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Abstract

This research explores both the human and technical aspects of the network centric

environment in the context of a major disaster (e.g. Hurricane Katrina) or incident of

national significance. The National Incident Management System (NIMS) is viewed by

the authors as a social network, and an organizational topology is developed to improve its

effectiveness. A Rapid Network Deployment Kit (RNDK) using commercial-off-the-shelf

(COTS) wireless networking technology is also proposed that facilitates immediate NIMS

implementation. The integration of logical and technical analyses forms a comprehensive

systems engineering proposal to facilitate collaboration in a net-centric environment. It

is envisioned that the methodology used herein to derive and evaluate comprehensive

networks proves extendable to other contexts thereby contributing to the net-centric body

of knowledge.

iv
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INVESTIGATING HASTILY-FORMED

COLLABORATIVE NETWORKS

I. Introduction

1.1 Background

Recent disasters have highlighted the deficiencies in how Emergency Response

Personnel (ERP) access and distribute vital information to one another. This problem is

particularly apparent when incidents involve multiple agencies and multiple jurisdictions.

Incompatible communications equipment as well as poor and/or differing incident

management techniques have been identified as the primary culprit. Although the National

Incident Management System (NIMS) has been mandated for use by all Emergency

Response Agencies (ERA) as a means to better facilitate incident management, the

Department of Homeland Security has shown little improvement in fixing the interop-

erability issue. The NIMS solution to incident management involves a comprehensive

national plan, which involves the potential coordination of agencies from the Local,

State, and Federal levels. The primary enabler of this solution is the requirement for

all potential participating response agencies to communicate with one another and have

access to pertinent information as needed. DHSs Office of Interoperability and Compat-

ibility (OIC) states that in order to fulfill this requirement, access to voice, as well as

data communication capabilities are required. Unfortunately, the means to accomplish

this level of sophistication are not currently realized. Many of the more than 60,000

ERAs throughout the Nation still rely on voice- only analog equipment to provide their

emergency communication networks. Furthermore, these systems normally only operate

in one of the three frequency bands currently in use by various agencies throughout the

country for emergency response communications. New standards from DHS attempt to
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alleviate the interoperability problem by pushing for new digital radios able to implement

specific protocols, operate in multiple bands, and thus ensure interoperability. However,

the cost of approximately $2000 per handheld radio, plus the cost of the supporting infras-

tructure, prevents many agencies from purchasing the equipment.

The first hours following a major incident can be the most crucial for ERP to prevent

loss of life, curtail rioting and looting, and prevent further exacerbation of the incidents

impact. Coordination among response agencies is a must, and requires reliable communi-

cations. However, following large-scale natural disasters, existing and supporting infras-

tructure normally relied upon for response coordination and information sharing have been

destroyed. The result is that ERP are left with very little, if any means of communi-

cating with one another and their supporting agencies. This situation was seen in New

Orleans following Katrina as ERPs from multiple agencies and jurisdictions entered the

city without the direction and coordination normally provided by the Incident Command

System (ICS). This led to a major breakdown in the overall disaster management of the

situation, and thus prevented help from getting to the needed locations. The following was

taken from an Associated Press article.

. . . first responders were simply unable to share essential information.
Federal emergency management officials claim they didn’t know for days
about thousands of people camped out, thirsty and hungry, at the New Orleans
convention center. Rescuers in helicopters couldn’t talk to crews patrolling in
boats. National guard commanders in Mississippi had to use runners to relay
orders [32].

Even agencies with compatible equipment were limited in communications as the

loss of repeater towers prevented long range transmissions and the loss of the supporting

trunk systems allowed for only a handful of mutual aid channels to be used. One report

stated that only about two or three of these channels were available while more than 4,000

personnel were attempting to use them. These channels quickly became overwhelmed,

thus preventing any type of effective communication [32].
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As a result of the many issues seen in recent disasters, many organizations and

companies are developing new solutions, which can be used to provide communications

in the event of a destroyed or unavailable support infrastructure. However, there are two

major problems with many of the proposed solutions. First, some approaches revolve

around attempting to provide repeaters and trunking for the plethora of radio equipment

being used by responders. While this solution provides emergency response communi-

cations, it does nothing to enhance compatibility. Other approaches use sophisticated

patching or gateways to allow the various array of devices to communicate. However,

the complexity of these systems leads to excessive delays in their deployment following a

major incident. Arguably, the most crucial time following a disaster is the first few hours.

It is during this time that first responders disperse through the community to provide

emergency service to those in urgent need. The lack of critical communications could

mean the difference between life and death.

Assuming vital communications have been restored to an area, there still exists an

issue of managing the incident response efforts. The coordination of multiple agencies

can be very complex and the tactics used by incident commanders may be significantly

limited by the communication capabilities he has. Therefore, strategies must exists prior

to an emergency which afford responders the opportunity to independently organize and

collaborate without the need of direction. In this way, tactics can best utilize technologies

available to both the incident commander and different responders.

1.2 Problem Statement

A comprehensive review of the Katrina response literature reveals the following

recurring problem areas:

1. Responders were unable to communicate.

(a) Physical communications infrastructure was destroyed resulting in line of site

only communications.
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(b) Temporary Communications Systems required excessive time and infras-

tructure to become operational

(c) Communications systems as a whole were not interoperable.

2. Responders were hesitant or unable to communicate outside normal channels.

(a) Situational awareness suffered due to low information sharing.

(b) Information was lost.

3. Collaboration and coordination of efforts did not effectively occur

(a) Vast pools of resources remained idle as coordination with them did not or

could not take place.

(b) Volunteers haphazardly found tasks to help with, sometimes contributing to

the chaos.

Effective communications require interoperable systems, the transfer of information

(i.e. data, ideas, and emotions), and the subsequent appropriate processing of the

transferred information by the receiver. A compatible network can guarantee a channel

in which information can flow, but it cannot guarantee the appropriate processing of the

information. Therefore, without the processing, communications have not been fully

achieved but rather we have only passed data from one place to another.

If we assume the goal of global interoperability is achieved, then what? Techniques

must be found to manage the vast amount of information flowing over this common

network to ensure hindrances to effective communications, such as information overload,

bandwidth limitations, and network delays are minimized. Traditional emergency

response systems utilize voice radio transmissions over a number of channels to manage

network traffic. However, as the number of users on each channel grows, so does

the amount of non-significant traffic and network delays observed by each user. Thus,

as the number of communication channels increase the amount of the globally shared

information will likely decrease. The result of this is a net lowering of shared situational
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awareness. Voice based communications networks suffer the catch 22: more channels

equate to smaller traffic delays and less chance of information overload by each user

but result in a reduction of global information sharing. Fewer channels increase global

information sharing, but may increase network delays and the chance of information

overload. Another method commonly used to try to improve voice network communi-

cations (whether directly or indirectly) is the use of a hierarchical Command and Control

(C2) structure. Hierarchical structures translate to specific persons having relatively high

data sharing capabilities with lower nodes and specific nodes above. This results because

information is aggregated as it flows up the chain of command but is filtered as it flows

down. In order to achieve the most efficient and effective disaster response, new systems

and techniques must be implemented to optimize communications. This thesis examines

how the naturally formed networks of responders sent to deal with various incidents

can be enhanced to better optimize global situational awareness, incident responses, and

allowing the responders to have enough bandwidth to communicate with each other as

necessary while still minimizing the overall strain on the command and control structure.

In order to accomplish this, this research seeks to draw a parallel between the domains

of major disasters and modern warfare, demonstrating how network-centric operations

(NCO) theory can be applied to disaster response to create shared situational awareness,

self-synchronization, and ultimately improved mission effectiveness.

1.3 Research Objectives

The objective of this research is to facilitate efficient and effective interoperable

communications in the wake of a major disaster. The research objectives focus on

proposing a system made up of todays technology that can be rapidly deployed as well

as proposing an organizational structure that can work well under the conditions present

following a major disaster.

1.3.1 Objective 1, Physical Network Design. The first objective of this research

is to propose the design for a Rapid Network Deployment System (RNDS), which
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facilitates a hastily formed, interoperable, responder network in the wake of a major

incident. The RNDS architecture will develop through the consideration and examination

of wireless technologies, including 802.11 (also known as Wireless Fidelity or Wi-Fi),

and 802.16 (also known as Worldwide Interoperability for Microwave Access or WiMax).

Furthermore, the system architecture will not make any assumptions concerning existing

communications infrastructure in an incident location, and will therefore, attempt to

provide a total and independent solution for personnel working in the area. Kevin Ross,

Assistant Director for Technology, New York State Emergency Management Office states:

From Katrina, we learned that we cannot rely on any specific infras-
tructure: PSTN, radio tower, or other. We need the option of reconstituting
communications from a disaster recovery site that is on a different power grid,
with different phone providers [13].

The proposed system will comply with the requirements set forth in the NIMS

regarding support of the incident command and control structure and the SAFECOM

Statement of Requirements (SoR) regarding public safety communications. Furthermore,

the solution will support the knowledge management tenants of net-centric operations.

Questions to be answered in this thesis include:

• What features are needed in the design of the RNDS to facilitate a hastily formed

network in the wake of a disaster?

• Can a wireless communications system for emergency disaster response, be

implemented using 802.11, and 802.16 technologies?

• How well does the system meet the requirements for a public safety communications

network, as set forth in the NIMS and SoR?

• Can a kit be developed which contains the key nodes for network implementation

while remaining transportable by a small vehicle?

1.3.1.1 Hypotheses for objective 1. It is the authors’ belief that recent

advances in wireless technologies can be used to develop a temporary rapidly deployable
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and interoperable communications network, which meets the requirements set forth in the

NIMS, and SAFECOMs SoR. A wide array of systems and technologies are available

today with varying features. However, it is believed that 802.11 and 802.16 technologies

provide a cost effective, interoperable solution to the hastily formed network problem.

A further goal of this technical solution is to utilize concepts associated with systems

engineering to evaluate the proposed design of the hypothesized system.

This research accesses the current capability of the existing IEEE 802.11 and 802.16

standards to provide a rapidly deployable network for responders. The primary goal of the

assessment is to acquire the capability of the systems in order to describe the design needed

for the RDNS. Therefore, the focus is not on determining detailed technical specifications,

but rather on the general capability of the technologies and what role they play in the

overall solution architecture.

An investigation of the capabilities of the current 802.11 and 802.16 technologies

will be conducted. Next, Department of Defense (DoD) and Department of Homeland

Security (DHS) documents are researched to help determine the capabilities and tasks

needed for a communication system to enable netcentricity. The proposed systems

capabilities will then be compared with those identified in the research. A review will

then be conducted to determine the effectiveness of the proposed solution for a rapidly

deployable and interoperable communications system.

1.3.2 Objective 2, Logical Network Design. The second objective of this

research is to:

1. Develop the empirical foundation for an organizational structure using NCO

concepts and graph theory metrics.

2. Computationally model the structure using the disaster response context.

3. Analyze the model metrics and explain results.
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4. Explain how the physical implementation of communication equipment can add to

or detract from global situational awareness.

1.3.2.1 Approach. The first step is building a model that will describe

disaster response as a graph where responders and command and control are vertices

with attributes that correspond to the various tasks in the affected area. The model

consists of three layers. The top layer is the organizational/people layer. The vertices

in this layer represent responders assigned to tasks in the affected area and the command

and control entities to whom the responders report. These same command and control

entities also serve as the problem resolution point for issues that cannot be solved by a

responder entity independently. The vertices in this layer are linked by edges that represent

communications paths between entities in the organization. At this organizational/people

layer communications edges are based on the organizational structure. Initially the edges

are bidirectional from one level of hierarchy to the next. This serves as the baseline

graph for this layer. The next layer is the physical layer. The vertices in this layer are

again responders and the associated command and control entities. The links between

any two vertices represent the ability of vertices to communicate based on the physical

communications equipment available. The baseline for this layer of the network is a fully

connected graph. Excursions that eliminate edges are conducted to determine the effects

of incompatible equipment and damaged physical infrastructure. The third layer is the

process layer. This layer represents the rules governing which responders should be able

to collaborate without going through command and control (C2).

1.3.2.2 Use Cases. The following scenarios are considered in the model:

• Scenario 1: Baseline case.

– Organizational layer: Responders are only allowed to connect to their assigned

C2.

– Physical layer: This layer has fully connected, ubiquitous communications.
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– Process layer: All information a responder receives or sends is to or from C2.

• Scenario 2:

– Organizational layer: Responders are only allowed to connect to their assigned

C2.

– Physical layer: This layer has fully connected, ubiquitous communications.

– Process layer: Responders are grouped by proximity. 50% of the information

sent from responder is to command and control and 50% goes to other

responders in the same proximity group.

1.4 Scope, Assumptions, and Limitations

This research is focused on evaluating the possible ways of organizing the communi-

cation patterns of a network of responders. Disaster relief operations, Hurricane Katrina

Relief in particular, provide a context for studying this problem, however, the results of

this research are not intended to be a recommendation for changing the National Incident

Management System, Incident Command System or the way functional experts perform

their specific tasks. Furthermore, this research is not intended to propose a specific

material solution to the problem of disaster relief communications.
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II. Literature Review

2.1 Overview

The problem of creating hastily-formed collaborative networks is investigated in

the context of disaster response in this thesis. This problem has both a technical and

a knowledge management aspect. The National Incident Management System (NIMS)

is briefly described along with a survey of problems discovered with it in the wake

of 9/11 and Hurricane Katrina. A common finding in these reports is that there is an

overall lack of communications system interoperability nationwide throughout the disaster

response community. These reports as well as current issues and initiatives in public

safety communications are discussed below. A hypothesis of this thesis is that there is

an organizational aspect of this problem as well. The basis of this hypothesis is the

authors’ familiarity with the area of network-centric operations (NCO). The analogy

drawn between the domains of warfare and disaster response are substantiated, and

relevent research in NCO theory is presented.

2.1.1 The National Incident Management System. The system under consid-

eration in this research is based on the NIMS, which is “a consistent, nationwide approach

to domestic incident management that is applicable at all jurisdictional levels and across

funcitonal disciplines in an all-hazards context [25:p. 1].” Specifically,

[The] system will provide a consistent nationwide approach for Federal,
State, and local governments to work effectively and efficiently together to
prepare for, respond to, and recover from domestic incidents, regardless of
cause, size, or complexity. To provide for interoperability and compati-
bility among Federal, State, and local capabilities, the NIMS will include
a core set of concepts, principles, terminology, and technologies covering
the incident command system; multiagency coordination systems; unified
command; training; identification and management of resources (including
systems for classifying types of resources); qualifications and certification;
and the collection, tracking, and reporting of incident information and
incident resources [25:p. 1-2].
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Research suggests that the major problem in implementing the NIMS during a

major disaster or incident of national significance is inability to communicate. A typical

example of this body of work is a study that considers, among other jurisdictions,

Arlington County’s After Action Report for the 9/11 disaster. This study identified “voice-

oriented communications, limited situational awareness, and interoperability [as] three

major problem areas of emergency response prevalent across the country [8:p. 255].”

Analysis of the Hurricane Katrina response shows that the same problems existed almost

four years after 9/11 and still exist today.

2.1.2 Hurricane Katrina Response. Hurricane Katrina is one of largest natural

disasters in U.S. history. The storm’s destruction covered approximately 90,000 square

miles of Louisiana, Mississippi, and Alabama. This incident stressed the capabilities

of National Response Plan (NRP) and Incident Command System revealing numerous

weaknesses in the nation’s ability to deal with a catastrophic event [39:p. 4].

Government Accountability Office (GAO) analysis of the challenges evident in the

Hurricane Katrina response reveals four areas for improvement:

• Clearly defining and communicating leadership roles, responsibilities, and lines of

authority for response in advance of a catastrophic disaster

• Clarifying the procedures for activating the National Response Plan and applying

them to emerging catastrophic disasters

• Conducting strong advance planning and robust training and exercise programs

• Strengthening response and recovery capabilities for a catastrophic disaster [65].

The last of these areas, strengthening response and recovery capabilities, includes

emergency communications [65:p. 9]. Katrina caused widespread damage to existing

communications infrastructure including landlines and cellular telephone towers resulting

in oversubscription on emergency radio systems. Loss of robust communications

capabilities prevented communication between local, state and federal responders slowing
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the upward flow of situational awareness information discovered at the local level. This

further inhibited responder ability to establish broad situational awareness regarding the

extent of the damage due to lack of feedback.

The GAO report indicates that the first priority of disaster response agencies should

be to establish operable telecommunications with sufficient capacity to meet everyday and

emergency communication requirements. The second priority should be ensuring interop-

erability between and service agencies in real time. Hurricane Katrina rendered much

of the existing telecommunicaitons infrastructure in Louisiana, Mississippi, and Alabama

useless making real-time communication within and between agencies impossible. The

GAO report cites this as one area where military capabilities could be used [65:p. 17].

