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Abstract 

 

  Disruptions impacting workforce schedules can be costly.  A 1999 study of the 

United Kingdom’s National Health Service estimated that as much as four percent of the 

total resources spent on staffing were lost to schedule disruptions like absenteeism.  

Although disruptions can not be eliminated, workforce schedules can be improved to be 

more responsive to disruptions.  One key area of study that has expanded over the past 

few years is the application of traditional scheduling techniques to re-rostering problems.  

These efforts have provided methods for responding to schedule disruptions, but typically 

require deviations to the disrupted schedule. 

  This thesis examines five workforce scheduling models designed for a nurse 

rostering problem.  Each model is designed to produce a robust workforce schedule that 

remains valid in the midst of disruptions and requires no schedule deviations.  Each 

model is evaluated based on the number of disruptions it can receive before becoming 

invalid.  Nonparametric statistical analysis is used to analyze the disruption data for each 

model and determine which workforce scheduling model produces the most robust 

schedule.  The results of this research indicate that additional manpower must be applied 

to the correct skill sets in order to produce robust workforce schedules.  Furthermore, 

workforce managers can consider leaving a portion of the workforce unscheduled (or in 

reserve) to accommodate schedule disruptions.      
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AN ANALYSIS OF ROBUST WORKFORCE SCHEDULING MODELS FOR A 
NURSE ROSTERING PROBLEM 

 
 
 

I.  Introduction 
 
 

Background 

Absenteeism of professional caregivers in the healthcare industry is very costly.  

In a 1999 study of the United Kingdom's National Health Service (NHS), absenteeism 

had a dramatic effect on the budget allocated for workforce staffing (Ritchie et al, 1999: 

702).  An estimated 70% of the NHS's total resources were spent on staffing.  Some 

absenteeism rates in the NHS healthcare system were as high as 6%.  Therefore, as much 

as 4% of the NHS budget lost due to absenteeism.  Absenteeism continues to be an 

important topic throughout personnel management literature.  Although healthcare 

managers across the industry are striving to understand the cause of absenteeism and 

reduce its effect on healthcare workforces (Eriksen et al., 2003: 271; Whitehead, 2006: 

61), these efforts will not eliminate absenteeism.  Therefore, it is imperative that 

schedulers work to improve workforce scheduling by developing schedules that are 

responsive to absenteeism and other disruptions. 

 

Overview 

A classical workforce scheduling problem consists of assigning employees to 

shifts in a continuous operations environment.  A continuous operation is an operation 
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that requires a workforce to be available 24 hours a day, over some subset of days 

(Knighton, 2005: 86).  Organizations that function under continuous operations face a 

unique challenge with respect to managing workforce demand requirements.  The goal of 

a scheduler is to satisfy demand requirements per shift while feasibly or optimally 

solving a greater objective.  This overarching objective could be minimizing the total cost 

of wages for all employees scheduled, maximizing the value of the schedule based on 

employee or organizational preferences, or distribute shifts evenly across all employees 

(Ernst et al, 2004: 3).  Often times the workday is broken down into three separate 8-hour 

shifts; which are labeled, Morning, Evening, and Night (Knighton, 2005: 88) 

Scheduling under continuous operations is complicated when a scheduler must 

consider a large workforce with varying skills sets, personnel availabilities, and wage 

rates.  A workforce with these varying employee factors is commonly referred to as a 

heterogeneous workforce (Knighton, 2005: 85).  When scheduling a heterogeneous 

workforce, the scheduler must consider and properly weigh the various factors present in 

the workforce.  Each of these heterogeneous factors adds constraints to the scheduling 

model; thereby increasing the complexity of the model. 

As the size of the workforce increases and complex constraints such as varying 

skill sets are added to the scheduling problem, the schedule becomes less responsive to 

disruptions.  A disruption is defined as an instance when an employee that is scheduled to 

work a specific shift is unavailable to work the specified shift.  To fill the vacant shift 

requirement, the scheduler must reassign an unscheduled employee to cover the shift, 

while continuing to meet current demand and workforce requirements and constraints. 
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Two classical scheduling problems that consider heterogeneous workforces 

supporting continuous operations are the nurse rostering problem and the nurse 

rerostering problem.  The nurse rostering problem has received much attention in the staff 

scheduling literature (Moz and Pato, 2007: 668).  Staff scheduling and rostering have 

been studied and documented by various researchers including Cheang et al. (2003), 

Siferd and Benton (1992), and Ernst et al. (2004).  Several models exist for rostering a 

staff schedule given a defined set of constraints.  However, when a disruption occurs, a 

schedule developed using any of these models is no longer valid.  The scheduler must 

consider changing the schedule to accommodate the disruption in the workforce.  If there 

is an excess number of employees available to work when the disruption occurs, then 

rebuilding the schedule is fairly easy.  However, if there is no excess of available 

employees, then the scheduler must reassign the workforce to each shift (also known as 

re-rostering). 

 

Summary of Current Knowledge 

The nurse re-rostering problem has received limited attention in the current 

literature.  Knighton (2005) considered a network-based mathematical programming 

approach to the re-rostering problem.  Using this approach, Knighton was able to re-

roster the schedule with minimum deviations to the original schedule.  Knighton’s model 

requires the scheduler to develop a constraint set that defines that "all employees are 

scheduled only when available, have adequate skill level, meet minimum shifts per week, 

and have adequate rest between shifts."  (Knighton, 2005: 93)  Furthermore, the 

scheduler must input the employee rankings, as defined by the manager, and the 
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employee shift preferences.  Most recently, Moz and Pato (2007) developed constructive 

heuristics and genetic algorithms to re-roster a schedule following a disruption.  Their use 

of genetic algorithms greatly improved the re-rostering ability of constructive heuristics 

alone. 

Although the re-rostering problem has received attention over the past few years, 

the idea of developing a robust roster has received far less attention.  A robust schedule is 

defined as a schedule that anticipates disruptions and has a predefined solution for 

addressing disruptions.  Obviously, it would be very difficult to develop a schedule that is 

robust against all disruptions.  However, it is feasible to develop a schedule that is robust 

against disruptions on the days requiring the greatest employee demand, possibly at some 

greater cost over an undisrupted optimal schedule.  Therefore, a robust schedule is better 

defined as a schedule that proactively responds to disruptions to shifts with the greatest 

employee demand. 

 

Research Problem 

The purpose of this research work is to develop and identify new scheduling 

models that provide improved workforce schedules.  The models must meet the same 

demand requirements of the original workforce schedule.  However, in contrast to the 

original re-rostering problem, the objective of the new model is to evenly distribute 

excess employee availability in order to maximize the number of disruptions the schedule 

can receive and still remain a valid schedule.  This body of research will identify the best 

method for building a robust workforce schedule. 
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The following investigative questions will aid in developing and evaluating the 

new scheduling model: 

• IQ1: What methods are currently available for workforce scheduling? 

• IQ2: What methods are available for building robust schedules in other 

scheduling applications? 

• IQ3: Which robust workforce scheduling method provides the schedule that can 

respond to the greatest number of disruptions? 

 

Study Delimitations 

This research focuses on identifying scheduling models that provide a workforce 

schedule that is robust against disruptions.  To test the validity of the model, a case study 

is used involving nurses scheduled at a private nursing home in Maine (Oliver, 2006).  

Although the data is not representative of all continuous heterogeneous scheduling 

operations, it is assumed to be sufficient for validating the model.  In contrast, this 

research does not address the scheduling rerostering problem.  This area of research has 

received fair, but limited treatment over the past few years (Knighton, 2005; Moz and 

Pato, 2005). 

 

Approach and Methodology 

 An integer based mathematical program is used to solve the continuous 

heterogeneous workforce scheduling problem.  Several models are developed and 

evaluated based on each model's ability to respond to schedule disruptions.  Schedule 

disruptions are randomly generated, and the model is evaluated on whether the schedule 
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is still valid and able meet minimum shift demand requirements.  If a sufficient number 

of workers are still available to meet shift demand, then the model is considered robust 

against that level of disruptions.  The model is also evaluated based on the factor (i.e. 

skill or manpower) causing the model to fail.  This allows further comparison across 

workforce scheduling models. 

 

Assumptions 

 A few key assumptions are critical to the success of this study.  The first 

assumption is that there is a value associated with maximizing the number of disruptions 

a workforce schedule can undertake and still remain valid.  Furthermore, it is assumed 

that the value of maximizing the robustness of a schedule is greater than the value of 

using an optimal solution. 

 

Expected Results and Future Applications 

Although there has been limited study in the area of robust scheduling with 

respect to continuous heterogeneous workforce scheduling, this research identifies the 

significant benefits of robust scheduling.  First, robust scheduling minimizes the number 

of scheduling deviations required to address disruptions.  Second, robust scheduling 

allows the scheduler to take a proactive approach in addressing unexpected disruptions, 

before they occur.  Ideally, this approach will prevent a scheduler from needing to apply 

a re-rostering algorithm to a disrupted schedule.  Finally, robust scheduling has the 

potential of reducing the number of deviations employees experience in their work 

schedules.  By reducing (and possibly eliminating all-together) these deviations, an 
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employer can potentially save money associated with rescheduling employees.  Finally, 

reducing the number of weekly schedule deviations should inherently prevent any 

employee dissatisfaction with a volatile work schedule that does not proactively address 

the potential for deviations. 
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II. Literature Review 

 

Introduction 

Current workforce scheduling literature addresses several concerns regarding 

workforce scheduling.  Several models have been developed for optimizing workforce 

schedules when varying the number for required workdays per week and varying the 

number of allowable days off per week (Burns et al, 1998).  Models have also been 

developed which incorporate varying workforce skill sets.  One of the areas that requires 

more attention is that of re-rostering and robust workforce scheduling.  Presently, Moz 

and Pato (2007) and Knighton (2005) are the few researchers examining the area of re-

rostering within continuous heterogeneous operations.  Robust workforce scheduling 

literature is absent from the area of continuous heterogeneous operations.  However, the 

concept can be found in literature regarding aircrew scheduling in the airline industry 

(Shebalov and Klabjan, 2006). 

This literature review will first present an overview of workforce scheduling and 

the nurse rostering problem.  It will examine current scheduling techniques and research 

accomplished in the area of re-rostering.  A review of robust scheduling is also presented.  

Particular attention is given to the advancement of robust scheduling in the airline 

industry.  Finally, a brief overview of Shebalov and Klabjan's robust aircrew scheduling 

theory will be presented as a stepping stone for building robust workforce schedules in 

continuous heterogeneous operations.  Although robust scheduling is absent from the 

current workforce scheduling literature, there is sufficient evidence for increased studies 

in this field. 
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Overview 

 Workforce scheduling is commonly referred to as staff or personnel scheduling or 

rostering.  It is the process of constructing work schedules for a staff of employees so that 

an organization can satisfy demand for its goods and services (Ernst et al, 2004: 3).  

