
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-16-2007

Internet Protocol Geolocation: Development of a Delay-Based Internet Protocol Geolocation: Development of a Delay-Based

Hybrid Methodology for Locating the Geographic Location of a Hybrid Methodology for Locating the Geographic Location of a

Network Node Network Node

John M. Roehl

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Geographic Information Sciences Commons, Information Security Commons, and the

Other Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Roehl, John M., "Internet Protocol Geolocation: Development of a Delay-Based Hybrid Methodology for
Locating the Geographic Location of a Network Node" (2007). Theses and Dissertations. 3040.
https://scholar.afit.edu/etd/3040

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/358?utm_source=scholar.afit.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholar.afit.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/310?utm_source=scholar.afit.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3040?utm_source=scholar.afit.edu%2Fetd%2F3040&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-
BASED HYBRID METHODOLOGY FOR LOCATING THE GEOGRAPHIC

LOCATION OF A NETWORK NODE

THESIS

John M. Roehl, Captain, USAF

March 2007

AFIT/GIR/ENV/07-M15

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

“The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.”

AFIT/GIR/ENV/07-M15

INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-
BASED HYBRID METHODOLOGY FOR GEOGRAPHIC LOCATION OF A

NETWORK NODE

THESIS

Presented to the Faculty

Department of Systems and Engineering Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Information Resource Management

John M. Roehl, BA

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GIR/ENV/07-M15

INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-
BASED HYBRID METHODOLOGY FOR GEOGRAPHIC LOCATION OF A

NETWORK NODE

John M. Roehl, BA
Captain, USAF

Approved:

________________// SIGNED //___________________ ___16 Mar 07
Michael R. Grimaila, PhD, CISM, CISSP, GSEC (Chairman) Date

_______________// SIGNED //____________________ ___16 Mar 07
Maj. Jason M. Turner, PhD (Member) Date

______________// SIGNED //__________________ ____16 Mar 07

 Maj. Frederick G. Harmon, PhD (Member) Date

iv

AFIT/GIR/ENV/07-M15

 Abstract

 Internet Protocol Geolocation (IP Geolocation), the process of determining the

approximate geographic location of an IP addressable node, has proven useful in a wide

variety of commercial applications. Commercial applications of IP Geolocation include

market research, redirection for performance enhancement, restricting content, and

combating fraud. The potential for military applications include securing remote access

via geographic authentication, intelligence collection, and cyber attack attribution.

IP Geolocation methods can be divided into three basic categories based upon

what information is used to determine the geographic location of the given IP address: 1)

Information contained in databases, 2) information that is leaked during connections with

the IP of interest, and 3) network-based routing and timing information. This thesis

focuses upon an analysis in the third category: delay-based methods. Specifically, a

comparative analysis of the three existing delay-based IP Geolocation methods: Upper-

bound Multilateration (UBM), Constraint Based Geolocation (CBG), and Time to

Location Heuristic (TTLH) is conducted. Based upon analysis of the results, a new

hybrid methodology is proposed that combines the three existing methods to improve the

accuracy when conducting IP Geolocation. Simulations results showed that the new

hybrid methodology TTLH method improved the success rate from 80.15% to 91.66%

when compared to the shotgun TTLH method.

v

 Table of Contents

Page

Abstract .. iv

Table of Contents.. v

List of Figures .. vi

List of Tables .. vii

1. Introduction.. 1

1.1 Problem Statement ... 4
1.2 Research Objectives ... 4
1.3 Research Methodology .. 5
1.4 Research Significance .. 6
1.5 Thesis Overview .. 6

2. Literature Review.. 8

2.1 Chapter Overview .. 8
2.2 Definition of Terms.. 8
2.3 Internet Protocol Geolocation .. 10
2.4 Database Focused Methods.. 10

2.4.1 WHOIS .. 11
2.4.2 Domain Name Service (DNS) ... 12
2.4.3 IP Clustering .. 12

2.5 Information Leakage-Focused Methods .. 13
2.5.1 Reverse DNS.. 14
2.5.2 Trace Route.. 14
2.5.3 Application Information Leakage .. 15
2.5.3.1 Finding End-User IP Addresses.. 16

2.6 Network Communication Attribute-Focused Methods.. 16
2.6.1 Delay Factors in IP Network Communications 16
2.6.1.2 Topology... 17
2.6.1.3 Line Speed .. 19
2.6.1.4 Queuing Delay .. 19
2.6.1.5 Switching Speed.. 20
2.6.1.6 IP Path Diversity .. 21

2.6.2 Measuring Delay ... 22
2.6.2.1 Trace Route... 23

2.7 Delay-Based IP Geolocation Methods ... 24

Page

v

2.7.1 Upper-Bound Multilateration... 25
2.7.2 Constraint-Based Geolocation ... 27
2.7.3 Nearest Known Node... 28

2.7.3.1 Euclidean Distance... 31
2.8 Summary .. 34

3. Methodology... 36

3.3 Enumerating Network Architectures.. 39
3.4 Data Collection Process ... 40
3.5 Data Analysis Process .. 41
3.5.1 Upper-Bound Multilateration (UBM)... 41
3.5.2 Constraint-Based Geolocation (CBG)... 42
3.3.3 Time to Location Heuristic (TTLH) ... 46
3.4 Metrics ... 48
3.5 Assumptions... 53
3.6 Summary .. 54

4. Results and Analysis ... 55

4.1 Data Collection... 55
4.1 Upper-Bound Multilateration... 58
4.1.1 UBM Results... 62
4.2 Constraint-Based Geolocation ... 65
4.2.1 CBG Results.. 65
4.3 TTLH ... 72
4.3.1 TTLH Results.. 78
4.4 Hybrid Methodology.. 80
4.4.1 Hybrid Methodology Results .. 81
4.5 Summary .. 82

5. Conclusions and Recommendations ... 83

5.1 Summary of Results ... 84
5.2 Significance of Research.. 86
5.3 Limitations ... 87
5.4 Future Research.. 87

APPENDICIES... 89

Appendix A: CollectIt12.c “C” Program ... 90
Appendix B: CollectIt12.c “C” Program ... 149

Bibliography ... 170

vi

 List of Figures

Figure Page
1 Delay Triangulation IP Geolocation Method...…….…………………….…………...26
2 Hypothetical Zero-Bit Packet………………………………………….…....…...…...30
3 Euclidean Distance Methodology ………..……………………………………...….....32
4 Network Topology……………………………………………………….……...……..38
5 Network Architecture Enumeration………………………………………………….39
6 Boston (P1) Bestline……………….………………………………….….……...…….44
7 Seattle (P11) Bestline……………..…………………………………….…...………..48
8 Miss Distance………………………………………………………………………….49
9 Area of Overlap……………………………….……………………………….……….52
10 UBM results for T2 (Hartford)…………………………………………...……..…..63
11 Figure 11. San Jose (P10) Bestline ……………………………………………….67
12 CBG results for T2 (Hartford) …………………………………………....………..71
13 TTLH Scatterplot of Polling Nodes and Accuracy…….………...……...……………73

vii

 List of Tables

Table Page
1 Node Designators……………………………………………………………………....39
2 TTLH Research Design…….…………………………………….………………….48
3 Delay Time (seconds)……………….…………………………….…..……………...57
4 Estimated Miles to Targets UBM……….………………………….….…………….59
5 Driving Distance between Nodes……….………………………..…..……………….60
6 Number of Miles overestimated by UBM……….……….....………..……………….61
7 UBM Results (Area)…………………………….………….………..…………...….63
8 UBM Error rates………………………………….………….……….…….………...64
9 Number of Miles Overestimated by CBG………….……………….……………….68
10 CBG Error Rate…………………………………….……………….…….…………69
11 Equation of the Bestlines used in CBG…………….……………………………......70
12 CBG Results (Area)……………………………….………………………..……...71
13 Summary of CBG and UBM results………………………………………………..72
14 TTLH Results 2 Polling Nodes and 9 End Nodes………………………..………...74
15 TTLH Results 3 Polling Nodes and 8 End Nodes………………………..………...75
16 TTLH Results 4 Polling Nodes and 7 End Nodes………………………..………...75
17 TTLH Results 5 Polling Nodes and 6 End Nodes………………………..………...76
18 TTLH Results 6 Polling Nodes and 5 End Nodes………………………..………...76
19 TTLH Results 7 Polling Nodes and 4 End Nodes………………………..………...77
20 TTLH Results 8 Polling Nodes and 3 End Nodes………………………..………...77
21 TTLH Results 9 Polling Nodes and 2 End Nodes………………………..………...78

 1

INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-BASED
HYBRID METHODOLOGY FOR LOCATING THE GEOGRAPHIC LOCATION OF A

NETWORK NODE

 1. Introduction

The evolution of the Internet has revolutionized modern society by providing

unprecedented access to information and knowledge to anyone, from anywhere, and at

anytime. The systems, infrastructure, and networks that make up the Internet

(collectively known as “Cyberspace”) transcend all physical boundaries. The Internet

provides a means for anyone who has access to an Internet connection to collect or

disseminate information on a global scale at a very low cost.

The increasing use and dependence upon cyberspace by public, private,

governmental, and military organizations drastically increases our exposure to adversarial

activities. Sophisticated hacking tools are freely available on the Internet and enable

script-kiddies with few resources and little knowledge to conduct sophisticated

information system attacks against individuals and organizations that rival those launched

by well-resourced nation states. The purposes of these attacks can range from simple

mischief to wide spread attacks against our critical national infrastructure. Our

adversaries conduct intelligence collection activities on network connected DOD

resources on a daily basis in order to collect, correlate, and exploit information for their

nefarious purposes. In all of these cases, it is desirable to identify the ultimate source of

 2

the attack (attribution). Identification of the source requires identification of the physical

location of the attacking system (e.g, tracing the attack back and attributing it to a

specific IP address), identification of the system(s) which are controlling the attacking

system as in many cases the attacking system is an “agent” of the actual attacker,

identification of the individuals responsible for initiating the attack, and identification of

the organization that is sponsoring the attack. This thesis focuses on methods that

address the first element: identifying the physical location of the system.

IP Geolocation is the process of identifying the approximate physical location of a

networked device that is connected to the Internet based upon its IP address and

communication characteristics. Various techniques for IP Geolocation have appeared in

the academic literature [15] [6] [7], some of which have resulted in issuance of US

patents, including one by the National Security Agency [16] [8] [1]. IP Geolocation

methods can be divided into three basic categories based upon what information is used

to determine the geographic location of the given IP address: 1) information contained in

databases, 2) information that is leaked during connections with the IP of interest, and 3)

network-based routing and timing information. The scope of this thesis is limited to

analysis in the third category: delay-based methods for IP Geolocation. The narrow

scope of the thesis was intentional and will fill a significant gap in the academic

literature. The scoping of the thesis does not suggest that one should only use delay-

based IP Geolocation methods. To the contrary, it is recommended that methods from

multiple categories should be used to provide as much intelligence as possible. The data

can be gained from multiple, non-overlapping, information sources.

 3

IP Geolocation has proven useful in a wide variety of applications. To date, the

use of IP Geolocation in published academic literature and applications have been

primarily in the commercial arena. For example, commercial organizations are using IP

Geolocation for targeted marketing [20]. This provides the ability for web site owners to

identify the geographic location of a system accessing their web pages and customize

their advertisements by promoting business that are in close proximity to the user. IP

Geolocation has been used to combat identity theft. Irregular location patterns from

single users would be able to trigger fraud alerts [20]. If a business can identify where a

purchase request is coming from, they can act accordingly if the request is from a high

fraud area. The result is that organizations can avoid losses and keep costs down. In

some cases, knowing the location of the source of a network communication can prevent

illegal activities. For example, despite the fact that online gaming web sites are

accessible from anywhere on the Internet, gambling is not legal worldwide. Ensuring

that users are located in areas where online gaming is legal can keep a business operating

lawfully [10]. Law enforcement can use IP Geolocation to locate computer equipment

suspected of being used for illegal activities.

While the military use of IP Geolocation is relatively new, it can provide

enormous benefits. For example, IP Geolocation provides the ability to help secure

remote access via geographic authentication, improve intelligence collection, and enable

cyber attack attribution. The military significance of IP Geolocation has dramatically

increased with the articulation of Cyberspace as a medium for warfighting within the

United States Air Force (USAF) mission statement. On 7 December 2005, Secretary of

the Air Force Michael Wynne adopted the new mission statement which states, “The

 4

mission of the United States Air Force (USAF) is to deliver sovereign options for the

defense of the United States of America and its global interests -- to fly and fight in Air,

Space, and Cyberspace” [30]. Shortly after adopting the new mission statement, the

USAF announced plans for the creation of a new “Cyber Command” [31]. The Cyber

Command will be comprised of personnel specializing in the intelligence,

communications, operational, and engineering fields, with the stated goal to exploit

cyberspace and to defend our national cyberspace.

1.1 Problem Statement

Delay-based IP Geolocation methods provide the ability to geolocate an IP

addressable node based on network timing and routing information. Unfortunately, there

has been no comparative analysis of the accuracy of existing delay-based IP Geolocation

methodologies. For example, it is of interest to know how the positioning of nodes

within the network would impact the accuracy of various IP Geolocation methods.

Information gained from an analysis may enable an improvement of existing methods or

lead to the development of a new or hybrid methodology.

1.2 Research Objectives

The purpose of the research is twofold. First, it is desired to gain a complete

understanding of the accuracy of existing delay-based IP Geolocation methods. A

simulation-based study of the delay-based IP Geolocation methods will allow validation

of the existing IP Geolocation methods and provide a better understanding of the

sensitivity the methods have to the network infrastructure. Second, it is expected that the

 5

knowledge gained from the analysis will enable the development of a new hybrid

methodology for delay-based IP Geolocation that may improve the accuracy when

compared to existing individual methods.

1.3 Research Methodology

 This research will make use of the OPNET network simulation tool which allows

the user to rapidly create and simulate network architectures [14]. OPNET has been

successfully used in numerous network studies and is considered one of the best tools for

accurate simulations of real-world network architectures [21][14]. In this research,

various network architectures will be modeled and simulated in OPNET to provide

insight into accuracy of delay-based IP Geolocation methods.

The process for conducting the research will consist of four steps. First, a Wide

Area Network architecture consisting of 12 nodes and 14 routers across the USA will be

modeled in OPNET to enable the simulation of network traffic. Second, multiple

simulations will be conducted to collect the propagation delay from each node to every

other node. Third, an analysis of the collected data using the Upper-bound

Multilateration (UBM), Constraint Based Geolocation (CBG), and Time to Location

Heuristic (TTLH) methodologies will be conducted. The results will be analyzed to

identify trends in the data and to investigate the effect of positioning nodes. Finally, a

new methodology of combining multiple IP Geolocation techniques will be developed to

obtain more accurate results than using one methodology alone.

 6

1.4 Research Significance

Determining the geographic location of a network node has proven to be

important in a wide variety of commercial applications. The full potential of the military

application of this technology has not yet been realized, but is expected to grow with the

new emphasis on cyberspace. For this reason, we need to understand the strengths and

weaknesses of the delay-based IP Geolocation methods. Developing an enhanced

understanding of the technology will help us protect the knowledge of the location of our

network addressable assets and assist the military community in locating the positions of

nodes of concern.

1.5 Thesis Overview

 Chapter one has described the background of IP Geolocation and enumerated

some of its potential uses. It introduced the importance of IP Geolocation and focused on

some of the purposes and uses in commercial and military applications. This chapter also

briefly introduced the problem statement, research objectives, research methodology, and

explained the significance of the research. Chapter two contains a more in-depth review

of literature related to the topic of IP Geolocation. It also explains the terminology, the

underlying calculations required for the delay-based IP Geolocation methods, the metrics

for comparing the IP Geolocation methods, and how the metrics are can be compared to

evaluate the accuracy of the various methods. Chapter three provides an overview of the

research design methodology used in this study. It explains the rationale behind the

research design and its appropriateness to answer the research objectives. Chapter four

presents an analysis of the data collected from the research, identifies trends discovered

 7

in the data, proposes a new hybrid IP Geolocation methodology, and provides a

comparative analysis of the three delay based geolocation methods. Chapter four also

presents results from a proposed hybrid geolocation methodology. Finally, chapter five

provides a discussion on the research results and presents implications for future

research.

 8

 2. Literature Review

2.1 Chapter Overview

The purpose of this chapter is to expand upon the information presented in

Chapter 1 through a detailed review of the relevant literature. First, a high level review

of IP Geolocation will be addressed to provide a basic understanding of the various

methods that have been used to determine the geographic location of an IP addressable

node when using all available information. Next, a detailed discussion of the delay-based

methods for IP Geolocation will be presented to provide an in-depth understanding of the

operation, strengths, weaknesses, and limitations of each of the methods. Finally, a

discussion of recent thesis research in the area of delay-based IP Geolocation will be

presented to motivate the scope of this thesis.

2.2 Definition of Terms

In this section, terminology is introduced to provide the reader with the

knowledge necessary to understand the research presented in this thesis. Initial

descriptions of the terms will be basic and may be later refined as necessary to further

clarify their application in the research.

A “PING” command is used on a IP addressable node to determine the delay for

information to travel through the network from one point to another [19]. PING

commands are often used to insure that another system on the network is reachable and is

currently “up” or able to answer requests for service [11].

 9

The terms “end node”, “target node” and “polling node” are used to refer to the

role that an IP addressable node plays in the research. An end node is defined as a

network device that will respond to a PING request and which the geographic location of

the device is known. End nodes are primarily used when discussing the TTLH IP

Geolocation method because it determines which end node is located closest to a IP

addressable node with unknown location. For the purposes of this research, any IP

addressable node that responds to a PING request can be an end node.

A target node is defined as any IP addressable node network device that will

respond to a PING request and which the geographic location of the device is unknown.

The whole purpose of IP Geolocation is to identify the geographic location of an IP

addressable node to some level of granularity. Target nodes are used in the research to

identify the node that the IP Geolocation is attempting to locate. For the purpose of this

research, the location of target nodes will be known and used to calculate the accuracy of

the various delay-based IP Geolocation methods, but in a real life application of the

methods the location of the target node would be unknown.

A polling node is defined as any IP addressable node network device that can

generate PING requests and receive the resulting response. The polling nodes are

controlled by the researcher and are used to send PING requests to both end nodes and a

target node of interest. Polling nodes are the primary data collection mechanisms in all

delay-based IP Geolocation since these methods require delay measurements to

determine the approximate location of the target node.

 10

In this research project, all nodes will be used as polling nodes, end nodes, and

target nodes. This allows for a research design in which all of the data can be collected

and later analyzed by the researcher to create multiple scenarios for analysis.

2.3 Internet Protocol Geolocation

Internet Protocol Geolocation (IP Geolocation) is the process of identifying the

approximate physical location of an IP addressable, networked device that is connected to

an IP based network based upon its IP address and communication characteristics. In

most cases, the IP based network contemplated for use is the Internet as this is the

application environment of current interest. However, it can be used in any IP based

network such as the Secure Internet Protocol Router (SIPR) or the Joint Warfare Internet

Communications Secure (JWICS) networks.

IP Geolocation methods can be divided into three basic categories based upon the

information that is used to determine the geographic location of the given target IP

address. Database focused methods rely upon information contained in databases;

information leakage focused methods rely upon information that is leaked interactions

with the IP node of interest, and network communication attribute-focused methods rely

upon network, routing, and timing information which can be collected and analyzed to

identify the location of the target IP of interest to some level of granularity [12].

2.4 Database Focused Methods

IP Geolocation methods in the first category are based upon information that is

stored in public database (e.g., a WHOIS database or a Domain Name Server database).

 11

These methods use the target IP address in conjunction with information that is stored

within a database containing information related to the network structure, architecture, or

topology.

2.4.1 WHOIS

WHOIS databases contain information that maps logical identifiers (domain

names, IP addresses, AS numbers contained in routing tables, etc.) to real-world entities

(company names, ISPs, telecommunication providers, etc.), which could reveal the

approximate geographic location of the target IP address. The WHOIS command queries

a remote database that contains information recorded when a network domain or IP

address range was registered. It is possible to cache WHOIS lookups in a local database

to accelerate, optimize, or correlate searches. NetGeo is a for-profit application that

relies primarily on WHOIS for its basis of information. Using information from 2,380 IP

addresses, NetGeo was found to have a median error distance of 650 km [15]. While this

is a very large area, it meets the needs for the majority of the commercial applications

that NetGeo supports. A critical weakness of WHOIS-based methods is that the accuracy

of this method is dependent upon the accuracy of the information stored in the database.