Although the military response to Katrina was massive, the forces that arrived in

theater did not integrate well with local and state responders. State plans for integrating

federal resources did not anticipate the numbers of federal responders that flooded the area,

and had no way of tasking or tracking them. Furthermore, most military communications

equipment was not compatible with civilian systems. In some cases mobile communi-

cations vans that could connect incompatible systems were available but not adequately

coordinated. Some sites had multiple systems while others had none. Adding to this

challenge were restrictions placed on some of the deployed National Guard assets that

their equipment could only support the sending state’s units. The lack of communi-

cation did not in many cases prevent military units from acting on their own, though it

did prevent communication up the chain regarding the status of ongoing missions and

what new missions needed to be resourced [33:p. 25-26].

This requirement for improved communication capabilities is not new. Prior to

Katrina the Department of Homeland Security listed interoperable communications along

with strengthened information sharing and collaboration as two of the seven priorities for

enhancing national first responder preparedness [39:p. 10]. In testimony before the Little

Hoover Commission about the challenges of responding to major emergencies, the GAO

expounded upon the need for interoperability, stating that effective communications is not
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necessarily the ability to talk with everyone all the time, but “the ability to talk with whom

you want, when you want, when you are authorized [39:p. 6].”

This chapter first addresses the issue of fully interoperable communications that

would allow anyone in the network to communicate with anyone else. Such an infras-

tructure, or infostructure, is the first step in solving these problems. As the GAO report

points out, though, ubiquitous communications are not the end-all solution. Decisions

about who communicates with whom, when, and about what are also needed to provide

effective communications.

2.2 Public Safety Communications

2.2.1 Overview. There are more than 18,000 law enforcement agencies and

32,000 EMS agencies in the United States [28]. The vast majority of them utilize

communication systems that underwent a stove-piped acquisition process. The result is

fragmented Public Safety community with very little interoperability between systems.

These systems operate in various frequency bands as well as use various, incompatible

technologies. In order to better understand the current environment of Public Safety

communications, a discussion of some of the differing methods and technologies for

communicating follows. Some of the technologies are somewhat simple but lessons can

be learned from them concerning the design of future systems. Table 2.1 shows a list of

the common frequencies used by public safety agencies:

Table 2.1: Public Safety Frequencies [37]
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Each of the various frequencies has its advantages and disadvantages. In particular,

low frequencies have longer wavelengths and tend to propagate further. However, they

are more susceptible to atmospheric disturbances. On the other hand, high frequencies are

less susceptible to atmospheric disturbances, but have a relatively short communications

range. Other criteria for frequency selection are summerized in Table 2.2.

Table 2.2: Frequency Selection Criteria [37]

The UHF and VHF bands have traditionally had the most usage by public safety

agencies. However, newer systems tend to operate in the 800 Mhz range as well as the

2.4 Ghz range. These higher frequencies allow for more channels to be used within the

band. However, the two frequency bands are also shared with other common devices

such as cell phones, cordless phones, and WiFi devices. As seen in 2.2, the channel

separation in the 800 Mhz band ranges from 25 Khz down to 6.25 Khz. Small channel

separation leads to lower amounts of available bandwidth within the channel. Bandwidth

can be seen as the amount of information carrying capacity of a channel. The higher the

bandwidth, the more information can be sent over the channel. Originally, the Federal

Communication Commission (FCC) authorized the 25 Khz channel separation. But, due

to overcrowding of the spectrum, the FCC is now requiring future systems to operate with

6.25 Khz channel spacing. This move will allow for more available channels, but at a

cost of bandwidth. Future communications systems will have to be designed to handle

large amounts of traffic, including voice, video, images, and text. Therefore, the use of
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higher frequencies which support greater channel and bandwidth proportions need to be

considered in the design of new communications systems.

2.2.2 Transmission Methods. The two primary methods for data transmission

are analog and digital. Emergency response radio systems throughout the Nation use

both of these techniques to communicate. However, the two transmission methods are

not directly compatible. The use of special equipment is needed to convert between the

two. Analog transmissions involve the use of a continuous wave to communicate across

the medium. Human voice is an example of a signal, which is traditionally transmitted

with analog technology. Typical speech ranges in frequency from about 300 to 3000

hertz. With analog transmission, a resulting speech waveform is modulated via various

techniques, onto a frequency called the carrier, and then transmitted. At the receiving end,

the signal is de-modulated, or separated from its carrier, and consequently heard through

a speaker device. The device responsible for the modulation and demodulation is called a

modem.

With digital transmission, signals are transmitted across the medium in a series

of discrete waveforms. All data is represented as a series of 1s or 0s, which could

be interpreted as a set of positive and negative voltages. This series of positive and

non-positive waves are transmitted and reproduced to its original state at the receiver.

Voice can also be transmitted digitally by using a process called sampling and amplitude

quantization to reproduce the analog waveforms shape. The analog waveform of a voice

signal is sampled, or measured at very small, constant intervals, typically 8,000 times per

second. As the number of samples per interval increase, so does the accuracy of the analog

waves reproduction. Next, the measure samples are quantized, which means that they are

converted to a form to be stored digitally. These digital signals are then transmitted to the

receiver.

Digital transmission has distinct advantages over analog transmission methods.

In particular, as an analog signal propagates through the medium, its quality begins
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to gradually decrease with distance as the signal power decreases and the signal noise

increases. Thus the signal becomes more difficult to understand. However, the discrete

nature of digital signals allow for them to be interpreted clearly up to the point where

signal power fall below the detectable threshold. This threshold is normally at a further

range than where analog signal can be detected (Figure 2.1).

Figure 2.1 shows a list of the common frequencies used by public safety agencies:

Figure 2.1: Analog versus Digital Propagation Distance [37]

The capability to transmit binary is part of the new P25 standard being dictated by

the Department of Homeland Security for public safety radios. This new capability will

allow emergency response agencies to better gain wireless access to the web, as well as

allow for efficient transmission of data across the wireless medium.

2.2.3 Communications Systems. There are a number of systems in use today

by Public Safety agencies for communications. These systems can be linked together to

cover very large distances. For example, an entire portion of a state may be using one

of the many systems to provide communications to its emergency response personnel.
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The following examples represent the underlying concept of how each individual system

works.

2.2.3.1 Simplex systems, non-repeater . Simplex radio systems operate

on a single frequency at a time. They are essentially “walkie-talkie” type devices in which

a user transmits over the frequency. Every other user on the same frequency will hear

the transmission, as long as they are within reception range of the signal. The typical

effective range of simplex radio systems is 2-4 miles line of sight. In order to increase

range coverage, a central base station, which normally monitors all frequencies in use,

has its antenna elevated. If two users, who are out of range of one another, wish to

communicate, they must relay their transmissions through the person operating the base

station. Therefore, mobile to base station communications are the most efficient ways to

ensure all users on a channel hear the communications. Figure 2.2 shows a typical simplex

radio communication system.

Figure 2.2: Simplex Radio Communications

2.2.3.2 Simplex system, repeater. Simplex radio systems can utilize a

repeater device to extend communications ranges. The repeater is placed at an elevated

point in the operating area and transmits at high power settings to ensure longer-range

coverage. The system requires two different frequencies to operate. If a user wants

to talk to another user, he transmits on one of the frequencies. The repeater hears the

transmission, amplifies it, and rebroadcast it on a second channel. All radio in the
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Figure 2.3: Conventional, Repeater System extends range.

reception area of the repeater will receive the transmission. Figure 2.3 depicts how a

conventional repeater system works. In general, the repeater extends the effective range

of radios, thus allowing more users to share the channel.

Repeater based simplex systems suffer from the same problem as non-repeater based

systems. Since many users are sharing the same channel, a person has to wait his turn

before he can speak. This problem increases rapidly as the number of users grows, when

the average length of a transmission increases, or the frequency of transmission increases.

2.2.3.3 Trunk System. Trunk radio systems where designed to provide

more efficient usage of the available channels assigned to an agency. Personnel using

a trunk radio system are divided into user-groups. Instead of each user group being

assigned to a specific channel for coordination purposes, the system automatically and

dynamically assigns channels to users, based on demand. Take for example a small

town, which has five fires in progress at the same time and in close proximity. Each

fire incident requires a single channel for coordination purposes. If the responding agency

were assigned only four channels for usage with a simplex system, two of the incidents

would have to share channels. However, with a trunk radio system, each of the personnel

at a particular incident would be assigned into a user group. Even though there are five user

groups and three frequencies, there is not a problem. In a trunked system, the channels

are not assigned, but rather exist as a pool of resources to be used as needed. So, if a
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person in a particular user group wishes to communicate, the system automatically finds

an unused channel and provides it for use to the group. When the user stops talking on

the channel, it goes back into the pool of resources. In order to get access to a channel,

when the user presses his button to talk, a short message is sent on a control channel to

the trunking system. The message contains the users group identification and indicates a

desire to talk. The system then automatically assigns the frequency. The entire process

happens very quickly and a user can generally start communication within one quarter of

a second, providing a channel is available. In general, trunking system allow for more

users to communicate effectively on a fewer channels. The major companies providing

trunked systems to agencies include Motorola (SmartNet and Astro P25 Trunking), MA-

Com (Enhanced Digital Access Communications System (EDACS) and a system known

as OpenSky), and E.F. Johnson Trunking (MultiNet) [56]. These systems are primarily

proprietary solutions, which may not be interoperable with one another. Figure 2.4 shows

a trunked radio system.

Figure 2.4: Trunked System Operation
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2.2.4 Efforts for Interoperability. There are a number of systems and strategies

in use today by agencies to try to obtain interoperability. Simple solutions consist of

agencies exchanging some of their radios with each other on an as needed basis, or

permanently loaning radios to neighboring agencies. Other solutions consist of utilizing

stationary or vehicle-mounted equipment, which incorporates patching hardware and

software, to interconnect varying systems. Agencies with the capital to do so may

also purchase radios that have limited patching capabilities built in them. However,

patching techniques can have certain drawbacks, including annoying transmission delays

as the system performs its interconnections. This often results in the truncation of the

beginning of transmissions. Also, the patching system often does not relinquish the

channel immediately following a transmission over a trunked system. The result is channel

access delays as experienced by users. There are also certain features of trunked systems

that do not perform well over patches. All in all, patching techniques have had mixed

success in public safety communications [56]. The better solution is to build with interop-

erability from the ground instead of trying to link incompatible devices together. This

research utilizes DoD capabilities analysis methods to suggest a solution to the interoper-

ability problem.

2.3 Organizational Aspects and Network Centric Operations

While interoperable communications equipment is one of if not the most significant

problem surrounding NIMS implementation, it is not the only one. A working hypothesis

of this research is that there is an organizational component as well. Compagnoni suggests

that the complexity of a major disaster response is analogous to that of modern warfare,

and points toward the U.S. military’s network-centric operations (NCO) theory as an

avenue of approach to the problem. The NCO body of knowlege supports this research by

describing a dual-pronged approach consisting of both human and technical aspects [20].

This approach is also consistent with systems engineering best practices, which specify
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defining both functional (human) and physical (technical) architectures that combine to

form a complete operational architecture.

2.3.1 Network-Centric Operations Theory. Application of the Department of

Defense’s (DoD) NCO theory to the NIMS is suggested by Compagnoni who both partic-

ipated in and subsequently studied the Hurricane Katrina response. He finds the top-down

hierarchy described in the NIMS to be unresponsive in the chaos of a major disaster, and

suggests application of net-centric and knowledge management concepts at the local level.

He described the NIMS as

an inverted pyramid of resources–ultimately, all resources come to rest on the
local jurisdiction and under the leadership of the Incident Commander who
must instantly integrate the vast network of resources [16:p. 3].

Local Incident Commanders are neither organized, trained, nor equipped to digest the

glut of resources sent to local jurisdictions as seen in the Hurricane Katrina response.

He concludes that “this approach fails to display the agility and flexibility needed at the

tactical level of a major disaster [16:p. 60].”

A solution proposed by the DoD to create agile organizations is NCO theory. NCO

begins with the Tenets of Net-Centric Warfare, which state:

• A robustly networked force improves information sharing.

• Information sharing and collaboration enhance the quality of
information and shared situational awareness.

• Shared situational awareness enables self-synchronization.

• These, in turn, dramatically increase mission effectiveness [2:p. 5].

As evidenced in the first bullet, NCO theory views organizations as networks of

people and suborganizations. These people/suborganizations, represented as nodes in the

network, relate to and communicate among one another in some formal way. These

relationships are represented as links, or edges, between the nodes. Together, nodes

and edges form the network’s topology, which affects the organization’s performance.

According to Alberts,
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networks with different characteristics correspond to different organizational
structures that inherit the characteristics of the network...How organizations
function is affected by the connections that exist or do not exist, and how these
connections are utilized [1:p. 182].

When one thinks of a hierarchical organizational structure or topology, one usually

thinks of an “org chart” with the boss at the top, the workers at the bottom, and lines of

authority and communication running vertically. This structure is typical of both govern-

mental (e.g. NIMS) and private sector organizations that evolved over the past 200 years,

beginning with the industrial revolution. Its topology is hierarchical, and it is often referred

to as “Industrial-Age.” The concept was conceived by Adam Smith and perfected by

Henry Ford and Alfred Sloan to manage the complexity of mass production. This structure

evolved in and was reinforced by a predictable mass market of the latter 20th Century.

In their groundbreaking work on business process reengineering, Hammer and Champy

illucidate the following:

The reality that organizations have to confront [now], however, is that the old
ways of doing business simply don’t work anymore. Suddenly the world is a
different place...nothing is constant or predictable [35:p. 18-20].

In their work on NCO theory, Power to the Edge, Alberts and Hayes similarly conclude

that

if the situation/task is a familiar one, then hierarchies can perform very
well...Information needs, as formally expressed by the essential elements of
information and information exchange requirements, are likely to be well
known. Thus, it is likely that the right information is provided to the right
entities at the right time...All of this changes when hierarchies are faced with
unfamiliar tasks or need to perform in an unfamiliar situation [1:p. 219].

“The goal is not to be able to perform well in a particular mission in a particular situation,

but to create an organization that is agile [1:p. 180].” This research takes a bottom-up

approach to suggesting a an agile organizational topology.

2.3.2 Human/Organizational Aspects of NCO Theory. The DoD is using

NCO to shape the future force, publishing a series of Joint Concepts that address NCO
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implementation over the next 10 to 20 years. These concepts emphasize both the

human and technical aspects of NCO: “Net-Centric capabilities focus directly on human

interaction through knowledge sharing enabled by the dramatic advances in information

technology [20:p. 1].” The Network-Centric Environment Joint Functional Concept

(NCE-JFC) best describes the roles and responsibilities of individuals and suborgani-

zations operating in such an environment:

Individuals in the Net-Centric Environment have decision rights and
responsibilities and will be empowered and enabled to act freely in making
decisions. They have the responsibility to make those decisions within the
context of command intent and to share situation understanding across the
Joint Force and its mission partners. These rights and responsibilities apply to
both the formal command and control process and to less formal collaborative
decision structures. Decisions in the Net-Centric Environment are heavily
influenced by dynamic, self-defining patterns of collaboration [20:p. 15].

This excerpt points to three seminal concepts that spawned this research effort. The

first is that individuals in the net-centric environment have decision-making responsi-

bility and must collaborate to fulfill that responsibility. Second, individuals and suborga-

nizations must be tied to a command and control structure from which they receive

“command intent” and through which they pass “situation understanding” to the rest of

the network. Finally, the relationships among individuals in the net-centric environment

are “dynamic and self-defining.”

The individuals and suborganizations are called Communities of Interest (COI). A

COI “consists of a group of people [individuals or suborganizations] who interact [or

collaborate] for a common purpose and/or interests, typically because of interdependent

tasks [21:p. 15].” Collaboration is a key construct in this research. Collaboration can

be almost anything that net-centric entities share: information, resources, personnel, etc.

A collaboration is anything that is useful in making a decision, solving a problem, or

performing a task. It is the lifeblood of the agile organization; it is what flows through the

organization.
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COIs relate to each other through collaborations and are the building blocks of NCO

organizations. How they fit together is the subject of much study (including this research)

and debate. While a great deal of work is being done on the problem, specific solutions

are not immediately forthcoming. The NCO Joint Concepts along with documents such

as the Network Centric Operations Conceptual Framework (NCO-CF) suggest directions

for study and experimentation [34]. They suggest concepts, hypotheses, and high-level

metrics that researchers and developers might use to contribute to the body of knowledge.