Employees are assigned to shifts at varying times in order to satisfy demand 

requirements.  Typically, the number of employees assigned to each shift is governed by 

industrial regulations or other local laws.  Therefore, the objective of a workforce 

scheduler is to schedule employees to meet shift demands, while minimizing the total 

cost of wages for all employees scheduled, maximizing the value of the schedule based 

on employee or organizational preferences, or distributing shifts evenly across all 

employees. 

 

Workforce Scheduling Process 

 Several decision support tools are available to the personnel scheduler.  

Schedulers can use various computer software packages for scheduling.  These packages 

range from simple spreadsheets to complex mathematical models that use highly-

developed algorithms to produce optimal or feasible solutions (Ernst et al, 2004: 3).  In 

every case, the scheduler must follow three steps (Ernst et al, 2004: 4). 

 The first step is that the scheduler must determine the staff leveling required 

based on the service being provided.  This can be determined using historical data and 

forecasting techniques or by examining industry standards and regulations.  The second 

step is that the scheduler must determine the appropriate model and technique available 
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for building the schedule based on demand, wage rates, and shift preferences.  The final 

step is that the scheduler must build and publish the schedule. 

 One key aspect of the first step is identifying the required staff leveling.  Staff 

leveling can be defined by task-based demand, flexible demand, or shift-based demand 

(Ernst et al, 2004: 5).  In task-based demand, personnel are scheduled to complete a 

predetermined list of tasks or actions.  In flexible demand, demand for workers is 

dependent on future incidents.  The arrival of future incidents is unknown, but forecasting 

techniques can be applied to determine the likelihood of when future incidents will occur 

and schedule the workforce accordingly.  One example of flexible demand is determining 

the workforce schedule for a police department.  Although it is not possible to determine 

the future incidents of crime, it is possible to determine the likelihood of crime occurring 

at certain times of the day.  The police workforce can then be scheduled accordingly.  

The final demand type is shift-based demand.  Shift-based demand is demand that is 

determined based on laws or industry regulations.  For example, the U.S. nursing industry 

requires a set level of nurses to be on duty depending on the number of patient beds in the 

facility and the time of day. 

 

The Nurse Rostering Problem 

 One particular rostering problem that has received much attention throughout the 

past four decades is the nurse rostering problem.  Cheang (2003) provides a bibliographic 

survey of this problem.  In the nurse rostering problem, nurses must be scheduled to 

cover shift demand based on the number of patients or beds assigned to the hospital.  The 

nurse rostering problem is a difficult problem in workforce scheduling because hospitals 
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are typically staffed 24 hours a day, seven days a week, every week of the year.  

Therefore, nurses must be scheduled continuously and attention must be given to rest 

periods. 

 The nurse rostering problem can be described in one of three ways: a nurse-day 

view, a nurse-task view, or a nurse-shift pattern view (Cheang et al, 2003: 448).  In the 

nurse-day view, the decision variable is indexed for each nurse and each day.  The 

variable can take on a number of values based on the nurse's assignment for that day.  

Some of the values may include day shift (D), evening shift (E), night shift (N), day-off 

(O), and vacation leave (VL).  Further indexing can be added to the nurse-day view to 

include indexes for individual shifts or individual skills sets.  In the nurse-task view, the 

decision variable is indexed for each nurse and each task that the nurse will accomplish in 

the scheduling period.  This decision variable may only assume a value of 1 if the nurse is 

assigned to the task, or 0 otherwise.  In the nurse-shift pattern view, the decision variable 

is indexed for each nurse and each pattern of shifts available. 

 The nurse rostering problem is always governed by some set of constraints.  

These constraints can be defined as hard or soft constraints (Cheang et al, 2003: 449).  A 

hard constraint is a constraint that must be satisfied.  For example, minimum shift staffing 

requirements must be satisfied in accordance with industry regulations or local laws.  A 

soft constraint is a constraint that is "usually involved with time requirements on personal 

schedules" (Cheang et al, 2003: 449).  Cheang (2003) provides a list of commonly 

occurring constraints typically associated with the nurse rostering problem: 

1. Nurses workload (minimum/maximum); 
2. Consecutive same working shift (minimum/maximum/exact number); 
3. Consecutive working shift/days (minimum/maximum/exact number); 
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4. Nurse skill levels and categories; 
5. Nurses' preferences or requirements; 
6. Nurses free days (minimum/maximum/consecutive free days); 
7. Free time between working shifts (minimum); 
8. Shift type(s) assignments (maximum shift type, requirements for each shift types); 
9. Holidays and vacations (predictable); 
10. Working weekend; 
11. Constraints among groups/types of nurses, e.g., nurses not allowed to work 

together or nurses who must work together; 
12. Shift patterns; 
13. Historical record, e.g., previous assignments; 
14. Other requirements in a shorter or longer time period other than the planning time 

period, e.g., every day in a shift must be assigned; 
15. Constraints among shift, e.g., shifts cannot be assigned to a person at the same 

time. 
16. Requirements of (different types of) nurses or staff demand for any shift 

(minimum/maximum/exact number). 
 
 
Cheang also provides an overview of where further literature can be found for each 

constraint. 

 One final aspect of the nurse rostering problem is the objective function.  The 

objective functions can be defined as minimizing a penalty cost associated with nurses 

working particular shifts.  The function may call for maximizing the value associated 

with nurses' preference for particular shifts.  Regardless of the objective function, the 

nurse rostering problem typically strives to achieve an optimal solution (Cheang et al, 

2003: 450). 

 

Nurse Rostering Techniques 

 Ernst (2004) presents a comprehensive over view of the nurse rostering problem 

and its development.  In the 1970s and 1980s, support tools were developed to reduce the 

burden on schedulers to develop workforce schedules manually.  Problem constraints 
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were identified and techniques such as mathematical programming, goal programming, 

and iterative algorithms were developed and applied to develop optimal work schedules. 

 In the 1990s, the nurse rostering problems began to be classified under nurse 

rostering systems.  Each system of problems had several methods associated that would 

aid a scheduler in producing optimal work schedules.  Advances were made in applying 

linear programming, integer programming, network optimization techniques, and 

constraint programming.  However, several of these solutions were limited to the case for 

which they were developed.  The solution would require significant rework to be applied 

to another case (Ernst et al, 2004: 12). 

 Highly sophisticated methods and approaches continue to be developed and 

applied to the nurse rostering problem.  Some of these approaches include mixed 

algorithms and heuristics such as a simulated model augmented by artificial intelligence 

methods, a shift pattern generating heuristic, and a simulated annealing algorithm.  These 

are just a few of the more advanced techniques applied to the nurse rostering problem 

(Ernst et al, 2004: 12).  In the most recent years, highly complex methods such as tabu 

searches and genetic algorithms have been applied to the nurse rostering problem. 

 

Moz and Pato 

In a 2006 journal article, Moz and Pato examined the nurse re-rostering problem 

using a constructive heuristic and a genetic algorithm.  The goal of their research is to 

develop a management system for scheduling nurses in Portuguese public hospitals.  

Using actual data from a Portuguese hospital, the authors applied both a constructive 

heuristic and a genetic algorithm to the nurse re-rostering problem. 
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The constructive heuristic entails reassigning all tasks to nurses after a disruption 

has occurred in the schedule.  Two approaches are used in the reassignment procedure.  

The first approach reorders the tasks to nurses according to the rank order of the nurses in 

the problem.  The second approach randomly reorders the tasks to the nurses.  After 

reordering the tasks, the constructive heuristic assigns each task to a nurse.  All 

constraints are upheld during this procedure.  First, the procedure attempts to assign the 

task to a nurse already scheduled for a different task on the same day.  If this is does not 

produce a feasible solution, then a backtracking procedure is used to reassign the task to a 

different nurse, accounting for the attempts that have already occurred to schedule the 

task.  This procedure is iterated until all unassigned tasks are assigned. 

In the genetic algorithm procedure, the first step to re-rostering a disrupted 

schedule is to identify all sets of tasks and nurses, which the authors refer to as the 

permutation space (Moz and Pato, 2007:673).  Each permutation of the list tasks is 

grouped with each permutation of the list of nurses.  These sets of individual groupings of 

all permutations are defined as chromosome pairs.  These pairs represent all feasible and 

infeasible solutions to the problem.  The pairs (or individuals) are then scored based on 

their similarity to the original schedule.  This score is defined as a fitness value.  A 

genetic algorithm (using selection, crossover, and mutation operators) is then applied to 

the population of individuals to produce a new population (the next generation).  This 

algorithm is stopped after the maximum number of generations has been reached or the 

best fitness value has not improved after a defined number of generations. 

The performance of the constructive heuristic and the genetic algorithm were 

measured by examining the number of feasible solutions, the number of optimal 
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solutions, and the average computational time.  Using the constructive heuristic, the 

randomly assigned nurse and task listings outperformed the rank-ordered nurse and task 

listing.  Out of 67 instances, 67 feasible solutions and 39 optimal solutions were found in 

an average of 0.75 seconds.  Using the genetic algorithm methods produced almost 60 

optimal solutions, but the average computational time increased to 19 minutes. 

 

Knighton's Model 

In his 2005 doctoral dissertation, Knighton examined a network-based 

mathematical programming approach to using employee preferences in re-rostering 

optimal workforce schedules.  The goal of this methodology is to respond to disruptions 

in a workforce schedule, while minimizing the number of deviations to the original 

schedule.  Knighton examines rostering a continuous heterogeneous workforce over a 

multi-week period.  A set of employee shift preferences and management employee 

weights are used as constraints in the model.  The employee shift preferences identify the 

shifts that each employee prefers to work.  The management employee weights identify 

the rank order that the schedule manager uses to assign work shifts.  An employee with a 

high management employee weight will receive preference for a shift over an employee 

with a lower weight. 

After identifying the constraints to the problem, Knighton uses a network-based 

linear program to determine the optimal rostered schedule.  The problem is formulated as 

a "minimum cost network-flow, using an arc capacity method" (Knighton, 2005:67).  

Although the workforce scheduling problem is a binary set-covering problem, and this 

formulation is not an integer program, the network structure does generally provide 
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integer solutions.  The network-based model is defined by the following set of equations 

(Knighton, 2005:72): 
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      for all j   (2.4) ∑ ≥i shiftsofnumberD __min,

      for all i,d  (2.5) ≤≤ D 10

      for all j   (2.6) ∑ ≤≤ shiftsweekend _max0
w
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d
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d
d

kj
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According to Knighton's formulation, "sj,k,d denotes shift number j requiring skill 

set k and on day d, ei is employee number i, Dd,i is the total number of shifts, D, on day d 

for employee i, and Ei is the total number of shifts per week, E, for employee I" 

(Knighton, 2005:69).  Therefore, the first constraint requires that the employee demand 

per shift is satisfied.  The second and fifth constraints require that no employee works 

more than one shift per day.  The third and fourth constraints ensure that each employee 

works at least the required minimum, and not more than the allowable maximum number 

of shifts each week.  The final constraint limits the number of weekend shifts, Wm,j, an 

employee can work during the scheduling period, m (Knighton, 2005:72). 