The data contained within the WHOIS database could be erroneous because it was

submitted incorrectly, changes have occurred since the information was entered, or by

intentional deception. As a result, the accuracy of this information may not be reliable

and should not be solely relied upon. However, WHOIS lookups can be used to

compliment other IP Geolocation methods when there is a requirement for increase

accuracy and reliability.

 12

2.4.2 Domain Name Service (DNS)

The Domain Name Service (DNS) is a standard distributed database used to

manage the forward and reverse translation of Uniform Resource Locators (URLs) to IP

addresses. For example, when the URL “http://www.cnn.com” is entered into a web

browser, the web browser first sends a request to the local DNS server asking for the IP

address that corresponds to “www.cnn.com”. Once the local DNS server returns the IP

address that corresponds to the URL, the computer can now communicate over the

network using IP protocol to retrieve the desired web page [18]. When domains are

created, information is provided by the registrant including the administrative contact and

address, the technical contact and address, and the IP address of DNS servers that will be

responsible for conducing DNS translations for the new domain. The addresses provided

by the registrant can be a useful clue when conducting IP Geolocation. In some cases,

the target node may be located in close proximity to the local DNS server. By identifying

the DNS servers that are used by the target node, one can infer its location.

Unfortunately, the geographic region served by the DNS server could be quite larger

resulting in a coarse granularity in the identification of the area in which the target node

is contained. Once again, this information should be used with information gained from

using other methods.

2.4.3 IP Clustering

IP Clustering makes use of the principal of locality to conclude that IP addresses

that are located in close proximity to each other may be physically located near to one

another. If we know the geographic location of an IP addressable node (or groups of

nodes) that is close to the IP address of a target node, we can infer the target node

 13

location. In some cases, organizations build databases from previous queries to the

WHOIS database and augment it from knowledge gained from other sources. This

method relies on keeping a large database and that can be cumbersome because IP

addresses are not always static. The internet is designed and organized in a way that

allows for IP addressable nodes to dynamically change which makes it extremely difficult

to insure that information previously collected is still valid [15]. In addition, this method

will not be accurate in instances of organizations that interconnect their geographically

dispersed locations using dedicated Wide Area Network (WAN) or Virtual Private

Network (VPN) communication links. In these cases, a WHOIS query or other

information may identify the target IP address as physically located at the organizations

main headquarters while in reality it is located at a satellite office located very far away

from headquarters. This occurs because the organization assigns IP addresses for their

remote offices from the same block as those in the headquarters. This is a common

situation in organizations with high level security requirements that mandate that the

internal organizations be connected to the Internet via a single point. This security

architecture is used to enable security monitoring, policy compliance, and auditing of all

organizational traffic.

2.5 Information Leakage-Focused Methods

IP Geolocation methods in the second category are based upon information that is

leaked from the IP address of interest during network communication interactions

between network nodes. The information gained can be through legitimate mechanisms

 14

designed into the communication infrastructure or can be inadvertently and unknowingly

leaked from a target.

 2.5.1 Reverse DNS

Reverse DNS lookups are used to convert an IP address into a system name and

domain name. A DNS server database often has information about the geographic

location of systems that they serve embedded into the system names. A reverse DNS

lookup of an IP address can reveal the system name and/or domain name which may

contain clues about its geographic location. These clues include the city, state, and

region names; airport codes; or organizational names which can be used to identify

location [12]. Administrators commonly use location in the naming of devices for ease

of recognition of the location of the device. This is often done for efficiency so that when

they encounter a problem with the node, they can find the troublesome device quickly

[4]. DNS servers also optionally contain a record that identifies the latitude and

longitude of the DNS server. The embedded information can provide valuable

information aiding in IP Geolocation. However, this method is subject to deception and

may not be reliable as discussed above due to the inherent dependence upon how the

information is entered and maintained in the database.

2.5.2 Trace Route

A “TRACEROUTE” command is used to determine the current pathway by

which information travels through the network from one point to another. The details of

how TRACEROUTE works will be discussed in a later section. A TRACEROUTE

command will identify all of the intermediate network routers that network

communications pass through from the source (polling node) to the destination (target

 15

node). Since the routers are often named based upon their physical location, their names

can yield valuable clues about their geographic location. If one can locate the last router

in the chain, one can infer that the target node is geographically near the last router.

Deception and social engineering can be used to entice a user to leak information.

For example, consider a stealth counter intelligence web server which appears as a non-

military, non-governmental resource that serves satellite imagery that is desirable to our

adversaries. The user could be asked for their ZIP code or other unique geographic

identifying information under the guise of enhancing the user’s experience. Once this

information is collected, it can be archived in a database for future use. The database can

then be accessed as a compliment to other information resources when conducting IP

Geolocation [29].

2.5.3 Application Information Leakage

Application programs can also leak information without the user’s knowledge.

For example, by design a web browser can provide information such as language,

operating system, browser name, and time zone [18]. Organizations often leak clues

about their location by their domain names. Some well-known examples are country

code top-level domains such as .au (Australia), .de (Germany) or .uk (United Kingdom)

[4]. While the granularity of these methods is coarse, it does provide useful and

collaborating information. Other domains such as .mil, .edu, and .gov do not use a

country code but they are all assigned within the United States. Interestingly, airport

codes are often used in the naming conventions of network routers. By looking at the

router names to which a user is connecting, clues to the location can be found [12].

 16

2.5.3.1 Finding End-User IP Addresses

Java can be used to find the IP address of a computer that accesses a web page

even when the user is connecting to the internet through a proxy [17]. A web page can

use simple java applet programs that request a computer assessing the web page to

make another connection to the web server [5]. That java enable connection requests

information such as the IP address of the computer making the connection [12].

2.6 Network Communication Attribute-Focused Methods

IP Geolocation methods in the third category are based upon information

collected using network, routing, and timing information. An analysis of IP Geolocation

methods in this category are the sole focus of this thesis. Each of these methods make

use of the delay for information to be sent and received between nodes. For this reason,

the following discussion will discuss each of the factors which determine the delay

through a network connection.

2.6.1 Delay Factors in IP Network Communications

Consider an ideal situation where network traffic passes from a sending node to a

receiving node via a fixed path through the communication infrastructure elements (e.g.,

hubs, switches, routers, gateways, firewalls, communication links). Even in this simple

case, the delay between two nodes is highly variable. The factors that contribute to the

variation in delay include, but are not limited to, the network topology, switching speed,

line speed, network loading, and queuing delays [3] [26]. Since all delay-based IP

Geolocation methods use delay measurements as a means to determine geographic

distance, it is important to understand these primary sources for delay.

 17

2.6.1.2 Topology

 Network topology is the physical infrastructure that the network traffic traverses

and is typically thought of as the primary determinate of the overall delay. The network

topology constrains the physical path by which the message can travel. The network

topology can be categorized based upon the location of the given communication path

element of interest in the chain from the source node to destination node [25].

Source and end node systems are usually connected to a Local Area Network

(LAN) which is then connected to the Internet through the network infrastructure. LAN

elements consist of hubs, switches, access points, and firewalls. Typically, a LAN is then

connected to a Backbone Network (BN) within the organization that links together

LANs. The BN is comprised of a collection of higher speed communication lines,

servers, routers, and gateways [23]. In smaller organizations, the BN will connect to the

Internet via an Internet Service Providers, (ISPs) Point of Presences (POP). The POP is

the pathway by which organizational network traffic connects to the Internet. In larger

organizations, the BN network may be connected to a larger network as discussed below.

A Metropolitan Area Network (MAN) is a network that covers the area of

approximately the area of a city. MANs are used to interconnect BNs and to provide a

connection to higher speed WANs. As a result, the equipment used in a MAN is often

fiber based and transports network traffic at higher data rates [9]. MANs can be

implemented using circuit switching, packet switching, frame relay, or asynchronous

transfer mode communication links [23].

A Wide Area Network (WAN) is a network that spans a geographic area larger

than that of a MAN. WANs are used to connect networks within a nation or

 18

internationally. In most cases, computer network WAN traffic travels over the same

point-to-point high speed communications links used for carrying digitized voice

communications for telephone networks. WANs are typically implemented by using high

speed point-to-point circuit switching, packet switching, frame relay, or asynchronous

transfer mode communication links [23].

LANs, BNs, MANs, and WANs are interconnected to provide a physical path

from the source node to the destination node. The network topology contributes to the

delay because it defines the physical path through the network infrastructure that the

message takes from source to destination. The complete path that the message travels is

known as the “network distance”. The network distance is determined by how the

networks are interconnected within the organizations containing the nodes as well as how

the organizations are connected to the Internet POP. For example, individuals in the

Dayton, Ohio metropolitan area who use a Time Warner cable modem to connect to the

Internet are connected first to the Time Warner internal network. The Time Warner

internal network uses a combination of LAN, MAN, and WAN networking technologies

to interconnect Time Warner customers across the state of Ohio. Time Warner has two

POPs in Ohio: Columbus and Cincinnati. If a Time Warner cable modem user in Dayton

connects to a web site located outside of the Time Warner private network, the traffic

must first travel to either Columbus or Cincinnati where it enters the Internet POP. The

Internet POP then routes the message to the appropriate location based upon its IP

address. The route that the message takes can be over any of the numerous Internet

providers that are connected to the POP.

 19

2.6.1.3 Line Speed

 Line Speed is a generic term used to describe the rate that data can travel through

a given network segment via the specified medium. The medium acts as a conduit

through which the message will travel. Depending on the location in the network

hierarchy, different line speeds will be present. In the LAN, there is typically 10BaseT

(10 Mbps) or 100BaseT (100 Mbps) hardwired networks. BNs employ higher speed

systems with hardwired or optical networks running at 1000 Mbps or higher. MANs

often employ high-speed digital fiber optic networks running from 1 Gbps to 40 Gbps.

WANs use a variety of technologies including high-speed digital fiber optic networks

running at speeds greater than 10 Gbps, microwave links can run at data rates of 274

Mbps, and satellite links that vary from 12 Mbps to 135 Mbps [23].

2.6.1.4 Queuing Delay

 Network infrastructure elements such as routers often must handle a large amount

of traffic during normal operation. When the router receives a message before it has had

a chance to send a previous one, it will stack the messages awaiting transmission in a

queue [18]. The result of a message being temporarily stored in a queue is delay. Many

factors impact queuing delay such as the network congestion, amount of demand, and the

processing speed of the network device. Excessive queuing delay can cause delay-based

IP Geolocation methods to arrive at incorrect results. In most cases, this can be

accounted for by sending multiple messages between the source and destination node

over a variety of time, day, and weeks and at varying times of day over many days and

choosing the minimum delay that is experienced. This method relies upon previous

research that showed that there is a high probability that some of those messages reaching

 20

the destination will not experience excessive queuing delays along the path [3]. Previous

work determined that using the minimum time yielded better results than using averages

[3] [21]. Finding the minimum response time is accomplished by sending many requests

over a short period. Some of those requests will make it to the destination without waiting

for retransmission. This delay is taken as the best-case scenario processing time by the

end nodes and all of the network infrastructure elements. While this is not insured, the

fact remains that the delay between two nodes can never be less than the delay through a

given network under ideal conditions. For this reason, the minimum delay times are used

instead of the average delay times. By using knowledge about the network, the network

delay sampling times can be strategically selected to occur when the network is idle or

under minimum loading conditions.

 2.6.1.5 Switching Speed

 Network traffic must propagate through the network infrastructure devices that

connect the source and destination node. Network infrastructure equipment such as

repeaters, routers, switches, hubs, or bridges result in a delay that is different than the

contribution from network topology, line speed, or queuing delay [18]. The delay is a

function of the design of the infrastructure element and the domain translation(s) which

must occur to implement the functionality of the device. For example, fiber optic

transmission systems must convert electrical signals to optical signals when transmitting

data and must convert optical signals to electrical signals when receiving data. Since the

connection from source to destination will traverse multiple network infrastructure

devices, each one contributes to the overall delay through the network. For example, in a

router even if there is no other traffic to cause a queuing delay, there is a finite amount of

 21

delay required to receive data, process it, and send it out to another network interface.

While switching delay can be significant, the NSA found that a packet travels through a

switch in two milliseconds 95% of the time [8].

 2.6.1.6 IP Path Diversity

 The design of the Internet Protocol is such that Internet traffic does not

necessarily follow the shortest path from origin to its destination. Furthermore, traffic

does not always take the same path from source to destination [25]. This is an intentional

design choice made to increase the resilience of the network to infrastructure element

failures or excessive delays in infrastructure elements. The distributed nature of network

routing decisions and adaptive routing algorithms means that network traffic will be

routed based upon dynamic network and operational factors. The result is that network

traffic from the same network connection does not always follow the same path from one

packet to another [18]. Consider a network infrastructure where traffic is delivered faster

when it travels from source to destination through three routers connected via high-speed

links versus traveling through two routers connected via a lower speed link. Thus, the

best quality connection does not always mean that it will traverse the least number of

hops to the destination. Now, consider when one of the high-speed links between the

routers becomes overly saturated resulting in excessive delay. The router nearest the

source may decide to route the traffic via the lower speed connection because it is

currently faster than the saturated high-speed link. Due to the dynamic nature of routing,

it is important to characterize the delay between end nodes a number of times, over a

variety of times of days, days of the week, and weeks during a month.

 22

2.6.2 Measuring Delay

Previously, the PING command was briefly introduced as a tool for making delay

measurements. PING works by sending an Internet Control Message Protocol (ICMP)

Echo Request packet from the source node making the request to the destination node

[11]. The outbound request sent by the source node has a message field that includes a

timestamp that is used, in part, to calculate a round trip time once the echo request is

replied and received [26][11]. When the receiving node receives a Echo Request packet

and if it is configured to respond, it will respond to the request by sending a ICMP Echo

Reply packet back to the sender. When received by the originating system, it can

calculate the difference in time from when the message was sent to when the reply was

received. This calculated time is known as the Round Trip Time (RTT). The RTT can

be divided by two to estimate the one-way delay time from source to the destination. In

this research, the delay time between nodes is calculated using this method. The PING

command has a margin of error of four milliseconds [26][19]. In most cases, this is

sufficient to diagnose network connections or determine the amount of loading that the

infrastructure is currently experiencing.

In some cases, tools other than PING tools can be used to collect delay

measurements when a finer resolution is required or precise time measurements in each

direction are required. For example, some satellites network configurations use the

satellite for transmission in one direction while the data is transmitted over terrestrial

lines in the other direction. Unless accurate measurements are collected in each

direction, asymmetric communication channels can give misleading delay measurements

when using PING. One way to measure delay more precisely is to use the computer’s

 23

clock for measurement. In this case, the outgoing messages not only include a

timestamp, but also a stamp that counts the number of computer cycles the processor uses

between the sent and received transmission. Current generation computer processors

running at more than 1 GHz allow for measurements of time to be in the microsecond

level. This resolution is necessary when correlating delay measurements to distance

calculations, especially when every microsecond could equate to a message traveling

approximately 200 kilometers [7].

2.6.2.1 Trace Route

As previously discussed, the TRACEROUTE command is another tool that is

frequently used by network administrators. The TRACEROUTE command also makes

use of specially configured ICMP Echo Request packets. One of the header elements of

an IP datagram is the Time To Live (TTL) field. The TTL field is an 8 bit, unsigned

quantity that can range from 0 to 255. The TTL field was designed into the IP protocol to

insure that all network messages will be dropped after a specified amount of time.

Normally, the TTL field is initialized by the sending system to the maximum value (255),

and is decremented by one as it passes through each of the network routers. If a router

decrements the TTL field to 0 on an incoming network packet, it will drop the packet.

This will insure that traffic traveling through an endless loop will eventually be dropped

preventing network saturation due to erroneously designed or implemented networks.

When a router drops a packet, it will inform the sender that it had to do so via an ICMP

status message. This is what makes the TRACEROUTE command possible.

 24

For example, when a TRACEROUTE command is issued, the sending system

addresses the packet and sets the TTL to 1. The packet travels to the first router which

decrements the TTL field to 0. Since the TTL is now zero, the router drops the packet

and sends a status message to the sending system. The status message contains the IP

address of the intermediate router. The sending system records the returned router

message, and then sends a new packet to the destination with the TTL set to 2. The

process above is repeated and the second router status message is recorded. The process

is repeated until a trace from the source to the destination is completed.

 The TRACEROUTE command shows the IP address of each device between the

original and the destination node. A common use of TRACEROUTE is for an

administrator to find which device is not responding in the network. A graphical version

of the TRACEROUTE, known as Visual Route, works the same way TRACEROUTE

does [32]. Visual Route adds a graphical user interface and also uses NetGeo to help

determine the location of the devices. NetGeo uses information entered by administrators

to determine the locations of the routes taken [25].

2.7 Delay-Based IP Geolocation Methods

 In this section, existing methods for delay-based IP Geolocation are reviewed.

Delay-based IP Geolocation provides an attractive means for conducting geolocation

because it does not rely upon the accuracy of information entered by others and delay

measurements are not easily corrupted, neither purposely or inadvertently, as database

methods can be. There is a significant gap in the academic literature when comparing the

 25

accuracy of existing IP Geolocation methods. For this reason, this thesis focuses upon an

examination of delay-based IP Geolocation methods.

2.7.1 Upper-Bound Multilateration

Initially, delay-based IP Geolocation methods were focused upon multiplying

one-half the RTT by some scale factor to determine the distance between the polling node

and the target node. By PINGing from a number of different geographically separated

nodes, one can draw circles on a map around the polling nodes and see where the circles

intersect which (ideally) indicates the geographic location of the target IP address. Upper-

bound Multilateration [15] is a method that uses triangulation to find the location. While

triangulation is the common term, multilateration is the more accurate name.

Triangulation refers to an angle-based methodology when using three reference points

[7]. Multilateration uses more than three reference points to further refine the estimation

of the target location.

There is a common notion that the correlation between delay and actual distance

is poor [2]. One reason for this is that network traffic does not travel in straight lines nor

even in the most direct path to the host. However, some research has found success in

countering this notion. To accomplish correlating distance to delay, first the one-way

delay time must be determined. That time is then multiplied by 2/3 the speed of light to

find an upper bound on distance that the target is away from the polling station. The rate

of 2/3 the speed of light was the average speed that network traffic was found to travel

through various media [17]. With the use of three polling stations, the researcher can look

 26

at the distances and conclude that the target resides in the area where the distances

overlap as shown in Figure 1 below.

Figure 1. Delay Triangulation IP Geolocation Method

One interesting side effect of this method is that it has an error checking algorithm

built into it. When the upper bound is underestimated, the intersecting area will not

include the target location. If the correct location of the target was in the area of each

circle, the circles will always have an area of overlap. By plotting the areas, a mistake

can be found if the circles do not overlap at some point. This may, in fact, be the best

feature of the method because it is an error checker for the data collection [12].

 27

Research has shown that correlating actual distance to delay is reasonably

accurate when the distances are large in scale such as from an area the size of a continent.

Research has shown that the method has been able to correctly find the location of a

target to within 100s of miles [7]. The messages that were sent and measured traveled

long distances and the distance traveled was a large factor in the delay. In geolocation

methodologies that research nodes from a smaller area, messages travel shorter distances

therefore factors such as queuing delay, and switching speed play a bigger factor in the

equation. The distance traveled is still a factor in the delay, but not as prominent as it is

when traveling hundreds or thousands of miles.

2.7.2 Constraint-Based Geolocation

Constraint-Based Geolocation is a method that was proposed that recognized that

the rate of transmission is not always a constant 2/3 speed of light [7]. This improved

upon the previous method using a calculated scale factor which depended upon the

network infrastructure between the polling node and other known end nodes. Each

polling node would poll a number of geographically dispersed nodes at known distances

and then calculate a scale factor based upon the delays. The delay to the target node

would then be multiplied by the scale factor and the circle drawn around the polling node.

This process is repeated for each of the polling nodes within the polling node set.

To accomplish IP Geolocation by this method, the location of a variety of end

nodes must be known. Once that is determined, the location can be found by comparing

the delay times of the target node with that of the known end nodes. The end node with

the delay time nearest to the target will be the end node that is closest to the target.

 28

Methods such as GeoTrack use this method [15] while other research projects use

variations of this method [8][32]. While this method does not allow you to pinpoint

exactly where the target is, it can give an approximate location which is good enough for

the intended application.

Some other conclusions can be made by correlating delay to distance. The speed

of light can be used as the absolute upper bound for determining distance. Traveling at

the speed of light, it would take a message 134ms to circumvent the equator. Internet

traffic travels slower than the speed of light so if the round trip time of a message is less

than 67ms one can conclude that the target is located on the same side of the globe.

Network traffic can also travel through satellites positioned in geosynchronous orbit.

