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AFIT/GSS/ENY/07-S01 

Abstract 

 

 

Most objects tracked in space follow a regular Keplerian orbit; unfortunately, 

non-Keplerian objects such as maneuvering satellites, tethered systems, and thrusting 

ballistic missiles are becoming more common.  It is important to be able to distinguish 

between Keplerian and non-Keplerian objects due to the potential risk of a tethered 

satellite being mistaken for an object on re-entry.  This research focused on creating a 

computer model that can detect the non-gravitational acceleration present in non-

Keplerian orbits.  A 3rd order Taylor series expansion was used to model the dynamics 

and to produce simulated radar data.  Linear least squares estimation was used to estimate 

the initial state of a space object with a state vector composed of position, velocity, 

acceleration, and its first derivative.  Monte Carlo analysis was used to verify that the 

estimator was unbiased and representative of the uncertainty in the data.  The Monte 

Carlo method detected non-gravitational acceleration as small as 1.12 cm/s2; however, a 

subsequent approach that analyzed the data sets individually only detected acceleration as 

small as 10.63 cm/s2.  At smaller magnitudes, the estimator was able to detect the 

presence of non-gravitational acceleration, but was ultimately unable to estimate the true 

value with statistical accuracy.
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RADAR ORBIT ANALYSIS TOOL  
USING LEAST SQUARES ESTIMATOR 

 
 

I. Introduction 

Background 

Radars have been used to track satellites ever since the Soviet Union successfully 

launched Sputnik in October 1957.  These radars, along with optical sensors, eventually 

grew into what is commonly known today as the Space Surveillance Network (SSN).  

The SSN has 25 sensor sites located world-wide with the capability of tracking space 

objects from low earth orbit (LEO) all the way to geosynchronous earth orbit (GEO).  

There are currently over 10,000 objects being tracked today; however, the number of 

objects increases each year due to more launches and the increased capability/desire to 

track smaller and smaller objects.  These objects include satellites, rocket debris, bolts, 

and sometimes even an astronaut’s glove.  

The various sensors used within the SSN offer their own capabilities and 

challenges.  Optical sensors use a Charge Coupled Device (CCD) to take pictures of the 

satellite streaking across the sky.  These images are cross-checked with star charts to 

determine the satellite’s topocentric right ascension and declination (Vallado, 2001:243).  

Optical sensors, unfortunately, are not practical during the day nor do they work very 

well when it is cloudy or overcast. 

Radars, however, can be used day or night and in cloudy conditions.  Radars use 

both a transmitter to send electromagnetic radiation and a receiver to obtain the EM 
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energy reflected back from the detected object.  This method obtains the topocentric 

azimuth and elevation of the space object.  The SSN divides radars into three categories:  

tracking, detecting and phased array (interferometers).  Interferometers use a collection of 

transmitters and receivers to detect objects.  The transmitters create a fan of energy that is 

reflected back to the receivers when an object passes through.  Varying the phase creates 

the ability to obtain direction cosines that can be manipulated to obtain elevation and 

azimuth data (Vallado, 2001:241).   

Radars used for tracking are typically more accurate than those used for initial 

detection (Thomas, 1967:75-86); however, all systems contain a certain level of bias and 

noise.  Biases in range, azimuth, and elevation are taken into account to correct the raw 

sensor data.  Noise statistics are very useful in helping to accurately weigh the validity of 

the data.  This is important when the data is to be run through estimators or filters. 

In the 50 years since Sputnik, the ability to track space objects has become 

increasingly more complex due to technological advancements both foreign and 

domestic.  Satellites can follow more than just a regular Keplerian orbit.  For a given 

radar track, the space object may be maneuvering, part of a tethered system, or even a 

thrusting ballistic missile.   

Tethered systems are of key interest these days.  The force created by a tether 

changes the dynamics of the end masses and may result in the satellite being mistaken for 

an object on a re-entry trajectory (Asher and others, 1988:514).  If the end mass is in a 

lower orbit than the center-of-mass, its velocity will be smaller than what should be 

expected from a single satellite in a Keplerian orbit; similarly, an end mass in a higher 
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orbit than the center-of-mass will have a higher velocity than it should (Cicci and others, 

2002:340).   

Problem Statement 

In order to determine if an object is following a regular Keplerian orbit or has 

some other motion, it is necessary to determine how the dynamics between the two 

groups differ.  One solution is to develop a model that can detect non-gravitational 

acceleration.  This model must be easily implemented and have the ability to produce 

results relatively quickly.  Such a model can be produced using Galileo’s projectile 

motion dynamics and a linear least squares estimator.  A linear least squares estimator is 

ideal because there is no need for an initial guess or iteration, so results are produced in a 

timely manner.  

Research Objectives 

The primary objective of this research was to create a statistically accurate 

computer model capable of determining if a space object has non-gravitational 

acceleration.  A truth model and least squares estimator must be produced in order to 

create and test the computer model.  This model is merely a filter to be used at radar sites 

to get an initial idea if a space object is following a non-Keplerian orbit. 

Research Focus 

This research focused on using the projectile equations of motion with a linear 

least squares estimator to solve the estimation problem instead of a sequential method 

such as either a Bayes filter or a Kalman filter.  The state vector will include not only 
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position ( )rv  and velocity ( )r&v , but also acceleration ( )r&&v  and its first derivative ( )r&&&v .  The 

inclusion of acceleration in the state vector was used to verify if non-gravitational 

acceleration was present.  The covariance must also statistically validate that the 

acceleration exists. 

Investigative Questions 

Several questions were addressed during this research.  The most important 

question was, “What magnitude of acceleration can the model detect?”  Tethered systems 

and maneuvering space objects can have non-gravitational accelerations that are quite 

small (i.e. cm/s2, μm/s2).  The computer model will be more versatile if it can detect these 

smaller accelerations.  Another question of interest was, “Are the dynamics accurate 

enough?”  Galileo’s equations for projectile motion are very general.  A Taylor series 

expansion of Galileo’s equations of motion may be utilized for better accuracy.  The 

question of whether or not the geopotential is accurate enough with just J2 and two-body 

terms was also addressed.   

Methodology 

Solving the estimation problem required dividing the process into four stages.  

First, the raw radar data was converted to a more usable format.  Second, a truth model 

that can simulate various aspects of real-world data was developed.  Third, an estimator 

that outputs ,,, rrr &&v&vv and r&&&v was created.  The estimator must also produce a covariance 

matrix to verify that the state estimate was accurate.  Last, test case scenarios were run 

through the truth model and estimator to ensure proper function and accuracy. 
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Assumptions and Limitations 

A number of assumptions and limitations were taken into account and addressed 

during this research.  The equations of motion used for the truth model were produced 

using Galileo’s projectile trajectory with a Taylor series expansion.  Two-body equations 

of motion are more accurate in modeling space object motion; however, those equations 

are nonlinear and would make the estimation problem more complex.  For these 

equations of motion, the value for gravity includes more than the standard 9.81 m/s2.  

Gravity was instead modeled as the gradient of the geopotential taking into account both 

two-body and J2 effects.  Air drag was not modeled.  The omission of air drag works well 

for a short radar track, but would limit the accuracy of the model if used for a much 

longer simulation.  For this research, the local gravity vector was calculated only once, 

using the initial position vector.  For such a short track of data, it was assumed that the 

gravity vector would not change dramatically.   

This model is limited by radar capabilities and how fast the space object is 

accelerating.  Assuming the radar has a range error of 100 meters, given a five-minute 

radar track, the object must be accelerating faster than 0.667 cm/s2 in order for the model 

to statistically say there is an extra acceleration component present.  This model is, 

therefore, unable to detect extremely small accelerations.  It was also assumed that the 

sensor’s total instrument error was composed of only little error sources, thereby 

allowing the concept of Gaussian Distribution to be taken into account during estimation.  
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Implications 

This computer model is a simple tool that radar sites run their data through to 

quickly get an idea if a space object is following a non-Keplerian orbit.  It is merely a 

filter.  It can determine if non-gravitational acceleration is present; however, it cannot 

distinguish between a tethered system and a maneuvering satellite.  A more complex 

model would need to be utilized to provide specific object identification and orbit 

propagation.  

Preview 

Chapter II touches on some of the key research areas studied while solving the 

problem at hand, the most important of which being least squares and how it all works.  

The importance of Galileo’s projectile trajectory is also examined.  A summary of 

previous attempts to model space objects with additional acceleration components is 

included.  Chapter III discusses the specific processes used to create the conversion from 

raw radar data, the truth model, and the estimator; as well as how the routines are 

executed and validated.  Chapter IV goes over the different test case scenarios, as well as 

an analysis of the data.  Chapter V concludes with the end result and recommendations 

for future research. 
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II. Literature Review 

Chapter Overview 

The purpose of this chapter is to explain the theory behind the key concepts used 

in this research.  Section 2.2 covers some of the previous research efforts related to space 

objects with non-Keplerian orbits.  Section 2.3 explores Galileo’s insight in projectile 

motion and how it can be adapted to modeling satellite motion.  Section 2.4 explains the 

fundamental assumptions required to make least squares work, as well as how to obtain 

the estimated state and covariance for a set of data.   

Non-Keplerian Orbits 

Orbit determination of space objects has been a topic of interest ever since 

astronomers first tried tracking the planets and moons in the solar system.  Many 

scientists and astronomers, including Galileo, Brahe, Kepler, and Newton provided 

insight into how to track these objects.  It was Newton’s work combined with Kepler’s 

Planetary Laws that created the two-body equations of motion: 

 3r
rr
v

&&v μ−=  (1) 

Equation (1) is fundamental in understanding the dynamics of orbiting objects.  Many 

different orbit determination methods use the two-body equations of motion as the 

foundation. 

Also noteworthy was the development of Kepler’s Problem.  Given an initial 

position and velocity of a space object, plus a time span ( 0tt − ), the position and velocity 

at the future time could be determined.  This method revolutionized the orbit 
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determination process.  The propagation of objects following a Keplerian orbit was now 

obtainable.  A thorough discussion on Kepler’s Problem can be found in Fundamentals of 

Astrodynamics (Bate and others, 1971:177-203) or Fundamentals of Astrodynamics and 

Applications (Vallado, 2001:87-103). 

Kepler’s work has been exceedingly useful in tracking satellites orbiting Earth.  

The development of tethered systems, however, has presented a problem:  the end masses 

of tethered systems do not follow a regular Keplerian orbit.  The tether creates an 

additional acceleration in the radial and tangential directions.  The observed ‘daughter’ 

satellite (m) and the unobserved ‘parent’ satellite (mp) with their force components are 

presented below in Figure 1.  

 

 

Figure 1. Tether Force Components (Cicci and others, 2001a:314) 

 

As a result of this new development, a plethora of orbit determination methods for 

tethered systems have been researched over the past decade.  Most techniques used to 

model tethered orbits assume the following equations of motion 

 3

r Fr
r m
μ−= +

vv
v&&  (2) 
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 3
p

p
p p

r Fr
r m
μ−

= +
vv

v&&  (3) 

Many attempts to model tethered systems have focused on estimating the 

additional acceleration components seen in Figure 1.  Thus, the state vector is commonly 

written as  

 

r

t

x
y
z
x

X
y
z
a
a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

v &

&

&

 (4) 

Engineers have used least squares (Cicci and others, 2001a:309-326) and ridge-type 

estimators (Cicci and others, 2001b:297-316) to estimate the initial state of tethered 

systems.  More in-depth techniques have been used to find libration angle, libration rate, 

and trajectory prediction (Cicci and others, 2002:340).  These techniques use more 

complex dynamics and require longer arcs of observation data.  Since the equations of 

motion listed above are non-linear, the estimation process requires an initial guess for the 

state. 

It is not just tethered systems that contain additional acceleration components.  

Maneuvering space objects produce additional acceleration that creates a non-Keplerian 

orbit.  Satellites use thrust for various reasons, such as:  station keeping, rendezvous, and 

orbital transfers.  Thrust is a non-instantaneous force that can be written as F=ma, using 

Newton’s Law; therefore, when thrust is present, it is an additional acceleration that 
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ultimately causes a non-Keplerian orbit.  Since this research primarily focused on the 

orbit determination of any non-Keplerian object, not just tethered systems, the equations 

of motion and estimation techniques mentioned above will be replaced with a more 

general model. 

Galileo’s Projectile Trajectory  

 In 1638, Galileo Galilei helped to redefine man’s understanding of motion.  

Galileo’s book, Dialogues Concerning Two New Sciences (Galilei, 1914), covered four 

days of experimentation and contemplation that ultimately created the foundation for 

projectile equations of motion.  Galileo conveyed the following insights (Hahn, 

2002:341): 

1. All bodies falling in a vacuum do so with the same constant 
acceleration.  For a body falling from rest, the speed is proportional to 
the elapsed time.  This is so both in the situation of free fall and for 
balls rolling on an inclined plane. 

2. The law of fall, namely, that the distance covered by a body moving 
from rest is proportional to the square of the time of the motion. 

3. The trajectory of a projectile has a parabolic shape. 
 
It is not until later, with the development of calculus, that Galileo’s insights were put into 

the familiar form 

 
0y yv v gt= −  (5) 

 
0

21
2yy v t gt= −  (6) 

 
0x xv v=  (7) 

 xx v t=  (8) 



 

11 

It was Galileo’s work concerning the motion of projectiles that produced the basic 

equations of motion used for this research.  Galileo studied the properties of both uniform 

motion and naturally accelerated motion and proposed that a projectile is a combination 

of the two.  The horizontal motion is produced by the launching mechanism, whereas the 

vertical motion is due to gravity.  A fired cannonball is a prime example of projectile 

motion. 

Satellites and other space objects can also be modeled using projectile motion 

(although a more accurate model would use two-body equations of motion).  Figure 2 

helps illustrate the basics of orbital motion. 

 

Figure 2. Trajectories (Sellers, undated:31) 

 

Imagine a person standing on one side of the Earth throwing a baseball.  The 

faster the ball is thrown, the further it travels.  Earth, however, is not flat: it is round.  

Therefore, as the ball is flying through the air, the Earth is actually curving away from the 

ball at a rate of 5 meters for every 8 kilometers traveled.  At the right velocity, the object 

is falling slower than the rate at which the Earth is curving away.  At this point, the object 

has reached ‘freefall,’ also known as orbit.  An object must be moving at 7.9 km/s 

(ignoring air drag) to be considered in orbit (Sellers, 2000:106).  With this example in 
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mind, it is easy to see how Galileo’s first insight listed above is applicable to space 

objects.  

