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Abstract

This thesis considers the performance evaluation of an M/M/2 retrial queue

for which both servers are subject to active and idle breakdowns. Customers may

abandon service requests if they are blocked from service upon arrival, or if their

service is interrupted by a server failure. Customers choosing to remain in the

system enter a retrial orbit for a random amount of time before attempting to re-

access an available server. We assume that each server has its own dedicated repair

person, and repairs begin immediately following a failure. Interfailure times, repair

times and times between retrials are exponentially distributed, and all processes are

assumed to be mutually independent. Modeling the number of customers in the orbit

and status of the servers as a continuous-time Markov chain, we employ a phase-

merging algorithm to approximately analyze the limiting behavior. Subsequently,

we derive approximate expressions for several congestion and delay measures. Using

a benchmark simulation model, we assess the accuracy of the approximations and

show that, when the algorithm assumptions are met, the approximation procedure

yields favorable results. However, as the rate of abandonment for blocked arrivals

decreases, the performance declines while the results are insensitive to the rate of

abandonment of customers preempted by a server failure.
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APPROXIMATE ANALYSIS OF AN UNRELIABLE

M/M/2 RETRIAL QUEUE

1. Introduction

1.1 Background

In recent years, military planners have sought to gain a war-fighting advantage

by quickly gathering information about enemy whereabouts and their objectives.

The ability of military forces to obtain critical information on enemy objectives before

the enemy can do the same is termed information superiority, the achievement of

which may result in a swift victory with minimal loss of life. To facilitate the sharing

of information between key players, elaborate communication networks are required

that employ several types of transmission mediums to include computer networks,

audio and video transmitters (on land, sea or in the air), and satellites to name a

few. Such networks must also have the ability to accommodate multiple data types

including standard text, audio and video. Effective information sharing through

these types of network configurations is critical for implementing the concept of

network-centric warfare (NCW).

Miller [32] defines NCW as the “conduct of military operations through the

utilization of networked information systems, which supply the war-fighter with the

right information at the right time....” The ability to gather the correct information

and share it in a timely manner is the objective of NCW. The proper implementation

of NCW leads directly to the attainment of information superiority, which in turn

provides the war-fighter and commander with shared situational awareness aiding in

successful mission completion.
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Understanding the movement of information through information processing

networks is helpful to the process of modeling the flow of data from sender to receiver.

Multiple transmission mediums are necessary to accurately and quickly process the

flow of information as it relates to NCW. Each of the transmission mediums may be

susceptible to disruptions due to traffic congestion, the effects of weather, damage

due to enemy fire or mechanical failure. Consider, for example, that the transmitted

information takes the form of time-sensitive data packets that arrive randomly to

various transmission mediums. If a medium is busy transmitting other data packets,

or experiences a disruption, then the arriving data packet is delayed. Furthermore,

a medium that fails during transmission also results in delayed data packets (e.g.

packet collision on a shared medium). Depending on the importance and time-

sensitivity of the information, it can be retransmitted later or possibly dropped

altogether. For example, it is possible that the location of a terrorist group is known

for the next few minutes. If an attack message is delayed, the location of the group

may change by the time retransmission occurs. In this case, the message could

be rendered useless. Naturally, retransmission can only occur after the disrupted

medium is again operational and available.

Many real-world, stochastic service systems, including the aforementioned in-

formation sharing network, may be modelled as unreliable retrial queueing systems

with multiple servers. Some of these include cellular telephone networks, computer

networks, and customer contact centers (e.g., customer call centers, email centers,

etc.). These centers employ multiple operators to fulfill customer service requests

with a quality of service guarantee. However, if service is not initiated in a timely

manner, customers may choose to abandon their requests. Furthermore, the service

may be interrupted by random events such as network congestion, misdirected (or

dropped) calls, mechanical failures or other unforeseen circumstances. These can all

lead to customer dissatisfaction which may result in customer abandonment follow-

ing a disruption. Because service organizations are most interested in providing a
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high level of customer satisfaction, it is imperative that such systems be analyzed in

order to evaluate their performance and to provide a means by which they may be

optimally designed, staffed, and operated.

The retrial queueing literature contains a significant amount of work devoted

to the performance analysis of unreliable single-server retrial systems. However, to

the best of our knowledge, the multi-server case has remained relatively unexplored.

The primary objective of this research is to formally analyze an unreliable, two-server

retrial queue. As will be shown in Chapter 3, an exact analysis of such a system is

complex and possibly intractable. For this reason we shall focus our attention on an

approximate analysis.

1.2 Problem Definition and Methodology

Consider an unreliable M/M/2 retrial queueing system. Arriving customers

who find both servers busy or failed are given the choice to abandon their service

request or enter a retrial orbit. We assume that a server can breakdown when active

or idle. Should a failure occur while a customer is in service, the customer is given

the option to depart the system or proceed to the retrial orbit. We also assume that

preempted customers, once able to regain access to a server, repeat their service

requests.

Multi-server retrial queueing systems, in general, are difficult to analyze from a

mathematical standpoint. Exact results for the steady-state probabilities of reliable

systems are given only for the single and two-server cases. In the unreliable model,

there are no exact solutions when the number of servers exceeds one. Therefore, we

seek to approximate the steady-state joint distribution of the number of customers in

orbit and the status of the two servers for the case of Markovian arrival and service

times. We also provide approximate expressions for several queueing performance

measures. Our approach to deriving the approximate steady-state probabilities em-
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ploys a phase-merging algorithm outlined by Korolyuk and Korolyuk [23]. The algo-

rithm is useful for the analysis of general, two-dimensional continuous-time Markov

chains.

Due to the scarcity of analytical results for unreliable, multiple-server retrial

queues, the queueing research community can benefit from the results of this thesis.

These systems are difficult to analyze using standard methods familiar to queueing

researchers. In lieu of exact results, approximation procedures are often employed to

study the steady-state behavior of such systems, and this is the approach we employ

here. It is our hope that the model and approximation algorithm will stimulate

future work in this branch of queueing theory.

The results of this thesis may also benefit the military analysis community

in the area of NCW. Nearly every military organization uses computer networks

to share information. For example, email has overwhelmingly become the default

method of communication. Live streaming audio and video applications are used

extensively in military operations to include simple meetings, conferences, and most

critically, war-fighting. As in the private sector, the military also maintains and

operates customer contact centers that provide an essential link to military person-

nel worldwide. Unreliable multi-server retrial queues may potentially be used to

model all of these systems and lend much needed insight to their optimal design and

operation.

1.3 Thesis Outline

The next chapter introduces a substantial portion of the retrial queueing litera-

ture, covering both reliable and unreliable systems. A section is also devoted to those

who first considered standard queueing models with servers subject to breakdowns.

In chapter 3 we provide the formal model description and state the assumptions

that are needed to implement the approximation procedure. The algorithm is then
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formally reviewed and illustrated with an example. Applying it to our model, we de-

rive approximations for the steady-state probabilities and several standard queueing

performance measures. In chapter 4, we assess the quality of the approximations by

comparing results with those obtained using a discrete-event simulation model. In

chapter 5, we summarize the main contributions of the thesis and provide some con-

cluding remarks regarding the effectiveness of the approximation. Finally, some ideas

for future research are suggested that might further advance the field of unreliable

retrial queueing systems.
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2. Relevant Literature

This research analyzes a multi-server retrial queue with servers that break-

down. Considerable work has been done in the analysis of single-server retrial queues

as compared to multi-server models. With regard to failures, the open literature con-

tains a substantial amount of work that deals with normal queueing systems with

single or multiple servers that are subject to breakdowns. Comparatively, results for

retrial queueing systems with server breakdowns are not as abundant. The case of

multiple server retrial queues with breakdowns is even more sparse. In this chapter

we first review the literature pertaining to single and multi-server retrial queues with

no breakdowns. Subsequently, standard queues with server breakdowns are explored.

This is followed by a review of results for retrial queues with breakdowns for both

the single-server and multiple-server cases.

2.1 Retrial Queues

Retrial queueing systems differ from conventional queueing systems in that

customers arriving to a server station and finding all servers unavailable enter a retrial

orbit (or source of repeated calls) instead of a normal queue. They remain there for a

random amount of time (usually exponentially distributed), and then check to see if

a server is available. If a server is available, they enter service immediately; otherwise

they return to the orbit and wait again. In the meantime, a new or primary call can

arrive to the system and obtain service if a server is free. Unlike a normal queue,

the retrial orbit generally has no queueing discipline, and thus a customer that exits

the orbit can be viewed as the winner of a competing event. In some cases, retrial

queues are assumed to have a normal queue in addition to the retrial orbit. For

example, an M/M/1/k retrial queueing system has one server and a waiting room

of size k − 1. Most retrial queues in the literature, however, assume no additional
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waiting space for customers. In the literature, retrial queues are also referred to as

queues with repeated attempts, repeated calls or queues with returning customers.

Retrial queueing models have been used in analyzing and designing many types

of systems. A few of these include telephone-switching systems (e.g. customer

contact centers), telecommunication networks such as cellular phone networks and

computer networks and systems. Historically, an interest in retrial queues emerged

in the study of telephone traffic theory and several papers are devoted to this theory

beginning in the late 1940s to include Clos [11], Wilkinson [44] and Cohen [12]. These

early researchers focused on the distribution of the number of busy trunks (lines of

a telephone system) and customer behavior when an “all-trunks-busy” signal was

obtained. It was found that many customers who get a busy signal persist and retry

their call until it can be completed. Thus an interest in the distribution of times

between retrials was generated. In [12], Cohen proposed a main problem of telephone

traffic theory and what was needed to solve it. He discovered the following items

were essential: the number of callers who subscribe to the phone service and their

arrival time distribution, the distribution of the duration of calls, the behavior of

callers who find the system busy; and the manner in which calls are handled by the

telephone lines. The basic problem is to determine the distribution of the number

of busy trunks, the probability that all trunks are busy and the number of lost

calls. Defining a bivariate stochastic process consisting of the number of busy trunks

and the number in orbit, Cohen derived steady-state probabilities via a stochastic

birth-and-death process.

A decade later Keilson, Cozzolino and Young [21] examined both the M/G/1

retrial queue and the M/M/2 system. For the M/G/1, customers finding the server

busy enter an orbit and spend an exponential amount of time there and try the

server again independently of all others. Because the service times are assumed

to be generally distributed, the authors use the method of supplemental variables

to transform the stochastic process to a Markovian one. Cox [14] first developed

2-2



this methodology which is widely used when general service time distributions are

assumed. The authors make use of generating functions to calculate the mean queue

length, the mean waiting time of a customer, and the number of calls per customer.

The M/M/2 case is solved by means of writing flow balance equations and solving

them using a normalization equation.

In 1987, Hanschke [20] solved the same flow balance equations resulting from a

M/M/2 retrial queue using hypergeometric differential equations. He then calculated

the probability of blocking along with the mean length of the orbit. An example of a

multi-server retrial queue studied most recently was by Abramov in 2006 [1] in which

customers arrive according to a general renewal process with m servers whose service

time is exponentially distributed. The time between retrials is also exponentially

distributed. Using a martingale approach, the author establishes stability conditions

and studies the behavior of the limiting distribution of the queue length as the retrial

rate approaches infinity.

Another noteworthy contribution is that of Kulkarni [24] who considered an

M/G/1 queueing system with retrials and two types of customers arriving according

to a Poisson process with distinct rates. Kulkarni proved that the mean arrival

rate times the average number of unsuccessful retrials is equal to the mean service

completion rate times the average number of unsuccessful retrial attempts during

one service period. He then used this result to compute the expected number of

retrial customers of each type, the expected number of retrials conducted by each

type, and the expected number of customers in the system of each type.