Knighton (2005:69) explains his model as follows: 

The number of employees needed for each shift node flows from the 
Demand arc.  Each shift node has an edge to each qualified and available 
employee node.  The shift-to-employee arc is capacitated at 1, meaning 
only one of the required staffing for a shift can be assigned to a single 
employee.  Each employee then flows their daily work assignment to the 
employees’ daily-total-node, D.  This new arc is capacitated at 1, meaning 
each employee can work only one shift per day.  Finally, the employees’ 
daily-total-nodes channel the flow to the employees’ weekly-total-node 
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which contains the capacities to enforce minimum and maximum shifts 
per week. 

 

By combining multiple weekly workforce scheduling problems, a schedule is 

constructed for longer time horizons.  Figure 2.1 illustrates Knighton's network based 

workforce scheduling model. 
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Figure 2.1.  Knighton's Multi-Weekly Network Representation of Workforce Scheduling Problem 
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Uncertainty and Robust Scheduling 

 Optimization methods provide excellent solutions to workforce scheduling 

problems.  However, in the midst of uncertainty, these solutions may no longer be valid.  

When optimal schedules are introduced into a real world environment, the likelihood that 

the schedule will remain valid is very low (Davenport, 1999: 1).  Contingencies occur, 

such as sickness, which preclude employees from being able to perform their duties in 

accordance with the optimal schedules.  When these events, or disruptions, occur, the 

scheduler must ensure that the schedule remains valid in accordance with industry 

regulations and local laws. 

 Within the scheduling environment, there are two approaches for dealing with 

uncertainty (Davenport, 1999: 3).  A scheduler can be proactive in dealing with 

uncertainty or reactive.  The choice between the two will be dependent on the likelihood 

that a disruption will occur that may render the schedule invalid. 

In reactive scheduling, the scheduler waits for a disruption to render the current 

optimal schedule invalid.  Once the schedule is invalid, the scheduler can then apply a re-

rostering method to rebuild the schedule.  Knighton (2005) developed a network-based 

mathematical approach and Moz and Pato (2007) developed a genetic algorithm 

approach.  Often times, the goal of re-rostering is to rebuild a new optimal schedule while 

minimizing the number of deviations to the schedule.  A deviation occurs when an 

employee must change a previously scheduled shift in order to develop a new optimal 

schedule.  Although re-rostering methods produce new optimal schedules, they often 

result in deviations, which may not be very well accepted by the workforce. 
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In contrast to reactive scheduling, proactive scheduling attempts to deal with the 

uncertainty of contingent events ahead of time (Davenport, 1999: 3).  Three methods are 

available for dealing with uncertainty.  First, the scheduler can develop robust schedules.  

A robust schedule is a schedule that can “absorb environmental uncertainties” and still 

remain valid (Davenport, 1999: 3).  Within workforce scheduling, environmental 

uncertainties are manifested as employee absences.  The second option for pro-active 

scheduling is to develop contingent schedules.  Contingent schedules are developed, but 

not published until a disruption occurs, invalidating the original schedule.  The final 

option is for the scheduler to develop decision theory approaches for responding to the 

disruption. 

Although robust scheduling is an important topic in scheduling theory, it has 

received little attention in the scheduling literature.  Davenport (1999) presents three 

possible definitions for robust scheduling.  First, a robust schedule is one that remains 

valid under a wide array of disruptions.  Second, a robust schedule is one that is still 

valid, even when the underlying assumptions may be violated.  Finally, a robust schedule 

is one that is able to satisfy demand requirements in an uncertain environment. 

 

Robust Scheduling in Airline Crew Scheduling 

The aforementioned measures of robustness have been applied to areas of 

manufacturing scheduling (Davenport, 1999: 3), but little work has been done in the area 

of workforce scheduling.  One of the few recent applications is in the airline industry.  

Shebalov and Klabjan (2006) examined a common problem facing many of today's 

commercial passenger airlines: How can an airline best schedule aircrews to meet the 
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demand of specified aircraft routing decisions?  In this crew pairing scheduling problem, 

the objective is to minimize the cost associated with crew scheduling while meeting 

aircraft routing demand.  Although an optimal or near-optimal solution exists for each of 

these large-scale integer programs, the solution may not be robust against deviations such 

as delayed flights, sick crews, and other unexpected circumstances.  Deviations may 

cause unexpected operational cost increases of 4% in larger fleets and 8% in smaller 

fleets.  Therefore, the goal of Shebalov and Klabjan's research was to solve a modified 

integer program that produced "robust crew schedules"--crew schedules that could be 

modified and adapted based on deviations within the scheduled plan, still meeting 

scheduled aircraft routing demand but with minimal cost increases. 

The traditional crew scheduling problem is modified by adding a second objective 

of maximizing the number of move-up crews--"crews that can potentially be swapped in 

operations."  In the traditional airline crew pairing problem, the objective is to identify 

the minimum cost pairings that cover all required routes.  The crew pairing model with 

move-up crew count not only identifies an optimal or near optimal solution, but it also 

identifies changes to the crew pairings that still provide a feasible solution.  In order for a 

move-up crew to be feasible, it must be available to fly a deviated flight (meet crew rest 

requirements and positioned at the same crew base) and have the same number of days 

remaining until the end of the assigned pairing (to prevent disrupting other scheduled 

flights).  The new objective function is to maximize the number of move-up crews 

associated with each flight assigned to a leg.  This objective function supersedes the 

original objective function of minimizing crew costs.  Therefore, the crew pairing 

problem is first solved with the objective of minimizing crew costs.  Then, the problem is 
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resolved with the new objective of maximizing the number of move-up crews, but with a 

new constraint on the crew cost (as defined by the solution to the first problem).  The 

flexibility in the crew cost constraint is defined by the operations manager's willingness 

to increase cost in order to increase the number of move up crews. 

The case for robust aircrew scheduling is highlighted by the rising operating costs 

of the airline industry.  Major United States domestic air carriers budget upwards of $1.4 

billion annually towards crew costs (Schaefer et al, 2005: 340).  In spite of these high 

crew costs, disruptions in aircrew schedules continue to increase.  The Air Transport 

Association reported that the average number of delays greater than fifteen minutes 

increased from 1,416 in 1997 to 2,149 in 1999 (Schaefer et al, 2005: 340).  During the 

same period, the Federal Aviation Administration reported a 58% increase in delays and a 

68% increase in flight cancellations (Schaefer et al, 2005: 340).  These alarming 

increases have helped move robust aircrew scheduling to the forefront of the aircrew 

scheduling literature. 

 

Conclusion 

 Although the data to support robust scheduling in the nursing industry is lacking, 

the problem is nonetheless important.  As highlighted in the introduction to this thesis, 

absenteeism in the healthcare industry is a major factor in workforce scheduling.  One 

estimate shows that up to 4% of United Kingdom’s National Health System’s budget may 

have been lost to absenteeism (Ritchie et al, 1999: 702).  Therefore, it is time to focus 

attention on developing robust scheduling models within the workforce scheduling 

academia. 
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 Although the literature surrounding the nurse rerostering problem and robust 

scheduling is limited, the framework exists for developing a robust continuous 

heterogeneous workforce scheduling model.  Knighton’s network-based linear 

programming model is instrumental in building workforce schedules in continuous 

heterogeneous operations.  Shebalov and Klabjan provide insight into building robust 

service schedules.  By combining the core concepts from Knighton’s network based 

linear programming model and Shebalov and Klabjan’s robust aircrew scheduling model, 

potential robust workforce scheduling models are developed in Chapter 3.  Schedules are 

constructed using these models and analyzed in Chapter 4. 
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III. Methodology 

 

Introduction 

The purpose of this chapter is to present the scheduling methodology used to 

develop models for producing robust solutions to the nurse rostering problem.  First, the 

nurse rostering problem approached in this thesis is outlined.  Second, the model is 

developed using an integer based mathematical program.  The constraints for each model 

are identified, as well as the objective for each model.  This chapter concludes with a 

presentation of the five models developed and the method used to analyze each model.  

The analysis is presented in Chapter 4 of this thesis. 

 

Case Study 

Although the size of workforces across nursing care facilities varies, the 

workforce scheduling problem takes on a standard form.  Nurses with varying skill sets 

must be scheduled to cover defined shifts over a continuous timeline (24 hours, 7 days a 

week).  This research examines a private nursing home located in the state of Maine.  

This facility was chosen as it fits well into the scope of the nurse rostering problem. 

The nursing home provides a staff of trained nurses to care for elderly patients.  

The nurses assist with the general activities of helping the residents with daily activities.  

They also provide medical care to the patients, as needed.  State law requires that at least 

one licensed nurse be on staff at all times (Oliver, 2007).  A licensed nurse is defined as 

either a registered nurse or a licensed practical nurse. 
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Other staffing requirements are also defined by the State of Maine.  Between the 

hours of 0700 and 1500 (day shift, D), state law requires that at a minimum of one nurse 

must be on duty for every five beds in the facility (Oliver, 2007).  Between the hours of 

1500 and 2300 (evening shift, E), a minimum of one nurse must be on duty for every ten 

beds.  Finally, between the hours of 2300 and 0700 (night shift, N), a minimum of one 

nurse must be on duty for every 15 beds. 

The particular facility examined in this thesis has 20 beds.  Therefore, at least four 

nurses must be available during day shift, at least two nurses must be available during 

evening shift, and at least two nurses must be available during night shift.  Finally, at 

least one licensed nurse must be on staff during each of these shifts.  Eight of the 20 

assigned nurses are licensed nurses. 

The nursing home also dictates a few other workforce constraints.  First, each 

nurse should be scheduled for a minimum of four shifts per week, but not more than six 

shifts per week.  Furthermore, each nurse will not be scheduled for more than two 

weekend shifts during a two week period.  Finally, each nurse must have a minimum of 8 

hours of rest following any work shift of 16 hours.  All schedules are constructed for a 

two week period. 

 

Model Construction 

An integer based mathematical program is used as the basis for modeling the 

workforce scheduling problem.  This approach is based on the network-flow based 

mathematical program developed by Knighton in his doctoral dissertation (2005).  The 

network-flow approach provides a solid framework for modeling the nurse rostering 
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problem.  By changing the objective function and constraint sets, the model can provide a 

robust solution, rather than an optimal solution.  Figure 3.1 shows the network based 

approach used by Knighton to solve the workforce scheduling problem. 
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Figure 3.1.  Knighton's Network-Based Mathematical Model 

 

On any given shift j skill set k is required per day d.  The first skill set is for a 

licensed nurse.  There must be one licensed nurse on staff each shift.  The second skill set 

is for any nurse.  For this case, a value of 1 indicates that any nurse can fill the shift 

demand.  A value of 2 indicates that only a licensed nurse can fill the shift demand.  

Therefore, the demand per shift per day per skill set is represented by sj,k,d.  The shift 

variable j has values of 1, 2, and 3 which correspond to day shift, evening shift, and night 

shift.  Each employee ei is available to fill shift demand as long as they possess the 

appropriate skill set k (where i represents employee 1, 2, …, n=20). 
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The total number of shifts an employee is scheduled for each day flows into the 

total shift node Dd,i.  For this case, each employee is limited to working one shift per day.  