This research effort builds not only upon the high-level concepts but other work that

suggests more specific structures and metrics.

One such structure is the small world network where tightly clustered communities

are connected by “weak ties” to other tightly clustered communities leading to short

geodesic distances (number of hops) between any two actors in the network. Small

world networks occur frequently in nature, and are thought to provide high flexibility

and agility. Small world networks have received attention from NCO theorists for several

reasons. First and foremost, they may facilitate both the control structure and operational

agility sought in today’s uncertain environment [4:p. 173]. Next, they are characteristic

of naturally-occurring social networks; people naturally organize themselves into small

world networks. Finally, they do not depend entirely on chance as do other types of

networks [4]. Agile, rule-based organizations can, theoretically, be designed using the

small-world construct. Returning to the NIMS domain, Compagnoni writes,

Perhaps the use of hierarchies is sufficient at the federal and state levels
because of the stable environment, but crisis conditions at the local level
should lead us to consider employing an all-channel network to improve
organizational agility and resilience [16:p. 66].

This thought, that an organizational topology can simultaneously provide control structure

and operational agility, forms a pillar of this research.

Watts provides the definitive treatment of small worlds networks. He points out

that the most significant problem in studying social networks empirically is in defining

what constitutes a relationship or the social “distance” between two entities [67:p. 22].
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Watts does not therefore focus on an empirical study of real networks, but a theoretical

study of network constructs. He simplifies the problem by classifying graphs into two

broad categories: relational and spatial. Watts creates relational graphs by assuming that

network nodes are either connected or they are not; entities either know each other or

they do not. This allows global-level relationships that are independent of node attributes,

the strength of a relationship, ability to communicate, etc. Moreover, in Watts’ model

these relationships are random. He randomly rewires graph edges to create global links

between nodes. Watts explains that the “dual concept of two length scales (local and

global) coexisting in a graph is the key to explanations of length and clustering phenomena

[67:p. 96].” Surprisingly the small world effect presents itself when only a few such global

edges (less than 10 percent) are created [67].

Spatial graphs, however, rely on distance metrics. Nodes are related in some way,

and the strength of these relationships is significant. The easiest concept to understand and

the one used in this research is geographical distance. If two entities are geographically

close to each other, they are connected. Watts explains that for spatial graphs

edges can never connect verticies from distant parts of the graph until that
length scale is made sufficiently large that it encompasses the entire graph.
By that stage, the graph is no longer clustered [67:p. 96].

In order for geodesic distance to be reduced, longer connections must be made; when

longer connections are made, clustering increases, but so does network density. The

graph becomes not a network of small interconnected clusters, but one big cluster. The

global topology takes on the characteristics of the local topology, and instead of having

tight communities connected by weak ties, the network becomes one big tightly clustered

community. Such an organization is neither structured nor agile, which are the goals of

net-centric operations. This discussion points to two network characteristic metrics that

are important in this research: clustering coefficient and density.

In summary, relational graphs can exhibit small world characteristics; spatial graphs

cannot. The types of networks discussed in this research exist in geographical space. They
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are spatial graphs. Despite this apparent roadblock, the small world concept is useful in the

net-centric discussion. The characteristics of the small world network are tight clustering

and short geodesic distance. The idea of net-centric operations is to form COIs (clusters)

using “dynamic, self-defining patterns of collaboration” linked to a command and control

network, which provides global links to the rest of the network thereby reducing geodesic

distance. The models studied in this research are built upon these concepts.

2.3.3 Metrics. The idea of viewing organizations as networks is now

commonplace. The discussion heretofor has only scratched the surface of the enormous

body of literature on this subject. Consensus is, however, lacking on how to measure

the “network-ness” of an organization, and what constitues “goodness” and “badness” in

network topologies. Watts proposes distance and clustering coefficient to identify and

describe relational small world networks. These metrics prove useful in this research, but

do not show the complete the picture.

NCO theorists propose a model of the net-centric environment (Figure 2.5) that

proceeds from a “force” (read organization) embedded in an environment to its “degree

of effectiveness.” Processes are conducted in the physical, information, cognitive,

and social domains, which compliments and decomposes the previously discussed

knowledge/technology duality. The following definitions are given for the four domains:

• Physical Domain: where effects take place and where other supporting infras-

tructure and information systems exist

• Information Domain: where information is created, manipulated, and shared

• Cognitive Domain: where perceptions, awareness, beliefs, and values reside and

where, as a result of sensemaking, decisions are made

• Social Domain: set of interactions between and among force entities [34:p. 56]
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Figure 2.5: The NCO Conceptual Framework [34:p. 58]

The central element in Figure 2.5, Quality of Interactions, contains the links that

bind individuals to the rest of the network. This is where network entities collaborate. The

NCO-CF proposes four top-level attributes of interactions:

• Depth: measures that describe the nature of the substance of interactions

• Breadth: measures that describe the force entities that interact

• Intensity: measures that describe the pace and completeness of interactions

• Agility: measures that describe the robustness, resilience, flexibility, respon-

siveness, innovativeness, and adaptability of interactions [34:p. 127]

The NCO-CF further proposes subattributes and metrics to evaluate them:

One can see that these metrics are very high-level and quite subjective. Moreover,

the NCO-CF does not propose methodologies for collecting them. Finally, the

metrics themselves imply survey data collected from individuals involved in “live fire”
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Table 2.3: Quality of Interactions: Attributes and Metrics [34:p. 128]

experiments. In short, while the metrics proposed in the NCO-CF point the way for further

research, they have limited utility in their own right. This is actually an achievement of

the NCO-CF as its purpose is not to propose a standard set of metrics, but a framework of

high-level metrics upon which researchers can build.

Wong-Jiru extends the NCO-CF by applying social networking theory metrics to a

multi-layer network model [72]. She uses a set of 12 metrics defined by Hanneman [36]

to develop a net-centric value for each layer of her model. These Nlayer values are rolled

up into a total net-centric score for the system. Her goal is to show how a failure or

perturbation at a lower level of the model affects mission performance at the process layer

where people perform their work. Significantly, she explains how Hanneman’s metrics

might apply to the high-level NCO-CF metrics. Her ideas are crucial to this research

where the Depth and Breath NCO-CF attributes are extended using Hanneman’s social

networking metrics of distance, clustering coefficient (also proposed by Watts), density,

and centrality.

The importance of distance and clustering coefficient to this research have already

been discussed. Density describes is the ratio of the number of edges present in a graph to
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the number of edges that could exist in a graph. When clustering coefficient is compared

to density in a spatial graph one can determine whether high clustering is due to local

or global edge effects. Centrality is used to measure the effectiveness of the command

and control system that provides the global connectivity among the response nodes in the

model. Hanneman explains that as organizations are increasingly viewed as networks,

the position of an entity with respect to all other entities defines its opportunities and

limitations, or its power. A highly central entity has more power [36]. Particularly

germane to this research is the idea of betweenness centrality where an entity is on the

shortest geodesic path between two other actors or it is not. The more of these paths an

entity is on, the more power it has. Hanneman also provides a metric that indicates the

betweenness centrality for the entire graph. The alogorithms for calculating these metrics

are given in Chapter Three of this research.

2.4 Summary

The events of 9/11 and Hurricane Katrina highlight shortcomings in the National

Incident Management System. A common problem identified throughout the literature is

lack of interoperable communications systems. A review of public safety communications

systems shows a myriad of interoperable and non-interoperable systems in use today and

various attempts to patch these systems together. The approach taken in this research is to

use a top-down approach to identify capability gaps and propose material solutions to fill

those gaps. The proposed physical solution provides ubiquitous communications, which

are a necessary but not sufficient condition for an effective disaster response system. NCO

concepts are used to suggest an organizational structure that facilitates effective patterns

of collaboration and improved organizational effectiveness.
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III. Methodology

3.1 Overview

3.1.1 Problem. This research addresses the problem of organizational

performance in unforeseen, unpredicatble, and/or dynamic situations. The context used

is the National Incident Management System response to major disasters (e.g. Hurricane

Katrina) or incidents of national significance (e.g. 9/11).

3.1.2 Goals. This research effort has the following goals:

1. Evaluate technological solutions that provide fully interoperable communications

and enable the collaborations described herein.

2. Evaluate the effect of collaboration while maintaining the integrity of a hierarchical

command and control structure in a disaster response context.

3.2 Physical Solution Evaluation Methodology

The purpose of this section is to detail the methods in which the functional need

of rapidly deployable, interoperable communications systems develops into a proposed

RDNS solution. Furthermore, it evaluates the effects of collaboration in a hierarchical

command and control structure.

3.2.1 Rapid Network Deployment System Concept of Operations. The Rapid

Network Deployment System (RNDS) concept consists of a temporary communications

infrastructure for emergency response personnel, which can be established within a short

period of time following a disaster. In the first hours following an incident, public safety

personnel disperse into the community to provide aid to citizens as needed. At the same

time, designated personnel utilize one or more pre-packaged and pre-configured Rapid

Network Deployment Kits (RNDK) to establish jurisdictional level wireless access nodes.

Each kit contains all the equipment necessary to set up and power a medium-range wireless
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base station. Also, the kits are relatively low cost to purchase and can be maintained by

local public safety officials until needed. Once deployed, the RNDK provides communi-

cations links between emergency responders and establishes a backhaul connection to an

internet point of presence.

3.3 Physical Solution Evaluation Methodology

If the issues of multi-agency incident response and rapid network deployment are

allowed to be paralleled with issues encountered in joint military operations, the tools and

concepts used in the DoD system development process can be referenced. A comparison

of these two arenas is both reasonable and logical in that the overarching capability of the

DoDs future vision regarding information sharing in joint environments contains many of

the same aspects as the DHS’s vision of operations in multi-agency environments. For

example, the DoDs Joint Vision 2020 addresses a faster, more lethal, and more precise

Armed Force in 2020 [17]. This statement applies directly to DHS in regards to incident

response and management. If emergency management agencies are to be faster, more

effective, and more efficient in the future, they must continue to invest in and develop new

capabilities. Joint Vision 2020 also suggests that superior information is the key to military

victory. This holds true in large-scale disasters in that superior information leads to

successful response, management, and recovery from an incident. It has been shown that

net-centric operations, with interoperability, agility, scalability, and rapid deployment as

key enablers, are a primary objective of the DoD. The knowledge management modeling

of this thesis demonstrates how net-centric operations improve the overall effectiveness of

incident responders. Therefore, these same key enablers of net-centricity can be used as

driving forces for our solutions development. The methodology for the Rapid Network

Deployment System (RNDS) begins with a discussion of the DoDs Joint Functional

Concept documents and how they provide a traceable link to an overarching capability

during a system development process. Since the idea of a hastily-formed, interoperable

communications network relates to tenants associated with net-centric environments, a
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parallel may be drawn between the DoD and the DHS views of the topic. Therefore, the

links found in references provides valuable insights into tasks and capabilities needed to

be accomplished with the proposed RNDS.

3.3.1 Methodology Background. The DoD uses the Joint Capability Integration

and Development System (JCIDS) and the DoD 5000 series of instructions as the primary

references to new systems development. JCIDS provides the DoD with a system to

identify, assess and prioritize joint military capability [12]. It uses a top-down approach to

system development which is capability driven vice requirements driven. This approach

aims to prevent stove-piped systems from being developed. According to S1, a concept

is defined as ideas about how something might be done with resources we do not have

yet. JCIDS implementation requires using joint concepts to identify and describe existing

shortcomings and redundancies in

. . . capabilities; describe effective solutions; and provide potential approaches
to resolving these shortcomings [12].

The joint concepts methodology referenced in the JCIDS process is guided by various

documents including Concept of Operations (CONOPS) and the Family of Joint Future

Concept (FJFC). Both of these document sets receive their direction from the overall

DoDs strategic guidance. CONOPS allow the joint community to alter or divest current

capabilities to fulfill a need in the near future. It provides a means to substantiate current

programs. The FJFC is used to underpin acquisition decisions leading to new capabilities

beyond five years. It is hierarchical in nature and provides a deliberate and iterative

process for capability assessment. All new capability requirements ..must relate directly

to the capabilities identified through the FJFC [12]. The FJFC consists of the Capstone

Concept for Joint Operations (CCJO), Joint Operating Concept (JOC), Joint Functional

Concept (JFC), and Joint Integrating Concept (JIC). Each one of these documents provides

a varying level of specificity regarding defining a capability requirement. The CCJO

provides a broad overview of how joint forces are expected operate in the future. It is

informed directly from strategic guidance. The CCJO attempts to transform its strategic
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guidance into concept and policy applicable globally across the DoD. The JOC is the next

level down from the CCJO. It addresses more defined areas of military operations, thus

scoping the CCJO into categories. The JOC identifies challenges faced by the operational

commanders and attempts to address the capabilities needed to overcome them. The JOC

is divided into four major conceptual areas as seen in Figure 3.1. The JFC is the next level

of abstraction after the JOC. Whereas the JOCs focus is at the operational level, the JFCs

focus is at the functional level. JFCs broadly describe functional capabilities relevant

to a specific problem, which are needed to support the concepts in the JOC. They are

divided into eight areas of focus. JICs are the lower level concepts and contain a narrower

perspective of the topic. They describe specific operations, tasks, or functions required to

implement the concepts contained in the operational level JOCs and the functional level

JFCs. In short, JICs are a statement of how something might be done; in particular, it

states how we would like to do that thing in the future [38].

Figure 3.1: Family of Joint Functional Concepts
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The concept documents are used as references and guidance to conduct further

analysis into the JCIDS process. They also lead to the creation of a Joint Capability

Document (JCD). The JCD is used to provide many things, among them being a traceable

link between a capability being accessed and the tasks associated with it.

3.3.1.1 Approach to Solution. One of the hypothesis of this thesis stated

that a temporary, hastily formed, communication network for first responders could be

realized utilizing only commercial-off-the-shelf (COTS) 802.11, and 802.16 technologies.

As mentioned earlier, DHS shares similar communications problems as the military.

However, the authors believe that the DoDs approach for analyzing system solutions

represents a more solid and systematic methodology. With regards to determining

a traceable link between capabilities and associated tasks to be performed, the joint

concept documents are more formalized references than anything found in the civil sector.

Therefore, the hypothesis of an 802.11and 802.16 solution was subjected to the traceability

process of the JCD in order to attempt to discover its overall effectiveness at performing

specific task to fulfill the overarching capability of providing a hastily deployable, interop-

erable communication network for first responders. First, applicable DoDs joint concepts

were compared with concepts of the DHS in order to demonstrate their similarity. This

required a review of applicable documents from the two arenas. Principle documents

used were the FJFC, NIMS, and the SAFECOM SoR. The end result was a traceable

path from overall high level-capabilities to the lower level tasks associated with them.

Next, the tasks needed to enable our desired capability were defined in accordance with

the DoDs and the DHSs ideology on the subject. Finally, the hypothesized solution was

assessed to determine its effectiveness in fulfilling the discovered tasks. This assessment

included documenting technical specifications and features of each sub-system of the

RNDS proposal and determining their overall ability to meet system requirements.

3.3.2 Physical Solution Methodology Scope. The JCIDS development process

is referenced in order to establish parallel traceable links between the DoDs view of a joint
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communications environment and that of the DHS. It was not the intent of the authors to

perform a full JCIDS analysis or a Capability Based Assessment (CBA). Rather, the goal

was to utilize a proven DoD process and the overall format to aid in the discovery of the

tasks involved in realizing a hastily formed and interoperable communications network.

3.4 Knowledge Management Methodology

Results of the physical solution analysis reveal that ubiquitous communications are

possible using technologies described in Chapter Four of this thesis. The question of

how to achieve effective communications remains. This section describes an approach to

answering that question using graph theory and social network analysis techniques.

3.4.1 System Description. The system under consideration is the ICS, the

primary system used in the United States and Canada for the command, control, and

coordination of resources during an incident. Components of the ICS include the organi-

zation, facilities, infrastructure, and resources used to respond to a major disaster or

incident of national significance. This research considers the organizational component.

As discussed in Chapter Two of this thesis, an organization’s structure partly

determines its performance characteristics. The ICS defines the relationships, or social

links, that allow organizational entities to exchange information, or collaborate; the ICS

produces a social network. The ICS also produces a communications network from its

collection of technical components that enable these collaborations. The structure, or

topology, of these two networks together determine the degree of collaboration among

organizational entities and, theoretically, the performance of the system.