Since the late 1980s the most important results can be found in Yang and

Templeton [47], Falin [16], Kulkarni and Liang [26]. In 1997 Falin and Templeton

[17] contributed an excellent text providing substantial analysis on many various

retrial queues. Their analysis includes a lengthy section devoted to multi-server

models. They give some results for the M/M/c model, but as of the writing of this

thesis, no closed form solution exists for the steady-state probabilities for c > 2. An
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extremely useful bibliography was contributed by Artalejo [9] who provided a list of

163 references on retrial queues.

2.2 Queueing Systems with Breakdowns

The first work done in the area of queueing systems with breakdowns was by

White and Christie [43] in 1958. They examined a multi-class M/G/1 queue in which

customers arriving to the system who have a higher priority than any other customer

in the system immediately receive service, thus preempting the customer currently in

service. They showed that a breakdown can be equivalent to these types of customer

arrivals with preemptive priority. Their model assumed preempted customers rejoin

the queue at the head of the line.

Thiruvengadam [40] considered an M/G/1 system with breakdowns arriving

according to a Poisson process and generally distributed repair times. Three models

were examined in that paper. The first assumed that a queue of breakdowns can ex-

ist. That is, one or more breakdowns can occur even when the server is under repair.

Service resumes after all the breakdowns are repaired. The second model assumed

that a queue of breakdowns is not permissible and that the server is subject only to

active or idle breakdowns. The third model assumed that idle breakdowns cannot

occur. For each model, the expected number of breakdowns and the expected num-

ber of customers in the system are derived. In models two and three the author used

Laplace transforms to derive generating functions for the steady-state probabilities.

Avi-Itzhak and Naor [10] extended the work of White and Christie [43] by

investigating five models (labeled A-E) of an M/G/1 system with server breakdowns.

Model A considered active and idle breakdowns while Model B was concerned with

active breakdowns only. Model C assumed that a failed server begins the repair

process only when customers are present in the system. Model D is unique in that

a breakdown can be initiated by a customer who requests the server be repaired
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so as to improve service. Model E simply assumed that only idle breakdowns be

considered. Using conditional arguments, the authors calculated the expected queue

length and other operating characteristics.

Avi-Itzhak and Mitrany [33] extended the model studied by White and Christie

[43], Thiruvengadam [40] and Avi-Itzhak [10] to include multiple, independent servers.

This is one of the first works to consider such a system in which the servers are sub-

ject to breakdowns. The authors studied a M/M/N queueing system with customers

preempted by a server breakdown returning to the head of the queue. Using gener-

ating functions the expected number of customers in the system was derived for the

cases N = 1 and N = 2. For N ≥ 2, numerical methods were discussed.

In 1979, Neuts and Lucantoni [34] revisited the M/M/N queue and considered

the addition of c (c < N) repair crews where one repair crew is assigned to fix a

single server breakdown. They noted that the number of failed servers may exceed

the number of repair crews resulting in the formation of an additional queue. The

authors focused on an algorithmic approach using matrix-analytic techniques to ap-

proximate the steady-state probabilities and stationary waiting time distributions.

Additionally, they investigated the effect of reducing the number of repair crews and

the effect of reducing the arrival rates during a server failure.

Sztrik and Gal [38] studied a single server system with breakdowns in which

entities are viewed as jobs created by terminals that arrive according to a Poisson

process at a CPU. The terminals are subject to failures just as is the CPU; however

the rate at which jobs arrive to the CPU is still Poisson. All service, repair and times

to failure are assumed to be exponentially distributed and breakdowns are serviced

by r repair crews, thus creating a second queue, that of failed terminals. The authors

defined a trivariate stochastic process as follows: X(t) = 1 if system is operational

at time t, 0 otherwise, Y (t) is the number of jobs at the CPU at time t and Z(t) is

the number of failed terminals at time t. They then proceeded to recursively solve

the steady-state equations and calculate the mean number of jobs at the CPU, mean
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number of operational terminals, average number of busy repair persons as well as

server utilizations of the CPU, terminals and repair persons.

Queues with server breakdowns have been studied extensively in the past

decade. What follows are a few papers worth notable mention. In 1997, Wei, et

al. [31] considered a M/G/1 queue with server breakdowns and vacations. Besides

assuming the service time to be generally distributed, the authors provided a re-

liability analysis of the system. Using the supplementary variable technique they

derived transient solutions for standard queueing and reliability measures. In the

same year, Tang [39] also considered a M/G/1 queue in which the server was subject

to both active and idle breakdowns. The inter-failure times for active breakdowns

followed a Poisson process while the inter-failure times for idle breakdowns followed

a generic renewal process. Repairs occur immediately and are generally distributed.

Preempted customers hold the server during the repair and resume service once the

repair is complete. Using transform methods the author derived several queueing

measures as well as some main reliability indices.

In 2002, Gray, et al. [19] studied two models that both employed backup

servers. For each model the authors considered two cases, the first case allowing

for only active breakdowns, and the second allowing for both active and idle break-

downs. The first model assumed two ranked servers, a primary server and a backup

server. The second model assumed an infinite amount of identical, unranked servers.

All service times are assumed to be exponential. The inter-arrival times are also

exponentially distributed, however, if all available servers are failed the arrival rate

changes. For Model I, the servers may have different rates and in Model II the au-

thors assumed homogeneous servers. Using matrix-geometric techniques the authors

derived the distribution of the queue length and stability condition for each model.

In 2003, Yuan and Li [46] considered a GI/PH/1 queue with server breakdowns.

For their model they assumed customers who were interrupted by a failure remain at

the server and resume service immediately following the repair. Just as the service
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time, the repair time also followed a phase type distribution. Using matrix-geometric

methods, the authors derived the condition for system stability and analyzed the

transient and steady-state behavior.

2.3 Single-Server Retrial Queues with Server Breakdowns

Retrial queues in which the server is susceptible to failures presents an addi-

tional way for an arriving customer to enter the retrial orbit. If a customer finds the

server either busy or failed it must enter the orbit and attempt to access the server

later. A customer is admitted to the server only when the server is found idle and

not failed. Customers whose service is interrupted by a failure may have the option

of remaining at the server until the repair is complete, leaving the system entirely,

or returning to the orbit to repeat or resume service.

These types of systems were first studied independently by Aissani [2] in 1988

and by Kulkarni and Choi [25] in 1989. Aissani [2] considered an M/G/1/1 queueing

system with repeated orders and an unreliable server while Kulkarni and Choi con-

sidered two different M/G/1 models. In the first model, a customer whose service

is interrupted by a server failure either joins the retrial orbit with probability c or

leaves the system with probability 1 − c. The second model allows the customer

to remain at the service station while the server is being repaired and service is

restarted once the repair is complete. The latter model can be solved using the

results of the former. In the first model, the authors assumed that a server, at any

time, can be in one of the following three states: idle-up (0), busy (1), or down (2).

An idle-up server fails at an exponential rate and stays down for a random amount

of time, Di. A busy server fails at an exponential rate and its random down time is

denoted by, Db. A customer who cannot obtain service enters the orbit and retries

after an exponential amount of time. The limiting behavior of the stochastic process,

{(Q(t), X(t)), t ≥ 0} where Q(t) is the random number of customers in the orbit and

X(t) is the state of the server, is studied as t →∞.
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Aissani and Artalejo [5] extended the results of Kulkarni and Choi [25] in 1998

by focusing on the reliability of an M/G/1 system when the server is subject to

breakdowns. The pair considers the model in which customers that arrive and find

the server busy are sent to the orbit while customers that access the server and are

then interrupted by a breakdown either join the retrial orbit with probability c or

leave the system with probability 1 − c. Customers who join the orbit retry after

an exponential amount of time and those who were interrupted retain no memory of

being served. It was assumed that the time between both active and idle breakdowns

is exponentially distributed with distinct rates. Repair times, however, were assumed

to be generally distributed. They then define a variable, F , which is the random

amount of time from the epoch at which a customer begins service to the epoch at

which the server is able to begin a new service time (note that this could apply to the

same customer). This period of time is referred to as the fundamental server period.

The duration of F is determined by the competition between service time and failure

time. Another concept that the authors introduce is an auxiliary queueing system

where a customer interrupted by a failure can hold the server and resume service

after the repair is complete. The option exists, however, for the customer to leave

the server station and enter the orbit. By investigating the embedded Markov chain

at idle-up epochs, the authors provided a stability condition and then proceeded to

analyze the system with generating functions and a recursive scheme to compute the

limiting probabilities.

Aissani [3] continued his work on the M/G/1 retrial queue this time making

more general assumptions. Arrivals to the system are according to a batched Poisson

process with all members of the batch moving to the retrial orbit if the server is busy

or failed. If the server is idle then one unit of the batch is admitted to the service area

where it is processed according to a general distribution and the remaining join the

orbit. Additionally, times between retrials are generally distributed and the inter-

failures times of the server are dependent upon the state of the server. Repair times
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are also generally distributed with the time to repair depending on the status of the

server at the time of failure (idle or busy). Aissani used the method of supplemental

variables to transform the jump process (or the random number of customers in

the system at time t) to a piecewise Markov process and proved stationarity of the

process. The author then proceeded to derive the steady-state distributions of both

the number of customers in orbit and the number of customers in the system. Aissani

[4] again visits the M/G/1 system this time assuming that customer retrials, times

to failure and repair times are distributed exponentially. The other difference is

that he considered a warm back-up server in case the primary server fails with the

assumption that the repair of the primary server takes place during the busy time of

the substitute. This assumption leads to a system that never fails. Using the same

techniques in [3] he derived similar performance characteristics.

Many different variations of the unreliable M/G/1 retrial queue exist in the

literature and Yang and Li authored two works [48] and [29] that further investigated

the system. In [48] customers arriving to the system who find the server idle are

admitted to service and “turn on” the server which can operate normally with certain

probability or fail, thus forcing the customer to join the retrial orbit. This type of

failure is referred to as a starting failure in the literature. Assuming retrial times

are exponential and repair times are generally distributed, the authors presented a

necessary and sufficient condition for system stability and derived (making use of

probability generating functions) the server utilization, average number of customers

in the system and the steady-state probability that the server is down. The second

paper [29] assumes a finite number of sources that can be active or inactive. Active

sources generate customers according to a Poisson process. The source subsequently

becomes inactive and is activated again after the customer completes service. Servers

are in one of three states: idle, busy, or on vacation. Customers finding the server

busy or on vacation leave the system and retry later. When the server is idle, it serves

new or returning customers with probability αk or takes a vacation with probability
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1 − αk, where k is the number of customers in the orbit. If the server takes a

vacation, the arriving customers proceed to the orbit. Retrial times are exponentially

distributed and service and vacation times are generally distributed. The authors

then examined the system in its steady-state using the method of supplemental

variables and generating functions and derived server utilization, mean number of

customers in the system and the mean time each customer spends in the system.

Artalejo [8] also studied M/G/1 retrial queues with server vacations and Kumar, et

al. [27] in 2002 considered the M/G/1 with Bernoulli feedback1 and starting failures.

Interestingly, the authors assumed an orbit with an FCFS discipline with waiting

time generally distributed.

Other M/G/1 retrial queues were studied by Wang, et al. [41] in 2001 where

the authors considered a customer who waits at the server during repair. They

defined this period of time as generalized service time which may or may not include

repair time. Besides calculating the traditional steady-state characteristics they also

provide a detailed reliability analysis of the system. Four years later in [42] Wang

performed the same analysis for an M/G/1 retrial queue under the assumptions that

the retrial orbit has an FCFS discipline and that an idle server searches for customers

in the orbit. The search time is generally distributed and if a primary call arrives to

the system, the search is interrupted and the primary caller begins service. Djellab

in 2002 [15] studied a model similar to that of Kulkarni and Choi [25], but assumed

general distributions for times to failure and repair times.

