Prioritized_Requests matrix.

4. Determine the initial communication request routing, used in calculating initial

arc weights, based on a full, but infeasible, network topology.

5. Generate arc weights for each potential arc in the network.

6. Create the network topology using a greedy matching heuristic.

7. Determine the initial feasible message routing for the topology generated by the

greedy matching heuristic.

8. Calculate the objective function value for the current solution and save the

solution if it is the best found so far.

9. Compare the current solution to previous solution. If the topologies are identical

then stop. Otherwise return to step 5.

The purpose of step 4 is to provide initial arc weights for generating an initial

feasible network topology. All potential arcs are added to the network topology. In other

words, the constraint that any transceiver communicates with at most one other

transceiver is relaxed.

A* is used to route the communications requests until either all messages have

been routed or there is insufficient bandwidth to route any additional messages. First

A* finds the highest quality node path to connect the origin and destination for the

current element of the prioritized request list. Message traffic can be split into packets

30

since it may not be possible to find a single path with sufficient bandwidth to route the

entire communication request. The proportion of the message bandwidth that path

bandwidth can hold is routed and the available bandwidth along the path is updated. The

bandwidth of the path is determined by taking the minimum bandwidth of all arcs on the

transceiver path since this value is the maximum capacity of the path. This process is

continued until either all of the message has been routed, or it has been determined that

no more paths exist to connect the origin and destination pair for the current

communication request in which case the current element of the prioritized request list is

discarded. If it was not possible to route the entire message then the partial routing for

the current element is removed from the solution structure and the bandwidth used by the

partial message is restored. A* then moves to the next highest priority request on the list.

After the initial routing has been determined, it is used to calculate the initial arc

weights in step 5. Each arc is given a weight based on the bandwidth assigned to it, the

priority of the messages, and the Quality of Service of the arc. The goal of the weight is

to capture the arc’s contribution to the objective function. As a result the more desirable

arcs for routing will have the highest weight and will be most likely included in the next

iteration’s topology. All non-adjacent transceiver pairings are assigned a weight of zero.

After updating the arc weights, the greedy matching heuristic is used to determine

the topology for the next iteration. At each iteration, the arc with the largest weight is

added to the topology. The weights for all arcs touching the transceivers of the added arc

are set to zero. The greedy matching heuristic successively selects arcs in this manner

and terminates when all non-zero arcs have been added or no non-zero arcs can be added

without violating the maximum number of transceiver connections. The resulting

31

matching is maximal. That is, no larger matching contains it since it cannot be enlarged

by adding additional arcs.

Proposition 2: The matching created by the greedy heuristic is maximal.

Proof

At each iteration the maximum element of the adjacency matrix, element aij, is

chosen and the associated arc is added to the topology. All elements in rows i and j and

columns i and j are set to zero. This process is repeated until no non-zero elements

remain in the matrix. Since no non-zero elements remain in the adjacency matrix, there

are no further feasible pairings among the transceivers in G. Therefore, the current

matching cannot be enlarged by adding an arc.

The matching produced at the prior step represents a feasible network topology.

Once a topology has been established, a routing is again determined by applying A* for

each request, and updating the bandwidth and QoS matrices. As before, the

communications requests are routed in order of highest priority. After A* has attempted

to route each message in the list, the topology and routing are saved in a solution

structure. Each element of the structure represents a packet and contains all information

needed to route the communication through the current network topology.

Solution Representation

The solution information is stored in a structure segmented based on message

packets. The fields of the solution structure are shown in Table 3.

32

Table 3: Fields contained in “Post_match_comm_routing” solution structure
Description of the solution structure “Post_match_comm_routing”

message_ID The unique ID associated with the message being transmitted
message_bandwidth The bandwidth of the packet routed by this structure element.

node_path
The vector containing, in order, the nodes on the node path from origin to
destination.

trans_path
The vector containing, in order, the transceivers of the transceiver path from
origin to destination.

path_QoS The QoS for the path that this packet is being routed over.

message_Priority The priority of the message to which this packet belongs.

Each element of the structure represents a packet to be routed. Each structure

element contains all information needed to route and track the message and calculate

objective function values. The message_ID field contains the unique identification

number for the message of which the packet is a portion. The message_bandwidth field

contains the scalar value that is the bandwidth of the packet. Summing the bandwidth for

all packets associated with message i should yield the bandwidth of message i.

message_Priority is the priority of the message of which the packet is a part.

node_path is a vector containing the ordered list of vertices representing the path

connecting the message origin and destination nodes. trans_path is a vector containing

the ordered list of transceivers connecting the vertices in node_path The path_QoS is

the minimum QoS of any arc on the transceiver path. The assumption is made that the

QoS of a path is only as high as the weakest arc contained in the path.

Message_bandwidth, message_priority and path_QoS are used in the calculation of the

objective function value.

The objective function value of the best_solution is initially set to zero. At the

end of each iteration, the objective function value is calculated and compared to the

current best_solution objective function value. If the current solution has achieved a

33

better objective function value than the best solution found so far, then the best solution is

replaced by the current solution and the best_solution objective function is updated.

Once the messages have been routed a feasible solution to the NDP has been

created. That is, both a feasible network topology and a feasible communication request

routing have been determined. With an initial feasible solution, the goal now is to

improve both the topology and the routing to accommodate as much message traffic as

possible while assigning messages of higher priority with paths of higher QoS. The

solution improvement scheme is accomplished by iterating steps five though eight.

Solution improvement is one important aspect of any metaheuristic.

Another important feature is that of convergence. Due to the way the network

topology is represented in the solution it is possible to measure the convergence of

successive solution topologies by assigning each potential arc to an element of a binary

vector. The topology can then be represented by setting to 1 the elements of the topology

vector corresponding to the chosen arcs. Now it is possible to use the standard hamming

distance or the number of edges by which two solutions differ as the “distance” between

solutions. By measuring the distance between successive solutions it is possible to

determine if the NetDesign metaheuristic is indeed converging. Once two successive

solutions have identical topologies, implying that the hamming distance between the two

successive solutions is equivalent to zero, the search is terminated.

Summary

This chapter describes a methodology to find a high quality network design and

routing based on a set of message requests. The NetDesign metaheuristic combines a

greedy matching heuristic to design the network based on the projected use for each

possible arc with a routing heuristic, A*, to find high quality paths from source to sink for

34

each message in the prioritized communication request list. The metaheuristic can be

iterated until it converges to a fixed network topology. The best solution discovered

during the search is returned. Chapter 4 develops a test plan and several test cases to test

the NetDesign methodology to determine the quality of solutions produced and the

operating characterizes of NetDesign.

35

IV. Testing

In order to test the NetDesign Metaheuristic, 32 test cases were developed using

Design of Experiments. Although the goal of the research was not to perform a full DOE

analysis or optimize a response variable, the concept of a 2k full factorial experimental

design was quite useful in preparing test cases for the testing phase and in determining

the factor effects. All testing was done on an IBM ThinkPad with 1.86 GHz processor, 1

GB DDR RAM, and a 40 GB hard drive.

Test Data Sets

 The network characteristics that were tested are: number of vertices, number of

transceivers located at each vertex, the bandwidth of the arcs in the network, number of

messages, and differing levels of dispersion about the mean for each of the four

preceding factors. With k = 5 factors for testing in a 2k full factorial experiment equates

to 32 test cases. Additionally, each of the 32 test cases are tested in NetDesign using

both the A* heuristic and Dijkstra’s algorithm to compare the performance. Although

Dijkstra’s algorithm finds an optimal path such paths may provide sub-optimal results

overall in the context of the full network topology and routing solution

 Table 4 shows the test case characteristics. Note that each factor is tested at a

high and low level as indicated. While the number of vertices and dispersion are

deterministic, the number of transceivers, arc bandwidth, and message bandwidth are

randomly generated integers obtained from a uniform distribution over the interval

(,)x d x d− + where x is the center defined by the parameter for vertices, transceiver,

message bandwidth, or arc bandwidth, and d is the dispersion parameter.

36

Table 4: Table of test cases with factor levels
Case Number of

Vertices
Average

Number of
Transceivers

Average
Message

Bandwidth

Average
Arc

Bandwidth

Dispersion

ndp1 30 4 10 30 2
ndp2 30 4 10 30 3
ndp3 30 4 10 90 2
ndp4 30 4 10 90 3
ndp5 30 4 30 30 2
ndp6 30 4 30 30 3
ndp7 30 4 30 90 2
ndp8 30 4 30 90 3
ndp9 30 5 10 30 2

ndp10 30 5 10 30 3
ndp11 30 5 10 90 2
ndp12 30 5 10 90 3
ndp13 30 5 30 30 2
ndp14 30 5 30 30 3
ndp15 30 5 30 90 2
ndp16 30 5 30 90 3
ndp17 40 4 10 30 2
ndp18 40 4 10 30 3
ndp19 40 4 10 90 2
ndp20 40 4 10 90 3
ndp21 40 4 30 30 2
ndp22 40 4 30 30 3
ndp23 40 4 30 90 2
ndp24 40 4 30 90 3
ndp25 40 5 10 30 2
ndp26 40 5 10 30 3
ndp27 40 5 10 90 2
ndp28 40 5 10 90 3
ndp29 40 5 30 30 2
ndp30 40 5 30 30 3
ndp31 40 5 30 90 2
ndp32 40 5 30 90 3

Network Metrics

 There are several metrics that are important to the testing of the Metaheuristic

developed under this research. Choosing metrics for heuristic testing is difficult in some

respects since the optimal solutions for many of the problems being solved by

metaheuristics are unknown. The computational complexity of the existing algorithms to

solve the NDP to optimality prevents researchers from obtaining optimal solutions to all

37

but the smallest instances of this formulation. Erwin was not able to provide a feasible

solution to the NDP for problem instances with greater than 35 vertices in eight hours of

solver run time.

For this reason, this research relies on quality metrics other than optimality to

measure the performance of NetDesign. The metrics presented here can be classified as

measuring the quality of the network topology, the message routing, or a combination of

both. Prior to discussing the quality of a specific solution it is important to examine the

network topology potential. A solution topology with an average QoS of 0.60 may

appear poor; however, if the average QoS over the set of all possible edges in the network

was 0.50 the QoS of the solution topology appears to be quite good under the

circumstances.

A QoS metric for the set of all potential arcs in the network is:

*

_ _
e e

e E

e
e E

Bandwidth QoS

Bandwidth
QoS of Network ∈

∈

∑
= ∑ (4.1)

The numerator in this metric is a sum-product of QoS and bandwidth for all

potential arcs in the network. Dividing this quantity by the total bandwidth available on

the network provides a weighted average of the network QoS. This metric makes it

possible to gauge how well the NetDesign heuristic selected arcs from the network by

comparing it with the average QoS of the selected topology. If the topology was selected

at random then over time the expected average QoS would be the average network QoS.

A metric for the weighted average QoS achieved by the solution topology is:

*
_ _

e e
e topology

e
e topology

Bandwidth QoS
QoS for topology

Bandwidth
∈

∈

=
∑
∑

 (4.2)

38

Of course NetDesign does not select arcs solely based on QoS. The message

requirements also affect which arcs are selected. It is desirable to transmit as much

message bandwidth through high quality paths as possible. A metric for the average of

the QoS achieved by the solution routing is given by:

_

_

*
_ _

k k
k message routing

k
k message routing

Bandwidth QoS
QoS for messages

Bandwidth
∈

∈

=
∑
∑

 (4.3)

Again this metric can be compared to the average network QoS to gauge how well

NetDesign performed in routing messages on high quality arcs.

An additional network metric that can be used to evaluate the quality of a

particular solution is that of efficiency. The metric below evaluates how much of the

bandwidth in the solution topology is utilized by the solution routing. The numerator is

the sum of all bandwidth for messages that were transmitted and the denominator is the

sum of all bandwidth in the topology. The denominator is an upper bound for the

numerator so, the ratio cannot exceed a value of 1.00. The metric to evaluate the relative

efficiency of the solution is:

__
k

k message routing

e
e topology

Bandwidth
Topology efficiency

Bandwidth
∈

∈

=
∑
∑

 (4.4)

Finally, since it is assumed the bandwidth of the messages to be transmitted

exceeds the capacity of any feasible solution topology, it is necessary to provide an upper

bound for the fraction of message bandwidth that may be transmitted through the

network. The following ratio represents the percentage of total message bandwidth that

was successfully routed in the solution:

39

_

_

_ _ _
k

k message routing

v
v all messages

Bandwidth
Routing bandwidth upper bound

Bandwidth
∈

∈

=
∑
∑

 (4.5)

The numerator is the total bandwidth that was successfully routed in the solution.

The denominator is the total bandwidth of all messages in the Prioritized_Request list.

This number is clearly a function of the total bandwidth requested and not just the

performance of NetDesign. For comparison an upper bound on the total message traffic

that could possibly be transmitted is:

_

_ _
e

e E

v
v all messages

Bandwidth
Network upper bound

Bandwidth
∈

∈

=
∑
∑

 (4.6)

The numerator is the total bandwidth available on all arcs in the network and the

denominator is the total bandwidth of all messages to be transmitted. This is obviously

not a very tight upper bound many messages will need to traverse more than one arc from

source to sink using much more additional network bandwidth than just the message size.

However, it does provide a basis for comparison that can not be altered by reducing or

increasing the size of the Priority_Request list.

As previously stated, the complete set of 32 test cases was solved using both

Dijkstra’s algorithm and the A* heuristic to determine which method performed better

within the context of the NetDesign metaheuristic. Tables 5 compares the run time and

objective function value obtained by NetDesign using both the A* heuristic and

Dijkstra’s algorithm.

40

Table 5: Test case results for A* and Dijkstra’s in NetDesign
NetDesign with A* NetDesign with Dijkstra’s Case
z time (sec) z time (sec)

ndp1 1853.1 1022.7 1525.3 898.14
ndp2 2005.7 609.36 2050.7 550.68
ndp3 4379.2 752.44 4945.1 941.95
ndp4 5212.2 860.39 5350.2 817.48
ndp5 2176.5 832.56 5350.2 817.48
ndp6 1751.3 521.88 1901.3 463.09
ndp7 4846.7 849.24 4897.1 718.58
ndp8 6904.2 709.28 5145 539.13
ndp9 1903.7 1293.5 1604.9 1368.2

ndp10 1756.6 1198.5 1995.1 1047.7
ndp11 5427.3 871.4 4419.4 886.65
ndp12 6030 907.03 4409.4 885.93
ndp13 2246.8 1620.6 2134 1496.4
ndp14 1821 1956.3 1805.3 1663
ndp15 6365.5 1389.6 4806.4 1465.1
ndp16 6273.9 1366.1 4852.1 1385.2
ndp17 1946.2 2195.5 2134 1919.1
ndp18 2037.7 2101.9 1811.7 1736.8
ndp19 5800 1468.2 4824.6 1606
ndp20 6012.6 1426.26 5512 1505.7

ndp21 2726.9 1087.7 3248 1600.3

ndp22 2228 1391 2358.3 1535.7
ndp23 6418.3 2373.5 5011.7 2103.8
ndp24 7096.8 980.21 5068.5 953.41
ndp25 2810.2 2233.1 1955.5 1948.2
ndp26 2087.1 2139.9 2037.5 1824.4
ndp27 5718.2 1548.8 4918.5 1719.7
ndp28 6058.9 1571.2 5036 1728.7

ndp29 2264.8 4523.5 3059.5 3702.9
ndp30 2006.6 4386.7 3021.6 3204.2
ndp31 7280.7 2424.8 5491.2 3042.5
ndp32 8400.8 1493.7 5309.4 1390.3

 The following table presents summary statistics for the test data presented above.

Notice that the mean run time for Dijkstra’s was lower than that of A* while the mean

objective function value for A* was higher than that of Dijkstra’s algorithm. In order to

41

test the statistical significance of the difference in the means for both objective function

value and run time, a t-test is used. The results of the t-test are presented along with the

table of summary statistics. The critical values for the tests done below assume an

0.1α = level of confidence.

Table 6: Summary statistics for objective function value and run time

NetDesign with A* NetDesign with Dijkstra’s
z time (sec) z time (sec)

Mean 4120.23 1565.84 3687.17 1483.33
Variance 4722017.85 864068.67 2258632.82 567602.07

Standard Deviation 2173.02 929.55 1502.88 753.39

Table 7: t-test for difference in mean objective function value

 A* Dijkstra’s
Mean 4120.23 3687.17

Variance 4722017.85 2258632.82
Observations 32 32

Hypothesized Mean Difference 0
df 55

t Stat 0.92720895
P(T<=t) one-tail 0.17893459
t Critical one-tail 1.2971343
P(T<=t) two-tail 0.357869181
t Critical two-tail 1.673033966

 Since the t-statistic is in the table above is less than the critical value for the one-

tail test, we fail to reject the null hypothesis that the difference in the mean objective

function value generated using A* and Dijkstra’s algorithm is equal to zero..

42

Table 8: t-test for difference in mean run time

 A* Dijkstra’s
Mean 1565.84 1483.33

Variance 864068.67 567602.07
Observations 32 32

Hypothesized Mean Difference 0
df 59

t Stat 0.390101926
P(T<=t) one-tail 0.348933
t Critical one-tail 1.296065725
P(T<=t) two-tail 0.697866
t Critical two-tail 1.671093033

 Since the t-statistic in the table above is less than the critical value for the one tail

test, we fail to reject the null hypothesis that the mean run time for NetDesign between

A* and Dijkstra’s algorithm is equal to zero.