A distinction is made between the command and control structure of the ICS and

the “edge” of the ICS where first responders interact with the environment. The command

and control topology, consistent with the ICS, is hierachical; the topology created by

enabling response nodes to collaborate, or the response topology, is the subject of this

research. Since the “as-is” system, the ICS, has a hierarchical topology, the methodology
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begins with the assumption that response nodes do not collaborate with each other; they

collaborate only with their assigned C2 node. The other two topologies, complete and

hybrid, each define a different manner in which response nodes collaborate with each

other. Of these three response topologies, one is analytically found to be most desirable.

This topology is then applied to a complete ICS model and tested using computer

simulation.

3.4.2 Evaluation Technique. The difference between the three topologies is the

method of collaboration. In the hierarchical topology, response nodes cannot collaborate

with each other, while each response node collaborates with all other response nodes

and the C2 node in the complete topology. The hierarchy and the complete topologies

are opposites. The hybrid topology is constructed by allowing some response nodes to

collaborate with each other according to an algorithm described in Chapter Four of this

thesis.

Encarta defines collaboration as “the act of working together with one or more

people to achieve something [52].” All nodes in the system, C2 and response, have both the

ability and the need to collaborate. The ability/need duality of collaboration captures the

dynamics of interpersonal communication. If either party in an interaction is distracted

or otherwise occupied, effective communication does not occur. Information may be

incorrectly conveyed, misunderstood, or just lost. In this research the idea of communi-

cation is extended to collaboration under the assumption that if two entities collaborate

effectively, they must communicate effectively. The number of collaborations, communi-

cations, interactions, relationships, etc., and the amount of information one can process

before misunderstanding or completely missing something is the subject of much study in

the field of cognitive psychology.

The concept of channel capacity introduced in Miller’s seminal work on cognitive

psychology [48] is the basis for quantifying collaboration in this research. The title, The

Magical Number Seven, Plus or Minus Two hints at the content of the paper. Humans
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can only remember about seven (plus or minus two) pieces of information be they digits

in a telephone number or names of people met at a cocktail party. Miller points out that

this number varies depending on context, but makes the point that humans have a limited

capacity to process information beyond which errors are made and/or information is lost.

Without delving into the field of cognitive psychology or performing a work domain

analysis of the emergency response field, an attempt is made to quantify collaboration

in the context of this research by using response nodes as the baseline for collaboration

ability.

Let response nodes have a collaboration need of one unit and a collaboration ability

of one unit. This means a response node can provide one unit of collaboration to its

neighbors and needs one unit of collaboration from its neighbors to effectively serve its

purpose. Similarly, let a C2 node’s ability/need to collaborate be five or less as this is

commensurate with its span of control as defined by the NIMS. If a C2 node has five or

fewer subordinate response nodes, it provides each of them with one unit of collaboration,

and their needs are met. Conversely, the C2 node receives one unit of collaboration from

each of its subordinate response nodes (five or less), and its collaboration needs are met. If

a C2 node has fewer than five subordinate response nodes, there are, by assumption, fewer

than five incidents in that C2 node’s jurisdiction. Less information is in existence, so the

C2 node needs less collaboration. Conversely, a response node handling a single incident

still needs its full measure of collaboration whether other incidents exist or not.

This balanced collaboration dynamic exists in hierachical systems, represented

graphically in Figure 3.2, under circumstances for which they are designed. Figure

3.3, however, shows an overload situation where each C2 node’s ability to collaborate

is divided among more than five response nodes. Its span of control is exceeded. Each

response node now receives less than one unit of collaboration from its associated C2

node. Conversely, if, as this model assumes, each response node also provides one unit of

collaboration, its associated C2 node receives too much collaboration. Overall, the system
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Figure 3.2: Balanced collaboration in hierar-
chical system

Figure 3.3: Overloaded Hierarchy

as a whole is less effective. This research proposes a solution to this dilemma by allowing

response nodes to collaborate with each other thus balancing the system.

3.4.3 Graph Theory Analysis. The purpose of using graph theory is to propose

an optimal response topology, which is then integrated into a complete command and

control system in the simulation study described below. This analysis therefore considers

only one C2 node along with its associated response nodes. The graph theory study

has a one-factor (topology), three-level (hierarchy, complete, hybrid) experimental design

where nodes are the workload on the system and the system response is its abiltiy to

accommodate the nodes based on the metric collaboration capacity.

The organizational topology described in the NIMS is a hierarchy where each

subordinate formally collaborates only with its superior. At the lowest level, the star graph,

Figure 3.4, represents this situation.

In terms of collaboration, a star topology is balanced until the C2 node’s span of

control is exceeded at which point the C2 node is overloaded and the response nodes

are underserved. This analysis proposes a method for balancing the system by allowing

response nodes to collaborate. Collaboration rules among response nodes are varied

to create three different response topologies: the hierarchical topology, the complete

topology (or complete graph), and the hybrid topology. All of these topologies are

based on the star substrate. The metric used to compare these three levels of topology
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Figure 3.4: Star Topology

is system collaboration capacity, CC(G), where G is the graph of the entire system: the

C2 node, the response nodes, and the edges between them. First, a topology-independent

relationship between number of response nodes, n, and maximum system collaboration

capacity, CC(G)max is developed, then the three competing topologies are evaluated to

determine whether or not they achieve CC(G)max.

Let the nodes, C2 and response, represent the load on the system. The system

response is the capacity to meet the collaboration needs of the nodes. A weighted edge

between two nodes represents the system’s ability to meet the collaboration needs of both

nodes. This model assumes that two adjacent nodes collaborate equally and that nodes

cannot be overloaded. This allows the use of a weighted undirected graph for this analysis

where the undirected edge between two nodes accommodates the load of both nodes.

System collaboration capacity, CC(G), is represented mathematically by the sum of the

edge weights:

CC(G) =
e

∑
j=1

w j (3.1)

where w j is the weight of the jth edge and e is the number of edges in G.
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Coincident with its span of control, the C2 node has a load of five collaboration

units (l(C2) = 5), where l(v) is the load on the system produced by node v. Each response

node has a load of one collaboration unit (l(ri) = 1). A node’s load is accommodated by

the edges incident to it where the number of incident edges is the node’s degree, d(v). An

edge’s weight is determined by the load and degree of its incident nodes such that

w j =
l(v)
d(v)

(3.2)

For example, if a C2 node has five response node, its degree is five and d(C2) = 5.

Since a C2 node’s load is also five (l(C2) = 5), the the weight of each edge is one.

This model assumes that load is accommodated to the maximum extent possible

by the edges between response nodes and the C2 node. This assumption captures the

idea that responders collaborate preferentially with the command and control system in a

hierarchical organization. This model further assumes that nodes cannot be overloaded, so

the sum of the edge weights incident to C2 cannot exceed five collaboration units nor can

the sum of the edge weights incident to a response node exceed one collaboration unit.

When a response node is added to the system, an edge is created between it and

C2. When there are five or fewer response nodes, the weight of each edge is one. If there

are more than five response nodes adjacent to C2, by assumption it collaborates equally

among them, but less effectively. Since the model assumes nodes cannot be overloaded,

edges between response nodes and C2 are weighted as follows:

wC2,ri
=

 1 n ≤ l(C2)
l(C2)

n n > l(C2)
(3.3)

When n ≤ l(C2) the system is balanced. As n increases above l(C2), the edge

weights are less than one. While C2’s load is accommodated, each response node has

excess load, le(ri), such that
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le(ri) = 1− l(C2)
n

(3.4)

To balance the system, weighted edges are created between response nodes to

accommodate the excess load. These edges represent collaborations between responders.

A topology-independent relationship is developed between the number of response nodes

and the system collaboration capacity needed to accommodate them. To do this, it is

necessary to consider only the response nodes and the edges among them, or mathemat-

ically, the graph R induced by removing C2 (R = G−C2). The results of this treatment

are presented in Chapter Four of this thesis, and suggest not only an optimal topology but

additional graph theory metrics with which to evaluate simulation data.

3.4.4 Simulation Study. Simulation experiments are used to evaluate the

performance of the ICS using a fixed command and control system and the hybrid edge

topology embedded in a simulated 20 unit by 20 unit geographical space representing

a county-level jurisdiction. Figure 3.2 above shows a sample topology with the fixed

command and control nodes surrounded by 20 randomly located response nodes [numbers

1 - 20 (in red)]. The model space for which a C2 node is responsible is its jurisdiction.

Node number 2001 is the highest level C2 node representing a county-level EOC. Nodes

1001 - 1004 are C2 nodes responsible for a 10 unit by 10 unit space representing municipal

EOCs within the county. Response nodes that represent the first responders are the

workload on the system.

All nodes, C2 and response, have both the ability and the need to collaborate. An

edge between two nodes represents a collaboration. Collaborations are established based

on the response node parameter location, which is randomly assigned to each response

node and determines its relationship to the command and control system and to other

response nodes. A response node has a location within a jurisdiction, so a collaboration is

established between that response node and the C2 node responsible for the jurisdiction in

which it is located.
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In the simulation model the amount of collaboration a node gives to or receives from

its neighbors is quantified using directed edge weights. Using Figure 3.5 as an example,

the star node has two neighbors; its degree is two. It provides each of its neighbors, the

square nodes, with an equal amount of collaboration, represented by the directed edges

from the star to the squares. Assuming the star is a response node with a collaboration

ability of one, the weight of each of these outwardly directed edges is one half. Similarly,

each square node provides each of its neighbors with an equal amount of collaboration. In

this case, however, the square nodes have three neighbors, so the weight of each outwardly

directed edge is one third. Since each square node only provides one third of a unit of

collaboration to the star node, the latter only receives two thirds of a unit of collaboration.

The square nodes, on the other hand, are the victims of “information overload” since they

each receive a total of two and a half units of collaboration. The star node is underserved;

the square nodes are overloaded. The metric used to quantify a node’s performance is its

weighted in-degree, d+
tot , or the sum of the weighted inwardly-directed edges incident to

it. d+
tot represents the amount of collaboration a node receives from its neighbors, which is

a measure of effectiveness in this research.

Figure 3.5: Weighted Edge Calculations

This discussion points to the first experimental factor in this research: the number of

nodes in the system. The set of simulation experiments begins by randomly assigning 20

3-13



response nodes to locations within the model space. Simulation runs are also conducted

using 40, 60, and 80 response nodes. Using a purely hierarchical model where no collab-

orations exist between response nodes, system performance is expected to be inversely

proportional to the number of response nodes in the system. The governing hypothesis

of this portion of the research is that by allowing response nodes to collaborate with each

other, the C2 system is less likely to be overloaded, their collaboration needs are more

likely to be met, and the system as a whole is more effective. An algorithm for creating

collaborations among response nodes is now proposed.

It is assumed that in a disaster response situation responders that are in close

geographical proximity may have the need to collaborate. Closeness is captured in the

second experimental factor, range, R. If the distance between two response nodes is less

than or equal to the range level, a collaboration is established between them. Range levels

tested are 0, 1, 3, 5, 10, and 15 units whereas the simulation space is 20 units by 20 units

with each 1000-level jurisdiction measuring 10 units by 10 units. Range zero represents

the hierarchical topology where response nodes only collaborate with their associated C2

node (unless they are randomly placed in the same location by the model). By comparing

Figure 3.6 with Figure 3.3 above one can see that by changing range from zero to five

individual nodes become much more interconnected and the graph as a whole loses much

of its hierarchical structure. The questions to be answered are:

• How much interconnection (collaboration) is enough?

• How much structural loss is too much?

The final factor is collaboration preference, P, which captures the difference

between a system with a robust command and control system and a more ad-hoc network.

Collaborations between response nodes and their assigned C2 node are either given

preference or they are not. P is therefore a Boolean variable tested using two seperate

model versions. In the integrated version the edge between ri and C2 is weighted such that

the C2 node always receives its full measure of collaboration. Response nodes then share
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Figure 3.6: Loss of hierarchical control. Hybrid Topology: 20 Nodes, Range = 5.

their remaining collaboration with each other. This model version is consistent with the

mathematical model described above. In the ad-hoc variation, the weighted out-degree of

a response node is divided evenly among its neighbors, including C2.

In summary, the simulation study is a three-factor simulation experiment. The

factors are number of response nodes, n; range, R; and collaboration preference, P.

System response is categorized into network characteristics and node effectiveness. The

network characteristics are measured using the social networking software UCINet;

specific network metrics are described below. Node effectiveness is measured using the

average weighted in-degree for a given network iteration also described below.

3.4.4.1 Network Characteristics. The simulated disaster response

environment is first evaluated using the social networking metrics average distance,

density, clustering coefficient, and betweenness centrality. The social networking software

UCINet is used to glean these metrics from the network models in the form of adjacency

matrices created in Microsoft Excel as described in Appendix B. These metrics are defined

as follows [9]:
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• Average Distance: The length of a path is the number of edges it contains. The

distance between two nodes is the length of the shortest path. The average distance

is reported in this research.

• Density: The density of a binary network is the total number of ties divided by the

total number of possible ties.

• Clustering Coefficient: The clustering coefficient of a node is the density of its

neighborhood. A node’s neighborhood is the set of nodes adjacent to it. The overall

clustering coefficient is the mean of the clustering coefficient of all the nodes.

• Betweenness Centrality: Betweenness centrality measures information control. Let

bjk be the proportion of all geodesics linking vertex j and vertex k which pass

through vertex i. The betweenness of vertex i is the sum of all bjk where j and

k are distinct [36]. The routine also calculates the betweenness centrality index

(reported in this research) based on these data.

A limitation discovered during network response analysis is that UCINet is unable

to analyse weighted adjacency matrices when they are in decimal form. The authors

were unable to convert the models without making material changes thus jeopardizing

validity. Unweighted adjacency matrices, where two nodes are either connected or not,

were therefore used by necessity. The effect of this limitation is that this data cannot be

compared quantitatively with the metrics that follow. Significant qualitative information

is gleaned from this analysis, however, that is used to limit the scope of the numerical

analysis that follows. Briefly, the network analysis shows that collaborations beyond

a range of five units creates undesireable network characteristics. Specifically, density

increases to the point where collaborative effects are global, not local. In other words,

beyond R = 5, the system becomes one large cluster instead of four smaller ones. This has

the effect of nullifying the effectiveness of the command and control system as indicated

by the betweenness centrality. These results are described in detail in Chapter Four of this

research.
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3.4.4.2 Node Effectiveness. The simulation model calculates the total

weighted in-degree (d+
tot) of response and C2 nodes. d+

tot is the amount of collaboration a

node can receive from its neighbors. Ideally, d+
tot of any reponse node is one; d+

tot of any

C2 node is five. Since d+
tot of any node is dependent upon the weighted out-degree of its

neighboring nodes, d+
tot is not an independent variable. Hanneman points out that network

data are different from conventional data in that networks studies evaluate the interactions

among actors, not their attributes [36]. Instead of examining individual actors, a network

must be viewed as a sample from the population of all possible networks. The metric used

in this research to measure the effectiveness of a sample network is the average weighted

in-degree, D+
avg, which is the mean of all d+

tot for a sample network:

D+
avg =

1
n

n

∑
i=1

d+
toti (3.5)

D+
avg is calculated for the response nodes in all cases. For the weighted model

where collaborations between response nodes and C2 are preferentially weighted. D+
avg is

unnecessary for the C2 nodes since they are never underserved nor overloaded. Relating

this metric to the research hypotheses:

• Hypothesis One: When span of control is not exceeded, collaborations degrade

effectiveness.

– Only the networks where n = 20 are considered since, on average, the C2 nodes

have five assigned response nodes.

– Only unweighted networks are considered since, when preferentially

weighting the C2 nodes, edge weights between response nodes are negligible.

– As range increases, D+
avg for response nodes is expected to increase above one.

– As range increases, D+
avg for C2 nodes is expected to decrease below five.

– As range increases, density and clustering coefficient should increase;

betweenness Centrality should decrease.
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• Hypothesis Two: When span of control is exceeded, collaborations improve

effectiveness.

– Networks where n > 20 are considered as they consitute systems where

the span of control is exceeded. Two factors are considered in testing this

hypothesis: number of response nodes and range.

– The ad-hoc network (P = 0) described above is considered in this analysis to

eliminate confounding.

• Hypothesis Three: When span of control is exceeded, a robust command and control

system improves effectiveness over an ad-hoc system.

– Networks where n > 20 are considered as they consitute systems where the

span of control is exceeded. The factor considered is preference, P, a Boolean

variable. When edges connecting C2 and response nodes are preferentially

weighted, one version of the model is used; otherwise the other is used.

– When preference is given to collaborations with the C2 node, D+
avg remains

close to one as range increases while D+
avg increases above one when P = 0.

The hypotheses are evaluated in chapter 4 as follows:

• Hypothesis One. A scatterplot of D+
avg versus R is constructed. The results are

compared with those gleaned from the network analysis.