In 2003, Wu, et al. [45] were the first to consider two retrial orbits in their

M/G/1 system. The first orbit (I) is in the traditional sense with an FCFS disci-

pline. The second orbit (II) is reserved specifically for customers preempted by a

server failure. Repair times and retrials from orbit (I) are generally distributed while

retrials from orbit (II) are distributed exponentially. The authors also assumed that

1A system with feedback allows customers that have been served an opportunity to return to
the system if not satisfied.
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customers retain accrued service time throughout the model. Balking is also con-

sidered, that is, customers have the option of leaving the system when assigned to

orbit (I) or orbit (II). The customer may also choose to leave (non-persistent) while

attempting retrials in orbit (I) while customers in orbit (II) remain persistent since

they have already completed some amount of service. The authors also assumed

only active breakdowns can occur. Additionally, a server that fails is repaired im-

mediately and must complete service for the preempted customer before any new

customers are allowed service. The time between repair completion and preempted

customer service resume is known as reserved time.

In 2006 Li, et al. [28] extended the work of [41] by examining a system in which

customers arrive according to a batched Markovian arrival process (BMAP) with m

phases. The authors considered a single server whose service times are generally

distributed with exponential times to failure and generally distributed repair times.

A customer whose service is interrupted by a failure remains at the server until

the repair is complete. Thus the idea of “generalized service time” was employed

throughout the work. Using the method of supplementary variables and matrix-

analytic techniques, the authors derived the standard queueing and reliability indices.

They also developed two algorithms, the first to compute the stationary probability

vector of a M/G/1 continuous-time level-dependent Markov chain, and the second

to calculate the mean of the first passage time with regard to this M/G/1.

Not all customers arrive to a queueing system according to a Markov process.

In 2003 Yuan and Li [49] investigated the effect that generally distributed interarrival

times and non-exponential service times have on the availability of the server. In

their study of a GI/PH/1 system with server breakdowns, the authors assumed

that inter-failure times were exponential and repair times follow a phase-type (PH)

distribution. Just as Wang, et al. did in [41], customers preempted by a server

failure wait at the station until the server is repaired, and then resume service once

the repair is complete. The authors used matrix analysis theory to derive certain
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performance characteristics to include steady-state probabilities that the server is

busy, being repaired or idle. They also developed formulas for the availability of the

system.

Recently, some authors have investigated M/M/1 retrial systems with break-

downs. In 2005, Almasi, Roszik and Sztrik [6] considered a finite source system with

server failures and repairs. Servers can fail either in a busy or idle state and do so

with different probabilities. Times to failure are generally distributed with repair

times exponentially distributed. Customers preempted by a failure can choose to

remain at the server and resume service once the repair is complete, or join the

retrial orbit. Retrial entities retry at an exponential rate. In deriving the usual

stationary measures Almasi, et al. [6] used a tool called MOSEL (Modeling, Spec-

ification and Evaluation Language). Later that year, Li and Zhao [30] assumed a

M/M/1 system with two queues both for waiting or preempted customers. All times

in their model are distributed exponentially and only active breakdowns are con-

sidered. Customers preempted by a server failure join a normal queue at the head

position and arriving customers who find the server busy or failed join the normal

queue with probability p or the retrial orbit with probability 1− p. The retrial orbit

assumes an FCFS discipline. Retrial customers unable to access the server can join

the orbit again with probability q or leave the system (impatient) with probability

1 − q. The authors model the process as a (quasi birth-and-death process) QBD,

and used a matrix-analytic approach to prove that the system decays geometrically.

Sherman and Kharoufeh [37] considered an unreliable M/M/1 retrial queue

with an infinite waiting room and retrial orbit. In their model, customers preempted

by server failures join the orbit while the normal queue is reserved only for new

arrivals. All times between events are assumed to be exponentially distributed and

active and idle breakdowns can occur. The authors give the steady-state joint dis-

tribution of the orbit length and queue length for each state of the server (idle, busy

or failed) and derived generating functions for orbit size, queue size and total system
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size. Lastly, they proved stochastic decomposability of the orbit and system size and

provided standard queueing performance measures.

2.4 Multiple-Server Retrial Queues with Breakdowns

Consider a retrial queue with c servers. Customers arriving to a system and

finding the total number of busy servers and failed servers equal to c must enter the

orbit and attempt to obtain service later. If the total is less than c, then the customer

enters service and is processed according to the service rate. These types of systems

are not found in abundance in the open literature. In 1994 Artalejo [7] was the first

to consider such a model. The author examined a M/M/c/k retrial system in which

the server is subject only to active breakdowns. Preempted customers proceed to the

orbit with probability Ho or depart the system with probability 1−Ho. The author

then defined a persistence function that assigns to retrial customers a probability of

staying in the system based on the number of retrials they have performed. Sufficient

conditions for the ergodicity of the system are proved and the rest of the paper is

devoted to analysis of the M/M/1 and M/G/1 systems. For the M/M/1, the author

introduced two new measures, the orbit idle and orbit busy periods, derived their

distributions, and examined asymptotic behavior. In the M/G/1 system he employed

a recursive scheme to calculate steady-state probabilities for the number of customers

in orbit, number of customers in service and the number of operational servers.

In 2004 Roszik and Sztrik [35] extended their work in [6] by investigating a

finite source retrial queue with multiple unreliable servers that have distinct (het-

erogeneous), exponentially distributed service times. Additionally, the servers have

distinct times to failure which are exponentially distributed and distinct exponential

repair times. The authors assumed both active and idle breakdowns with preempted

customers becoming a source of repeated calls to the system. With the assistance of

the software tool MOSEL, a stochastic Petri Net package was used to calculate the

probability that at least one server is idle, the mean orbit length, utilization of the
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kth server, mean number of busy servers, mean customer wait time and mean time

in system, to name a few. Using tools in MOSEL, they illustrated graphically the

effect unreliable servers have on mean time in system.

In 2005 Gharbi and Ioualalen [18] studied a finite-source retrial system with

multiple servers subject to breakdowns and repairs. In addition to assuming active

and idle breakdowns, the authors include a dependent breakdown scenario in which

the probability of failure depends on the server state. Customers preempted by a

failure return to the orbit with a memory of their elapsed service time. The authors

used a generalized stochastic petri nets (GSPN) model to derive several performance

and reliability indices, some of which are the mean length of the orbit, mean number

of customers in the system, the mean number of failed and operational servers, mean

rate of service and repair and the failure frequency of busy and idle servers. Lastly,

a sensitivity analysis of the mean time in system is conducted when rates of failure,

repair and retrial as well as the number of servers vary.

These three works are the only ones found in the open literature addressing

multiple-server retrial queues with server breakdowns. To our knowledge, outside

of Artalejo’s ergodicity proof [7], no other analytical methods are available. An

analytical solution to the steady-state probabilities of unreliable multi-server retrial

models are extremely difficult to derive. As mentioned previously, no results exist for

models with more than two servers in the reliable case. Unreliable models contribute

even more to the analytical complexity mainly due to preempted customers joining

the orbit. As such, it is not surprising to see that the two sources, [35] and [18] resort

to computer-aided solution methods.

It is evident that the literature is lacking with respect to modeling multiple-

server retrial queues with server breakdowns. With the exception of using petri nets,

no other approximation methods have been employed in the study of such models.

Therefore, new methods for analyzing these types of systems are needed. In an ef-

fort to further understand the complexity of these systems, this thesis attempts to
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contribute to the current state-of-the-art by proposing another method for approx-

imating the steady-state probabilities of unreliable retrial queues in the two-server

case. This approximation will be completely analytical, and may lend insight into

the analysis of unreliable multi-server retrial queues with an arbitrary number of

servers.
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3. Model Description

In this chapter we describe the M/M/2 retrial queue in which both servers

are subject to breakdowns and repairs. Arriving customers that are unable to ac-

cess a server due to congestion or failure can choose to enter a retrial orbit for an

exponentially distributed amount of time and persistently attempt to gain access

to a server, or abandon their request and depart the system. Once a customer is

admitted to a service station, they remain there for a random duration until service

is complete and then depart the system. However, if the server fails during service,

i.e., an active breakdown, the customer may choose to abandon the system or pro-

ceed directly to the retrial orbit while the server begins repair immediately. Many

models in the literature explore cases in which the preempted customer has a choice

between joining the orbit or abandoning the system, or remaining at the server until

the repair is complete. The server can also fail while it is idle i.e., an idle breakdown.

This thesis analyzes a two-server system in which both servers are subject to both

active and idle breakdowns.

3.1 Model Description

The model is an unreliable M/M/2 retrial queueing system in which customers

arrive according to a Poisson process with rate λ (λ > 0). If at least one of the servers

is idle and not failed, then an arriving customer occupies a server immediately.

However, if an arriving customer finds no available servers (due to congestion or

failure), the customer enters the orbit with probability qa or abandons the system

with probability 1− qa, 0 ≤ qa ≤ 1. Recall that there is no additional waiting space

in a standard retrial queue. Customers who enter the orbit wait for an exponentially

distributed time with rate θ (θ > 0) before attempting to access a server again. The

service times are assumed to be exponential with mean 1/µ. Failures for both servers

occur independently via a Poisson process with rate ξ (ξ > 0) and the repair times
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for each server are exponentially distributed with rate α (α > 0). It is assumed that

each server has a dedicated repair person. Furthermore, interarrival times, service

times, retrial times, interfailure times and repair times are mutually independent.

This model accounts for both active and idle breakdowns. For active breakdowns, the

customer that is preempted by a server failure enters the retrial orbit with probability

qf or abandons the service request with probability 1 − qf . Customers are lost if

they decide not to join the orbit. Figure 3.1 provides a pictorial representation of

the system.

Orbit

�(1-qa)

�qa

PP(�)

�(1-qf)

Service Completion

Server Failure

�qf

Abandonment

Figure 3.1 Retrial queueing system with two unreliable servers.

The state of the system can be described by a trivariate stochastic process in

continuous time, {(R(t), B(t), F (t)) : t ≥ 0}, where R(t) is the number of customers

in the orbit at time t, B(t) is the number of busy servers at time t and F (t) is the

number of failed servers at time t. Since all the random times are exponentially

distributed, the stochastic process is a continuous-time Markov chain (CTMC) on

the state space S = {(i, j, k) : i ≥ 0, j + k ≤ 2, j, k ∈ {0, 1, 2}}. We assume that

as t →∞ the steady-state distribution of {(R(t), B(t), F (t)) : t ≥ 0} exists. Figure

3.2 depicts the transition diagram for the CTMC. The levels directly correspond to
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the size of the orbit. The ordered pairs represent the number of busy servers and

number of failed servers, respectively.
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Figure 3.2 Transition rate diagram for retrial queue with two unreliable servers.

Define p(i, j, k) as the limiting probability that the system is in the state (i, j, k)

where (i, j, k) ∈ S. Defined mathematically,

p(i, j, k) = lim
t→∞

P (R(t) = i, B(t) = j, F (t) = k).

Note that a set of only six ordered pairs of (j, k) are needed to completely characterize

the status of the servers at any time. This set is,

E = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)}.
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Analyzing the flow in and out of each node of Figure 3.2, the following balance

equations, boundary condition and normalization equation are obtained. For i = 0,

(λ + 2ξ)p(0, 0, 0) = µp(0, 1, 0) + αp(0, 0, 1),

and for i ≥ 1,

(λ + iθ + 2ξ)p(i, 0, 0) = µp(i, 1, 0) + αp(i, 0, 1)

(λ + iθ + ξ + ξqf + µ)p(i, 1, 0) = λp(i, 0, 0) + αp(i, 1, 1) + 2µp(i, 2, 0)

+(i + 1)θp(i + 1, 0, 0)

(λqa + 2µ + 2ξqf )p(i, 2, 0) = λqap(i− 1, 2, 0) + λp(i, 1, 0) + (i + 1)θp(i + 1, 1, 0)

(λqa + µ + ξqf + α)p(i, 1, 1) = λqap(i− 1, 1, 1) + λp(i, 0, 1) + (i + 1)θp(i + 1, 0, 1)

+ξp(i, 1, 0) + 2ξqfp(i− 1, 2, 0)

(λ + iθ + ξ + α)p(i, 0, 1) = µp(i, 1, 1) + ξqfp(i− 1, 1, 0) + 2ξp(i, 0, 0) + 2αp(i, 0, 2)

(λqa + 2α)p(i, 0, 2) = λqap(i− 1, 0, 2) + ξp(i, 0, 1) + ξqfp(i− 1, 1, 1)

∞∑
i=0

[p(i, 0, 0) + p(i, 1, 0) + p(i, 2, 0) + p(i, 1, 1) + p(i, 0, 1) + p(i, 0, 2)] = 1.