The goal of the NetDesign metaheuristic is to optimize the objective function

value by selecting high quality solutions from the available solution space. The goal of

the experimentation done for this research is not to optimize a response variable such as

run time, but rather to gain an understanding of which network characteristics are

significant in affecting the run time. Since this research uses a 25 full factorial design, it

is necessary to test for linearity in the response since this is one of the basic assumptions

of the 2k design. Linearity can be tested using a center point with all factors set to the

“zero” level. In the context of this research this amounts to generating an additional test

case with the following network characteristics: number of vertices 35, average number

of transceivers 5, average message bandwidth 20, average arc bandwidth 60, and

dispersion 3 Although this is not a true center point due to the “transceiver” and

“dispersion” factor center levels being non integral, the high factor level is arbitrarily

chosen for this test run and it will be assumed that the point to be tested is in fact close

43

enough to constitute a center point. The transceiver level must be integral since

fractional transceivers do not make sense and cannot exist in practice. This assumption is

reasonable since the first order model is still accurate even if slight non-linearity is

present (Montgomery, 2005). The results of the center point runs are given in the Table 6

Table 9: NetDesign center point test case
NetDesign with A* NetDesign with Dijkstra’s Case
z time (sec) z time (sec)

ndp_center run#1 4062.6 1965.7 3638.2 2354.7
ndp_center run#2 4062.6 1964.1 3638.2 2354.2
ndp_center run#3 4062.6 1971.9 3638.2 2349.6

To verify the linearity assumption the average response from the 32 test cases is

compared with the response of the center point. If the difference is relatively small then

it may be concluded that the response is linear over the chosen factor range and therefore

the first order model is adequate in the analysis of the test results in this research. This

test is completed for both the A* heuristic and Dijkstra’s algorithm.

Testing the linearity assumption is done by comparing the average of the

responses for the three center point runs, with the average response for all 32 of the

factorial runs. The results of this test are presented in the table below.

Table 10: Comparison of Factorial Averages with Center Point Averages
 NetDesign with A* NetDesign with Dijkstra’s

Center run response avg. (sec.) 1967.2 2352.8
Factorial run response avg. (sec.) 4120.2 1483.3
Difference in Center vs. Factorial 2153 869.5

From the table presented above it is apparent that the response is not linear over

the range of the factor levels since the difference between the center run averages and the

factorial experiment averages is large in both cases. This result is in keeping with the

experimental results obtained in similar experiments conducted by Erwin. Although, a

44

second-order model would be needed in order to perform accurate regression analysis, it

is assumed that the simple factor screening results are still accurate, since the first order

model is capable of handling some non-linearity (Montgomery, 2005).

A* Factor Screening

It is advantageous to perform a factor screening to determine the influential main

effects and interaction effects. Determining which factors are important provides a basis

for qualifying NetDesign and the network characteristics which drive run time. The

following analysis is done twice; once for each shortest-path approach. The first set of

tables and analysis pertains to NetDesign using the A* path-finding approach.

Before determining which factors are significant in affecting the run tine, it is

necessary to check normality assumptions for the residuals of the response. This is done

using a Box-Cox plot with a 95% confidence interval shown below. The CI is given by

the red lines in the plot. The plot indicates that a logarithm transformation on the

response is required in order to satisfy normality assumptions. By performing the

transformation, it is possible to achieve a greater level of accuracy in deciding which

factors are significant using the normal probability plot.

45

DESIGN-EXPERT Plot
run time

Lambda
Current = 1
Best = 0.08
Low C.I. = -0.35
High C.I. = 0.49

Recommend transform:
Log
 (Lambda = 0)

Lambda

Ln
(R

es
id

ua
lS

S
)

Box-Cox Plot for Power Transforms

14.55

15.61

16.66

17.72

18.77

-3 -2 -1 0 1 2 3

Figure 3: Box-Cox plot to examine Residual Normality in A*

After the transformation is complete the next task is to determine which factors

are significant by examining the normal probability plot below. Figure 4 is a normal

probability plot for the five factors used in the factorial design. As the reader can see

from the chart, factors A, B, and D are significant since they differ from the normal

probability plot line significantly. Additionally, the following two factor interactions are

significant and are explained in detail below: BC and BD.

46

DESIGN-EXPERT Plot
Ln(run time)

A: vertices
B: transceivers
C: message bandw idth
D: arc bandw idth
E: tight or loose

Half Normal plot

H
al

f N
or

m
al

 %
 p

ro
ba

bi
lit

y

|Effect|

0.00 0.16 0.33 0.49 0.66

0

20

40

60

70

80

85

90

95

97

99

A

B

D

BC
BD

Figure 4: Normal probability factor plot for NetDesign using A*

 From the normal probability plot it is clear that all main effects except message

bandwidth and dispersion are significant. Dispersion is the variable that controls the

range over which the uniform random integers are drawn. Additionally, the two factor

interactions of transceivers & message bandwidth, transceivers & arc bandwidth,

message bandwidth & dispersion are significant. Although the main effect of message

bandwidth is not significant by itself it is included in two separate two factor interactions.

Finally, the three factor interaction involving transceivers, message bandwidth & arc

bandwidth is also significant. The plots for the main effects and the two factor

interaction are given in Figures 5 and 6.

47

DESIGN-EXPERT Plot

Ln(run time)

X = A: vertices

Design Points

Actual Factors
B: transceivers = 0.00
C: message bandw idth = 0.00
D: arc bandw idth = 0.00
E: tight or loose = 0.00

-1.00 -0.50 0.00 0.50 1.00

6.257

6.797

7.337

7.877

8.417

A: vertices

Ln
(ru

n
tim

e)

One Factor Plot DESIGN-EXPERT Plot

Ln(run time)

X = B: transceivers

Design Points

Actual Factors
A: vertices = 0.00
C: message bandw idth = 0.00
D: arc bandw idth = 0.00
E: tight or loose = 0.00

-1.00 -0.50 0.00 0.50 1.00

6.257

6.797

7.337

7.877

8.417

B: transceivers

Ln
(ru

n
tim

e)

One Factor Plot
Warning! Factor involved in an interaction.

DESIGN-EXPERT Plot

Ln(run time)

X = D: arc bandw idth

Design Points

Actual Factors
A: vertices = 0.00
B: transceivers = 0.00
C: message bandw idth = 0.00
E: tight or loose = 0.00

-1.00 -0.50 0.00 0.50 1.00

6.257

6.797

7.337

7.877

8.417

D: arc bandwidth

Ln
(ru

n
tim

e)

One Factor Plot
Warning! Factor involved in an interaction.

Figure 5: Main Effects vs. Run Time A* plots

 The single factor plots presented above are consistent with intuition. Specifically,

it is expected that as vertices, transceivers and message bandwidth are increased, the run

time should increase since the size of the solution increases. Also, as the arc bandwidth

increases, the run time tends to decrease. This makes intuitive sense because arc

bandwidth is a measure of capacity. The implication is that as the average arc bandwidth

48

increases, the average bandwidth of the paths generated for communications requests also

increases. Since the bandwidth of the paths is larger, each communication request is split

into fewer communication packets, thus the number function calls to the A* heuristic

decreases. The test data empirically corroborate this assertion. These data can be found

in Appendix B.

DESIGN-EXPERT Plot

Ln(run time)

X = B: transceivers
Y = C: message bandw idth

Design Points

C- -1.000
C+ 1.000

Actual Factors
A: vertices = 0.00
D: arc bandw idth = 0.00
E: tight or loose = 0.00

C: message bandwidth
Interaction Graph

B: transceivers

Ln
(ru

n
tim

e)

-1.00 -0.50 0.00 0.50 1.00

6.257

6.797

7.337

7.877

8.417

DESIGN-EXPERT Plot

Ln(run time)

X = B: transceivers
Y = D: arc bandw idth

Design Points

D- -1.000
D+ 1.000

Actual Factors
A: vertices = 0.00
C: message bandw idth = 0.00
E: tight or loose = 0.00

D: arc bandwidth
Interaction Graph

B: transceivers

Ln
(ru

n
tim

e)

-1.00 -0.50 0.00 0.50 1.00

6.257

6.797

7.337

7.877

8.417

Figure 6: Two factor interaction plots for A*

The two factor interaction plots require slightly more explanation. The interaction

plot for transceivers and message bandwidth indicates that the variation in run time is

greater as the number of transceivers is varied from low to high when message bandwidth

is set at the high level. Similarly, the interaction plot for arc bandwidth and transceivers

indicates the variation in the response is greater as the number of transceivers is varied

from low to high when arc bandwidth is set to the low level.

 The preceding information may be useful in certain instances when time is limited

and it is desirable to reduce run time. For instance, the interaction graphs for transceivers

& message bandwidth and transceivers and arc bandwidth indicate that as the number of

49

transceivers are varied from low to high that it is possible to reduce the run time,

regardless of the level of transceivers, by setting message bandwidth to the low level and

arc bandwidth to the high level. While this idea may be theoretically appealing, it may

not be feasible to control such factors in an operational setting.

Dijkstra’s Factor Screening

 An identical analysis to that presented above for A* is completed in this section

for NetDesign using Dijkstra’s algorithm. One assumption in regression and DOE is that

the residuals for the response variable are normally distributed. This assumption may be

tested using the Box-Cox plot below generated in Design Expert. The 95% confidence

interval on λ , the variable indicating weather a transformation is necessary or not, is

shown in red. Since the current λ value is outside of this range, the indication is that a

logarithm transformation of the residual terms is required in order for these terms to

satisfy the normality assumption.

DESIGN-EXPERT Plot
run time

Lambda
Current = 1
Best = 0.21
Low C.I. = -0.18
High C.I. = 0.6

Recommend transform:
Log
 (Lambda = 0)

Lambda

Ln
(R

es
id

ua
lS

S
)

Box-Cox Plot for Power Transforms

14.48

15.49

16.50

17.50

18.51

-3 -2 -1 0 1 2 3

Figure 7: Box-Cox plot to examine Residual Normality in Dijkstra’s

50

After applying this transformation, the significant factors can be determined by

examining the normal probability plot given below. The plot indicates that the main

effects of vertices, transceivers, and dispersion are significant. Additionally the two

factor interaction between transceivers and message bandwidth is also significant.

DESIGN-EXPERT Plot
Ln(run time)

A: vertices
B: transceivers
C: message bandw idth
D: arc bandw idth
E: tight or loose

Half Normal plot

H
al

f N
or

m
al

 %
 p

ro
ba

bi
lit

y

|Effect|

0.00 0.17 0.35 0.52 0.69

0

20

40

60

70

80

85

90

95

97

99

A

B

E
BC

Figure 8: Normal probability factor plot for NetDesign using Dijkstra’s

DESIGN-EXPERT Plot

Ln(run time)

X = A: vertices

Design Points

Actual Factors
B: transceivers = 0.00
C: message bandw idth = 0.00
D: arc bandw idth = 0.00
E: tight or loose = 0.00

-1.00 -0.50 0.00 0.50 1.00

6.138

6.658

7.177

7.697

8.217

A: vertices

Ln
(ru

n
tim

e)

One Factor Plot DESIGN-EXPERT Plot

Ln(run time)

X = B: transceivers

Design Points

Actual Factors
A: vertices = 0.00
C: message bandw idth = 0.00
D: arc bandw idth = 0.00
E: tight or loose = 0.00

-1.00 -0.50 0.00 0.50 1.00

6.138

6.658

7.177

7.697

8.217

B: transceivers

Ln
(ru

n
tim

e)

One Factor Plot
Warning! Factor involved in an interaction.

51

DESIGN-EXPERT Plot

Ln(run time)

X = E: tight or loose

Design Points

Actual Factors
A: vertices = 0.00
B: transceivers = 0.00
C: message bandw idth = 0.00
D: arc bandw idth = 0.00

-1.00 -0.50 0.00 0.50 1.00

6.138

6.658

7.177

7.697

8.217

E: tight or loose

Ln
(ru

n
tim

e)

One Factor Plot

Figure 9: Main Effects vs. Run Time Dijkstra’s plots

 The first two single factor plots above follow intuition since it is expected that as

the number of vertices and transceivers is increased, the run time will also increase. The

third plot indicates that as dispersion increases the run time decreases. The two factor

interaction plot for transceivers and message bandwidth is given below.

52

DESIGN-EXPERT Plot

Ln(run time)

X = B: transceivers
Y = C: message bandw idth

Design Points

C- -1.000
C+ 1.000

Actual Factors
A: vertices = 0.00
D: arc bandw idth = 0.00
E: tight or loose = 0.00

C: message bandwidth
Interaction Graph

B: transceivers

Ln
(ru

n
tim

e)
-1.00 -0.50 0.00 0.50 1.00

6.138

6.658

7.177

7.697

8.217

Figure 10: Two factor interaction plot for Dijkstra’s

 The interaction plot above indicates that the variation in run time is greater as

transceivers is varied from low to high when message bandwidth is set at the high level

than when message bandwidth is set to the low level.

Metrics for NetDesign Performance

 The tabulation of metrics for all test runs is presented in Appendix B. In this

section a brief summary is presented to determine how well NetDesign was able to

perform relative to the upper bounds and other metrics presented earlier in this chapter.

The tabulation incorporates both the A* heuristic and Dijkstra’s algorithm in order to

provide a side-by-side comparison as they have been implemented in NetDesign, by

comparing average performance based on the number of vertices and transceivers in the

network. The choice to compare performance based on these two factors is reasonable

since they are the two largest main effects and as such the choice of level for each of

53

these two factors will provide the largest variation in the response of run time. The table

below provides the averages for both the A* heuristic and Dijkstra’s algorithm.

Table 11: Network metrics breakout by Vertices and Transceivers.
Network Metrics Factor Level A* Dijkstra’s

Average_v30_t4.mat .89624 .90038
Average_v30_t5.mat .88325 .9118
Average_v40_t4.mat .80601 .84251 QoS_for_chosen_network
Average_v40_t5.mat .82074 .85574
Average_v30_t4.mat .96264 .98243
Average_v30_t5.mat .96964 .98851
Average_v40_t4.mat .96848 .98512 QoS_for_messages_routed

Average_v40_t5.mat .97197 .99021
Average_v30_t4.mat .19248 .18856
Average_v30_t5.mat .15388 .14048
Average_v40_t4.mat .13585 .13761 topology_efficiency
Average_v40_t5.mat .11805 .12078
Average_v30_t4.mat 769.73 719.36
Average_v30_t5.mat 1325.4 1274.8
Average_v40_t4.mat 1628.1 1620.1 time
Average_v40_t5.mat 2540.2 2320.1
Average_v30_t4.mat 3641.1 3498.8
Average_v30_t5.mat 3978.2 3253.3
Average_v40_t4.mat 4283.3 3646.1 objective_value
Average_v40_t5.mat 4578.4 3853.7

From the table above it seems that on average, using A* in NetDesign produces

higher quality solutions but generally requires a longer running time in order to find the

solutions, while using Dijkstra’s algorithm in NetDesign yields solutions more quickly

but a tradeoff is made in terms of the solution quality. Previous statistical tests indicate

that one cannot reject the null hypothesis that there is no statistical difference in the mean

run time or objective function value for NetDesign using A* or Dijkstra’s algorithm. In

order to test the statistical difference between the means for the remaining three network

metrics in the table presented above it is necessary to perform similar statistical tests.

Using a t-test for difference of means, the following results were obtained. Note that the

full results are included in Appendix B:

54

Table 12: t-tests for difference in means in Network Metrics
Network Metrics Factor Level p-value of t-test

Average_v30_t4.mat .42
Average_v30_t5.mat .22
Average_v40_t4.mat .23 QoS_for_chosen_network
Average_v40_t5.mat .28
Average_v30_t4.mat 1.9*10-6

Average_v30_t5.mat 0.0005
Average_v40_t4.mat 0.0002 QoS_for_messages_routed

Average_v40_t5.mat 0.0005
Average_v30_t4.mat 0.40
Average_v30_t5.mat 0.18
Average_v40_t4.mat 0.46 topology_efficiency
Average_v40_t5.mat 0.45

 By inspection of the p-values in table 12, one would fail to reject that the null

hypothesis that there is no difference in the mean values for all cases in

QoS_for_chosen_network and topology_efficiency. However at the 0.1α = level of

confidence one would reject the null hypothesis that there is no difference in the means

and conclude that using Dijkstra’s algorithm in NetDesign produces message routings

with a higher QoS than those generated by A*.

55

V. Conclusions & Recommendations

Measurement of Success

The results presented in this chapter highlight several improvements over those

presented by Erwin. The problem instances used for testing NetDesign are larger than

any instances for which Erwin was able to generate complete solutions using the MILP

approach. For instance, Erwin’s MILP took a minimum running time of 700 seconds to

generate a complete solution for a 15 vertex instance of the problem even when imposing

a 12% optimality gap. Depending on the approach used, some 15 vertex instances

required running time in excess of 850 seconds. The MILP approach was not able to

produce feasible integer solutions to any instance of the problem greater than 15 nodes in

the 30 minute time window imposed by Erwin. By contrast, NetDesign is able to provide

complete solutions to many 30 node and even 40 node instances in under 30 minutes. All

attempts to generate solutions for problem instances with 39 or greater vertices using the

MILP approach failed to produce a feasible solution in 8 hours of running time,. In the

testing done for this research, NetDesign consistently found solutions to 40 vertex

instances of the NDP in less than an hour, although the average running time for all of the

40 vertex instances tested was around 1 hour.