The total number of shifts per day flows into the total number shifts per week node Ei.  

Each employee must be scheduled for a minimum of 4 shifts, but may not be scheduled 

for more than 6 shifts per week.  Furthermore, each employee is limited to working no 

more than two weekend shifts in a two week period.  Equations 2.2 through 2.6 in 

Chapter 2 describe the model above.  The primary changes to Knighton’s construct occur 

in equation 2.1.  The variable sj,k,d and ei are combined into a single binary variable ei,j,k,d.  

This variable defines whether an employee i is assigned to shift j under skill set k on day 

d.  Furthermore, the sum of this variable for all employees must be greater than or equal 

to demand, instead of equal to.  This allows for more robust shifts if employees are 

available for duty.  The modified form of equation 2.1 is presented below as equation 3.1: 

    for all j,k,d, where ei,j,k,d is binary.  (3.1) ∑ ≥j demand
i

dkie ,,,

      

 

Availability Constraint 

An optimal schedule seeks to solve the model above by defining the cost 

associated with each employee being assigned to each demand shift.  The cost can be 

defined in dollars or employee preference (Knighton, 2005).  In contrast to an optimal 

schedule, the critical objective of building a robust schedule is maximizing the number of 

employees available to work each day.  Therefore, there may not be a unique optimal 

solution.  Rather, there may be a set of feasible solutions that maximizes the number of 

shifts covered with additional employees.  The solution set will be any solution that 
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maximizes the number of employees available to work each day, while meeting the 

original workforce scheduling demands. 

 

Assumptions 

 Some key assumptions to each model are that each employee can work back-to-

back shifts.  However, the shifts can not occur on the same day and can not violate the 

rule that each nurse must have 8 hours of rest following 16 hours on duty.  For example, a 

nurse may be scheduled to work night shift on a Tuesday and may also be scheduled to 

work day shift on Wednesday.  Although this may be uncommon in the real world, it is 

feasible and it simplifies the number of constraints used to develop the model. 

 

Model 1: Basic Work Schedule Model 

The first model developed is the basic work schedule model.  The purpose of this 

model is to minimally satisfy all constraints.  This model provides a baseline for the 

average number of disruptions that the nursing home schedule will be able to encounter 

before the schedule becomes invalid. 

In this model, all 20 nurses are scheduled for the minimum of 4 shifts per week 

and no more than 2 weekend shifts.  A total of 160 shifts must be scheduled.  State law 

only requires 112 shifts to be scheduled during each 2-week scheduling period, based on 

the 20 beds assigned to the nursing home.  Therefore, the additional 48 shifts are evenly 

distributed across the week days and weekend days to ensure that each day has a 

balanced number of nurses scheduled.  On each weekday, five nurses and one licensed 

nurse are scheduled for the day shift (D), two nurses and one licensed nurse are scheduled 
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for the evening shift (E), and one nurse and one licensed nurse are scheduled for the night 

shift (N).  On each weekend day, four nurses and one licensed nurse are scheduled for the 

day shift, two nurses and one licensed nurse are scheduled for the evening shift, and one 

nurse and one licensed nurse are scheduled for the night shift.  Table 3.1 shows the shift 

demand for Model 1.  In this model, no attention is given to the licensed nurses (defined 

as k = 2) to ensure that they are evenly distributed across shifts.  The objective function 

for this model is to minimize the total number of shifts scheduled, while meeting all other 

constraints.  The objective function is shown below as equation 3.2: 

   for all i j,k,d      (3.2) ∑
i

dkjie ,,,min

 

s1,1,d s1,2,d s2,1,d s2,2,d s3,1,d s3,2,d s1,1,d s1,2,d s2,1,d s2,2,d s3,1,d s3,2,d
Nurses 
Sched

Min 
Shifts

Sch
Shifts

Minimum 3 1 1 1 1 1 3 1 1 1 1 1 112

Model 1 5 1 2 1 1 1 4 1 2 1 1 1 20 150 160

Model 2 5 1 3 1 3 1 3 2 1 2 1 1 20 180 180

Model 3 4 2 2 2 2 2 3 2 1 2 1 1 20 180 180

Model 4 3 1 2 1 1 1 3 1 1 1 1 1 16 122 128

Model 5 3 1 2 1 1 1 3 1 1 1 1 1 16 122 128

For d = 1…5, 8…12 For d = 6, 7, 13, 14

TABLE 3.1  Shift Demand

 

 

Model 2: Strengthened Work Schedule Model 

The second model developed is the strengthened work schedule model.  The 

purpose of this model is to increase the robustness of each shift by scheduling additional 

employees on each shift.  This model is the first of the four robust scheduling models 

examined in this thesis. 
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In this model, all 20 nurses are scheduled for a minimum of four shifts per week, 

but no more than five shifts per week.  Furthermore, the weekend constraint is relaxed 

and each nurse may work no more than three weekend shifts during the scheduling 

period.  A total of 180 shifts are scheduled to make the strengthened work schedule 

model more robust than the basic work schedule model.  Because state law only requires 

112 shifts to be scheduled during each 2-week scheduling period, the additional 62 shifts 

are evenly distributed across the week days and weekend days to ensure that each day has 

a balanced number of nurses scheduled.  On each weekday, five nurses and one licensed 

nurse are scheduled for the day shift, three nurses and one licensed nurse are scheduled 

for the evening shift, and three nurses and one licensed nurse are scheduled for the night 

shift.  On each weekend day, three nurses and two licensed nurse are scheduled for the 

day shift, one nurse and two licensed nurse are scheduled for the evening shift, and one 

nurse and one licensed nurse are scheduled for the night shift.  Table 3.1 shows the shift 

demand for Model 2.  In this model, no attention is given to the licensed nurses to ensure 

that they are evenly distributed across each weekday shift.  However, on the weekend 

day, both day shift and evening shift have an additional licensed nurse scheduled for 

duty.  The objective function for this model is to minimize the number of shifts scheduled 

while meeting all other constraints. 

 

Model 3: Strengthened and Balanced Work Schedule Model 

The third model developed is the strengthened and balanced work schedule 

model.  The purpose of this model is to increase the robustness of each shift by 

29 



scheduling additional employees on each shift.  This model is the second of the four 

robust scheduling models examined in this thesis. 

This model is very similar to Model 2.  All 20 nurses are scheduled for a 

minimum of four shifts per week, but no more than five shifts per week.  Furthermore, 

the weekend constraint is relaxed and each nurse may work no more than three weekend 

shifts during the scheduling period.  A total of 180 shifts are scheduled to make this 

model more robust than the basic work schedule model.  Because state law only requires 

112 shifts to be scheduled during each 2-week scheduling period, the additional 62 shifts 

are evenly distributed across the week days and weekend days to ensure that each day has 

a balanced number of nurses scheduled.  In contrast to Model 2, the number of licensed 

nurses scheduled for each shift is increased.  On each weekday, four nurses and two 

licensed nurse are scheduled for the day shift, two nurses and two licensed nurse are 

scheduled for the evening shift, and two nurses and two licensed nurse are scheduled for 

the night shift.  On each weekend day, three nurses and two licensed nurses are scheduled 

for the day shift, one nurse and two licensed nurses are scheduled for the evening shift, 

and one nurse and one licensed nurse are scheduled for the night shift.  Table 3.1 shows 

the shift demand for Model 3.  The objective function for this model is to minimize the 

number of shifts scheduled while meeting all other constraints (see equation 3.2). 

 

Model 4: Reserve Work Schedule Model 

The fourth model developed is the reserve work schedule model.  The purpose of 

this model is to increase the robustness of the work force by only scheduling the 

minimum number of employees required to meet the minimum shift requirements as 
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defined by state law.  In this case, only 16 employees are needed to meet the minimum 

shift requirements.  The additional four nurses are kept in reserve. 

One key assumption in analyzing this model is that a reserve nurse is available to 

cover any shift that fails to meet the minimum shift requirements due to a disruption, 

given that the nurse meets the skill requirement of the disrupted shift.  Another key 

assumption is that a reserve nurse is only allowed to work five shifts during the 

scheduling period, instead of the ten shift per scheduling period regularly scheduled 

nurses may work.  This assumption is presented to offset the potentially higher wage rate 

or salary due to a reserve nurse's volatile work schedule.  A reserve nurse is still subject 

to all other employee scheduling constraints.  In this model, the four reserve nurses are all 

non-licensed nurses.  This model is the third of the four robust scheduling models 

examined in this thesis. 

All 16 nurses are scheduled for a minimum of four shifts per week and may not be 

scheduled for more than two weekend shifts during the scheduling period.  A total of 128 

shifts must be scheduled.  Because state law only requires 112 shifts to be scheduled 

during each 2-week scheduling period, the additional 16 shifts are evenly distributed 

across the week days and weekend days to ensure that each day has a balanced number of 

nurses scheduled.  On each weekday, three nurses and one licensed nurse are scheduled 

for the day shift, two nurses and one licensed nurse are scheduled for the evening shift, 

and one nurse and one licensed nurse are scheduled for the night shift.  On each weekend 

day, three nurses and one licensed nurse are scheduled for day shift, one nurse and one 

licensed nurse are scheduled for the evening shift, and one nurse and one licensed nurse 

are scheduled for the night shift.  Table 3.1 shows the shift demand for Model 4.  The 
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objective function for this model is to minimize the number of shifts scheduled while 

meeting all other constraints (see equation 3.2). 

 

Model 5: Alternate Reserve Work Schedule Model 

The fifth and final model developed is the alternate reserve work schedule model.  

Much like the reserve work schedule model, the purpose of this model is to increase the 

robustness of the work force by only scheduling the minimum number of employees 

required to meet the minimum shift requirements as defined by the state law.  The 

additional four nurses are kept in reserve.  Again, one key assumption in analyzing this 

model is that a reserve nurse is available to cover any shift that fails to meet the minimum 

shift requirements due to a disruption, given that the nurse meets the skill requirement of 

the disrupted shift.  Also, each reserve nurse may only work five shifts.  A reserve nurse 

is still subject to all other employee scheduling constraints.  In this model, three reserve 

nurses are all non-licensed nurses.  The fourth reserve nurse is a licensed nurse who can 

cover any shift.  This model is the last of the four robust scheduling models examined in 

this thesis. 

All 16 nurses are scheduled for a minimum of four shifts per week and may not be 

scheduled for more than two weekend shifts during the scheduling period.  A total of 128 

shifts must be scheduled.  Because state law only requires 112 shifts to be scheduled 

during each 2-week scheduling period, the additional 16 shifts are evenly distributed 

across the week days and weekend days to ensure that each day has a balanced number of 

nurses scheduled.  On each weekday, three nurses and one licensed nurse are scheduled 

for the day shift, two nurses and one licensed nurse are scheduled for the evening shift, 
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and one nurse and one licensed nurse are scheduled for the night shift.  On each weekend 

day, three nurses and one licensed nurse are scheduled for the day shift, one nurse and 

one licensed nurse are scheduled for the evening shift, and one nurse and one licensed 

nurse are scheduled for the night shift.  Table 3.1 shows the shift demand for Model 5.  