In order to find the “constant acceleration” exerted on the space object, Newton’s 

2nd Law is required.  Rearranging Newton’s 2nd Law yields Fa
m

=
v

v  .  In space, where 

weight (W) = force (F), Newton’s law looks like 

 F Wa
m m

= =
v

v  (9) 

Substituting mg for W and simplifying yields  

 a g=v v  (10) 

The above discussion has just shown that space objects are subject to constant 

acceleration in the form of gravity as long as gravity is assumed to be constant.  It seems 

only reasonable, therefore, to be able to model objects in LEO using projectile motion, 

with the understanding that the model is very crude and only ‘good enough’ for a short 

period of time.  Below are Galileo’s equations in vector form.  

 2
0 0

1
2

r r v t g t= + Δ + Δv v v v  (11) 

 0v v g t= + Δv v v  (12) 

 a g=v v  (13) 

A quick glance at the above equations verifies that they are actually a 2nd order Taylor 

series approximation.  If the 2nd order does not yield accurate results, then an expansion 

to the 3rd order or even 4th order may prove better.  The equations of motion for a 3rd 

order and 4th order Taylor series approximation are listed in Appendix A. 
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Least Squares  

In 1801, German mathematician Carl Friedrich Gauss discovered a technique that 

would revolutionize the methods of orbit determination.  Gauss’ discovery, known as 

Least Squares, relies on several principle assumptions: the dynamics contain no error, the 

instruments do contain error, Gaussian distribution, and Principle of Maximum 

Likelihood (Hall, 1994:7).  In order for the dynamics to contain no error, it is important 

to model the object of interest with a relevant dynamics system.  The Central Limit 

Theorem addresses the instrument error and Gaussian distribution.  The Principle of 

Maximum Likelihood is the final assumption required in order to produce the estimate of 

a state and its covariance. These assumptions are addressed in the following sub-sections.   

Central Limit Theorem. 

The Central Limit Theorem states that if an instrument has many little errors, then 

no matter how the little errors are distributed, the overall error can be described using a 

Gaussian function (Figure 3). 

 

Figure 3. Gaussian Distribution Function (Zaninetti, 2002) 

The Gaussian function is centered about the true value.  The width of the curve is 

described by the standard deviation (σ ).  A smaller σ  means a narrower curve.  The 
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probability that the answer is within ± 1σ  is 68%.  Within ± 2σ  yields a probability of 

~95 % while ± 3σ  is 99.7%.  The Gaussian Distribution can be written as 

 
2

0
2

0

( )
2

,
1( )
2

X X

xG X e σ
σ σ π

− −

=  (14) 

The Gaussian Distribution is an important concept utilized by statisticians, scientists, and 

engineers. 

Expectation Operator. 

The expectation operator is a linear operator that facilitates the estimation process.  

The expectation operator can be written as 

 ( ) ( ) ( )E f X dX
∞

−∞

− ≡ −∫  (15) 

The term ( )f X  is the probability density function and )(−  is the variable of interest.  

After taking Equation (14) and inputting it into Equation (15), the expectation operator 

looks like 

 
2

0
2

( )
21( ) ( )

2

X X

E e dXσ

σ π

− −∞

−∞

− = −∫  (16) 

Equation (16) yields several cases of interest: 

 0( )E X X=  (17) 

 0( ) 0E X X− =  (18) 

 ( )( )2 2 2
0 ( )E X X E e σ− = =  (19) 

These results imply that:  “the expected value of a measurement is the true value” 

(Equation (17)), “the average error in the measurement is zero” (Equation (18)), and “the 
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average squared error is 2σ ”(Equation (19)) (Wiesel, 2003b:19).  The result of Equation 

(19) plays a key role in least squares estimation. 

Principle of Maximum Likelihood. 

Suppose that N measurements are taken of an object.  As long as each 

measurement is independent, the probability of obtaining the data set is the product of the 

individual probability: 

 
2

0
2

1

( )
2

1 2 2
1

1 1( , ... )
(2 )

N
i

ii

X XN

N N
i i

P X X X e σ

π σ
=

−−

=

∑⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∏  (20) 

Unfortunately, no matter how well the object of interest is measured, x0 cannot be 

obtained.  Therefore, a different approach must be attempted. 

The Principle of Maximum Likelihood is where the estimate X  is defined as, 

“the value of X0 which maximizes the probability of having obtained the actual data set” 

(Wiesel, 2003b:20).  Equation (20) now looks like 

 
2

2
1

( )
2

1 2 2
1

1 1( , ... )
(2 )

N
i

ii

X XN

N N
i i

P X X X e σ

π σ
=

−−

=

∑⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∏  (21) 

Subsequently, the true error ( 0e X X= − ) has been exchanged for a residual ( r X X= − ).  

Equation (21) is maximized when the term within the exponential is minimized: 

 
2

2
1

( ) 0
2

N
i

i i

X Xd
dX σ=

− =∑  (22) 

which yields                                         

 2
1

( ) 0
N

i

i i

X X
σ=

− =∑  (23) 

and simplifies to                                    
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1

N

i i
i

X w X
=

=∑  (24) 

where   

 
2

2
1

1

1
i

i N

j j

w σ

σ=

=
∑

 (25) 

The above process of minimizing the exponential is how the Method of Least 

Squares acquired its name.  As stated by Weld (1916:59), “the most probable value of a 

measured quantity that can be deduced from a series of direct observations, made with 

equal care and skill, is that for which the sum of the squares of the residuals is a 

minimum.”    

As with any answer that is determined, it is important to know how accurate the 

answer really is; therefore, the variance of X  must be found: 

 2 2
0(( ) )x E X Xσ = −  (26) 

After inserting Equation (24) into the above equation, rearranging, and simplifying, the 

result is 

 2

2
1

1
1x N

i i

σ

σ=

=
∑

 (27) 

Using the result from Equation (27), the estimate from Equation (24) can then be 

simplified to  

 2
2

1

i

i

N
X

x
i

X
σ

σ
=

= ∑  (28) 
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Equations (27) and (28) are the two most important equations of the estimation process.  

Given data iX  and its standard deviation iσ , the estimate of the true value and its 

standard deviation is now obtainable. 

Multi-Dimensional Probability. 

Thus far, the Gaussian function has been written as the one variable case.  In orbit 

determination, the Gaussian function will be multi-dimensional: 

 
( ) ( )1

0 0
1

1 22

2

1( )
(2 )

T
X X P X X

Nf X P e
π

−−⎛ ⎞− −− ⎜ ⎟
⎝ ⎠=

v v v v
v

 (29) 

where 

 

11 12 1

12 22 2

1 2
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N

N N NN

P P P
P P P

P

P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

L L L L

L

 (30) 

The covariance matrix (P) is a positive semi-definite matrix.  The diagonal terms are the 

2σ quantities and are called the variances.  It is the square root of the variance that relates 

the accuracy of the estimate of the state.  The covariance matrix is normally defined as 

 ( )TP E ee= vv  (31) 

The above equation looks remarkably similar to Equation (19) from the one variable 

problem.  This is why the diagonal terms of the covariance matrix are defined as 2σ . 

Linearized Dynamics. 

Unlike the above process where just one component of an object is estimated, 

orbit determination is usually composed of several different components.  These 

components; such as position, velocity, and acceleration, are placed into a state vector 
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( )X
v

.  Engineers and scientists are interested in how the state of a space object changes 

with time.  This can be written as 

 ( , )dX g X t
dt

=
v

v
 (32) 

or 

 0( ) ( ( ), )X t h X t t=
v v

 (33) 

Equation (33) shows the actual solution written in terms of the initial state and time.  The 

state transition matrix ( Φ ) propagates the actual state as a function of time.  If the 

dynamics can be written as Equation (33), then Φ  can be written as 

 
00 ( ) 0( , ) ( ( ), )x tt t h X t tΦ = ∇

v
 (34) 

or 

 0
0

( )( , )
( )

X tt t
X t

∂Φ =
∂

v

v  (35) 

This approach greatly simplifies the estimation process. 

Linear Least Squares. 

Linear least squares is an estimation process used on systems where the dynamics 

can be written as linear differential equations (i.e. the function and its derivatives appear 

only in their first power and are also not multiplied with each other).  The observations 

must also be linear in order to utilize linear least squares.  Orbit determination problems 

are generally nonlinear because they use two-body equations of motion to model the 

dynamics; and the observations are in the form of range, azimuth, and elevation, which 

are also nonlinear. 
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The state of a linear system can be found at any time using the state transition 

matrix: 

 0 0( ) ( , ) ( )X t t t X t= Φ
v v

 (36) 

As long as the observations are linear, they can be written using the observation relation: 

 ( ) ( )i i i i iZ t H X t e= +
v v v  (37) 

Substituting Equation (36) into the above equation, and solving for the error yields 

 0 0( ) ( , ) ( )i i i i ie Z t H t t X t= − Φ
v vv  (38) 

The term ),( 0ttH iiΦ  can be replaced with iT  to yield 

 0( ) ( )i i i ie Z t T X t= −
v vv  (39) 

Given that true error can never be determined, the above equation is replaced with the 

residual: 

 0( )r Z T X t= −
vv  (40) 

Before proceeding, the following shorthand notation is used to simplify the least squares 

equations: 

 

1 1 1

2 2 2

( ,0)
( ,0)

( ,0)N N N

T H t
T H t

T

T H t

Φ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Φ⎢ ⎥ ⎢ ⎥≡ =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Φ⎣ ⎦ ⎣ ⎦

L L
 (41) 
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Z

⎡ ⎤
⎢ ⎥
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⎢ ⎥
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L
 (42) 

 



 

20 
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⎡ ⎤
⎢ ⎥
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 (43) 

where Q is the instrumental covariance matrix and its inverse is  
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 (44) 

The multi-dimensional probability function resembles 

 
1

0 0
1( ( )) ( ( ))1 22

2

1( )
(2 )

TZ T X t Q Z T X t

Nf X Q e
π

−−⎛ ⎞− −− ⎜ ⎟
⎝ ⎠=

v v
v

 (45) 

After minimizing the exponential, the estimated state vector at 0t  can be written as 

 ( ) 11 1(0) T TX T Q T T Q Z
−− −=

v
 (46) 

The covariance of the estimate, ( )T
X X XP E e e= v v , goes through several lines of substitution 

and simplification to arrive in the form 

 1 1( )T
XP T Q T− −=  (47) 

The state of a system and its covariance can now be estimated given a batch of data and 

the instrumental covariance. 

Summary 

The ability to identify and track space-based objects has played a vital role in the 

United States’ space superiority.  Scientists and engineers have utilized the concept of 

Keplerian motion to aid in tracking and propagating space objects; however, as 



 

21 

technology improves and space objects become more complex (i.e. increased 

maneuverability, tethered systems, etc.), the space objects will not always follow 

Keplerian motion.  Many new methods have been designed to track non-Keplerian orbits.  

Most techniques use non-linear equations of motion for the dynamics and focus on 

finding the additional acceleration components created by either the tether of a tethered 

satellite system or the thrust from a maneuvering space object.   

Galileo’s work on projectile motion lends itself to linear equations of motion that 

can be adapted to modeling objects in LEO.  These equations are very general and do not 

take into account atmospheric drag; also, gravity is assumed to be constant.  When 

modeling orbits with these equations of motion, the results are only accurate for a short 

arc of observation data.  Linear least squares can be combined with these equations of 

motion to estimate the state of the system.  The linear least squares method has been used 

for hundreds of years and is a vital part of estimation theory.    
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III. Methodology 

Chapter Overview 

The purpose of this chapter is to explain the processes used to create the 

MATLAB computer model.  Section 3.2 explores how to transform the raw radar data 

into position vectors for use in the estimator.  Section 3.3 explains how the truth model 

was created using Galileo’s projectile motion equations.  Section 3.4 explains the creation 

of the linear least squares estimator, which produces the estimate of the state and its 

covariance.  

Raw Data  

Radar data is presented in various forms depending on the type of sensor that 

obtains it.  For the purposes of this research, it was assumed that the radar data will 

consist of range (ρ), azimuth (α), and elevation (β) values.  Range is measured in 

kilometers while azimuth and elevation are measured in radians.  These radar values 

represent the space object’s position in the radar site’s topocentric frame, where the axes 

are labeled South, East, and Zenith (SEZ).  Figure 4 represents the geometry of the 

problem.  Azimuth is measured clockwise from the north.  Elevation is measured 

upwards from the site’s horizon, and range is measured from the radar site to the satellite 

or space object being observed.   
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Figure 4. Observation Geometry 

The SEZ frame is not inertial; it rotates with the Earth.  The raw data, therefore, 

must be converted from the SEZ coordinate frame to position vectors in the Earth 

Centered Inertial (IJK) frame, which requires several steps.  Figure 5 helps to visualize 

the problem.   

                                                      

Figure 5. Satellite Position  

siteR
v

 represents the position from the center of the Earth to the radar site in IJK 

coordinates, while  IJKρv  is the position vector from the radar site to the satellite.  The 

components of ρv  can be found in the SEZ frame quite easily using Figure 4 and basic 

trigonometry:   

IJKρv  

IJKR
v

 
siteR
v

ρ

α

β

S 

E

Z
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cos( )cos( )
sin( ) cos( )

sin( )
SEZ

ρ α β
ρ ρ α β

ρ β

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

v  (48) 

ρv  can then be converted to the IJK frame by multiplying it by the inverse of the rotation 

matrix D: 

 1
IJK SEZDρ ρ−=v v  (49) 

where                          

 
sin( ) cos( ) sin( )sin( ) cos( )

sin( ) cos( ) 0
cos( )cos( ) cos( )sin( ) sin( )

L LST L LST L
D LST LST

L LST L LST L

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (50) 

L represents the site’s geodetic latitude and LST represents the local sidereal time.  LST 

is measured from the vernal equinox to the radar site in a counter-clockwise direction.  

LST is also the sum of the Greenwich Sidereal Time (GST) and the site’s longitude.  

Equation (51) is used next to calculate the position from the center of the Earth to the 

radar site:   

 
cos( )
sin( )site

x LST
R x LST

z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

uv
 (51) 

The quantities x and z take into account the fact that Earth is not a perfect sphere, but 

rather an ellipsoid: 

 2 2
cos

1 sin
Rx H L

e L
⊕

⊕

⎡ ⎤
⎢ ⎥= +
⎢ ⎥−⎣ ⎦

 (52) 
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2

2 2

(1 ) sin
1 sin
R ez H L

e L
⊕ ⊕

⊕

⎡ ⎤−⎢ ⎥= +
⎢ ⎥−⎣ ⎦

 (53) 

With siteR
v

 and the values of IJKρv for the entire track in hand, the position of the satellite in 

IJK coordinates is obtained for each observation.  These values are directly inserted into 

the estimator as the observation data ( )iZ
v

 to create an initial state vector )( 0tX
v

. 