Summary of Test Implications

Through the use of a 25 full factorial experiment it was possible to determine that

there were several differences in the NetDesign when Dijkstra’s algorithm is used as

opposed to A*. If less is known about message bandwidth and dispersion of the factors

then it is advantageous to use A* since these two factors do not affect run time of

NetDesign when A* is used. Similarly, if it is know that the average message size is

large relative to average arc capacity then Dijkstra’s algorithm should be used since this

56

factor configuration less significant in driving the run time of NetDesign when Dijkstra’s

is used.

Recommendations for Future Work

There are several opportunities for future research efforts. In heuristic

approximation, one important aspect is the choice of pricing function used in evaluating

candidates in a search. In this research, the pricing function determined the breadth and

depth of the search tree that was built in trying the find shortest paths. Further research

needs to be done to establish optimum policies for the balance of breadth vs. depth in

selecting these pricing functions. Even more basic than this issue is the approximation

itself. The heuristic portion of the pricing function was established to be the average QoS

for all arcs emanating from the node under evaluation. There may be better

approximations of the “distance” remaining to the goal node than the one used here.

Another area that could benefit from further research is the arc weighting scheme.

One issue that needs to be addressed is that of arc weighting. It may be possible to

improve the speed of solution convergence by determining an improved arc weighting

scheme.

Finally, an important part of any heuristic search is efficient implementation. In

many ways, a heuristic is ultimately judged by how quickly solutions are produced.

Therefore, a heuristic with sound theoretical components that are not implemented well is

less useful. The software produced in this research was implemented in MATLAB due to

the author’s limited experience with coding. Surely, a more efficient implementation

could be produced using MATLAB or could further benefit from an implementation in

C++ or another much faster compiled programming language.

57

Appendix A: MATLAB implementation of NetDesign

 This section contains all functions, implemented in MATLAB, that are needed to

run the NetDesign metaheuristic. In addition, the files used for generating the test cases

and results are included for completeness and as an additional reference to the reader.

Below is a complete listing of the functions and control files that are included in this

appendix. A description of each function/file is contained in the header for each.

1. a_star.m

function [failure, path_info] =
a_star_test(Prioritized_Requests,Vert_adj,Trans_adj,Trans_Char,QoS,Bandwidth,QoS_Path)

Num_Tranceivers = size(Trans_Char,2);
Num_Vertices = size(Vert_adj,1);
failure = 0;
success = 0;
count = 0;

% To indicate "perfect" QoS for transceivers located at the same vertex,
% set corresponding elements = 2
for i = 1:Num_Tranceivers
 for j = i:Num_Tranceivers
 if Trans_Char(i).Vertex_ID == Trans_Char(j).Vertex_ID && i ~= j
 QoS(i,j) = 2;
 QoS(j,i) = 2;
 end
 end
end

Node = struct([]);
path = struct([]);
best_path = struct([]);
for i = 1:size(Vert_adj,1)
 % This is for returning the best path info for n_goal
 path_info.node_path = [];
 path_info.trans_path = [];
 path_info.path_bandwidth = [];
 path_info.trans_path_QoS = 0;

 % stores and updates best path info
 best_path(i).node_path = [];
 best_path(i).trans_path = [];
 best_path(i).path_bandwidth = [];
 best_path(i).path_QoS = -inf;

 % Stores information on the nodes
 Node(i).successors = [];
 Node(i).ancestors = [];
 Node(i).point_to = [];
end

% Set the start and end node
n_zero = Prioritized_Requests(1,3);
n_goal = Prioritized_Requests(1,4);

% Begin Step 1
OPEN = [n_zero];
% End Step 1

58

% Begin Step 2
CLOSED = [];
% End Step 2

while failure == 0 && success == 0

 % Begin Step 3
 if isempty(OPEN) && n ~= n_goal % Then no node path exists
 failure = 1;
 end
 % End Step 3

 if failure == 0

 % Begin Step 4
 n = OPEN(1);
 CLOSED = [n; CLOSED];
 OPEN(1) = [];
 OPEN_CLOSED = union(OPEN,CLOSED);
 % End Step 4

 % Begin Step 5
 if n == n_goal
 success = 1;
 failure = 0;
 % Return the best path to n_goal best path
 path_info.node_path = best_path(n_goal).node_path;
 path_info.trans_path = best_path(n_goal).trans_path;
 path_info.path_bandwidth = best_path(n_goal).path_bandwidth;
 path_info.trans_path_QoS = best_path(n_goal).path_QoS;
 end
 % End Step 5

 if success == 0 && failure == 0
 % Begin Step 6

 % Create initial successor list
 for i = 1:size(Vert_adj,1)
 if Vert_adj(n,i) == 1
 Node(n).successors = [Node(n).successors,i];
 end
 end

 % Now remove ancestors from the successor list
 Node(n).successors = setdiff(Node(n).successors,Node(n).ancestors);

 % Here find the best arc connecting n to each of the successors and
 % find the QoS of the path by finding the minimum QoS of any arc on
 % the path using trans_path_finder.
 for i = 1:size(path,2)
 path(i).node_path = [];
 path(i).trans_path = [];
 path(i).bandwidth = [];
 path(i).QoS = [];
 end

 % Build "path" for each successor of n
 if count == 1
 for i = 1:length(Node(n).successors)
 path(Node(n).successors(i)).node_path = [best_path(n).node_path,
Node(n).successors(i)];
 end
 elseif count == 0
 for i = 1:length(Node(n).successors)
 path(Node(n).successors(i)).node_path = [n, Node(n).successors(i)];
 end
 %path(Node(n).successors(i)).node_path =
horzcat(path(Node(n).successors(i)).node_path,best_path(Node(n).successors(i)).node_path)
;
 end

 % Determine trans path and QoS of trans path if it exists.

59

 for i = 1:length(Node(n).successors)
 if failure == 0
 [n_zero_to_n,failure] =
trans_path_finder(path(Node(n).successors(i)).node_path,Trans_Char,Bandwidth,QoS,QoS_Path
);
 path(Node(n).successors(i)).trans_path = n_zero_to_n.Trans_path;
 path(Node(n).successors(i)).bandwidth = n_zero_to_n.Path_Bandwidth;
 path(Node(n).successors(i)).QoS = n_zero_to_n.Trans_Path_QoS;
 end
 end

 % Compare "path" QoS to "best_path" QoS. if path QoS is better
 % than best paht QoS then replace best path with path
 for i = 1:length(Node(n).successors)
 if path(Node(n).successors(i)).QoS >
best_path(Node(n).successors(i)).path_QoS
 best_path(Node(n).successors(i)).node_path =
path(Node(n).successors(i)).node_path;
 best_path(Node(n).successors(i)).trans_path =
path(Node(n).successors(i)).trans_path;
 best_path(Node(n).successors(i)).path_bandwidth =
path(Node(n).successors(i)).bandwidth;
 best_path(Node(n).successors(i)).path_QoS =
path(Node(n).successors(i)).QoS;
 end
 end
 % End Step 6

 % Begin Step 7

 % Detemine successors not already on OPEN or CLOSED
 establish_pointers_1 = setdiff(Node(n).successors, OPEN_CLOSED);

 % Determine successors already on OPEN or CLOSED
 establish_pointers_2 = intersect(Node(n).successors, OPEN_CLOSED);

 % Establish a pointer to n from each successor not already on
 % OPEN_CLOSED and add these elements to OPEN
 for i = 1:length(establish_pointers_1)
 Node(establish_pointers_1(i)).point_to = n;
 OPEN = [OPEN; establish_pointers_1(i)];
 OPEN_CLOSED = union(OPEN,CLOSED);
 end

 % Redirect pointers for elements already on OPEN_CLOSED to n if
 % the best path so far is through n
 for i = 1:length(establish_pointers_2)
 if ~isempty(intersect(n, best_path(establish_pointers_2(i)).node_path))
 Node(establish_pointers_2(i)).point_to = n;
 end
 end

 %Update ancestors for each node based on the pointers
 for i = 1:length(OPEN_CLOSED)
 Node(OPEN_CLOSED(i)).ancestors = [];
 end

 for i = 1:length(OPEN_CLOSED)
 current = OPEN_CLOSED(i);
 at_node = current;
 while at_node ~= n_zero
 Node(current).ancestors = [Node(current).ancestors,
Node(at_node).point_to];
 at_node = Node(at_node).point_to;
 end
 end
 % End Step 7

 %Begin Step 8
 % Calculate h (some elements of OPEN may be removed here)
 % OPEN_h =
calculate_h(QoS,Num_Tranceivers,Num_Vertices,Trans_adj,Trans_Char,OPEN);

60

 % Use this one to omit heuristic pricing and run Dijkstra's
 OPEN_h = horzcat(OPEN,zeros(length(OPEN),1));

 % Calculate g (some elements of OPEN may be removed here)
 % Must run calculate_h prior to calculate_g
 % Return the node path info "n_zero_to_n" for use in pointers below
 [OPEN_h_g,OPEN_path_info] =
calculate_g(OPEN_h,Trans_Char,Bandwidth,QoS,Node,n_zero,Num_Vertices,QoS_Path);

 % Here continue only if the size of open_h_g is greater than zero...
 % if not and n is not equal to n_goal then set failure equal to 1
 if ~isempty(OPEN_h_g)

 % Now that elements of OPEN may have been removed recalculate
 % OPEN_CLOSED. the "union" operator should work even though it
 % sorts the elements in OPEN_CLOSED since the elements is
 % n_zero_to_n are indexed by node ID
 OPEN_CLOSED = union(OPEN_h_g(:,1),CLOSED);

 % Pricing updates for members of OPEN
 % 1. Calculate f values for each member on OPEN_g_h and call this OPEN_f
 OPEN_f = [];
 for i = 1:size(OPEN_h_g,1)
 OPEN_f(i,1) = OPEN_h_g(i,1);
 OPEN_f(i,2) = OPEN_h_g(i,2) + OPEN_h_g(i,3);
 end
 % 2. Sort elements in OPEN_f in descending order by f value
 OPEN_f = sortrows(OPEN_f, [-2]);
 % 3. Set OPEN = OPEN_f(:,1) in preperation for Step 3
 OPEN = OPEN_f(:,1);
 % End Step 8

 count = 1;

 end % if ~isempty(OPEN_h_g)
 end % if success == 0
 end % if failure == 0
end % while failure == 0

2. assign_message_route.m

function [Comm_routing,Bandwidth,Prioritized_Requests,QoS] =
assign_message_route(Prioritized_Requests,current_path_info,Bandwidth,QoS)

%%%
%{

Function:

 [Comm_routing,Bandwidth,Prioritized_Requests,QoS] = assign_message_
 route(Prioritized_Requests,current_path_info,Bandwidth,QoS)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 assign_message_route updates the information in Bandwidth, QoS,
 and Prioritized Requests which effectively routes the current
 communications request.

 Return "Comm_routing" along with updated versions
 of the Bandwidth, Prioritized_Requests, and QoS matrices. "Comm_routing"
 is a structure containing information about the current comm request routing.

Inputs:

61

 Prioritized_Requests: A matrix containing information on the comm
 requests. Each row represents a request. The
 format for a row is:
 [priority, bandwidth, origin, destination, request_ID]

 current_path_info: The structure containing the path information obtained
 from the a_star. The fields contained in the structure
 are:

 current_path_info.node_path
 current_path_info.trans_path
 current_path_info.path_bandwidth
 current_path_info.trans_path_QoS

 QoS: As defined in a_star

 Bandwidth: As defined in a_star

Outputs:

 Comm_routing: Contains all information about the routing of the message.
 Since the path may or may not accomodate the entire request
 it may be necessary to route it in "packets." There are two
 possible cases as described below.

 Bandwidth: This matrix is updated based on the bandwidth used on edges
 contained in the current path.

 QoS: Updated by setting QoS for edges whose bandwidth is used up to "0"

 Prioritized_Requests: Updated to reflect the message routing. If part
 of the message is routed then the message bandwidth
 is reduced by the appropriate amount. If all of
 the message is routed then the corresponding row
 (always row 1 since the messages are sorted in
 non-decreasing order by priority and bandwidth)
 is deleted.

%}
%%%

%%%
%{
First case: The bandwidth of the message is greater than or equal
 to the bandwidth available on the path.

 1: subtract path bandwidth from message bandwidth in
 "Prioritized_Requests"

 2: set current_message.bandwidth = current_path_info.path_bandwidth
 to reflect actual amount being transmitted over that path.

 3: subtract path bandwidth from every arc on the path. Do this by
 updating the coresponding element of "Bandwidth"

 4: Check each arc on the transceiver path. If its bandwidth is zero then change
 the corresponding element in QoS to a "0" so that it is not
 selected during future iterations of A*

 5: If Prioritized_Requests(1,2) == 0 then it has been completely routed
 so remove it from the request list

%}
%%

current_message.bandwidth = Prioritized_Requests(1,2);
current_message.ID = Prioritized_Requests(1,5);

current_message.Priority = Prioritized_Requests(1,1);

if current_message.bandwidth >= current_path_info.path_bandwidth

62

 %1
 Prioritized_Requests(1,2) = Prioritized_Requests(1,2) -
current_path_info.path_bandwidth;
 %2
 current_message.bandwidth = current_path_info.path_bandwidth;
 %3
 for i = 1:length(current_path_info.trans_path)-1
 Bandwidth(current_path_info.trans_path(i), current_path_info.trans_path(i+1)) =
Bandwidth(current_path_info.trans_path(i), current_path_info.trans_path(i+1)) -
current_path_info.path_bandwidth;
 Bandwidth(current_path_info.trans_path(i+1), current_path_info.trans_path(i)) =
Bandwidth(current_path_info.trans_path(i+1), current_path_info.trans_path(i)) -
current_path_info.path_bandwidth;
 %4
 if Bandwidth(current_path_info.trans_path(i), current_path_info.trans_path(i+1))
== 0
 QoS(current_path_info.trans_path(i), current_path_info.trans_path(i+1)) = 0;
 QoS(current_path_info.trans_path(i+1), current_path_info.trans_path(i)) = 0;
 end
 end
 %5
 if Prioritized_Requests(1,2) == 0
 Prioritized_Requests(1,:) = [];
 end

%%%
%{

Second case: The bandwidth of the message is less than the bandwidth
 available on the path.

 1: subtract message bandwidth from every arc on the path. Do this by
 updating the coresponding element of "Bandwidth."

 2: Remove the first row of the "Prioritized_Requests" matrix since all
 of the message has been routed.

%}
%%%

elseif current_message.bandwidth < current_path_info.path_bandwidth
 %1
 for i = 1:length(current_path_info.trans_path)-1
 Bandwidth(current_path_info.trans_path(i), current_path_info.trans_path(i+1)) =
Bandwidth(current_path_info.trans_path(i), current_path_info.trans_path(i+1)) -
current_message.bandwidth;
 Bandwidth(current_path_info.trans_path(i+1), current_path_info.trans_path(i)) =
Bandwidth(current_path_info.trans_path(i+1), current_path_info.trans_path(i)) -
current_message.bandwidth;
 end
 %2
 Prioritized_Requests(1,:) = [];
end

Comm_routing.message_ID = current_message.ID;
Comm_routing.message_bandwidth = current_message.bandwidth;
Comm_routing.node_path = current_path_info.node_path;
Comm_routing.trans_path = current_path_info.trans_path;
Comm_routing.path_QoS = current_path_info.trans_path_QoS;
Comm_routing.message_Priority = current_message.Priority;
% didn't include path bandwidth since it is unimportant after the message
% has been routed.

63

3. Bandwidth_QoS_matching_update.m

function [Bandwidth,QoS] = Bandwidth_QoS_matching_update(Bandwidth,QoS,I,Trans_Char)

% This function will update the Bandwidth and QoS matrices after the
% matching is formed each time. After a matching is formed, the result is
% that several arcs are removed. To represent this set the corresponding
% elements of Bandwidth and QoS to "0" for the next A* search.

a = size(Bandwidth,1);
b = a;

for i = 1:a
 for j = i:b
 if Trans_Char(i).Vertex_ID ~= Trans_Char(j).Vertex_ID
 Bandwidth(i,j) = Bandwidth(i,j)*I(i,j);
 Bandwidth(j,i) = Bandwidth(j,i)*I(i,j); % the I(i,j) here is correct since
some of the adjacency
 % matrices are upper
 % triangular
 QoS(i,j) = QoS(i,j)*I(i,j);
 QoS(j,i) = QoS(j,i)*I(i,j);
 end
 end
end

4. calculate_g.m

function [OPEN_h_g,n_zero_to_n] =
calculate_g(OPEN_h,Trans_Char,Bandwidth,QoS,Node,n_zero,Num_Vertices,QoS_Path)

%%%
%{

Function:

 [OPEN_h_g,n_zero_to_n] = calculate_g(OPEN_h,Trans_Char,Bandwidth,QoS,
 Node,n_zero,Num_Vertices)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 calculate_g calculates the "shortest path" (max QoS) from n_zero to n
 found by A* so far for each element of OPEN. In order to find the
 shortest path, from n_zero to n the shortest transceiver path from
 n_zero to n must first be determined. If the transceicer path for
 n_zero to n doesn't exist then remove it from OPEN since it will not be
 on the shortest path from n_zero to n_goal.