• Hypothesis Two:

– Analysis of Variance (ANOVA) is conducted to determine the sensitivity of

D+
avg to n, R, and the interaction of the two.

– Scatterplots show D+
avg with respect to both n and R.

– Results are compared with those gleaned from network analysis.

• Hypothesis Three:
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– Results of the ANOVA performed for Hypothesis Two are used to compare the

integrated with the ad-hoc networks.

– Scatterplots show D+
avg with respect to both P and R.

– Results are compared with those gleaned from network analysis.
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IV. Results and Analysis

4.1 Physical Solution Analysis Overview

This section begins the analysis of the design requirements and capabilities of a

rapidly deployable public safety communications network. These tasks and requirements

are generated through a review of DoD and DHS documents which trace to the overall

desired capability being enabled. A proposed design solution for the system is also

provided based on the discovered tasks identified in the traceability process. The major

tasks of this section are summarized below. Each one has a definitive role in the discovery

of the proposed solution.

• Concept of Operations: Provide the concept of how the RNDS is implemented to

support a hastily formed, interoperable first responder communications network.

• Capability Traceability: Review applicable documents from the DoD and DHS in

regards to net-centric operations and interoperable communications, regardless of

an existing backbone infrastructure. Show the analogous relationship between the

documents in order to justify the methodology used. Also, use the documents as

foundations for further entry into the capability based assessment.

• Task Analysis: Develop tasks list from the NIMS, ICS and SoR.

• Systems Assessment: Assess 802.11 and 802.16 ability to perform the discovered

tasks.

• Gap Analysis: Determine if any gaps exist between the required capability and the

hypothesized solution.

4.1.1 RNDS Scenario: Provide a Hastily-Formed Communication Network.

The Rapid Network Deployment System (RNDS) concept consists of a temporary

communications infrastructure for emergency response personnel, which can be

established within a short period of time following a disaster. The following scenario
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demonstrates how the concept can be used to create a wireless network for public safety

personnel. A category five hurricane has struck a coastal city and has caused widespread

destruction. The disaster spans approximately 25 square miles and has damaged a major

electrical distribution station, resulting in the loss of electricity throughout much of the

area. In the first hours following the incident, public safety personnel disperse into the

community to provide aid to citizens as needed. At the same time, designated personnel

utilize one or more pre-packaged and pre-configured Rapid Network Deployment Kits

(RNDK) to establish jurisdictional level wireless access nodes. Each kit contains all

the equipment necessary to set up and power a medium-range wireless base station

and is maintained by local public safety officials until needed. Once deployed, the

RNDK provides communications links between emergency responders and establishes a

backhaul connection to an internet point of presence, thus allowing users access to remote

data. As public safety personnel arrive at an incident area, they communicate with one

another by using WiFi enable devices with Internet Protocol (IP) support. However,

it is envisioned that emergency response personnel will connect to the network via a

standardized Public Safety Communications Device (PSCD). These devices provide a

host of rich features, including data and IP based voice support, which enhance overall

user situational awareness and allow for the implementation of net-centric organizational

concepts as discussed in the knowledge management section of this thesis. Also, RNDS

components utilize smart technologies to auto-configure themselves and to auto-connect

to desired available networks. After authenticating to the network, public safety personnel

use services such as person-to-person calls, group-calls, and calls to individuals on the

public switched telephone network (PSTN). Other features include caller identification,

caller location, and geographic information system (GIS) mapping overlays with public

safety personnel positional data.

4.1.2 Tracing Capabilities and Associated Tasks and Requirements from DoD and

DHS publications. As mentioned previously, the DoD uses the JCIDS process to

provide the guidance for system development. Borrowing from the ideology contained
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in the FAA a review of the FJFC documents was initiated in order to provide a traceable

link between the capabilities needed for a RNDS and the tasks associated with realizing

the capabilities. However, because the problem was not a military problem but rather

one synonymous to a military problem, comparable documents, which guide DHS, were

identified and referenced for analogous correlation.

First, the applicable guidance from the DoDs perspective which led to a similar

capability requirement as that of the DHS was referenced. Each of the DoD documents

referenced provide a varying level of scope of the problem. Therefore, a top-down

approach began the process in accordance with the levels shown in Figure 4.1.

Figure 4.1: Overview of Family of Joint Functional Concepts

4.1.2.1 Broad Statement of How to Operate in the Future. The Capstone

Concept for Joint Operations (CCJO) provides the DoD with guidance on how to operate

in the future. The central idea submitted in the document is:

The joint force, in concert with other elements of national and multinational
power, will conduct integrated, tempo-controlling actions in multiple domains
concurrently to dominate any adversary, and help control any situation in
support of strategic objectives.

Primary direction from the CCJO includes the fundamental joint actions:
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• Establish, expand, and secure reach. This action describes the
ability of the joint force to access, coordinate and employ essential
capabilities available inside and outside the operational area to shape
an environment.

• Identify, create, and exploit effects. This action describes the ability
of the joint force to integrate joint capabilities with those of other
instruments of national power to create a desired change in the
operational environment or prompt a desired action by an adversary or
others.

• Conduct integrated and interdependent actions. Integrating joint
force actions toward a common goal maximizes the complementary
and reinforcing results of those actions, enhancing effectiveness and
providing a bigger bang for the buck, a quality especially critical to a
force operating globally with finite resources [19].

The document which most parallels the CCJO and provides a broad statement of

how public safety personnel will operate in the future is the Presidential Directive for

Homeland Security 5 (HSPD-5). This directive was issued by President Bush in 2003 and

is used for the guidance of how homeland security is addressed in the future. It is clear

that the primary underlying theme of the HSPD-5 is also coordination as evident in the

following excerpt:

The objective of the United States Government is to ensure that all levels
of government across the Nation have the capability to work efficiently
and effectively together, using a national approach to domestic incident
management. In these efforts, with regard to domestic incidents, the United
States Government treats crisis management and consequence management
as a single, integrated function, rather than as two separate functions. . . . the
Secretary is responsible for coordinating Federal operations within the United
States to prepare for, respond to, and recover from terrorist attacks, major
disasters, and other emergencies. The Secretary shall coordinate the Federal
Government’s resources utilized in response to or recovery from terrorist
attacks, major disasters [54].

4.1.2.2 Broad Description of Joint Operations. Joint Operating Concepts

(JOC) provide the military with a broad description of Joint Force Operation. With regards

to the concept of operations of the RNDS, the Major Combat Operations (MCO) JOC is

most applicable.
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This concept emphasizes the need to incorporate joint, interagency, and
coalition power to achieve desired outcomes rather than to simply accomplish
discrete tasks [18].

The underlying theme of the MCO JOC is:

. . . achieve decisive conclusions to combat and set the conditions for decisive
conclusion of the confrontation; use a joint, interdependent force that swiftly
applies overmatching power simultaneously and sequentially, in a set of
contiguous and noncontiguous operations [18];

The theme relies on effective and efficient coordination and collaboration between

elements of the joint force. It involves exploiting the capabilities associated with an

integrated team to totally overwhelm the enemy. The National Response Plan (NRP)

parallels the MCO JOC. Its primary goal is to provide guidance for DHS personnel to:

establish a comprehensive national, all-hazards approach to domestic
incident management across a spectrum of activities including prevention,
preparedness, response, and recover [26].

Key ideas expressed in the NRP which relate to the RNDS include:

• Maximize the integration of incident-related prevention, preparedness, response,

and recovery activities.

• Improve coordination and integration of Federal, State, local, tribal, regional,

private-sector, and nongovernmental organization partners.

• Improve incident management communications and increase situational awareness

across jurisdictions and between the public and private sectors.

• Facilitate emergency mutual aid and Federal emergency support to State, local, and

tribal governments.

• Facilitate Federal-to-Federal interaction and emergency support.

4.1.2.3 Broad Description of Enduring Joint Functions. The net-centric

Environment JFC (NCE JFC) provides the description of joint force functions for the DoD,
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which would best relate to the RNDS. The central idea of the NCF JFC establishes that

there are two important areas that must be brought together in order to increase mission

effectiveness and efficiency.

If the Joint Force fully exploits both shared knowledge and technical connec-
tivity, then the resulting capabilities will dramatically increase mission
effectiveness and efficiency [22].

These two areas are the knowledge area and the technical area. The RNDS addresses

the technical area and therefore would subscribe to tenants addressed in the NCE JFCs

technical section. The NCF JFC lists multiple capabilities needed for the joint military

forces to enable the net-centric environment. They are used as inputs to the net-centric

Operations Environment JIC in order to develop associated tasks. The DHS has no

apparent parallel document to the NCE JFC. This is because the DHS document speaks of

tasks rather than capabilities. However, common ideology is found in both NIMS and the

SoR.

The net-centric Operating Environment JIC (NCOE JIC) provides the description

of narrowly focused operations and function for the military. It goes into further detail

concerning the tasks involved in supporting the capabilities described in the NCE JFC.

Table 4.1 shows a list of capabilities and tasks as identified in the NCOE JIC, which

are associated with the concept of a rapidly deployable communication network for

emergency responders.

SAFECOMs SoR and the NIMS give detailed descriptions of the functions and

operations of the joint public safety operations. Unlike the NCOE JIC, the SoR and NIMs

identify requirements vice tasks, but, tasks can be extrapolated from the requirements

associated with fulfilling the RNDS concept. The following section discusses the system

requirements as set forth in the SoR and is later used to expand the list of capabilities

and tasks identified in the JIC. The NIMS requirements for public safety networks are

not addressed independently since significant aspects are partial and redundant to the

information in the SoR. Capabilities and tasks are identified from the FJFC documents
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Table 4.1: Net-centric Operating Environment Joint Integrating Concepts [21]

which relate to the RNDS concept from a DoD perspective of net-centric communi-

cations. The following sections provide an overview of the requirements for public safety

communication networks as found in the SoR and gives the DHS perspective of net-centric

communications.
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4.1.3 Network Topology Requirements. SAFECOMs Statement of

Requirements (SoR) says that the emergency responders shall establish the following

networks, as required, when responding to major incidents.

• Personal Area Network (PAN): This is a very short-range network which connects

devices worn by responders. Devices, such as heart rate monitors and GPS position

locators use this network to communicate with the primary radio or Public Safety

Communication Device (PSCD).

• Incident Area Network (IAN): This is a local area network established in the

immediate vicinity of an incident. It is the primary network through which

responders communicate. The short-range communication design of the IAN may

not support all nodes in an incident area. If a node is not able to connect to the

IAN, he transmits his traffic via the jurisdictional area network. IAN devices must

support a minimum range of 250 meters since this is the minimum required length

of a fire hose.

• Jurisdiction Area Network (JAN): This is the main network for responders. It

provides communications to remote areas from the incident location. JANs are made

up of long-range communication nodes and multiple IANs. There may be multiple

JANs within a region and they are assumed to span ranges of 5 to 110 kilometers.

• Extended Area Network (EAN): This network connects local, state and county

jurisdictions. It is expected that the EAN will be connected via long-haul links

such as wire or point to point microwave.

Networks are established depending on the size of the response to the incident.

For small incidents requiring only local interdiction, an IAN may only be necessary.

However, large-scale incidents may require the establishment of multiple JANs with out-

of-area internet connectivity provided by an EAN. Figure 4.2 depicts the natural network

hierarchy.
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Figure 4.2: Network Hierarchy [28]

4.1.4 Network Voice Capabilities. Voice remains the most important

mechanism for mission critical communications [62]. Therefore, it is a requirement for

an effective public safety communications system. In order to send voice over a digital,

wireless network, it must first undergo certain processes and interactions (Figure 4.3).

These processes and interactions alter the voice transmission by injecting unwanted noise

or delays. Any system, which supports public safety communications, is bound by certain

standards concerning the transmission of voice.

4.1.4.1 Speech Encoding. Pre-processing is the first step that digital

speech must undergo. In this step, the signal is detected, cleaned and enhanced. Coding

involves the use of special algorithms, which

seek to minimize the bit rate in the digital representation of a signal without
an objectionable loss of signal quality in the process. High quality is attained
at low bit rates by exploiting signal redundancy as well as the knowledge that
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Figure 4.3: Digital Speech Encoding Process

certain types of coding distortion are imperceptible because they are masked
by the signal [14].

Essentially, the coding process transforms high bit rate digital speech into a lower

bit rate signal capable of more efficient transfer across the medium. The lower the bit rate,

the lower the bandwidth required to transmit the signal. However, low bit rates normally

translate to lower speech quality. There are various speech coding-decoding algorithms,

or speech codecs, in use today and each one has differing levels of compression and sound

quality. A standard system called the Mean Opinion Score (MOS) is used rate the level

of quality of speech. Table 4.2 lists the most common speech codecs and their associated

MOS. G.711 and G.729 codecs provide a level of sound quality sufficient for the public

safety net and are recommended for use.

Table 4.2: Common voice codecs and their mean opinion score
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4.1.5 Network Packet Loss. Whenever information is sent across a network

utilizing the Internet Protocol (IP), it is first segmented into smaller chunks or packets.

This process is called packetization. Each packet consists of a header and the data to

be transmitted. The header informs the network of the address of the device the packet

is destined, the senders address, and the size of the data (in bytes). The entire process

helps to prevent excessive delays in retransmitting data in the event it fails to reach its

destination. Instead of a lengthy transmission waiting to finish before it can be retrans-

mitted, small packets facilitate quick turnaround. From this process, it is evident that larger

packets have different performance over the network than smaller packets. If large packets

are dropped during speech transmission, it becomes more apparent to the listener than if

small packets are dropped. However, smaller packets may require more system overhead

as more packets are needed to transmit the same information. This can lead to greater

transmission delays. Table 4.3 shows the results of a survey conducted by SAFECOM and

contained in the SoR. For a rapidly deployable network for first responders, the minimum

requirement for packet loss should be equivalent to the values needed for a seventy percent

satisfaction rate.

Table 4.3: Packet Loss versus Satisfaction with Digital Voice [28]

4.1.6 End-to-End Delay. End-to-end delay refers to the time required for a

transmission to be sent to the time it is heard. It is also referred to as mouth-to-ear delay.

4-11



End-to-end delays consist of various other delay components including: process delay,

look-ahead delay, transmission delay, and propagation delay. Figure 4.4 shows a graph of

the satisfaction level of customers as compared to the overall delay in the transmission.

The solid line shows a non-packetized voice transmission (as with traditional telephone

service) and the dotted line shows a packetized voice transmission using the G.711 codec

[71]. The graph shows that mouth-to-ear delays of approximately 300 milliseconds equate

to a seventy percent satisfaction rate for packetized data. However, the SoR states that for

mission critical communications, the maximum mouth-to-ear delay should be no more

than 150 milliseconds.

Figure 4.4: Mouth-to-Ear Delays for G.711 and G.107 Codecs [28]

4.1.7 Network Data Capabilities. Data consists of any non-voice related

information transmitted across the network. It includes text, pictures, and video. The SoR

states that both interactive, and non-interactive, data communications must be supported,

and that data communications are becoming increasingly important to public safety

personnel. Therefore, a network designed to support emergency responders must take into

account the bandwidth demands of data users. Pictures and text require relatively small

amounts of bandwidth. The average file sizes for common applications are shown in the

table below. However, interactive, real-time video can put great demands on the network.

Similar to digital voice, video undergoes compression algorithms before it is sent across
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the wireless network. There is a plethora of codecs available for video compression. The

SoR states that a maximum delay of 150 milliseconds is desired for interactive video. The

network should be implemented with a minimum of medium quality video, which can be

accomplished using the H.264 codec.

Table 4.4: Common File Sizes

In addition to the performance requirements identified above, the SoR also provides

many more requirements pertaining to public safety communications networks. However,

they are mostly synonymous with the tasks identified in the NCOE JIC. Therefore, only

the aforementioned requirements from this section are used in conjunction with the JIC

tasks. The gap analysis section of this thesis contains the combined list and provides an

overview of the proposed systems ability to complete each requirement.

4.2 Proposed Rapid Network Deployment System (RNDS)

The Rapid Network Deployment Systems (RNDS) concept of operation consists of

utilizing 802.11 and 802.16 technologies to implement a hastily-formed communications

network. The concept relies on pre-established systems that allow the Rapid Network

Development Kit (RNDK) to enable the network through the establishment of a JAN node.