Truth Model 

The truth model is basically a tool used to create simulated data and an aid for 

verifying the estimator.  This model creates data in a format that a typical radar site 

would expect:  range, azimuth, and elevation values.  Due to the specifics of this 

research, the truth model must be able to simulate satellite motion with or without an 

extra acceleration component.  The truth model must also simulate real-world factors 

such as noise.  This section explains how all of these requirements were addressed, as 

well as how the truth model is executed and validated.  This section is divided into three 

sub-sections:  Program Execution, Equations, and Program Validation.   

Program Execution. 

The truth model takes an initial input for ,,, rrr &&v&vv and r&&&v in units of km, km/s, 

km/s2, km/s3 respectively.  These inputs are used in the equations of motion to create a 

matrix of position and velocity vectors for a five-minute radar track for the radar site 

located at Ascension, Atlantic (another site can be specified at the beginning of the 

program).  Matrices for range, azimuth, and elevation are created from the position data 

for use in the estimator.  The model places the epoch time at the middle of the trajectory 
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as opposed to the beginning.  Output from the truth model consists of range (kilometers), 

azimuth (radians), elevation (radians), time (in Julian days) for the entire five-minute 

track, plus the site’s latitude and noise statistics in range, azimuth, and elevation. 

The truth model simulation used a start time of 13 Sep 2007, 12:00:00 UTC 

(Coordinated Universal Time) with an epoch of 12:02:30 UTC.  Noise was added to the 

range, azimuth, and elevation data.  Data from the truth model was output to a file for 

later use in the estimator.   

Equations. 

The first step to simulating data and creating a truth model was to define the 

dynamics.  Satellite motion in this case was not modeled using two-body motion, but was 

instead estimated using Galileo’s expertise on modeling projectile trajectories with a 

Taylor series expansion.  The equations of motion below represent a 3rd order Taylor 

series approximation:   

 2 3
0 0 0 0 0 0

1 1( ) ( )
2 6

r r v t A g t A g t= + Δ + + Δ + + Δ
v vv v v v v& &  (54) 

 2
0 0 0 0 0

1( ) ( )
2

v v A g t A g t= + + Δ + + Δ
v vv v v v& &  (55) 

 0 0 0 0( ) ( )a A g A g t= + + + Δ
v vv v v& &  (56) 

 0 0( )a A g= +
vv v&& &  (57) 

A discussion on why the 3rd order Taylor series approximation was used for the truth 

model, and not some other order, is saved for the Analysis and Results chapter.  In brief, 

the 3rd order equations were more accurate than the 2nd order equations, and had results 

sufficient enough to not need the 4th order equations. 
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0A
v

 is the non-gravitational acceleration vector that is to be detected.  This 

component is assumed to be constant.  The g vector in this case is not 9.81 m/s2; it is the 

negative gradient of the geopotential: 

 geopotential

V
x
VV g
y
V
z

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
∂⎢ ⎥−∇ = =⎢ ⎥∂
⎢ ⎥
∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

v  (58) 

where 

 
2 2

2
3 2 2 22 2 2 2 2 2 2

3 1
( )2( )

geopotential
R J zV

x y zx y z x y z

μμ ⊕ ⎛ ⎞−= + −⎜ ⎟+ ++ + ⎝ ⎠+ +
 (59) 

The first term of the geopotential represents the two-body problem and the second term 

represents the J2 effects (Wiesel, 2003a:144). The variables x, y, and z are the Cartesian 

coordinates of the initial value of rv , which can also be written as IJKR
v

.  An expanded 

view of the partial derivatives can be seen in Equations (60)-(62). 

 
( ) ( ) ( )

2 2 2
2 2

3 5 7
2 2 2 2 2 2 2 2 22 2 2

3 15
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μ μμ ⊕ ⊕∂ = − − +
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 (60) 

 
( ) ( ) ( )

2 2 2
2 2

3 5 7
2 2 2 2 2 2 2 2 22 2 2

3 15

2 2

y J R yz J RV y
y x y z x y z x y z

μ μμ ⊕ ⊕∂ = − − +
∂ + + + + + +

 (61) 

 
( ) ( ) ( )

2 3 2
2 2

3 5 7
2 2 2 2 2 2 2 2 22 2 2

9 15

2 2

z J R z J RV z
z x y z x y z x y z

μ μμ ⊕ ⊕∂ = − − +
∂ + + + + + +

 (62) 

The above equations can be divided into the bodyg −2
v  (Equation (63)) and the 

2Jgv  

(Equation (64)) components.   
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Since the equations of motion require the derivative of gv , it was necessary to 

differentiate.  Keeping in mind that x, y, z and r are all functions of time, the following 

derivatives for bodyg −2
v  and the 

2Jgv  were obtained:  
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 (66) 

The variables x& , y& , and z& are the individual components of the initial value for 

velocity and are written as u, v, and w in the MATLAB code.  The term r v•v v  can be 

written as xu+yv+zw.  The value of gv  is the local gravity vector for the given initial 
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position and velocity.  Since the values for x, y, z, , ,x y& & and z& are taken from only the 

initial position and velocity, the value of both gv  and g&v  is constant for the five-minute 

radar track. 

After using the equations of motion to find the position vectors (in IJK), the data 

was transformed to range, azimuth and elevation values (in SEZ) because this is the 

format of the data that radar sites would receive.  The values for range, azimuth, and 

elevation change depending on the location of the radar site.  The radar site represented in 

the truth model is Ascension, Atlantic.  Table 1 lists the specifics for this site. 

Table 1. Ascension Atlantic Radar Specifics (Vallado, 2001:242) 
                           Location                          Noise 
Latitude (°) Longitude (°) Altitude (m) Range (m) Azimuth (°) Elevation (°) 

-7.91 -14.40 56.1 101.7 0.0248 0.0283 

 

The site location was used to determine siteR
v

 (Equations (51)-(53)).  The noise 

values in Table 1 were saved for use in the estimator.  Figure 5 shows how IJKρv was 

found given siteR
v

 and IJKR
v

.  The conversion from IJKρv  to SEZρv was obtained by using 

Equation (49).  The values of range, azimuth, and elevation for each observation were 

found using 

 2 2 2
s e zρ ρ ρ ρ= + +  (67)  

 1tan e

s

ρα
ρ

−=
−

 (68) 

 1sin zρβ
ρ

−=  (69)  
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These radar values for the entire time span are saved in matrices. 

Radar sites will never receive perfect data; therefore, the truth model adds noise to 

the range, azimuth, and elevation values to simulate real world results.  MATLAB’s 

random number generator (randn) was used to simulate noise.  Randn is a pseudo-

random function that creates noise with a normal (Gaussian) distribution.  The mean and 

standard deviation of the noise can be specified when using randn.  Range, azimuth, and 

elevation each have a noise matrix associated with it.  The mean for these noise matrices 

is zero. 

Program Validation. 

The position and velocity matrices obtained from the equations of motion for a 

given initial position, velocity, and for both zero acceleration and its derivative were 

compared to the same initial inputs in a Satellite Tool Kit (STK) simulation.  STK allows 

the user to estimate an orbit using various propagation methods such as two-body, J2, J4 

etc.  Since the intent was to verify how close the MATLAB model was to reality, the 

High Precision Orbit Propagator (HPOP) was chosen to propagate the trajectory.  This 

propagator takes into account many elements such as: central body gravity, solar 

radiation pressure, third body gravity (sun, moon) and drag, plus uses an RKF 7(8) 

integrator.   The initial conditions for the simulated orbit were written in Cartesian 

coordinates with position in kilometers and velocity in km/s: 

  

 0

6079.6
1837.9
1596.6

r
−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

v  (70) 
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 0

2.96
5.65

4.82
v

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

v  (71)         

The magnitude of the position is roughly 6549 km.  Taking into account that the 

radius of the Earth is approximately 6738 km, the simulated orbit has an altitude of only 

171 km.  This altitude is a very low LEO and most objects do not last long at such a low 

altitude due to atmospheric drag.  However, this altitude could be quite realistic for a 

tethered satellite or ballistic missile.   

The results for position and velocity between STK and MATLAB were very 

close, but changed in accuracy depending on which order of the Taylor series 

approximation was used.  A visual comparison of the accuracy of the 2nd, 3rd, and 4th 

order approximations can be seen in Chapter IV.  Table 2 shows the root mean square 

(RMS) error for the x, y, z, x& , y& , and z& components of position and velocity.   

Table 2. STK vs. MATLAB RMS Error (3rd Order EOM) 
Position (km) Velocity (km/s) 

x y z x&  y&  z&  

0.096835 0.034235 0.029878 0.002951 0.00099 0.000866 

 

The values in Table 2 were calculated using Equation (72): 
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The component ie  is the individual magnitudes of error between the MATLAB and STK 

values and N is the number of data points.  In this case, N=300, one for each second 

during the five-minute track. 

STK was also used to validate the local gravity vector by finding the satellite’s 

acceleration component at epoch in the STK simulation.  Given the above initial 

conditions, the local gravity vector calculated by the truth model is 
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This is extremely close to STK’s acceleration value at epoch: 
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The range, azimuth, and elevation portion of the code was validated with the STK 

simulation as well as with code from the previous section.   

Estimator 

Execution. 

The estimator reads in an input file that contains: elevation, range, azimuth, time 

(in Julian days), site latitude, and noise statistics for range, azimuth, and elevation.  The 

truth model used units of kilometers, radians and Julian days for the various components 

of output data; however, radar sites typically get their data in units of meters, degrees, 

and time (in year, day number, hour, minutes, and seconds).  Therefore, the estimator has 

an option where the radar data can be converted into the kilometers, radians, and Julian 
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day format.  The data is then converted to position vectors using the process outlined in 

Section 3.2.  The estimator uses linear least squares to determine the estimate of the state 

vector at epoch to include:  0r
v , 0vv , 0av , and 0av& .  The estimator also produces the 

covariance of the state vector.  Since this is a linear system, there is no need to compute 

residuals and iterate.  There is also no need for an initial guess of the state vector. 

Equations. 

The state vector for this problem was defined as 
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v

v
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v
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 (75)  

The initial state vector looks like 
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With this definition of the state vector and the dynamics of the system already known, a 

closed form solution of the state transition matrix was obtained using Equation (35) from 

Chapter II: 
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Each component is a 3x3 matrix, which makes the state transition matrix a square 

12x12 matrix.  The diagonal terms are the identity matrix.  All terms to the left of the 

diagonal are the null matrix.  The terms 
0v

r
v

v

∂
∂ , 

0a
v
v

v

∂
∂  and 

0a
a
&v

v

∂
∂  are the identity matrix 

multiplied by time.  The terms 
0a

r
v

v

∂
∂  and 

0a
v
&v

v

∂
∂  are the identity times 

2

2t , while 
0a

r
&v

v

∂
∂  is the 

identity times 
6

3t .  A multi-dimensional array for the state transition matrix, with a one-

second time step, within the five-minute track is created.   

In the quest to simplify the observation relation G and to linearize the data, the 

observed data vector consisting of range, azimuth, and elevation components is converted 

to pseudo-data (Wiesel, 2003b:94-95): 

 
'
' ( , ) ( , , , )

Z r
Z G X t I Xϕ ϕ ϕ

=
= =

v v

v v v  (78) 

In this equation, I is the identity matrix and ϕ  is the null matrix.  This creates a 

simplified G function with its linearization H also simplified and not a function of time: 
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After H is obtained, the observation matrix (T) can be obtained (see Equation (39)). 

The use of pseudo-data instead of range, azimuth, and elevation creates a Q 

matrix that is no longer constant (Wiesel, 2003b:95).  Therefore, the values of Q must be 

calculated for every position.  Wiesel shows that these values are easily obtained through 

a simple rotation: 

 ' TQ JQJ=  (80) 

with the original covariance written as 
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 (81) 

The values of errorρ , errorα , and errorβ  are obtained from Table 1. 

The Jacobian is obtained by 

 1J D K−=  (82) 

where 
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and D-1 is the inverse of Equation (50). 

All of the necessary matrices needed to find the state vector at epoch and its 

covariance have been found.  Since least squares is a batch process, the least squares 
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equations obtained in Chapter II, Equations (27) and (28), can be reformatted and written 

as 
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in order to save computer space and ensure a quicker processing time.  In this case, the 

product of the covariance and state vector are summed for a five-minute radar track from   

t= -150 to t=149 seconds.  After the state vector at epoch is obtained, any state vector 

thereafter is obtained simply by using Equation (36). 

Validation. 

The truth model was used to validate the estimator.  Various initial positions and 

velocities without non-gravitational acceleration were run through the truth model and 

the estimator to verify that the estimated state was within 1σ of the true state.  The 

estimated state and its covariance were also validated using the Monte Carlo method.  

The Monte Carlo method was used to ensure that the covariance was representative of the 

uncertainty in the data.  An in-depth look at the Monte Carlo method and its results is 

included in Chapter IV. 

Summary 

Numerous MATLAB routines were created in order to develop the truth model 

(Appendix B) and least squares estimator (Appendix C).  Given an initial position and 

velocity, the truth model develops a five-minute track of data and converts it to the 

familiar range, azimuth, and elevation format.  The least squares estimator takes both the 
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radar data and instrument covariance in order to estimate the epoch value of the state 

vector (to include ,,, rrr &&v&vv and r&&&v ) and the covariance of the state.  A flowchart that depicts 

this process, from the initial input data to the final estimate of the state and its covariance, 

is located in Appendix D.  The magnitude of the additional acceleration and its 

covariance were the components of interest in this research.  A more thorough analysis of 

the acceleration and its covariance is discussed in the next chapter. 
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IV. Analysis and Results 

Chapter Overview 

The purpose of this chapter is to analyze the various sets of equations of motion 

used in the truth model to model a space object in LEO; and to determine if one of these 

sets of equations of motion combined with a linear least squares estimator can 

satisfactorily detect non-gravitational acceleration with statistical accuracy.  Section 4.2 

explores the accuracy of the various sets of equations of motion compared to an STK 

simulation of the same orbit.  Sections 4.3 and 4.4 present several test cases with various 

initial conditions used to analyze how well the truth model and estimator function.  These 

test cases help to determine the degree of non-gravitational acceleration that can be 

adequately detected.  Section 4.5 addresses the investigative questions that were posed in 

Chapter I.   Section 4.6 summarizes the main discoveries of the research. 

STK Simulation vs. MATLAB Model 

The initial conditions stated in Equations (70) and (71) were used to create a STK 

simulation for use as a baseline model.  The 2nd, 3rd, and 4th order Taylor series 

approximations were compared to the STK simulation to determine which equations 

modeled a space object accurately enough.  The same initial conditions were input into 

the truth model.  For this analysis, both the non-gravitational acceleration and its 

derivative were assumed to be zero.  After obtaining the position and velocity values 

from the truth model for the five-minute radar track, these values were compared to the 

STK values.  The amount of error between the STK values and MATLAB values was 

calculated using 
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 error = observed - expected  MATLAB - STK⇒  (86) 

The values of error for both position and velocity were graphed using Excel in 

order to get a visual idea of the accuracy of the equations.  The following sub-sections go 

into detail about the accuracy of the various orders of the equations of motion. 