Inputs:

 OPEN_h: As defined in calculate_h

 Node: The structure containing pointers for the elements in the search
 graph. These pointers are used to determine a path once the
 goal node has been reached. Node has only one field:

 Node.point_to

 Num_Vertices: A scalar value denoting the number of vertices in the
 network.

 n_zero: The node that the search began from. In this case it is the
 origin node for the communication request.

64

 Bandwidth: As defined in a_star.

 Trans_Char: As defined in a_star.

 QoS: As defined in a_star.

Outputs:

 OPEN_h_g: The OPEN_h matrix with an added column containing the price
 obtained from the g pricing function. the g value is the
 length of the shortest path (QoS) for the shortest path
 from n_zero to n (where n is an element of OPEN) found by
 a_star so far.

 n_zero_to_n: The structure containg path info for the elements of
 OPEN. This path info is used to determine the g value
 of vertices. The fields contained in n_zero_to_n are:

 n_zero_to_n.Node_path
 n_zero_to_n.Trans_path
 n_zero_to_n.Trans_Path_QoS
 n_zero_to_n.no_trans_path_indicator

%}
%%%

% Need this structure to have "Num_Vertices" elements for operations that
% take place in "redirect_pointers"
for i = 1:Num_Vertices
 n_zero_to_n(i).Node_path = [];
end

% Step 1: Determine the node path from n_zero to n for each element on OPEN
%(guaranteed to exist since each n was arrived at by pointers)
for i = 1:size(OPEN_h,1)
 current = OPEN_h(i,1);
 temp_path = [current];
 while current ~= n_zero
 current = Node(current).point_to;
 temp_path = [current; temp_path];
 end
 %index using the actual node...for instance, n_zero_to_n(5).Node_path
 %is the node path from n_zero to n corresponding to node 5
 n_zero_to_n(OPEN_h(i,1)).Node_path = temp_path;
end

% Step 2: Determine the transceiver path for each element of n_zero_to_n
% or determine that one does not exist. If one exists determine
% Trans_Path_QoS...use "trans_path_structure" since "n_zero_to_n" is an
% input...then reassign later.
for i = 1:size(OPEN_h,1)
 [path_info,no_trans_path_indicator] =
trans_path_finder(n_zero_to_n(OPEN_h(i,1)).Node_path,Trans_Char,Bandwidth,QoS,QoS_Path);
 trans_path_structure(OPEN_h(i,1)).Trans_path = path_info.Trans_path;
 trans_path_structure(OPEN_h(i,1)).Trans_Path_QoS = path_info.Trans_Path_QoS;
 trans_path_structure(OPEN_h(i,1)).no_trans_path_indicator = no_trans_path_indicator;
end

% Here's the reassignment from "trans_path_structure" to "n_zero_to_n"
for i = 1:size(OPEN_h,1)
 n_zero_to_n(OPEN_h(i,1)).Trans_path = trans_path_structure(OPEN_h(i,1)).Trans_path;
 n_zero_to_n(OPEN_h(i,1)).Trans_Path_QoS =
trans_path_structure(OPEN_h(i,1)).Trans_Path_QoS;
 n_zero_to_n(OPEN_h(i,1)).no_trans_path_indicator =
trans_path_structure(OPEN_h(i,1)).no_trans_path_indicator;
end

g = [];
for i = 1:size(OPEN_h,1)
 % If no path was found then indicate with a price of 100
 if n_zero_to_n(OPEN_h(i,1)).no_trans_path_indicator == 1
 g(i) = 100;

65

 elseif n_zero_to_n(OPEN_h(i,1)).no_trans_path_indicator == 0
 g(i) = trans_path_structure(OPEN_h(i,1)).Trans_Path_QoS;
 end
end
g = g';

OPEN_h_g = horzcat(OPEN_h,g);

% Now remove elements of OPEN_h_g with column 3 entries of 1
i = 1;
v = size(OPEN_h_g,1);
while i <= v;
 if OPEN_h_g(i,3) == 100
 % if the node is removed, also remove the node path info
 n_zero_to_n(OPEN_h_g(i,1)).Node_path = [];
 n_zero_to_n(OPEN_h_g(i,1)).Trans_path = [];
 n_zero_to_n(OPEN_h_g(i,1)).Trans_Path_QoS = 0;
 OPEN_h_g(i,:) = [];
 v = size(OPEN_h_g,1);
 else
 i = i+1;
 end
end

5. calculate_h.m

function [OPEN_h] = calculate_h(QoS,Num_Tranceivers,Num_Vertices,I,Trans_Char,OPEN)

%%%
%{

Function:

 [OPEN_h] = calculate_h(QoS,Num_Tranceivers,Num_Vertices,I,Trans_Char,
 OPEN)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 calculate_h is the heuristic portion of the pricing function that
 provides an estimate of the QoS on the path from n to n_goal. The
 estimate is calculated for a node by averaging the QoS on all arcs
 eminating from the node.

 Notes: if the estimated QoS on the path is "0" then the average QoS on
 all arcs eminating from node n is "0" and and no path exists to
 connect n to n_goal. In this case, remove n from OPEN since no
 path connecting n_zero to n_goal will contain n. OPEN_h is a
 matrix associating the heuristic estimates for the elements on
 OPEN (which have not been removed in this function) with the
 elements of open. Row i contains node OPEN(i) and the h value
 for OPEN(i). Elements on OPEN whose h value is zero are
 removed from "OPEN_h."

Inputs:

 QoS: As defined in a_star.

 Num_Vertices: As defined in NetDesign.

 Trans_Char: As defined in a_star.

 Num_Transceivers: A scalar value denoting the total number of
 transceivers in the network.

 I: The transceiver adjacency matrix

66

 OPEN: The vector of vertices that are currently being explored for by
 a_star.

Outputs:

 OPEN_h: The matrix containing the nodes listed in OPEN along with
 their heuristic function price. There is a row in OPEN_h for
 each element of OPEN. The format of the row is:
 [open_element, h_value]

%}
%%%

Trans_QoS_Sum = [];
Denominator = [];
one_calc = ones(Num_Tranceivers,1);
n_to_goal_estimate = [zeros(Num_Vertices,3)];
I_calc = I + I';

for i = 1:Num_Tranceivers
 % Calculate the total QoS eminating from each transceiver i
 Trans_QoS_Sum(i) = QoS(i,:)*I_calc(i,:)';
 % Determine how many QoS measures were summed for each transceiver
 Denominator(i) = I_calc(i,:)*one_calc;
end

% Now determine total QoS and number of measures added up for each node
for i = 1:Num_Tranceivers
 n_to_goal_estimate(Trans_Char(i).Vertex_ID,1) =
n_to_goal_estimate(Trans_Char(i).Vertex_ID,1) + Trans_QoS_Sum(i); % Tracks total QoS
 n_to_goal_estimate(Trans_Char(i).Vertex_ID,2) =
n_to_goal_estimate(Trans_Char(i).Vertex_ID,2) + Denominator(i);
 n_to_goal_estimate(Trans_Char(i).Vertex_ID,3) = Trans_Char(i).Vertex_ID;
end

OPEN_h = [];
for i = 1:length(OPEN)
 OPEN_h(i,1) = OPEN(i);
 if n_to_goal_estimate(OPEN(i),1) > 0
 OPEN_h(i,2) = n_to_goal_estimate(OPEN(i),1)/n_to_goal_estimate(OPEN(i),2);
 elseif n_to_goal_estimate(OPEN(i),1) == 0
 OPEN_h(i,2) = 0;
 end
end

% Remove nodes on OPEN that have estimated QoS of "0"
i = 1;
v = size(OPEN_h,1);
while i <= v;
 if OPEN_h(i,2) == 0
 OPEN_h(i,:) = [];
 v = size(OPEN_h,1);
 else
 i = i+1;
 end
end

6. calculate_network_metrics.m

function [metrics] =
calculate_network_metrics(best_solution,Bandwidth,QoS,Match,Prioritized_Requests)

% best_solution: is the structure containing informatoin on the routing
% Bandwidth: is the matrix of bandwidth values for each arc in the network
% QoS: is the matrix of QoS values for each arc in the network
% Match: is the transceiver adjacency matrix after the matching has been made.

67

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1. QoS metric for the entire network

% First change inf entries to 0 and make entries below main diagonal == 0
% so arcs are not added twice
for i = 1:size(Bandwidth,1)
 for j = i:size(Bandwidth,1)
 if Bandwidth(i,j) == inf
 Bandwidth(i,j) = 0;
 end
 Bandwidth(j,i) = 0;
 end
end

% Numerator
BQ_1 = Bandwidth.*QoS;
BQ_1 = sum(BQ_1,1);
BQ_1 = sum(BQ_1,2);

% Denominator
B_1 = sum(Bandwidth,1);
B_1 = sum(B_1,2);

metrics.QoS_for_all_arcs_network = BQ_1/B_1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2. QoS metric for my network

% Numerator
BQ_2 = Bandwidth.*Match; % Bandwidth on chosen arcs
BQ_2 = BQ_2.*QoS; % Band_QoS on chosen arcs
BQ_2 = sum(BQ_2,1);
BQ_2 = sum(BQ_2,2);

% Denominator
B_2 = Bandwidth.*Match;
B_2 = sum(B_2,1);
B_2 = sum(B_2,2);

metrics.QoS_for_my_network = BQ_2/B_2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3. QoS metric for messages sent

% Determine the highest message ID which will determine the size of the
% message_collect structure
high_ID = 0;
for i = 1:size(best_solution,2)
 if best_solution(i).message_ID > high_ID
 high_ID = best_solution(i).message_ID;
 end
end

% initialize bandwidth to zero, Band_QoS to 0 and QoS to infinity
for i = 1:high_ID;
 message_collect(i).QoS = 2;
 message_collect(i).Bandwidth = 0;
 message_collect(i).Band_QoS = 0;
end

% Determine the QoS and Bandwidth of each message by examining the routing
for i = 1:size(best_solution,2);
 if best_solution(i).path_QoS < message_collect(best_solution(i).message_ID).QoS
 message_collect(best_solution(i).message_ID).QoS = best_solution(i).path_QoS;
 end
 message_collect(best_solution(i).message_ID).Bandwidth =
message_collect(best_solution(i).message_ID).Bandwidth +
best_solution(i).message_bandwidth;
end

% if QoS of any message is > 1 at this stage then set it to 0

68

for i = 1:high_ID
 if message_collect(i).QoS > 1
 message_collect(i).QoS = 0;
 end
end

% calculate the Band_QoS for each message and the total bandwidth of all
% messages transmitted.
total_band = 0;
for i = 1:size(message_collect,2)
 message_collect(i).Band_QoS = message_collect(i).QoS * message_collect(i).Bandwidth;
 total_band = total_band + message_collect(i).Bandwidth;
end

% sum the Band_QoS for all messages sent
total_Band_QoS = 0;
for i = 1:size(message_collect,2)
 total_Band_QoS = total_Band_QoS + message_collect(i).Band_QoS;
end

% Calculate the ratio of total_Band_QoS to total_band
metrics.QoS_for_messages_routed = total_Band_QoS/total_band;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 4. Efficiency of a given topology
metrics.topology_efficiency = total_band/B_2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5. Determine the upper bound on bandwidth routed and compare to the ratio
% for actual bandwidth routed to see how well the heuristic performed.

all_messages_bandwidth = 0;
for i = 1:size(Prioritized_Requests,1)
 all_messages_bandwidth = all_messages_bandwidth + Prioritized_Requests(i,2);
end

metrics.total_band_transmitted_ratio = total_band/all_messages_bandwidth;

% Determine the total bandwidth of all arcs in the matching.
B_3 = Bandwidth.*Match;
B_3 = sum(B_3,1);
B_3 = sum(B_3,2);

metrics.total_band_upper_bound = B_3/all_messages_bandwidth;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 6. Determine the number of messages in the routing;
total_requests = size(Prioritized_Requests,1);
message_count_vector = zeros(total_requests,1);
message_count_vector1 = ones(total_requests,1);
for i = 1:size(best_solution,2)
 message_count_vector(best_solution(i).message_ID) = 1;
end
metric.messages_in_routing = message_count_vector' * message_count_vector1;

7. calculate_objective_function.m

function [objective_value] = calculate_obj_fcn(best_solution,P)

%%%
%{

Function:

69

 [objective_value] = calculate_obj_fcn(message_routing,P)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 calculate_obj_fcn determines the quality of the current solution in
 terms of the following objective function: sum across all messages in
 the routing (QoS)*(Bandwidth)*(Priority)
 The QoS and Bandwidth are taken directly from the message_routing
 structure, but priority is calculated as follows:
 Priority = 2^(message_Priority - 1) In this case we are assuming that
 a priority 5 message is twice as important as a priority 4, a priority
 4 message is two times as important as a priority 3, etc.

Inputs:

 message_routing: A structure with fields identical to those contained
 in Pre_match_comm_routing. See assign_message_route
 for a description of the fields.

 P: A structure containing information on each of the requests

Outputs:

 objective value: A scalar value denoting the solution quality.
 the higher the objective_value the better a
 particular solution is.

%}
%%%

% Determine the highest message ID which will determine the size of the
% message_collect structure
high_ID = 0;
for i = 1:size(best_solution,2)
 if best_solution(i).message_ID > high_ID
 high_ID = best_solution(i).message_ID;
 end
end

% initialize bandwidth to zero, Band_QoS to 0 and QoS to 2
for i = 1:high_ID;
 message_collect(i).QoS = 2;
 message_collect(i).Bandwidth = 0;
end

% Determine the QoS and Bandwidth of each message by examining the routing
for i = 1:size(best_solution,2);
 if best_solution(i).path_QoS < message_collect(best_solution(i).message_ID).QoS
 message_collect(best_solution(i).message_ID).QoS = best_solution(i).path_QoS;
 end
 message_collect(best_solution(i).message_ID).Bandwidth =
message_collect(best_solution(i).message_ID).Bandwidth +
best_solution(i).message_bandwidth;
end

% if QoS of any message is > 1 at this stage then set it to 0
for i = 1:high_ID
 if message_collect(i).QoS > 1
 message_collect(i).QoS = 0;
 end
end

objective_value = 0;
for i = 1:size(message_collect,2)
 objective_value = objective_value +
(message_collect(i).QoS*message_collect(i).Bandwidth*P(i).Priority);
end

70

8. comm_not_transmittable.m

function [P,Num_Comm_Requests,Vect_Comm_Requests] =
comm_not_transmittable(P,Isolated_vertices_I,Unreachable_I)

%%%
%{

Function:

 comm_not_transmittable(P,Isolated_vertices_I,Unreachable_I)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 comm_not_transmittable removes comm requests which have
 origin/destination pairs that reside in seperate components. This is
 to be done prior to prioritization or routing so that computation time
 is not wasted for mesages that are easily determined to be unroutable.

Inputs:

 P: As defined in create_requests.

 Isolated_vertices_I: As defined in Isolated_vert

 Unreachable_I: Is the matrix whose "0" entries denote transceiver pairs for
 which no paths of less than or equal to "CONNECTIVITY."
 connect the transceivers. In other words, if entry (i,j) is
 "0" then j is unreachable from i in "CONNECTIVITY" hops.

Outputs:

 P: As defined in create_requests...but modified by removing the comm
 requests that cannot be transmitted.

 Num_Comm_Requests: Simply a scalar constant that denotes the total
 number of communications requests remaining after
 non-transmittable requests are removed.

 Vect_Comm_Requests: Can be used in vectorizing code...just a vector
 of numbers from 1 to Num_Comm_Requests.

Notes:

 Messages_not_transmittable: Is the vector whose entries represent the
 communication ID #'s for comm. requests
 that cannot be sent because they are
 coming from or going to an isolated
 vertex.

%}
%%%

% Messages_not_transmittable: Is the vector whose entries represent the
% communication ID #'s for comm. requests that
% cannot be sent because they are coming from or
% going to an isolated vertex.
%

Messages_not_transmittable_I = [];

71

for i = 1:size(Isolated_vertices_I, 1)
 for j = 1:size(P, 2)
 if P(j).Origin == Isolated_vertices_I(i) || P(j).Destination ==
Isolated_vertices_I(i)
 Messages_not_transmittable_I = [Messages_not_transmittable_I; P(j).ID,
P(j).Priority, P(j).Bandwidth];
 end
 end
end

% Get rid of comm requests at origins and destinations not connected
while i <= size(P,2)
 if Unreachable_I(P(i).Origin, P(i).Destination) == 0
 P(i) = [];
 i = 1;
 else
 i = i + 1;
 end
end
Num_Comm_Requests = size(P,2);
Vect_Comm_Requests = [1:Num_Comm_Requests];

9. create_I

function [I,Num_Transceivers,Vect_Transceivers] = create_I(Trans_Char,D,M)

%%%
%{

Function:

 [I,Num_Transceivers,Vect_Transceivers] = create_I(Trans_Char,D,M)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 create_I is the function that generates the initial transceiver
 incidence matrix. The matrix is created based on two filtering
 criteria: transceiver type and communications radius. If two
 transceivers are not within each others comm radius then they
 are not adjacent. Also, if two transceivers are not of the same type
 then they are not adjacent.

Inputs:

 Trans_Char: As defined in create_Trans_Char.

 D: As defined in NetDesign

 M: As defined in create_Trans_Char

Outputs:

 I: Is the initial transceiver incidence matrix with main diagonal
 elements removed since vertex i is not adjacent to itself. I is
 filtered based on the 2 criteria in Operation 2.