Due to transitions that correspond to successful retrial attempts, deriving the

steady-state probabilities in most retrial queueing systems is challenging. In this

model, the difficulty is compounded by server failures that also result in transitions

between levels. Therefore, solving this system in a recursive fashion is non-trivial.

Another way of computing the steady-state probabilities is by the method of gener-

ating functions. Define

φj,k(z) =
∞∑
i=0

p(i, j, k)zi, (j, k) ∈ E (3.1)
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as the probability generating function (p.g.f.) of p(i, j, k) with respect to the orbit

size. Applying this function to the balance equations in the usual manner and

summing over all values of i we obtain the following system of differential equations

and normalization equation in the transform variable z:

(λ + 2ξ)φ0,0(z) + θzφ′0,0(z) = µφ1,0(z) + αφ0,1(z)

(λ + ξ + ξqf + µ)φ1,0(z) + θzφ′1,0(z) = λφ0,0(z) + αφ1,1(z) + 2µφ2,0(z) + θφ′0,0(z)

(λqa + 2µ + 2ξqf )φ2,0(z) = λqazφ2,0(z) + λφ1,0(z) + θφ′1,0(z)

(λqa + µ + ξqf + α)φ1,1(z) = λqazφ1,1(z) + λφ0,1 + θφ′0,1(z) + ξφ1,0(z)

+2ξqfzφ2,0(z)

(λ + ξ + α)φ0,1(z) + θzφ′0,1(z) = µφ1,1(z) + ξqfzφ1,0(z) + 2ξφ0,0(z) + 2αφ0,2(z)

(λqa + 2α)φ0,2(z) = λzφ0,2(z) + ξφ0,1(z) + ξqfzφ1,1(z)
∑

(j,k)∈E

φj,k(1) = 1.

The solution of this system of equations requires the simultaneous solution of

three differential equations, one for each of φ′0,0(z), φ′1,0(z) and φ′0,1(z), and back sub-

stituting to solve for the remaining three. However, this is not easily accomplished,

and thus, due to the complexity of solving for the state probabilities recursively, or

by the method of generating functions, we instead resort to an approximate analysis

of the system. Due to the structure of the transition diagram (Figure 3.2), a phase-

merging algorithm developed by Korolyuk and Korolyuk [23] and Courtois [13] will

be employed and is summarized in the following sections.

3.2 The Phase-Merging Algorithm

Beginning with a CTMC on a state space that completely describes a re-

trial queueing system, a two-dimensional transition rate diagram is constructed as

in Figure 3.2. The objective of the phase-merging algorithm is to approximate the

3-5



steady-state probability distribution of {(R(t), B(t), F (t)) : t ≥ 0} by approximating

the conditional probability distribution of the status of the servers, given the level of

the orbit, and by approximating the marginal probability distribution of the number

of customers in orbit. The algorithm proceeds by partitioning the state space into

disjoint and mutually exhaustive sets that correspond to levels of the orbit. Each

level is analyzed as a CTMC from which the approximate conditional probabilities

are obtained. Each level itself is subsequently considered as a state of an aggregated

CTMC where the transition rates between levels correspond to customers entering

or leaving the orbit. Analyzing this system of “macrostates” yields the approximate

marginal probability distribution of the number of customers in the orbit. The prod-

uct of the conditional and marginal probabilities is, therefore, the approximate joint

probability distribution of the level of the orbit and status of the servers. Using this

joint distribution, we then approximate standard queueing performance measures.

To begin, we reduce the dimensionality of the state space by defining X(t)

as the status of the servers at time t (outlined in Table 3.1), such that X(t) ∈
{1, 2, 3, 4, 5, 6}. In order to accurately approximate the joint probability distribution

Table 3.1 Substitution for server status.

State (j, k) Index (l)
(0,0) 1
(1,0) 2
(2,0) 3
(1,1) 4
(0,1) 5
(0,2) 6

of the number of customers in the orbit and status of the servers, it is necessary that

the rates of flow within levels of the orbit are significantly greater than those rates

flowing between levels. Referring to Figure 3.2, we need

λ À θ, ξ µ À θ, ξ α À θ, ξ.
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The algorithm, which was developed in [23] and [13] proceeds in the following man-

ner. First, partition the state space, S, into disjoint sets that are conditional upon

i such that,

S =
∞⋃
i=0

Si, Si ∩ Sj = ∅, i 6= j

where Si ≡ {(i, l) : l = 1, 2, . . . , 6}, i ≥ 0. This step results in an infinite number of

classes (or levels) which can be analyzed individually.

Next we obtain the steady-state distribution of each class or level, Si, by de-

termining the infinitesimal generator matrix, Qi defined by

ql,m =





q(i,l),(i,m) l 6= m

−∑
l 6=m q(i,l),(i,m) l = m

0 otherwise

. (3.2)

Denote by pl|i the steady-state conditional probability that the status of the servers is

state l, given there are i customers in orbit, i ≥ 0, l = 1, 2, . . . , 6. Letting pi = [pl|i],

we solve the system of equations piQi = 0 and pie = 1 (where e is a column vector

of ones) to obtain the approximate conditional probability distribution.

Following this, we merge, or aggregate, all states within the class Si, into one

state corresponding to the level of orbit, i. These “macrostates” form the overall state

space of the merged model which are defined as Ŝ ≡ {i : i ≥ 0}. The infinitesimal

generator, QM , of the merged model is

qi,j ≡
∑

(i,l)∈Si

pl|i


 ∑

(j,m)∈Sj

q(i,l),(j,m)


 .

Denote πi as the marginal probability that there are i customers in the orbit. Let-

ting the infinite-dimensional vector π ≡ [π0, π1, π2, π3, . . .], we solve the system of

equations πQM = 0 and πe = 1 to obtain the approximate steady-state marginal
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probabilities. Finally, the steady-state distribution of {(R(t), X(t)) : t ≥ 0} may be

approximated by

p(i, l) ≈ p̂(i, l) = pl|i × πi, i ≥ 0, l = 1, 2, . . . , 6. (3.3)

Making use of these joint probabilities, we can obtain approximations for the per-

formance measures for the unreliable two-server retrial queue.

To illustrate the algorithm, let us first consider a reliable M/M/2 retrial queue

whose customers arrive according to a Poisson process with rate λ. Each customer

brings an exponential service requirement with mean time 1/µ. Customers who

find both servers busy enter the orbit with probability c or leave the system with

probability 1− c. The time between retrials is exponentially distributed with mean

1/θ. All times are assumed to be mutually independent. Define the continuous-time

stochastic process as {(R(t), B(t)) : t ≥ 0} where R(t) is the number of customers

in the orbit at time t and B(t) is the number of busy servers at time t. The process

is a CTMC on the state space, S = {(i, j) : i ≥ 0, j = 0, 1, 2}. For the purpose

of illustrating the phase-merging algorithm, we will assume the system is stable and

denote p(i, j) = limt→∞ P (R(t) = i, B(t) = j) as the limiting probability that the

system is in state (i, j), i ≥ 0, j = 0, 1, 2. Figure 3.3 depicts the two-dimensional

transition rate diagram.

To make use of the algorithm we assume that each of λ and µ are significantly

greater than θ and proceed as follows: First, partition the state space into individual

levels where the index of each level corresponds to the number of customers in the

orbit. Denote this as class Si for level i, i ≥ 0. Note that each class has an identical

structure and, therefore, the generator matrices, Qi are identical for all i ≥ 0. This

fact will be extremely useful for analyzing the case of unreliable servers.

Next we compute the steady-state conditional distribution of the status of

the servers given there are i customers in orbit. Denote these probabilities by pj|i,

3-8



0 1 2

Level
i-1

.

.

.

0 1 2

0 1 2

Level
i

Level
i+1.
.
.

� �

� �

� �

�c

�c

� 2�

2�

2��

�

i� i�

(i+1)� (i+1)�

Figure 3.3 Transition rate diagram for a reliable M/M/2 retrial queue.
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Figure 3.4 Transition rate diagram for level i: reliable M/M/2 retrial queue.

j = 0, 1, 2. Standard nodal analysis works best in this example, and it is easy to

obtain the following conditional probabilities for all i ≥ 0:

p0|i =
µ2

µ2 + λµ + λ2
, (3.4)

p1|i =
λµ

µ2 + λµ + λ2
, (3.5)

p2|i =
λ2

µ2 + λµ + λ2
. (3.6)

The next step is to aggregate the states of each class to form a series of merged

states, i where i ≥ 0 and investigate the transitions between them. The elements of
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Figure 3.5 The merged model for the reliable M/M/2 retrial queue.

the infinitesimal generator matrix for the merged states are

qi,j =





λcp2|i i ≥ 0, j = i + 1

iθ(p0|i + p1|i) i ≥ 1, j = i− 1

−[λcp2|i + iθ(p0|i + p1|i)] i = j

0 otherwise

.

Using the substitutions, λ̂ = λcp2|i and θ̂ = θ(p0|i + p1|i), we see that the analysis

of this system is analogous to the M/M/∞ queueing system. Thus, defining the

steady-state marginal probability vector as π = [π0, π1, π2, . . .] we have,

πi =
1

i!

(
λ̂

θ̂

)i

e−λ̂/θ̂, i ≥ 0. (3.7)
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Finally, the approximate steady-state distribution of {(R(t), B(t)) : t ≥ 0} is given

by

p(i, j) ≈ p̂(i, j) = pj|i × πi

=
pj|i
i!

(
λ̂

θ̂

)i

e−λ̂/θ̂, i ≥ 0, j = 0, 1, 2. (3.8)

The advantages of using the phase-merging algorithm are two-fold. First, good

approximations for the steady-state probabilities can be computed quickly as com-

pared to simulating the system. Second, for many multi-server retrial queueing

systems, obtaining exact solutions can be extremely difficult, if not impossible. A

disadvantage of the algorithm is that it depends on the assumption that transition

intensities within each level are significantly greater than those between levels. Thus,

the algorithm is most effective when this requirement is satisfied.

3.3 Approximation Using the Phase-Merging Algorithm

We now apply the phase-merging algorithm described in [23] and [13] to the

unreliable M/M/2 retrial queue. Recall that the interarrival times, service and re-

pair times, time between failures and time between retrials are all exponentially

distributed with the parameters defined previously. Since the number of customers

in the orbit can theoretically reach infinity, the state space of the system can be

partitioned into a countable number of classes. As noted previously, the state space

S is partitioned as the countable union

S =
∞⋃
i=0

Si, Si ∩ Sj = ∅ i 6= j,

where Si = {(i, l) : l = 1, 2, . . . , 6}, i ≥ 0. Just as in the reliable M/M/2 retrial queue,

each class is identical in structure so that only one class needs to be analyzed.
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To determine the steady-state probabilities for the class Si, define the stochastic

process {(B(t), F (t)) : t ≥ 0} where B(t) represents the number of busy servers and

F (t) represents the number of failed servers at time t. Clearly, the process is a

CTMC on the state space E defined previously. Using the notation defined in Table

3.1 we denote pl|i as the limiting conditional probability of the servers being in state

l given that there are i customers in orbit,

pl|i = lim
t→∞

P (X(t) = l|R(t) = i), l = 1, 2, . . . , 6.

For each i ≥ 0, the transition rates for this process are described in the following

generator matrix, Qi.