2nd Order. 

The 2nd order equations of motion were the initial equations tested for the truth 

model.  Figure 6 shows the relative error in position compared to the STK simulation.  As 

would be expected, the error is minimal around epoch but grows as time moves on.  The 

amount of error at these other times is not particularly ideal.  
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Figure 6. STK vs. MATLAB Position Error (2nd Order) 

 

Figure 7 shows the error in velocity compared to the STK simulation.  As seen in 

Figure 6, the error is zero at epoch but grows significantly as time moves away.  Looking 

at the z velocity line, the greatest magnitude in error is at t=0 seconds where velocity is 
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roughly 0.08 km/s or 80 m/s.  The error magnitude, 0.53 2sm , was obtained by dividing 

the velocity by half the observation time 

 280 0.53
150

m s m s
s

=  (87) 

This value is potentially the amount of acceleration that could go unnoticed due to the 

level of error in the equations of motion.  The magnitude of error in this model is too high 

for the 2nd order equations of motion to be of any use.  The model must be able to detect 

accelerations in the cm/s2 or possibly even μm/s2 range; therefore, the equations of 

motion must be expanded out to obtain better accuracy. 
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Figure 7. STK vs. MATLAB Velocity Error (2nd Order) 

3rd Order. 

The equations of motion were expanded out to the 3rd order to obtain a higher 

degree of accuracy.  Figure 8 shows the amount of position error for the 3rd order 

equations of motion.  As was seen in the previous graphs, the amount of error at epoch is 

minimal and then grows as time increases.  Unlike the previous graphs, however, the 



 

41 

magnitude of error is much less.  The greatest magnitude of position error in Figure 6 is 

roughly 4.5 km; whereas, the greatest error in Figure 8 is only 0.3 km.  This is a 15 times 

improvement.   
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Figure 8. STK vs. MATLAB Position Error (3rd Order) 

 

So far, the use of the 3rd order equations of motion seems to be yielding better results.  

Figure 9 shows the velocity error for the 3rd order equations of motion.  These results are 

also much better than that of the 2nd order.  The greatest magnitude of error at t=0 is 

0.008 km/s.  Dividing this value by 150 s yields 

 28 0.053
150

m s m s
s

=  (88) 

Therefore, the amount of undetected acceleration that could be present in the 3rd order 

equations of motion is 0.053 m/s2.  This result is 10 times better than the 2nd order 

equations of motion.  If the 3rd order yielded much better results, it seems only reasonable 

that expanding to the 4th order would obtain an even higher level of detection. 
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Figure 9. STK vs. MATLAB Velocity Error (3rd Order) 

 

4th Order. 

 The 4th order equations of motion yielded graphs that were a bit different than 

those seen in the previous figures.  Figure 10 represents the position error for the 4th order 

expansion.  Just like the previous graphs, there is zero error at epoch; but instead of 

growing exponentially thereafter, the graph curves again at t=250 seconds.  The amount 

of error present is also significantly less than that of the previous graphs. 
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Figure 10. STK vs. MATLAB Position Error (4th Order) 

 

The velocity graph seen in Figure 11 also yielded much better results.  The 

maximum error at t=0 seconds is roughly 0.0004 km/s2.  Following the same process seen 

in Equations (87) or (88), the amount of undetected acceleration is 0.00267 m/s2.  The 

level of detection is roughly 20 times better than what was seen using the 3rd order 

equations.   
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Figure 11. STK vs. MATLAB Velocity Error (4th Order) 

 

 Besides the visual comparison of the accuracy of the different Taylor series 

expansions, there is the numerical approach.  The RMS error for all components in 

position and velocity was calculated using Equation (72) for the 2nd, 3rd, and 4th order 

equations of motion.  Table 3 lists the results.  As is expected, the RMS error decreases as 

the order used increases.  The 4th order may yield the best results; however, the 3rd order 

results are also quite viable compared to the fairly inadequate results seen from the 2nd 

order. 

Table 3. STK vs. MATLAB RMS Error 
Position (km) Velocity (km/s)  

x y z x&  y&  z&  
2nd Order 0.91264 1.69929 1.45603 0.02163 0.04016 0.03436 
3rd Order 0.096835 0.034235 0.029878 0.002951 0.00099 0.000866 
4th Order 0.003297 0.004272 0.003524 8.88E-05 0.000121 0.000102 
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The question is, “Which order of equations of motion is accurate enough for the 

purposes of this research?”  The position and velocity data obtained from the truth model 

for the 3rd order equations of motion was processed through the least squares estimator to 

obtain the state vector and its covariance.  The 4th order data was also processed through 

the estimator.  The 4th order equations of motion produced a 15x1 state vector while the 

3rd order equations of motion produced a 12x1 state vector, as seen in Table 4. 

Table 4. MATLAB Estimated State Vector with No Noise 
Variable 4th Order 3rd Order 

x (km) -6079.6 -6079.6 

y (km) 1837.9 1837.9 

z (km) -1596.6 -1596.6 

x& (km/s) -2.96 -2.96 

y& (km/s) -5.65 -5.65 

z& (km/s) 4.82 4.82 

xa (km/s2) 0.008637157 0.008637157 

ya (km/s2) -0.002611065 -0.002611065 

za (km/s2) 0.002275235 0.002275235 

xa& (km/s3) 4.2799E-06 4.2799E-06 

ya& (km/s3) 8.00425E-06 8.00425E-06 

za& (km/s3) -6.84906E-06 -6.84906E-06 

xa&& (km/s4) -1.41524E-08   

ya&& (km/s4) 4.41528E-09  

za&& (km/s4) -3.90375E-09  
 

The estimates of the state vector for both the 3rd and 4th order equations of motion 

in a noiseless scenario were nearly identical.  Differences were seen, however, in their 

covariance.  For a given covariance matrix, the top left diagonal term represents the 

variance of the x position term.  The second term is the variance of the y position and so 

forth all the way down to the bottom right diagonal term, which in the 3rd order case, is 

the last component of a&v .  Table 5 lists the variances obtained for the noiseless state.  
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Table 5. MATLAB Variance for Noiseless Scenario 
Variable 4th Order 3rd Order 

x (km) 0.002266 0.001569 

y (km) 0.001178 0.000944 

z (km) 0.000549 0.000482 

x& (km/s) 7.1E-07 6.7E-07 

y& (km/s) 4.02E-07 2.55E-07 

z& (km/s) 2.32E-07 1.27E-07 

xa (km/s2) 8.98E-10 8.99E-11 

ya (km/s2) 3.27E-10 4.89E-11 

za (km/s2) 1.64E-10 3.18E-11 

xa& (km/s3) 1.38E-13 1.3E-13 

ya& (km/s3) 7.51E-14 4.63E-14 

za& (km/s3) 4.9E-14 2.77E-14 

xa&& (km/s4) 3.63E-16   

ya&& (km/s4) 1.29E-16  

za&& (km/s4) 7.7E-17  
 

The results from Tables 4 and 5 use data from a noiseless environment, which, 

unfortunately, does not accurately portray reality.  Gaussian noise was added to the 

position and velocity data for both the 3rd and 4th order simulations to obtain new 

estimates of the state and covariance.  Table 6 lists the estimates of the states.  As 

expected, these new values are slightly different than the values with no noise. 
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Table 6. MATLAB Estimated State Vector with Noise 
Variable 4th Order 3rd Order 

x (km) -6079.585554 -6079.5851 

y (km) 1837.895358 1837.8787 

z (km) -1596.596015 -1596.5725 

x& (km/s) -2.959402644 -2.9605417 

y& (km/s) -5.650467507 -5.6498852 

z& (km/s) 4.819993529 4.8202066 

xa (km/s2) 0.008611162 0.0086256 

ya (km/s2) -0.002594883 -0.0026044 

za (km/s2) 0.00226863 0.0022762 

xa& (km/s3) 4.07297E-06 4.513E-06 

ya& (km/s3) 8.18258E-06 7.943E-06 

za& (km/s3) -6.85554E-06 -6.763E-06 

xa&& (km/s4) 2.76991E-09  

ya&& (km/s4) -6.81815E-09  

za&& (km/s4) 1.0762E-09  
 

As with any estimator, it is necessary to ensure that the results are unbiased and 

that the covariance matrix accurately reflects the amount of uncertainty in the data.  Thus 

far, the results of the covariance matrix have not been validated.  A technique called 

Monte Carlo analysis is often used to validate the function of the estimator.  

Monte Carlo Analysis. 

There are several steps required in order to use the Monte Carlo method.  For a 

given trajectory, the truth model and estimator must produce N number of data sets.  

Each data set has different noise, but with the same mean and standard deviation.  

Ultimately, this produces slightly different estimates of the state vector.  These N 

estimates are used to confirm that the estimator is, “ i) on the average unbiased, ii) that 

the average estimate is the true value, and iii) that the output covariance is actually 
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representative of the uncertainty in the estimate” (Wiesel, 2003b:138).  As long as the 

estimator is unbiased, the true state should be obtainable using Equation (89):  

 0
1

1 N

i
i

X X
N =

≈ ∑
v

 (89) 

Unlike in reality, the true state ( 0X
v

) is known because it was chosen in the truth model.  

The variable iX  is the different estimates of the state.  Using this same method, the 

covariance of the state should be 
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Up to a certain point, increasing the number of data sets yields more accurate results.  

Ten data sets were obtained for the test case.  Table 7 displays data sets 1-5 where the 

results are listed in the order TX = r v a a a⎡ ⎤⎣ ⎦
v v v v v& && .     

Table 7. State Vector Data Sets 1-5 (4th Order) 
 Set 1 Set 2 Set 3 Set 4 Set 5 

x (km) -6079.607723 -6079.669544 -6079.627863 -6079.585554 -6079.588185 

y (km) 1837.866979 1837.957821 1837.940816 1837.895358 1837.894576 

z (km) -1596.559154 -1596.628007 -1596.627217 -1596.596015 -1596.598784 

x& (km/s) -2.960495055 -2.957693797 -2.960761762 -2.959402644 -2.959472693 

y& (km/s) -5.650189915 -5.650678485 -5.648872485 -5.650467507 -5.650354919 

z& (km/s) 4.820082613 4.819354213 4.81885531 4.819993529 4.820127364 

xa (km/s2) 0.008648758 0.008666269 0.008630577 0.008611162 0.008616777 

ya (km/s2) -0.00259395 -0.002621308 -0.00263258 -0.002594883 -0.002595558 

za (km/s2) 0.002266441 0.002273629 0.002259587 0.00226863 0.002270821 

xa& (km/s3) 4.47891E-06 3.49766E-06 4.72945E-06 4.07297E-06 3.92502E-06 

ya& (km/s3) 8.08021E-06 8.33767E-06 7.45924E-06 8.18258E-06 7.99297E-06 

za& (km/s3) -6.70901E-06 -6.74418E-06 -6.40824E-06 -6.85554E-06 -6.90807E-06 

xa&& (km/s4 -2.94E-08 -3.25441E-08 -1.77783E-09 2.76991E-09 4.34767E-09 

ya&& (km/s4 -2.08876E-09 5.79647E-09 1.59187E-08 -6.81815E-09 -1.81219E-09 

za&& (km/s4) 1.59348E-09 -4.27323E-09 1.14212E-08 1.0762E-09 -4.33308E-10 
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Plugging the ten data sets into Equations (89) and (90) yields an estimate of the 

state vector and its covariance.  The diagonal terms of the Monte Carlo estimate of the 

covariance matrix for the 4th order are listed below in Table 8.  It is important to 

remember from Chapter II that the square root of the variance determines the standard 

deviation.  Of notable interest are the results in columns 4 and 5.  Column 4 displays the 

Monte Carlo estimation of both the true state and its standard deviation.  Careful analysis 

shows that the true value of the state is within the bounds of the estimated value except in 

the a&&v  components.  The estimated values and the true values are quite off.  Also, the 

magnitude of the estimated ya&&v  component is on order of 10-11 km/s3 with a much larger 

standard deviation on order of 10-8 km/s3. 

Essentially, the estimator is incapable of properly estimating these small 

magnitudes.  Evidence of this can be verified above in Table 7.  All five data sets have 

vastly different values for the a&&v  components.  Since the estimator is unable to accurately 

estimate the a&&v  components, it is inefficient to use the higher order equations.  It seems 

quite reasonable to go down a level of accuracy, and simply use the 3rd order equations.  
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Table 8. Monte Carlo Estimated State Vector Values (4th Order) 
Variable Variance Sigma Estimated Value True Value 

x (km) 0.0023495 0.048471641 -6079.606304 ± 0.048471641 -6079.6 

y (km) 0.002409 0.049081565 1837.916153 ± 0.049081565 1837.9 

z (km) 0.00078343 0.02798982 -1596.608641 ± 0.02798982 -1596.6 

x& (km/s) 1.2272E-06 0.001107791 -2.959794471 ± 0.001107791 -2.96 

y& (km/s) 5.4565E-07 0.000738681 -5.650153622 ± 0.000738681 -5.65 

z& (km/s) 2.1741E-07 0.000466272 4.819836215 ± 0.000466272 4.82 

xa (km/s2) 1.2268E-09 3.50257E-05 0.008631874 ± 3.50257E-05 0.008637157 

ya (km/s2) 5.6799E-10 2.38325E-05 -0.002609078 ± 2.38325E-05 -0.002611065 

za (km/s2) 2.1518E-10 1.4669E-05 0.0022729 ± 1.4669E-05 0.002275235 

xa& (km/s3) 2.0364E-13 4.51265E-07 4.21247E-06 ± 4.51265E-07 4.2799E-06 

ya& (km/s3) 1.0374E-13 3.22087E-07 8.0802E-06 ± 3.22087E-07 8.00425E-06 

za& (km/s3) 4.3888E-14 2.09495E-07 -6.8051E-06 ± 2.09495E-07 -6.84906E-06 

xa&& (km/s4) 6.9845E-16 2.64282E-08 -7.10425E-09 ± 2.64282E-08 -1.41524E-08 

ya&& (km/s4) 1.5985E-16 1.26432E-08 2.88701E-11 ± 1.26432E-08 4.41528E-09 

za&& (km/s4) 8.2957E-17 9.10807E-09 -1.37777E-09 ± 9.10807E-09 -3.90375E-09 

 

The process used for obtaining the 4th order data sets was also used to obtain the 

3rd order data sets.  Table 9 displays data sets 1-5.  By inspection, it is apparent that the 

estimates in each row all have values that are quite close.  