In particular, the kit contains devices that other client nodes connect to. The following

sections describe the proposed RNDS features and provide information concerning COTS

equipment that can be used in support of the system. In general, users connect to short-

range local area networks, which in turn connect to a jurisdictional area network. The JAN

then connects to an internet PoP directly or through other JAN nodes.
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4.2.1 Public Safety Communications Device (PSCD). PSCD are worn by public

safety personnel and create a local personal area network around the user. Essentially, they

are PDA type devices designed to military specifications for ruggedness. The devices use

both 802.15 (Bluetooth) and 802.11 technologies. Bluetooth, with its range of 30 feet, is

used to connect peripheral devices, such as GPS receivers and vital sign monitors to the

primary PSCD. The PSCD acts as a master station for all of its client or slave devices.

This allows freedom of movement for public safety personnel without a single, large and

bulky unit to carry. PSCDs are not part of the RNDK; they connect to it via Incident Area

Network (IAN) nodes. This connection is made through an 802.11a link operating at 4.9

gigahertz and providing 54 megabits per second of data rate. In the event a PSCD is not

within the range of an IAN access node, it can automatically switch to an ad-hoc mode of

operation and route its traffic through other PSCDs which have links to the access point.

This ability allows for expansion of the local network beyond the direct range of the IAN

access point.

In order to meet the SoRs minimum requirement of 250 meters of coverage over

the 802.11a IAN, a wireless network adapter card with the appropriate transmit power and

reception sensitivity is needed. An example is Ciscos CB20A adapter, which transmits

at 54 megabits per second with a range of over 300 meters. This is accomplished with a

transmit power setting of 13 dbm and the receiver sensitivity set at 1.58 watts [63], (where

dbm is equal to a decibel referenced to 1 milliwatt). This card can be connected to the

PSCD via the devices onboard slots.

Each PSCD is programmed with the users occupation type and unit information.

This information, along with his GPS location data is routinely transmitted over the

network. Each PSCD also contains an interactive display that allows the user to access

Geographic Information Systems (GIS) maps of the area he is located. Overlaid on each

map is the location of all other users on the network. The software application on the

PSCD then can calculate relative distances the user is from others. Communications

groups are also supported by the PSCD. Users can form talk groups, which include persons
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within certain proximities, persons located at a certain incident, or based on persons identi-

fication information. The application software, using information transmitted over the

network, automatically determines the criteria and allows the selection for the user. The

PSCD can also be used to contact any single person in the network by simply selecting

the persons credentials from a stored library of users. The talk group features of the

PSCD enhance individual usability and overall system collaboration as proposed in the

knowledge management aspect of this thesis. Figure 4.5 shows a schematic of a PSCD.

Figure 4.5: Schematic of the Public Safety Communications Device

Currently, the United States Army uses a device similar to the proposed PSCD. The

Armys Commander Digital Assistant (CDA) is a small hand-held computer (Figure 4.6)

which allows for voice communications, blue force tracking via GPS, and a host of other

software enabled features that improve the situational awareness of the user.

Figure 4.6: U.S. Army Commander’s Digital Assistant
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The CDA also can connect to both wireless networks and satellite networks.

Expansion of the CDAs capabilities to include video and voice over IP technologies can

be used to develop the proposed PSCD.

4.2.2 Incident Area Nodes. Incident area network (IAN) nodes are located on

public safety vehicles such as police cars and fire trucks. They link responders within the

incident area to one another and to remote locations, and connect to other incident sites

which are in communications range. The host vehicle supplies power the IAN nodes.

IAN nodes consists of dual mode access points/routers, which support an 802.11a

local network and provide an 802.16 (WiMAX) backhaul link to a jurisdictional area

network (JAN) node contained in the rapid network deployment kit (RNDK). The

proposed access point/router utilizes three separate channels to best support the traffic

demands of the network (Figure 4.7). The communication equipment maker Proxim

makes an access point with these features. The Proxim Meshmax 3500WM Tri-radio,

WiMax subscriber and Wi-Fi Mesh access point uses one of its three channels to support

802.11a connections. This connection allows the PSCD to access the network. It uses

its second 802.11 channel to automatically link itself to other Meshmax nodes within

its range, and it uses the third channel to connect to the WiMax access (JAN) node for

backhaul communications [61].

Figure 4.7: Three Channel Incident Area Network Schematic
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The IAN nodes use of the three channels significantly increases network

performance as nodes are not contending for the transmission medium and trying to send

traffic over the same channel. Figure 4.8 highlights the significant performance difference

of a single, dual, and three channel mesh network as the number of nodes increase. The

graph shows that, unlike single and dual-channel mesh nodes, overall system capacity

improves as the number of three-mesh nodes increase.

Figure 4.8: Performance comparison of single, dual, and triple channel mesh networks

This performance increase ultimately results in smaller delays across the network.

In a single channel mesh configuration, packets which require more than three hops within

the mesh can result in unacceptable voice delays across the network. In a three channel

mesh configuration, 50 milliseconds or less delays can be maintained across as many as

ten hops [53]. This is well within the required 180 millisecond or less delay for voice.
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4.2.3 JAN Access Node. The primary enabler of the RNDS is the jurisdic-

tional area network (JAN) access point. This node is contained in the Rapid Network

Deployment Kit (RNDK) and is deployed to create a wireless network with an 802.16e

(WiMax) backbone. The JAN access point contains a WiMax access point/ router

connected to an omni-directional antenna. With this equipment, a wireless network can be

created which extends to approximately 30 miles with an appropriately elevated antenna.

This fits the SoRs definition of the size of a jurisdictional area network (JAN) of 5 to

110 kilometers. Any IAN node within range of the JAN access point through its WiMax

channel as long as the SSID and the proper authentication code is entered into its device

settings. The omni-directional mode of WiMax supports data rates of up to 70 megabits

per second. The JAN node interconnects all IANs within range to an IP network. With a

30 mile radius coverage, a single JAN node could theoretically cover 2800 square miles.

The city of New Orleans spans approximately 4200 square miles [58]. Therefore, two

nodes could cover a city of its size. WiMax can also operate in a line-of-sight directional

mode. The use of a directional antenna increases the range of the technology to over 100

miles. However, this thesis proposes the omni-directional mode of operation. This mode

reduces both the need for multiple antennas in the RNDK the systems power requirements.

A mesh network of JAN nodes is proposed. Each node automatically connects itself

with other WiMax nodes within its range. Links are made until one or more JAN nodes

is within range of an Internet point of presence (PoP), at which point a connection can be

made to deliver internet and Expanded Area Network (EAN) services to the system. It

is anticipated that an operable Internet PoP will be available within the 30 mile coverage

area of a single JAN node. If not, another JAN node could be erected at a location with

an Internet PoP or to provide a hop link for the network to a more distant location. This

proposal assumes an agreement concerning regional WiMax service usage is negotiated

prior to an incident. Also, since WiMax uses a time division multiple access (TDMA)

scheme for users to gain access to the transmission medium, the hop problem associated
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with 802.11 does not exist. Data can undergo many hops through the WiMax network

with very little additional delay.

An example WiMax device which could be used for the JAN node could be Proxims

Tsunami MP.11 series of base stations. In particular, the High Power 5054-R-LR version

provides support for speeds up to 120 kilometers per hour and ranges up to 20 miles.

It is designed to operate with standard 110/240 voltages and has a maximum power

consumption of 20 watts. It also is designed with an integrated omni-directional antenna

and is light-weight at less than 15 pounds. The base station and antenna are depicted in

figure 4.9 below.

Figure 4.9: Proxim’s Tsunami MP.11 high power WiMax base station [61]

4.2.4 Balloon Airlift Platform. One of the most important features of the RNDK

is ability to lift a WiMax JAN node above the clutter of the normal operating environment.

The kit utilizes a moored balloon to lift a network node to up to 300 feet. This altitude

gives an unobstructed line-of-sight distance of 50 miles assuming the receiving node will

be at ground level. The dimension of the balloon needed to lift the base station node

device was then determined. WiMax Base station antenna equipment with an attached

gyro-stabilizer weighs about 8 pounds. Rope and electrical cable weights vary, but typical

braided one-half inch polypropylene rope weighs less than two pounds per one hundred
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feet and has tensile strengths greater than two hundred pounds [44]. Therefore, the

estimated weight of the ropes was less than 5 pounds.

In order to provide power to the node, a wire cable must extend from the generator

to the access point. A typical one hundred foot length of 12-gauge electrical cords weighs

less about 7 pounds. Therefore, an estimated 21 pounds of weight was added for the

electrical cable. The total lift needed is 37 pounds. Next, the size of the balloon needed

to lift the node is determined. Table 4.5 shows a listing of balloon sizes versus their lift

capacity and the amount of helium needed to fill them. According to the table, a balloon of

Table 4.5: Balloon Size vs Lift Capacity

approximately 11 feet diameter is needed. Typical commercial helium cylinder capable of

providing 6,500 liters of helium weighs approximately 125 pounds and is 51 inches high

and nine inches in diameter [64]. Therefore, four of these bottles are needed as part of the

kit.

The U.S. Army uses a tethered balloon system called the Rapidly Elevated Aerostat

Platform (REAP) as shown in figure 4.10. It is designed to be deployed in five minutes and

can stay aloft for 10 days [55]. It also has a payload capacity of 35 pounds (not including

tether) and can be transported on the back of a standard size truck.
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Figure 4.10: REAP Deployment [10]

4.2.5 Power Generation for Network Access Point. In order to generate power

for the WiMax access point, an electric generator is needed as part of the kit. As mentioned

previously, the intent of the RNDK is to provide a temporary, compatible network until

more long-term solutions are established. Since wide ranges of electric generators are

available with varying performance feature. The Honda EB5000 is recommended for it

portability and its up to 12 hour operating time. The generator provides both 110 and 240

volts power at a maximum of 5000 watts. Furthermore, the generator weighs only 214

pounds and can easily be transported on a truck.

4.2.5.1 Summary of RNDS Nodes. The basic overview of the RNDS

devices was presented. However, assumptions are made concerning network management

functions, such as bridge devices, and optimization software. These aspects are beyond

the scope of this thesis in that they are not a part of the RNDK so they do not detract

from the goal of espablishing an expeditious network. Bridge devices are either at

remote locations, or, if needed, built into the JAN router and can be left at ground level.

Network management software is normally designed to support remote configurations

over the wireless network, so it can be housed at any location. Voice over IP (VoIP) call

management equipment is also needed in the system to support voice communications,

and gateways are required to connect to the public switched telephone network (PTSN).

However, these devices are commonly used to provide VoIP services and are therefore

assumed as understood and not further described. Also, the equipment can be remotely

located and does not constitute additional RNDK equipment.
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There are also various types of protocols which must be in use by devices on the

networks. These protocols, such as the Real Time Protocol (RTP) allow real-time voice,

video and other services to be accessed. Both 802.11 and 802.16 support the use of these

protocols so any limitations to their usage reside in the user devices used to access the

network. It is assumed that the protocols needed to communicate over the network will be

resident in the user devices as required.

4.2.6 Comparing Tasks to Proposed Networks Features. The earlier identified

tasks required for a public safety communication system to support an incident

management environment are compared to the features proposed for the RNDS. This was

done to determine where gaps exist in the system. A subjective rating is assessed on the

RNDSs ability to perform each task. In Table 4.6 below, each tasks is shown with an

assigned percentage value and color code. The percentage value represents the overall

accessed ability of the proposed system to perform the task. The color codes correspond

to the percentage values, where a grade of 90 to 100 percent is green and means the system

performs the task very well, 70 to 90 percent is yellow and means the system performs the

task adequately, and less than 70 percent is red and means the system performs the tasks

poorly. Appendix C contains further justification of the grades assigned to each task.

Analysis of each task revealed that the proposed solution adequately fulfills the tasks

and requirements for a rapidly deployable network for first responders. The only tasks

which were not accessed as 70 percent or greater were the ability for the system to allow

diverse usage and the ability of the system to limit maximum end-to-end delays to less

than 180 milliseconds.

The proposed RNDS design consists primarily of 802.11 and 802.16 wireless

networks. As described in chapter two of this thesis, public safety personnel use a wide

array of devices and various technologies to communicate. The RNDS only allows for

compatible wireless devices to access the network. Therefore, it cannot accommodate

traditional radio systems unless gateway equipment is used to interconnect the two
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Table 4.6: System tasks and RNDS effectiveness
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technologies. However, the RNDS concept uses what the authors believe is the technology

most likely to be accessible to all responders in the wake of a disaster, namely IP based

computers and radio devices.

4.3 Knowledge Management Results

The proposed physical solution is designed to provide ubiquitous communications

where anyone can communicate with anyone else. The point is made throughout this

thesis and in the network-centric literature, though, that actually operating in this fashion

may cause more problems than it solves: information overload can occur, and command

and control structure can become ineffective. Referring again to the GAO report cited

in Chapter Two of this thesis, ubiquitous communications does not equate to effective

communications. The results of the mathematical and computational analysis that explore

the knowledge management aspect of this problem are now discussed.

4.3.1 Graph Theory Results. Graph theory is used to describe an optimal

topology of response node, or response topology, in the disaster response context. The

response topology is analogous to the “edge” of an organization as described in the

network centric literature. The metric collaboration capacity describes the ability of

the system to meet the collaboration needs of the nodes in the system. A topology-

independent maximum collaboration capacity is calculated, then the three subject

topologies are compared with this optimum solution. The results of this analysis also

point to other useful metrics used in the simulation study.

4.3.1.1 Topology-independent solution. In order to maximize the load on

the system and thereby analyze the system’s maximum capacity to accommodate the load,

each network node must be able to share its full measure of collaboration. Since a star

substrate is assumed, each response node, ri, is connected to C2, and the edge weighted at

one or l(C2)/n, whichever is less. The expression for excess load of each response node,

if any, is therefore
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le(ri) = l(ri)− (l(C2)/n) (4.1)

where l(ri) = 1 and n > 5.

The system collaboration capacity, CC(R), is the sum of the edge weights. It is

calculated independently of response node topology by assuming the load is distributed

evenly throughout a homogeneous system, R, where R = G−C2. The assumption of

homogeneity leads to the following:

1. R is a k-regular graph; d(ri) = k

2. Edges in R are weighted equally; w j = w j+1

Since the system collaboration capacity is equal to the sum of the edge weights and

each edge has the same weight,

CC(R) =
e(R)

∑
j=1

w j = e(R) ·w j (4.2)

where e(R) is the number of edges in R, or the size of R.

Since R is k-regular, the degree sum formula for a k-regular graph,

e =
1
2

kn (4.3)

is used to provide an expression for e(R) in terms of k and n.

Applying Eq. 4.3 to Eq. 4.2:

CC(R) =
1
2

knw j (4.4)

In general, a node’s load is distributed evenly among its incident edges, and the

weight of each edge is
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w j =
l(v)
d(v)

(4.5)

The load of each response node in R is given by Equation 4.1 and its degree is k.

Therefore,

w j =
1
k
(1− l(C2)

n
) (4.6)

Applying Equation 4.4, the collaboration capacity of R is therefore

CC(R) =
1
2

n(1− l(C2)
n

) (4.7)

Finally, the collaboration capacity of the entire system, G is

CC(G) =

 n n ≤ l(C2)

l(C2)+ 1
2n(1− l(C2)

n ) n > l(C2)
(4.8)

Figure 4.11 shows the relationship between CC(G) and the number of nodes in

the system. As Equation 4.8 implies, CC(G) increases directly with n until n = l(C2).

This represents a normal operations situation where the C2 node is not overloaded, and

collaborates directly with its subordinates. As the C2 node becomes overloaded, however,

response nodes must collaborate with each other in order to share their full measure of

collaboration. As indicated in Equation 4.8 and shown in Figure 4.11, the system collab-

oration capacity increases at a rate of one half n. It can be shown that this relationship is

maximal, and is the standard against which the subject topologies are now measured.

4.3.1.2 Hierarchical topology. The NIMS prescribes adding additional

layers of hierarchy as a method for accommodating additional response nodes. The NIMS

does not, however, specify where additional command and control nodes come from or

what their capabilities are. This model assumes that that any node added below C2 is a
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Figure 4.11: Maximum Collaboration Capacity increases with Number of Nodes

response node with unit load. In other words, response nodes are subordinate to other

response nodes (Figure 4.12. Mathematically, the first five response nodes are in the first

neighborhood of C2; additional response nodes are in higher order neighborhoods.