Qi =




−(λ + 2ξ) λ 0 0 2ξ 0

µ −(λ + ξ + µ) λ ξ 0 0

0 2µ −2µ 0 0 0

0 α 0 −(α + µ) µ 0

α 0 0 λ −(λ + ξ + α) ξ

0 0 0 0 2α −2α




.
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Let pi be the steady-state conditional probability vector where pi = [pl|i], l =

1, 2, ...6. Solving the equations piQi = 0 and pie = 1 yields the following system,

(λ + 2ξ)p1|i = µp2|i + αp5|i (3.9)

(λ + ξ + µ)p2|i = λp1|i + 2µp3|i + αp4|i (3.10)

2µp3|i = λp2|i (3.11)

(α + µ)p4|i = ξp2|i + λp5|i (3.12)

(λ + ξ + α)p5|i = 2ξp1|i + µp4|i + 2αp6|i (3.13)

2αp6|i = ξp5|i (3.14)
6∑

l=1

pl|i = 1. (3.15)

Replacing Equation (3.13) with the normalization equation (3.15), the solution to

the conditional probabilities are obtained for all i ≥ 0

p1|i = D−1(2(α + λ + ξ + µ)α2µ2)

p2|i = D−1(2(α + µ + λ + 2ξ)α2µλ)

p3|i = D−1((α + µ + λ + 2ξ)α2λ2)

p4|i = D−1(2(α + λ + 2µ + 2ξ)αµξλ)

p5|i = D−1(2αξµ2(λ + 2α + 2µ + 2ξ))

p6|i = D−1(µ2ξ2(λ + 2α + 2µ + 2ξ))

where the constant D is given by,

D = µ2ξ2λ + 6µ2ξ2α + 2µ3ξ2 + 2µ2ξ3 + 6α2µξλ + 2µα3λ + 4λα2µ2

+λ2α3 + 3λ2α2µ + λ3α2 + 2ξλ2α2 + 4µ3ξα + 6α2µ2ξ + 2µ2α3

+2µ3α2 + 2µξλ2α + 6µ2ξλα + 4αµξ2λ.
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Aggregating the states of each class Si yields a system of macro-states which we

denote as i, i ≥ 0. The rates of transition between the “macrostates” are expressed
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Figure 3.7 Transition rate diagram for the merged model.

in the infinitesimal generator matrix with elements,

qi,j =





ξqfp2|i + (λqa + 2ξqf )p3|i + (λqa + ξqf )p4|i + λqap6|i i ≥ 0, j = i + 1

iθ(p1|i + p2|i + p5|i) i ≥ 1, j = i− 1

−[ξqfp2|i + (λqa + 2ξqf )p3|i + (λqa + ξqf )p4|i + λqap6|i

+iθ(p1|i + p2|i + p5|i)] i = j

0 otherwise

.
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To simplify the analysis of the merged states we use the following substitutions for

i ≥ 0,

λ̂ = ξqfp2|i + (λqa + 2ξqf )p3|i + (λqa + ξqf )p4|i + λqap6|i (3.16)

θ̂ = θ(p1|i + p2|i + p5|i). (3.17)

Making the substitutions, the elements of the generator matrix are,

qi,j =





λ̂, i ≥ 0, j = i + 1

iθ̂, i ≥ 1, j = i− 1

−(λ̂ + iθ̂), i = j

0, otherwise

.

This new model is a state dependent birth-and-death process, the analysis of which

is analogous to the M/M/∞ queueing system. Using the method of arc cuts, we

recursively solve for the steady-state probability vector, π = [π0, π1, π2, π3, . . .].

λ̂π0 = θ̂π1 ⇒ π1 =
λ̂

θ̂
π0

λ̂π1 = 2θ̂π2 ⇒ π2 =
1

2

(
λ̂

θ̂

)2

π0

λ̂π2 = 3θ̂π3 ⇒ π3 =
1

6

(
λ̂

θ̂

)3

π0

λ̂π3 = 4θ̂π4 ⇒ π4 =
1

24

(
λ̂

θ̂

)4

π0

Continuing inductively, it can easily be shown that,

πi =
1

i!

(
λ̂

θ̂

)i

π0, i ≥ 0. (3.18)
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Using the normalization equation,
∑∞

j=0 πj = 1, the solution for π0 is obtained by

π0 +
λ̂

θ̂
π0 +

1

2

(
λ̂

θ̂

)2

π0 +
1

6

(
λ̂

θ̂

)3

π0 + . . . = 1

π0


1 +

λ̂

θ̂
+

1

2

(
λ̂

θ̂

)2

+
1

6

(
λ̂

θ̂

)3

+ . . .


 = 1

π0




∞∑
j=0

1

j!

(
λ̂

θ̂

)j

 = 1. (3.19)

The infinite series of (3.19) is the Maclaurin power series expansion for eλ̂/θ̂. Thus,

we see that

π0 = e−λ̂/θ̂.

Substituting π0 into Equation (3.18) we have the following expression,

πi =
1

i!

(
λ̂

θ̂

)i

e−λ̂/θ̂, i ≥ 0, (3.20)

which is the probability mass function for a Poisson distributed random variable

with rate parameter λ̂/θ̂. Finally, we approximate the steady-state distribution of

{(R(t), X(t)) : t ≥ 0} by

p(i, l) ≈ p̂(i, l) = pl|i × πi

=
pl|i
i!

(
λ̂

θ̂

)i

e−λ̂/θ̂, i ≥ 0, l = 1, 2, . . . , 6. (3.21)

3.4 Approximate Queueing Performance Measures

In this section we provide approximations for the limiting mean orbit length,

mean number of customers in service, the mean number of customers in the system,

the mean sojourn time and the mean time spent in orbit.
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3.4.1 Mean Orbit Length

In the aggregated model, each level corresponds to the number of customers in

orbit. It was shown that the steady-state distribution is Poisson with parameter λ̂/θ̂.

Therefore, the long-run mean orbit length is approximately the expected value of this

Poisson random variable. Denoting R as the steady-state number of customers in

orbit, the mean orbit size is approximated by

E[R] ≈ λ̂

θ̂

=
ξqfp2|i + (λqa + 2ξqf )p3|i + (λqa + ξqf )p4|i + λqap6|i

θ(p1|i + p2|i + p5|i)
. (3.22)

3.4.2 Mean Number of Customers in Service

The approximate expression for the expected number of customers at the

servers can be computed using the approximate steady-state joint probabilities de-

rived in the last step of the algorithm. Let Ns be defined as the random number of

customers at the servers.

E[Ns] =
∞∑
i=0

[p(i, 1, 0) + p(i, 1, 1) + 2p(i, 2, 0)]

≈
∞∑
i=0

[p̂(i, 2) + p̂(i, 4) + 2p̂(i, 3)]. (3.23)

3.4.3 Steady-State System Size and Sojourn Time

To calculate L, the steady-state number of customers in the system, we simply

sum the expressions for E[R] and E[Ns]. The steady-state mean sojourn time, W ,

follows directly from Little’s law.

L ≈ E[R] + E[Ns] (3.24)

W ≈ L

λ
, (3.25)
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where E[R] is obtained by Equation (3.22) and E[Ns] is obtained by Equation (3.23).

3.4.4 Total Expected Time in Orbit

Due to server failures and blocking when making a retrial attempt, customers

may enter the orbit more than once. Therefore, the expected time a customer spends

in orbit is 1/θ times the expected number of retrial attempts before gaining access to

the server. Define Y as the random number of retrials a customer performs until it

gains access to a server. Then Y is a geometric random variable with parameter pu,

the steady-state probability that at least one server is available. The approximation

for pu is given by

pu =
∞∑
i=0

[p(i, 0, 0) + p(i, 1, 0) + p(i, 0, 1)]

≈
∞∑
i=0

[p̂(i, 1) + p̂(i, 2) + p̂(i, 5)]. (3.26)

The expected number of retrials performed, E[Y ], is therefore, 1/pu and letting Wr

be the random time spent in orbit once they are there we have,

E[Wr] ≈ (θpu)
−1. (3.27)

In this chapter we have formally defined the mathematical model and, em-

ploying the phase-merging algorithm, have derived approximate expressions for the

steady-state joint probability distribution of the number of customers in orbit and

status of the servers. Using these probabilities we approximated several performance

characteristics of the unreliable M/M/2 retrial queue. In the next chapter, we will as-

sess the quality of our approximations by comparing the results with those obtained

by a discrete-event simulation model.
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4. Numerical Experiments

In this chapter we assess the quality of the phase-merging approximation

presented in Chapter 3 for the unreliable M/M/2 retrial queue. Using a benchmark

discrete-event simulation model, we will compare results for congestion and delay

measures. We modified a validated unreliable M/M/1 retrial queue simulation model

created by Sherman [36] to include an additional unreliable server. We then execute

the new model without failures and compare results to an exact analysis of the

reliable M/M/2 retrial queue (see Falin and Templeton [17]). Subsequently, we turn

our attention to the case of two unreliable servers with two dedicated repair persons.

To begin, we review the exact analysis of the reliable M/M/2 retrial queue.

4.1 Review of the Reliable M/M/2 Retrial Queue

Falin and Templeton [17] provide a detailed analysis of the standard M/M/2

retrial queue wherein customers arrive to the system according to a Poisson pro-

cess with rate λ (λ > 0). Without loss of generality, the authors assume the ser-

vice rate, µ, is equal to unity. Customers who perform retrials do so according

to an exponential distribution with mean 1/θ. They define the stochastic process

{(R(t), B(t)) : t ≥ 0}, where R(t) is the number of customers in the orbit at time

t and B(t) is the number of busy servers at time t. The process is a CTMC on the

state space, S = {(i, j) : i ≥ 0, j = 0, 1, 2}. The stability condition for this system

is λ < 2 (assuming µ = 1). The authors recursively derived the steady-state joint

distribution of orbit size and the number of busy servers in terms of hypergeometric

functions. The performance measures of interest are the steady-state mean number

of customers in the orbit, denoted by E[R], and the probability of blocking which
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we denote here by pB. These quantities are given by

E[R] =
1 + θ

θ
· λ3 + (λ2 − 2λ + 2)g

(2− λ)(2 + λ + g)
, (4.1)

pB =
λ2 + (λ− 1)g

2 + λ + g
, (4.2)

where

g =
λ3

2 + 3λ + 2θ
· F (a + 1, b + 1, c + 1; λ

2
)

F (a, b, c; λ
2
)

.

The function F is the hypergeometric function defined by,

F (a, b, c; x) ≡
∞∑
i=0

xi

i!

i−1∏

k=0

(a + k)(b + k)

c + k
,

where

a =
2λ + 1 +

√
4λ + 1

2θ
,

b =
2λ + 1−√4λ + 1

2θ
,

c =
2 + 3λ + 2θ

2θ
.

4.2 Validation of Arenar Simulation

Sherman [36] provided an exact analysis for an unreliable M/M/1 retrial queue.

Using the exact results, the author validated a discrete-event simulation model in

the Arenar environment. We extend his validated simulation model by including an

additional unreliable server. The simulation model for the unreliable M/M/2 retrial

queue was created using the professional version of Arenar and executed on an

IBMr Thinkpad with a 1.86 GHz Intelr Centrino processor and 0.99 GB of RAM.

To further ensure the accuracy of our simulation model, we compared the exact

queueing measures of the reliable M/M/2 retrial queue to the output of simulations

run with the failure parameter ξ = 0. Choosing µ = 1 and θ = 0.5, we varied λ so as
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to compute the mean orbit length and probability of blocking under different traffic

intensities. The exact solutions for mean orbit length, E[R], and the probability of

blocking, pB, were computed using two functions coded in MATLABr and can be

found in the appendix. The main program, MeanQueueLength, computes both pB

and E[R], given values for the parameters λ and θ. Recall that µ is assumed to be 1.