 Num_Transceivers: The number of Transceivers contained in the initial
 transceiver list.

 Vect_Transceivers: A vector with all transceiver ID #'s.

%}
%%%

I = ones(size(Trans_Char, 2));

72

for i = 1:size(I,1)
 I(i,i) = 0;
 % Entries on the main diagonal are set to zero since
 % transceivers are not adjacent to themselves
 for j = i:size(I,1)
 I(j,i) = 0;
 % This sets the entries below the main diagonal to zero
 % since all arcs are undirected
 if I(i,j) > 0
 if (D((Trans_Char(i).Vertex_ID),(Trans_Char(j).Vertex_ID)) >
Trans_Char(i).CommRadius) || (D((Trans_Char(i).Vertex_ID),(Trans_Char(j).Vertex_ID)) >
Trans_Char(j).CommRadius)
 I(i,j) = 0;
 % filters based on comm radius if either transceiver is
 % outside of the comm radius of the other
 end
 if (D((Trans_Char(i).Vertex_ID),(Trans_Char(j).Vertex_ID)) == 0)
 I(i,j) = 0;
 % If the transceivers are at the same vertex they are not
 % adjacent
 end
 if (Trans_Char(i).Transceiver_type ~= Trans_Char(j).Transceiver_type)
 I(i,j) = 0;
 end
 if (M((Trans_Char(i).Vertex_ID),1) == 0 || M((Trans_Char(j).Vertex_ID),1) ==
0) && (M((Trans_Char(i).Vertex_ID),2) == 0 || M((Trans_Char(j).Vertex_ID),2) == 0)
 I(i,j) = 0;
 % Filters based on transceiver types at each vertex
 % If neither i or j have either transciever type than they
 % are not adjacent
 end
 end % I(i,j) > 0
 end % for j = i:size(I,1)
end % for i = 1:size(I,1)
Num_Transceivers = size(I,1);
Vect_Transceivers = [1:Num_Transceivers];

10. create_matching.m

function [Matching_final,Matching, Vert_adj_post_match, Match] =
create_matching(Arc_weight,I,Trans_Char,Num_Vertices)

%%%
%{

Operation 8: Determine the Matching between transceivers. A simple greedy
 heuristic is used to obtain a good initial starting solution.
 The greedy heuristic chooses the pairs of transceivers
 in non-decreasing order of elements in Match. Also
 determine the Vertex adjacency post match.

Function:

 [Matching_final,Matching, Vert_adj_post_match, Match] = create_matching
 (Arc_weight,I,Trans_Char,Num_Vertices)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 Determine the Matching between transceivers. A simple greedy
 heuristic is used to obtain a good initial starting solution.
 The greedy heuristic chooses the pairs of transceivers
 in non-decreasing order of elements in Match. Also
 determine the Vertex adjacency post match.

73

Input:

 Arc_weight: As defined in reweight_arcs

 I: As defined in create_I

 Trans_Char: As defined in create_Trans_Char

 Num_Vertices: As defined in NetDesign

Output:

 Matching: Is the matrix containing information on the transceiver
 matching created by the greedy heuristic.

 Match: Is a copy of "I" that can be modified to reflect the actual
 matching that has been chosen. "I" reflects only the potential
 connections. "Match" reflects the transceiver adjacencies
 after the match and can be used in the A* in place of the "I"
 matrix used initially.

 Vert_adj_post_match: Is the matriz that gives information on the
 adjacency of the vertices after the greedy
 heuristic has been run. Also an input for A*.

 Matching_final: Is the matrix that integrates transceiver and vertex
 information for use in graphing and for presentation
 to the user.

%}
%%%

Arc_weight1 = Arc_weight;
Match = I;
Matching = [];
a = 1;

while a > 0
 [C,Y] = max(max(Arc_weight1)); % Returns the column index of the max as Y
 [V,F] = max(Arc_weight1(:,Y)); % Returns the row index of the max as F
 % V and C are identical values; both are value of the the max Arc_weight1
 Matching = [Matching; F, Y, C];
 Match(:,F) = 0;
 Match(Y,:) = 0;
 Match(F,:) = 0;
 Match(:,Y) = 0;
 Arc_weight1 = Arc_weight1.*Match;
 a = max(max(Arc_weight1));
end

Matching_final = [];
for i = 1:size(Matching,1)
 Matching_final = [Matching_final; Trans_Char(Matching(i,1)).Vertex_ID,
Trans_Char(Matching(i,2)).Vertex_ID, Matching(i,1), Matching(i,2), Matching(i,3)];
end

% Rebuild "Match" which contains information about the transceiver
% adjacencies after the matching has taken place
for i = 1:size(Matching_final,1)
 Match(Matching(i,1),Matching(i,2)) = 1;
 Match(Matching(i,2),Matching(i,1)) = 1;
end

%Put vert adj post match loop here
Vert_adj_post_match = zeros(Num_Vertices);

for i = 1:size(Matching_final,1)
 Vert_adj_post_match(Matching_final(i,1),Matching_final(i,2)) = 1;
 Vert_adj_post_match(Matching_final(i,2),Matching_final(i,1)) = 1;
end

74

11. create_requests.m

function [P] = create_requests(User_inputs,Num_Vertices)

%%%
%{

Function:

 [P] = create_requests(User_inputs,Num_Vertices)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 Generate the list of communications requests. Each request
 has associated with it a bandwidth, priority, time window,
 origin, destination, and a unique ID. It must arrive at
 the destination in during the specified time window in
 order to be considered successful. Additionally, if the
 request is split into packets then all packets must arrive
 (within the specified time window) in order to be
 considered complete.

Inputs:

 User_inputs: As defined in NetDesign

 Num_Vertices: As defined in NetDesign

Outputs:

 P: is the MATLAB structure containining communication requests along
 with the information needed to prioritize and route each one.
 The fields contained in P are:

 P.ID
 P.Bandwidth
 P.Priority
 P.Origin
 P.Destination

%}
%%%

num_requests = random_integers(User_inputs.MAX_COMM_REQ);
request_number = 1;
for i = 1:num_requests
 P(request_number).ID = i;
 P(request_number).Bandwidth = random_integers(User_inputs.MAX_BAND);
 P(request_number).Priority = random_integers(User_inputs.PRIORITY_SCALE);
 P(request_number).Origin = random_integers(Num_Vertices);
 P(request_number).Destination = random_integers(Num_Vertices);

 %The following loop ensures that the origin and destination for each
 %communication request are distinct
 vvv = 1;
 while P(request_number).Origin == P(request_number).Destination
 P(request_number).Destination = random_integers(Num_Vertices);
 end
 request_number = request_number + 1;
end

12. create_Trans_Char.m

function [Trans_Char, M] = create_Trans_Char(User_inputs,Num_Vertices,A)

75

%%%
%{

Function:

 [Trans_Char, M] = create_Trans_Char(User_inputs,Num_Vertices,A)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 create_Trans_Char is a function that generates a structure containing
 the transceiver characteristics for each transceiver in the network.

Inputs:

 User_inputs: A structure with fields defined in NetDesign

 Num_Vertices: A scalar value denoting the totla number of vertices
 in the network.

 A: As defined in NetDesign.

Outputs:

 M: Is the matrix containing information on the total number of
 transceivers located at each vertex. Each row represents a
 different vertex.

 total_transceivers: Is the total number of transceivers possible
 at vertex i.

 total_type1_transceivers: Is the total number of transceivers of
 type 1 at vertex i.

 total_type2_transceivers: Is the total number of transceivers of
 type 2 at vertex i.

 Trans_Char: Is the MATLAB structure that contains the important
 characteristics about each transceiver. These
 characteristics are stored in the fields listed below.

 Vertex_ID: In "Trans_Char" denotes the vertex at which the current
 transceiver is located.

 Transceiver_ID: In "Trans_Char" denotes the unique transceiver
 identifier

 Transceiver_type: In "Trans_Char" denotes the type of transceiver.
 Every transceiver is either of type 1 or type 2

 CommRadius: In "Trans_Char" denotes The radius of communication of
 the transceiver.

 XLoc: In "Trans_Char" denotes the abscissa of the vertex
 containing the transceiver.

 YLoc: In "Trans_Char" denotes the ordinate of the vertex
 containing the transceiver.

 XPlotLocation: In "Trans_Char" denotes the abscissa plot location
 of the transceiver. Transceivers are plotted
 around an imaginary circle for purposes of
 graphing.

 YPlotLocation: In "Trans_Char" denotes the ordinate plot location
 of the transceiver.

76

%}
%%%

M = [];

for i = 1:Num_Vertices
 total_transceivers = random_integers(User_inputs.MAX_TRANSCEIVERS);
 total_type1_transceivers = random_integers(total_transceivers);
 total_type2_transceivers = total_transceivers - total_type1_transceivers;
 M = [M; total_type1_transceivers, total_type2_transceivers];
end

transceiver_number = 1;

for i = 1:Num_Vertices% Moves through the vertices
 ComRad = random_integers(User_inputs.MAX_COMM_RAD,2);
 ttt = M(i,1) + M(i,2);
 tn = 1;
 for k = 1:2 % Move through tranceiver types
 for j = 1:M(i,k)% Move through the individual transceivers
 Trans_Char(transceiver_number).Vertex_ID = i;
 Trans_Char(transceiver_number).Transceiver_ID = transceiver_number;
 Trans_Char(transceiver_number).Transceiver_type = k;
 Trans_Char(transceiver_number).CommRadius = ComRad(k);
 Trans_Char(transceiver_number).XLoc = A(i,1);
 Trans_Char(transceiver_number).YLoc = A(i,2);
 Trans_Char(transceiver_number).XPlotLocation = A(i,1) +
1.*cos(2*3.14159265/ttt * tn);
 Trans_Char(transceiver_number).YPlotLocation = A(i,2) +
1.*sin(2*3.14159265/ttt * tn);
 transceiver_number = transceiver_number + 1;
 tn = tn + 1;
 end
 end
end

13. distance_matrix.m

function [D] = distance_matrix(A)

%%%
%{

Function:

 [D] = distance_matrix(A)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 "distance_matrix" calculates the distance between all pairs and returns
 this information in a symetric distance matrix.

Inputs:

 A: The n-by-2 matrix of ordered pairs.

Outputs:

 D: the symetric matrix whose (i,j) entries represent the distance
 between vertex i and vertex j.

%}
%%%

D = [];

77

for i = 1:size(A,1)
 for j = i:size(A,1)
 if i == j
 D(i,j) = 0;
 else
 x = [A(i,:)-A(j,:)];
 D(i,j) = norm(x,2);
 end
 end
end
D = D + D';

14. generate_test_cases

function [file] = generate_test_cases(Network)
%{
This file is used to generate test cases.

Run this file and then save the workspace as a *.mat file to save
specific cases.

Notes:

1. The priority for all test cases is a number between 1 and 5 with 5
 being the highest priority.

2. The communication radius of every transceiver is set to a constant
 value of 100.

3. Available bandwidth on arcs is randomly generated between 1 and 100.

%}
%%%

for i = 1:2
 vertices = Network.vertices(i);
 for j = 1:2
 transceivers = Network.transceivers(j);
 for k = 1:2
 number_of_messages = Network.number_of_messages(k);
 for l = 1:2
 message_bandwidth = Network.message_bandwidth(l);
 for m = 1:2
 arc_bandwidth = Network.arc_bandwidth(m);

 tic
 % 3. Load the appropriate distance matrix. Either the
 % 50 or 100 depending on the number of vertices being
 % tested. This is generated outside of here so that it
 % is helad constant throughout testing.
 dist = sprintf('distance_matrix_%d.mat',vertices);
 load(dist);
 Num_Vertices = size(D,1);
 Vect_Vertices = [1:Num_Vertices];

 % 4. Generate Transceiver characteristics
 [Trans_Char,M] =
create_Trans_Char_test_case(Network,Num_Vertices,vertex_positions);

 % 5. Generate a square matrix of ones called "I" which has a row and
a column for each transceiver.
 [I,Num_Transceivers,Vect_Transceivers] =
create_I_test_case(Trans_Char,D,M);

 % 6. Generate the list of communications requests.
 P = create_requests_test_case(Network,Num_Vertices);

 total_requests = size(P,2);

78

 % 7. Determine if there are any disconnected nodes in the network.
 [Isolated_vertices_I, Vert_adj_pre_match, Unreachable_I] =
Isolated_vert_test_case(I,Num_Vertices,Trans_Char);

 % 8. Determine the messages not transmittable and remove them.
 [P,Num_Comm_Requests,Vect_Comm_Requests] =
comm_not_transmittable_test_case(P,Isolated_vertices_I,Unreachable_I);

 % 9. Build matrices containing info on QoS, Bandwidth, and Requests
 [QoS,Bandwidth,Prioritized_Requests] =
QoS_Bandwidth_Request_test_case(Trans_Char,I,P);

 % Generate the file name and save the variables to thefile
 file =
sprintf('test_case_v%d_t%d_n%d_m%d_a%d',vertices,transceivers,number_of_messages,message_
bandwidth,arc_bandwidth);
 save(file);
 toc
 end
 end
 end
 end
end

15. hamming_distance.m

function [ham_dist] = hamming_distance(ham_1,ham_2)

%%%
%{

Function:

 [ham_dist] = hamming_distance(ham_1,ham_2)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 hamming_distance calculates the hamming distance between two binary
 column vectors.

Inputs:

 ham_1/ham_2: Binary column vectors based on network topology. Has an
 entry for each possible arc in the network. If an arc is
 included in the topology, the corresponding element of the
 hamming vector is set to "1." If the arc is not included
 in the topology, then the corresponding element of the
 hamming vector is set to "0."

Outputs:

 ham_dist: A scalar value denoting the hamming distance between ham_1
 and ham_2. Hamming distanc eis the number of elements by
 which the two vectors differ.

%}
%%%

ham_dist_ones = ones(1,length(ham_1));

x = abs(ham_1-ham_2);

ham_dist = ham_dist_ones*x;

79

16. hamming_vector.m

function [ham_vect] = hamming_vector(comm_routing_structure,Num_Transceivers)

%%%
%{

Function:

 [ham_vect] = hamming_vector(comm_routing_structure,Num_Transceivers)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 Use the vertex paths in the comm_routing_structure to determine which
 arcs are in the solution. Arcs in the solution have a value of "1" in
 the hamming vector and arcs not in the solution have a value of "0" in
 the hamming vector.

Inputs:

 comm_routing_structure: as defined in route_message_traffic

 Num_Transceivers: As defined in create_I

Outputs:

 ham_vect: The binary vector representing the current network topology.

%}
%%%

ham_mat = zeros(Num_Transceivers,Num_Transceivers);
for i = 1:size(comm_routing_structure,2)
 for j = 1:length(comm_routing_structure(i).trans_path)-1

ham_mat(comm_routing_structure(i).trans_path(j),comm_routing_structure(i).trans_path(j+1)
) = 1;

ham_mat(comm_routing_structure(i).trans_path(j+1),comm_routing_structure(i).trans_path(j)
) = 1;
 end
end

ham_vect = [];
for i = 1:Num_Transceivers
 ham_vect = [ham_vect;ham_mat(:,i)];
end

17. Isolated_vert.m

function [Isolated_vertices_I, Vert_adj_pre_match, Unreachable_I] =
Isolated_vert(I,Num_Vertices,Trans_Char)

%%%
%{

Function:

 Isolated_vert(I,Num_Vertices,Trans_Char):

Author:

 R. Benjamin Hartlage, Capt, USAF

80

Description:

 Isolated_vert

Inputs:

 I: The transceiver adjacency matrix

 Num_Vertices: The scalar denoting the number vertices in the network.

 Trans_Char: As defined in a_star.

Outputs:

 Isolated_vertices_I: A vector of vertex ID's for vertices in the
 network that are disconnected. If a vertex is
 disconnected then no message traffic can be
 routed to/from it. Any messages with an origin
 or destination that is isolated may be removed
 from the list of communications to be sent.

 Note: Use the Adjacency matrix to determine if a path
 of length n-1 connects the two nodes. Note that
 the (i,j) entries denote the number of paths of length
 "power" that connect node i and j. "Power" is the power to
 which the matrix is raised Generate a matrix to track
 connectivity. If a path is found then put an entry of 1
 into the appropriate position of the matrix.

%}
%%%

Vert_adj_pre_match = zeros(Num_Vertices);
Unreachable_I = zeros(Num_Vertices);
Isolated_vertices_I = [];

for i = 1:size(I,1)
 for j = 1:size(I,1)
 if I(i,j) == 1
 Vert_adj_pre_match(Trans_Char(i).Vertex_ID, Trans_Char(j).Vertex_ID) = 1;
 Vert_adj_pre_match(Trans_Char(j).Vertex_ID, Trans_Char(i).Vertex_ID) = 1;
 end
 end
end

for i = 1:(Num_Vertices-1)
 Unreachable_I = Unreachable_I + (Vert_adj_pre_match^(i));
end

for i = 1:Num_Vertices
 indicator = 0;
 for j = 1:Num_Vertices
 if Unreachable_I(i,j) > 0
 indicator = 1;
 end
 end

 if indicator == 0
 Isolated_vertices_I = [Isolated_vertices_I; i];
 end
end

18. master_test_generator.m

% Master test case generator (control file)

Network.vertices = [30 40]; % values are deterministic...if value is "x"
 % then there will be exactly "x"
 % vertices in the network at every vertex.