Those satellites are located 22,000 miles from earth in outer space. A message traveling

at the speed of light would take 478ms to travel to a satellite and back to earth. Messages

that have round trip times shorter than 478ms did not use a satellite to reach the

destination [21].

Previous research has had success correlating an actual distance to delay on a

large scale. The accuracy of the previous CBG research was able to find the location of

the target to within 120 kilometers [7]. An accuracy rate of 120km is a good result when

looking at areas starting at the size of a country.

2.7.3 Nearest Known Node

The National Security Agency (NSA) holds a patent on a methodology for

locating devices by using delay measurements known as the Time To Location Heuristic

(TTLH) method [8]. The methodology attempts to find the nearest end node with a

 29

known location to the target node. The result is not a precise location but rather the

location of the previously known node that is closest to the target. The nearest end node

is determined by polling the delay from multiple locations and comparing the delay

measurements from the known nodes with that of the target node. The comparison is

done using the Euclidean distance formula. The primary motivation for development of

this method was to account for delays introduced by line speed, switching speed and

queuing delays. By identifying the nearest node, many of the variations in delay are

normalized because nodes in close proximity to the target will experience similar delay

phenomena.

TTLH works best over long distances when the delay is dominated by line speed

delay. When switching delay is dominate, such as within a campus or across a city,

TTLH is not as accurate because the delay spent in switches becomes a larger factor in

the delay than the network topology. TTLH uses multiple polling nodes and requires

multiple end nodes with known location that are in proximity to the target node. In fact,

the granularity of the method is determined by the distance between the end nodes and

the target IP address.

 The TTLH method builds upon research that found a correlation between delay

time and location [8]. The time to location approach finds the proximity of a location by

using a set of polling nodes and end nodes, then comparing delay times to determining

which end node is in closest proximity to the target. To establish what the delay is, PING

messages are sent from the polling nodes to the end nodes and to the target node. The

RTT is then charted.

 30

In order to account for delay from line speed and switching speed a hypothetical

0-bit packet is sent [3] [26]. This is accomplished by sending multiple messages at sizes

of 64, 128, 512, and 1024 bits. Next the latency is charted on a graph and the y intercept

is used for a hypothetical 0 bit packet, as shown in Figure 2 [3] below.

Figure 2. Hypothetical Zero-Bit packet [3]

The minimum time is used for each packet size to determine the best fit. The

resulting theoretical “zero-byte” packet would take zero time to switch and zero time to

transmit through a medium thus resulting in a measurement that takes out the delay

factors of line speed and switching speed [26].

 The quickest time is used in the ‘zero-byte’ calculation to account for queuing

delay. The packets are sent multiple times over a short period of time and collected

 31

during different times of the day and over many days. Theoretically, some of these

messages will get through without being held in a queue. The messages that do not

experience a queuing delay will be used for the calculations. Previous research has found

that the messages sent at times when network loads are small have the smallest queuing

delay and result in the best data [26]. A traffic analysis of the network of interest is

required to select the ideal time to collect measurements. If this is not available, a

uniform sampling across a 24 hour period can be conducted and the minimum time

selected. Messages sent at other times of the day should have more network traffic to

compete with, but if the background traffic is consistent, the TTLH method will still

produce the correct result.

2.7.3.1 Euclidean Distance

 The Euclidean distance formula shown in Equation 1, is used to find the nearest

known node to the target. The equation uses a limit but instead of finding the greatest

distance as the limit approaches one, it can be used to find the nearest location as the

result is closer to zero.

 (1)

The Euclidian Distance formula is used to find the nearest known end to the target

node. The Euclidean distance is the square root of the sum of the squares of the delay

between the end node and target node. In this formula, e represents an end node. This

2

1
()

p

e ie it
i

d x x
=

= −∑

 32

equation is solved for each end node. The end node, or e, with the lowest value is the

closest end node in the dataset to the target. The equation is solved by using the delay

from all of the polling nodes to one end node and comparing that with the time from the

polling nodes to the target. Xie is the time for the message to travel from the polling node

to the end node, Xit is the time from the polling node to the target node, p is the number

of polling nodes used in the TTLH example. This is repeated for every end node. Then it

concludes that the end node with the smallest Euclidean distance is the end node that is

closest to the target. The results of this equation result in a number, but that number

cannot be directly converted to a distance. An example of this is shown below in Figure

3.

Figure 3. Euclidean Distance Methodology

Polling Node 1
(a) Polling Node 2

(b)

Target

End Node 1
(e1)

End Node 2
(e2)

a1

at b1
bt a2 b2

 33

Polling Node 1 sends requests to end node 1, end node 2, and the target. These delay

times are represented by a1, a2, and at. Polling Node 2 also sends a request to end node

1, end node 2 and the target. Those delay times are represented by b1, b2, and bt. Next,

by using this simple data set, Euclidean distances could be found as shown below in

Equation 2:

2 2
1 (1) (1)d a at b bt= − + −

2 2
2 (2) (2)d a at b bt= − + − (2)

Then once the equation was solved if d2 was less than d1, we could conclude that d2 (end

node 2) is closer in location to the target than d1.

Simulation and experimentation have been used to measure the effectiveness of

the TTLH method over a variety of network architectures and scales. Clarson [3] showed

that TTLH worked within a building by correctly identifying to which switch in the

building the target node was connected. He first simulated the local area network in

OPNET. Then he conducted a controlled experiment was carried out on a LAN. The

results of the experiment showed the location of the target was accurate only when an end

node was located on the same switch as the target. This result was the first indication that

TTLH was not reliable when the network distance was small.

Sorgaard [18] conducted simulations in OPNET to show how multiple

autonomous system (AS) networks would affect the results when using the TTLH

method. His simulations showed that the method was accurate in a single AS, but was

 34

only successful 71.4% of the time in a multiple-AS network. In his work, models of the

underlying infrastructure of the MCI and AT&T networks were constructed within

OPNET to allow the simulation of the network environment. It was hypothesized that

TTLH would have to be modified to account for link speed between AS in order for the

results to be successful more often. Unfortunately, no mechanisms were proposed to

account for link speed variances.

Turnbaugh conducted an experiment where he used publicly available “looking

glass” servers that are located throughout the United States [26]. He was able to control

them to poll target nodes and end nodes located throughout the country. The results

correctly identified which end node city was closest to the target 100% of the time for

five out of the six targets. The sixth target was a case that had multiple end nodes located

within 100 miles of the target node. However, the TTLH method did not return accurate

information when multiple end nodes were located near the target node. It correctly

identified the nearest known node when the target node only had one end node located

within 100 miles of it. When conducting the experiment, polling sets of seven, eight, or

nine nodes were used because previous researchers theorized that these numbers of

polling nodes would allow for the most accurate measurements [15].

2.8 Summary

This chapter provided a review of the relevant IP Geolocation literature. It first

examined existing methods for determining the geographic location of IP addressable

nodes. While IP Geolocation is accomplished through a variety of methods, delay-based

methods use real-time delay measurements and are the least dependent upon external

 35

information sources. A review of the terminology used in the thesis was presented to

provide the reader a basis for interpreting the research design. In addition, a review of

computer networking architectures and factors that contribute to network delay was

required so that the reader would understand the research.

While the literature review revealed three methods for delay-based IP

Geolocation, there is no existing research which compares the accuracy of each of the

methods. For this reason, this thesis will focus on a comparative analysis of delay-based

IP Geolocation methods.

 36

 3. Methodology

 In this chapter, the complete research design is reviewed to provide the reader a

detailed understanding of how the research data will be collected and analyzed. First, a

brief overview of the OPNET network simulation package that will be used in the

modeling and simulation of the networks is presented. Second, the network architecture

that will be modeled in OPNET and used for data collection is introduced. Third, an

overview of the data collection process is reviewed to provide the reader the ability to

duplicate the results. Fourth, the calculations required for Upper-bound Multilateration

(UBM), Constraint-Based Geolocation (CBG), and Time to Location Heuristic (TTLH)

IP Geolocation methods investigated in this project are explained in detail. Finally, the

metrics by which the accuracy of the methods will be compared is presented along with

all assumption made in the analysis.

3.1 Simulation Tools

The OPNET network simulation package provides the ability to rapidly model

and simulate network architectures [14]. OPNET has been successfully used in a variety

of network studies and is considered one of the best tools for accurate simulations for

real-world network architectures [21][14]. One key benefit of OPNET is that it offers a

number of predefined templates that model a variety of different network architectures.

All models in OPNET can easily be parameterized to provide the simulation of realistic,

non-ideal networks across a variety of operational situations [14].

 37

Each of the network architectures used in the research will be modeled and

simulated using OPNET version 12.0 running on a Dell Precision Workstation 690N -

1KW. dual core Intel Xeon® Processor running at 3.0GHz with a 4MB L2 cache and 4

GB of system RAM.

3.2 Network Architecture

A Wide Area Network (WAN) architecture model based upon an OPNET

template will be used as a basis for the simulation and data collection in this research. A

WAN network was chosen because the literature review revealed that the delay-based

methods for IP Geolocation worked well when the geographic distance between nodes

was large. The network model consists of fourteen routers graphically dispersed across

the United States of America which interconnect twelve polling nodes located in different

cities throughout the United States as shown in Figure 4. The nodes contained in the

model were located in Boston, Hartford, Houston, Jacksonville, Los Angeles, Miami,

New Orleans, New York, San Diego, San Jose, Seattle, and Tampa. While the network

architecture was fixed, each of the twelve nodes could be considered as an end node (E),

polling node (P) or the target node (T) depending on the specific simulated model under

consideration. A listing of the twelve cities and their node designators are shown in

Table 1.

 38

 Figure 4. Network Topology

The initial research focus is upon the impact that network topology has when

conducting delay-based IP Geolocation. As a result, the modeled network architecture is

selected so that there are a variety of distances between nodes to enable the investigation

of various network architectures without requiring the explicit reconfiguration of the

model. Each network link simulates using an OC-3 link. The network is configured to

be unloaded (e.g., no background traffic) to prevent queuing delays. Switching speed is

assumed constant in this research because of the limited number of network nodes.

Further, the literature review revealed that almost all messages travel through a switch in

less than two milliseconds [8].

Once an analysis of impact network topology has upon the accuracy of the delay-

based IP Geolocation methods, if time permits analysis of other factors will be

conducted.

 39

Table 1- Node Designators

City End Node Polling Node Target Node
Boston E1 P1 T1
Hartford E2 P2 T2
Houston E3 P3 T3
Jacksonville E4 P4 T4
Los Angeles E5 P5 T5
Miami E6 P6 T6
New Orleans E7 P7 T7
New York E8 P8 T8
San Diego E9 P9 T9
San Jose E10 P10 T10
Seattle E11 P11 T11
Tampa E12 P12 T12

3.3 Enumerating Network Architectures

While the network architecture is constrained by only containing twelve nodes,

there is a large number of possible subsets of the overall network architecture that will be

used in the analysis phase of the research. The process by which each unique network

configuration is as shown in the pseudo code shown below in Figure 5:

Figure 5. Network Architecture Enumeration

for(Target=1; Target <=12; Target++)
{
 for(NumPolling=2; NumPolling<=9; NumPolling++)
 {
 Enumerate All Combinations of NumPolling nodes
 {

 Enumerate All Combinations of (11-NumPolling) End nodes
 {
 /* analyze data */
 }
}

 }
}

 40

Once a network architecture is enumerated, the delay data will be analyzed using

each of the three delay-based IP Geolocation methodologies.

3.4 Data Collection Process

Since each of the nodes can serve as a polling node, an end node, and a target

node during any given simulation, delay measurements for all possible combinations of

the twelve nodes will be collected at one time. Data will be collected by configuring the

OPNET simulation so that every node PINGs each of the eleven remaining nodes. Since

data will be collected for each node, a 12 by 12 matrix will be constructed which contains

132 points of data as shown below in Equation 3:

1, 2 1, 3 1, 11 1, 12

2, 1 2, 12

3, 1

11, 1 11, 12

12, 1 12, 11

0
0

0 .
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .
. 0 .

0
. 0

D D D D
D D
D

Delay

D D
D D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3)

Note that the delays on the diagonal are zero due to the delay between any node

and itself is zero. For completeness, the delay between any two nodes is not assumed to

be symmetric. This is an important reality that must be accounted for in the analysis

 41

phase to account for modern asymmetric network architectures. Asymmetry can come

from differences in network architecture on the return path (e.g., satellite downlink with

terrestrial return path) or differences in line speed. One limitation of using PING is that

the delay measured is the Round Trip Time (RTT) which must be divided by two to

estimate the one-way distance between the polling node and the target node. In an

asymmetric network, this estimation may induce errors into the findings.

Once the delay data is collected, it can then be analyzed in multiple ways by

theoretically changing the numbers and locations of each of the polling, end and target

nodes. Specifically, the data will be analyzed for each possible unique network

configuration as identified in the enumeration of network architectures section above.

3.5 Data Analysis Process

In this section, the process by which each of the delay-based IP Geolocation

methods will be applied to the collected delay data is reviewed in detail. Specifically, the

calculations required for Upper-Bound Multilateration (UBM), Constraint-Based

Geolocation (CBG), and Time to Location Heuristic (TTLH) methods is reviewed. A

computer program was written in the “C” programming language to make all of the

calculations necessary for each of the delay-based IP Geolocation methods (see Appendix

A).

3.5.1 Upper-Bound Multilateration (UBM)

The UBM method requires that the delay between two nodes be multiplied by a

constant, 2/3 the speed of light (~124,000 mi/sec), to estimate the distance between the

 42

polling node and the target node. The round-trip time collected in the data collection

phase will be divided by two to estimate the one-way delay between the polling node and

the target node. The resulting product results in a pessimistic of the distance between the

polling node and target node [17]. Equation 4 shows how the calculation to estimate the

distance will be calculated:

()UBM
12EstimatedDistance 3 2

c RTT⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (4)

Once the estimated distance using the UBM method is calculated, the estimated

distance to other nodes to the target node can be calculated and circles drawn around each

of the polling nodes. The intersection of the circles provides the multilateration

necessary to localize the geographic location of the target node. For example, if there is a

delay of 0.03083 between two nodes A and B, using the UBM we would obtain the result

shown in Equation 5 below

EstimatedDistance (124188.16)(0.015415) 1914.36 milesUBM = =

 (5)

3.5.2 Constraint-Based Geolocation (CBG)

The CBG method is similar to the UBM method in that it multiplies a rate times a

delay. However, instead of using a fixed constant rate, it requires the calculation of the

Best Line rate based upon analysis of the delay data involving all nodes other than the

target node. The calculated rate Best Line Rate is then used to estimate the distance

between the polling node and the target node. Once again, the round-trip time collected

 43

in the data collection phase will be divided by two to estimate the one-way delay between

the polling node and the target node. The resulting product results in a distance that is

less pessimistic estimate of the distance between the polling node and target node when

compared to the UBM method [7]. Equation 6 shows how the calculation to estimate the

distance will be calculated:

()CBG
1EstimatedDistance
2

BestLineRate RTT⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (6)

The Best Line must first be calculated for each polling node when considering

each of the other nodes as a target and the remaining nodes as end nodes. For this reason,

there are theoretically 132 unique best lines, and hence 132 unique Best Line rates.

However, in reality many of the Best Line rates will be the same because the Best Line is

determined either by two nodes or by a single end node and the origin. The Best Line is

determined by finding a line that is close to, but below all data points and has a non-

negative intercept. If a proposed Best Line would cross the y-intercept at a negative

number, the origin point (0, 0) was used to avoid any negative distance measurements.

The slope of the line will determine the Best Line rate used to estimate the distance based

upon the delay. Once the line is drawn and the x intercept is determined, the Best Line

rate can be calculated by using any point on the line as shown in Equation 7 below.

()
BestLineRate

y b
x

⎛ ⎞−
= ⎜ ⎟
⎝ ⎠

 (7)

 44

For example, consider how the Best Line rate is calculated for Boston (P1) as the

polling node and Tampa as the target node (T12). In this case, the delay between the

polling node (e.g., Boston) and all other end nodes (e.g., Hartford, Houston, Jacksonville,

Los Angeles, Miami, New Orleans, New York, San Diego, San Jose, Seattle) is plotted

with distance on the x-axis and delay on the y-axis as shown in Figure 6. The Best Line

is the line which fits below all of the plotted points, but does not have a negative y-

intercept. In this case, the y-intercept is positive (approximately 0.0075) and thus the

given line is the Best Line.

Boston

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000 1500 2000 2500 3000

Distance (miles)

D
el

ay
 (s

ec
)

Figure 6 - Determination of the Best Line Rate for Polling Node Boston (P1) and Target

Node Tampa (T12)

 45

In this example, the slope of the line is calculated as shown in Equation 8 below

by using any point on the Best Line (e.g., 500 miles, 0.015 seconds):

()
P1,T12

0.015 0.0075
BestLineRate 0.000015 seconds/mile

500
⎛ ⎞−

= =⎜ ⎟
⎝ ⎠

 (8)

 Note that in some cases, one or two data points used to plot the Best Line actually

lies on the Best Line. In these cases, the Best Line rate used is the pessimistic 2/3c as

defined for the UBM method. This will account for biasing the results of the analysis by

erroneously indicating the exact correct location when geolocating a node whose data

was used to define the Best Line.

In some cases, the Best Line would result in a negative intercept, which is not

allowed. In these cases, the origin point (0,0) was used as an anchor point in conjunction

with one other data point to define the Best Line. Figure 7 shows an example using

Seattle as the polling node and Boston as the target node. In this case, it was necessary to

use the origin (0,0) and the San Jose node to determine the Best Line.

 46

Seattle

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000 1500 2000 2500 3000

Distance

D
el

ay

Figure 7. Seattle (P11) Bestline

Once the Best Line rate is calculated, the estimated distance from all polling

nodes to the target node, circles are drawn around each of the polling nodes. The

intersection of the circles provides the multilateration necessary to localize the

geographic location of the target node as was shown in the UBM method.

3.3.3 Time to Location Heuristic (TTLH)

The TTLH method is unique in that it does not resolve to a distance from the

polling node, but instead identifies the node nearest to the target. The TTLH method uses

the Euclidean distance as a means to locate the end node that is nearest to an unknown

target. The round-trip time collected in the data collection phase will be divided by two

 47

to estimate the one-way delay between the polling nodes and the end nodes, as well as

between the polling nodes and the target node. These values are entered into the

Euclidian Distance formula shown below in Equation 9 where p = number of polling

nodes, e = end nodes, t = target node, xie = time from polling node to end node, and xit =

time from polling node to target node:

2

1
()

p

e ie it
i

d x x
=

= −∑ (9)

 Suppose that there are 3 polling nodes, 4 end nodes, and 1 target node. The

calculations resulting from the application of the Euclidean Distance formula would be as

follows as shown in Equation 10 below:

2 2 2
1 11 1 21 2 31 3

2 2 2
2 12 1 22 2 32 3

2 2 2
3 13 1 23 2 33 3

2 2 2
4 14 1 24 2 34 3

() () ()

() () ()

() () ()

() () ()

t t t

t t t

t t t

t t t

d x x x x x x

d x x x x x x

d x x x x x x

d x x x x x x

= − + − + −

= − + − + −

= − + − + −

= − + − + −

 (10)

In the TTLH method, the end node (de) with the lowest magnitude would be

identified as the node nearest to the target.

Since TTLH requires at least two polling nodes to solve the Euclidean Distance

equation, the number of possible end node combinations is limited. There are eight ways

to organize the polling, end, and target nodes from the set of nine possible end or polling

nodes as shown below in Table 2. During each iteration of the TTLH, the maximum

number of end nodes will be included in the test. This is done to include as many data

 48

points as possible when calculating the results. Two polling nodes, nine end nodes and

one target can be permuted in any one of 660 different ways. The eight different possible

categories of network architecture and the corresponding number of unique network

architectures possible are shown below in Table 2:

Table 2 - TTLH Research Design

Number of
Polling Nodes

Number of End
Nodes

Number of
Target nodes

Number of Possible
ways to calculate

2 9 1 660

3 8 1 1,980

4 7 1 3,960

5 6 1 5,544

6 5 1 5,544

7 4 1 3,960

8 3 1 1,980

9 2 1 660

3.4 Metrics

In this section, the figures of merit used for measuring the accuracy of each of the

delay-based IP Geolocation method is presented.

3.4.1 UBM and CBG

Metrics will be gathered for the purpose of comparing the accuracy of UBM to

CBG. Since the UBM and CBG methods estimate a distance between the polling node

 49

and the target node, important metrics include the miss distance, the percent of error, and

the target overlap area.