Figure 4.12: Hierarchical Topology

The neighborhood, Γ(v), of a vertex v is the set of vertices adjacent to v, but

not including v itself. Γ2(v) represents the second neighborhood of v where some or

all vertices in Γ(v) have their own neighborhoods. More generally, Γa(v) is the ath

neighborhood of v. In this model the ith response nodes in the first neighborhood of C2 is

written r1,i; the ith response node in the second neighborhood of C2 is r2,i.
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Beginning with the star graph where n = l(C2), a response node is added. Since

l(C2) is maximal, an edge is added between the new node, r2,i and an existing response

node, r1,i. If, as the model assumes, the C2 node is afforded its full measure of collab-

oration, then wC2,r1,i
= 1. Since nodes cannot be overloaded wr1,i,r2,i must be zero. If,

however, it is assumed that r1,i collaborates evenly with both C2 and r2,i, w j = 1
d(ri)

,

wC2,r1,i
=

1
2

and wr1,i,r2,i =
1
2

Assuming only one additional C2 layer, it can be shown that the collaboration

capacity of a hierarchical topology is:

CC(h) = l(C2)+
n

∑
i=1

CC(ra,i)−1 (4.9)

where n ≤ l(C2)

If the load of all nodes in the first neighborhood remain at one, the collaboration

capacity of the system remains constant and equivalent to l(C2). Generally, this formula

indicates that additional C2 nodes must be added to the system to increase collaboration

capacity.

4.3.1.3 Complete topology. Figure 4.13 shows a complete subgraph of

Γ(C2) where each node is connected to every other node. Since a complete graph is

k-regular such that k = n − 1, the collaboration capacity calculation for this graph is

identical to that described in the topology-independent case above. In other words, the

collaboration capacity of a complete subgraph topology is maximal, and therefore meets

this requirement for an optimal topology. The complete subgraph topology demonstrates

however, that while necessary, this characteristic is not sufficient of an optimal topology.

Since w j = 1
d(ri)

, and in the complete topology d(ri) is maximal, w j is minimal. In

this network, w j represents the amount of collaboration between two nodes. Minimum

edge weight, therefore, is an undesireable characteristic. Hanneman and Riddle explain
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Figure 4.13: Complete graph topology

that social network theorists set thresholds on edge weights below which, for practical

purposes, an association does not exist. [36] This finding is also in agreement with Miller’s

channel capacity discussed in Chapter Three of this thesis.

A macro-level way of describing this constraint is network density, which is the ratio

of edges in a network that do exist to those that could exist. High density corresponds to

low edge weight in this model, which is undesireable. Since all the edges that can exist

in a complete graph do, its density is maximal at one. High density is also undesireable

in small world networks discussed in Chapter Two of this thesis. In the small world

context, high density implies the breakdown of communities of interest because of global

interactions in a spatial graph.

4.3.1.4 Hybrid topology. Figure 4.14 shows a topology that meets

the maximum collaboration capacity requirement while observing the constraint of low

density:

This topology is constructed as follows:

1. The algorithm begins by connecting all response nodes (ri) to the central node (C2).

2. When n is greater than l(C2), edges are added between response nodes to form

components. These edges represent peer-to-peer collaborations between and among

4-29



Figure 4.14: Proposed topology

response nodes. When modeled computationally, components are formed based

on node attributes (e.g. geographical proximity). Note the term component is

used differently here than in graph theory literature. In this model components

are created as follows:

(a) The next node above l(C2) is connected to both C2 and one of the empty nodes

such that there are l(C2)− 1 independent members of R and one component

with two nodes. This is done iteratively until n = 2∗ l(C2).

(b) As additional nodes are added they join the smallest component so that no

component is more than one node larger than any other. When n is an integer

multiple of l(C2), every component has an equal number of nodes.

(c) Edges are weighted as described above.

This topology is integrated with a complete command and control system as

described in Chapter Three. The system is then evaluated using both social networking

metrics described below and the measure of effectiveness, weighted in-degree.

4.3.2 Simulation Results.
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4.3.2.1 Network Characteristics. Due to the limitations of UCINet,

the model used to obtain the following network results does not exactly match the

mathematical model described above. Specifically, the results described below were

obtained using a symmetric, unweighted graph. While UCINet is capable of analyzing

asymmetric, weighted data, the weights must be in integer form; the weights used in

this research are in decimal form. An attempt is made, however, to recover from this

by creating a simulation model analogous to the symmetric one used in UCINet. While

the edges in this second simulation model are weighed, no preference is given to the

relationship between a response node and its C2 node. This research “accident” actually

turns out to be quite fortuitous in that a system that gives preference to the command and

control system (the mathematical model) is now compared to an “ad-hoc” network where

no such preference is afforded. These two systems are referred to as integrated and ad-

hoc, respectively. Despite this misqueue, a great deal of qualitative information is gained

in the graph theory results.

Each data point in the figures below is the average of three simulation iterations.

Given the qualitative nature of these results and the lack of outliers, three iterations is

considered sufficient by the authors.

4.3.2.2 Density. Figure 4.15 shows that graph density, or the ratio of the

edges that exist to the number of possible edges, remains low for all workloads (number

of nodes) until the range increases above five.

The reason for this is obvious when two networks are compared side by side. In

Figure 4.16 where R = 5, response nodes can only reach halfway across a jurisdiction.

There is some cross-jurisdictional collaboration between response nodes, but the jurisdic-

tional neighborhoods are still fairly well defined. They are not apparent at all, however, in

Figure 4.17 where R = 10.

Above a range of five, therefore, the networks become dense; an undesirable charac-

teristic for reasons already discussed.
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Figure 4.15: Density vs Range

4.3.2.3 Clustering Coefficient. Hanneman advises that in “assessing the

degree of clustering, it is usually wise to compare the cluster coefficient to the overall

density.” [36] By viewing Figure 4.18 in light of Figure 4.15 one can see why. Between

R = 0 and 5, density is low while the clustering coefficient exhibits interesting behavior.

Above R = 5, both clustering coefficient and density increase linearly. Combining the two

pieces of information shows that above R = 5 the local and global characteristics of the

network become indistinguishable, just as Watts says they will in a spatial graph. In other

words, the network becomes one big cluster instead of a set of smaller ones.

What of the clustering coefficient’s behavior between R = 0 and 5? Clustering is

initially low at R = 0 and R = 1, increases dramatically between R = 1 and R = 3, then

increases linearly. This behavior is expected. While response nodes are initially connected

to their assigned C2 node, there are no connections between or among response nodes.

Clustering is therefore low. At R = 3 response nodes in a jurisdiction are highly clustered

among themselves, but there are few external connections. As range increases so do the

number of external connections; clustering becomes linear as response nodes connect on a
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Figure 4.16: n = 40; R = 5 Figure 4.17: n = 40; R = 10

global scale, and the network becomes one big cluster. The reader is referred to Appendix

# for a visual example of each network iteration.

4.3.2.4 Centrality. As first responders collaborate among themselves

to perform their tasks, it is reasonable to assume that the influence or control that their

assigned command and control node has over them decreases. Social network theorists use

the metric centrality to measure the degree of influence any node has over others. If node

A is on a path connecting nodes B and C, A is in a position to influence B and C assuming

there is not an edge between them. A is therefore between B and C. A node’s betweenness

centrality is the number of such paths that node is on. The betweenness centrality of

all nodes in a network can be aggregated into the network centrality index (NCI) used

here. NCI is the “degree of inequality or variance in our network as a percentage of that

of a perfect star network of the same size.” [36] In a star network, the central node is

maximally central, the others have zero centrality. Variance or inequality in a star network

with respect to centrality is a maximum, so the star topology is used as a normalizing

construct in betweenness centrality. NCI is particulary pertinent in this research since

the “as-is” system, the hierarchical topology, is a star. The amount of variance from the

hierarchical topology described by the NIMS is therefore measurable.

The results of the betweenness centrality analysis is shown in Figure 4.19, which

lead the authors to no quantitative conclusions regarding betweenness centrality. As
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Figure 4.18: Clustering Coefficient vs Range

anticipated, the centrality, which is considered analagous to influence or control, decreases

when subordinate nodes collaborate. Unlike density and clustering coefficient, however,

there is no knee in the centrality curve. Work domain analysis is required to set a minimum

threshold on betweenness centrality to which these results may point. Since, for example,

low density and high clustering coefficient occur at a range of three, perhaps a useful

threshold for betweenness centrality is 50 percent. Further researh is needed in this area,

but this metric proves qualitatively useful later in this thesis.

4.3.2.5 Distance. The hypothesis regarding the distance metric is that as

nodes are added and/or range values are increased, the average geodesic distance in the

graph drops significantly. This hypothesis springs from Watts’ work on small worlds. As

Figure 4.20 shows, however, distance is not significantly affected by either workload or

range.

This result codifies the nature of small world networks, the difference between

relational and spatial graphs, and the role of the command and control system in this

model. In Watts’ model, all nodes are the same, and they are either connected or they are
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Figure 4.19: Betweenness versus Range

not. His spatial graph model is the equivalent of an ad-hoc network. He shows that spatial

graphs cannot display small world characteristics because local edges become global as

the distance metric is increased. In this model, the command and control system globally

connects the response nodes, so the distance is pre-compressed. There is no need to add

global edges; they already exist. One would not expect, therefore that the average distance

between any two nodes would decrease significantly until the distance metric is increased

sufficiently to create global edges. In other words, since the distance across the network is

pre-compressed, no further compression takes place until the network is sufficiently dense

to nullify the effect of the command and control system. This is, in fact what is seen when

Figure 4.20 is compared with Figure 4.15. Average distance drops significantly when

range exceeds five, which is the same point where density increases.

4.3.2.6 Network Characteristics Summary. Although the model used to

generate network analysis metrics does not exactly match the integrated model, viewed

together they illuminate desireable qualities of a disaster response network. Specifically

low density combined with high clustering are telling characteristics of what is thought
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Figure 4.20: Distance versus Range

to be a desireable network. Centrality of the command and control nodes is also a

key characteristic, and seems to be inversely related to the clustering. Finally, although

distance is commonly touted as a key network metric, it is shown here to be a function of

network density in a spatial graph. What remains is the “so what” factor. The next section

answers this question by proposing a measure of network effectiveness that compliments

and validates the graph theory metrics.

4.3.3 Node Effectiveness Results. Network effectiveness is measured using the

average weighted in-degree, D+
avg(ri), metric described in Chapter Three. It is the average

of the total weighted in-degree, d+
tot(ri), of each response node in the network. A response

node’s total weighted in-degree represents the amount of collaboration it receives from its

neighbors. Ideally, d+
tot(ri) is one, meaning the amount of collaboration a response node

receive is neither too much (greater than one) or too little (less than one). The weighted

in-degree for a network of response nodes is found by taking the average of all d+
tot(ri).
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4.3.3.1 Hypothesis One. Hypothesis One states: When span of control is

not exceeded, collaborations degrade effectiveness.

Figure 4.21 shows the effect of range on the average weighted in-degree, D+
avg(ri),

for 20 response nodes (command and control nodes are not considered). This graph

shows that as range increases above one and collaborations begin to exist (see Section

A.1), D+
avg(ri) increases above one, and the response nodes are overloaded. Qualitatively

it shows that when a network is not overloaded, collaborations degrade effectiveness.

Figure 4.19 (20-node case) shows that the network metrics behave as expected: collab-

oration degrades effectiveness of the command and control system. When the system is

not overloaded, this degradation is not necessary.

Figure 4.21: D+
avg(ri) vs R, n = 20

4.3.3.2 Hypothesis Two. Hypothesis Two states: When span of control is

exceeded, collaborations improve effectiveness.

This hypothesis is explained by examining the interaction between the number of

response nodes and their range. The network metrics generated in UCINet indicate that

the variation in system response is dominated by range. Using D+
avg(ri) as the response

and both the number of response nodes and range as independent variables, a two-way

ANOVA study is conducted using the statistical analysis tool Minitab to evaluate system
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sensitivity to these two factors. Table 4.7, a standard ANOVA table shows the results of

this ANOVA. The first column lists all the sources of variance in the model: number of

nodes, N; range, R; the interaction of both N and R; and random error. The third column,

labeled SS, shows the sum of the squared errors, which is the key indicator of the source of

the variance. The results of the ANOVA clearly show that changes in the average in-degree

are due overwhelmingly to changes in range.

Table 4.7: Two-Way Anova: Response vs N, R
Source DF SS MS F P
N 2 0.3775 0.18877 192.58 0.000
R 3 12.5919 4.19731 4282.03 0.000
Interaction 6 0.0447 0.00745 7.60 0.000
Error 108 0.1059 0.00098
Total 119 13.1201

S = 0.03131 R-Sq = 99.19

Figures 4.22 and 4.23 demonstrate this point even more clearly. The scatter-plot

of average in-degree to changes in number of nodes shows very little variation in system

response. The scatterplot of average in-degree versus range, however shows a clear system

response, namely, average in-degree increases as range increases.

Figure 4.22: D+
avg(ri) vs n
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Figure 4.23 also shows that D+
avg(ri) is close to optimal with a mean of 1.08 at

R = 3, but increases to an overload condition with a mean of 1.24 at R = 5. This indicates

Figure 4.23: D+
avg(ri) vs R

that there is an optimal range at which response nodes collaborate to maximize system

effectiveness. Comparing this data with the results of the network study, one can see

that optimal effectiveness coincides with desirable network characteristics. Notably the

greatest increase in clustering occurs at R = 3 while density remains low.

4.3.3.3 Hypothesis Three. Given the results of the two-way ANOVA, the

ad-hoc and integrated networks are compared at each range, zero through five. These

results are shown in Figures 4.23 and 4.24, respectively. Where D+
avg(ri) for the ad-hoc

network becomes overloaded above a range of three, it becomes asymptotic at one in the

integrated network. Moreover, there is a great deal of variability in system response in the

former case whereas variation decreases in the latter. This may indicate that the integrated

network is more robust to variation in system attributes. These data show, for example, that

an ad-hoc network performs most effectively when range is three whereas the integrated

network performs well at ranges between zero and five.

While network analysis is not performed on the integrated system, the finding that

increasing the distance metric beyond a certain limit results in undesirable behavior is
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Figure 4.24: D+
avg(ri) vs R in an Integrated Network

considered applicable. Specifically, distance values beyond the local to global transition

point, i.e. where density blows up, are undesirable. Using this theory, range values beyond

five are considered untenable even in an integrated system.

4.3.4 Knowledge Management Summary. This analysis shows how effective

communication, or in this case, effective collaboration, can be realized given ubiquitous

communication technologies. Graph theory provides an optimized “edge” topology which

is integrated into a hierarchical command and control system as proposed by network-

centric theorists. Computational modeling and simulation shows how network character-

istics and performance vary as distance varies. Distance in this model is geographical, but

could be any attribute that defines a spatial graph as defined by Watts. Network density and

clustering coefficient are found to be key network characteristic metrics in the combined

collaborative-hierarchical network defined in this research; together they show where the

network transitions from local to global. Weighted in-degree appears to be a valid measure

of response node effectiveness, and when extended to the entire graph by averaging d+
tot(ri)

over all response nodes, it becomes a measure of network effectiveness. Together the

network characteristic and network effectiveness results indicate that collaboration among

“edge” entities generally improve the effectiveness of an overloaded network. Moreover,
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a collaborative “edge” environment properly integrated with a fixed command and control

system has advantages, hoped for by small world theorists, over a purely ad-hoc network.

4.4 Summary

The results of the physical solution analysis indicate that a system for providing

ubiquitous communications in a disaster response scenario is achievable with current

technologies. The results of the knowledge management study show that entities within

a disaster response environment can be organized to create the effects envisioned in the

Tenets of Net-Centric Warfare.

Response nodes in this model represent incident commanders, which, in an

operational environment, would have a three-channel IAN node on their vehicle. The

three-channel technology enables the ad-hoc meshing with other IAN nodes, which

increases network bandwidth as IAN nodes are added within range of one another.

This increasing bandwith accommodates the increasing collaboration capacity seen

in the mathematical model as nodes are added and begin to collaborate with one

another. Another IAN channel using 802.16 WiMax technology is used to link incident

commanders with emergency operations centers, which may have either a resident JAN

node or an IAN node that connects via a JAN node. The simulation model uses a 20 mile

by 20 mile area representing a county jursdiction. A JAN node would provide wireless

connectivity at this jurisdictional level allowing the municipal-level EOCs to utilize IAN

systems and connect to their subordinates via the county-level JAN node.

The authors’ vision is that this combined technical/organizational proposal is a

first step on an iterative process of disaster response system improvement. Chapter Five

describes what are thought to be the next steps in this process.
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V. Conclusion and Recommendations

5.1 Conclusion

This research investigates hastily-formed collaborative networks using the National

Incident Managment System and Hurricane Katrina as context. Two aspects of this

problem are identified: providing a rapidly-deployable ubiquitous communications

network and managing the human aspects of that network so that individuals within it

are neither overloaded nor underserved. The first aspect requires a physical solution,

the second a knowledge management solution. A Rapid Network Deployment System

(RNDS) is proposed to facilitate interoperable emergency response communications in

the wake of a major incident, and a methodology is proposed to organize network entities

into communities of interest that allow them to collaborate effectively.