81

Network.transceivers = [4 5]; % values act as the mean number of
 % transceivers at vertices in the network.

Network.message_bandwidth = [10 30]; % values act as the "mean" message
 % bandwidth over all mesages.

Network.arc_bandwidth = [30 90]; % values act as the "mean" arc bandwidth
 % over all arc capacities in the network.

Network.tight_or_loose = [2 3]; % Specify the range around the mean...i.e.
 % 2 translates to "generate numbers within
 % a range of 2 units on either side of the
 % specified mean."

Network.number_of_messages = 2000; % make sure there are more messages
 % (look at total bandwidth) can be
 % routed through the network.

% First generate the two distance matrices for the two network sizes
for i = 1:2
 [D,Num_Vertices,vertex_positions] = distance_matrix_generator(Network.vertices(i));
 file = sprintf('distance_matrix_%d',Network.vertices(i));
 save(file,'D','Num_Vertices','vertex_positions');
end
clear file

% Generate lists of communications requests.
for i = 1:2
 for j = 1:2
 for k = 1:2
 P =
create_requests_test_case(Network,Network.message_bandwidth(j),Network.vertices(i),Networ
k.tight_or_loose(k));
 total_requests = size(P,2);
 file =
sprintf('requests_v%d_m%d_tl%d',Network.vertices(i),Network.message_bandwidth(j),Network.
tight_or_loose(k));
 save(file,'P','total_requests');
 end
 end
end

clear D Num_Vertices P file total_requests

% Generate the test cases
for i = 1:2
 vertices = Network.vertices(i);
 for j = 1:2
 transceivers = Network.transceivers(j);
 for l = 1:2
 message_bandwidth = Network.message_bandwidth(l);
 for m = 1:2
 arc_bandwidth = Network.arc_bandwidth(m);
 for k = 1:2
 tight_loose = Network.tight_or_loose(k);

 tic
 % 3. Load the appropriate distance matrix. Either the
 % 50 or 100 depending on the number of vertices being
 % tested. This is generated outside of here so that it
 % is helad constant throughout testing.
 dist = sprintf('distance_matrix_%d.mat',vertices);
 load(dist);
 Num_Vertices = size(D,1);
 Vect_Vertices = [1:Num_Vertices];

 % 4. Generate Transceiver characteristics
 [Trans_Char,M] =
create_Trans_Char_test_case(transceivers,Num_Vertices,vertex_positions,tight_loose);

82

 % 5. Generate a square matrix of ones called "I" which has a row and
a column for each transceiver.
 [I,Num_Transceivers,Vect_Transceivers] =
create_I_test_case(Trans_Char,D,M);

 % 6. Load the list of communications requests based on the
 % number of vertices, message bandwidth, and tight_loose
 req =
sprintf('requests_v%d_m%d_tl%d.mat',vertices,message_bandwidth,tight_loose);
 load(req);

 % 7. Determine if there are any disconnected nodes in the network.
 [Isolated_vertices_I, Vert_adj_pre_match, Unreachable_I] =
Isolated_vert_test_case(I,Num_Vertices,Trans_Char);

 % 8. Determine the messages not transmittable and remove them.
 [P,Num_Comm_Requests,Vect_Comm_Requests] =
comm_not_transmittable_test_case(P,Isolated_vertices_I,Unreachable_I);

 % 9. Build matrices containing info on QoS, Bandwidth, and Requests
 [QoS,Bandwidth,Prioritized_Requests] =
QoS_Bandwidth_Request_test_case(Trans_Char,I,P,arc_bandwidth,tight_loose);

 % Generate the file name and save the variables to thefile
 file =
sprintf('test_case_v%d_t%d_m%d_a%d_tl%d',vertices,transceivers,message_bandwidth,arc_band
width,tight_loose);

save(file,'Bandwidth','D','I','Isolated_vertices_I','M','Network','Num_Comm_Requests',...

'Num_Transceivers','Num_Vertices','P','Prioritized_Requests','QoS','Trans_Char','Unreacha
ble_I',...

'Vect_Comm_Requests','Vect_Transceivers','Vect_Vertices','Vert_adj_pre_match','total_requ
ests',...
 'vertex_positions');
 toc
 end
 end
 end
 end
end

19. NetDesign.m

%%%
%{

Title:

 NetDesign

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 NetDesign is the control file for the metaheuristic developed in this
 research using the A* graph search Algorithm. NetDesign uses a greedy
 heuristic to develop a weighted matching between tranceivers at the
 vertices given in the input file specified. The matching is used as a
 network topology. Message traffic is routed through this topology by use
 of the A* shortest path heuristic. The topology along with the routing,
 form an initial solution which is then improved upon through an iterative
 arc reweighting scheme to converge on a topology with arc weights that
 reflect the true importance of each arc in the topology.

Inputs:

83

 random_graphxxx.txt: This is the text file containing ordered pairs
 representing coordinates of the vertices.

 MAX_TRANSCEIVERS: the user defined quantity denoting the maximum number
 of transceivers to be located at any given vertex.

 MAX_COMM_RAD: the upper bound on communication radius for any transceiver.

 MAX_COMM_REQ: the maximum number of communications requests to be
 generated for transmission across the network.

 PRIORITY_SCALE: assigns the maximum priority (this number determines
 the scale) I arbitrarily choose 1 as the lowest priority
 and 5 as the highest priority.

 MAX_BAND: the maximum bandwidth of a communication to be sent across the
 network.

 AVAILABLE_BANDWIDTH: the maximum bandwidth capacity of an edge in the
 network. Capacity is a randomly generated number
 between 1 and AVAILABLE_BANDWIDTH for each edge.

 COMM_BANDWIDTH: the maximum size of a communication request to be sent
 over the network. Communication request size is a randomly
 generated number between 1 and AVAILABLE_BANDWIDTH for
 each request.

Output:

 Post_match_comm_routing: This structure contains all information
 needed to route the communications requests
 for which paths of sufficient bandwidth were
 discovered and established (topology created)

 Graphs: While not essential to the solution, graphs are generated to
 aid in visualizing the solution. Two graphs are generated for
 compariason. The first is a graph showing all possible arcs.
 The second is a graph showing the final topology created by
 the metaheuristic once convergence is determined.

%}
%%%

QoS_Path = [Trans_Char(:).Vertex_ID]';

t = cputime; % Start the timer here

% First update the Bandwidth and QoS matrices to reflect adjacencies in the
% I matrix
[Bandwidth,QoS] = Bandwidth_QoS_matching_update(Bandwidth,QoS,I,Trans_Char);

% Operation 1: Determine initial comm routing using A*. This routing assumes all
possible connections exist and is used in determining the initial arc weights.
Pre_match_comm_routing =
route_message_traffic(Prioritized_Requests,Bandwidth,QoS,Trans_Char,Vert_adj_pre_match,I,
P,QoS_Path);

% Operation 2: Begin calculations for iterative reweighting loop.
Post_match_comm_routing = Pre_match_comm_routing;

% Initialize the first hamming vector to all zeros.
Ham_previous = zeros(Num_Transceivers^2,1);

% Initialize the second hamming vector from "Pre_match_comm_routing"
Ham_current = hamming_vector(Pre_match_comm_routing,Num_Transceivers);

% calculate the hamming distance between vectors
ham_dist = hamming_distance(Ham_previous,Ham_current);

% While hamming distance of binary topology vectors is > ??
count = 0;

84

best_objective = 0;

%while ham_dist > 0 && count < 5

 % Operation 3: Determine the final edge weights for use in developing a matching for
the initial solution.
 [Arc_weight] = reweight_arcs(Post_match_comm_routing,Num_Transceivers,QoS);

 clear Post_match_comm_routing % after the reweighting is done then clear it for the
next time around

 % Operation 4: Determine the Matching between transceivers and rerun "a_star" to get
a new comm routing after the matching has been made.
 [Matching_final,Matching,Vert_adj_post_match,Match] =
create_matching(Arc_weight,I,Trans_Char,Num_Vertices);

 % Operation 4a: Update Bandwidth matrix and QoS matrix for use in
 % determining the routing by using a copy of each. Since these matrices
 % will contain different "0" entries each time, assign them to
 % Bandwidth_matching and QoS_matching to avoid changing the originals.
 [Bandwidth_matching,QoS_matching] =
Bandwidth_QoS_matching_update(Bandwidth,QoS,Match,Trans_Char);

 % Note: use the QoS_matching and Bandwidth_matching matrices here
 % Operation 5: Perform A* using "Vert_adj_post_match" and "Match" instead of
"Vert_adj_pre_match" and "I"
 Post_match_comm_routing =
route_message_traffic(Prioritized_Requests,Bandwidth_matching,QoS_matching,Trans_Char,Ver
t_adj_post_match,Match,P,QoS_Path);

 objective_value = calculate_obj_fcn(Post_match_comm_routing,P);

 %if count > 0
 % if objective_value > best_objective
 best_solution = Post_match_comm_routing;
 best_objective = objective_value;
 % end
 %end

 Ham_previous = Ham_current;

 Ham_current = hamming_vector(Post_match_comm_routing,Num_Transceivers);

 ham_dist = hamming_distance(Ham_previous,Ham_current);

 count = count + 1;
%end

v = cputime - t;

20. QoS_Bandwidth_Request.m

function [QoS,Bandwidth,Prioritized_Requests] =
QoS_Bandwidth_Request(User_inputs,Trans_Char,I,P)

%%%
%{

Function:

 [QoS,Bandwidth,Prioritized_Requests] = QoS_Bandwidth_Request
 (User_inputs,Trans_Char,I,P)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

85

 Generates the Bandwidth, QoS, and Prioritized_Requests matrices used in
 the A* search.

Inputs:

 P: As defined in create_requests.

 I: As defined in create_I.

 Trans_Char: As defined in create_Trans_Char.

 User_inputs: As defined in NetDesign.

Outputs:

 QoS: Is the matrix of randomly generated Quality of Service values.
 The i,j entries denote the quality obtained if a connection is
 formed between transceiver i and transceiver j. These values are
 randomly generated since they will be obtained through expert
 opinion of communications personnel.

 Bandwidth: Is the matrix denoting the bandwidth available on each edge
 in the network.

 Prioritized_Requests: Is the matrix containing the communications
 requests generated in "P" that have been
 prioritized in non-increasing order by
 "Priority." Within priority levels, ties are
 broken by bandwidth (also in non-increasing
 order.)

%}
%%%

QoS = rand(size(Trans_Char,2));
QoS = QoS.*I;
QoS = QoS + QoS';

% Build Bandwidth and make it symetric
% Bandwidth = randint(size(Trans_Char,2),size(Trans_Char,2),[1 AVAILABLE_BANDWIDTH]);
Bandwidth =
random_integers(User_inputs.AVAILABLE_BANDWIDTH,size(Trans_Char,2),size(Trans_Char,2));
for i = 1:size(Bandwidth,1)
 for j = i:size(Bandwidth,2)
 Bandwidth(j,i) = 0;
 end
end
Bandwidth = Bandwidth + Bandwidth';

% Modify Bandwidth so that Bandwidth(i,j) = inf if i and j are at a common
% vertex and "0" if they are the same vertex.
for i = 1:size(Bandwidth,1)
 for j = i:size(Bandwidth,2)
 if Trans_Char(i).Vertex_ID == Trans_Char(j).Vertex_ID &&
Trans_Char(i).Transceiver_ID ~= Trans_Char(j).Transceiver_ID
 Bandwidth(i,j) = inf;
 Bandwidth(j,i) = inf;
 elseif i == j
 Bandwidth(i,j) = 0;
 end
 end
end

% Do the request prioritization here
PR1 = [P(:).Priority]';
PR2 = [P(:).Bandwidth]';
PR3 = [P(:).Origin]';
PR4 = [P(:).Destination]';
PR5 = [P(:).ID]';
Prioritized_Requests = horzcat(PR1, PR2, PR3, PR4, PR5);
Prioritized_Requests = sortrows(Prioritized_Requests, [-1 -2]);

86

21. random_integers.m

function [f] = random_integers(low,high,number_of_rows,number_of_columns,state)

%%%
%{

Function:

 [f] = random_integers(range,number_of_rows,number_of_columns,state)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 random_integers is used to generate a user specified number of random
 integers over a user specified range of values. The numbers are
 uniformly distrbuted.

Inputs:

 low/high: Defines the range of values over which the uniformly
 distributed random numbers will fall.

 number_of_rows: The number of rows in the output.

 number_of_colums: The number of columns in the output.

 state: Seeds the random number generator so that the state can be reset
 prior to each use for comparison purposes, if desired.

Outputs:

 f: the (number_of_rows)-by-(number_of_columns) matrix/vector/scalar
 of uniformly distributed randomly distributed integers in the
 specified range.

%}
%%%

% If all arguments are given set the state
if nargin == 5
 rand('state',state);
end

% If less than 4 are given set the columns
if nargin < 4
 number_of_columns = 1;
end

% If less than 3 then set the rows
if nargin < 3
 number_of_rows = 1;
end

% If only 1 is given then make it "high" and set low to 1
if nargin < 2
 high = low;
 low = 1;
end

f = low + ceil((high-low).*rand(number_of_rows,number_of_columns));

87

22. redirect_pointers.m

function [Node,redirect_path_structure] =
redirect_pointers(n_zero,Node,OPEN_g_h,OPEN_CLOSED,redirect_path_structure,OPEN_path_info
,n)

%%%
%{

Function:

 [Node,redirect_path_structure] = redirect_pointers(n_zero,Node,OPEN_g_h
 ,OPEN_CLOSED,redirect_path_structure,OPEN_path_info,n)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 For each member of OPEN_CLOSED redirect its pointer to n if the
 shortest path to the node found by A* so far is through n.

Inputs:

 n_zero: The source node. This node is the origin for the current
 communication request.

 OPEN_g_h: As defined in calculate_g.

 Node: The structiure that contains pointers for each node in the
 search graph.

 OPEN_CLOSED: The list of nodes that are in the union of the OPEN and
 CLOSED lists.

 redirect_path_structure: Structure containing node_path, trans_path
 and path_QoS for the list of nodes on
 OPEN_CLOSED.

 OPEN_path_info: As defined in calculate_g.

 n: The current node being considered. n is an element of OPEN_CLOSED.

Outputs:

 Node: Updated structure containing pointers for each node in the
 search graph. Some of the nodes on OPEN_CLOSED may have had
 their pointers in Node redirected.

 redirect_path_structure: Updated structure that contains new QoS if a
 pointer is redirected.

Notes:

Now redirect pointers on OPEN_CLOSED to n if the best path to m found
so far is through n (this is part of step 7). This must be done
here since we may remove elements of OPEN (hence elements of OPEN_CLOSED
also removed) in the pricing operations "calculate_h" and "calculate_g"

 1. determine node path for n_zero to each element of
 OPEN (done in calculate_g). This information is available from
 calculate_g in the structure "OPEN_path_info" This info is later
 stored in a structure called "redirect_path_structure" which is
 only updated in this function. "redirect_path_structure" will
 contain path info for each element of OPEN_CLOSED since each
 element of CLOSED was on OPEN at one time. Fields in
 "redirect_path_structure" are:

 redirect_path_structure.node_path
 redirect_path_structure.trans_path

88

 redirect_path_structure.path_QoS

 2. determine if current transceiver path (the one obtained in
 "OPEN_path_info") is "shorter" (higher QoS) than the one contained
 in "redirect_path_structure", if it is then redirect the
 corresponding pointer to n

 2a. Update a structure called "redirect_path_structure" which is
 only updated in this function.

 Note that n_zero doesn't point to anything so need to account for
 that in this function.

 Conditions for redirecting a pointer are:
 1. current element of OPEN_CLOSED is not n_zero
 2. QoS of current path to m is greater than QoS stored in
"redirect_path_structure"
 3. the path is through node n then redirect pointer for m in structure "Node" to n

%}
%%%

for i = 1:size(OPEN_CLOSED,1)
 if (OPEN_CLOSED(i) ~= n_zero) &&
(~isempty(intersect(OPEN_path_info(OPEN_CLOSED(i)).Node_path,n)))
 if OPEN_path_info(OPEN_CLOSED(i)).Trans_Path_QoS >
redirect_path_structure(OPEN_CLOSED(i)).path_QoS
 Node(OPEN_CLOSED(i)).point_to = n;
 % Update "redirect_path_structure.path_QoS if the pointer is redirected"
 redirect_path_structure(OPEN_CLOSED(i)).path_QoS =
OPEN_path_info(OPEN_CLOSED(i)).Trans_Path_QoS;
 end
 end
end

23. reweight_arcs.m

function [Arc_weight] = reweight_arcs(Pre_match_comm_routing,Num_Transceivers,QoS)

%%%
%{

Function:

 [Arc_weight] = reweight_arcs_alternate(Pre_match_comm_routing,Num_Transceivers,QoS)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 Determine the final edge weights for use in developing a
 matching for the network topology created later by the greedy matching.
 Edge weights are based on the bandwidth that is carried by an arc in
 the initial routing.

Inputs:

 Pre_match_comm_routing: The structure containing matching information
 from the initial solution.

 Num_Transceivers: As defined in create_I

Outputs:

 Arc_weight: Is the matrix containing the arc weights for all
 possible arcs that could be included in the matching.