The objective function for this model is to minimize the number of shifts scheduled while 

meeting all other constraints (see equation 3.2). 

 

Disruptions and Analysis 

After building a feasible work schedule for each model, the models are analyzed 

based on each model's ability to respond to disruptions in the work schedule.  This thesis 

assumes that schedule disruptions are random and do not follow any formal pattern.  

Therefore, disruptions pairs are randomly generated from two uniform distributions.  The 

first number X in each disruption pair identifies the employee who is unavailable for 

work.  The second number Y in each pair identifies the day in the scheduling period that 

the employee is unavailable to work.  For example, a disruption pair of (16,4) indicates 

that employee 16 is no longer available to work on day 4.  If employee 16 is scheduled 

for duty on day 4, then the schedule is disrupted and evaluated to see if it is still valid.  A 

valid schedule is a schedule that meets the minimum shift requirements as required by 

state law. 

Each model is evaluated based on its response to twenty sets of disruption pairs.  

Each set contains 100 disruption pairs.  Only pairs that affect employees on scheduled 

duty days are evaluated.  If the disruption pair represents an employee on a day off, then 
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the pair is skipped.  All five models are evaluated based on the same 20 sets of disruption 

pairs to minimize the variance across models. 

During evaluation of each work schedule, the first affected shift is disrupted.  The 

schedule is then evaluated to determine if it still meets minimum shift requirements.  If 

the schedule is still valid, then the next disrupted shift is evaluated.  This process 

continues until a shift is disrupted which renders the schedule invalid.  After a schedule is 

invalid, the number of disruptions is recorded.  Figure 4.1 in Chapter 4 gives an example 

of a disruption set and its effect on a valid schedule.  After evaluating all 20 sets of 

disruptions, the data set provides a measure of the robustness of a model to disruptions.  

That is, each model is then compared based on the average number of disruptions it could 

receive before becoming invalid. 

Although the focus of this research is on building disrupted schedules, the cause 

of schedule failure is also recorded.  A schedule can become invalid for two reasons.  

First, each shift requires one licensed nurse to be on duty.  If a licensed nurse's shift is 

disrupted and an additional licensed nurse is not scheduled for duty (Models 1, 2, 3, and 

4) or a licensed nurse is not available to cover the shift (Model 5), then the schedule is no 

longer valid.  The schedule fails due to a lack of a licensed nurse or skilled employee.  

The schedule can also fail for another reason.  If a schedule is disrupted and the number 

of scheduled nurses falls below the minimum state requirements, then the schedule is also 

no longer valid for Models 1, 2, and 3.  For Models 4 and 5, the schedule is no longer 

valid when all available reserve nurses have been used to cover five disrupted shifts each.  

In this case, the schedule fails due to a shortage of manpower. 
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Conclusion 

 The robust workforce scheduling models provide managers with tools to ensure 

that an adequate workforce is available in the event that a disruption occurs in the 

workforce schedule.  As defined in Chapter 1, a disruption is any event that prevents a 

scheduled worker from being able to perform his or her duty on a give shift or day.  In the 

next chapter, the case study of building a robust workforce schedules for a nursing home 

staff is examined and evaluated for robustness. 
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IV. Results and Analysis 

 

Introduction 

The purpose of this chapter is to present the results from the five models 

developed in Chapter 3.  Each model is presented, as well as the schedule developed 

using the model.  Data was gathered by randomly generating disturbances for each 

schedule.  Then, each model was measured by its ability to adequately respond to the 

disruptions without significant changes to the schedule.  By definition, a significant 

change to the schedule is a change that requires the model to be re-rostered using a 

mathematical program.  The response to disruptions for each model was analyzed using 

statistical analysis of variance techniques to determine if one schedule is more robust 

than another schedule.  Furthermore, statistical testing of population proportions was 

used to determine if a schedule was failing for a particular cause more than another 

schedule.  At the end of this chapter, results are presented.  The results are discussed in 

Chapter 5. 

 

Model 1 

The first model developed is the basic work schedule model.  This model 

minimally satisfies all constraints.  Each employee is scheduled for at most one shift per 

day and only four shifts per week.  Furthermore, each employee may only work two 

weekend shifts during the two week period.  Based on the shift demand requirements 

identified in Chapter 3, only 112 shifts are required.  (A minimum of 4 employees must 

be scheduled for day-shift, 2 employees for evening shift, and 2 employees for night 
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shift.)  Because all 20 employees must work a minimum of 4 shifts per week, 160 

employee shifts must be scheduled.  Therefore, the remaining 48 employee shifts were 

distributed evenly across each day of the week as discussed in Chapter 3.  Table 4.1 

presents the basic work schedule developed using Model 1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 O D D O E O N E D O N O N O
2 D D O O O N D D N E O N O O
3 D E E N O O O O O N D O D N
4 N O D O D D O N E O E O D O
5 D N D O O O D E E O O D D O
6 E O N E D O O D O E O O N E
7 D O O D D O E O O D D E E O
8 D E O O N E O O O D D D O D
9 N D O D O O D E D O N O O D

10 O N O D D D O N O N E O O D
11 O O O N N N E O D D D N O O
12 O D E O D E O D D O O E E O
13 O N O N O D D D N O D D O O
14 E O D E O D O O D D O E O N
15 E O O D D O D D N O O E D O
16 O O N D N O N N O E D O O D
17 D D D O O D O D O N E O O E
18 N D E E O O O O E O O D E D
19 O O D D E O E O D D O D O E
20 O E N O E E O O O D N D D O

TABLE 4.1  Model 1 Work Schedule

Week 1 Week 2
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Model 2 

The second model developed is the strengthened work schedule model.  Each 

employee is scheduled for at most one shift per day and a minimum of four shifts per 

week, but no more than five shifts per week.  However, the weekend constraint is relaxed 

to allow any employee to work up to three weekend shifts during the two week period.  

Most importantly, each weekday shift is strengthened by scheduling two additional 
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employees per shift.  No attention is given as to whether or not the additional employee is 

a licensed nurse or a non-licensed nurse  Each weekend day is strengthened by 

scheduling two additional employees on day shift, and one additional employee on 

evening shift.  A total of 180 employee shifts must be scheduled.  Table 4.2 presents the 

strengthened work schedule developed using Model 2. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 D D N D E O O O O E N N E O
2 E D O N D O D O N O D D E O
3 D D N D O O E D D D O O D D
4 O N D N D D O O O E E D N E
5 O O E D E E D E D O D E O D
6 N E O O N N N N D D E O O N
7 D O E E O E E E E N O N O E
8 E D D O O D D N E O N D D O
9 O N D N N N O D D N O E O O

10 O E D D O O D O E D D O O E
11 D N O E D D O O O D D D D N
12 E D O O N E O N O E E N O O
13 O O N N O D E N D O D D D O
14 N D O O D O N O N D D O D D
15 N O D D D D O D O D N D E O
16 E E D O E E O E N E N O O D
17 D O E O D N D D D O O E E O
18 O E N E E E O E E N O N O O
19 D O E D N O O D N N O O N O
20 N N O E O O N D O O E E O D

TABLE 4.2.  Model 2 Work Schedule

Week 1 Week 2
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Model 3 

The third model developed is the strengthened and balanced work schedule 

model.  This model is much like Model 2, except the additional shift employees are 

further defined as licensed or non-licensed employees.  Each employee is scheduled for at 

most one shift per day and a minimum of four shifts per week, but no more than five 
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shifts per week.  As with Model 2, the weekend constraint is relaxed to allow any 

employee to work up to three weekend shifts during the two week period.  Most 

importantly, each weekday shift is strengthened by scheduling one licensed nurse and one 

non-licensed nurse per shift.  Each weekend day is strengthened by scheduling two 

additional employees on day shift, and one additional employee on evening shift.  A total 

of 180 employee shifts must be scheduled.  Table 4.3 presents the second strengthened 

work schedule developed using Model 3. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 E N O N O E N N E O E D E O
2 N D O E N O E O D N O N N D
3 D E D N E O O D O E E E O E
4 D E E O D N O N E O N D O D
5 O D D D N E O E O N D E D O
6 O O N D D D E O N E D N E O
7 E O N O E D D E N D N O O E
8 N N E E O O D D D D O O D N
9 D N D O D O O E O N D O O D

10 N E O D D O O D D O O D E O
11 E O E O O D E E D E O O N O
12 D D O N E O O N O N E O D O
13 O D N E D O O O O D N D D O
14 D O E N O D D N E O O E O D
15 E O O O N N D O O D D N O E
16 D D N D O O O D N E O O D O
17 O O D E D O N O D D D D O O
18 O N D D O D D D N O N E O D
19 O D O D E E O O E D E N O N
20 N E D O N O O D D O D D O O

TABLE 4.3.  Model 3 Work Schedule

Week 1 Week 2
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Model 4 

The fourth model developed is the reserve work schedule model.  In this model, 

four non-licensed nurses (employees 17 thru 20) are not scheduled for work during the 

work period.  The remaining 16 employees are scheduled in the same manner as Model 1.  

Each employee is scheduled for at most one shift per day and only four shifts per week.  

Furthermore, each employee may only work two weekend shifts during the two week 

period.  Based on the shift demand requirements, only 112 shifts are required.  Because 

only 16 employees must work a minimum of 4 shifts per week, only 128 employee shifts 

must be scheduled.  The remaining 16 employee shifts were left unspecified and were 

scheduled based on the model constraints.  Table 4.4 presents the first reserve work 

schedule developed using Model 4. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 O E O D N E O O N N O N O E
2 N N D O E O O O O O E D N D
3 O N N O E O E O E O N E O N
4 D N E O N O O E O E O O D E
5 E O O N O E N O D N N N O O
6 D D O E O O D N O D D O O N
7 O E O N E N O O O D D D E O
8 O D N O D D O D N O O N D O
9 D O D O D O N D O D E O O D

10 N O D D O O E N O D N O O D
11 D O O O D N D D D N O E O O
12 E E O D O O D O D E O D E O
13 O O E D D O D E D O O D D O
14 O D O E N D O E N O N O O D
15 O D D N O D O D O O D D N O
16 E E N O O D O E E O D O D O
17 O O O O O O O O O O O O O O
18 O O O O O O O O O O O O O O
19 O O O O O O O O O O O O O O
20 O O O O O O O O O O O O O O

TABLE 4.4.  Model 4 Work Schedule

Week 1 Week 2
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Model 5 

The final model developed is the alternate reserve work schedule model.  In this 

model, three non-licensed nurses (employees 18 thru 20) and one licensed nurse 

(employee 8) are not scheduled for work during the work period.  The remaining 16 

employees are scheduled in the same manner as Model 1.  Each employee is scheduled 

for at most one shift per day and only four shifts per week.  Furthermore, each employee 

may only work two weekend shifts during the two week period.  Based on the shift 

demand requirements, only 112 shifts are required.  Because only 16 employees must 

work a minimum of 4 shifts per week, only 128 employee shifts must be scheduled.  The 

remaining 16 employee shifts were left unspecified and scheduled based on the model 

constraints.  Table 4.5 presents the reserve work schedule developed using Model 5. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 N D O D N O O O O E D O D E
2 O D D N O O N D D O O E O E
3 O N D O O N D O E N E N O O
4 D O N O E D O O O D N D O D
5 E N O E N O O E D O O O N N
6 D O O O D E E N N N O D O O
7 O E E O E O D O D D O D E O
8 O O O O O O O O O O O O O O
9 O E E O D N O D O E O E D O