The first metric that will be calculated is the miss distance. The miss distance is

defined as the difference between the estimated distance to the target and the actual

distance to the target as shown in Figure 8 below. For example, suppose that Miami is

the polling node and the CBG method estimated the distance to the Hartford target to be

1,914 miles. However, in reality the target is 1,414 miles away. In this case, the

resulting miss distance would be calculated as (1,914-1414) = 500 miles.

Figure 8. Miss Distance

Note that a positive result for miss distance will show that the target location is

being underestimated. Both of the UBM and CBG methods are designed to be pessimistic

and should never underestimate the distance from the polling node to the target node.

Polling Node
Target

Distance to Target

Miss Distance

Estimated Distance to Target

 50

This is important because the area of a circle drawn around a polling node that

underestimated the distance to the target would not cover the target. The miss distance

will be calculated for each of the twelve polling nodes to all of the eleven targets, for a

total of 132 calculations.

The second metric that will be calculate is the percentage of error. The

percentage of error is defined as the ratio of the miss distance to the actual distance to the

target time one-hundred as shown in Equation 11:

() Miss Distance% *100
Actual Distance

PercentofError ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (11)

Using the example from Miami to Hartford again, the miss distance to the target

was 500 miles from the polling node but the actual distance is 1,414 miles. Equation 12

shows the result of the calculating the percent of error from Miami to Hartford is 0.3536.

500 *100 35.36%
1414Miami HartfordPercentofError −
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 (12)

Note that if the miss distance is small, the percentage of error drops. The

percentage of error will be calculated for the UBM and CBG methods for each of the 132

cases discussed above considering each node as a polling node and the remaining nodes

as target nodes.

The third metric that will be calculated is the area of overlap. The area of overlap

is calculated by integrating the area that is overlapped by the intersecting circles

surrounding the polling nodes as shown in Equation 13 below:

(,)UBM

MaxLat MaxLong

MinLat MinLong
Area f x y dydx= ∫ ∫ (13)

 51

Since the area of overlap is not easily represented as a continuous function due to

its irregular shape, a computer program was written in the “C” programming language to

calculate the discrete approximation to the area (see Appendix B). A two dimensional

grid is created and laid on top of the geographic map. The grid has 1 mile resolution in

both the x and y dimensions. Step functions are created that serve to locate the circles

surrounding each polling node and return True if a given point is within the circle, and

False otherwise. The step functions are logically ANDed together to determine if for a

given x and y coordinate, the circles overlap. The area is of overlap is calculated by

sweeping across the x and y dimensions and summing the number of points that overlap.

Equation 14 below shows the equivalent area calculation:

() () ()1 2 ..., , ,N

MaxLongMaxLat

CIRCLE CIRCLE CIRCLE
MinLat MinLong

Area f x y f x y f x y= ∑ ∑ ∩ ∩ (14)

The overlap area was found 12 times, once for each of the targets when all of the

polling nodes were utilized. Figure 9 shows an example of what the area of overlap

might look like for a target with five polling nodes.

 52

Figure 9. Area of Overlap

3.4.2 TTLH Metrics

The TTLH strives to find the nearest end node to the targets location. The UBM

and CBG methods return the targets area, but the TTLH returns a node. Comparing the

resulting area from UBM and CBG to the resulting node in TTLH is like comparing

apples to oranges. The goals of the TTLH are different from the goals of UBM and

CBG. Therefore, the metrics collected from the TTLH results do not attempt to directly

compare the accuracy against the accuracy of UBM and CBG, rather the TTLH metrics

will show the likelihood of the nearest known-node being selected.

 53

The results of TTLH will be considered a success if the nearest-known end node

is correctly identified. It is a failure if any node other than the nearest node is identified

as the nearest node. The accuracy of the TTLH is limited by the number and the location

of end nodes. The results have a finite number of possible results for the nearest known

node. The TTLH examples were considered to be a success when the result showed the

nearest-known network node to be the same nearest-known node physically. A computer

program was used that could calculate the Euclidean distances for all combinations of the

TTLH. The program stored and counted the number of successful and failed trials for the

TTLH calculations.

The Euclidean distances for every possible combination of each iteration were

computed with the use of a computer program. The program stored the results of each

iteration. It did this by producing files for the successful and the unsuccessful trials. The

Number of trials in those files were counted to find the accuracy rates. Those successes

and failures were analyzed to see if the numbers and locations of the end and polling

nodes have an effect on the accuracy of the results. The TTLH methodology was tested

by calculating the results a total of 24,288 times, one for every possible iteration of the

project as shown in Table 2.

3.5 Assumptions

 A real-world application of the delay-based IP Geolocation methods discussed in

this thesis would require some assumptions to be reported along with any analysis using

these methods. For example, it is assumed that the target node has not tried to elude

location detection. An evasive target employing any number of methods could invalidate

 54

the results of the analysis by corrupting the delay measurement. For example, the target

computer can add a fixed delay or vary the fixed delay using a distribution and

parameters designed to confuse the analysis. This technique could be built into any piece

of network equipment such as a router or a switch.

3.6 Summary

 This chapter introduced the research design, the data collection process, and how

data will be analyzed to answer the research questions. A discussion of how the network

architectures will be permuted from the basic network map was presented. Examples of

the application of the UBM, CBG, and TTLH geolocation methods was provided to give

the reader insight into the analysis required to answer the research questions. Metrics

were defined in an effort to measure the accuracy of the delay-based IP Geolocation

methods.

 55

 4. Results and Analysis

In this chapter, the research data collection, application of the delay-based IP

Geolocation methods, metrics calculation, and an analysis of the results are presented.

Based upon the findings of the research, a novel hybrid methodology is proposed that can

be used to improve the accuracy of delay-based IP Geolocation methods.

4.1 Data Collection

The network architecture presented in chapter three was modeled using OPNET

version 12.0. With OPNET, a command script was written which allow for automated

data collection. The script resulted in each of the 12 nodes in the architecture to PING

each of the remaining 11 nodes every 30 minutes. The results from the PINGs over a 24

hour time period were written into a file. While a single PING would be sufficient, the

researcher wanted to verify that the delay times did not vary when using ideal network

configurations. The model was simulated on Dell Precision Workstation 690N - 1KW

Dual Core Intel Xeon® Processor running at 3.0GHz with a 4MB L2 cache and 4 GB of

system RAM. Upon completion of the simulation, the collected delay measurements

were compared and the ideal simulation showed less than 0.01% difference in delay

measurements across the 24 hour simulated time interval.

 The collected delay measurements were entered into an Excel spreadsheet to

facilitate post-processing and save in a comma delimited text file. Subsequently, the

delay measurement file was loaded into a “C” computer program where it was stored as a

12 x 12 matrix of floating point number for use when calculating the results using each of

 56

the geolocation methodologies under test. The delay data collected for this research

project is shown in Table 3.

 57

Table 3 - Delay Time (seconds)

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
E1 0.00000 0.01340 0.03878 0.02617 0.05881 0.03186 0.04446 0.01102 0.05736 0.06560 0.05772 0.02881
E2 0.01350 0.00000 0.03788 0.02540 0.05785 0.03083 0.04357 0.01013 0.05629 0.06467 0.05669 0.02795
E3 0.03882 0.03800 0.00000 0.02758 0.04101 0.03303 0.01286 0.03561 0.03951 0.04770 0.03976 0.03006
E4 0.02629 0.02528 0.02754 0.00000 0.05443 0.01497 0.03311 0.02299 0.05315 0.06112 0.05338 0.01180
E5 0.05865 0.05785 0.04114 0.05447 0.00000 0.05992 0.04676 0.05536 0.01346 0.03870 0.03084 0.05695
E6 0.03178 0.03077 0.03309 0.01483 0.05994 0.00000 0.03868 0.02858 0.05862 0.06671 0.05882 0.01733
E7 0.04438 0.04369 0.01300 0.03315 0.04670 0.03863 0.00000 0.04122 0.04508 0.05331 0.04533 0.03562
E8 0.01114 0.01013 0.03553 0.02287 0.05550 0.02848 0.04122 0.00000 0.05396 0.06228 0.05436 0.02551
E9 0.05726 0.05635 0.03963 0.05297 0.01332 0.05856 0.04522 0.05396 0.00000 0.03724 0.02950 0.05546
E10 0.06546 0.06467 0.04784 0.06118 0.03870 0.06663 0.05347 0.06216 0.03728 0.00000 0.01386 0.06366
E11 0.05762 0.05675 0.03992 0.05326 0.03077 0.05882 0.04548 0.05423 0.02945 0.01378 0.00000 0.05575
E12 0.02883 0.02776 0.03008 0.01178 0.05693 0.01947 0.03561 0.02553 0.05570 0.06366 0.05590 0.00000

 58

4.1 Upper-Bound Multilateration

The first method analyzed based upon the simulation results was Upper-Bound

Multilateration (UBM). UBM finds an upper bound of the distance to a destination node

by using 2/3 speed of light for a rate of transmission. The Round-trip Time (RTT) from

each polling node was first divided in half to estimate the one-way transmission delay,

that delay measurement was then multiplied by 2/3 speed of light to find the upper bound

for the target node. In this research project, each polling node used the eleven other

nodes as targets. The resulting distances from each node to all of the other nodes are

shown in Table 4.

 Note that the driving distances were used as the actual distances between targets.

As discussed in section 2.6, network traffic flows along fiber-optic lines that are

primarily buried along right-of-ways which typically parallel major highways. For this

reason, the driving distances between nodes are shown Table 5 were used as the physical

distance between nodes.

The first metric used to measure the accuracy of the UBM method, the miss

distance, is used as a sanity check because it determines if the use of the 2/3 rate was too

slow. The miss distance metric was calculated by subtracting the actual distance between

cites from the distance that UBM had estimated it to be. If UBM underestimated the

upper bound, the result of subtracting the actual distance from the estimated distance

would be a negative number. The results were positive for all 132 iterations of the

project. The number of miles that were overestimated to each node are shown in Table 6.

 59

Table 4 - Estimated Miles to Targets UBM

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
E1 0.00 831.75 2407.70 1625.25 3651.45 1978.44 2760.77 684.53 3561.97 4073.37 3584.20 1788.99
E2 837.96 0.00 2352.37 1577.44 3592.39 1914.49 2705.44 629.26 3495.53 4015.63 3520.24 1735.72
E3 2410.68 2359.83 0.00 1712.49 2546.48 2050.78 798.34 2211.36 2453.28 2961.89 2468.99 1866.24
E4 1632.52 1569.99 1709.82 0.00 3379.72 929.55 2055.63 1427.73 3299.99 3795.19 3314.46 732.65
E5 3641.51 3592.39 2554.80 3382.21 0.00 3720.49 2903.27 3437.47 835.60 2402.86 1914.92 3536.01
E6 1973.48 1910.76 2054.51 920.86 3721.74 0.00 2401.68 1774.71 3639.77 4142.18 3652.38 1075.90
E7 2755.80 2712.89 807.04 2058.11 2899.55 2398.88 0.00 2559.46 2798.89 3309.99 2814.60 2211.86
E8 691.98 629.26 2206.39 1420.28 3446.41 1768.50 2559.46 0.00 3350.79 3867.35 3375.50 1583.96
E9 3555.76 3499.25 2460.73 3289.06 826.91 3636.05 2807.59 3350.54 0.00 2312.14 1831.84 3443.43
E10 4064.68 4015.63 2970.58 3798.92 2402.86 4137.21 3319.92 3859.71 2314.62 0.00 860.44 3952.66
E11 3577.55 3523.53 2478.49 3306.82 1910.76 3652.56 2824.10 3367.61 1828.73 855.47 0.00 3461.56
E12 1790.24 1723.73 1867.48 731.41 3534.77 1208.79 2210.99 1585.20 3458.46 3952.66 3470.94 0.00

 60

Table 5 - Driving Distance between Nodes

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
E1 0 101 1854 1560 2986 1511 1530 215 3044 3135 3083 1360
E2 101 0 1754 1062 2906 1414 1429 117 2930 3043 2991 1262
E3 1854 1754 0 871 1550 1187 349 1631 1471 1889 2443 982
E4 1560 1062 871 0 2420 351 546 946 2342 2758 3023 204
E5 2986 2906 1550 2420 0 2736 1897 2781 121 341 1137 2531
E6 1511 1414 1187 351 2736 0 863 1297 2658 3076 3363 280
E7 1530 1429 349 546 1897 863 0 1306 1819 2236 2723 657
E8 215 117 1631 946 2781 1297 1306 0 2803 2942 2890 1146
E9 3044 2930 1471 2342 121 2658 1819 2803 0 461 1258 2452
E10 3135 3043 1889 2758 341 3076 2236 2942 461 0 839 2869
E11 3083 2991 2443 3023 1137 3363 2723 2890 1258 839 0 3133
E12 1360 1262 982 204 2531 280 657 1146 2452 2869 3133 0

 61

Table 6 - Number of Miles Overestimated by UBM

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
E1 0 730.7509 553.6999 65.25176 665.4453 467.4432 1230.767 469.5257 517.9677 938.3749 501.1974 428.994
E2 736.9603 0 598.374 515.4393 686.3938 500.4862 1276.441 512.2619 565.527 972.6274 529.2404 473.7172
E3 556.6804 605.8253 0 841.494 996.4803 863.7828 449.3442 580.3583 982.277 1072.89 25.9868 884.2391
E4 72.51677 507.988 838.824 0 959.7214 578.5491 1509.626 481.7303 957.9925 1037.193 291.4605 528.6486
E5 655.5103 686.3938 1004.801 962.2052 0 984.494 1006.273 656.4689 714.6007 2061.857 777.9209 1005.012
E6 462.4756 496.7606 867.5085 569.8559 985.7359 0 1538.677 477.7123 981.7716 1066.175 289.3767 795.905
E7 1225.8 1283.893 458.0374 1512.11 1002.547 1535.883 0 1253.458 979.8929 1073.99 91.60272 1554.855
E8 476.977 512.2619 575.3907 474.279 665.4105 471.5029 1253.458 0 547.7855 925.3466 485.499 437.9592
E9 511.7583 569.2526 989.7283 947.064 705.9075 978.046 988.5861 547.5372 0 1851.137 573.8389 991.43
E10 929.6817 972.6274 1081.583 1040.919 2061.857 1061.208 1083.925 917.709 1853.621 0 21.43836 1083.664
E11 494.5533 532.5314 35.4872 283.8229 773.7606 289.563 101.1031 477.613 570.7342 16.47083 0 328.5615
E12 430.2359 461.733 885.481 527.4068 1003.77 928.7864 1553.986 439.201 1006.457 1083.664 337.9377 0

 62

4.1.1 UBM Results

There were three metrics gathered for UBM to quantify the accuracy of the UBM

estimated distance from a polling node to a target node: the miss distance, the error rate,

and the area of the overlapping circles.

Miss distance was calculated by subtracting the actual distance from the UBM

estimated distance. All of the miss distance figures were positive, which indicates that

UBM never underestimated the distance. The mean miss distance for all 132 iterations

was 770.69 miles. The maximum miss distance was 2,061.86 miles and the minimum

miss distance was 16.75 miles when using the UBM method. The miss distance for all

132 iterations of the UBM is shown in Table 6.

The percentage of error was calculated by taking the miss distance and dividing

by the actual distance. The mean error percentage for all of the 132 iterations was 99.6%.

On average, this methodology is missing the target by a factor of 2. However, the

variance was large with some estimations having error rate of 1% while others were

greater than 700%. The error rates for all 132 iterations of the UBM is shown in Table 8.

The area of overlap was calculated twelve times, once for each target. The area

was calculated by integrating the overlapped circles using all other eleven nodes as

polling nodes. The results for all of the targets showed a mean area of 1,315,534 square

miles. To put the size of that area into perspective, the approximate size of the state of

Texas is 261,797 square miles [28]. The smallest area of overlap was 117,315 square

miles, and the largest area found by UBM was 2,465,820 square miles. Table 7 shows

the area of overlap for each of the twelve targets. Figure 10 shows the resulting area for

 63

the target of Hartford (T2) when all of the other nodes were utilized. Note that some of

the upper-bounds from a couple of end nodes are so large that they do not appear on the

map.

 Table 7 - UBM Results (Area)

Figure 10. UBM results for Hartford (T2) target.

Target Node
Area
(mi2)

Boston (T1) 1,014,887
Hartford (T2) 798,751
Houston (T3). 1,047,164
Jacksonville (T4) 1,214,409
Los Angeles (T5) 1,72,8845
Miami (T6) 2,465,820
New Orleans (T7) 2,012,245
New York (T8) 467,384
San Diego (T9) 1,458,443
San Jose (T10) 1,937,909
Seattle (T11) 117,315
Tampa (T12) 1,523,236

 64

Table 8 - UBM Error Rates

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
E1 0 7.235157 0.298652 0.041828 0.222855 0.30936 0.804423 2.18384 0.17016 0.299322 0.162568 0.315437
E2 7.296636 0 0.341148 0.485348 0.236199 0.353951 0.893241 4.378307 0.193013 0.319628 0.176944 0.37537
E3 0.300259 0.345396 0 0.966124 0.64289 0.727702 1.287519 0.35583 0.667761 0.567967 0.010637 0.900447
E4 0.046485 0.478331 0.963059 0 0.396579 1.648288 2.764883 0.509229 0.409049 0.376067 0.096414 2.591415
E5 0.219528 0.236199 0.648259 0.397605 0 0.35983 0.530455 0.236055 5.905791 6.0465 0.684187 0.397081
E6 0.306073 0.351316 0.730841 1.623521 0.360284 0 1.782939 0.368321 0.369365 0.346611 0.086047 2.842518
E7 0.801176 0.898455 1.312428 2.769432 0.528491 1.779702 0 0.959769 0.538699 0.480317 0.03364 2.366598
E8 2.218498 4.378307 0.352784 0.501352 0.23927 0.363533 0.959769 0 0.195428 0.31453 0.167993 0.382163
E9 0.16812 0.194284 0.672827 0.404383 5.833947 0.367963 0.543478 0.19534 0 4.015482 0.456152 0.404335
E10 0.296549 0.319628 0.572569 0.377418 6.0465 0.344996 0.484761 0.311934 4.020869 0 0.025552 0.377715
E11 0.160413 0.178045 0.014526 0.093888 0.680528 0.086103 0.037129 0.165264 0.453684 0.019632 0 0.104871
E12 0.31635 0.365874 0.901712 2.585327 0.39659 3.317094 2.365275 0.383247 0.410464 0.377715 0.107864 0

 65

4.2 Constraint-Based Geolocation

 An analysis of the Constraint Based Geolocation results showed that it was better

than UBM for every metric collected. This was an expected result because CBG uses

attempts to use a more accurate rate of transmission than the UBM method. The rate of

transmission is found by first determining a bestline from each polling node. Table 11

shows the equation of the bestline (y = mx + b) that was used from each polling node to

each target node.

4.2.1 CBG Results

Miss distance was calculated by subtracting the actual distance from the CBG

estimated distance. All of the miss distance figures were positive, just like the UBM

results, proving that CBG never underestimated the distance from the polling node to

target. That means that the target was always located in the overlapping area of the

circles. The mean miss distance for all 132 iterations was 661.11 miles, slightly better

than the UBM results. The maximum miss distance was 3,459 miles and the minimum

miss distance was 10 miles when using the CBG method. The miss distance from each

polling node to all of the targets is shown in Table 9.

To find the percentage of error, the estimated distance was divided by the actual

distance. The mean error of the 132 iterations was 78.4%. The maximum percentage of

error was 1014.37% and the minimum percentage of error was 1.43% when using the

CBG method. Again, the maximum error rate was from the San Jose polling node to the

Los Angeles target node. The error rates all 132 iterations are shown in Table 10.

 66

The third metric collected from the resulting UBM data was the area of overlap.

As in UBM, the area was calculated twelve times, once for each target. The results for all

of the targets showed a mean area of 687,913 square miles. The most accurate target

resulted in an area of 25,785 square miles, the largest area found by CBG was 1,668,759

square miles. The individual areas for each target are shown in Table 12. Figure 12

shows the resulting area for the target of Hartford (T2) when all of the nodes were

utilized. CBG proved to be more accurate than UBM. The effectiveness of each method

was calculated three separate ways. CBG was the more accurate method in all three

cases.

The maximum miss distance in the CBG method was from polling node in San

Jose to the target node of Los Angeles. As seen in figure 4, the network path that a

message would have to take in this simulation would have required the message to travel

from San Jose through routers in Portland, Las Vegas, then Phoenix before it could reach

the target nodes location in Los Angeles. The network topology forced an indirect route

to the target.. The network topology also had an effect on the rate used for the bestline.