89

%}
%%%

Arc_weight1 = [zeros(Num_Transceivers)];

for i = 1:size(Pre_match_comm_routing,2) %count through packets
 for j = 1:size(Pre_match_comm_routing(i).trans_path,2)-1 % count through all arcs
that carry a given packet
 Arc_weight1(Pre_match_comm_routing(i).trans_path(j),
Pre_match_comm_routing(i).trans_path(j+1)) =
Arc_weight1(Pre_match_comm_routing(i).trans_path(j),
Pre_match_comm_routing(i).trans_path(j+1)) + (Pre_match_comm_routing(i).message_bandwidth
* 10^(Pre_match_comm_routing(i).message_Priority));
 Arc_weight1(Pre_match_comm_routing(i).trans_path(j+1),
Pre_match_comm_routing(i).trans_path(j)) =
Arc_weight1(Pre_match_comm_routing(i).trans_path(j+1),
Pre_match_comm_routing(i).trans_path(j)) + (Pre_match_comm_routing(i).message_bandwidth *
10^(Pre_match_comm_routing(i).message_Priority));
 end
end

Arc_weight = Arc_weight1 .* QoS; % final arc weight is the product of arc QoS and the sum
of priority weighted bandwidth carried by the arc.

24. route_message_traffic.m

function [message_routing_structure] =
route_message_traffic(Prioritized_Requests,Bandwidth,QoS,Trans_Char,Vert_adj_pre_match,I,
P,QoS_Path)

%%%
%{

Function:

 [message_routing_structure] = route_message_traffic
 (Prioritized_Requests,Bandwidth,QoS,Trans_Char,Vert_adj_pre_match,I)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 route_message_traffic uses information about the existing network
 topology to find high QoS paths and route as much message traffic as
 possible through the topology.

Inputs:

 Prioritized_Requests: As defined in QoS_Bandwidth_Request

 Bandwidth: As defined in QoS_Bandwidth_Request

 QoS: As defined in QoS_Bandwidth_Request

 Trans_Char: As defined in create_Trans_Char

 Vert_adj_pre_match: As defined in Isolated_vert

 I: As defined in create_I

 P: As defined in create_requests

Outputs:

 message_routing_structure: Contains the information on the message
 routing. This structure contains only
 complete message routings. Messages that

90

 are partial (sufficient bandwidth between
 origin and destination does not exist) are
 removed since partial messages are assumed
 to be of no value.
 message_routing_structure contains the
 following fields:

 message_ID
 message_bandwidth
 node_path
 trans_path
 path_QoS
 message_Priority

Notes:

 Vert_adj_pre_match and I need to be changed out depending on where this
 function is being run. If it's run to obtain an initial solution then
 use the pre match matrices and if it's being run in the iterative
 reweighting loop then use the post match matrices instead.

%}
%%%

i = 1;
Prioritized_Requests_copy = Prioritized_Requests;
Bandwidth_copy = Bandwidth;
QoS_copy = QoS;
prioritized_req_size = size(Prioritized_Requests_copy,1);
Pre_match_comm_routing.message_ID = [];
Pre_match_comm_routing.message_bandwidth = [];
Pre_match_comm_routing.node_path = [];
Pre_match_comm_routing.trans_path = [];
Pre_match_comm_routing.path_QoS = [];
Pre_match_comm_routing.message_Priority = [];
last_ID = -1;

while prioritized_req_size > 0
 if last_ID ~= Prioritized_Requests_copy(1,5)
 % take a snapshot
 %Prioritized_Requests_copy_snapshot = Prioritized_Requests_copy;
 QoS_copy_snapshot = QoS_copy;
 Bandwidth_copy_snapshot = Bandwidth_copy;
 i_snapshot = i;
 if i > 1
 Pre_match_comm_routing_snapshot = Pre_match_comm_routing;
 elseif i == 1
 Pre_match_comm_routing_snapshot.message_ID = [];
 Pre_match_comm_routing_snapshot.message_bandwidth = [];
 Pre_match_comm_routing_snapshot.node_path = [];
 Pre_match_comm_routing_snapshot.trans_path = [];
 Pre_match_comm_routing_snapshot.trans_path = [];
 Pre_match_comm_routing_snapshot.path_QoS = [];
 Pre_match_comm_routing.message_Priority = [];
 end
 last_ID = Prioritized_Requests_copy(1,5);
 end
 clear failure current_path_info;
 [failure, current_path_info] =
a_star(Prioritized_Requests_copy,Vert_adj_pre_match,I,Trans_Char,QoS_copy,Bandwidth_copy,
QoS_Path);
 if failure == 0
 [Pre_match_comm_routing(i),Bandwidth_copy,Prioritized_Requests_copy,QoS_copy] =
assign_message_route(Prioritized_Requests_copy,current_path_info,Bandwidth_copy,QoS_copy)
;
 i = i + 1;
 elseif failure == 1
 % If failure == 1 then restore from the snapshot and remove the
 % current element of Prioritized_Requests_copy since it could not
 % be routed in its entirety.
 Prioritized_Requests_copy(1,:) = [];
 Pre_match_comm_routing = Pre_match_comm_routing_snapshot;

91

 QoS_copy = QoS_copy_snapshot;
 Bandwidth_copy = Bandwidth_copy_snapshot;
 i = i_snapshot;
 end

 prioritized_req_size = size(Prioritized_Requests_copy,1);
end % while prioritized_req_size > 0

message_routing_structure = Pre_match_comm_routing;

25. run_test_cases.m

Network.vertices = [35 40];

Network.transceivers = [5 5];

Network.message_bandwidth = [20 30];

Network.arc_bandwidth = [60 90];

Network.tight_or_loose = [3 3];

for i = 1:2
 vertices = Network.vertices(i);
 for j = 1:2
 transceivers = Network.transceivers(j);
 for l = 1:2
 message_bandwidth = Network.message_bandwidth(l);
 for m = 1:2
 arc_bandwidth = Network.arc_bandwidth(m);
 for k = 1:2
 tight_loose = Network.tight_or_loose(k);

 file =
sprintf('test_case_v%d_t%d_m%d_a%d_tl%d',vertices,transceivers,message_bandwidth,arc_band
width,tight_loose);
 load(file);

 % here run NetDesign
 NetDesign;

 % calculate and collect metrics and objective function
 % and label the output based on the testfile used.
 results =
sprintf('results_v%d_t%d_m%d_a%d_tl%d',vertices,transceivers,message_bandwidth,arc_bandwi
dth,tight_loose);
 metrics =
calculate_network_metrics(best_solution,Bandwidth,QoS,Match,Prioritized_Requests);
 metrics.time = v;
 metrics.final_solution = Post_match_comm_routing;
 save(results,'metrics');
 end
 end
 end
 end
end

26. trans_path_finder.m

function [n_zero_to_n,no_trans_path_indicator] =
trans_path_finder(node_path,Trans_Char,Bandwidth,QoS,QoS_Path)

%%%
%{

Function:

92

 [n_zero_to_n,no_trans_path_indicator] = trans_path_finder(node_path,
 Trans_Char,Bandwidth,QoS)

Author:

 R. Benjamin Hartlage, Capt, USAF

Description:

 "trans_path_finder" finds the highest quality QoS path for the input
 "node_path" input or determines that a transceiver path does not exist.
 The output is "n_zero_to_n" which has the following elements:

Inputs:

 node_path: The node path that was found in the A* search for the
 current message.

 Trans_Char: As defined in create_Trans_Char

 Bandwidth: As defined in QoS_Bandwidth_Request

 QoS: As defined in QoS_Bandwidth_Request

Outputs:

 n_zero_to_n: The structure containing information on the transceiver
 path that is found by trans_path_finder. See the notes
 below for a listing of the fields contained in
 n_zero_to_n.

 no_trans_path_indicator: Assumes a value of "0" if a transceiver path
 is found and a value of "1" if a transceiver
 is determined not to exist.

Notes:

 If a transceiver path is found then output looks like:
 n_zero_to_n.Trans_path = (appropriate vector of transceivers)
 n_zero_to_n.Path_Bandwidth = (appropriate bandwidth)
 n_zero_to_n.Trans_Path_QoS = (appropriate QoS measure)
 no_trans_path_indicator = 0

 If no transceiver path exists then the output looks like:
 n_zero_to_n.Trans_path = []
 n_zero_to_n.Path_Bandwidth = 0
 n_zero_to_n.Trans_Path_QoS = 0
 no_trans_path_indicator = 1

%}
%%%

Transceiver_Path_g = [];
%QoS_Path = [Trans_Char(:).Vertex_ID]';
current1 = [find(QoS_Path == node_path(1))];
QoS_of_the_path = inf;
no_trans_path_indicator = 0;

for j = 1:length(node_path)-1
 current2 = [find(QoS_Path == node_path(j+1))];
 QoS_connect = QoS(current1,current2);
 Bandwidth_connect = Bandwidth(current1,current2);

 % Here be sure that bandwidth is positive. If not then
 % change the corresponding element of QoS_connect to
 % "0" so the loop below won't select the arc
 % corresponding to it
 for zy = 1:size(QoS_connect,1)
 for zz = 1:size(QoS_connect,2)
 if Bandwidth_connect(zy,zz) == 0
 QoS_connect(zy,zz) = 0;

93

 end
 end
 end

 % Now connect node j and j+1 with the max element in QoS_connect.
 %[C,Y] = max(max(QoS_connect)); % Returns the column index of the max as Y
 %[V,F] = max(QoS_connect(:,Y)); % Returns the row index of the max as F

 [V,F] = max(QoS_connect,[],1);
 [V,Y] = max(V); % Returns the column index of the max as Y
 F = F(Y); % Returns the row index of the max as F

 % if the QoS is positive but not "perfect" (perfect QoS indicated by
 % "2" entries assigned to transceivers that are at the same vertices)
 % and it has not been determined that a transceiver path does not
 % exist.

 if V > 0 && V ~= 2 && no_trans_path_indicator == 0
 Transceiver_Path_g = [Transceiver_Path_g, current1(F), current2(Y)];
 if (V < QoS_of_the_path)
 QoS_of_the_path = V;
 end

 % If V == 2 then the connection is perfect since j and j+1 are
 % at a single vertex. The implications of this type of
 % connection are that it has infinite bandwidth and
 % perfect QoS. Need an indicator so use "2"
 elseif V == 2 && no_trans_path_indicator == 0
 Transceiver_Path_g = [Transceiver_Path_g, current1(F) current2(Y)];

 % if V == 0 then the QoS (or Bandwidth) on that link is
 % 0 and no transceiver path exists to connect the
 % n_zero to n for the current element of
 % OPEN
 elseif V == 0
 no_trans_path_indicator = 1;
 end

 % Note that this path may contain up to 2 nodes from the
 % same vertex since the matching is based on I
 current1 = current2;
end

if no_trans_path_indicator == 1
 % outside this function to check to see if a transceiver path exists
 % just check to see if n_zero_to_n.Trans_path is empty or not
 % if it's empty then no trans path with positive bandwidth could be
 % found
 Transceiver_Path_g = [];
 n_zero_to_n.Path_Bandwidth = 0;
 n_zero_to_n.Trans_Path_QoS = 0;
end

n_zero_to_n.Trans_path = Transceiver_Path_g;

if length(n_zero_to_n.Trans_path) > 0
 % First remove redundant elements of the transceiver path
 zzpath = [n_zero_to_n.Trans_path(1)];
 for zz = 2:size(n_zero_to_n.Trans_path,2)
 if n_zero_to_n.Trans_path(zz) ~= n_zero_to_n.Trans_path(zz-1)
 zzpath = [zzpath, n_zero_to_n.Trans_path(zz)];
 end
 end
 n_zero_to_n.Trans_path = zzpath;

 % Calculate the bandwidth on the transceiver path.
 path_bandwidth = inf;
 for j = 1:size(n_zero_to_n.Trans_path,2)-1
 if Bandwidth(n_zero_to_n.Trans_path(j),n_zero_to_n.Trans_path(j+1)) <
path_bandwidth
 path_bandwidth =
Bandwidth(n_zero_to_n.Trans_path(j),n_zero_to_n.Trans_path(j+1));

94

 arc_limiting_path_Bandwidth =
[n_zero_to_n.Trans_path(j),n_zero_to_n.Trans_path(j+1)];
 end
 end
 n_zero_to_n.Trans_Path_QoS = QoS_of_the_path;
 n_zero_to_n.Path_Bandwidth = path_bandwidth;

end

% this can be used to return an indicator of 1 if no transceiver path
% with positive bandwidth could be found...should be redundant but leave it
% here anyway for right now.
if n_zero_to_n.Path_Bandwidth == 0
 no_trans_path_indicator = 1;
end

95

 Appendix B: Tabulated Metrics for Test Cases

Test Case Metric A* Dijkstra’s
QoS_for_all_arcs_network .49962 .49962
QoS_for_chosen_network .94718 .92971
QoS_for_messages_routed .96469 .98001

topology_efficiency .19805 .15908
total_band_transmitted_ratio .02024 .01673

total_band_upper_bound .10218 .10517
time 1022.7 898.14

Test_case_v30_t4_m10_a30_tl2.mat

objective_value 1853.1 1525.3
QoS_for_all_arcs_network .49609 .49609
QoS_for_chosen_network .91816 .93033
QoS_for_messages_routed .95429 .97536

topology_efficiency .20204 .20483
total_band_transmitted_ratio .02176 .02186

total_band_upper_bound .10771 .1067
time 609.36 550.68

Test_case_v30_t4_m10_a30_tl3.mat

objective_value 2005.7 2050.7
QoS_for_all_arcs_network .50142 .50142
QoS_for_chosen_network .84954 .93888
QoS_for_messages_routed .95861 .97592

topology_efficiency .15462 .20648
total_band_transmitted_ratio .04929 .05616

total_band_upper_bound .31878 .272
time 752.44 941.95

Test_case_v30_t4_m10_a90_tl2.mat

objective_value 4379.2 4945.1
QoS_for_all_arcs_network .50038 .50038
QoS_for_chosen_network .87271 .82588
QoS_for_messages_routed .97008 .98943

topology_efficiency .14978 .14697
total_band_transmitted_ratio .05784 .05817

total_band_upper_bound .38616 .3958
time 860.39 817.48

Test_case_v30_t4_m10_a90_tl3.mat

objective_value 5212.2 5350.2
QoS_for_all_arcs_network .50916 .50916
QoS_for_chosen_network .91569 .91569
QoS_for_messages_routed .96076 .98513

topology_efficiency .23297 .23297
total_band_transmitted_ratio .00813 .00813

total_band_upper_bound .03491 .03491
time 832.56 825.83

Test_case_v30_t4_m30_a30_tl2.mat

objective_value 2176.5 2176.1
QoS_for_all_arcs_network .49775 .49775
QoS_for_chosen_network .91959 .89644
QoS_for_messages_routed .96742 .98475