Table 9. State Vector Data Sets 1-5 (3rd Order) 
 Set 1 Set 2 Set 3 Set 4 Set 5 

x (km) -6079.585097 -6079.644248 -6079.637398 -6079.621801 -6079.619295 
y (km) 1837.878714 1837.955713 1837.93543 1837.901333 1837.910241 
z (km) -1596.572505 -1596.631851 -1596.62999 -1596.583491 -1596.598289 
x& (km/s) -2.960541698 -2.957667187 -2.96116703 -2.957978792 -2.95971252 
y& (km/s) -5.649885182 -5.650481368 -5.649712807 -5.650918108 -5.650543327 
z& (km/s) 4.820206618 4.819342736 4.819486692 4.820305664 4.820406233 

xa (km/s2) 0.008625584 0.008638831 0.008647061 0.008642268 0.008646995 

ya (km/s2) -0.002604419 -0.002619199 -0.002618182 -0.002611856 -0.002608052 

za (km/s2) 0.00227618 0.002274249 0.00227742 0.002271089 0.002280282 

xa& (km/s3) 4.51282E-06 3.49377E-06 4.90508E-06 3.60324E-06 4.07412E-06 

ya& (km/s3) 7.94287E-06 8.2494E-06 7.83093E-06 8.33482E-06 8.0473E-06 

za& (km/s3) -6.76297E-06 -6.73871E-06 -6.69302E-06 -7.042E-06 -6.88487E-06 
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Table 10 displays the results for the estimated state and its covariance using the 

3rd order equations of motion data sets.  For every component of the state vector, the true 

state is within the bounds of the estimated value and standard deviation.   

Table 10. Monte Carlo Estimated State Vector Values (3rd Order) 
Variable Variance Sigma Estimated Value True Value

x (km) 0.00078788 0.0280692 -6079.617422 ± 0.0280692 -6079.6 

y (km) 0.0016537 0.04066571 1837.92279 ± 0.04066571 1837.9 

z (km) 0.0006166 0.024831432 -1596.609597 ± 0.024831432 -1596.6 

x& (km/s) 1.69990000E-06 0.001303802 -2.959698749 ± 0.001303802 -2.96 

y& (km/s) 3.12090000E-07 0.00055865 -5.650207329 ± 0.00055865 -5.65 

z& (km/s) 1.25700000E-07 0.000354542 4.819932336 ± 0.000354542 4.82 

xa (km/s2) 1.02870000E-10 1.01425E-05 0.008643123 ± 1.01425E-05 0.008637157 

ya (km/s2) 9.94220000E-11 9.97105811E-06 -0.002616 ± 9.9710581184E-06 -0.002611065 

za (km/s2) 4.20220000E-11 6.48243781E-06 0.00227658 ± 6.482437813E-06 0.002275235 

xa& (km/s3) 2.58550000E-13 5.08478121E-07 4.19095E-06 ± 5.08478121E-07 4.2799E-06 

ya& (km/s3) 5.42150000E-14 2.32841147E-07 8.09606E-06 ± 2.32841147E-07 8.00425E-06 

za& (km/s3) 2.11380000E-14 1.45389133E-07 -6.83767E-06 ± 1.45389133E-07 -6.84906E-06 

 

The variances obtained in Tables 8 and 10 have different magnitudes than their 

respective variances in Table 5.  Fortunately, there is a plausible explanation for this.  

The Monte Carlo analysis is a weighted average, not an exact answer.  The uncertainty in 

a weighted average drops off proportional to 
N
1 .  In this case, since there are only ten 

data sets, the uncertainty in the Monte Carlo covariance matrix is roughly 32%.  

Producing more data sets would decrease the uncertainty but there will come a point 

where an enormous amount of data sets is required to improve results by only a fraction 

of a percentage.  

Based on the above results, the 3rd order equations of motion appear quite 

efficient at modeling an object in orbit over very short arcs.  The above results also 
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support the conclusion that the estimator is sufficient at obtaining the state and its 

covariance for the 3rd order equations of motion.  The following sections will examine 

how well the 3rd order equations of motion and the computer model are able to estimate 

orbits with different initial conditions for position and velocity, as well as estimate orbits 

with various magnitudes of non-gravitational acceleration present. 

MATLAB Simulations with Zero Non-Gravitational Acceleration 

Equations (70) and (71) contain the initial conditions of the orbit that was used to 

validate the accuracy of the truth model to that of STK.  The estimator also proved 

capable of estimating these initial conditions given a five-minute radar track of data.  It is 

important, however, to ensure that the estimator is capable of estimating the state given 

different values for the initial position and velocity.  A few cases with different initial 

conditions were tested.  The first case was comprised of the following components 

 0
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Both of these cases are in LEO with roughly a 170 km altitude and a velocity magnitude 

of about 7.99 km/s.  Gaussian noise was added to the data and the following estimates in 

Table 11 were obtained for a single run. 

Table 11. Estimated State Vectors 
 Case A Case B 

x (km) 1611.22 6250.073 

y (km) -1755.86 500.7342 

z (km) 6099.83 -1891.45 

x& (km/s) 6.99748 1.700548 

y& (km/s) 0.40367 -5.00128 

z& (km/s) 3.844742 6.003245 

xa (km/s2) -0.00234 -0.00889 

ya (km/s2) 0.00249 -0.00079 

za (km/s2) -0.00855 0.002731 

xa& (km/s3) -3.2E-06 -4.6E-06 

ya& (km/s3) -7.2E-06 6.42E-06 

za& (km/s3) 1.33E-05 -7.3E-06 

 
Based on the above table, it appears that the estimator is quite capable of determining the 

state with different initial position and velocity values.  

MATLAB Simulations with Non-Gravitational Acceleration Present 

Given the equations of motion listed in Equations (54)-(57), the truth model and 

estimator are limited in the magnitude of non-gravitational acceleration that can be 

detected.  In order to determine this magnitude, it is necessary to solve the linear first-

order differential equation: 
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 2 3
0 0

1 1
2 6

r A t A t= +
v vv &  (95) 

Assuming that the radar sensor has a range error of 100 m, the non-gravitational 

acceleration acting on the space object must move the object more than 100 m between 

its first and last point in order to statistically validate that acceleration is present; 

therefore, the vector rv is 100 m.  Solving for 0A
v

 yields the general solution 

 0 2 3

600 CA
t t

= +
v

 (96) 

Time is the length of the observation, which in this case is five minutes.  A particular 

solution for 0A
v

could be obtained if some initial conditions were known.  In reality, 

however, the exact value of the constant (C) is unobtainable.  If C=0, the magnitude of 

non-gravitational acceleration required for detection given the equations of motion is 

0.667 cm/s2.  This value is the smallest allowable magnitude given the aforementioned 

conditions.  Given this requirement, all test cases used in this research have a magnitude 

greater than or equal to 0.667 cm/s2.  

Monte Carlo Approach.    

 Six test cases were run through the truth model and estimator.  Each test case 

produced ten data sets with different values of noise.  Table 12 lists the magnitudes and 

individual components of non-gravitational acceleration used for each test case.  Large 

accelerations such as ½ g or greater usually produce noticeable results; therefore, it is the 

smaller accelerations of magnitude cm/s2 which are of particular interest in this research.   
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Table 12. Non-Gravitational Acceleration Present 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

A0x (km/s2) 1.00E-04 1.00E-03 2.00E-04 9.00E-05 4.00E-06 2.89E-06 
A0y (km/s2) -2.00E-05 -1.00E-04 8.00E-05 2.00E-04 3.00E-06 -5.56E-06 
A0z (km/s2) -3.00E-05 -3.00E-04 3.00E-04 7.00E-05 1.00E-05 2.285E-06 

Magnitude (km/s2) 1.063E-04 1.0489E-03 3.69E-04 2.30E-04 1.12E-05 6.67E-06 
 

The values listed in Table 12 were input into the truth model as the 0A
v

component.  

Table 13 displays the estimated state for Case 1 after the Monte Carlo analysis.  Of 

special interest is the highlighted section.  These values represent the estimated amount of 

total acceleration present for the initial state vector.  The estimated value due to non-

gravitational acceleration is found by subtracting the known gravitational acceleration 

value found in the previous chapter, (Equation (73) ).  Table 14 lists the estimated values 

for the non-gravitational acceleration components.    

 

Table 13. Case 1 Monte Carlo Estimated State 
Component Estimated State 

x (km) -6079.601784 

y (km) 1837.901274 

z (km) -1596.595273 

x& (km/s) -2.959936964 

y& (km/s) -5.6501156 

z& (km/s) 4.820181948 

xa (km/s2) 0.008737164 

ya (km/s2) -0.002630849 

za (km/s2) 0.002243172 

xa& (km/s3) 4.28601E-06 

ya& (km/s3) 8.03442E-06 

za& (km/s3) -6.94113E-06 
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Table 14. Case 1 Estimated Non-gravitational Acceleration 
 Case 1 

xA0 (km/s2) 0.000100007 

yA0 (km/s2) -1.97844E-05 

zA0 (km/s2) -3.20633E-05 

 

Listed in Table 15 are the values for the variance from the Monte Carlo 

covariance matrix.  The standard deviation (σ) obtained from these variances is also listed 

in Table 15, as well as the estimated minimum and maximum values for non-gravitational 

acceleration, which were determined by taking the estimated value from Table 14 and 

both subtracting and adding the standard deviation, respectively.  By inspection, it is 

apparent that the true value is located between the minimum and maximum estimates.  So 

far, the truth model and estimator have yielded the desired results. 

Table 15. Case 1 Monte Carlo Results 
Variable Variance Sigma (σ) Estimate (min) Estimate (max) True 

xA0 (km/s2) 1.115E-10 1.05594E-05 8.94475E-05 1.10566E-04 1.00E-04 

yA0 (km/s2) 1.0278E-11 3.20593E-06 -1.65785E-05 -2.29904E-05 -2.00E-05 

zA0 (km/s2) 1.7407E-11 4.17217E-06 -2.78911E-05 -3.62355E-05 -3.00E-05 

 

 The process used to obtain the results in Tables 13-15 for Case 1 was used for all 

subsequent test cases.  Table 16 displays the estimated state vectors for all test cases 

using the Monte Carlo analysis.  The highlighted rows are the various estimated 

components of av  with gravitational and non-gravitational acceleration combined. 
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Table 16. Monte Carlo Estimated State Vector 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
 -6079.601784 -6079.592763 -6079.617408 -6079.595845 -6079.605393 -6079.617422 

rv  1837.901274 1837.899984 1837.922794 1837.897105 1837.910345 1837.92279 
 -1596.595273 -1596.602284 -1596.609607 -1596.597832 -1596.610173 -1596.609597 
 -2.959936964 -2.959752536 -2.959699776 -2.960101323 -2.959403419 -2.959698775 

vv  -5.6501156 -5.649968385 -5.650207202 -5.650044755 -5.650208869 -5.650207324 
 4.820181948 4.819868758 4.819932365 4.820190012 4.819921725 4.819932347 
 0.008737164 0.009630106 0.008843116 0.008726374 0.008641327 0.008646013 

av  -0.002630849 -0.002711875 -0.00253619 -0.002409998 -0.002608829 -0.002621751 
 0.002243172 0.001973669 0.002576583 0.002343208 0.002287571 0.002278865 
 4.28601E-06 4.16182E-06 4.19147E-06 4.36836E-06 4.03754E-06 4.19097E-06 

a&v  8.03442E-06 8.08126E-06 8.09605E-06 7.99999E-06 8.07227E-06 8.09606E-06 
 -6.94113E-06 -6.82963E-06 -6.83764E-06 -6.95477E-06 -6.81189E-06 -6.83767E-06 

 

Just like Case 1, the known gravitational acceleration value is subtracted from av  to 

obtain the estimated non-gravitational acceleration values (Table 17).  Tables 18-21 list 

the results for Cases 2-5. 

Table 17. Estimated Non-gravitational Acceleration for all Cases 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

xA0  0.000100007 0.000992949 0.00020596 8.92169E-05 4.17071E-06 8.85662E-06 

yA0  -1.97844E-05 -0.00010081 7.48753E-05 0.000201067 2.23559E-06 -1.06865E-05 

zA0  -3.20633E-05 -0.000301566 0.000301348 6.79723E-05 1.23354E-05 3.62937E-06 

 

Table 18. Case 2 Monte Carlo Results 
Variable Variance Sigma (σ) Estimate Estimate True Value 

xA0 (km/s2) 6.3165E-11 7.94764E-06 9.85001E-04 1.000897E-03 1.00E-03 

yA0 (km/s2) 3.7116E-11 6.09229E-06 -1.06902E-04 -9.47179E-05 -1.00E-04 

zA0 (km/s2) 2.1172E-11 4.6013E-06 -3.06167E-04 -2.96965 E-04 -3.00E-04 
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Table 19. Case 3 Monte Carlo Results 
Variable Variance Sigma (σ) Estimate Estimate True Value 

xA0 (km/s2) 1.027E-10 1.01341E-05 1.95826E-04 2.16094E-04 2.00E-04 

yA0 (km/s2) 9.9128E-11 9.9563E-06 6.4919E-05 8.48316E-05 8.00E-05 

zA0 (km/s2) 4.188E-11 6.47148E-06 2.94876E-04 3.07819E-04 3.00E-04 

 

Table 20. Case 4 Monte Carlo Results 
Variable Variance Sigma (σ) Estimate Estimate True Value 

xA0 (km/s2) 9.908E-11 9.95389E-06 7.9263E-05 9.91708E-05 9.00E-05 

yA0 (km/s2) 1.1389E-11 3.37476E-06 1.97692 E-04 2.04442 E-04 2.00E-04 

zA0 (km/s2) 1.7184E-11 4.14536E-06 6.38269E-05 7.21176E-05 7.00E-05 

 
Table 21. Case 5 Monte Carlo Results 

Variable Variance Sigma (σ) Estimate Estimate True Value 

xA0 (km/s2) 4.3922E-11 6.62737E-06 -2.45665E-06 1.07981E-05 4.00E-06 

yA0 (km/s2) 4.4168E-11 6.6459E-06 -4.41031E-06 8.88149E-06 3.00E-06 

zA0 (km/s2) 1.7455E-11 4.17792E-06 8.1575E-06 1.65133E-05 1.00E-05 

 

There are several noteworthy outcomes obtained from Cases 1-5.  First of all, the 

values obtained in Table 17 for Cases 1-5 are extremely close to the true non-

gravitational acceleration values input into the truth model.  It is also important to note 

that the minimum and maximum values found by taking into account the standard 

deviation are also quite close to the true value.  The results from these cases support the 

validity of the estimator. 

The results for Case 6 are quite different than those seen in the previous five 

cases.  The non-gravitational acceleration values in Table 17 do not reflect the true values 

whatsoever.  The standard deviation is also the highest it has been for any case.  In fact, 

for the 
x

A0 component, the standard deviation has a greater magnitude than the estimated 

value.  When the standard deviation is combined with the values in Table 17, there is no 
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clue as to what the true values are (Table 22).  The estimator is incapable of estimating 

the state correctly when the magnitude of non-gravitational acceleration is that small.   