As discussed in section 3.5.2, The San Jose polling node required the use of the data

point (0,0) when drawing the bestline in order to keep al results positive. Figure 11

shows the bestline for the polling node in San Jose. The one data point used to find the

bestline is located in Seattle. This was because the network topology allowed for a direct

route through one router to the node in Seattle, but it did not allow for any direct routes to

any other nodes.

 67

San Jose

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 500 1000 1500 2000 2500 3000 3500

Distance (miles)

R
TT

 (s
ec

on
ds

)

Figure 11. San Jose (P10) Bestline

Figure 11 demonstrates an unexpected advantage of the CBG method. By

charting the delay vs. the distance for all of the end nodes, the outlier for one case can be

seen. Even with the outlier included the upper-bounds are not underestimated. The CBG

method defaults to a pessimistic upper-bound and the target are is included in the area.

CBG defaults to include the target in a large area of overlap instead of underestimating

the target and not including it in the area. The success of the CBG in this project could

be slightly improved by excluding the outlier in the overall calculations. In order to

accurately compare the CBG method with the UBM method all 132 calculations were

included. Even with an outlier clearly visible and included, CBG always resulted in more

accurate data.

 68

Table 9 - Number of Miles Overestimated by CBG

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
E1 0 349 571 65 39 289 1170 10 518 965 567 240
E2 349 0 571 488 69 336 1171 83 95 957 634 288
E3 896 171 0 804 375 713 449 169 454 1161 82 668
E4 73 113 654 0 330 474 1304 54 458 1142 377 396
E5 1264 219 1050 1030 0 689 953 294 104 3459 838 719
E6 589 86 788 499 364 0 1387 53 542 1124 387 645
E7 1620 821 458 1529 353 1387 0 869 481 1189 1152 1343
E8 477 512 519 454 665 328 1144 0 548 1008 585 254
E9 1156 95 1004 1008 706 717 906 1057 0 1939 1617 698
E10 1365 507 1211 992 1409 749 1564 558 1339 0 21 781
E11 1217 59 35 377 88 290 101 110 117 16 0 329
E12 490 462 718 421 394 820 1368 439 598 1081 417 0

 69

Table 10 - CBG Error Rate

Error Rate = CBG miss distance /// distance
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
E1 0 3.455446 0.307983 0.041667 0.013061 0.191264 0.764706 0.046512 0.170171 0.307815 0.183912 0.176471
E2 3.455446 0 0.325542 0.45951 0.023744 0.237624 0.819454 0.709402 0.032423 0.314492 0.211969 0.228209
E3 0.483279 0.097491 0 0.923077 0.241935 0.600674 1.286533 0.103617 0.308634 0.614611 0.033565 0.680244
E4 0.046795 0.106403 0.750861 0 0.136364 1.350427 2.388278 0.057082 0.195559 0.414068 0.124711 1.941176
E5 0.423309 0.075361 0.677419 0.42562 0 0.251827 0.502372 0.105717 0.859504 10.1437 0.737027 0.284077
E6 0.389808 0.06082 0.663858 1.421652 0.133041 0 1.607184 0.040864 0.203913 0.36541 0.115076 2.303571
E7 1.058824 0.574528 1.312321 2.800366 0.186083 1.607184 0 0.665391 0.264431 0.531753 0.423063 2.04414
E8 2.218605 4.376068 0.31821 0.479915 0.239123 0.252891 0.875957 0 0.195505 0.342624 0.202422 0.22164
E9 0.379763 0.032423 0.682529 0.430401 5.834711 0.269752 0.498076 0.377096 0 4.206074 1.285374 0.284666
E10 0.435407 0.166612 0.64108 0.359681 4.131965 0.243498 0.699463 0.189667 2.904555 0 0.02503 0.27222
E11 0.394745 0.019726 0.014327 0.124711 0.077397 0.086233 0.037091 0.038062 0.093005 0.01907 0 0.105011
E12 0.360294 0.366086 0.731161 2.063725 0.15567 2.928571 2.082192 0.383072 0.243883 0.376786 0.133099 0

 70

Table 11 - Equation of the Bestlines used in CBG (y=mx + b)

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

T1 0
1.66E-5

+ .06
1.25E-5 +

.08
1.55E-5

+ 0
1.55E-5

+ .01
1.71E-5 +

.005
1.33E-5

+ .08
1.43E-5

+ .077
1.55E-5

+ 0
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T2
1.25E-5

+ .08 0
1.25E-5 +

.08
1.53E-5

+ .02
1.55E-5

+ .01
1.71E-5 +

.005
1.33E-5

+ .08
1.43E-5

+ .077
1.54E-5

+ .01
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T3
1.25E-5

+ .08
1.66E-5

+ .06 0
1.53E-5

+ .02
1.55E-5

+ .01
1.71E-5 +

.005
1.55E-5

+ 0
1.43E-5

+ .077
1.54E-5

+ .01
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T4
1.55E-5

+ 0
1.66E-5

+ .06
1.25E-5 +

.08 0
1.55E-5

+ .01
1.71E-5 +

.005
1.33E-5

+ .08
1.43E-5

+ .077
1.54E-5

+ .01
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T5
1.25E-5

+ .08
1.66E-5

+ .06
1.25E-5 +

.08
1.53E-5

+ .02 0
1.71E-5 +

.005
1.33E-5

+ .08
1.43E-5

+ .077
1.54E-5

+ .01
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T6
1.25E-5

+ .08
1.66E-5

+ .06
1.25E-5 +

.08
1.53E-5

+ .02
1.55E-5

+ .01 0
1.33E-5

+ .08
1.43E-5

+ .077
1.54E-5

+ .01
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T7
1.25E-5

+ .08
1.66E-5

+ .06
1.25E-5 +

.08
1.53E-5

+ .02
1.55E-5

+ .01
1.71E-5 +

.005 0
1.43E-5

+ .077
1.54E-5

+ .01
1.55E-5

+ 0
1.65E-5

+ 0
1.55E-5

+ 0

T8
1.55E-5

+ 0
1.55E-5

+ 0
1.25E-5 +

.08
1.53E-5

+ .02
1.55E-5

+ 0
1.71E-5 +

.005
1.33E-5

+ .08 0
1.55E-5

+ 0
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T9
1.25E-5

+ .08
1.66E-5

+ .06
1.25E-5 +

.08
1.53E-5

+ .02
1.55E-5

+ 0
1.71E-5 +

.005
1.33E-5

+ .08
1.55E-5

+ 0 0
1.55E-5

+ 0
1.65E-5

+ 0
1.73E-5

+ .002

T10
1.25E-5

+ .08
1.66E-5

+ .06
1.25E-5 +

.08
1.53E-5

+ .02
1.55E-5

+ .01
1.71E-5 +

.005
1.33E-5

+ .08
1.43E-5

+ .077
1.54E-5

+ .01 0
1.55E-5

+ 0
1.73E-5

+ .002

T11
1.25E-5

+ .08
1.66E-5

+ .06
1.55E-5 +

0
1.53E-5

+ .02
1.55E-5

+ .01 1.55E-5 + 0
1.55E-5

+ 0
1.43E-5

+ .077
1.54E-5

+ .01
1.55E-5

+ 0 0
1.55E-5

+ 0

T12
1.25E-5

+ .08
1.55E-5

+ 0
1.25E-5 +

.08
1.53E-5

+ .02
1.55E-5

+ .01
1.71E-5 +

.005
1.33E-5

+ .08
1.55E-5

+ 0
1.54E-5

+ .01
1.55E-5

+ 0
1.65E-5

+ 0 0

 71

Table 12 - CBG Results (Area)

Figure 12. CBG Results for T2 (Hartford)

Target Node
Area
(mi2)

Boston (T1) 57,925
Hartford (T2) 25,785
Houston (T3). 646,299
Jacksonville (T4) 42,1753
Los Angeles (T5) 90,477
Miami (T6) 1,668,759
New Orleans (T7) 1,141,937
New York (T8) 583,191
San Diego (T9) 774,294
San Jose (T10) 1,284,112
Seattle (T11) 508,347
Tampa (T12) 1,052,078

 72

Table 13 - Summary of CBG and UBM results

4.3 TTLH

The TTLH methodology was used to identify the nearest node using the collected

delay measurements. A computer program enumerated all possible combinations of

target nodes, polling nodes, and end nodes. In each trial, the maximum numbers of end

nodes were used. The results show a trend in which the accuracy of the data increases

slightly when the number of polling nodes increases. In this research, the number of end

nodes dropped as the polling nodes increased. When nine polling nodes were used,

TTLH only had two end nodes to choose from as the nearest node. The results are shown

in Figure 13.

 CBG UBM

Mean Miss 661.11 miles 770.69 miles

Percent Error 78.4% 99.6%

Mean Area 687,913 mi2 1,315,534 mi2

 73

TTLH

70

72

74

76

78

80

82

84

86

88

0 1 2 3 4 5 6 7 8 9 10

Number of Polling Nodes

Pe
rc

en
ta

ge
 o

f A
cc

ur
ac

y

Figure 13. TTLH Scatterplot of Polling Nodes and Accuracy

 74

A couple of interesting trends were discovered when the results were analyzed.

The TTLH failed to identify the nearest-known node to Boston (T1) only when the New

York (T8) and Hartford (T2) nodes were used as polling nodes, not as end nodes. When

the target node Boston had a choice of either Hartford or New York as an end node,

TTLH was 100% successful.

 The three nodes that were most successful overall were the nodes located in

Boston (T1), Hartford (T2), and New York (T8). No other three nodes in the polling set

have nodes that are located closer to each other than these three. Most of the failures to

identify the nearest node to any of these three nodes happen when neither of the other two

nodes are used as end nodes. The accuracy rates from each of the eight ways to organize

the TTLH test are shown in the Tables 14 - 21:

Table 14 - TTLH Results 2 Polling Nodes and 9 End Nodes

2 Polling Nodes, 9 End Nodes
 Good Bad Rate
T1 53 2 0.9636
T2 50 5 0.9091
T3 50 5 0.9091
T4 48 7 0.8727
T5 17 38 0.3091
T6 47 8 0.8545
T7 49 6 0.8909
T8 49 6 0.8909
T9 18 37 0.3273
T10 28 27 0.5091
T11 19 36 0.3455
T12 48 7 0.8727
Overall 476 184 0.7212

 75

Table 15 - TTLH Results 3 Polling Nodes and 8 End Nodes

3 Polling Nodes, 8 End Nodes
 Good Bad Rate
T1 157 8 0.9515
T2 161 4 0.9758
T3 152 13 0.9212
T4 152 13 0.9212
T5 81 84 0.4909
T6 150 15 0.9091
T7 138 27 0.8364
T8 161 4 0.9758
T9 81 84 0.4909
T10 94 71 0.5697
T11 81 84 0.4909
T12 152 13 0.9212
Overall 1560 420 0.7879

Table 16 - TTLH Results 4 Polling Nodes and 7 End Nodes

4 Polling Nodes, 7 End Nodes
 Good Bad Rate
T1 308 22 0.9333
T2 327 3 0.9909
T3 289 41 0.8758
T4 294 36 0.8909
T5 204 126 0.6182
T6 278 52 0.8424
T7 238 92 0.7212
T8 329 1 0.9970
T9 204 126 0.6182
T10 218 112 0.6606
T11 204 126 0.6182
T12 294 36 0.8909
Overall 3187 773 0.8048

 76

Table 17 - TTLH Results 5 Polling Nodes and 6 End Nodes

5 Polling Nodes, 6 End Nodes
 Good Bad Rate
T1 422 40 0.9134
T2 448 14 0.9697
T3 418 44 0.9048
T4 385 77 0.8333
T5 335 127 0.7251
T6 368 94 0.7965
T7 364 98 0.7879
T8 460 2 0.9957
T9 335 127 0.7251
T10 306 156 0.6623
T11 196 266 0.4242
T12 385 77 0.8333
Overall 4422 1122 0.7976

Table 18 - TTLH Results 6 Polling Nodes and 5 End Nodes

6 Polling Nodes, 5 End Nodes
 Good Bad Rate
T1 421 41 0.9113
T2 438 24 0.9481
T3 414 48 0.8961
T4 359 103 0.7771
T5 356 106 0.7706
T6 353 109 0.7641
T7 346 116 0.7489
T8 454 8 0.9827
T9 365 97 0.7900
T10 324 138 0.7013
T11 262 200 0.5671
T12 359 103 0.7771
Overall 4451 1093 0.8028

 77

Table 19 - TTLH Results 7 Polling Nodes and 4 End Nodes

7 Polling Nodes, 4 End Nodes
 Good Bad Rate
T1 302 28 0.9152
T2 308 22 0.9333
T3 292 38 0.8848
T4 247 83 0.7485
T5 270 60 0.8182
T6 246 84 0.7455
T7 245 85 0.7424
T8 317 13 0.9606
T9 273 57 0.8273
T10 244 86 0.7394
T11 212 118 0.6424
T12 247 83 0.7485
Overall 3203 757 0.8088

Table 20 - TTLH Results 8 Polling Nodes and 3 End Nodes

8 Polling Nodes, 3 End Nodes
 Good Bad Rate
T1 150 15 0.9091
T2 151 14 0.9152
T3 140 25 0.8485
T4 126 39 0.7636
T5 130 35 0.7879
T6 122 43 0.7394
T7 134 31 0.8121
T8 153 12 0.9273
T9 131 34 0.7939
T10 123 42 0.7455
T11 118 47 0.7152
T12 126 39 0.7636
Overall 1604 376 0.8101

 78

Table 21 - TTLH Results 9 Polling Nodes and 2 End Nodes

9 Polling Nodes, 2 End Nodes
 Good Bad Rate
T1 52 3 0.9455
T2 52 3 0.9455
T3 48 7 0.8727
T4 47 8 0.8545
T5 45 10 0.8182
T6 46 9 0.8364
T7 52 3 0.9455
T8 52 3 0.9455
T9 45 10 0.8182
T10 42 13 0.7636
T11 36 19 0.6545
T12 47 8 0.8545
Overall 564 96 0.8545

4.3.1 TTLH Results

The results from all 24,288 combinations correctly identified the nearest-known

node at a rate of 80.15%. The nodes with the lowest accuracy rates were located on the

West coast. TTLH uses the Euclidean distance formula to measure network distance.

The network distance is assumed to correspond to a physical distance. An analysis of the

simulated network topology revealed that the network distances did not always directly

correspond to a short physical distance. In most cases, the nearest-known node using

network measurements will also be the nearest known-node physically. The West coast

nodes fail more often then the other nodes because of a flaw in the network design. The

design on the West coast does not allow for the shortest network distance to be the

shortest physical distance in all cases.

When analyzing the examples that failed to correctly identify the nearest node, a

couple of trends were noticed. The TTLH results failed more often when the actual

 79

nearest nodes were utilized as polling nodes. The correct nearest node was identified

more often when the actual nearest node was used as an end node.

To test the assumption that the network topology can influence the results of

TTLH, a thirteenth node was introduced into the project. This node was connected so

that the closest network node would not be the geographically closest node. The

thirteenth node was located in Birmingham. Its closest node on the network was the

Jacksonville node, but the shortest physical node was in New Orleans. As expected,

TTLH consistently identified the nearest-known node as the nearest node on the network.

Since the nearest geographic node was not correctly identified those results were

considered incorrect. When the Birmingham node was introduced, the overall accuracy

of TTLH dropped from 80.15% down to 64.07%. Having an understanding of the

network topology will help the researcher know when TTLH is providing the nearest-

known physical node incorrectly.

 80

4.4 Hybrid Methodology

 The results of the TTLH show that the positioning of nodes has an effect on the

results. An objective of this research was to determine if the accuracy of the delay-based

IP Geolocation methods could be improved. For this reason, a hybrid methodology is

proposed which uses a combination of UBM, CBG and TTLH when trying to geolocate a

device by only using delay measurements. The researcher used the results of the UBM

and CBG examples to choose the location of the end nodes and polling nodes used for the

TTLH example. The TTLH examples show the best results when it has end nodes

located closer to the target than polling nodes. UBM and CBG can be used to give an

approximate location of the target. This was calculated for all twelve targets, but for the

ease of discussion one target was selected to show how this hybrid methodology will

work.

 The first step in this methodology would be to use UBM to determine the wide

area a target is located. This is done by finding one-way delay times to a target node and

estimating the upper bound by using 2/3 speed of light for rate. Once those distances are

known they can be drawn to a map and triangulation can be used to determine the

approximate area where the target is located. This was accomplished for each of the

targets. An example from the target located in Hartford is shown in Figure 10. That

resulting area immediately tells us that the target node is located somewhere in the

northern part of the east coast.

The next step used constraint-based geolocation to find a more accurate rate of

transmission. The bestline was determined from each polling node. The delay times

 81

were plotted on the bestline, and x intercepts were used to determine the distance from

the polling node to the target. Those distances were then drawn on a map.

Multilateration gives an area of overlap that contains the target.

Now that two areas have been found for the location of the target, the CBG results

can be compared with the UBM results to determine if they agree on the location of the

target. Then TTLH can be accomplished by first selecting end nodes that are located in

or near the area of overlap. In this example, end node 1 and end node 8 are the only two

end nodes that are located close to the shaded area from the CBG. TTLH was conducted

using the combination of two end nodes and nine polling nodes. That combination was

chosen because only two end nodes are located near the shaded area. The greatest

number of polling nodes available was nine. The final step was to find the Euclidean

distances of the two selected end nodes with the maximum number of available polling

nodes.

4.4.1 Hybrid Methodology Results

End node 1 resulted in the lowest Euclidean distance, so it was determined that

the target node is located closest to that node. The target node selected for this example,

is located in Hartford. The end node that was selected as the nearest node is located in

Boston. The results were correct; Boston is the nearest known node to Hartford in this

simulation.

That methodology was repeated for the other eleven nodes in this example. Using

the hybrid methodology, end nodes were selected for TTLH based on their proximity to

the overlapping areas from constraint-based geolocation. In eleven of the twelve cases,

 82

TTLH returned the correct nearest node when the end nodes were located closest to the

target. The one case that did not identify the nearest geographic node did correctly

identify the nearest network node. That one case where the hybrid methodology failed

was when Seattle was the target node. The hybrid results claimed Los Angeles to be the

nearest node, but San Jose is in fact the correct nearest node. A flaw in the network

design is to blame for this result; the network paths to Los Angeles are closer in length to

the paths to Seattle than the network paths to the correct nearest node San Jose. The

underlying assumption to TTLH is that the network distance corresponds to the physical

distance. It was discussed earlier in this paper that networks often follow shortest routes

to the destination but is not always the case.

Using the hybrid methodology, the success rate of TTLH improved. The shotgun

approach to TTLH yielded an overall success rate of 80.15%, but when the hybrid

methodology was used the success rate increased to 91.66%.

4.5 Summary

The data collected and presented in this chapter showed that the CBG is a more

accurate than the UBM method for geolocation. Both of these methodologies showed

that the location of a target node can be found to some levels of granularity. The TTLH

results showed that the positioning of the nodes has an effect on the results of the test.

The accuracy rates of TTLH improve when an end node is closely located to the target

node. Based on the results, a hybrid methodology was presented and tested. The hybrid

method uses the results of the CBG method to select end nodes that are most likely to be

located close to the target. When the hybrid methodology was tested, the accuracy rates

of finding the nearest-known node improved.

 83

 5. Conclusions and Recommendations

The ability to determine the geographic location of a node on the Internet based

upon its Internet Protocol address is an essential tool for many commercial and military

applications. IP Geolocation can also be used to add another layer of protection. When

authenticating users, locate the source of connection attempts to sensitive information

assets, and to locate unmapped nodes. While the current methods used for IP Geolocation

are not exact, in many cases they provide an acceptable estimate of the physical location

of the IP address.

Geolocation can be accomplished through a number of methodologies. Those

methodologies fall into three categories. 1) methods that store location information in

databases, 2) methods that use information leakage to find the target locations, and 3)

methods that calculate the location based upon delay measurements. This project focused

on the third method, because collecting delay measurements give complete control of the

accuracy of the data to the researcher. The information used in the other methods is

easily corruptible, either purposely or inadvertently. The methods that were analyzed in a

simulation environment for this project found the location of the target node through the

use of multilateration and the nearest known node.

In this thesis, various methods for IP Geolocation were introduced, a brief

understanding of their operation was provided, and the research investigation of delay-

based methods was discussed. Analysis of the collected results show that distance

estimations could be made from delay measurements. The UBM and CBG methods use

delay measurements to determine the upper bound on the distance to the target location.

 84

Replicating these geolocation methods found that they can be used to determine the

geographic region of a target to some granularity. This project also showed that CBG is a

more accurate method than UBM.