10 O O E D O D D D E O D D O O
11 D O O O N E D D N O N E O O
12 E E O E D O O O O N N O N D
13 O N D D O O N O O E D N D O
14 O O N E E O E E O D E O O N
15 E D O N O D O O D D D O O D
16 D D D O N O O N O N O O E D
17 N O O D D D O E E O E O D O
18 O O O O O O O O O O O O O O
19 O O O O O O O O O O O O O O
20 O O O O O O O O O O O O O O

TABLE 4.5.  Model 5 Work Schedule

Week 1 Week 2
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Disruption Generation 

After developing the work schedule, disruptions were randomly generated.  A 

random number was generated from a uniform distribution equal to the number of 

employees scheduled for duty.  A second random number was generated from a uniform 

distribution equal to the number of days in the period.  The two random numbers formed 

a random pairing that represents a potential disruption to the schedule.  For example, a 

random pairing of (16,4) indicates that employee 16 is unavailable for duty on day 4.  If 

employee 16 was originally scheduled for duty on day 4, then this nurse was removed 

from the schedule.  The schedule was then reevaluated to determine if it still met the 

minimum shift requirements for the disrupted shift.  If the schedule was still valid, then 

another disruption was generated and the schedule was reevaluated.  If the schedule was 

no longer valid, then the total number of disruptions prior to the invalidating distruption 

was recorded.  Each schedule was evaluated based on its response to twenty sets of 100 

random disruptions. 

Figure 4.1 shows an example of a disruption set and its effect on a valid schedule.  

The first disruption pair (highlighted by a blue solid line) removes employee 16 from 

working a day shift on day 4.  The schedule remains valid because there is still a 

sufficient number of employees scheduled for the day shift on day 4.  (Remember, state 

law requires at least four nurses on duty during the day shift, at least two nurses on duty 

during the evening shift, and at least two nurses on duty during the night shift.)  

Futhermore, there is at least one licensed nurse still scheduled for duty.  The second 

disruption pair (highlighted by a dashed green line) removes employee 1 from working a 

night shift on day 7.  The schedule is now invalid.  There is no longer at least two nurses 

42 



scheduled for duty on the night shift.  Furthermore, employee 1 was the only licensed 

nurse scheduled for the night shift on day 7.  Therefore, the schedule is invalid due to 

insufficient manpower and the lack of a licensed nurse. 

 

Model 3 Work Schedule

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 E N O N O E X N E O E D E O
2 N D O E N O E O D N O N N D
3 D E D N E O O D O E E E O E
4 D E E O D N O N E O N D O D
5 O D D D N E O E O N D E D O
6 O O N D D D E O N E D N E O
7 E O N O E D D E N D N O O E
8 N N E E O O D D D D O O D N
9 D N D O D O O E O N D O O D

10 N E O D D O O D D O O D E O
11 E O E O O D E E D E O O N O
12 D D O N E O O N O N E O D O
13 O D N E D O O O O D N D D O
14 D O E N O D D N E O O E O D
15 E O O O N N D O O D D N O E
16 D D N X O O O D N E O O D O
17 O O D E D O N O D D D D O O
18 O N D D O D D D N O N E O D
19 O D O D E E O O E D E N O N
20 N E D O N O O D D O D D O O

Week 1 Week 2
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Figure 4.1: Disruption Set's Effect on Model 3 Work Schedule 

 

Model Responses 

Each model was evaluated based on its ability to remain a valid schedule after 

responding to 20 sets of random disruptions.  Table 4.6 outlines the average number of 

disruptions each model could handle before becoming invalid.  The percentage of 

schedules that failed for skill (lack of a licensed nurse) and manpower are also displayed.  

A description and analysis of the cause failures will be presented at the end of this 

chapter.  All statistical analysis is conducted with a type I error (αe) of 0.05. 
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Model Sample
Size

Avg
Disruptions

Min 
Disruption

Max 
Disruption

Skill
Failure %

Manpower 
Failure %

1 20 1.37 0 4 100% 15%

2 20 9.35 0 24 60% 50%

3 20 7.60 1 25 60% 85%

4 20 1.00 0 7 100% 0%

5 20 18.20 2 29 85% 20%

TABLE 4.6.  Model Disruption Response

 

 

Analysis of Disruptions 

Initially analysis of variance (ANOVA) was used to analyze the disruption data.  

However, the data as a whole failed to meet the underlying assumption of normality.  A 

goodness of fit test was performed on the residual data using a normal distribution.  A 

Wilkes-Shapiro test was applied and had a significance level of 0.0014.  The null and 

alternative hypotheses are: 

Ho: The probability distribution is normally distributed 

Ha: The underlying probability distribution is not normally distributed 

Because significance level does not meet the Type I error level defined above, the 

disruption data is not normally distributed and analysis of variance cannot be used to 

analyze the data. 

The Friedman Fr-Test was performed to test if the underlying disruption 

distribution for each model was the same.  The null and alternative hypotheses are: 

Ho: The populations of disruptions are identically distributed for all five models 
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Ha: At least two of the models have probability distributions of disruptions that 

differ in location; that is, at least one model can absorb more disruptions than 

the remaining four models. 

The Friedman Fr-statistic is based on the rank sums for each treatment and is defined as 

212 3 ( 1)
( 1)r jF R b

bp p
= −

+ ∑ p +  

where b is the number of blocks (in this case, samples), p is the number of treatments (in 

this case, models), and Rj is the jth rank sum (McClave et al, 2005: 1104).  The rank sum 

is determined by comparing the number of disruptions accepted by the schedules 

developed using each model.  When the number of disruptions between models is the 

same, the rank sum assigned to each model is the average of the resulting ranks if the 

models were ranked differently.  Table 4.7 shows the disruption data and the rank 

associated for each model.  The Friedman Fr-statistic is 48.41 and is greater than the 

X2
0.05 value of 9.49.  Therefore, the null hypothesis is rejected and the models likely have 

probability distributions of disruptions that are in different locations.  Specifically, at 

least one of the five models can absorb more disruptions than the remaining four models. 
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Model 1 Model 2 Model 3 Model 4 Model 5 Model 1 Model 2 Model 3 Model 4 Model 5

1 2 12 15 7 16 1 3 4 2 5
2 0 0 4 1 24 1.5 1.5 4 3 5
3 2 2 1 4 22 2.5 2.5 1 4 5
4 0 7 2 0 20 1.5 4 3 1.5 5
5 0 14 3 1 25 1 4 3 2 5
6 0 15 9 2 23 1 4 3 2 5
7 0 6 6 0 12 1.5 3.5 3.5 1.5 5
8 3 3 9 0 15 2.5 2.5 4 1 5
9 4 17 10 2 23 2 4 3 1 5
10 0 0 6 1 22 1.5 1.5 4 3 5
11 2 24 8 2 17 1.5 5 3 1.5 4
12 1 0 9 0 7 3 1.5 5 1.5 4
13 0 9 25 0 15 1.5 3 5 1.5 4
14 2 15 1 0 20 3 4 2 1 5
15 4 5 8 0 2 3 4 5 1 2
16 3 17 1 0 18 3 4 2 1 5
17 0 9 14 0 17 1.5 3 4 1.5 5
18 0 12 14 0 20 1.5 3 4 1.5 5
19 4 7 6 0 17 2 4 3 1 5
20 1 13 1 0 29 2.5 4 2.5 1 5

R j = 38.5 66 68 33.5 94

Sample
Disruptions Rank

TABLE 4.7.  Model Disruption Response and Ranks

 

The data was then analyzed using the Wilcoxon Rank Sum Test for independent 

samples.  The Wilcoxon Rank Sum Test is nonparametric test that allows statistical 

comparison between samples regardless of the sample distribution.  Much like the 

Friedman Fr-Test, the Wilcoxon Test determines if two samples are identical by 

examining the rank sum of the values within each sample.  The null and alternative 

hypotheses are: 

Ho: The disruption probability distribution DA for Model A is identical to the 

disruption probability distribution DB for Model B 
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Ha: The disruption probability distribution DA is shifted to the right of the 

disruption probability distribution DB; that is, Model A can absorb more 

disruptions than Model B 

One-tailed Wilcoxon Rank Sum Tests were performed between each of the five models 

to determine which models could respond to a higher number of disruptions.  The results 

are displayed in Table 4.8. 

 

Avg 
Disruptions Model 2 Model 3 Model 4 Model 5

Model 1 1.37 <0.0001* <0.0001* 0.2579 <0.0001*

Model 2 9.35 - 0.3929 <0.0001* 0.0003*

Model 3 7.60 - - <0.0001* <0.0001*

Model 4 1.00 - - - <0.0001*

Model 5 18.20 - - - -

* Statistically significant difference at 0.05.

TABLE 4.8.  Comparison of Disruption Response Across Models

 

 

Analysis of Cause of Failure 

A schedule could fail for two reasons.  First, when a disruption occurred to an 

employee on any given shift, there must be at least one extra employee scheduled in that 

shift to meet the minimum shift demand.  Second, when a disruption removed a licensed 

nurse from a shift, another licensed nurse must have already been scheduled for that shift 

to meet the minimum demand of one licensed nurse per shift.  If a schedule failed 

because the number of scheduled employees fell below the minimum shift demand, then 
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the scheduled failed for "manpower".  If a schedule failed because a licensed nurse was 

no longer scheduled for the disrupted shift, then the schedule failed for "skill".  The 

proportion of schedules that failed for skill are shown in Tables 4.9. 

Model Skill Sample Size Adjusted 
Proportion

Lower
Confidence

Interval

Upper
Confidence

Interval

1 100% 20 0.92 0.81 1.03

2 60% 20 0.58 0.39 0.78

3 60% 20 0.58 0.39 0.78

4 100% 20 0.92 0.81 1.03

5 85% 20 0.79 0.63 0.95

TABLE 4.9.  Analysis of Percentage of Schedule Failures Due to Skill

 

 

The population proportions were analyzed using comparison of population 

proportions (McClave et al, 2005: 513).  Due to the small sample sizes, the population 

proportions were adjusted to better represent the population (McClave et al, 2005: 378).  

A comparison of means was applied to determine the models that had a higher failure rate 

due to a lack of availability of licensed nurses.  The results are summarized in Table 4.10. 