Table 22. Case 6 Monte Carlo Results 
Variable Variance Sigma (σ) Estimate Estimate True Value 

xA0 (km/s2) 1.0287E-10 1.01425E-05 -1.28586E-06 1.89991E-05 2.89E-06 

yA0 (km/s2) 9.942E-11 9.97096E-06 -2.06574E-05 -7.15501E-07 -5.56E-06 

zA0 (km/s2) 4.2024E-11 6.48259E-06 -2.85322E-06 1.0112E-05 2.285E-06 

 

Interestingly enough, the results from Case 6 do make sense.  The magnitude of 

non-gravitational acceleration used in Case 6 is the smallest magnitude of acceleration 

that the 3rd order equations of motion can detect given the conditions outlined in the 

beginning of this section.  This is true if the constant (C) is in fact zero.  The constant, 

however, is more than likely not zero but some other value.  This would make the 

magnitude greater than 0.667 cm/s2 if it is assumed that C is positive.  That being the 

case, the estimator is unable to accurately estimate the state at such small magnitudes due 

to the limitations of the equations of motion themselves.   

 

Real World Approach. 

 The above analysis would make it seem like the estimator is capable of detecting 

non-gravitational acceleration with magnitude as small as 1.12 cm/s2; unfortunately, the 

method used to obtain the above results does not reflect reality.  In the real world, radar 

sites do not have N number of data sets for one particular satellite; they will most likely 

only have one data set to work with.  This being the case, the results produced by the 

estimator must also be analyzed using a real world approach.  Cases 1-5 will be analyzed 
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using the real world method.  Case 6 has been left out because it has already been shown 

with the Monte Carlo analysis that the results are invalid. 

 Instead of averaging the ten estimates within each case to arrive at a final 

estimate, each estimate is analyzed as an individual (N=1) data set.  For each of these 

data sets, the known value for gravitational acceleration is subtracted from av  to obtain 

the estimated non-gravitational acceleration values.  Table 23 lists these estimated non-

gravitational acceleration values for five of the data sets in Case 1.  Again, in reality a 

radar site will more than likely only have one data set to work with, but for the purposes 

of this research, it is beneficial to see if the correct results are obtained every time or only 

once in a while by chance.  After comparing the estimated values to their true values in 

the last column of Table 23, the results for Case 1 appear to be relatively accurate; 

however, various components in some of the data sets are a little off.  For example, the 

estimated value of the yA0  component for set 1 is closer to -1E-05 km/s2 and in set 2 and 

3 it is closer to -3E-05 km/s2 while the true value is really -2E-05 km/s2.   

As with any analysis, it is important to take into account the standard deviation in 

order to get a true understanding of the accuracy of the results.  The standard deviation 

values used in this section were obtained from the MATLAB filter not the Monte Carlo 

estimates.  Table 23 lists the ± 1σ and ± 2σ estimates for the various non-gravitational 

acceleration components for five of the data sets in Case 1.   
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Table 23. MATLAB Case 1 Results for Individual Data Sets 
 -2σ -1σ Estimate 1σ 2σ True 

 
xA0

6.94671E-05 7.8947E-05 8.8428E-05 9.79094E-05 1.0739E-04 1.00E-04 

Set 1 
yA0

-2.7336E-05 -2.0346E-05 -1.3355E-05 -6.36526E-06 6.25089E-07 -2.00E-05 

 
zA0

-4.0340E-05 -3.4700E-05 -2.9060E-05 -2.34206E-05 -1.7780E-05 -3.00E-05 

 
xA0

8.27126E-05 9.2193E-05 1.0167E-04 1.11154E-04 1.20635E-04 1.00E-04 

Set 2 
yA0

-4.2118E-05 -3.5127E-05 -2.8136E-05 -2.11452E-05 -1.4154E-05 -2.00E-05 

 
zA0

-4.2266E-05 -3.6626E-05 -3.0986E-05 -2.5347E-05 -1.9707E-05 -3.00E-05 

 
xA0

9.09363E-05 1.0041E-04 1.0989E-04 1.19379E-04 1.28859E-04 1.00E-04 

Set 3 
yA0

-4.1090E-05 -3.4100E-05 -2.7109E-05 -2.01198E-05 -1.3129E-05 -2.00E-05 

 
zA0

-3.9096E-05 -3.3456E-05 -2.7816E-05 -2.21768E-05 -1.6536E-05 -3.00E-05 

 
xA0

8.61503E-05 9.5630E-05 1.0511E-04 1.14592E-04 1.24072E-04 1.00E-04 

Set 4 
yA0

-3.4771E-05 -2.7780E-05 -2.0790E-05 -1.37995E-05 -6.8089E-06 -2.00E-05 

 
zA0

-4.5425E-05 -3.9785E-05 -3.4146E-05 -2.85064E-05 -2.2866E-05 -3.00E-05 

 
xA0

9.08761E-05 1.0035E-04 1.0983E-04 1.19318E-04 1.28799E-04 1.00E-04 

Set 5 
yA0

-3.0967E-05 -2.3977E-05 -1.6986E-05 -9.99657E-06 -3.0062E-06 -2.00E-05 

 
zA0

-3.6229E-05 -3.0589E-05 -2.495E-05 -1.93102E-05 -1.3670E-05 -3.00E-05 

 
By inspection, there are several components where the estimate does not contain 

the true value within ± 1σ.  These components have been highlighted for easier 

identification.  These highlighted components happen to be off by a magnitude of only 

10-6 km/s2 or 10-7 km/s2.  This error is minimal considering the true values are of 

magnitude 10-4 km/s2 and 10-5 km/s2.   

Of the 15 components listed in Table 23, five of them do not contain their true 

value within ± 1σ.  In other words, roughly 33% of the answers are not within ± 1σ.  In 

Gaussian statistics the probability that the answer is not within ± 1σ is 32%, therefore, the 

distribution of the results in Case 1 is expected.  All data sets in Case 1 are accurate 

within ± 2σ. 
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The results for Cases 2 and 3 are quite similar to Case 1.  The estimated values in 

Table 24 for Case 2 and Table 25 for Case 3 are pretty consistent across the data sets.  

Compared to their true values in the final column of Tables 24 and 25, the estimates 

appear to be very close.  In fact, Cases 2 and 3 appear to be better at estimating the true 

accelerations than Case 1.  This may be because Cases 2 and 3 have larger non-

gravitational acceleration components, which makes it harder for their values to get lost 

in the noise.  

 Table 24. MATLAB Case 2 Results for Individual Data Sets 
 -2σ -1σ Estimate 1σ 2σ True 

 
xA0

9.81200E-04 9.90686E-04 1.00017E-03 1.00966E-03 1.01914E-03 1.00E-03 

Set 1 
yA0

-1.0891E-04 -1.0192E-04 -9.4929E-05 -8.7936E-05 -8.0943E-05 -1.00E-04 

 
zA0

-3.1595E-04 -3.1031E-04 -3.0467E-04 -2.9903E-04 -2.9340E-04 -3.00E-04 

 
xA0

9.85444E-04 9.94930E-04 1.00442E-03 1.01390E-03 1.02339E-03 1.00E-03 

Set 2 
yA0

-1.3704E-04 -1.3005E-04 -1.2305E-04 -1.1606E-04 -1.0907E-04 -1.00E-04 

 
zA0

-3.0151E-04 -2.9587E-04 -2.9024E-04 -2.8460E-04 -2.7896E-04 -3.00E-04 

 
xA0

9.87489E-04 9.96975E-04 1.00646E-03 1.01595E-03 1.02543E-03 1.00E-03 

Set 3 
yA0

-1.2624E-04 -1.1925E-04 -1.1225E-04 -1.0526E-04 -9.8271E-05 -1.00E-04 

 
zA0

-3.0115E-04 -2.9551E-04 -2.8987E-04 -2.8424E-04 -2.7860E-04 -3.00E-04 

 
xA0

9.93237E-04 1.00272E-03 1.01221E-03 1.02169E-03 1.03118E-03 1.00E-03 

Set 4 
yA0

-1.1915E-04 -1.1216E-04 -1.0517E-04 -9.8176E-05 -9.1183E-05 -1.00E-04 

 
zA0

-3.0529E-04 -2.9965E-04 -2.9401E-04 -2.8837E-04 -2.8273E-04 -3.00E-04 

 
xA0

1.00255E-03 1.01204E-03 1.02152E-03 1.03101E-03 1.04049E-03 1.00E-03 

Set 5 
yA0

-1.2343E-04 -1.1643E-04 -1.0944E-04 -1.0245E-04 -9.5458E-05 -1.00E-04 

 
zA0

-3.2194E-04 -3.1630E-04 -3.1066E-04 -3.0502E-04 -2.9938E-04 -3.00E-04 

 
 

Tables 24 and 25 also take into account the standard deviation for Cases 2 and 3.  

As seen with Case 1, most of these data sets have a component where the estimated value 

is not within ± 1σ of the true value.  Again, these components have been highlighted.  

These components are off by a magnitude of 10-6 km/s2 or 10-7 km/s2 error.  Since the 
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true values are of magnitude 10-3 km/s2 through 10-5 km/s2, the magnitude of error does 

not necessarily destroy the entire validity of the results.  It is still easy to ascertain the 

magnitude of the true values.      

Table 25. MATLAB Case 3 Results for Individual Data Sets 
 -2σ -1σ Estimate 1σ 2σ True 

 
xA0

1.84874E-04 1.94345E-04 2.03815E-04 2.13286E-04 2.22757E-04 2.00E-04 

Set 1 
yA0

7.09803E-05 7.79598E-05 8.49393E-05 9.19188E-05 9.88982E-05 8.00E-05 

 
zA0

2.86076E-04 2.91711E-04 2.97346E-04 3.02982E-04 3.08617E-04 3.00E-04 

 
xA0

1.62638E-04 1.72109E-04 1.81579E-04 1.9105E-04 2.0052E-04 2.00E-04 

Set 2 
yA0

6.83558E-05 7.53357E-05 8.23156E-05 8.92955E-05 9.62754E-05 8.00E-05 

 
zA0

2.86151E-04 2.91786E-04 2.97421E-04 3.03056E-04 3.08691E-04 3.00E-04 

 
xA0

1.75432E-04 1.84902E-04 1.94373E-04 2.03843E-04 2.13314E-04 2.00E-04 

Set 3 
yA0

6.40875E-05 7.10672E-05 7.80468E-05 8.50265E-05 9.20062E-05 8.00E-05 

 
zA0

2.9456E-04 3.00195E-04 3.05829E-04 3.11464E-04 3.17099E-04 3.00E-04 

 
xA0

1.97613E-04 2.07083E-04 2.16553E-04 2.26023E-04 2.35493E-04 2.00E-04 

Set 4 
yA0

6.43551E-05 7.13347E-05 7.83143E-05 8.52939E-05 9.22735E-05 8.00E-05 

 
zA0

2.88561E-04 2.99831E-04 2.94196E-04 2.82926E-04 3.05466E-04 3.00E-04 

 
xA0

1.7555E-04 1.94491E-04 1.8502E-04 1.66079E-04 2.03961E-04 2.00E-04 

Set 5 
yA0

7.36103E-05 8.75702E-05 8.059E-05 6.66303E-05 9.45502E-05 8.00E-05 

 
zA0

2.91338E-04 3.02608E-04 2.9697E-04 2.85703E-04 3.08243E-04 3.00E-04 

 

 As seen with Cases 1-3, the estimates in Table 26 for Case 4 are consistent across 

the data sets and are close to portraying the true values.  In fact, the results in Table 26 

seem to be the best.  Data set 5 is the only set that has a component not within ± 1σ of the 

true value. 



 

64 

Table 26. MATLAB Case 4 Results for Individual Data Sets 
 -2σ -1σ Estimate 1σ 2σ True 

 
xA0

8.01006E-05 8.95745E-05 9.90484E-05 1.08522E-04 1.17996E-04 9.00E-05 

Set 1 
yA0

1.81295E-04 1.88282E-04 1.95268E-04 2.02255E-04 2.09241E-04 2.00E-04 

 
zA0

5.89685E-05 6.46025E-05 7.02365E-05 7.58705E-05 8.15045E-05 7.00E-05 

 
xA0

7.24923E-05 8.19667E-05 9.1441E-05 1.00915E-04 1.1039E-04 9.00E-05 

Set 2 
yA0

1.89723E-04 1.96709E-04 2.03695E-04 2.10681E-04  2.1766E-04 2.00E-04 

 
zA0

5.33809E-05 5.90152E-05 6.46495E-05 7.02837E-05 7.5918E-05 7.00E-05 

 
xA0

7.45168E-05 8.39912E-05 9.34655E-05 1.0294E-04 1.12414E-04 9.00E-05 

Set 3 
yA0

1.85354E-04 1.9234E-04 1.99326E-04 2.06313E-04 2.13299E-04 2.00E-04 

 
zA0

6.01894E-05 6.58237E-05 7.1458E-05 7.70922E-05 8.27265E-05 7.00E-05 

 
xA0

6.78759E-05 7.73498E-05 8.68237E-05 9.62976E-05 1.05772E-04 9.00E-05 

Set 4 
yA0

1.8821E-04 1.95196E-04 2.02183E-04 2.09169E-04 2.16156E-04 2.00E-04 

 
zA0

5.72881E-05 6.29223E-05 6.85566E-05 7.41909E-05 7.98251E-05 7.00E-05 

 
xA0

7.11074E-05 8.05815E-05 9.00557E-05 9.95298E-05 1.09004E-04 9.00E-05 

Set 5 
yA0

1.9201E-04 1.98996E-04 2.05982E-04 2.12968E-04 2.19954E-04 2.00E-04 

 
zA0

5.17785E-05 5.74129E-05 6.30472E-05 6.86816E-05 7.43159E-05 7.00E-05 

 
 

In the previous section, Case 5 contained the smallest magnitude of non-

gravitational acceleration that the estimator could detect using the Monte Carlo method.  