Test_case_v30_t4_m30_a30_tl3.mat

topology_efficiency .1936 .20961

96

total_band_transmitted_ratio .00653 .00749
total_band_upper_bound .03372 .03574

time 521.88 463.09
objective_value 1751.3 1901.3

QoS_for_all_arcs_network .50422 .50422
QoS_for_chosen_network .92166 .92166
QoS_for_messages_routed .95676 .98499

topology_efficiency .17388 .18164
total_band_transmitted_ratio .01764 .01843

total_band_upper_bound .10146 .10146
time 849.24 718.58

Test_case_v30_t4_m30_a90_tl2.mat

objective_value 4846.7 4897.1
QoS_for_all_arcs_network .499 .499
QoS_for_chosen_network .82542 .84474
QoS_for_messages_routed .96852 .98386

topology_efficiency .23486 .1669
total_band_transmitted_ratio .02734 .01919

total_band_upper_bound .11639 .11497
time 709.28 539.13

Test_case_v30_t4_m30_a90_tl3.mat

objective_value 6904.2 5145
QoS_for_all_arcs_network .50542 .50542
QoS_for_chosen_network .88368 .95394
QoS_for_messages_routed .95911 .98762

topology_efficiency .16056 .13671
total_band_transmitted_ratio .02119 .01611

total_band_upper_bound .13195 .11787
time 1293.5 1368.2

Test_case_v30_t5_m10_a30_tl2.mat

objective_value 1903.7 1604.9
QoS_for_all_arcs_network .50073 .50073
QoS_for_chosen_network .94275 .92051
QoS_for_messages_routed .95964 .98505

topology_efficiency .15294 .16953
total_band_transmitted_ratio .01861 .02119

total_band_upper_bound .12169 .12498
time 1198.5 1047.7

Test_case_v30_t5_m10_a30_tl3.mat

objective_value 1757.6 1995.1
QoS_for_all_arcs_network .49754 .49754
QoS_for_chosen_network .75169 .81279
QoS_for_messages_routed .9816 .99038

topology_efficiency .11399 .10981
total_band_transmitted_ratio .05981 .04915

total_band_upper_bound .52472 .4476
time 871.4 886.65

Test_case_v30_t5_m10_a90_tl2.mat

objective_value 5427.3 4419.4
QoS_for_all_arcs_network .49956 .49956
QoS_for_chosen_network .74802 .83551
QoS_for_messages_routed .97552 .99203

topology_efficiency .10545 .10009

Test_case_v30_t5_m10_a90_tl3.mat

total_band_transmitted_ratio .06767 .04834

97

total_band_upper_bound .64171 .48299
time 907.03 885.93

objective_value 6030 4409.4
QoS_for_all_arcs_network .50084 .50084
QoS_for_chosen_network .95223 .95223
QoS_for_messages_routed .96479 .98698

topology_efficiency .18582 .1752
total_band_transmitted_ratio .00803 .007575

total_band_upper_bound .04324 .04324
time 1620.6 1496.4

Test_case_v30_t5_m30_a30_tl2.mat

objective_value 2246.8 2134
QoS_for_all_arcs_network .50451 .50451
QoS_for_chosen_network .94807 .94807
QoS_for_messages_routed .95818 .98719

topology_efficiency .14685 .14503
total_band_transmitted_ratio .00663 .00654

total_band_upper_bound .04512 .04512
time 1956.3 1663

Test_case_v30_t5_m30_a30_tl3.mat

objective_value 1821 1805.3
QoS_for_all_arcs_network .49255 .49255
QoS_for_chosen_network .90041 .93562
QoS_for_messages_routed .98172 .99312

topology_efficiency .175 .1355
total_band_transmitted_ratio .02348 .01677

total_band_upper_bound .13418 .1238
time 1389.6 1465.1

Test_case_v30_t5_m30_a90_tl2.mat

objective_value 6365.5 4806.4
QoS_for_all_arcs_network .49996 .49996
QoS_for_chosen_network .93917 .93575
QoS_for_messages_routed .97654 .98568

topology_efficiency .19045 .15201
total_band_transmitted_ratio .02362 .01886

total_band_upper_bound .12403 .12408
time 1366.1 1385.2

Test_case_v30_t5_m30_a90_tl3.mat

objective_value 6273.9 4852.1
QoS_for_all_arcs_network .50389 .50389
QoS_for_chosen_network .90283 .87689
QoS_for_messages_routed .96177 .98636

topology_efficiency .16118 .1604
total_band_transmitted_ratio .02183 .02269

total_band_upper_bound .13546 .14144
time 2195.5 1919.1

Test_case_v40_t4_m10_a30_tl2.mat

objective_value 1946.2 2134
QoS_for_all_arcs_network .49466 .49466
QoS_for_chosen_network .85306 .88221
QoS_for_messages_routed .96114 .97724

topology_efficiency .13628 .11946
total_band_transmitted_ratio .02362 .01896

Test_case_v40_t4_m10_a30_tl3.mat

total_band_upper_bound .17329 .1587

98

time 2101.9 1736.8
objective_value 2037.7 1811.7

QoS_for_all_arcs_network .5027 .5027
QoS_for_chosen_network .70384 .89688
QoS_for_messages_routed .97796 .99022

topology_efficiency .09265 .12058
total_band_transmitted_ratio .06616 .05207

total_band_upper_bound .71413 .43182
time 1468.2 1606

Test_case_v40_t4_m10_a90_tl2.mat

objective_value 5800 4824.6
QoS_for_all_arcs_network .50302 .50302
QoS_for_chosen_network .85684 .7634
QoS_for_messages_routed .97888 .9893

topology_efficiency .13863 .10578
total_band_transmitted_ratio .06950 .06044

total_band_upper_bound .47539 .57137
time 1426.8 1505.7

Test_case_v40_t4_m10_a90_tl3.mat

objective_value 6012.6 5512
QoS_for_all_arcs_network .49993 .49993
QoS_for_chosen_network .63608 .79745
QoS_for_messages_routed .97374 .98482

topology_efficiency .09982 .20011
total_band_transmitted_ratio .01069 .01221

total_band_upper_bound .10717 .06103
time 1087.7 1600.3

Test_case_v40_t4_m30_a30_tl2.mat

objective_value 2726.9 3248
QoS_for_all_arcs_network .50059 .50059
QoS_for_chosen_network .89344 .91099
QoS_for_messages_routed .96653 .97997

topology_efficiency .17398 .18286
total_band_transmitted_ratio .00787 .00808

total_band_upper_bound .04522 .04419
time 1391 1535.7

Test_case_v40_t4_m30_a30_tl3.mat

objective_value 2228 2358.3
QoS_for_all_arcs_network .49433 .49433
QoS_for_chosen_network .91986 .89967
QoS_for_messages_routed .95808 .98889

topology_efficiency .1741 .12693
total_band_transmitted_ratio .02444 .01819

total_band_upper_bound .14038 .14335
time 2373.5 2103.8

Test_case_v40_t4_m30_a90_tl2.mat

objective_value 6418.3 5011.7
QoS_for_all_arcs_network .49965 .49965
QoS_for_chosen_network .68215 .71263
QoS_for_messages_routed .96972 .98413

topology_efficiency .1102 .08475
total_band_transmitted_ratio .02722 .01868

total_band_upper_bound .24703 .22046

Test_case_v40_t4_m30_a90_tl3.mat

time 980.21 953.41

99

objective_value 7096.8 5068.5
QoS_for_all_arcs_network .50075 .50075
QoS_for_chosen_network .94172 .9254
QoS_for_messages_routed .97337 .98911

topology_efficiency .18588 .1406
total_band_transmitted_ratio .02924 .02236

total_band_upper_bound .15729 .159
time 2233.1 1948.2

Test_case_v40_t5_m10_a30_tl2.mat

objective_value 2810.2 1955.5
QoS_for_all_arcs_network .50295 .50295
QoS_for_chosen_network .82142 .87863
QoS_for_messages_routed .96667 .9867

topology_efficiency .11184 .11357
total_band_transmitted_ratio .02343 .02095

total_band_upper_bound .20945 .1845
time 2139.9 1824.4

Test_case_v40_t5_m10_a30_tl3.mat

objective_value 2087.1 2037.5
QoS_for_all_arcs_network .50323 .50323
QoS_for_chosen_network .67799 .77936
QoS_for_messages_routed .97743 .9899

topology_efficiency .06584 .07436
total_band_transmitted_ratio .97181 .05197

total_band_upper_bound .97181 .69894
time 1548.8 1719.7

Test_case_v40_t5_m10_a90_tl2.mat

objective_value 5718.2 4918.5
QoS_for_all_arcs_network .49883 .4988.3
QoS_for_chosen_network .70798 .70807
QoS_for_messages_routed .98212 .9932

topology_efficiency .07385 .06260
total_band_transmitted_ratio .06690 .05702

total_band_upper_bound .90592 .91081
time 1571.2 1728.7

Test_case_v40_t5_m10_a90_tl3.mat

objective_value 6058.9 5036
QoS_for_all_arcs_network .50154 .50154
QoS_for_chosen_network .92598 .92598
QoS_for_messages_routed .97402 .99296

topology_efficiency .13577 .18568
total_band_transmitted_ratio .00811 .01110

total_band_upper_bound .05977 .05977
time 4523.5 3702.9

Test_case_v40_t5_m30_a30_tl2.mat

objective_value 2264.8 3059.5
QoS_for_all_arcs_network .50128 .50128
QoS_for_chosen_network .95418 .95401
QoS_for_messages_routed .95044 .98552

topology_efficiency .13206 .20131
total_band_transmitted_ratio .00759 .01159

total_band_upper_bound .05746 .05756
time 4386.7 3204.2

Test_case_v40_t5_m30_a30_tl3.mat

objective_value 2006.6 3021.6

100

QoS_for_all_arcs_network .50099 .50099
QoS_for_chosen_network .85885 .9733
QoS_for_messages_routed .97777 .99164

topology_efficiency .14053 .12427
total_band_transmitted_ratio .02824 .01893

total_band_upper_bound .20098 .15961
time 2424.8 3042.5

Test_case_v40_t5_m30_a90_tl2.mat

objective_value 7280.7 5491.2
QoS_for_all_arcs_network .50126 .50126
QoS_for_chosen_network .67776 .70116
QoS_for_messages_routed .97389 .99269

topology_efficiency .09861 .06386
total_band_transmitted_ratio .03294 .01926

total_band_upper_bound .33407 .30159
time 1493.7 1390.3

Test_case_v40_t5_m30_a90_tl3.mat

objective_value 8400.8 5309.4

Test Cases vs. Number of Packets
Test Case A* Dijkstra’s

ndp1 44 37
ndp2 45 46
ndp3 98 112
ndp4 114 109
ndp5 19 17
ndp6 18 15
ndp7 43 37
ndp8 60 41
ndp9 47 31
ndp10 41 40
ndp11 118 96
ndp12 127 92
ndp13 22 18
ndp14 18 13
ndp15 54 33
ndp16 53 43
ndp17 50 45
ndp18 48 37
ndp19 132 99
ndp20 124 112
ndp21 21 24
ndp22 19 17
ndp23 55 36
ndp24 58 39
ndp25 65 49
ndp26 52 37
ndp27 125 99

101

ndp28 130 107
ndp29 21 22
ndp30 21 24
ndp31 64 44
ndp32 71 37

QoS_of_chosen_network:

 Average_v30_t4.mat Variable 1 Variable 2
Mean 0.896244302 0.900380172

Variance 0.001770724 0.001804801
Observations 8 8

Hypothesized Mean Difference 0
df 14

t Stat -0.195632941
P(T<=t) one-tail 0.423854236
t Critical one-tail 1.761310115
P(T<=t) two-tail 0.847708472
t Critical two-tail 2.144786681

 Average_v30_t5.mat Variable 1 Variable 2
Mean 0.883252551 0.911802305

Variance 0.007359442 0.003080707
Observations 8 8

Hypothesized Mean Difference 0
df 12

t Stat -0.790303686
P(T<=t) one-tail 0.222344109
t Critical one-tail 1.782287548
P(T<=t) two-tail 0.444688217
t Critical two-tail 2.178812827

 Average_v40_t4.mat Variable 1 Variable 2
Mean 0.806012588 0.842513025

Variance 0.012776031 0.005546905
Observations 8 8

Hypothesized Mean Difference 0
df 12

t Stat -0.762685575
P(T<=t) one-tail 0.230190549
t Critical one-tail 1.782287548
P(T<=t) two-tail 0.460381098
t Critical two-tail 2.178812827

102

 Average_v40_t5.mat Variable 1 Variable 2
Mean 0.820735325 0.855739057

Variance 0.01407181 0.012189212
Observations 8 8

Hypothesized Mean Difference 0
df 14

t Stat -0.610946998
P(T<=t) one-tail 0.275512839
t Critical one-tail 1.761310115
P(T<=t) two-tail 0.551025679
t Critical two-tail 2.144786681

QoS_for_messages_routed:

 Average_v30_t4.mat Variable 1 Variable 2
Mean 0.962641067 0.982430122

Variance 3.44226E-05 2.40692E-05
Observations 8 8

Hypothesized Mean Difference 0
df 14

t Stat -7.318508715
P(T<=t) one-tail 1.90E-06
t Critical one-tail 1.761310115
P(T<=t) two-tail 3.79958E-06
t Critical two-tail 2.144786681

 Average_v30_t5.mat Variable 1 Variable 2
Mean 0.969637251 0.988506544

Variance 0.00010528 8.86209E-06
Observations 8 8

Hypothesized Mean Difference 0
df 8

t Stat -4.995483634
P(T<=t) one-tail 0.000529392
t Critical one-tail 1.859548033
P(T<=t) two-tail 0.001058784
t Critical two-tail 2.306004133

103

 Average_v40_t4.mat Variable 1 Variable 2
Mean 0.968477406 0.985115439

Variance 6.25854E-05 2.12555E-05
Observations 8 8

Hypothesized Mean Difference 0
df 11

t Stat -5.139478029
P(T<=t) one-tail 0.000161749
t Critical one-tail 1.795884814
P(T<=t) two-tail 0.000323498
t Critical two-tail 2.200985159

 Average_v40_t5.mat Variable 1 Variable 2
Mean 0.971966768 0.990214603

Variance 9.53576E-05 8.62333E-06
Observations 8 8

Hypothesized Mean Difference 0
df 8

t Stat -5.061502373
P(T<=t) one-tail 0.000487615
t Critical one-tail 1.859548033
P(T<=t) two-tail 0.00097523
t Critical two-tail 2.306004133

topology_efficiency:

 Average_v30_t4.mat Variable 1 Variable 2
Mean 0.192475113 0.188562039

Variance 0.001023062 0.000873842
Observations 8 8

Hypothesized Mean Difference 0
df 14

t Stat 0.25412092
P(T<=t) one-tail 0.401548234
t Critical one-tail 1.761310115
P(T<=t) two-tail 0.803096469
t Critical two-tail 2.144786681

104

 Average_v30_t5.mat Variable 1 Variable 2
Mean 0.153881854 0.140484288

Variance 0.0009764 0.000687777
Observations 8 8

Hypothesized Mean Difference 0
df 14

t Stat 0.928904428
P(T<=t) one-tail 0.184339226
t Critical one-tail 1.761310115
P(T<=t) two-tail 0.368678453
t Critical two-tail 2.144786681

 Average_v40_t4.mat Variable 1 Variable 2
Mean 0.135853898 0.137609002

Variance 0.001055507 0.001573437
Observations 8 8

Hypothesized Mean Difference 0
df 13

t Stat -0.096818218
P(T<=t) one-tail 0.462173734
t Critical one-tail 1.770933383
P(T<=t) two-tail 0.924347467
t Critical two-tail 2.160368652

 Average_v40_t5.mat Variable 1 Variable 2
Mean 0.118046041 0.12078057

Variance 0.001530336 0.002847782
Observations 8 8

Hypothesized Mean Difference 0
df 13

t Stat -0.116891739
P(T<=t) one-tail 0.45436621
t Critical one-tail 1.770933383
P(T<=t) two-tail 0.90873242
t Critical two-tail 2.160368652

105

Bibliography

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows (First ed.). Upper
Saddle River, NJ: Prentice Hall.

Wikipedia (2006) for definition of Quality of Service,
http://en.wikipedia.org/wiki/Quality_of_Service, retrieved June 27, 2006

Department of Defense. (2000). "Joint vision 2020. america's military: Preparing for
tomorrow". Washington DC: US Government Printing Office.

Erwin, M. C. (2006). Combining quality of service and topology control in directional
hybrid wireless networks. (MS Thesis, AFIT/GOR/ENS/06-07, Graduate school of
Engineering and Management, Air Force Institute of Technology (AU)).

Guéret, C., Prins, C., & Sevaux, M. (2000). Applications of optimization with xpress-MP
[Electronic version]. Editions Eyrolles,

Gurumohan, P.,C., Taylor, T.,J., & Syrotiuk, V.,R. (2004). Topology control for
MATNETs. , 1 599-600-603.

Marsden, J. E., & Hoffman, M. J. (1993). Elementary classical analysis (2nd ed. ed.).
Monticello, IL: W.H. Freeman and Company.

Meyer, C. D. (2000). Matrix analysis and applied linear algebra (1st edition ed.).
Philadelphia, PA: Society for Industrial and Applied Mathematics.

Montgomery, D. C. (2005). Design and analysis of experiments (1st ed.). Danvers, MA:
John Wiley & Sons, Inc.

Pooch, U. W., Machuel, D., & McCahn, J. (1991). Telecommunications networking (First
ed.). Boca Raton, FL: CRC Press, Inc.

West, D., B. (2001). Introduction to graph theory (Second Edition ed.). Upper Saddle
River, NJ: Prentice Hall.

Wolsey, L. A. (1998). Integer programming (First ed.). New York: John Wiley & Sons.

Wong, R. T. (1978). Worst-case analysis of network design problem heuristics No. OR-
085-78). Massachusetts Institute of Technology, Operations Research Center: MIT

106

Vita

 Captain Hartlage received his B.S. in Mathematics from the University of

Louisville in 2002. His first assignment in the Air Force was with AFRL/HECS as a

Program Manager. While working in AFRL he earned his M.S. Eng. in Human Factors

from Wright State University in 2004. His follow-on assignment is to the Air Force

Information Operations Center in AIA at Lackland AFB, TX. He resides in Huber

Heights, Ohio with his lovely wife and his wonderful daughter.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-02-2007
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Sep 2005 - Mar 2007
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
AN EFFICIENT METAHEURISTIC FOR DYNAMIC NETWORK
DESIGN AND MESSAGE ROUTING

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Hartlage, Robert, B., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/GOR/ENS/07-10

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 N/A

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
 The implementation of Net-centric warfare presents major challenges in terms of effectively and efficiently delivering critical information across the Global
Information Grid. In many cases, the amount of information requested will exceed the capabilities of the network. One challenge is to dynamically design the network
(assign transceivers) to maximize the amount of required information that can be transmitted and the quality of service for those transmissions – to best implement the
communications tasking order. The problem is as follows: given a list of required message traffic, to include source, destination, size, and priority, design the network
to maximize the delivery of the message traffic based on message priority and quality of service. Once the network is designed, the routing for the messages must be
determined. Due to the dynamic nature of the problem and the combinatorial explosion in size as new network nodes are added, a quick-running heuristic approach is
needed. In this research, metaheuristic to dynamically design the network based on the projected message traffic requirements and to efficiently route the required
messages on the network to maximize priority of messages successfully delivered and the quality of service of the delivery. The meta-heuristic is tested against
previous efforts and is shown to generate high quality solutions in a very short amount of time.
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Stephen P. Chambal, Capt, USAF (ENS)

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

118
19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4601; e-mail: Maj. Gary W. Kinney

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	An Efficient Metaheuristic for Dynamic Network Design and Message Routing
	Recommended Citation

	Microsoft Word - AFIT-GOR-ENS-07-10.doc