Comparison Difference
Lower

Confidence
Interval

Upper
Confidence

Interval

1 & 2* 0.33* 0.11 0.56

1 & 3* 0.33* 0.11 0.56

1 & 4 0 0.00 0.00

1 & 5 0.13 -0.07 0.32

2 & 3 0 0.00 0.00

2 & 4* -0.33* -0.11 -0.56

2 & 5 -0.21 -0.46 0.05

3 & 4* -0.33* -0.56 -0.11

3 & 5 -0.21 -0.46 0.05

4 & 5 0.13 -0.07 0.32

* Statistically significant difference at 0.05.

TABLE 4.10.  Comparison of Percentage of Skill Failures Across Models
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The test results indicate that Models 1 and 4 had higher rates of failure due to skill 

than Models 2 and 3.  Models 1 and 4 had identical rates of failure, as did Models 2 and 

3.  Model 5's percentage of skill failures was not different from any of the other models. 

The proportion of schedules that failed due to manpower are shown in Table 4.11.  

Each population proportion was adjusted as noted above.  A comparison of means was 

applied to determine which models had a higher failure rate due to a lack of available 

employees to meet minimum shift demand.  The results are summarized in Table 4.12. 

Model Skill Sample 
Size Adjusted Proportion

Lower
Confidence

Interval

Upper
Confidence

Interval

1 15% 20 0.21 0.05 0.37

2 50% 20 0.50 0.30 0.70

3 85% 20 0.79 0.63 0.95

4 0% 20 0.08 -0.03 0.19

5 20% 20 0.25 0.08 0.42

TABLE 4.11.  Analysis of Percentage of Schedule Failures Due to Manpower

 

Comparison Difference
Lower

Confidence
Interval

Upper
Confidence

Interval

1 & 2* -0.29* -0.55 -0.03

1 & 3* -0.58* -0.81 -0.35

1 & 4 0.13 -0.07 0.32

1 & 5 -0.04 -0.28 0.20

2 & 3* -0.29* -0.55 -0.03

2 & 4* 0.42* 0.19 0.65

2 & 5 0.25 -0.01 0.51

3 & 4* 0.71* 0.51 0.90

3 & 5* 0.54* 0.30 0.78

4 & 5 -0.17 -0.37 0.04

* Statistically significant difference at 0.05.

TABLE 4.12.  Comparison of Percentage of Manpower Failures Across Models
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The test results indicate that Model 3 had higher rates of failure due to manpower 

than any other model.  Model 2 had a higher rate of failure due to manpower when 

compared to Models 1 and 4.  None of the rest of the comparisons was statistically 

significant. 

 

Conclusion 

 The data presented in this chapter indicates that a schedule developed using 

Model 5 is the most robust.  The benefits and consequences of using this schedule will be 

discussed in the next chapter.  
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V. Discussion 

 

Comparison of Models 

Each of the five models presented in Chapter 3 was used to develop valid 

workforce schedules for the nurse rostering problem presented in this thesis.  The models 

were analyzed in Chapter 4 using nonparametric statistical analysis.  Based on the 

analysis, it is possible to choose one model that may be considered more robust than 

another model.  This discussion examines the similarity and differences of each model 

based on its performance in the statistical analysis.  Furthermore, the benefits and 

consequences of using each model are presented. 

All five models presented in this thesis employ the 20 nurses assigned to the 

nursing home.  Therefore, from a salary cost perspective, the five models are equivalent.  

The primary difference between the models is how the employees are scheduled for duty. 

The basic work schedule model developed in Model 1 is the simplest of the 

models developed.  No attention is given to how the employees are scheduled, so long as 

the minimum shift requirements are satisfied in accordance with state laws and industry 

regulations.  Therefore, each nurse is only scheduled for four days of duty during each 

week and may only work a maximum of two weekend days during the scheduling period.  

 Although this model requires 160 nurse shifts to gainfully employ all 20 nurses, 

the model fails to produce a robust schedule.  On average, the basic work schedule can 

only respond to one disruption during the 2-week scheduling period.  Any more 

disruptions invalidate the schedule and require it to be re-rostered, resulting in scheduling 

deviations.  The basic work schedule model provides one of the least robust solutions 
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when compared to the other four models.  The Wilcoxon Rank Sum test was used to 

compare Model 1 with the other models.  Data analysis indicates that the basic work 

schedule model can absorb statistically less disruptions than Models 2, 3, and 5.  When 

compared to Model 4, the basic work schedule model proved to be equivalent. 

The strengthened work schedule model developed in Model 2 produced one of the 

three robust work schedules.  Particular attention was given to how the nurses were 

scheduled for duty.  This ensured that all three shifts, on any given day, were more robust 

by increasing the number of workers assigned to each shift.  Although no attention was 

given to ensure additional licensed nurses were assigned to each shift, Model 2 proved to 

be a viable robust solution. 

There are significant drawbacks to using Model 2.  First, shift robustness was 

achieved by scheduling nurses to work for more days than the minimum of four days per 

week.  Some nurses worked five days per week, resulting in a total of 180 scheduled 

shifts.  The basic work schedule model only required 160 scheduled shifts.  Furthermore, 

the weekend constraint was relaxed, allowing nurses to work up to three weekend days 

during the scheduling period.  Therefore, the robustness of the schedule developed using 

Model 2 appears to be a result of the 20 additional shifts worked by the nurses and a 

result of relaxing the weekend constraint.  However, it is interesting to note the dramatic 

improvement to the robustness of the schedules developed in Model 2, simply by adding 

20 additional shifts and relaxing the weekend constraint.  Data analysis indicates that the 

strengthened work schedule model can absorb more disruptions than Models 1 and 4.  

Furthermore, it is statistically equivalent to Model 3, and not as robust as Model 5. 
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The strengthened and balanced work schedule model developed in Model 3 

proved to be the second of the three robust solutions developed.  This model is very 

similar to Model 2.  The main difference between the two models is that particular 

attention is given to the assignment of the skilled licensed nurses.  This attention proved 

fruitless as Model 3 failed to perform any different than Model 2.  (Interestingly, Model 2 

appears to be able to handle a higher average number of disruptions than Model 3, but the 

Wilcoxon Rank Sum test indicates that there is no statistical difference between the two 

models.) 

The reserve work schedule model developed in Model 4 is the second of the two 

least robust solutions.  It is very similar to the basic work force schedule model except 

four workers are left unscheduled for the week and are placed in a reserve workforce.  

None of the four workers are only scheduled for duty until after a disruption occurs, 

which eliminates one of the scheduled nurses from duty.  The primary weakness of 

Model 4 is that only general nurses are placed in the reserve work force.  No licensed 

nurses are set aside to address disruptions. 

One benefit of developing the reserve work schedule model is that it only required 

128 shifts to employ all 16 nurses.  The basic work schedule model required 160 shifts.  

The results of the analysis on the two models indicate that they are statistically equivalent 

in their abilities to respond to schedule disruptions.  Therefore, if a manager must choose 

between the two models, the reserve work schedule model may be the better choice.  This 

model satisfies the minimum shift requirements and only requires 16 nurses.  The four 

remaining nurses could be employed elsewhere, or removed from the workforce. 
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The alternate reserve work schedule model developed in Model 5 proved to be the 

most robust of the five models examined in this thesis.  Model 5 is identical to the reserve 

work schedule model except that the reserve work pool is modified.  One licensed nurse 

and three general nurses are placed in the reserve work pool.  This single difference 

dramatically improves the reserve work schedule model’s ability to respond to 

disruptions.  After comparing the first four models to Model 5 using the Wilcoxon Rank 

Sum test, Model 5 is mathematically more robust than the first four.  The alternate 

reserve work schedule model was able to handle an average of 18 disruptions in any 

scheduling period. 

The alternate reserve work schedule model proved to be the superior model in this 

thesis.  First, this model required the least amount of scheduled shifts out of the five 

models.  Only 128 shift schedules are assigned to meet the minimum shift demand.  

Furthermore, each scheduled nurse only works four shifts per week.  Second, the 

maximum weekend constraint is satisfied.  Each scheduled nurse only works two 

weekend days during the scheduling period.  This is not the case for Models 2 and 3.  

Finally, the reserve work schedule model is able to handle more disruptions than any of 

the other models. 

 

Areas for Improvement 

Future research efforts can greatly improve this thesis effort.  First, research 

should be applied to researching workforce scheduling disruptions.  In this thesis, 

disruptions were assumed to be randomly distributed using a uniform distribution.  This 

required all shifts to be made robust because the scheduler would not know which 
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employees would be disrupted from being able to work.  However, improved disruption 

modeling would allow a scheduler to develop an improved model that only adds 

robustness to the shifts that have employees that are likely to be disrupted from the work 

schedule.  Therefore, less additional shifts would be required to build a robust work 

schedule.  This could result in a smaller workforce and decreased employment costs. 

Another area of improvement is the mathematical program designed to construct 

the robust models.  A simple integer-based mathematical program was used in this thesis.  

Furthermore, only the basic constraints were included in the model: minimum shift 

demand, weekend constraints, and skill requirements.  Additional work could be 

accomplished to include employee and manager preferences.  This would improve the 

validity of the model as real-world managers consider seniority and worker preference 

before building schedules.  Furthermore, future research should consider improving the 

work-rest cycles used in this model.  The basic rule used in this thesis is that a nurse may 

only work one shift per day and no more than two consecutive shifts.  However, this did 

allow nurses to be scheduled for night shift on Day 1, day shift on Day 2, and evening 

shift on Day 3.  Although this satisfies the above constraint, it may be exhausting for a 

nurse to work three different shifts on three different days. 

 

Future Applications 

Currently, the literature regarding robust scheduling is scarce.  There are limited 

applications in airline crew scheduling (Shebalov et al, 2006) and manufacturing flow 

scheduling in job shops (Davenport, 1999).  The concept of robust scheduling is one that 

most managers would appreciate.  Disruptions to workforces and production operations 
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are inevitable.  The ability to respond to disruptions without deviating from an active 

schedule could provide an organization with a competitive advantage in the service 

industry or a production operation. 

One area to consider applying robust scheduling theory is aircraft scheduling in 

the United States Air Force.  An aircraft is scheduled for flight the week prior to the 

actual sortie.  If the aircraft is broken and unavailable to fly on the day of the sortie, the 

squadron can add another "spare" aircraft to the schedule.  However, if there are not a 

sufficient number of spares on the schedule, then the squadron must take a deviation if 

they want to add another aircraft to the schedule.  Robust scheduling theory could 

improve the method that USAF flying units use to schedule flying aircraft.  Most 

importantly, it may identify ways to improve selecting spare aircraft, reducing the 

number of deviations associated with adding additional aircraft to the schedule. 

 

Conclusion 

 Disruptions impacting workforce schedules can be costly.  Although disruptions 

can not be eliminated, workforce schedules can be improved to be more responsive to 

disruptions.  This thesis examined five workforce scheduling models designed for a nurse 

rostering problem and measured their robustness to schedule disruptions.  Nonparametric 

statistical analysis indicated that must be applied to the correct skill sets in order to 

produce robust workforce schedules.  Furthermore, workforce managers can consider 

leaving a portion of the workforce unscheduled (or in reserve) to accommodate schedule 

disruptions. 
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Appendix A:  Model Construction Using Premium Solver 
 
 

Frontline Systems Premium Solver Platform (version 6.5) for use with Microsoft 
Excel was used to program and solve the integer-based mathematical models developed 
in Chapter 3.  Below is an outline of the construction of the model within Microsoft 
Excel. 
 