Using these parameters, the function computes the values a, b and c which are passed

into another function, Hypergeometric. The purpose of this MATLABr function is

to compute the hypergeometric functions, F , that are needed to obtain g, which in

turn is used in the main function, MeanQueueLength, to compute E[R] and pB.

To conduct the simulation experiments, we first determined an appropriate run

length for each replication. By investigating the transient period for a few test cases,

we determined that a warm-up period of 400,000 hours was needed to reduce the

bias for the point estimates of our two measures, E[R] and pB. Each replication ran

for 1,000,000 hours, including the 400,000 hour initialization period. To determine

the number of replications, n, for each experiment we used the following formula:

n ≥
(

zα/2S0

ε

)2

(4.3)

We desired a half-width of ε = 0.01 in estimating mean orbit length, E[R] and

a half-width of ε = 0.001 in estimating the probability of blocking, pB both with 95%

confidence. We ran the experiments for 30 replications to obtain the sample standard

deviation, S0 and using α = 0.05, we determined that 10 additional replications were

needed to estimate within the specified values of ε. The following table displays

our results for the experiment with 40 replications, each lasting 1,000,000 hours

including a 400,000 hour warm-up. We also provide a 95% confidence interval for

each performance measure, as well as the absolute difference between the midpoint

of the interval and the exact result from Falin and Templeton [17].
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Table 4.1 Simulated versus exact results for the reliable M/M/2 retrial queue.

λ Lower CI Limit Midpoint Upper CI Limit Exact Abs. Diff.
0.50 E[R] 0.13335 0.13374 0.13413 0.13366 0.00008

pB 0.09144 0.09160 0.09175 0.09159 0.00001

0.75 E[R] 0.45986 0.46113 0.46240 0.46042 0.00071
pB 0.18512 0.18536 0.18560 0.18533 0.00003

1.00 E[R] 1.18465 1.18739 1.19012 1.18639 0.00099
pB 0.30211 0.30237 0.30264 0.30227 0.00010

1.60 E[R] 9.13450 9.16290 9.19131 9.16640 0.00350
pB 0.66828 0.66886 0.66944 0.66891 0.00005

1.70 E[R] 14.00109 14.05065 14.10021 14.04110 0.00955
pB 0.74258 0.74313 0.74368 0.74295 0.00018

The relatively small absolute difference values lead us to conclude that the

simulation model excluding failures provides valid results for the reliable M/M/2

queue. We subsequently incorporate failures into the extension of the simulation

model by Sherman [36].

4.3 Approximated Versus Simulated Performance Measures

In this section, we use the phase-merging algorithm to approximate values

for the mean orbit length, E[R], mean sojourn time, E[W ], expected number of

customers at the servers, E[Ns] and mean time spent in orbit, E[Wr] for the un-

reliable M/M/2 retrial queue. These approximations are then compared with the

results of an Arenar simulation model. The approximations are computed using

a MATLABr function, ClassProbs. Given values for the parameters λ, µ, ξ, α, θ, qa

and qf , the function first calculates the conditional steady-state probabilities given

each level of the orbit (which are equivalent for all levels) and stores them in a

vector. Next, the values λ̂ and θ̂ are computed by Equations (3.16) and (3.17). Us-

4-4



ing the fact that the marginal distribution of the number of customers in orbit is

approximately Poisson with rate λ̂/θ̂, we approximate the steady-state joint distri-

bution of the number of customers in orbit and status of the servers by multiplying

the conditional and marginal probabilities. The function then uses the steady-state

distribution to approximate the various queueing performance measures.

To begin, we chose the following values for the parameters so as to meet the

requirements of the phase-merging algorithm: µ = 6, ξ = 0.01, α = 5, θ = 0.1 and

qf = 0.5. Recall, that for the algorithm to produce effective results we require that

the flows within levels of the orbit be significantly greater than those between levels.

For each value of λ (λ = 2, 4 and 6) selected, we varied qa from 0 to 1 in increments

of 0.1. For consistency in experimentation, 40 replications were executed using a

run length of 1,000,000 hours including a 400,000 hour warm-up. The following ta-

bles and figures provide comparisons between the approximations and the simulated

performance measures. For the simulated means, we provide 95% confidence inter-

vals and include an absolute difference between the midpoint of the interval and the

approximation.

We are also interested in the sensitivity of the approximation procedure to

perturbations of qf . Tables 4.8 and 4.9 and Figures 4.13 through 4.16 provide the

results for λ = 2, µ = 6, ξ = 0.01, α = 5, θ = 0.1 and qa = 0.5. The simulation

was again replicated 40 times, each one for 1,000,000 hours including a 400,000 hour

warm-up.
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Table 4.2 Numerical results for unreliable M/M/2 retrial queue with λ = 2.

qa Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[R] 0.01645 0.01668 0.01691 0.01667 0.00002

E[W ] 0.16797 0.16809 0.16822 0.16824 0.00014

0.1 E[R] 0.10254 0.10254 0.10254 0.10128 0.00126
E[W ] 0.21165 0.21191 0.21217 0.21054 0.00137

0.2 E[R] 0.18955 0.19029 0.19103 0.18590 0.00439
E[W ] 0.25581 0.25618 0.25655 0.25285 0.00333

0.3 E[R] 0.27884 0.27986 0.28087 0.27051 0.00935
E[W ] 0.30113 0.30162 0.30211 0.29516 0.00646

0.4 E[R] 0.36891 0.36985 0.37078 0.35512 0.01472
E[W ] 0.34681 0.34726 0.34771 0.33746 0.00980

0.5 E[R] 0.46042 0.46157 0.46272 0.43974 0.02183
E[W ] 0.39328 0.39384 0.39440 0.37977 0.01407

0.6 E[R] 0.55345 0.55490 0.55635 0.52435 0.03054
E[W ] 0.44046 0.44118 0.44191 0.42208 0.01911

0.7 E[R] 0.64746 0.64921 0.65096 0.60897 0.04024
E[W ] 0.48819 0.48906 0.48994 0.46439 0.02468

0.8 E[R] 0.74497 0.74660 0.74824 0.69358 0.05302
E[W ] 0.53762 0.53843 0.53924 0.50669 0.03174

0.9 E[R] 0.84182 0.84344 0.84507 0.77820 0.06525
E[W ] 0.58674 0.58756 0.58837 0.54900 0.03856

1.0 E[R] 0.94083 0.94272 0.94460 0.86281 0.07991
E[W ] 0.63686 0.63776 0.63867 0.59131 0.04646
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Table 4.3 Numerical results for unreliable M/M/2 retrial queue with λ = 2.

qa Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[Ns] 0.32333 0.32345 0.32358 0.31980 0.00365

E[Wr] 10.35055 10.44296 10.53536 10.42307 0.01989

0.1 E[Ns] 0.32461 0.32473 0.32485 0.31980 0.00492
E[Wr] 10.48955 10.53118 10.57280 10.42307 0.10810

0.2 E[Ns] 0.32592 0.32604 0.32617 0.31980 0.00624
E[Wr] 10.50424 10.53548 10.56671 10.42307 0.11240

0.3 E[Ns] 0.32718 0.32731 0.32744 0.31980 0.00751
E[Wr] 10.51904 10.54525 10.57146 10.42307 0.12218

0.4 E[Ns] 0.32853 0.32866 0.32879 0.31980 0.00886
E[Wr] 10.52712 10.54940 10.57168 10.42307 0.12633

0.5 E[Ns] 0.32984 0.32996 0.33008 0.31980 0.01016
E[Wr] 10.52572 10.54373 10.56173 10.42307 0.12065

0.6 E[Ns] 0.33122 0.33134 0.33146 0.31980 0.01154
E[Wr] 10.53213 10.55058 10.56902 10.42307 0.12750

0.7 E[Ns] 0.33258 0.33271 0.33283 0.31980 0.01290
E[Wr] 10.53818 10.55705 10.57592 10.42307 0.13398

0.8 E[Ns] 0.33400 0.33412 0.33425 0.31980 0.01432
E[Wr] 10.53549 10.55473 10.57396 10.42307 0.13165

0.9 E[Ns] 0.33545 0.33557 0.33569 0.31980 0.01577
E[Wr] 10.53799 10.55515 10.57231 10.42307 0.13208

1.0 E[Ns] 0.33697 0.33712 0.33726 0.31980 0.01731
E[Wr] 10.54580 10.56103 10.57625 10.42307 0.13795
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Figure 4.1 Mean orbit length for λ = 2: approximated (- - -), simulated (—).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

qa

E
[W

]

Figure 4.2 Mean sojourn time for λ = 2: approximated (- - -), simulated (—).

4-8



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

qa

E
[N

s]

Figure 4.3 Mean number of customers at the servers for λ = 2: approximated (- - -),
simulated (—).
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Figure 4.4 Mean time in orbit for λ = 2: approximated (- - -), simulated (—).
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Table 4.4 Numerical results for unreliable M/M/2 retrial queue with λ = 4.

qa Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[R] 0.03289 0.03329 0.03369 0.03333 0.00004

E[W ] 0.15498 0.15508 0.15519 0.15523 0.00015

0.1 E[R] 0.58545 0.58726 0.58908 0.57025 0.01701
E[W ] 0.29476 0.29522 0.29567 0.28951 0.00570

0.2 E[R] 1.16627 1.16850 1.17074 1.10717 0.06133
E[W ] 0.44167 0.44223 0.44279 0.42374 0.01849

0.3 E[R] 1.77391 1.77629 1.77867 1.64409 0.13220
E[W ] 0.59535 0.59593 0.59652 0.55796 0.03797

0.4 E[R] 2.41168 2.41476 2.41783 2.18101 0.23375
E[W ] 0.75667 0.75739 0.75810 0.69219 0.06519

0.5 E[R] 3.08009 3.08419 3.08829 2.71792 0.36627
E[W ] 0.92568 0.92663 0.92759 0.82642 0.10021

0.6 E[R] 3.78274 3.78787 3.79300 3.25484 0.53303
E[W ] 1.10329 1.10453 1.10576 0.96065 0.14387

0.7 E[R] 4.52689 4.53178 4.53666 3.79176 0.74001
E[W ] 1.29137 1.29258 1.29379 1.09488 0.19770

0.8 E[R] 5.31320 5.32039 5.32757 4.32868 0.99171
E[W ] 1.49016 1.49190 1.49364 1.22911 0.26279

0.9 E[R] 6.14850 6.15499 6.16147 4.86560 1.28939
E[W ] 1.70133 1.70282 1.70431 1.36334 0.33948

1.0 E[R] 7.03039 7.03764 7.04489 5.40252 1.63512
E[W ] 1.92421 1.92596 1.92770 1.49757 0.42839

4-10



Table 4.5 Numerical results for unreliable M/M/2 retrial queue with λ = 4.

qa Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[Ns] 0.59087 0.59104 0.59121 0.58777 0.00327