The results in Table 27, however, show that the estimator cannot find the estimate 

reliably.  Not a single set has estimated values that are close to the true non-gravitational 

acceleration values.  The true value may have been obtainable after taking an average 

using Monte Carlo analysis; but as separate individual estimates the true values are 

unclear. 
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Table 27. MATLAB Case 5 Results for Individual Data Sets 
 -2σ -1σ Estimate 1σ 2σ True 

 
xA0

-3.2597E-06 6.2199E-06 1.5699E-05 2.5179E-05 3.4658E-05 4.00E-06 

Set 1 
yA0

-1.4599E-05 -7.6089E-06 -6.189E-07 6.3711E-06 1.3361E-05 3.00E-06 

 
zA0

-4.2422E-06 1.3977E-06 7.0376E-06 1.2677E-05 1.8317E-05 1.00E-05 

 
xA0

-2.4232E-05 -1.4752E-05 -5.2729E-06 4.2068E-06 1.3686E-05 4.00E-06 

Set 2 
yA0

9.6891E-07 7.9588E-06 1.4948E-05 2.1938E-05 2.8928E-05 3.00E-06 

 
zA0

-4.1779E-06 1.4619E-06 7.1017E-06 1.2741E-05 1.8381E-05 1.00E-05 

 
xA0

-2.381E-05 -1.4330E-05 -4.8512E-06 4.6280E-06 1.4107E-05 4.00E-06 

Set 3 
yA0

-9.0425E-06 -2.0522E-06 4.9380E-06 1.1928E-05 1.8918E-05 3.00E-06 

 
zA0

-6.0754E-06 -4.3569E-07 5.2040E-06 1.0843E-05 1.6483E-05 1.00E-05 

 
xA0

-2.0674E-05 -1.1195E-05 -1.7156E-06 7.7639E-06 1.7243E-05 4.00E-06 

Set 4 
yA0

-2.4414E-05 -1.7424E-05 -1.0434E-05 -3.4442E-06 3.5457E-06 3.00E-06 

 
zA0

-1.7366E-06 3.9030E-06 9.5427E-06 1.5182E-05 2.0822E-05 1.00E-05 

 
xA0

-2.0173E-05 -1.0694E-05 -1.2148E-06 8.2646E-06 1.7744E-05 4.00E-06 

Set 5 
yA0

-1.3768E-05 -6.7779E-06 2.1217E-07 7.2023E-06 1.4192E-05 3.00E-06 

 
zA0

-3.4714E-06 2.1676E-06 7.8068E-06 1.3446E-05 1.9085E-05 1.00E-05 

 

Table 27 also lists the values for ± 1σ and ± 2σ.  At first glance, it may seem that 

since there are only three highlighted components the results must be fairly good, but this 

is not the case.  The amount of error between these highlighted components to their true 

values is of magnitude 10-6 km/s2.  This also happens to be the same magnitude of the 

true values themselves.  Ultimately, what this means is that the estimator has no idea 

what the true values really are and does a poor job estimating at such a small magnitude.   

Depending on the actual use of the estimator, results such as these may still be 

useful.  The estimator is still indicating that there is non-gravitational acceleration present 

even if the estimate is not statistically accurate.  Sometimes it is more important to 

assume an object has non-gravitational acceleration present when it does not than to 

assume an object does not have non-gravitational acceleration when it does.  Further 
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analysis can always be conducted on the objects that are assumed to contain non-

gravitational acceleration. 

After careful analysis of the previous five cases, the following conclusions can be 

drawn.  The uncertainty in the results for Case 5 is too high for the estimator to be of 

much use at such a small magnitude of non-gravitational acceleration.  The results seen in 

Cases 1-4 are much more accurate.  Of these four cases, Case 1 had the smallest 

magnitude at 10.63 cm/s2.  Based on the above analysis and results, it is fairly safe to say 

that the estimator can detect non-gravitational acceleration down to a magnitude of 10.63 

cm/s2.  Non-gravitational acceleration that only has components of magnitude 10-6 km/s2 

and 10-5 km/s2 seem to get lost in both the noise and the estimation capability of the 

estimator.  In these cases, the estimator is able to detect the non-gravitational acceleration 

but is unable to give a truly decent estimate as to its true value.   

The inability to measure these small magnitudes may be caused by a combination 

of factors.  First and foremost, the general equations used to model the motion of the 

space object already limits the detection level of the results.  Also, it is important to 

realize that there are going to be inaccuracies caused by MATLAB itself.  MATLAB, as 

with many other computer programs, will ultimately truncate numbers as they are being 

run through the computer code.  This truncation may happen in the 10th decimal place or 

even higher and may seem insignificant, but can produce very noticeable results 

especially when working with such small acceleration values. 
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Investigative Questions Answered 

Several questions were posed in Chapter I concerning the development of the 

truth model and the detection capability of the estimator.  The first question, concerning 

how much non-gravitational acceleration the estimator would be able to detect is 

answered after analyzing numerous test cases.  It was shown that the estimator should be 

able to detect as little as 10.63 cm/s2 in magnitude.  The second question dealt with 

Galileo’s projectile equations and whether or not they would be accurate enough to 

model an object in space.  It was shown that these equations were in fact too general to 

obtain sufficient results; however, a Taylor series expansion to the 3rd order achieved 

success.  The third question was concerning the geopotential.  Multiple terms such as J2, 

J4 or two-body effects can go into determining the geopotential.  For this research, only 

two-body and J2 effects comprised the terms of the geopotential.  These two terms proved 

quite effective at modeling the geopotential and its gradient.  Proof can be seen in 

Equations (73) and (74) where the MATLAB and STK acceleration values at epoch are 

nearly identical. 

Summary 

Various methods were used to analyze the simulated data to obtain valid results.  

An STK simulation was used as a baseline model to verify the accuracy of the equations 

of motion.  The 2nd, 3rd, and 4th order Taylor series approximations were all tested to see 

which would yield better results at modeling an orbiting space object.  The 3rd order 

equations of motion were shown to have the required accuracy necessary for detecting 

non-gravitational acceleration.  Numerous test cases (both with and without non-
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gravitational acceleration present) were tested with the estimator.  The Monte Carlo 

method was used to verify the statistics of the results.  A real world approach was used to 

analyze the various scenarios to determine the smallest magnitude that could be 

determined with certainty.  Using the least squares estimator, accelerations with a 

magnitude as small as 10.63 cm/s2 were detectable with statistical accuracy.  At 

magnitudes of acceleration smaller than 10.63 cm/s2, confidence and validity of the 

results declines.  Nearly all estimates were within 2σ; however, this is not beneficial in 

the test cases where the magnitude of standard deviation is the same as or greater than the 

magnitude of the estimated values.   



 

69 

 V. Conclusions and Recommendations 

Chapter Overview 

The purpose of this chapter is to conclude the findings and discuss the 

significance of this research.  Suggestions as to what actions should be taken as a result 

of the findings will be explored.  Various aspects of further research will also be 

addressed. 

Conclusions of Research 

It has been shown that a 3rd order Taylor series expansion can adequately model 

objects in LEO for a short period of time.  These equations of motion, with the use of a 

truth model and linear least squares estimator, can detect constant non-gravitational 

acceleration down to roughly 10.63 cm/s2 in magnitude with statistical accuracy.  If the 

amount of non-gravitational acceleration is smaller than the 10.63 cm/s2 limit, the 

estimator produces poor results.  At the very least, the estimator is capable of detecting 

non-gravitational acceleration but may not necessarily be able to determine the exact 

magnitude of its components within 1σ. 

Significance of Research 

There are several significant aspects of this research.  First of all, the above 

research has shown that the motion of space objects can be modeled using linear 

dynamics for a short time span.  Adding non-gravitational acceleration to the dynamics, 

(as seen with objects such as tethered systems, maneuvering satellites, and thrusting 

ballistic missiles) the effects of non-Keplerian motion can now be tracked using linear 

equations.  Even the data in range, azimuth, and elevation format can be exchanged for 
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linear data in the form of position and velocity.  The use of a linear model enables 

estimates of the initial state to be calculated at the click of a button.  This is much more 

favorable than that of iterative methods seen in nonlinear systems.   

There are currently a plethora of elaborate methods available for identifying and 

tracking objects that are solely tethered or solely ballistic missiles; however, there are not 

many methods that follow a more general approach and distinguish simply between 

Keplerian and non-Keplerian objects.  This general approach allows for the quicker 

detection of non-Keplerian objects.  Then, if necessary, a more in-depth analysis can be 

used to identify whether the object is a tethered system, an object on re-entry, or a 

maneuvering satellite.         

Recommendations for Action 

It is recommended that radar sites utilize this computer model in order to filter out 

space objects that contain a certain level of non-gravitational acceleration.  This computer 

model is not able to track objects for an extended period of time, nor is it able to 

distinguish between a tethered system and an object on re-entry; however, it is quite 

useful as a filter.  The model is rather effective at determining the state of an object with 

or without non-gravitational acceleration in just seconds.  This is very important when 

time is of the essence.  Depending on the magnitude of the non-gravitational acceleration 

present, other identification and tracking methods can be used to provide further insight 

into the object of interest. 
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Recommendations for Future Research 

There are various avenues of future research dealing with the current research 

and, in general, the area of tracking objects with non-Keplerian motion.  The above 

research was tested and validated using models and simulated data.  It would be quite 

beneficial to test the estimator using real-world data.  Perhaps testing the estimator with 

data from satellites that have on-board accelerometers could be advantageous.  This way, 

there is still some indication as to the true value of non-gravitational acceleration present.  

Another recommendation would be to develop a model that can detect variable non-

gravitational acceleration.  The current model only considers constant non-gravitational 

acceleration. 

Another idea to consider is to determine the initial state vector in the space 

object’s coordinate frame instead of working in the inertial IJK coordinate frame.  This 

approach would provide some very important insights.  For instance, a lot can be learned 

about a tethered system simply given the various components of non-gravitational 

acceleration in the satellite’s coordinate frame.  Non-gravitational acceleration in a 

tethered system can only be located in the tangential or radial directions.  If the 

magnitude in both of these directions is zero, then the object is not tethered.  If the 

tangential is zero but the radial is not, then it can be deduced that the system is oriented 

vertically.  If the radial is zero and the tangential is not, then the system is horizontally 

oriented.  If neither component is zero, then the tether orientation angle, magnitude of 

tether force, apparent gravitational parameter, and distance to the center of mass can be 

determined (Cicci and others, 2001a: 316-317).  Unfortunately, these statements are true 
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only if the tethered system is moving in the plane.  Out of plane motion requires a 

different approach.  

Summary 

Objects that contain non-gravitational acceleration; such as tethered systems, 

thrusting ballistic missiles and maneuvering satellites; can be modeled using a 3rd order 

Taylor series expansion.  The combination of these dynamics with a linear least squares 

estimator provides the ability to accurately estimate the initial state and covariance of an 

object in space.  The sum of gravitational and non-gravitational acceleration acting on the 

object is part of the state vector.  A non-zero magnitude for non-gravitational acceleration 

means that the space object is following a non-Keplerian orbit.  The current model used 

for this research is capable of detecting non-gravitational acceleration as small as 10.63 

cm/s2 in magnitude. 

The identification and tracking of space objects will remain an important pursuit 

for years to come.  As technology increases, the dynamics of a space object will more 

than likely not follow a regular Keplerian orbit due to the desire for increased 

maneuverability for the protection against potential space weapons.  Objects such as 

tethered satellite systems, maneuvering satellites and thrusting ballistic missiles already 

follow non-Keplerian orbits.  Filters, such as the one produced in this research, will 

become a necessity.      
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Appendix A: Equations of Motion 
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Appendix B: MATLAB Truth Model 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%% Author: 2Lt Sandra Rashash, USAF, 17 May 07 
%% 
%% 
%% Outputs: 
%%    el_matrix                       -matrix of elevation values               rad 
%%    az_matrix                     -matrix of azimuth values                 rad 
%%    rho_matrix                    -matrix of range values                     km 
%%    sitlat                              -radar site latitude                             rad 
%%    sitlon                             -radar site longitude                          rad 
%%    sitalt                              -radar site altitude                             km 
%%    julian_matrix                -matrix of julian days 
%%    range_noise                   -range noise                                      km 
%%    az_noise                        -azimuth noise                                  rad 
%%    el_noise                         -elevation noise                                rad 
%% 
%% Locals: 
%%    r_init                             -initial position at epoch in IJK        km 
%%    x                                    -'I' component of position                km 
%%    y                                    -'J' component of position                km 
%%    z                                    -'K' component of position               km 
%%    v_init                            -initial velocity at epoch                   km/s 
%%    A                                   -extra acceleration input               km/s^2 
%%    t                                    -counter for time 
%%    jd                                  -time in julian days 
%%    gst                                -greenwhich sidereal time  rad 
%%    local_sideral_time       -local sidereal time  rad 
%%    lst                                 -matrix of local sidereal time  rad 
%%    time                              -time since epoch                              sec 
%%    timematrix                   -matrix of times since epoch  sec 
%%    geopotential                 -geopotential  m^2/s^2 
%%    ax                                 -'x' component of acceleration      km/s^2 
%%    ay                                 -'y' component of acceleration     km/s^2 
%%    az                                 -'z' component of acceleration      km/s^2 
%%    g                                  -local gravity                                km/s^2 
%%    r                                   -new position vector                     km 
%%    v                                  -new velocity vector                     km/s 
%%    i                                   -index variable 
%%    vmatrix                        -matrix of velocities  km/s 
%%    x_site -station coordinate for Ellipsoidal Earth  km 
%%    z_site -station coordinate for Ellipsoidal Earth  km 
%%    R_site                          -position vector of radar site  km 
%%    rot_ijk_sez                  -rotation matrix from IJK to SEZ  rad 
%%    range_sez                    -range vector in SEZ  km 
%%    rho_s                           -'s' component of range  km 
%%    rho_e                           -'e' component of range  km 
%%    rho_z                           -'z' component of range  km 
%%    range_sez_matrix        -matrix of range values  km 
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%%    rho                              -range  km 
%%    az                                -azimuth  rad 
%%    el                                 -elevation  rad 
%%    noise                          -matrix of noise values 
%%    ww                              -index variable 
%% 
%% 
%%  Note: An extra blank line is present at the end of the output file that must be deleted before sending 
the data to the estimator. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
WGS84Data 
format long g 
global MU J2 RE TwoPI EEarth Rad 
radardata1=fopen('radardata1.dat','wt'); 
  
% site data 
sitlat= Rad*(-7.91); 
sitlon=Rad*(-14.4); 
sitalt=56.1*10^-3; 
range_noise=101.7*10^-3; 
el_noise=Rad*(0.0283); 
az_noise=Rad*(0.0248); 
  
% initial conditions 
 r_init =[-6079.6;1837.9;-1596.6]; 
  
x = r_init(1,1); 
y = r_init(2,1); 
z = r_init(3,1); 
  
v_init=[-2.96;-5.65;4.82]; 
 
u = v_init(1,1); 
v = v_init(2,1); 
w = v_init(3,1); 
  
  
  
A=[0;0;0]; 
A_dot=[0;0;0]; 
  
  
  
% creates a 5 minute matrix of julian days for a given start time 
julian_matrix(1,:) = JulianDay(2007,9,13,12,0,0); 
  
for t=1:299 
    jd = JulianDay(2007,9,13,12,0,t); 
    julian_matrix(t+1,:)=jd; 
  
end 
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%  determines matrix for the local sidereal time 
for index=1:300 
  