Decision Variables: 
 

 
Figure A.1.  Excel Screenshot of Decision Variables 

 
For Employees 1 thru 8: 
8 Employees can fill 3 possible shifts with 2 possible skills on 14 possible days 
672 variables assigned to cells B2:CG9 
B2: e1,1,1,1  Employee 7 assigned to shift 1 as skill set 1 on day 1 
S8: e7,3,1,3  Employee 7 assigned to shift 3 as skill set 2 on day 3 
 
For Employees 9 thru 20: 
12 Employees can fill 3 possible shifts with 1 possible skill on 14 possible days 
504 variables assigned to cells B12:AQ23 
D15: e12,3,1,1  Employee 12 assigned to shift 3 as skill set 1 on day 1 
S22: e19,3,1,6  Employee 19 assigned to shift 3 as skill set 1 on day 6 
 
Constraint: 
B2:CG9 is binary 
B12:AQ23 is binary 
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Individual Shift and Total Shift Constraints 
 

 
Figure A.2.  Excel Screenshot of Shift Constraints 

 
The sums of employees assigned to shift j, with skill set k, on day d are assigned to cells 
B26:CG26. 
 
B25 = SUM(B2:B9,B12:B23)  sum of employees assigned to shift 1 with skill set 1 on 
day 1. 
C25 = SUM(C2:C9)  sum of employees assigned to shift 1 with skill set 2 on day 1. 
(Note: Employees 9 thru 12 are not included in the summation for C25 because 
employees 9 thru 12 cannot be assigned to skill set 2.) 
 
Constraints: 
Minimum shift demand: B26:CG26 ≥ B28:CG28 
 
B30 = SUM(B26:CG26) 
Total sum of all employees assigned to all shifts for all skill sets on all days 
 
 
Maximum Daily Shift Constraint 
 

 
Figure A.3.  Excel Screenshot of Maximum Daily Shift Constraint 

 
The sums of all shifts for employee i on day d are assigned to cells B33:O52. 
 
For employees 1 thru 8 assigned to cells B33:O40: 
B33 = SUM(B2:G2) 
 
For employees 8 thru 20 assigned to cells B41:O52: 
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B41 = SUM(B12:D12)  
 
Constraint: 
Maximum shifts per day: B33:O52 ≤ Q33:AD52 
 
 
Weekly Shift and Weekend Constraints 
 

 
Figure A.4.  Excel Screenshot of Weekly and Weekend Shift Constraints 

 
Week 1: 
For employees 1 thru 20 assigned to cells B58:B77: 
B58 = B33+C33+D33+E33+F33+G33+H33 
 
Constraints: 
Minimum shifts per week: B58:B77 ≥ E58:E77 
Maximum shifts per week: B58:B77 ≤ G58:G77 
 
Week 2: 
For employees 1 thru 20 assigned to cells C58:C77: 
C58 = I33+J33+K33+L33+M33+N33+O33 
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Constraints: 
Minimum shifts per week: C58:C77 ≥ E58:E77 
Maximum shifts per week: C58:C77 ≤ G58:G77 
 
Sum of Weekend Shifts: 
For employees 1 thru 20 assigned to cells I58:I77: 
I58 = G33+H33+N33+O33 
 
Constraint: 
Maximum weekend shifts: I58:I77 ≤ K58:K77 
 
 
Frontline Systems Premium Solver 
 
The following screenshots show the construction of the model within Premium Solver.  
Figure A.5. displays the decision variable dialogue boxe.  Figure A.6 displays the 
constraint dialogue box. 
 

 
Figure A.5.  Excel Screenshot of Decision Variables Dialogue Box 
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Figure A.6.  Excel Screenshot of Constraint Dialogue Box 

 
 
Schedule Development 
 

 
Figure A.7.  Excel Screenshot of Rostered Schedule 

 
The schedules were labeled with the shift code (D=day, E=evening, N=night, O=off) 
using the following formulas. 
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For employees 1 thru 8 assigned to cells B83:O90: 
B83 = IF(B2+C2>0,"D",IF(D2+E2>0,"E",IF(F2+G2>0,"N","O"))) 
 
For employees 9 thru 20 assigned to cells B91:O102: 
B91 = IF(B12>0,"D",IF(C12>0,"E",IF(D12>0,"N","O"))) 
 
 

62 



Bibliography 
 
 
1. Bard J., Purnomo H.  “Hospital-wide Reactive Scheduling of Nurses with 

Preference Considerations,” IIE Transactions, 37: 589-608 (2005) 
 
2. Cheang B., Li H., Lim A., and Rodrigues B.  “Nurse Rostering Problems—A 

Bibliographic Survey,” European Journal of Operational Research, 151: 447-460 
(2003). 

 
3. Davenport A.  “Managing Uncertainty in Scheduling: A Survey,” 

http://www.sintef.no/static/am/opti/kollokvier/1999/presentations/uncertainty-
surveys.ps (18 Dec 2006) 

 
4. Eriksen W., Bruusgaard D., and Knardahl S.  "Work Factors as Predictors of 

Sickness Absence: A Three Month Prospective Study of Nurses' Aides," 
Occupational Environmental Medicine, 60: 271-278 (2003). 

 
5. Ernst A., Jiang H., Krishnamoorthy M., and Sier D.  "Staff Scheduling and 

Rostering: A Review of Applications, Methods, and Models," European Journal of 
Operational Research, 153: 3 - 27 (2004). 

 
6. Knighton S.  An Optimal Network-Based Approach to Scheduling and Re-Rostering 

Continuous Heterogeneous Workforces.  PhD Dissertation.  Arizona State 
University, Tempe AZ, August 2005. 

 
7. McClave J., Benson P., and Sinchich T.  Statistics for Business and Economics 

(Ninth Edition).  Upper Saddle River, New Jersey: Pearson Prentice Hall, 2005. 
 
8. Moz M., and Pato M.  “A Genetic Algorithm Approach to a Nurse Rerostering 

Problem,” Computers & Operations Research, 34: 667-691 (2007).  
 
9. Oliver S.  Registered Nurse for Cummings Healthcare Facility, Bangor ME.  

Telephone Interview.  11 Jan 2007. 
 
10. Ritchie K., Macdonald E., Gilmour W., and Murray K.  "Analysis of Sickness 

Absence Among Employees of Four NHS Trusts," Occupational Environmental 
Medicine, 56: 702-708 (1999). 

 
11. Schaefer A., Johnson E., Kleywegt A., and Nemhauser G.  “Airline Crew 

Scheduling Under Uncertainty,” Transportation Science, 39.3: 340-348 (August, 
2005) 

 

63 

http://www.sintef.no/static/am/opti/kollokvier/1999/presentations/uncertainty-surveys.ps
http://www.sintef.no/static/am/opti/kollokvier/1999/presentations/uncertainty-surveys.ps


12. Shebalov S., and Klabjan D.  "Robust Airline Crew Pairing: Move-up Crews."  
Transportation Science, 40.3: 300-312 (August, 2006) 

 
13. Siferd S., and Benton W.  “Workforce Staff and Scheduling:  Hospital Nursing 

Specific Models,” European Journal of Operational Research, 60: 223-246 (1992). 
 
14. Whitehead D.  "Workplace Health Promotion: The Role and Responsibility of 

Health Care Managers," Journal of Nursing Management, 14: 59-68 (2006). 

64 



65 

Vita 
 
 
 
 Captain Paul K. Tower graduated from Franklin High School in Franklin, New 

Hampshire.  He entered undergraduate studies at the University of New Hampshire in 

Durham, New Hampshire where he graduated with a Bachelor of Science degree in 

Mechanical Engineering in December 1998.  He was commissioned through the 

Detachment 475 AFROTC at the University of New Hampshire where he was nominated 

for a Regular Commission. 

 His first assignment was at Pope AFB, North Carolina, as an aircraft maintenance 

officer for the 23d Maintenance Squadron and the 74th Fighter Squadron.  In February 

2002, he was reassigned to the 56th Fighter Wing at Luke AFB, Arizona, where he 

served as the Officer-In-Charge of the 61st Aircraft Maintenance Unit.  He also served as 

a flight commander in the 56th Equipment Maintenance Squadron and the 56th 

Component Maintenance Squadron.  In August 2005, he entered the Graduate School of 

Engineering and Management, Air Force Institute of Technology.  Upon graduation, he 

will be assigned to the Air Combat Command staff at Langley AFB, Virginia. 

 
 
 
 
 
 
 
 
 
 
 



 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

03-16-2007 
2. REPORT TYPE  

Master’s Thesis 
3. DATES COVERED (From – To) 

Sep 2005 - Mar 2007 
5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

4.  TITLE AND SUBTITLE 
AN ANALYSIS OF ROBUST WORKFORCE SCHEDULING 
MODELS FOR A NURSE ROSTERING PROBLEM 

5c.  PROGRAM ELEMENT NUMBER 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 

6.  AUTHOR(S) 
 
Tower, Paul K., Captain, USAF 
 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Street, Building 642 
 WPAFB OH 45433-7765 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
AFIT/GLM/ENS/07-12 

10. SPONSOR/MONITOR’S ACRONYM(S) 
 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 N/A 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
13. SUPPLEMENTARY NOTES  
 
14. ABSTRACT  
 Disruptions impacting workforce schedules can be costly.  A 1999 study of the United Kingdom’s National Health Service estimated that as 
much as 4% of the total resources spent on staffing were lost to schedule disruptions like absenteeism.  Although disruptions can not be eliminated, 
workforce schedules can be improved to be more responsive to disruptions.  One key area of study that has expanded over the past few years is the 
application of traditional scheduling techniques to re-rostering problems.  These efforts have provided methods for responding to schedule 
disruptions, but typically require deviations to the disrupted schedule. 
 This thesis examines five workforce scheduling models designed for a nurse rostering problem.  Each model is designed to produce a robust 
workforce schedule that remains valid in the midst of disruptions and requires no schedule deviations.  Each model is evaluated based on the number 
of disruptions it can receive before becoming invalid.  Nonparametric statistical analysis is used to analyze the disruption data for each model and 
determine which workforce scheduling model produces the most robust schedule.  The results of this research indicate that additional manpower 
must be applied to the correct skill sets in order to produce robust workforce schedules.  Furthermore, workforce managers can consider leaving a 
portion of the workforce unscheduled (or in reserve) to accommodate schedule disruptions. 
 
15. SUBJECT TERMS 
   Nurse Rostering Problem, Robust Workforce Scheduling, Disruptions, Nonparametric Statistical Analysis 

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Stephen P. Chambal, Capt, USAF (ENS) 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

77 
19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4314; e-mail:  Stephen.Chambal@afit.edu 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


	An Analysis of Robust Workforce Scheduling Models for a Nurse Rostering Problem
	Recommended Citation

	DEDICATION
	Bibliography