The TTLH was selected as a nearest-known node methodology to replicate. This

methodology does not return the area of the target, but rather the known node that is

located closest to the target. Since the calculations are all done with network data, an

assumption of the nearest known node methodologies is that the nearest known node on

the network is also the nearest known node physically. This assumption was tested by

adding a node on the network where the nearest network node was not the nearest

physical node. The accuracy rates of TTLH dropped dramatically after that node was

included. The network infrastructure can cause false geolocation results.

A hybrid methodology was proposed that uses the results of multilateration

geolocation to select nodes to be used for nearest-known node experiments. Perhaps the

most important finding of this project was that the results from the nearest-known node

experiments showed that the positioning of the end nodes in relation to the target had an

effect on the accuracy of the results. The hybrid methodology first finds the area that a

target is located by conducting the multilateration methodologies. Then it selects end

nodes that are located in or close to that area. That hybrid methodology was tested and it

was found that the accuracy of the finding the nearest-known node was increased.

5.1 Summary of Results

The UBM results were promising. Art first glance they do not look very accurate.

On average the estimations were overshooting the target by a factor of two, and the

 85

resulting mean area of overlap for all targets was 1,315,534 square miles which is five

times larger then the state of Texas. Looking closely at the results showed many target

locations that were much smaller then the mean and when those area were plotted, much

of the area fell over the ocean. The resulting area for each target always would exclude a

portion of the country. The very pessimistic constant rate of 2/3 speed of light did reveal

the target’s location to some granularity. That can be used in the overall geolocation

effort that should include more then one methodology.

 The CBG results were more accurate than the UBM results. This was not

unexpected because the CBG uses known network nodes to find a more accurate rate of

transmission than the UBM. The mean area for all targets in CBG was about half the size

of the UBM results at 687,913 square miles. The most interesting finding from analyzing

the CBG data was that the method strives to ensure the target’s location is included in the

resulting area. The bestline is defaults to a pessimistic rate by using the line that is close

to but below all data points. The bestline could use a more accurate rate by using the

mean of all the data points, but that would then underestimate the distance to the target,

thus not including the target in the overlapping area. By defaulting to pessimistic rates

CBG method sacrifices accuracy to ensure the targets location is including in the

resulting area.

 The TTLH data also showed some interesting findings. The overall accuracy rate

of 80.15% gave plenty of examples to study to find when the method would fail to return

the closest physical node to the target node. Although the closest physical node was only

determined on average 4 out of 5 times, the closest network node was always returned

correctly. The TTLH assumes that the closest network node is also the closest physical

 86

node. Most often that is the case. The need for some knowledge of the network

infrastructure for the target is beneficial to someone using TTLH for geolocation.

 The TTLH results led to the development of a new hybrid methodology. TTLH

was correctly returning the nearest network node, but that was not always the nearest

physical node. It also was more accurate when the target had end nodes closer to it then

polling nodes. By using the resulting areas from UBM and CBG one can select end

nodes that are geographically close to the target. Then the TTLH method is conducted

with those selected end nodes. This hybrid method was conducted for all twelve targets

used in this simulation. The correct nearest node was returned eleven times for an

accuracy rate of 91.66%. The one target node that was not correctly identified was the

Seattle node. Having an idea of the network topology made it easy to see why San Jose

was not selected as the nearest node to Seattle. The node in Los Angeles was closer on

the network to Seattle than San Jose. Knowing the network infrastructure can help

determine when TTLH is returning incorrect results. Using the hybrid methodology that

was introduced here in section 4.4 can help someone achieve more accurate geolocation

results than when a single methodology is employed.

5.2 Significance of Research

 The significance of the research is that the accuracy of delay-based IP

Geolocation can be improved when combining methods together into a hybrid

methodology. The results will enable the reader to apply the new hybrid methodology

and improve real-world applications of delay-based IP Geolocation.

 87

5.3 Limitations

 This project was limited by the size of the network in the simulation. A more

robust network would have allowed more network paths to travel in the shortest

geographic distances. A larger network would also have allowed for more end nodes,

polling nodes and target nodes to add to the complexity of the examples.

 The number of nodes used in this data was twelve. This relatively small number

limited the complexity of calculations that could be completed. As polling nodes are

increased, multilateration increases the number of circles that are determining the area of

the target. When a polling node is added that area has a possibility of shrinking.

 TTLH was conducted using the maximum number of polling nodes for each test.

As the number of polling nodes increased, the number of end nodes decreased. This may

have limited the accuracy of TTLH because when nine polling nodes were used, it was a

50% of being right.

5.4 Future Research

 The possibilities of future research are plentiful. This project introduced a

methodology that would be interesting to test in a real world network. Combining the

Upper-Bound Multilateration, Constraint- Based Geolocation, and TTLH into a real life

experiment could yield interesting results. This could be done by replicating the hybrid

methodology introduced here. Other geolocation methods such as whois could be used to

increase the number and find the location of end nodes used in the experiment.

 It would also be beneficial to change the scale of this research project to a smaller

scale such as the size of a state or a city. The granularity of the accuracy of the results is

 88

dependant upon the numbers and the locations of the end nodes. Improving the

granularity of the geolocation results would be a great benefit. Another possible area of

research would be to translate these methods to a real life experiment. The TTLH could

be tested in a MAN by using target, end, and polling nodes located around a metropolitan

area that are under the control of the researcher.

It would be interesting to study the TTLH methodology to find at what point

adding polling nodes does not improve the accuracy of the data. Further, it is desired to

conduct a detailed analysis of the impact of varying line speeds to selected nodes with the

goal of developing a correction factor in the Euclidian distance formula.

 89

 APPENDICIES

Appendix A: CollectIt12.c “C” Program

Appendix B: Area12.c “C” Program

 90

 Appendix A: CollectIt12.c “C” Program

/* begin CollectIt12.c */

/* A program to analyze IP Geolocation data for 12 nodes */

/* includes */
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

/* defines */
#define DEBUG_MODE 0
#define NOT_QUIET 0
#define TOTAL_NODES ((int) 12)

/* structures */
struct IPGCase
{
 int TN;
 int TI;
 int NPN;
 int PNIL[TOTAL_NODES];
 int NEN;
 int ENIL[TOTAL_NODES];
 double ED[TOTAL_NODES];
 int MED;
};

/* function prototypes */
int CalculateEuclidianDistance(double *, int, int *, int, int *, int);

/* globals */
double Delays[TOTAL_NODES][TOTAL_NODES];
char PollingNodes[TOTAL_NODES+1][100];

/* functions */
int CalculateEuclidianDistance(double *Euclidian, int NumPNs, int *PNI, int NumENs, int *ENI, int TI)
{
 int i;
 int j;
 int row1;
 int col1;

 91

 int row2;
 int col2;
 double Accumulator;
 double Term;

 Accumulator = (double) 0.0;
 Term = (double) 0.0;

#if 0
 for(i=0; i<13; i++)
 {
 for(j=0; j<13; j++)
 {
 printf("Delays[%d][%d] = %f\n", i, j, Delays[i][j]);
 }
 }
 printf("You have %d Polling Nodes\n", NumPNs);
 for(i=0; i<NumPNs; i++)
 {
 printf("PN %d is %d\n", i, PNI[i]);
 }
 printf("You have %d End Nodes\n", NumENs);
 for(i=0; i<NumENs; i++)
 {
 printf("EN %d is %d\n", i, ENI[i]);
 }
 printf("Target Node is %d\n", TI);
#endif

 for(i=0; i<NumENs; i++)
 {
 Accumulator = (double) 0.0;
 Term = (double) 0.0;
 for(j=0; j<NumPNs; j++)
 {
 row1 = ENI[i];
 col1 = PNI[j];
 row2 = TI;
 col2 = PNI[j];

 Term = Delays[row1][col1] - Delays[row2][col2];

 /*printf("Term %d %d is %f\n", i, j, Term);*/

 Term = Term * Term;
 Accumulator += Term;
 }

 92

 Euclidian[i] = (double) sqrt(Accumulator);
 }

 return(0);
}

int main(int argc, char* argv[])
{
 char InputLine[5000];
 char Token[20][100];
 char PN[TOTAL_NODES+1];
 char TN[TOTAL_NODES+1];
 char Selected[TOTAL_NODES];
 char GoodFilename[100];
 char BadFilename[100];
 unsigned long combinations;
 unsigned long GoodCount[TOTAL_NODES];
 unsigned long BadCount[TOTAL_NODES];
 int result;
 int p1, p2, p3, p4, p5, p6, p7, p8, p9, p10;
 int e1, e2, e3, e4, e5, e6, e7, e8, e9, e10;
 int i;
 int j;
 int c;
 int Length;
 int Tokens;
 int LineCount;
 int First;
 int TotalNodes;
 int NumberPollingNodes;
 int CurrentPollingNodes;
 int PollingNodeIndexList[TOTAL_NODES];
 int NumberEndNodes;
 int EndNodeIndexList[TOTAL_NODES];
 int TargetNodeIndex;
 int minimumindex;
 int minimumCFindex;
 int minimumDindex;
 int done;
 double CrowFlies[TOTAL_NODES][TOTAL_NODES];
 double DrivingDistance[TOTAL_NODES][TOTAL_NODES];
 double EuclidianDistance[TOTAL_NODES];
 double CFT[13];
 double DT[13];
 double minimum;
 double minimumCF;

 93

 double minimumD;
 FILE *goodfile;
 FILE *badfile;
 FILE *outfile;
 FILE *costfile;
 struct IPGCase TenLargestMagnitudes[10];
 struct IPGCase TenSmallestMagnitudes[10];

 printf("Version 03 March 2007\n");

 /* initialize Largest and Smallest structures */
 for(i=0; i<10; i++)
 {
 TenLargestMagnitudes[i].TN=TOTAL_NODES;
 TenLargestMagnitudes[i].TI=0;
 TenLargestMagnitudes[i].NPN=0;
 TenLargestMagnitudes[i].NEN=0;
 TenLargestMagnitudes[i].MED=0;
 for(j=0; j<TOTAL_NODES; j++)
 {
 TenLargestMagnitudes[i].PNIL[j]=0;
 TenLargestMagnitudes[i].ENIL[j]=0;
 TenLargestMagnitudes[i].ED[j]=(double)0.0;
 }

 TenSmallestMagnitudes[i].TN=TOTAL_NODES;
 TenSmallestMagnitudes[i].TI=0;
 TenSmallestMagnitudes[i].NPN=0;
 TenSmallestMagnitudes[i].NEN=0;
 TenSmallestMagnitudes[i].MED=0;
 for(j=0; j<TOTAL_NODES; j++)
 {
 TenSmallestMagnitudes[i].PNIL[j]=0;
 TenSmallestMagnitudes[i].ENIL[j]=0;
 TenSmallestMagnitudes[i].ED[j]=(double)1000000.0;
 }
 }

 printf("Opening out.csv for write...\n");
 /*costfile=fopen("d:\\out.csv","w");*/
 outfile=fopen("./out.csv","w");
 if(outfile==NULL)
 {
 printf("\n Error cannot open file out.csv\a ");
 exit(0);
 }

 94

 printf("Reading DelayData.csv file...\n");
 /*costfile=fopen("d:\\DelayData.csv","r");*/
 costfile=fopen("./DelayData.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file DelayData.csv\a ");
 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* delimiter */
 Token[Tokens][j] = 0;
 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 for(i=0; i<Tokens; i++)
 {
 strcpy(PollingNodes[i],&Token[i][0]);
 /*sprintf(PollingNodes[i], "%s", Token[i][0]);*/
 }
 First=0;
 }
 else
 {

 95

 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 Delays[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 /*sprintf(PollingNodes[i], "%s", Token[i][0]);*/
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }
#endif
 InputLine[Length-1]=0;
 fprintf(outfile, "%s\n", InputLine);
 }
 printf("Closing DelayData.csv file...\n");
 fclose(costfile);

 printf("Reading CrowFlies.csv file...\n");
 /*costfile=fopen("d:\\CrowFlies.csv","r");*/
 costfile=fopen("./CrowFlies.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file CrowFlies.csv\a ");
 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* comma delimiter */
 Token[Tokens][j] = 0;

 96

 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 First=0;
 }
 else
 {
 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 CrowFlies[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }
#endif
 InputLine[Length-1]=0;
 }
 printf("Closing CrowFlies.csv file...\n");
 fclose(costfile);

 printf("Reading Driving.csv file...\n");
 /*costfile=fopen("d:\\Driving.csv","r");*/
 costfile=fopen("./Driving.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file Driving.csv\a ");
 exit(0);
 }
 LineCount = 0;

 97

 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* comma delimiter */
 Token[Tokens][j] = 0;
 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 First=0;
 }
 else
 {
 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 DrivingDistance[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }

 98

#endif
 InputLine[Length-1]=0;
 }
 printf("Closing Driving.csv file...\n");
 fclose(costfile);

 /* replace end of line carrige return with null termination for Tampa */
 PollingNodes[TOTAL_NODES][5]=0;

 /* generate combos */
 TotalNodes=12;

 for(CurrentPollingNodes=2; CurrentPollingNodes<(TOTAL_NODES-2); CurrentPollingNodes++)
 {
 NumberPollingNodes=CurrentPollingNodes;
 NumberEndNodes=TotalNodes-CurrentPollingNodes-1;
 printf("Starting Polling Nodes: %d End Nodes: %d\n", NumberPollingNodes, NumberEndNodes);

 combinations = (unsigned long)0;
 for(i=0; i<TOTAL_NODES; i++)
 {
 GoodCount[i] = (unsigned long)0;
 BadCount[i] = (unsigned long)0;
 }
 sprintf(GoodFilename,"GoodP%02dE%02d.txt",NumberPollingNodes,NumberEndNodes);
 sprintf(BadFilename,"BadP%02dE%02d.txt",NumberPollingNodes,NumberEndNodes);

 printf("Opening %s for write...\n",GoodFilename);
 /*goodfile=fopen("d:\\good.txt","w");*/
 goodfile=fopen(GoodFilename,"w");
 if(goodfile==NULL)
 {
 printf("\n Error cannot open file %s\n",GoodFilename);
 exit(0);
 }

 printf("Opening %s for write...\n",BadFilename);
 /*badfile=fopen("d:\\bad.txt","w");*/
 badfile=fopen(BadFilename,"w");
 if(badfile==NULL)
 {
 printf("\n Error cannot open file %s\n", BadFilename);
 exit(0);
 }

 for(i=0; i<TotalNodes; i++)
 {

 99

 /* select the target node */
 TargetNodeIndex = i;
 printf("Processing Target Node: %d\n",i);

 switch(CurrentPollingNodes)
 {
 case 2:
 /* Polling Nodes = 2 End Nodes = 9 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i))
 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }
 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)
 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 for(e3=e2+1; e3<TotalNodes; e3++)
 {
 for(e4=e3+1; e4<TotalNodes; e4++)
 {
 for(e5=e4+1; e5<TotalNodes; e5++)
 {
 for(e6=e5+1; e6<TotalNodes; e6++)
 {
 for(e7=e6+1; e7<TotalNodes; e7++)
 {
 for(e8=e7+1; e8<TotalNodes; e8++)
 {
 for(e9=e8+1; e9<TotalNodes; e9++)
 {

 100

 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2] && !Selected[e3] &&
!Selected[e4] && !Selected[e5] &&
 !Selected[e6] && !Selected[e7] && !Selected[e8] &&
!Selected[e9])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;
 EndNodeIndexList[2]=e3;
 EndNodeIndexList[3]=e4;
 EndNodeIndexList[4]=e5;
 EndNodeIndexList[5]=e6;
 EndNodeIndexList[6]=e7;
 EndNodeIndexList[7]=e8;
 EndNodeIndexList[8]=e9;
#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);
 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);
 }
 printf("\n");

 101

#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }
#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }
 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(CFT[c] < minimumCF)
 {

 102

 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET
 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }

 103

 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else
 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif
 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");
 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {

 104

 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET
 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }
 }
 }
 }
 }
 }
 }

 105

 }
 }
 }
 }
 }
 }
 }
 break;

 case 3:
 /* Polling Nodes = 3 End Nodes = 8 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 for(p3=p2+1; p3<TotalNodes; p3++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i) && (p3 != i))
 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 PollingNodeIndexList[2]=p3;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }
 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 Selected[p3] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)
 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 for(e3=e2+1; e3<TotalNodes; e3++)
 {
 for(e4=e3+1; e4<TotalNodes; e4++)
 {
 for(e5=e4+1; e5<TotalNodes; e5++)
 {
 for(e6=e5+1; e6<TotalNodes; e6++)
 {

 106

 for(e7=e6+1; e7<TotalNodes; e7++)
 {
 for(e8=e7+1; e8<TotalNodes; e8++)
 {
 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2] && !Selected[e3] &&
!Selected[e4] && !Selected[e5] &&
 !Selected[e6] && !Selected[e7] && !Selected[e8])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;
 EndNodeIndexList[2]=e3;
 EndNodeIndexList[3]=e4;
 EndNodeIndexList[4]=e5;
 EndNodeIndexList[5]=e6;
 EndNodeIndexList[6]=e7;
 EndNodeIndexList[7]=e8;
#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);
 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);

 107

 }
 printf("\n");
#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }
#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }
 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {

 108

 if(CFT[c] < minimumCF)
 {
 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET
 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);

 109

 }
 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else
 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif
 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");
 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {

 110

 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET
 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }

 }
 }
 }
 }
 }

 111

 }
 }
 }
 }
 }
 }
 }
 }
 break;

 case 4:
 /* Polling Nodes = 4 End Nodes = 7 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 for(p3=p2+1; p3<TotalNodes; p3++)
 {
 for(p4=p3+1; p4<TotalNodes; p4++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i) && (p3 != i) && (p4 != i))
 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 PollingNodeIndexList[2]=p3;
 PollingNodeIndexList[3]=p4;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }
 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 Selected[p3] = 1;
 Selected[p4] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)
 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 for(e3=e2+1; e3<TotalNodes; e3++)
 {
 for(e4=e3+1; e4<TotalNodes; e4++)

 112

 {
 for(e5=e4+1; e5<TotalNodes; e5++)
 {
 for(e6=e5+1; e6<TotalNodes; e6++)
 {
 for(e7=e6+1; e7<TotalNodes; e7++)
 {
 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2] && !Selected[e3] &&
!Selected[e4] && !Selected[e5] &&
 !Selected[e6] && !Selected[e7])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;
 EndNodeIndexList[2]=e3;
 EndNodeIndexList[3]=e4;
 EndNodeIndexList[4]=e5;
 EndNodeIndexList[5]=e6;
 EndNodeIndexList[6]=e7;
#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);
 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)

 113

 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);
 }
 printf("\n");
#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }
#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }
 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;

 114

 for(c=0; c<NumberEndNodes; c++)
 {
 if(CFT[c] < minimumCF)
 {
 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET
 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {

 115

 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else
 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif
 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");
 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);

 116

 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET
 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }

 }
 }
 }

 117

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 break;

 case 5:
 /* Polling Nodes = 5 End Nodes = 6 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 for(p3=p2+1; p3<TotalNodes; p3++)
 {
 for(p4=p3+1; p4<TotalNodes; p4++)
 {
 for(p5=p4+1; p5<TotalNodes; p5++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i) && (p3 != i) && (p4 != i) && (p5 != i))
 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 PollingNodeIndexList[2]=p3;
 PollingNodeIndexList[3]=p4;
 PollingNodeIndexList[4]=p5;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }
 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 Selected[p3] = 1;
 Selected[p4] = 1;
 Selected[p5] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)

 118

 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 for(e3=e2+1; e3<TotalNodes; e3++)
 {
 for(e4=e3+1; e4<TotalNodes; e4++)
 {
 for(e5=e4+1; e5<TotalNodes; e5++)
 {
 for(e6=e5+1; e6<TotalNodes; e6++)
 {
 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2] && !Selected[e3] &&
!Selected[e4] && !Selected[e5] &&
 !Selected[e6])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;
 EndNodeIndexList[2]=e3;
 EndNodeIndexList[3]=e4;
 EndNodeIndexList[4]=e5;
 EndNodeIndexList[5]=e6;
#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);
 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }

 119

 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);
 }
 printf("\n");
#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }
#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }

 120

 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(CFT[c] < minimumCF)
 {
 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET
 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);

 121

 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else
 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif
 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");

 122

 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET
 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }

 123

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 break;

 case 6:
 /* Polling Nodes = 6 End Nodes = 5 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 for(p3=p2+1; p3<TotalNodes; p3++)
 {
 for(p4=p3+1; p4<TotalNodes; p4++)
 {
 for(p5=p4+1; p5<TotalNodes; p5++)
 {
 for(p6=p5+1; p6<TotalNodes; p6++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i) && (p3 != i) && (p4 != i) && (p5 != i) &&
 (p6 != i))
 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 PollingNodeIndexList[2]=p3;
 PollingNodeIndexList[3]=p4;
 PollingNodeIndexList[4]=p5;
 PollingNodeIndexList[5]=p6;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }

 124

 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 Selected[p3] = 1;
 Selected[p4] = 1;
 Selected[p5] = 1;
 Selected[p6] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)
 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 for(e3=e2+1; e3<TotalNodes; e3++)
 {
 for(e4=e3+1; e4<TotalNodes; e4++)
 {
 for(e5=e4+1; e5<TotalNodes; e5++)
 {
 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2] && !Selected[e3] &&
!Selected[e4] && !Selected[e5])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;
 EndNodeIndexList[2]=e3;
 EndNodeIndexList[3]=e4;
 EndNodeIndexList[4]=e5;
#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);
 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);

 125

 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);
 }
 printf("\n");
#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }
#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {

 126

 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }
 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(CFT[c] < minimumCF)
 {
 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET
 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 127

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else
 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif

 128

 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");
 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET

 129

 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 break;

 case 7:
 /* Polling Nodes = 7 End Nodes = 4 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 for(p3=p2+1; p3<TotalNodes; p3++)
 {
 for(p4=p3+1; p4<TotalNodes; p4++)
 {
 for(p5=p4+1; p5<TotalNodes; p5++)
 {
 for(p6=p5+1; p6<TotalNodes; p6++)
 {
 for(p7=p6+1; p7<TotalNodes; p7++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i) && (p3 != i) && (p4 != i) && (p5 != i) &&
 (p6 != i) && (p7 != i))
 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 PollingNodeIndexList[2]=p3;
 PollingNodeIndexList[3]=p4;
 PollingNodeIndexList[4]=p5;

 130

 PollingNodeIndexList[5]=p6;
 PollingNodeIndexList[6]=p7;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }
 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 Selected[p3] = 1;
 Selected[p4] = 1;
 Selected[p5] = 1;
 Selected[p6] = 1;
 Selected[p7] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)
 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 for(e3=e2+1; e3<TotalNodes; e3++)
 {
 for(e4=e3+1; e4<TotalNodes; e4++)
 {
 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2] && !Selected[e3] &&
!Selected[e4])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;
 EndNodeIndexList[2]=e3;
 EndNodeIndexList[3]=e4;
#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);
 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {

 131

 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);
 }
 printf("\n");
#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }

 132

#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }
 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(CFT[c] < minimumCF)
 {
 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET

 133

 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else

 134

 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif
 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");
 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);

 135

 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET
 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 break;

 case 8:
 /* Polling Nodes = 8 End Nodes = 3 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 for(p3=p2+1; p3<TotalNodes; p3++)
 {
 for(p4=p3+1; p4<TotalNodes; p4++)
 {
 for(p5=p4+1; p5<TotalNodes; p5++)
 {
 for(p6=p5+1; p6<TotalNodes; p6++)
 {
 for(p7=p6+1; p7<TotalNodes; p7++)
 {
 for(p8=p7+1; p8<TotalNodes; p8++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i) && (p3 != i) && (p4 != i) && (p5 != i) &&
 (p6 != i) && (p7 != i) && (p8 != i))

 136

 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 PollingNodeIndexList[2]=p3;
 PollingNodeIndexList[3]=p4;
 PollingNodeIndexList[4]=p5;
 PollingNodeIndexList[5]=p6;
 PollingNodeIndexList[6]=p7;
 PollingNodeIndexList[7]=p8;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }
 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 Selected[p3] = 1;
 Selected[p4] = 1;
 Selected[p5] = 1;
 Selected[p6] = 1;
 Selected[p7] = 1;
 Selected[p8] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)
 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 for(e3=e2+1; e3<TotalNodes; e3++)
 {
 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2] && !Selected[e3])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;
 EndNodeIndexList[2]=e3;
#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);

 137

 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);
 }
 printf("\n");
#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }

 138

#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }
#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }
 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(CFT[c] < minimumCF)
 {
 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

 139

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET
 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 140

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else
 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif
 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");
 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

 141

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET
 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 break;

 case 9:
 /* Polling Nodes = 9 End Nodes = 2 */
 /* select polling nodes */
 for(p1=0; p1<TotalNodes; p1++)
 {
 for(p2=p1+1; p2<TotalNodes; p2++)
 {
 for(p3=p2+1; p3<TotalNodes; p3++)
 {
 for(p4=p3+1; p4<TotalNodes; p4++)
 {
 for(p5=p4+1; p5<TotalNodes; p5++)
 {
 for(p6=p5+1; p6<TotalNodes; p6++)
 {
 for(p7=p6+1; p7<TotalNodes; p7++)

 142

 {
 for(p8=p7+1; p8<TotalNodes; p8++)
 {
 for(p9=p8+1; p9<TotalNodes; p9++)
 {
 /* we have to check to insure not a target node */
 if((p1 != i) && (p2 != i) && (p3 != i) && (p4 != i) && (p5 != i) &&
 (p6 != i) && (p7 != i) && (p8 != i) && (p9 != i))
 {
 /* this combination is ok, so store it for later use */
 PollingNodeIndexList[0]=p1;
 PollingNodeIndexList[1]=p2;
 PollingNodeIndexList[2]=p3;
 PollingNodeIndexList[3]=p4;
 PollingNodeIndexList[4]=p5;
 PollingNodeIndexList[5]=p6;
 PollingNodeIndexList[6]=p7;
 PollingNodeIndexList[7]=p8;
 PollingNodeIndexList[8]=p9;
 /* clear selected index */
 for(c=0; c<TotalNodes; c++)
 {
 Selected[c]=0;
 }
 Selected[i] = 1;
 Selected[p1] = 1;
 Selected[p2] = 1;
 Selected[p3] = 1;
 Selected[p4] = 1;
 Selected[p5] = 1;
 Selected[p6] = 1;
 Selected[p7] = 1;
 Selected[p8] = 1;
 Selected[p9] = 1;
 /* select end nodes */
 for(e1=0; e1<TotalNodes; e1++)
 {
 for(e2=e1+1; e2<TotalNodes; e2++)
 {
 /* this generates all possible combinations of End Nodes
*/
 if(!Selected[e1] && !Selected[e2])
 {
 /* this combination is ok */
 combinations++;
 EndNodeIndexList[0]=e1;
 EndNodeIndexList[1]=e2;

 143

#if NOT_QUIET
 printf("\nTarget Node: %d ",i);
 printf("Total Polling Nodes: %d Polling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%d ", PollingNodeIndexList[c]+1);
 }
 printf("Total End Nodes: %d End Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%d ",EndNodeIndexList[c]+1);
 }
 printf("Target Node: %12s\n",PollingNodes[i+1]);
 printf("Total Polling Nodes: %d\nPolling Nodes:
",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 printf("%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 printf("\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%s ",PollingNodes[EndNodeIndexList[c]+1]);
 }
 printf("\n");
#endif

 result =
CalculateEuclidianDistance(&EuclidianDistance[0],
 NumberPollingNodes,
 &PollingNodeIndexList[0],
 NumberEndNodes,
 &EndNodeIndexList[0],
 TargetNodeIndex);
 /* calculate crow flys and driving distance between
target and end nodes */
 for(c=0; c<NumberEndNodes; c++)
 {
 CFT[c] = CrowFlies[EndNodeIndexList[c]][i];
 DT[c] = DrivingDistance[EndNodeIndexList[c]][i];
 }

#if NOT_QUIET

 144

 for(c=0; c<NumberEndNodes; c++)
 {
 printf("%16s E[%02d] is %12f CrowFlies: %12f
Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
#else
 if(!(combinations%100))
 {
 /*printf(".");*/
 }
#endif
 /* identify minimum euclidian entry */
 minimum=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(EuclidianDistance[c] < minimum)
 {
 minimumindex=c;
 minimum=EuclidianDistance[c];
 }
 }
 /* identify minimum crow flies entry */
 minimumCF=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(CFT[c] < minimumCF)
 {
 minimumCFindex=c;
 minimumCF=CFT[c];
 }
 }
 /* identify minimum driving entry */
 minimumD=(double)1000000.0;
 for(c=0; c<NumberEndNodes; c++)
 {
 if(DT[c] < minimumD)
 {
 minimumDindex=c;
 minimumD=DT[c];
 }
 }
#if NOT_QUIET
 printf("Minimum Euclidian: %12s E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 145

 printf("Minimum Driving: %12s DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 printf("Minimum Crow Flies: %12s CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
#endif
 if(minimumindex == minimumDindex)
 {
#if NOT_QUIET
 printf("\n*** CORRECT *** Minimum Euclidian Matches
Minimum Driving Distance\n");
#endif
 GoodCount[i]++;

 fprintf(goodfile,"*** CORRECT *** Minimum Euclidian
Matches Minimum Driving Distance\n");
 fprintf(goodfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(goodfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(goodfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\nTotal End Nodes: %d\nEnd
Nodes: ",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(goodfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(goodfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(goodfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 146

 fprintf(goodfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(goodfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }
 else
 {
#if NOT_QUIET
 printf("\n*** WRONG *** Minimum Euclidian Does Not
Matcs Minimum Driving Distance\n");
#endif
 BadCount[i]++;

 fprintf(badfile,"*** WRONG *** Minimum Euclidian Does
Not Matcs Minimum Driving Distance\n");
 fprintf(badfile,"Target Node:
%12s\n",PollingNodes[i+1]);
 fprintf(badfile,"Total Polling Nodes: %d\nPolling
Nodes: ",NumberPollingNodes);
 for(c=0; c<NumberPollingNodes; c++)
 {
 fprintf(badfile,"%s ",
PollingNodes[PollingNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\nTotal End Nodes: %d\nEnd Nodes:
",NumberEndNodes);
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%s
",PollingNodes[EndNodeIndexList[c]+1]);
 }
 fprintf(badfile,"\n");
 for(c=0; c<NumberEndNodes; c++)
 {
 fprintf(badfile,"%16s E[%02d] is %12f CrowFlies:
%12f Driving: %12f\n",
 PollingNodes[EndNodeIndexList[c]+1], c,
EuclidianDistance[c],CFT[c],DT[c]);
 }
 fprintf(badfile,"Minimum Euclidian: %12s
E[%02d] = %f\n",

 147

PollingNodes[EndNodeIndexList[minimumindex]+1],minimumindex,minimum);

 fprintf(badfile,"Minimum Driving: %12s
DT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumDindex]+1],minimumDindex,minimumD);

 fprintf(badfile,"Minimum Crow Flies: %12s
CFT[%02d] = %f\n",

PollingNodes[EndNodeIndexList[minimumCFindex]+1],minimumCFindex,minimumCF);
 }

 if(minimumindex == minimumCFindex)
 {
#if NOT_QUIET
 printf("*** CORRECT *** Minimum Euclidian Matches
Minimum Crow Flies Distance\n");
#endif
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 break;

 default:
 printf("Major Error default case\n");
 exit(0);
 break;
 }
 }
 printf("Closing %s file...\n",BadFilename);
 fclose(badfile);
 printf("Closing %s file...\n", GoodFilename);
 fclose(goodfile);

 148

 printf("Finished Polling Nodes: %d End Nodes: %d\n", NumberPollingNodes, NumberEndNodes);
 printf("\n");
 for(i=0; i<13; i++)
 {
 printf("Target node: %2d %12s Good: %6lu Bad: %6lu\n",i,PollingNodes[i+1],GoodCount[i],BadCount[i]);
 }
 printf("Total Combinations: %lu\n", combinations);

 }

 printf("Version 03 March 2007\n");

 printf("Closing out.csv file...\n");
 fclose(outfile);

 return 0;
}

/* end CollectIt12.c */

 149

 Appendix B: CollectIt12.c “C” Program

/* begin Area12.c */

/* A program to analyze IP Geolocation area data */
/* For 12 Total Nodes */

/* includes */
#include "stdafx.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

/* defines */
#define DEBUG_MODE 0
#define NOT_QUIET 0
#define TOTAL_NODES ((int) 12)
#define MAX_RADIUS ((int) 4000)
#define PI ((double)3.14159265358979323846264338327950288419716939937510)
#define TWOPIBY360 ((PI*(double)2.0)/((double)360))
#define XMAX ((int)11938)
#define YMAX ((int)9469)

/* structures */
struct ACircleQuad
{
 int XRef;
 int YRef;
 int Radius;
 int XMinB;
 int XMaxB;
 int YMinB;
 int YMaxB;
 int Length[MAX_RADIUS];
};

/* function prototypes */
void ClearCircles(void);
void DefineCircle(int WhichCircle, int XRef, int YRef, int Radius);
int IsInCircle(int WhichCircle, int X, int Y);
unsigned long CalcArea(void);
void CalculateDistance(int X, int Y);
int FindMinumum(int X, int Y);

 150

/* globals */
struct ACircleQuad Circles[TOTAL_NODES];
double Delays[TOTAL_NODES][TOTAL_NODES];
double SOL[TOTAL_NODES][TOTAL_NODES];
double CB[TOTAL_NODES][TOTAL_NODES];
double LOC[TOTAL_NODES][2];
int ILOC[TOTAL_NODES][TOTAL_NODES];
char PollingNodes[TOTAL_NODES+1][100];
int Included[TOTAL_NODES];
unsigned int Distance[TOTAL_NODES];

/* functions */
void ClearCircles(void)
{
 int Circle, i;

#if DEBUG_MODE
 printf("ClearCircles\n");
#endif

 for(Circle=0; Circle<TOTAL_NODES; Circle++)
 {
 Circles[Circle].XRef=(int)0;
 Circles[Circle].YRef=(int)0;
 Circles[Circle].Radius=(int)0;
 Circles[Circle].XMinB=(int)0;
 Circles[Circle].XMaxB=(int)0;
 Circles[Circle].YMinB=(int)0;
 Circles[Circle].YMaxB=(int)0;
 for(i=0; i<MAX_RADIUS; i++)
 {
 Circles[Circle].Length[i]=(int)0;
 }
 }
}

void DefineCircle(int WhichCircle, int XRef, int YRef, int Radius)
{
 int Angle, x, y, i;

#if DEBUG_MODE
 printf("DefineCircle Circle: %d XRef: %d YRef: %d Radius: %d\n", WhichCircle, XRef, YRef, Radius);
#endif

 Circles[WhichCircle].XRef=XRef;
 Circles[WhichCircle].YRef=YRef;
 Circles[WhichCircle].Radius=Radius;

 151

 /* do this calc here because we need it later for speed */
 Circles[WhichCircle].XMinB = XRef - Radius;
 Circles[WhichCircle].XMaxB = XRef + Radius;
 Circles[WhichCircle].YMinB = YRef - Radius;
 Circles[WhichCircle].YMaxB = YRef + Radius;

 /* clear out old lengths */
 for(i=0; i<MAX_RADIUS; i++)
 {
 Circles[WhichCircle].Length[i]=(int)0;
 }

 for(Angle=0; Angle<=90; Angle++)
 {
 y = (int) ((double)Radius * sin(TWOPIBY360*(double)Angle));
 x = (int) ((double)Radius * cos(TWOPIBY360*(double)Angle));
 for(i=0; (i<=y)&&(i<MAX_RADIUS); i++)
 {
 if(x > Circles[WhichCircle].Length[i])
 {
 Circles[WhichCircle].Length[i] = x;
 }
 }
 }
#if DEBUG_MODE
 for(i=0; i<4000; i++)
 {
 printf("Circle: %d i: %d Length: %d\n", WhichCircle, i, Circles[WhichCircle].Length[i]);
 }
#endif
}

int IsInCircle(int WhichCircle, int X, int Y)
{
 int XMinB, XMaxB, YMinB, YMaxB, XDelta, YDelta;

 /* quick check to see if the location is outside the box */
 if((X < Circles[WhichCircle].XMinB) ||
 (X > Circles[WhichCircle].XMaxB) ||
 (Y < Circles[WhichCircle].YMinB) ||
 (Y > Circles[WhichCircle].YMaxB))
 {
 /* it is not in the square, so no more checking is needed */
#if DEBUG_MODE
 printf("IsInCircle? NO Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(0);

 152

 }
 XDelta = X - Circles[WhichCircle].XRef;
 YDelta = Y - Circles[WhichCircle].YRef;
 if((XDelta >= 0) && (YDelta >= 0))
 {
 /* we are in Quadrant I */
 if(XDelta <= Circles[WhichCircle].Length[YDelta])
 {
#if DEBUG_MODE
 printf("IsInCircle? YES Quadrant I Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(1);
 }
 else
 {
#if DEBUG_MODE
 printf("IsInCircle? NO Quadrant I Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(0);
 }
 }

 if((XDelta < 0) && (YDelta >= 0))
 {
 /* we are in Quadrant II */
 if(XDelta >= (-1 * Circles[WhichCircle].Length[YDelta]))
 {
#if DEBUG_MODE
 printf("IsInCircle? YES Quadrant II Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(1);
 }
 else
 {
#if DEBUG_MODE
 printf("IsInCircle? NO Quadrant II Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(0);
 }
 }

 if((XDelta < 0) && (YDelta < 0))
 {
 /* we are in Quadrant III */
 if(XDelta >= (-1 * Circles[WhichCircle].Length[-1 * YDelta]))
 {
#if DEBUG_MODE

 153

 printf("IsInCircle? YES Quadrant III Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(1);
 }
 else
 {
#if DEBUG_MODE
 printf("IsInCircle? NO Quadrant III Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(0);
 }
 }

 if((XDelta >= 0) && (YDelta < 0))
 {
 /* we are in Quadrant IV */
 if(XDelta <= Circles[WhichCircle].Length[-1 * YDelta])
 {
#if DEBUG_MODE
 printf("IsInCircle? YES Quadrant IV Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(1);
 }
 else
 {
#if DEBUG_MODE
 printf("IsInCircle? NO Quadrant IV Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
#endif
 return(0);
 }
 }
 /* should never get here */
 printf("IsInCircle? FAILURE Circle: %d X: %d Y: %d\n", WhichCircle, X, Y);
 exit(0);
}

unsigned long CalcArea(void)
{
 int i, j, flag;
 unsigned long area;

 for(i=0; i<XMAX; i++)
 {
 for(j=0; j<YMAX; j++)
 {
 /* walk the whole map */
 /* the first negative should skip the rest */

 154

 flag=1;

 if(Included[0])
 {
 if(!IsInCircle(0, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[1])
 {
 if(!IsInCircle(1, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[2])
 {
 if(!IsInCircle(2, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[3])
 {
 if(!IsInCircle(3, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[4])
 {
 if(!IsInCircle(4, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[5])
 {
 if(!IsInCircle(5, i, j))
 {
 flag=0;

 155

 goto bottom;
 }
 }
 if(Included[6])
 {
 if(!IsInCircle(6, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[7])
 {
 if(!IsInCircle(7, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[8])
 {
 if(!IsInCircle(8, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[9])
 {
 if(!IsInCircle(9, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[10])
 {
 if(!IsInCircle(10, i, j))
 {
 flag=0;
 goto bottom;
 }
 }
 if(Included[11])
 {
 if(!IsInCircle(11, i, j))
 {

 156

 flag=0;
 goto bottom;
 }
 }

 bottom:
 if(flag)
 {
 area++;
 }

 }
 }
 return(area);
}

void CalculateDistance(int X, int Y)
{
 int i, j;

 for(i=0; i<13; i++)
 {
 Distance[i] = (unsigned long)0;
 }

 for(i=0; i<13; i++)
 {
 Distance[i] = (unsigned long) sqrt((double)(((unsigned long)(X - ILOC[i][0]) * (unsigned long)(X - ILOC[i][0])) +
 ((unsigned long)(Y - ILOC[i][1]) * (unsigned long)(Y - ILOC[i][1]))));
 }
}

int FindMinumum(int X, int Y)
{
 int i, j;
 int MinIndex;
 unsigned long MinVal;

 MinIndex = 0;
 MinVal = 10000000;
 for(i=0; i<TOTAL_NODES; i++)
 {
#if 0
 /* exclude node if X and Y match */
 if((X == ILOC[i][0]) && (Y == ILOC[i][1]))
 {
 /* this is a match, so don't allow it to be selected */

 157

 }
 else
 {
 }
#endif
 if(Distance[i] < MinVal)
 {
 MinIndex = i;
 MinVal = Distance[i];
 }
 }
 return(MinIndex);
}