E[Wr] 11.29144 11.37490 11.45836 11.34230 0.03260

0.1 E[Ns] 0.59732 0.59748 0.59763 0.58777 0.00971
E[Wr] 11.45817 11.47780 11.49743 11.34230 0.13550

0.2 E[Ns] 0.60412 0.60428 0.60443 0.58777 0.01651
E[Wr] 11.48961 11.50620 11.52279 11.34230 0.16390

0.3 E[Ns] 0.61116 0.61132 0.61149 0.58777 0.02355
E[Wr] 11.53750 11.54770 11.55790 11.34230 0.20540

0.4 E[Ns] 0.61844 0.61863 0.61881 0.58777 0.03085
E[Wr] 11.58087 11.58980 11.59873 11.34230 0.24750

0.5 E[Ns] 0.62602 0.62622 0.62642 0.58777 0.03845
E[Wr] 11.61671 11.62590 11.63509 11.34230 0.28360

0.6 E[Ns] 0.63400 0.63421 0.63442 0.58777 0.04644
E[Wr] 11.65429 11.66393 11.67356 11.34230 0.32163

0.7 E[Ns] 0.64232 0.64252 0.64272 0.58777 0.05475
E[Wr] 11.70235 11.70923 11.71610 11.34230 0.36693

0.8 E[Ns] 0.65105 0.65124 0.65142 0.58777 0.06347
E[Wr] 11.74962 11.75730 11.76498 11.34230 0.41500

0.9 E[Ns] 0.66015 0.66036 0.66057 0.58777 0.07259
E[Wr] 11.80197 11.80893 11.81588 11.34230 0.46663

1.0 E[Ns] 0.66975 0.66994 0.67014 0.58777 0.08217
E[Wr] 11.85769 11.86385 11.87001 11.34230 0.52155
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Figure 4.5 Mean orbit length for λ = 4: approximated (- - -), simulated (—).
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Figure 4.6 Mean sojourn time for λ = 4: approximated (- - -), simulated (—).
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Figure 4.7 Mean number of customers at the servers for λ = 4: approximated (- - -),
simulated (—).
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Figure 4.8 Mean time in orbit for λ = 4: approximated (- - -), simulated (—).
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Table 4.6 Numerical results for unreliable M/M/2 retrial queue with λ = 6.

qa Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[R] 0.05004 0.05054 0.05104 0.05000 0.00054

E[W ] 0.14139 0.14148 0.14157 0.14156 0.00008

0.1 E[R] 1.62920 1.63122 1.63325 1.55609 0.07513
E[W ] 0.40701 0.40733 0.40765 0.39257 0.01475

0.2 E[R] 3.34038 3.34448 3.34858 3.06218 0.28230
E[W ] 0.69473 0.69540 0.69606 0.64359 0.05181

0.3 E[R] 5.20687 5.21205 5.21722 4.56826 0.64378
E[W ] 1.00853 1.00937 1.01020 0.89460 0.11476

0.4 E[R] 7.24197 7.24951 7.25705 6.07435 1.17516
E[W ] 1.35062 1.35182 1.35303 1.14562 0.20621

0.5 E[R] 9.48227 9.49357 9.50486 7.58044 1.91312
E[W ] 1.72713 1.72896 1.73078 1.39663 0.33232

0.6 E[R] 11.96474 11.97630 11.98786 9.08653 2.88977
E[W ] 2.14406 2.14590 2.14773 1.64765 0.49825

0.7 E[R] 14.73599 14.74998 14.76396 10.59262 4.15736
E[W ] 2.60978 2.61191 2.61403 1.89866 0.71325

0.8 E[R] 17.83898 17.85718 17.87537 12.09870 5.75847
E[W ] 3.13117 3.13394 3.13671 2.14968 0.98426

0.9 E[R] 21.37754 21.39643 21.41531 13.60479 7.79163
E[W ] 3.72507 3.72786 3.73064 2.40069 1.32716

1.0 E[R] 25.44877 25.47183 25.49488 15.11088 10.36094
E[W ] 4.40802 4.41145 4.41489 2.65171 1.75975
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Table 4.7 Numerical results for unreliable M/M/2 retrial queue with λ = 6.

qa Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[Ns] 0.80210 0.80228 0.80246 0.79935 0.00293

E[Wr] 12.48687 12.58335 12.67983 12.51015 0.07320

0.1 E[Ns] 0.81665 0.81681 0.81697 0.79935 0.01746
E[Wr] 12.71181 12.72520 12.73859 12.51015 0.21505

0.2 E[Ns] 0.83192 0.83209 0.83226 0.79935 0.03274
E[Wr] 12.82172 12.83100 12.84028 12.51015 0.32085

0.3 E[Ns] 0.84819 0.84836 0.84853 0.79935 0.04901
E[Wr] 12.95080 12.95820 12.96560 12.51015 0.44805

0.4 E[Ns] 0.86560 0.86579 0.86597 0.79935 0.06644
E[Wr] 13.08647 13.09380 13.10113 12.51015 0.58365

0.5 E[Ns] 0.88416 0.88436 0.88457 0.79935 0.08501
E[Wr] 13.23764 13.24510 13.25256 12.51015 0.73495

0.6 E[Ns] 0.90426 0.90447 0.90468 0.79935 0.10512
E[Wr] 13.40492 13.41205 13.41918 12.51015 0.90190

0.7 E[Ns] 0.92577 0.92599 0.92621 0.79935 0.12664
E[Wr] 13.59890 13.60425 13.60960 12.51015 1.09410

0.8 E[Ns] 0.94910 0.94935 0.94959 0.79935 0.14999
E[Wr] 13.81498 13.82035 13.82572 12.51015 1.31020

0.9 E[Ns] 0.97473 0.97497 0.97522 0.79935 0.17562
E[Wr] 14.06239 14.06728 14.07216 12.51015 1.55713

1.0 E[Ns] 1.00278 1.00303 1.00329 0.79935 0.20368
E[Wr] 14.35586 14.36155 14.36724 12.51015 1.85140
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Figure 4.9 Mean orbit length for λ = 6: approximated (- - -), simulated (—).
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Figure 4.10 Mean sojourn time for λ = 6: approximated (- - -), simulated (—).
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Figure 4.11 Mean number of customers at the servers for λ = 6: approximated (- - -),
simulated (—).
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Figure 4.12 Mean time in orbit for λ = 6: approximated (- - -), simulated (—).
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Table 4.8 Mean orbit size and sojourn time as a function of qf .

qf Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[R] 0.44212 0.44345 0.44477 0.42307 0.02038

E[W ] 0.38392 0.38459 0.38526 0.37144 0.01315

0.1 E[R] 0.44594 0.44719 0.44844 0.42640 0.02079
E[W ] 0.38589 0.38651 0.38713 0.37310 0.01341

0.2 E[R] 0.44935 0.45051 0.45167 0.42974 0.02077
E[W ] 0.38765 0.38821 0.38877 0.37477 0.01344

0.3 E[R] 0.45323 0.45445 0.45567 0.43307 0.02138
E[W ] 0.38956 0.39019 0.39081 0.37644 0.01375

0.4 E[R] 0.45688 0.45803 0.45918 0.43640 0.02163
E[W ] 0.39142 0.39201 0.39260 0.37810 0.01391

0.5 E[R] 0.46042 0.46157 0.46272 0.43974 0.02183
E[W ] 0.39328 0.39384 0.39440 0.37977 0.01407

0.6 E[R] 0.46377 0.46503 0.46629 0.44307 0.02196
E[W ] 0.39490 0.39553 0.39615 0.38144 0.01409

0.7 E[R] 0.46668 0.46793 0.46918 0.44640 0.02153
E[W ] 0.39640 0.39705 0.39769 0.38310 0.01395

0.8 E[R] 0.47128 0.47260 0.47392 0.44973 0.02287
E[W ] 0.39874 0.39941 0.40007 0.38477 0.01464

0.9 E[R] 0.47490 0.47601 0.47712 0.45307 0.02294
E[W ] 0.40057 0.40115 0.40172 0.38644 0.01471

1.0 E[R] 0.47828 0.47957 0.48086 0.45640 0.02317
E[W ] 0.40234 0.40297 0.40361 0.38810 0.01487
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Table 4.9 Mean number of customers at the servers and time in orbit as a function of
qf .

qf Lower CI Limit Midpoint Upper CI Limit Approximation Abs. Diff.
0.0 E[Ns] 0.32961 0.32974 0.32986 0.31980 0.00994

E[Wr] 10.53275 10.55070 10.56865 10.42307 0.12763

0.1 E[Ns] 0.32967 0.32978 0.32990 0.31980 0.00998
E[Wr] 10.52989 10.54828 10.56666 10.42307 0.12521

0.2 E[Ns] 0.32971 0.32983 0.32995 0.31980 0.01003
E[Wr] 10.52782 10.54445 10.56108 10.42307 0.12138

0.3 E[Ns] 0.32978 0.32991 0.33003 0.31980 0.01011
E[Wr] 10.53358 10.55190 10.57022 10.42307 0.12883

0.4 E[Ns] 0.32983 0.32995 0.33007 0.31980 0.01015
E[Wr] 10.52474 10.54353 10.56231 10.42307 0.12045

0.5 E[Ns] 0.32984 0.32996 0.33008 0.31980 0.01016
E[Wr] 10.52572 10.54373 10.56173 10.42307 0.12065

0.6 E[Ns] 0.32997 0.33010 0.33022 0.31980 0.01030
E[Wr] 10.52460 10.54415 10.56370 10.42307 0.12108

0.7 E[Ns] 0.32996 0.33009 0.33021 0.31980 0.01029
E[Wr] 10.52551 10.54498 10.56444 10.42307 0.12190

0.8 E[Ns] 0.33004 0.33017 0.33029 0.31980 0.01037
E[Wr] 10.52866 10.54865 10.56864 10.42307 0.12558

0.9 E[Ns] 0.33007 0.33020 0.33033 0.31980 0.01040
E[Wr] 10.52817 10.54733 10.56648 10.42307 0.12425

1.0 E[Ns] 0.33010 0.33021 0.33033 0.31980 0.01041
E[Wr] 10.52275 10.54275 10.56275 10.42307 0.11968
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Figure 4.13 Mean orbit length for varying values of qf : approximated (- - -), simulated
(—).
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Figure 4.14 Mean sojourn time for varying values of qf : approximated (- - -), simulated
(—).
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Figure 4.15 Mean number of customers at the servers for varying values of qf : approx-
imated (- - -), simulated (—).
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Figure 4.16 Mean time in orbit for varying values of qf : approximated (- - -), simulated
(—).
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4.4 Summary of Results

The phase-merging approximation performs well for the case λ = 2 as the

absolute difference for each of the four measures remains low for all values of qa.

Note that the mean orbit length remains below one as qa increases. This implies

that the rates of transition that correspond to retrial successes are relatively low

which satisfies the assumption that rates within levels of the orbit must be greater

than those between levels. For each value of qa, the approximations for E[Ns] and

E[Wr] remained constant due to their strong dependence on the service rate, µ,

which remained constant for all experiments. The simulation results showed that

there was an extremely gradual increase in E[Ns] for increasing values of qa, but

E[Wr] essentially remained constant.

For the case λ = 4, we notice that once the value of qa exceeds 0.4, the ap-

proximation performs poorly with respect to E[R] and E[W ]. This can be explained

in two ways. First, the rate λqa, which corresponds to a retrial orbit entry due to

blocking upon arrival, approaches λ as qa → 1. Second, the retrial orbit grows in

size as qa increases, forcing the retrial success transition rates to become large. Both

scenarios increase the flows between levels, threatening to violate the assumption

that must hold for accurate approximations. With regards to E[Ns] and E[Wr], for

λ = 4, we again observe that the approximations remain constant for all values of qa.

Furthermore, the simulated values of E[Ns] and E[Wr] exhibit a gradual increase,

however the approximation remains effective for most values of qa.

We see in the case of λ = 6 the same phenomenon as λ = 4, only that the

approximations for the four measures worsen once qa is greater than 0.2. We also

note a more substantial growth in the simulated results for E[Ns] and E[Wr] with the

approximation only effective for the lower values of qa. For all values of λ tested, we

conclude that qa has a very limited effect on E[Ns] and E[Wr]. Varying the service

rate, µ, is likely to have a more pronounced impact on the two measures.
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Figures 4.13 through 4.16 indicate that the phase-merging algorithm is reason-

ably effective in approximating E[R], E[W ], E[Ns] and E[Wr] for all values of qf

when qa is fixed at 0.5. Both the simulation results and approximations for E[R]

and E[W ] increase in a linear fashion as qf increases, although the growth is very

gradual. This is due to the fact that the assumed failure rate was small (ξ = 0.01).

In contrast, the simulation results and approximations for E[Ns] and E[Wr] remain

constant for all values of qf . This is explained by their dependence on the service

rate which was constant in all of the experiments. We conclude that for low rates

of failure, the method of approximation is good, so long as the transition intensities

within orbit levels are significantly greater than those between levels.