  
    % calculates greenwich sidereal time 
    gst = GSTime (julian_matrix(index,:)); 
  
    % calculates local sidereal time 
    local_sidereal_time = gst + sitlon; 
  
    % calls revcheck to obtain an lst less than 2pi 
    local_sidereal_time = revcheck(local_sidereal_time, TwoPI); 
  
    lst(index,:)=local_sidereal_time; 
  
  
    % converts julian days into time since epoch observation 
    time = (julian_matrix(index,:)-julian_matrix(151,1))*86400; 
  
    % creates matrix of observation times 
    timematrix(index,:) =time; 
  
end 
  
   
%% Determination of the gravity vector 
% geopotential taking into account J2 and 2-body 
% geopotential=(-
MU/sqrt(x^2+y^2+z^2))+((MU*RE^2*J2)/(2*(x^2+y^2+z^2)^(3/2)))*(3*z^2/(x^2+y^2+z^2)-1); 
%  
% % the negative gradient of the geopotential 
%  
% ax=-MU/(x^2+y^2+z^2)^(3/2)*x+15/2*z^2*MU*RE^2*J2/(x^2+y^2+z^2)^(7/2)*x-
3/2*MU*RE^2*J2/(x^2+y^2+z^2)^(5/2)*x; 
%  
% ay=-MU/(x^2+y^2+z^2)^(3/2)*y+15/2*z^2*MU*RE^2*J2/(x^2+y^2+z^2)^(7/2)*y-
3/2*MU*RE^2*J2/(x^2+y^2+z^2)^(5/2)*y; 
%  
% az=-MU/(x^2+y^2+z^2)^(3/2)*z-
9/2*z*MU*RE^2*J2/(x^2+y^2+z^2)^(5/2)+15/2*z^3*MU*RE^2*J2/(x^2+y^2+z^2)^(7/2); 
%  
% g=[ax;ay;az] 
  
  
% 2-body acceleration and its first and second derivatives 
a_2body= -MU*r_init*(mag(r_init)^-3); 
  
a_2body_dot= 3*MU*r_init*dot(r_init,v_init)*(mag(r_init)^-5) - MU*v_init*(mag(r_init)^-3); 
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% J2 acceleration and its first and second derivatives 
a_j2= [15/2*z^2*MU*RE^2*J2/(x^2+y^2+z^2)^(7/2)*x-3/2*MU*RE^2*J2/(x^2+y^2+z^2)^(5/2)*x;... 
    15/2*z^2*MU*RE^2*J2/(x^2+y^2+z^2)^(7/2)*y-3/2*MU*RE^2*J2/(x^2+y^2+z^2)^(5/2)*y;... 
    -9/2*z*MU*RE^2*J2/(x^2+y^2+z^2)^(5/2)+15/2*z^3*MU*RE^2*J2/(x^2+y^2+z^2)^(7/2)]; 
  
a_j2_dot= -.5*MU*RE^2*J2*[(-15*x*dot(r_init,v_init)*(mag(r_init)^-7)+3*u*(mag(r_init)^-5)... 
    +105*x*z^2*dot(r_init,v_init)*(mag(r_init)^-9)-30*x*z*w*(mag(r_init)^-7)-15*u*z^2*(mag(r_init)^-
7));... 
    (-15*y*dot(r_init,v_init)*(mag(r_init)^-7)+3*v*(mag(r_init)^-5)+105*y*z^2*dot(r_init,v_init)*... 
    (mag(r_init)^-9)-30*y*z*w*(mag(r_init)^-7)-15*v*z^2*(mag(r_init)^-7));... 
    (-45*z*dot(r_init,v_init)*(mag(r_init)^-7)+9*w*(mag(r_init)^-
5)+105*z^3*dot(r_init,v_init)*(mag(r_init)^-9)-... 
    45*z^2*w*(mag(r_init)^-7))]; 
     
 
% total acceleration and derivatives 
g=a_2body+a_j2 
g_dot=a_2body_dot+ a_j2_dot 
  
  
%%%  Equations of Motion for a 5 minute radar track using Taylor series 
for w=1:300 
    t =timematrix(w,:); 
  
  % finds position 
    r = r_init+ v_init*t +((A+g)/2)*t^2+((A_dot+g_dot)/6)*t^3; 
    R_ijk_matrix(w,:)=r; 
  
    % finds velocity 
    v = v_init+(A+g)*t+((A_dot+g_dot)/2)*t^2; 
    vmatrix(w,:)=v; 
     
    % finds acceleration 
    a = (A+g) + (A_dot+g_dot)*t; 
    amatrix(w,:)=a; 
     
    % finds 1st derivative of accel 
    a_dot=(A_dot+g_dot); 
    a_dot_matrix(w,:)=a_dot; 
      
end 
  
  
% calculates x in the R_site equation 
x_site = (RE/sqrt(1-EEarth^2*sin(sitlat)^2)+sitalt)*cos(sitlat); 
  
% calculates z in the R_site equation 
z_site = ((RE*(1-EEarth^2))/sqrt(1-EEarth^2*sin(sitlat)^2)+sitalt)*sin(sitlat); 
  
  
% Determines range, azimuth, and elevation matrices 
for i=1:300 
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 % calculates R_site 
    R_site = [x_site*cos(lst(i)); x_site*sin(lst(i)); z_site]; 
  
    % rotation matrix from the IJK to SEZ coord. frame 
    rot_ijk_sez = [sin(sitlat)*cos(lst(i)) sin(sitlat)*sin(lst(i)) -cos(sitlat);... 
        -sin(lst(i)) cos(lst(i)) 0; cos(sitlat)*cos(lst(i)) cos(sitlat)*sin(lst(i))... 
        sin(sitlat)]; 
  
    range_sez=rot_ijk_sez*(R_ijk_matrix(i,:)'-R_site); 
    range_sez_matrix(i,:)=range_sez; 
  
    rho_s =range_sez_matrix(i,1); 
    rho_e =range_sez_matrix(i,2); 
    rho_z =range_sez_matrix(i,3); 
  
    % determines range 
    rho=sqrt(rho_s^2+rho_e^2+rho_z^2); 
    rho_matrix(i,:)=rho; 
  
    % determines azimuth 
    az = atan2(rho_e,-rho_s); 
    if az<0 
        az=az+TwoPI; 
    end 
    az_matrix(i,:)=az; 
  
    % determines elevation 
    el = asin(rho_z/rho); 
    el_matrix(i,:)=el; 
end 
  
% adds noise to the range,azimuth, elevation data using gaussian random number generator 
noise1=randn(300,1)*.1017; 
noise2=randn(300,1)*.000433; 
noise3=randn(300,1)*.000494; 
  
%outputs data to a file 
for ww=1:300 
    
fprintf(radardata1,'%22.15g',sitlat,sitlon,sitalt,julian_matrix(ww),rho_matrix(ww)+noise1(ww),az_matrix(
ww)+noise2(ww),el_matrix(ww)+noise3(ww),range_noise,az_noise,el_noise); 
    fprintf(radardata1,'\n'); 
  
end 
  
% %% data with no noise 
% for ww=1:300 
%     
fprintf(radardata1,'%22.15g',sitlat,sitlon,sitalt,julian_matrix(ww),rho_matrix(ww),az_matrix(ww),el_matrix
(ww),range_noise,az_noise,el_noise); 
%     fprintf(radardata1,'\n'); 
%  
% end 
fclose(radardata1); 
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Appendix C: MATLAB Estimator 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
%% 
%% Author: 2Lt Sandra Rashash, USAF, 17 May 07 
%% 
%% 
%% Locals: 
%%    R_ijk_matrix         -matrix of position in IJK coords                                km 
%%    timematrix           -matrix of observation times                                   sec 
%%    lst                   -matrix of local sidereal time rad 
%%    el_matrix             -matrix of elevation                                                   rad 
%%    az_matrix             -matrix of azimuth                                                    rad 
%%    rho_matrix            -matrix of range                                                    km 
%%    t                    -time variable                                               sec 
%%    jdtime                           -matrix of julian days 
%%    local_sideral_time          -local sidereal time rad 
%%    R_site                           -site position vector in IJK                                  km 
%%    row                               -number of rows in position matrix 
%%    rot_ijk_sez                    -rotation matrix from IJK to SEZ rad 
%%    phi_matrix                -state transition matrix 
%%    phi_multi_array          -multi-dimensional array of all phi matrices 
%%    w                                    -index variable 
%%    s                                             -index variable 
%%    e                                            -index variable 
%%    v                                            -index variable 
%%    f                                             -index variable 
%%    H                                           -matrix of the linearized observation relation 
%%    T                                           -observation matrix 
%%    T_matrix                               -multi-dimensional array of all T 
%%    K 
%%    K_array 
%%    J                                            -jacobian matrix 
%%    J_array                                  -multi-dimensional array of jacobians 
%%    Q_old                                    -instrumental covariance for rho,az,el 
%%    Q_new                                  -instrumental covariance for position 
%%    Q_array                                -multi-dimensional array for all Q_new 
%%    c_variance                           -matrix used for running sums 
%%    covariance                           -covariance matrix 
%%    s_vector                               -matrix used for running sums 
%%    S                                          -individual state vector input into summation 
%%    P                                          -individual covariance input into summation 
%%    state_vector                        -estimated state vector 
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
format long g 
WGS84Data 
global Rad 
fid_input = fopen ('radardata1.dat', 'rt'); 
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i=1; 
  
% scans in data from input file from radar site or in this case the truth model 
while ~feof(fid_input) 
  
    sitlat=fscanf(fid_input,'%f',1); 
    sitlon=fscanf(fid_input,'%f',1); 
    sitalt=fscanf(fid_input,'%f',1); 
    jd=fscanf(fid_input,'%f',1); 
    rho =fscanf(fid_input,'%f',1); 
    az  =fscanf(fid_input,'%f',1); 
    el  =fscanf(fid_input,'%f',1); 
    range_noise=fscanf(fid_input,'%f',1); 
    az_noise=fscanf(fid_input,'%f',1); 
    el_noise=fscanf(fid_input,'%f',1); 
  
    % % for use when elevation and azimuth are given in degrees, range in meters, and time is in            
    year, daynumber, hour, min,sec 
     
    %[sitlat,sitlon,sitalt,rho,az,el,jd,range_noise,az_noise,el_noise]=unit_converter(fid_input); 
  
    % finds position vectors from radar data 
    [R_ijk,local_sidereal_time] = position_finder(jd, sitlon, sitlat,sitalt, rho,az, el); 
  
    % creates matrix of position vectors as row vectors 
    R_ijk_matrix(i,:) = R_ijk; 
  
    % creates matrix of julian days 
    jdtime(i,:) = jd; 
  
    % creates matrix of range values 
    rho_matrix(i,:)= rho; 
  
    % creates matrix of azimuth values 
    az_matrix(i,:)= az; 
  
    % creates matrix of elevation values 
    el_matrix(i,:)= el; 
  
    % creates matrix of lst values 
    lst(i,:)=local_sidereal_time; 
  
    i=i+1; 
end 
  
% determines size of Position matrix 
[row,column] = size(R_ijk_matrix); 
  
for ii=1:row 
    % converts julian days into time since initial observation 
    time = (jdtime(ii,:)-jdtime(151,1))*86400; 
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    % creates matrix of observation times 
    timematrix(ii,:) =time; 
  
end 
  
  
%%% Linear Least Squares Estimator 
  
%% state transition matrix 
% given the equations of motion in the truth model 
  
for w =1:300 
    t = timematrix(w,:); 
  
    % defines sub-matrices 
    sub0 = eye(3,3); 
    sub1 = eye(3,3)*t; 
    sub2 = eye(3,3)*(t^2)/2; 
    sub3= zeros(3,3); 
    sub4 = eye(3,3)*(t^3)/6; 
    
  
    % defines phi_matrix 
    phi_matrix = [sub0 sub1 sub2 sub4; sub3 sub0 sub1 sub2;sub3 sub3 sub0 sub1; sub3 sub3 sub3 sub0]; 
  
    phi_multi_array(:,:,w)=phi_matrix ; 
  
end 
  
[row2, column, depth]=size(phi_multi_array); 
 
%% observation relation 
  
% z = [R_ijk]'; 
% z = G(X,t)=(sub0 sub3 sub3)X 
% G=[sub0 sub3 sub3]*X; 
  
% linearization of G 
% H =(partial G) / (partial X) 
H = [sub0 sub3 sub3 sub3 ]; 
  
% T=H*phi 
for f=1:depth 
    T = H*phi_multi_array(:,:,f); 
    T_matrix(:,:,f) = T; 
end 
  
% differential correction of intermediates 
  
for s=1:row 
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    K = [-cos(el_matrix(s))*cos(az_matrix(s)),... 
        rho_matrix(s)*cos(el_matrix(s))*sin(az_matrix(s)),... 
        rho_matrix(s)*sin(el_matrix(s))*cos(az_matrix(s));... 
        cos(el_matrix(s))*sin(az_matrix(s)),... 
        rho_matrix(s)*cos(el_matrix(s))*cos(az_matrix(s)),... 
        -rho_matrix(s)*sin(el_matrix(s))*sin(az_matrix(s)); 
        sin(el_matrix(s)) 0 rho_matrix(s)*cos(el_matrix(s))]; 
    K_array(:,:,s)=K; 
  
    % rotation matrix 
    rot_ijk_sez = [sin(sitlat)*cos(lst(s)) sin(sitlat)*sin(lst(s)) -cos(sitlat);... 
        -sin(lst(s)) cos(lst(s)) 0; cos(sitlat)*cos(lst(s)) cos(sitlat)*sin(lst(s))... 
        sin(sitlat)]; 
  
    J = inv(rot_ijk_sez)*K_array(:,:,s); 
    J_array(:,:,s)=J; 
  
    % instrumental covariance 
    Q_old = [range_noise^2 0 0; 0 az_noise^2 0 ; 0 0 el_noise^2]; 
    Q_new = J_array(:,:,s)*Q_old*J_array(:,:,s)'; 
    Q_array(:,:,s) = inv(Q_new); 
  
end 
  
  
c_variance=zeros(12,12); 
  
 
% sums the values for the state covariance 
for v =1:row 
    P=T_matrix(:,:,v)'*Q_array(:,:,v)*T_matrix(:,:,v); 
    c_variance= c_variance+P; 
end 
  
% inverts the covariance 
covariance=inv(c_variance); 
  
svector=zeros(12,1); 
  
% sums the values for the system estimate at epoch time 
for e= 1:row 
    S=T_matrix(:,:,e)'*Q_array(:,:,e)*R_ijk_matrix(e,:)'; 
    svector= svector+S; 
end 
  
% estimate of the state vector at epoch 
state_vector=covariance*svector 
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Appendix D: Estimation Process  
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