/* main function */

int main(int argc, char* argv[])
{
 char InputLine[5000];
 char Token[20][100];
 char PN[TOTAL_NODES+1];
 char TN[TOTAL_NODES+1];
 char Selected[13];
 char GoodFilename[100];
 char BadFilename[100];

 unsigned long combinations;
 unsigned long GoodCount[TOTAL_NODES];
 unsigned long BadCount[TOTAL_NODES];
 unsigned long Area;
 unsigned long TTLHArea[TOTAL_NODES];

 int result;
 int i;
 int j;
 int c;
 int Length;
 int Tokens;
 int LineCount;
 int First;
 int TotalNodes;
 int NumberPollingNodes;
 int CurrentPollingNodes;
 int PollingNodeIndexList[TOTAL_NODES];
 int NumberEndNodes;
 int EndNodeIndexList[TOTAL_NODES];

 158

 int TargetNodeIndex;
 int minimumindex;
 int minimumCFindex;
 int minimumDindex;
 int done;
 int MinimumIndex;
 int CurNode;
 int minx, maxx, miny, maxy;

 double CrowFlies[TOTAL_NODES][TOTAL_NODES];
 double DrivingDistance[TOTAL_NODES][TOTAL_NODES];
 double EuclidianDistance[TOTAL_NODES];
 double CFT[TOTAL_NODES];
 double DT[TOTAL_NODES];
 double minimum;
 double minimumCF;
 double minimumD;

 FILE *goodfile;
 FILE *badfile;
 FILE *outfile;
 FILE *costfile;

 printf("Version 03 March 2007\n");

 printf("Opening out.csv for write...\n");
 /*costfile=fopen("d:\\out.csv","w");*/
 outfile=fopen("./out.csv","w");
 if(outfile==NULL)
 {
 printf("\n Error cannot open file out.csv\a ");
 exit(0);
 }

 printf("Reading DelayData.csv file...\n");
 /*costfile=fopen("d:\\DelayData.csv","r");*/
 costfile=fopen("./DelayData.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file DelayData.csv\a ");
 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */

 159

 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* delimiter */
 Token[Tokens][j] = 0;
 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 for(i=0; i<Tokens; i++)
 {
 strcpy(PollingNodes[i],&Token[i][0]);
 /*sprintf(PollingNodes[i], "%s", Token[i][0]);*/
 }
 First=0;
 }
 else
 {
 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 Delays[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 /*sprintf(PollingNodes[i], "%s", Token[i][0]);*/
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {

 160

 printf("Token %d is %s\n",i,&Token[i][0]);
 }
#endif
 InputLine[Length-1]=0;
 fprintf(outfile, "%s\n", InputLine);
 }
 printf("Closing DelayData.csv file...\n");
 fclose(costfile);

 printf("Reading SOL.csv file...\n");
 /*costfile=fopen("d:\\SOL.csv","r");*/
 costfile=fopen("./SOL.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file SOL.csv\a ");
 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* delimiter */
 Token[Tokens][j] = 0;
 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 First=0;

 161

 }
 else
 {
 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 SOL[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }
#endif
 InputLine[Length-1]=0;
 fprintf(outfile, "%s\n", InputLine);
 }
 printf("Closing SOL.csv file...\n");
 fclose(costfile);

 printf("Reading CB.csv file...\n");
 /*costfile=fopen("d:\\CB.csv","r");*/
 costfile=fopen("./CB.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file CB.csv\a ");
 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {

 162

 /* delimiter */
 Token[Tokens][j] = 0;
 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 First=0;
 }
 else
 {
 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 CB[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }
#endif
 InputLine[Length-1]=0;
 fprintf(outfile, "%s\n", InputLine);
 }
 printf("Closing CB.csv file...\n");
 fclose(costfile);

 printf("Reading LOC.csv file...\n");
 /*costfile=fopen("d:\\LOC.csv","r");*/
 costfile=fopen("./LOC.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file LOC.csv\a ");

 163

 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* delimiter */
 Token[Tokens][j] = 0;
 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 First=0;
 }
 else
 {
 /* data */
 LOC[LineCount-2][0] = (double)atof(Token[1]);
 LOC[LineCount-2][1] = (double)atof(Token[2]);
 ILOC[LineCount-2][0] = (int)LOC[LineCount-2][0];
 ILOC[LineCount-2][1] = (int)LOC[LineCount-2][1];
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }

 164

#endif
 InputLine[Length-1]=0;
 fprintf(outfile, "%s\n", InputLine);
 }
 printf("Closing LOC.csv file...\n");
 fclose(costfile);

 printf("Reading CrowFlies.csv file...\n");
 /*costfile=fopen("d:\\CrowFlies.csv","r");*/
 costfile=fopen("./CrowFlies.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file CrowFlies.csv\a ");
 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* comma delimiter */
 Token[Tokens][j] = 0;
 j = 0;
 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 First=0;
 }
 else

 165

 {
 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 CrowFlies[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }
#endif
 InputLine[Length-1]=0;
 }
 printf("Closing CrowFlies.csv file...\n");
 fclose(costfile);

 printf("Reading Driving.csv file...\n");
 /*costfile=fopen("d:\\Driving.csv","r");*/
 costfile=fopen("./Driving.csv","r");
 if(costfile==NULL)
 {
 printf("\n Error cannot open file Driving.csv\a ");
 exit(0);
 }
 LineCount = 0;
 First = 1;
 while(fgets(InputLine,4999,costfile) != NULL)
 {
 /* get a line */
 LineCount++;
 Length = strlen(InputLine);
 /* tokenize it */
 Tokens=0;
 j=0;
 for(i=0; i<Length; i++)
 {
 if(InputLine[i] == 44)
 {
 /* comma delimiter */
 Token[Tokens][j] = 0;
 j = 0;

 166

 Tokens++;
 }
 else
 {
 /* character */
 Token[Tokens][j++] = InputLine[i];
 }
 }
 Token[Tokens++][j] = 0;
 /*printf("Line %d has %d Tokens\n",LineCount,Tokens);*/
 if(First)
 {
 First=0;
 }
 else
 {
 /* data */
 for(i=0; i<Tokens; i++)
 {
 if(i)
 {
 DrivingDistance[LineCount-2][i-1] = (double)atof(Token[i]);
 }
 }
 }
#if DEBUG_MODE
 printf("Line %d with %d tokens\n",LineCount,Tokens);
 for(i=0; i<Tokens; i++)
 {
 printf("Token %d is %s\n",i,&Token[i][0]);
 }
#endif
 InputLine[Length-1]=0;
 }
 printf("Closing Driving.csv file...\n");
 fclose(costfile);

 /* replace end of line carrige return with null termination for Tampa */
 PollingNodes[TOTAL_NODES][5]=0;

 /* generate combos */
 TotalNodes=TOTAL_NODES;

#if DEBUG_MODE
 for(i=0; i<TOTAL_NODES+1; i++)
 {
 printf("Polling Node %d is %s\n",i,PollingNodes[i]);

 167

 }
 for(i=0; i<TOTAL_NODES; i++)
 {
 for(j=0; j<TOTAL_NODES; j++)
 {
 printf("Row: %d Col: %d CrowFlies: %f Driving: %f Delay: %f SOL: %f CB: %f\n", i,j,CrowFlies[i][j],
 DrivingDistance[i][j],Delays[i][j],SOL[i][j], CB[i][j]);
 }
 }
 for(i=0; i<TOTAL_NODES; i++)
 {
 printf("LOC i: %d X: %f Y: %f IX: %d IY: %d\n", i,LOC[i][0],LOC[i][1],ILOC[i][0],ILOC[i][1]);
 }
#endif

 printf("Calculating Area of 11 Overlapping Nodes using SOL for each Target Node\n");
 for(i=0; i<TOTAL_NODES; i++)
 {
 /* pick a target node */
 ClearCircles();
 /* set all included, then exclude target */
 for(j=0; j<TOTAL_NODES; j++)
 {
 Included[j]=1;
 }
 Included[i]=0;
 /* create circles */
 for(j=0; j<TOTAL_NODES; j++)
 {
 if(Included[j])
 {
 /* create each of the circles except the target node */
 DefineCircle((int)j, ILOC[j][0], ILOC[j][1], (int)SOL[i][j]);
 }
 }
 Area = CalcArea();
 printf("Target: %2d Name: %14s Area: %10lu\n", i, PollingNodes[i+1], Area);
 }

 printf("Calculating Area of 11 Overlapping Nodes using CB for each Target Node\n");
 for(i=0; i<TOTAL_NODES; i++)
 {
 /* pick a target node */
 ClearCircles();
 /* set all included, then exclude target */
 for(j=0; j<TOTAL_NODES; j++)
 {

 168

 Included[j]=1;
 }
 Included[i]=0;
 /* create circles */
 for(j=0; j<TOTAL_NODES; j++)
 {
 if(Included[j])
 {
 /* create each of the circles except the target node */
 DefineCircle((int)j, ILOC[j][0], ILOC[j][1], (int)CB[i][j]);
 }
 }
 Area = CalcArea();
 printf("Target: %2d Name: %14s Area: %10lu\n", i, PollingNodes[i+1], Area);
 }

 minx=20000;
 maxx=0;
 miny=20000;
 maxy=0;
 for(i=0; i<TOTAL_NODES; i++)
 {
 if(ILOC[i][0] < minx)
 {
 minx = ILOC[i][0];
 }
 if(ILOC[i][0] > maxx)
 {
 maxx = ILOC[i][0];
 }
 if(ILOC[i][1] < miny)
 {
 miny = ILOC[i][1];
 }
 if(ILOC[i][1] > maxy)
 {
 maxy = ILOC[i][1];
 }
 }
#if 0
 printf("Min X: %d Max X: %d Min Y: %d Max Y: %d\n",minx,maxx,miny,maxy);

 /* This works but takes too long to run due to floating point calculations */
 printf("Calculating TTLH Area surrounding each of the 12 Nodes\n");
 for(i=0; i<TOTAL_NODES; i++)
 {

 169

 TTLHArea[i]=0;
 }
 for(i=0; i<XMAX; i++)
 {
 if(!(i%10))
 {
 printf(".");
 }

 for(j=0; j<YMAX; j++)
 {
 /* walk the whole map */
 CalculateDistance(i, j);
 MinimumIndex = FindMinumum(i, j);
 TTLHArea[MinimumIndex]++;
 }
 }
 for(i=0; i<TOTAL_NODES; i++)
 {
 printf("\nNode: %2d Name: %14s Area: %10lu\n", i, PollingNodes[i+1], TTLHArea[i]);
 }
#endif

 printf("Version 03 March 2007\n");

 printf("Closing out.csv file...\n");
 fclose(outfile);

 return 0;
}

/* end Area12.c */

 170

 Bibliography

[1] Anderson M., Bansal A, Doctor B, Hadjiyiannis G, C. Herringshaw, E. Karplus, and

D. Muniz, “Method and apparatus for estimating a geographic location of a

networked entity,” United States Patent 6,684,250, Filed 3 April 2001. Issued 27

January 2004.

[2] Ballintijin, Gerco and Maarten van Stten. 2000. "Characterizing Internet

Performance to Support Wide-area Application development." Operating Systems

Review.

[3] Clarson, John R. 2005. Geolocation of a Node on a Local Area Network. Dayton

OH: Air Force Institute of Technology.

[4] Davis C., P. Vixie, T. Goodwin and I. Dickinson. 1996. "A means for expressing

location information in the domain name system." RFC 1876.

[5] Dingledine R., Mathewson N., Syverson P., “Tor: the second-generation onion router”

Proceeding of the 13th USENIX Security Symposium, August 2004, pp. 303-320

[6] Gueye, Bamba, Steve Uhlig, Artur Ziviani and Serge Fdida. 2006. "Leveraging

Buffering Delay Estimation for Geolocation of Internet Hosts." IFIP Networking

2006(3976):319.

 171

[7] Gueye, Bamba, Artur Ziviani, Mark Crovella and Serge Fdida. 2004. "Constraint-

Based Geolocation of Internet hosts." ACM/SIGCOMM Internet Measurement

Conference:288.

[8] Huffman, Stephen M. and Michael H. Reifer. 2005. "Method for geolocating logical

network addresses." 752898(6,947,978).

[9] IEEE Std 802-2001. 2002. IEEE Standard for Local and Metropolitan Area

Networks: Overview and Architecture.

[10] Kish, SA. 1999. "Betting on the Net: An Analysis of the Governments Role in

Addressing INternet Gambling." Federal Communications Law Journal.

[11] Microsoft Corp. 2006. "Microsoft Windows XP - Ping.", Retrieved December 13,

2006 (http://www.microsoft.com/resources/documentation/windows).

[12] Muir, J., & van Oorschot, P. C. (2006). Internet geolocation and evasionCarleton

University.

[13] Navas, Julio and Tomasz Imielinski. 1997. "GeoCast- Geographic Addressing and

Routing." 3rd Annual ACM/IEEE International Conference on Mobile Computing

and Networking:66-66-76.

[14] OPNET Modeler 12.0 Product Documentation -Standard Models User

Guide 16 RIP Model User Guide, OPNET Technologies, 2006.

 172

[15] Padmanabhan, Venka and Lakshminarayanan Subramanian. 2001. "An Investigation

of Geographic Mapping Techniques for Internet Hosts." SIGCOMM(1-58113-411-

8/01/008):173.

[16] Parekh S, Friedman R., Tibrewala, and Lutch B, “Systems and methods for

determining collecting and using geographic locations of Internet users,” United

States Patent 6,757,740, Filed 31 March 2000, Issued 29 June 2004.

[17] Percacci, R. and A. Vespignani. 2003. "Scale-Free behavior of the Internet global

performance." The European Physical Journal 411-414.

 [18] Peterson, Larry L. and Bruce S. Davie. 2003. Computer Networks, A Systems

Approach. San Fransico CA: Elsevier Science.

[19] PING(8) FreeBSD System Manager’s Manual,

www.kerneled.com/doc/man/freebsd/man8/ping.html, 2002.

[20] Quova Inc. 2006 “GeoPoint by Quova: IP Intelligence and Internet Geolocation”

[21] Sorgaard, D. (2004). Geographic location of a computer node examining a time-

to0location algorithm and multiple autonomous system networks. Unpublished

Masters, Air Force Institute of Technology.

[22] Subramanian, Venkata, and Katz. 2002 “Geographic Properties of Internet Routing”

UNSENIX Annual Technical Conference

 173

[23] Stallings, William. 2004. Data and Computer Communications. Upper Saddle River

NJ: Pearson Education.

[24] Subramanian, Lakshminarayanan, Venka Padmanabhan and Randy Katz. 2002.

"Geographic Properties of Internet Routing." Proceedings of the General Track:

2002 USENIX Annual Technical Conference

[25] Tanenbaum, Andrew S. 1999. Computer Networks. 3rd ed. Upper Saddle River NJ:

Prentice Hall.

[26] Turnbaugh, Eugene. 2004. Geographically Locating an Internet Node using Network

Latency Measurement. Dayton OH: Air Force Institute of Technology.

 [32]Traceroute, Sun Operating System version 5.8, Maintenance Commands, 1999.

[28] United States Geological Survey “Science in your State: Texas” retrieved on February

26 2007. http://www.usgs.gov/

[29] Visual Route, “Visualroute traceroute server: Trace IP address, trace route, IP trace,

IP address locations” Retrieved on February 27 2007,

(http://visualroute.visualware.com/)

[30] Wynne, M., & Moseley, M. (2005). SECAF/CSAF letter to airmen: Mission

statement

 174

[31] Wynne, Michael W, Secretary of the Air Force. “Cyberspace as a Domain in which

the Air Force Flies and Fights” Address to the C4ISR Integration Conference,

Cyrstal City VA, November 2, 2006

[32] Ziviani, Artur, Serge Fdida, Jose Rezende and Duarte, Otto Carlos M.B. 2005.

"Improving the accuracy of measurement-based geographic location of Internet

hosts." Computer Networks 503-523(47):503.

 175

REPORT DOCUMENTATION PAGE
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
22-03-2007

2. REPORT TYPE
Master’s Thesis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Internet Protocol Geolocation: Development of a Delay-Based Hybrid Methodology for Locating
the Geographic Location of a Network Node

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Roehl John M., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way
 WPAFB OH 45433-7765
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Internet Protocol Geolocation (IP Geolocation), the process of determining the approximate geographic location of an IP addressable node, has proven useful
in a wide variety of commercial applications. Commercial applications of IP Geolocation include market research, redirection for performance enhancement,
restricting content, and combating fraud. The potential for military applications include securing remote access via geographic authentication, intelligence
collection, and cyber attack attribution.
IP Geolocation methods can be divided into three basic categories based upon which information is used to determine the geographic location of the given IP
address: 1) Information contained in databases, 2) information that is leaked during connections with the IP of interest, and 3) network-based routing and
timing information. This thesis focused upon an analysis in the third category: delay-based methods for IP Geolocation. Specifically, a comparative analysis
of three existing delay-based IP Geolocation methods: Upper-bound Multilateration (UBM), Constraint Based Geolocation (CBG), and Time to Location
Heuristic (TTLH) is conducted using a simulated network. Based upon analysis of the results, a new hybrid methodology is proposed to improve the accuracy
when conducting IP Geolocation. Simulations of the new hybrid methodology show that the hybrid methodology is superior to all existing delay-based
methods for IP Geolocation.

15. SUBJECT TERMS
 Internet, Location, Triangulation,

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Michael R. Grimaila, PhD (ENV)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
185 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636, ext 4800; e-mail: Michael.Grimaila@afit.edu

	Internet Protocol Geolocation: Development of a Delay-Based Hybrid Methodology for Locating the Geographic Location of a Network Node
	Recommended Citation

	INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-BASED HYBRID METHODOLOGY FOR LOCATING THE GEOGRAPHIC LOCATION OF A NETWORK NODE
	AFIT/GIR/ENV/07-M15

	INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-BASED HYBRID METHODOLOGY FOR GEOGRAPHIC LOCATION OF A NETWORK NODE
	INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-BASED HYBRID METHODOLOGY FOR GEOGRAPHIC LOCATION OF A NETWORK NODE
	Abstract
	Table of Contents
	List of Figures
	 List of Tables
	INTERNET PROTOCOL GEOLOCATION: DEVELOPMENT OF A DELAY-BASED HYBRID METHODOLOGY FOR LOCATING THE GEOGRAPHIC LOCATION OF A NETWORK NODE

	1. Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Research Methodology
	1.4 Research Significance
	1.5 Thesis Overview

	 2. Literature Review
	2.1 Chapter Overview
	2.2 Definition of Terms
	2.3 Internet Protocol Geolocation
	2.4 Database Focused Methods
	2.4.1 WHOIS
	2.4.2 Domain Name Service (DNS)
	2.4.3 IP Clustering

	2.5 Information Leakage-Focused Methods
	 2.5.1 Reverse DNS
	2.5.2 Trace Route
	2.5.3 Application Information Leakage
	2.5.3.1 Finding End-User IP Addresses

	2.6 Network Communication Attribute-Focused Methods
	2.6.1 Delay Factors in IP Network Communications
	2.6.1.2 Topology
	2.6.1.3 Line Speed
	2.6.1.4 Queuing Delay
	 2.6.1.5 Switching Speed
	 2.6.1.6 IP Path Diversity

	2.6.2 Measuring Delay
	2.6.2.1 Trace Route

	2.7 Delay-Based IP Geolocation Methods
	2.7.1 Upper-Bound Multilateration
	2.7.2 Constraint-Based Geolocation
	2.7.3 Nearest Known Node

	2.7.3.1 Euclidean Distance
	2.8 Summary

	 3. Methodology
	3.3 Enumerating Network Architectures
	3.4 Data Collection Process
	3.5 Data Analysis Process
	3.5.1 Upper-Bound Multilateration (UBM)
	3.5.2 Constraint-Based Geolocation (CBG)
	3.3.3 Time to Location Heuristic (TTLH)
	3.4 Metrics
	3.5 Assumptions
	3.6 Summary

	 4. Results and Analysis
	4.1 Data Collection
	4.1 Upper-Bound Multilateration
	4.1.1 UBM Results
	4.2 Constraint-Based Geolocation
	4.2.1 CBG Results
	4.3 TTLH
	4.3.1 TTLH Results
	4.4 Hybrid Methodology
	4.4.1 Hybrid Methodology Results
	4.5 Summary

	5. Conclusions and Recommendations
	5.4 Future Research

	 APPENDICIES
	Appendix A: CollectIt12.c “C” Program
	Appendix B: CollectIt12.c “C” Program
	 Bibliography
	Internet Protocol Geolocation: Development of a Delay-Based Hybrid Methodology for Locating the Geographic Location of a Network Node