The goal of providing ubiquitous communications in an austere environment such as

the post-Katrina Gulf Coast region is achievable using current technology and equipment.

Specifically, the 802 family of wireless technologies provides the mobility, range, and

bandwidth needed, as well as the ability to efficiently scale to support large, Katrina-

sized disaster response. Current 802.11 technologies allow individual personnel to create

and integrate into an incident area network (IAN). The enabling device is a three-channel

wireless router. One of the three channels uses 802.11 to connect responders in an incident

area. A second 802.11 channel allows IANs to interact with each other creating a MESH

network in an ad-hoc fashion. Instead of overloading the network, available bandwidth

actually increases as IAN nodes are added. The last channel uses 802.16 to connect

with a jurisdicional area network (JAN), which, in-turn, connects the emergency response

network to an internet point of presence (POP).

Because it imposes the threat of information overload on its users, ubiquitous

communications is a necessary but not sufficient condition for an effective disaster

response network. Information within the system must be managed so the right

information gets to the right place at the right time. This is referred to as knowledge
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management. Using network-centric operations as a theoretical starting point, a

mathematical model of an optimal “edge” network topology, dubbed a hybrid topology,

is proposed. When integrated with a hierarchical command and control system, the

combined disaster response network displays desireable network characteristics and

effectiveness.

5.2 Recommendations for Further Research

The technical and knowledge management solutions proposed in this thesis are

complimentary, and can be viewed as a first step toward an operational solution

to the problem of creating hastily-formed collaborative networks. The next steps

toward realizing a deployable network are work domain analysis, information system

development, and discrete event simulation.

The attribute used to define collaborations in the simulation model is range. If

two response nodes are within a certain range of each other in this model, an edge is

created between them, and they collaborate. It is unlikely that, in the real world, first

responders want to collaborate with one another solely on the basis of their geographical

proximity. They might collaborate, for example, because they are the same type (police,

fire, rescue, etc.). No attempt is made in this research to define the attributes which might

cause two first responders to collaborate with one another or quantify the strength of a

relationship. Work domain analyisis is needed to define a set of attributes that facilitate

collaboration, quantify the strength of a collaboration, and set a threshold on strength

below which a collaboration effectively does not exist. Furthermore, information systems

must be developed that identify, assign, and track network entities and their relationships

in an operating environment, and that then calculate measures of network effectiveness

such as those proposed in this thesis.

Once work domain analysis is conducted, a realistic network can be modeled and

simulated. By “equiping” the nodes in this new model with technologies such as those

proposed in the physical solution section of this thesis, a discrete event simulation study
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can be conducted using a tool such as OpNet. Evidence from this research can then be

used to further specify the social network, develop other technical solutions, or propose

future avenues of research and experimentation.

5.3 Contributions to the Body of Knowledge

The work done in this thesis to propose a physical solution to the problem of

providing ubiquitous communications in a disaster response scenario validates the top-

down, capabilities-based approach embodied in the JCIDS process. Using the DoD’s

JCIDS approach and DoD and DHS documentation, the authors identify a feasible solution

to this important problem using technology that is currently available and in use.

In the knowledge management realm, the authors used the idea of viewing organi-

zations as networks to analytically show the value of collaboration and to numerically

demonstrate the utility of the small world concept. The value of collaboration is shown

by applying it to a hierarchical “edge” topology and measuring the collaboration capacity

of the resulting network. A theoretical maximum collaboration capacity is derived, and

then used as a metric for evaluating the utility of an experimental topology. The hybrid

topology, which captures the concept of communities of interest, is shown to be optimal

using the maximum collaboration capacity criterion, and a constraint that the network

have low density. The hybrid topology is then integrated into a hierarchical command

and control to form a complete network model. The social network metrics (density and

clustering coefficient) are shown to be key indicators of network behavior. Specifically

high clustering combined with low density are characteristics of a “good” network. These

metrics show that a real world (spatial) network can have desireable small world behavior.

Finally, the advantages of an integrated network, which has a strong command and control

system, over an ad-hoc network are shown using the metric weighted in-degree, a measure

of effectiveness derived herein.
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Appendix A. Sample Responders Networks

This appendix contains the graphs of the networks described throughout this research.

They allow the reader to visualize the various topologies and associate metrics with a

physical system.

A.1 20 Response Nodes

Figure A.1: nodes = 20; range = 0 Figure A.2: nodes = 20; range = 1

Figure A.3: nodes = 20; range = 3 Figure A.4: nodes = 20; range = 5

Figure A.5: nodes = 20; range = 10 Figure A.6: nodes = 20; range = 15
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A.2 40 Response Nodes

Figure A.7: nodes = 40; range = 0 Figure A.8: nodes = 40; range = 1

Figure A.9: nodes = 40; range = 3 Figure A.10: nodes = 40; range = 5

Figure A.11: nodes = 40; range = 10
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A.3 60 Response Nodes

Figure A.12: nodes = 60; range = 0 Figure A.13: nodes = 60; range = 1

Figure A.14: nodes = 60; range = 3 Figure A.15: nodes = 60; range = 5

Figure A.16: nodes = 60; range = 10
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A.4 80 Response Nodes

Figure A.17: nodes = 80; range = 0 Figure A.18: nodes = 80; range = 1

Figure A.19: nodes = 80; range = 3 Figure A.20: nodes = 80; range = 5

Figure A.21: nodes = 80; range = 10

A-4



Appendix B. Simulation Documentation

The final version of the simulation used to generate the disaster response network is

AttribGen 4.0.xls. The simulation executes in Microsoft Excel 2003 sp2.

B.1 Overview

The simulation is based on a 2 mile by 2 mile disaster area. The area is divided

into four 1 square mile jurisdictions, each with a jurisdiction commander. Incidents

are generated and assigned random locations within the disaster area. One responder is

assigned to each incident and inherits the incidents location. The responders commander

is based on the jurisdiction in which the incident is located.

B.2 Parameters Worksheet

This sheet serves as the basis for the disaster area. Inputs include the number of

responders that will be assigned to incidents within the disaster area. The number of

different (incompatible) communication systems. The range that will be used to establish

connections between responders for the purpose of collaboration.

B.3 IncidentAtt Worksheet

This sheet generates incidents equal to the number of responders that will be placed

in the disaster area. The incidents are assigne an identification number and random X and

Y coordinants that correspond to tenths of miles from the northeast most corner of the

disaster area. The incident is also assigned a responsible commander depending on the

jurisdiction in which the incident is located. C2 nodes have responsibility for incidents

according to the following:

• C2 node 1001 (0,0) to (9,9)

• C2 node 1002 (10,0) to (19,9)
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• C2 node 1003 (0,10) to (9,19)

• C2 node 1004 (10,10) to (19,19)

B.4 Responders Worksheet

This worksheet generates the responders. Each responder has an ID number, type

code, type, assignment, X and Y coordinate, Responsible C2, and equipment type.

B.4.1 Type. Responders are assigned a random type from the set of {Fire,

Police, Rescue, Medical}.

B.4.2 type code. The type code corresponds to the the type of responder

accoding to the following:

• 1 = Police

• 2 = Fire

• 3 = Rescue

• 4 = Medical

B.4.3 Assignment. Responders are given an assignment number which

corresponds to the ID number of an incident from the IncidentAtt Worksheet. Each

responder is assigned to one incident

B.4.4 XLoc. This is the X coordinate of the incident to which the responder is

assigned.

B.4.5 YLoc. This is the Y coordinate of the incident to which the responder is

assigned.

B.4.6 Resp C2. This is the jurisdiction commander to whom the responder

reports. This value is inherited from incident to which the responder is assigned.
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B.4.7 Equip Type. This number represents the type of communication

equipment the responder has. The equipment type is randomly generated based on the

number of incompatible communication systems specified in the Parameters Worksheet.

B.5 CC Adj Worksheet

This is an adjacency matrix describing the hierarchical relationship between

responders and the command and control node to which they report. A one at the

intersection of row x and column y indicates no collaboration exists between vertex x

and vertex y. A zero at the intersection indicates the absence of collaboration.

B.6 Seperation Dist Worksheet

This is a square matrix describing the physical distance in tenths of miles between

row X and column Y for responder nodes. Distance between responders and command

and control is always represented as a zero to prevent physical distance from preventing

communication between a responder and his jurisdictional commander.

B.7 Seperation Adj

This square matrix describes adjacency between responders by comparing their

physical seperation as described in the Seperation Dist Worksheet to the maximum range

allowed for a connection based on proximity. The maximum allowable range for a

proximity connection is input on the Parameters Worksheet.

B.8 Comm Adj

This square matrix described adjacency between responders based on compatibility

of communication equipment type. Responders with matching communication equipment

are considered adjacent.
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B.9 SepComm

This matrix determines the adjacency of responders based on the combination of

separation adjacency and communcation equipment adjacency.

B.10 SepComm inDeg

This matrix assigns a weight to each edge between adjacent responders. The edge

weights are determined without preference for command and control.

B.11 SepCom inDegV2

This matrix assigns a weight to each edge between adjacent responders. The edge

weights are determined with preference given to command and control.
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Appendix C. Evaluation of Rapid Netword Deployable System Against

Required Tasks

1. • Capability: Ability to employ geo-spatial information

• Task: Provide Location Data

• Grade: Adequate

• Justification: Location data is provided to a users PSCD by GPS satellites.

These satellites are line-of-sight. Whenever a user cannot acquire a satellite,

his PSCD cannot transmit an accurate position. However, it is believed that in

most cases, the users will be in satellite reception range.

2. • Capability: Ability to operate and maneuver

• Task: Support Mobile Users

• Grade: Adequate

• Justification: 802.16 does not allow for unlimited speed. The technology is

designed for speeds up to 120 kilometers per hour. The SoR implies that

reasonable speeds are those which a helicopters and civil aircraft may fly.

These speeds exceed the 120 kilometer per hour limit. Therefore, users in

these vehicles would have limited communications.

3. • Capability: Ability to identify/store/share/exchange/data information

• Task: Connect and interface with others as needed.

• Grade: Adequate

• Justification: Provided the user is in the network coverage area, he should

have no problem connecting. However, precipitation may adversely affect the

WiMAX signals, particularly if the system is implemented with frequencies

above 10 gigahertz.

4. • Capability: Ability to identify/store/share/exchange/data information
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• Task: Enable machine-to-machine information sharing

• Grade: Very Well

• Justification: Design characteristic of most wireless access devices.

5. • Capability: Ability to identify/store/share/exchange/data information

• Task: Provide Information based on users role

• Grade: Very Well

• Justification: Periodically, the PSCD sends out user identification information

over the network. Therefore, customized data can be presented to each user.

However, individuals not access the network with a PSCD may not support for

this service.

6. • Capability: Ability to establish a smart, assured, information environment

• Task: Customize user presentation

• Grade: Very Well

• Justification: User presentations are modifiable on the PSCD. This is an

application activity and can be enabled by software.

7. • Capability: Ability to establish a smart, assured, information environment

• Task: Maintain connectivity in limited bandwidth environment

• Grade: Very Well

• Justification: PSCDs are capable of transmitting both voice and data over the

IP network. When bandwidth is limited such that high bandwidth information

cannot be transmitted, the small sized identification packets can still be sent.

The design of security protocols such as WEP and WPA (which are normally

utilized on the network) are authenticated to the network with low bandwidth

information contained in each packets header. As long as these packets are

received, the user should stay connected to a limited bandwidth connection.

8. • Capability: Ability to establish a smart, assured, information environment
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• Task: Provide information confidentiality services

• Grade: Very Well

• Justification: Each access node uses WEP encryption to prevent ease dropping

on information passed over the network. Other applications, such as the

advanced encryption standard (AES) algorithm are commonly used on devices

to encrypt information and allow only the intended recipient to decipher the

data.

9. • Capability: Ability to establish a smart, assured, information environment

• Task: Provide locally resident processing resources

• Grade: Adequate

• Justification: The proposed PSCD design and most other wireless access

devices have this ability. However, all devices connecting to the network may

not.

10. • Capability: Ability to process information.

• Task: Provide data source and destination information

• Grade: Very Well

• Justification: This information is contained in each IP packet sent over the

network.

11. • Capability: Ability to install and deploy a scaleable and modular network

• Task: Rapidly deploy connectivity

• Grade: Very Well

• Justification: The primary enabler of the RNDS is the WiMAX JAN node.

This node can be deployed very quickly if a pre-configured kit, as described

in chapter four of this thesis, is used. Also, the system is scalable by design of

the IAN and JAN nodes. IAN nodes use multiple frequencies to control traffic.

Other IAN nodes within range were automatically configured into the network.
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Further, as more nodes entered the network, overall bandwidth available to

each node increases. JAN nodes also feature auto detection capabilities, which

allowed then to automatically connect with other nodes.

12. • Capability: Ability to install and deploy a scaleable and modular network

• Task: Connect to Internet Services

• Grade: Very Well

• Justification: If a single WiMAX access point cannot reach an internet point

of presence, it must hop to other nodes until it finds one. In certain cases, there

may not be an internet point of presence within range of the available WiMAX

nodes, and therefore, internet connectivity may not be available. However,

these cases are believed to be rare.

13. • Capability: Ability to install and deploy a scaleable and modular network

• Task: Function under a range of infrastructure constraints

• Grade: Very Well

• Justification: The proposed design of the system enables it to operate

independent of the existing infrastructure.

14. • Capability: Ability to install and deploy a scaleable and modular network

• Task: Establish nodes where needed.

• Grade: Very Well

• Justification: The system is designed so standard sized trucks can carry each

network node. Furthermore, the kit could be lifted by helicopter to its desired

location.

15. • Capability: Ability to install and deploy a scaleable and modular network

• Task: Allow dynamic network architecture changes.

• Grade: Very Well
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• Justification: The two underlying wireless technologies, 802.11 and 802.16

allow for mobility and rapid hand-offs of users from one access point to

another. Also, the proposed mesh configurations of the network all for efficient

system scaling.

16. • Capability: Ability to install and deploy a scaleable and modular network

• Task: Allow diverse system usage

• Grade: Poor

• Justification: The proposed RNDS design consists primarily of 802.11 and

802.16 wireless networks. As described in chapter two of this thesis, public

safety personnel use a wide array of devices and various technologies to

communicate. The RNDS only allows for compatible wireless devices

to access the network. Therefore, it cannot accommodate traditional

radio systems unless gateway equipment is used to interconnect the two

technologies.

17. • Capability: Ability to support SAFECOMs requirements

• Task: Allow for the creation of multiple networks

• Grade: Very Well

• Justification: IAN and JAN networks are established and connected to EANs.

Bridge devices, which separate networks into domains, are assumed as

auxiliary equipment and not described in the overall systems description. Their

functionality is assumed sufficient.

18. • Capability: Ability to support SAFECOMs requirements

• Task: Allow for the creation of talk groups

• Grade: Adequately

• Justification: The proposed PSCD and the DHS proposed P25 IP radios can

support talk groups. However, the ability of other wireless devices to support
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talk groups would be dependant on the applications resident on the machine.

Also, it is required and assumed that voice-over-IP (VoIP) call management

equipment is resident in the network to support call group features.

19. • Capability: Ability to support SAFECOMs requirements

• Task: Maximum end-to-end voice and video delays do not exceed 180

milliseconds.

• Grade: Unable to Measure

• Justification: This requires further testing of the networks performance charac-

teristics under load and the ability to measure performance over all of the

networks. However, the high bandwidth links on the network and the low

data rate codecs in use would likely support delays less than 180 milliseconds,

provided traffic loads are not excessive.

20. • Capability: Ability to support SAFECOMs requirements

• Task: Support estimated network node density and traffic demands

• Grade: Very Well

• Justification: The number of persons in a JAN is estimated to be 30. Typical

single WiMAX base stations can support up to 1500 users at moderate traffic

loads. Only in situations were a large number of responders are operating in

a small area with limited IAN nodes would traffic density likely become a

problem.

21. • Capability: Ability to support SAFECOMs requirements

• Task: The Network should connect to the public switched telephone network

(PTSN)

• Grade: Adequate

• Justification: It is required and assumed that voice-over-IP (VoIP) call

management equipment and gateways are resident in the network to support

standard calling features, such as connection to the PTSN network.
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22. • Capability: Ability to support SAFECOMs requirements

• Task: The system should support both real-time voice and video

• Grade: Very Well

• Justification: The network topology and equipment used at all levels of the

network allows for both voice and video traffic to be transmitted in real-time.

It is assumed that the required protocols to support the services are present in

the network.
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