Examining Figures 4.1, 4.2, 4.5, 4.6, 4.9 and 4.10, we notice that the mean

orbit length and sojourn time grow exponentially while the approximations exhibit

linear growth as qa increases. This effect is more pronounced in the cases λ = 4 and

λ = 6. We conclude, therefore, that the method of approximation is effective when

qa is relatively small (less than 0.5) for the cases when µ is not significantly greater

than λ. When µ is significantly greater than λ, the approximation is effective for

most values of qa.

Ultimately, systems that exhibit a low number of customers in the retrial orbit

while in the steady-state can be effectively analyzed by the phase-merging algorithm.

Although an alternative approach is to simply simulate the system, the time required

to run a simulation can be substantial. Depending on the parameters chosen for

each experiment, the simulation experiments ran for up to 90 minutes while the

approximation method produced effective results in less than a second, provided the

assumptions are met. Thus, the phase-merging algorithm can be used to quickly and

efficiently estimate the various queueing performance measures of interest. These

measures can potentially be used to optimally design, staff, operate or maintain

these types of unreliable multi-server retrial queueing systems.
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5. Conclusions and Future Research

The primary aim of this research was to provide a formal analysis of the

unreliable M/M/2 retrial queueing system. A review of the existing retrial queue-

ing literature revealed that very few results exist for unreliable multi-server retrial

queues. Under the assumptions of our model, it was shown that deriving the joint

steady-state probability distribution of the number of customers in the orbit and

status of the servers via a direct analytical approach is extremely difficult. This com-

plexity is due to transitions that correspond to changes in the number of customers

in the orbit (i.e. retrial successes, blocking upon first arrival, or being preempted by

a server failure). Therefore, we resorted to an approximate analysis to obtain the

joint steady-state distribution of the number of customers in the retrial orbit and

the status of the servers in the unreliable M/M/2 retrial queue.

Applying a phase-merging algorithm due to Korolyuk and Korolyuk [23] and

Courtois [13], it was found that the aggregated model is analogous to an M/M/∞
queue. Solving the balance equations for the aggregated model, we showed that the

steady-state orbit length is approximately Poisson distributed. Using this result,

we approximated the joint probability distribution of the number of customers in

the orbit and the status of the servers. This enabled us to derive approximate

expressions for the steady-state mean orbit length, mean number of customers in

service, mean number of customers in the system, the mean system sojourn time,

and the mean orbit sojourn time. In lieu of an exact benchmark, the accuracy of

these approximations was assessed using a discrete-event simulation model. The

results indicated that, under moderate assumptions (i.e. the transition intensities

that flow between states within a given level of the orbit must be significantly greater

than those intensities that flow between orbit levels), the algorithm produces effective

approximations. However, if the assumptions are violated, the method may perform

very poorly. For the approximation to be useful, qa should not exceed 0.5 when
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µ is not significantly greater than λ. In contrast, when µ is significantly greater

than λ, the method is effective for most values of qa. For systems exhibiting these

characteristics, the phase-merging approximation will be of value.

It can be argued that the necessary assumptions for the phase-merging algo-

rithm are extremely restrictive. However, to the best of our knowledge, only three

other works have attempted to derive results for the unreliable multi-server retrial

queue. In this sense, we feel that the model, with its assumptions, does contribute

significantly to our understanding of the dynamics of unreliable, multi-server retrial

queues.

With regards to future research, a formal stability analysis of the system will

provide additional insight into the dynamics of the model. Once this is accomplished,

an extension of this work to the more general case of unreliable M/M/c retrial

queueing systems with c > 2 should be considered. Matrix-analytic methods may

be used if it can be shown that the infinitesimal generator matrix of {(R(t), X(t)) :

t ≥ 0} possesses a quasi-birth-death structure. A multitude of queueing variants can

be considered in this model, including the case of general service time distributions,

balking, reneging, feedback or a FCFS discipline for the retrial orbit. A version of

the model that does not allow for loss could also be of great value in applications

where customers do not have the option of departing the system. The model may

also be extended to a network of unreliable multi-server retrial queues in which the

phase-merging algorithm can be applied.
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Appendix A. MATLABr Code: Reliable M/M/2 Case

1 %**************************************************************************

2 %AUTHOR: Lt Brian P Crawford

3 % AFIT/ENS/GOR07-M

4 % March 2007

5 %This function calculates the sum of a hypergeometric series given four

6 %parameters: a, b, c, and x. It outputs the sum to a variable called Fnew.

7 %This sum is further used to calculate the mean queue length of a reliable

8 %M/M/2 retrial queue. This function is called within another function

9 %titled MeanQueueLength as a means to perform the calculation.

10 %**************************************************************************

11 function [Fnew] = Hypergeometric(a,b,c,x)

12

13 Fnew=0; %Initilization values

14 Fold=1;

15 j=1;

16

17 while abs(Fnew-Fold) > 10^-9 %since this is an infinite sum this condition

18 %will cause the loop to stop once the difference of sums obtained in

19 %consecutive iterations is less than 10^-9

20

21 Fold=Fnew;

22 product=1;

23

24 %Note that MATLAB will not allow an indexing to begin with zero

25 for k=1:j-1;

26 product=product*(((a+k-1)*(b+k-1))/(c+k-1)); %calculates the

27 %product portion of the series

28 end

29 Fnew=Fnew+((x^(j-1))/(factorial(j-1)))*product; %calculates the sum

30 j=j+1;

31 end

32

33 end
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1 %**************************************************************************

2 %AUTHOR: Lt Brian P Crawford

3 % AFIT/ENS/GOR07-M

4 % March 2007

5 %This function calculates the mean queue length of a reliable M/M/2 retrial

6 %queue given an arrival rate and a retrial rate. The service rate is

7 %assumed to be exponential with mean 1. This function calls another

8 %function titled Hypergeometric which returns a sum used in the calculation

9 %of the mean queue length. Since the formula is complicated and rather

10 %involved variables are used to represent pieces of it and then it is put

11 %together under the variable N. The blocking probability is also

12 %calculated.

13 %**************************************************************************

14 function MeanQueueLength(lambda,theta)

15

16 a=(2*lambda+1+sqrt(4*lambda+1))/(2*theta);

17

18 b=(2*lambda+1-sqrt(4*lambda+1))/(2*theta);

19

20 c=(2+3*lambda+2*theta)/(2*theta);

21

22 [Fnew]=Hypergeometric(a,b,c,lambda/2);

23 A=Fnew;

24 [Fnew]=Hypergeometric(a+1,b+1,c+1,lambda/2);

25 B=Fnew;

26

27 %The expressions are extremely involved so they are broken up into pieces

28 %that represent numerators, denominators, etc.

29

30 g=(lambda^3)/(2+3*lambda+2*theta)*(B/A);

31

32 N1=(1+theta)/theta;

33 N2=lambda^3 + g*(lambda^2 - 2*lambda + 2);

34 N3=(2-lambda)*(2 + lambda + g);

35

36 R=N1*(N2/N3) %mean queue length

37

38 Bl=(lambda^2 + g*(lambda - 1))/(2 + lambda + g) %blocking probability
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Appendix B. MATLABr Code: Unreliable M/M/2 Case

1

2 %**************************************************************************

3 %AUTHOR: Lt Brian P Crawford

4 % AFIT/ENS/GOR07-M

5 % March 2007

6 %This function approximates the steady-state probabilities of the M/M/2

7 %retrial queue with servers subject to breakdowns and repairs. User inputs

8 %arrival rate ’l’, service rate ’m’, failure rate ’x’, repair rate ’a’ and

9 %retrial rate ’theta’ as well probabilities ’qa’ and ’qf’, where ’qa’ is

10 %the probability an arriving customer stays in the system when both servers

11 %are inaccessible and ’qf’ is the probability a customer preempted by a

12 %server failure remains in the system. For the input ’OrbitSize’ a large

13 %integer (e.g. 1000) should be chosen. The function outputs the performance

14 %charateristics to include mean orbit length, N; expected number at the

15 %servers, Ns; long-run average number of customers in system, L; long-run

16 %average time waiting in the system, W; and the time spent in orbit.

17 %**************************************************************************

18

19 function ClassProbs(l,m,x,a,theta,qa,qf,OrbitSize)

20

21 format long

22

23 Den = m^2*x^2*l+6*m^2*x^2*a+2*m^3*x^2+2*m^2*x^3+6*a^2*m*x*l ...

24 +2*m*a^3*l+4*l*a^2*m^2+l^2*a^3+3*l^2*a^2*m+l^3*a^2+2*x*l^2*a^2 ...

25 +4*m^3*x*a+6*a^2*m^2*x+2*m^2*a^3+2*m^3*a^2+2*m*x*l^2*a+6*m^2*x*l*a ...

26 +4*a*m*x^2*l;

27

28 %’A’ corresponds to p_1|i

29 A=2*(a+l+x+m)*a^2*m^2/Den;

30

31 %’B’ corresponds to p_2|i

32 B=2*(a+m+l+2*x)*a^2*m*l/Den;

33

34 %’C’ corresponds to p_3|i

35 C=(a+m+l+2*x)*a^2*l^2/Den;

36

37 %’D’ corresponds to p_4|i

38 D=2*(a+l+2*m+2*x)*a*m*x*l/Den;

39

40 %’E’ corresponds to p_5|i

41 E=2*a*x*m^2*(l+2*a+2*m+2*x)/Den;
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42

43 %’F’ corresponds to p_6|i

44 F=m^2*x^2*(l+2*a+2*m+2*x)/Den;

45

46 %Stores the above probabilities into a vector

47 CondProb = [A B C D E F];

48

49 %Check to make sure the conditional probabilities sum to 1

50 Check=sum(CondProb)

51

52 %The ’birth’ rate for the nonhomogeneous aggregated model

53 LambdaHat = x*qf*B + (l*qa+2*x*qf)*C + (l*qa+x*qf)*D + l*qa*F;

54 %The ’death’ rate

55 ThetaHat = theta*(A + B + E);

56 %The level of the orbit is approximately Poisson distributed with this rate

57 Parameter = LambdaHat/ThetaHat;

58

59 %This loop creates an ’OrbitSize’ X 6 matrix comprised of the approximate

60 %joint probabilities of the orbit size and status of the servers where the

61 %rows correspond to the orbit size and the columns consist of the

62 %probabilities that correspond to the status of the servers.

63 P=[];

64 for i=1:OrbitSize

65 for j=1:6

66 P(i,j) = CondProb(j)*poisspdf(i-1,Parameter);

67 end

68 end

69

70 P;

71

72 %A small section to verify a substantial portion of probability mass

73 CheckSum=[];

74 i=1;

75 for i=1:OrbitSize

76 CheckSum(i)=sum(P(i,:));

77 end

78 IsItOne=sum(CheckSum)

79

80 %Approximate Mean Orbit Length, E[R], calculation

81 prob=[];

82 index=[];

83 for i=1:OrbitSize

84 prob(i)=sum(P(i,:));
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85 index(i)=i-1;

86 end

87 R=index*prob’

88

89 %This loop approximates the probability that a server is free. It is used

90 %in the approximation for total time spent in orbit

91 i=1;

92 ProbServerFree=[];

93 for i=1:OrbitSize

94 ProbServerFree(i)=P(i,1)+P(i,2)+P(i,5);

95 end

96

97 %Approximate expected number at server

98 Ns=sum(P(:,2))+sum(P(:,4))+2*sum(P(:,3))

99

100 %Approximate long-run average number of customers in system

101 L=R + Ns

102

103 %Approximate long-run average time spent in system per customer

104 W=L/l

105

106 ProbServFree=sum(ProbServerFree)

107 %Approximate average time spent in orbit

108 Wr = (1/theta)*(1/ProbServFree)

109

110 %Probability a customer cannot gain access to the servers

111 BlockProb=1-ProbServFree
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