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Abstract 
 

Plug-and-play (PnP) satellite construction is a key component of the US Air Force 

Operational Responsive Space (ORS) effort.  The goal of ORS is to provide mission specific 

satellite support by configuring and launching a satellite to a selected orbit within days of the 

request.  One major challenge during the time limited process is to accurately predict the 

response of the satellite to harmonic loads that occur during launch and satellite operation.  

Given the time limitations, constructing finite element (FE) models by traditional methods is 

not currently a viable option for the ORS timeline.  By implementing an approach for rapid 

FE model creation, we can significantly reduce the timeline from weeks to hours.  The 

advantages to our approach include simplification of model creation, ease of design 

modifications, and significant reduction in the FE model creation timeline; all lending this 

approach for utilization within the ORS acquisition cycle. 



 

v 

Table of Contents 

Page 

ABSTRACT________________________________________________________________ IV 

TABLE OF CONTENTS ______________________________________________________ V 

LIST OF FIGURES ________________________________________________________ VII 

LIST OF TABLES _________________________________________________________VIII 

1 INTRODUCTION ________________________________________________________ 1 

1.1 OPERATIONAL RESPONSIVE SPACE__________________________________________ 1 

1.2 PLUG-AND-PLAY SATELLITE DEVELOPMENT __________________________________ 4 

1.3 SYSTEM MODELING WITHIN THE PNP CONCEPT ________________________________ 6 

1.4 INDUSTRY STANDARD PRACTICES FOR MODEL CREATION ________________________ 7 

1.5 UTILIZATION OF SUBSTRUCTURES WITHIN MODEL DEVELOPMENT _________________ 8 

1.6 ISSUES ASSOCIATED WITH PATCHWORK SOLUTIONS ____________________________ 9 

2 FINITE ELEMENT ANALYSIS METHODOLOGY __________________________ 10 

2.1 BASIC FINITE ELEMENT ANALYSIS_________________________________________ 10 

2.1.1 Extension to Three-Dimension Beams __________________________________ 15 

2.1.2 Assembly of the Global Stiffness Matrix (K)______________________________ 19 

2.2 BASICS OF NODAL SEGREGATION__________________________________________ 21 

2.3 NODAL PLACEMENT ____________________________________________________ 23 

2.4 CONSTRUCTION OF GLOBAL STIFFNESS MATRIX ______________________________ 28 

2.5 MODEL CONSTRUCTION _________________________________________________ 30 

2.6 MATRIX STORAGE TECHNIQUES___________________________________________ 36 

2.7 CONNECTION INTERFACE RULES __________________________________________ 38 

3 APPLICATION OF NODAL SEGREGATION WITHIN PLUG-AND-PLAY 

STRUCTURES _____________________________________________________________ 40 

3.1 ORS PROGRAM REQUIREMENTS FOR SUCCESSFUL FE ANALYSIS _________________ 40 

3.2 COMPONENT MODEL DEVELOPMENT _______________________________________ 41 

3.3 RESOLUTION MODIFICATIONS WITHIN THE COMPILED FE MODEL _________________ 41 

3.4 PLUG-AND-PLAY SAMPLE STRUCTURE______________________________________ 42 

3.4.1 SimpleSat Design __________________________________________________ 42 

Individual Components ____________________________________________________ 42 

3.4.1.1 Assembled Structure ______________________________________________ 45 

3.4.2 Computer Modeling and Simulation____________________________________ 46 

3.4.2.1 Finite Element Model Development __________________________________ 47 

3.4.2.2 Model Tree______________________________________________________ 50 

3.4.2.3 Model Construction _______________________________________________ 52 

3.4.3 Results of SimpleSat Analysis _________________________________________ 55 

3.4.3.1 Timeline Analysis_________________________________________________ 55 

3.4.3.2 Validation of SimpleSat Model ______________________________________ 57 



 

vi 

4 CONCLUSIONS AND FUTURE WORK ____________________________________ 59 

4.1 CONCLUSIONS ________________________________________________________ 59 

4.2 FUTURE WORK ________________________________________________________ 60 

4.2.1 Approach Refinement _______________________________________________ 60 

4.2.2 Model Complexity __________________________________________________ 60 

4.2.3 Analysis Approaches________________________________________________ 61 

4.2.4 Modeling Flight Hardware___________________________________________ 61 

APPENDICES______________________________________________________________ 62 

APPENDIX A:  SIMPLESAT MANUFACTURING DRAWINGS_____________________________ 62 

APPENDIX B:  VALIDATION OF THE SIMPLESAT FE MODEL ___________________________ 67 

Appendix B.1:  SDT Modal Frequency Analysis _________________________________ 67 

Appendix B.2:  Nastran Modal Frequency Analysis ______________________________ 69 

Appendix B.3:  Experimental Modal Frequency Analysis __________________________ 70 

APPENDIX C:  FINITE ELEMENT MODEL CONSTRUCTION CODE ________________________ 89 

BIBLIOGRAPHY__________________________________________________________ 108 

 

 

Page 



 

vii 

List of Figures 

Page 

Figure 1.1:  Comparison of Acquisition Model Timelines ............................................................. 3 

Figure 1.2:  Responsive Space Plug-and-Play Concept [14] .......................................................... 5 

Figure 1.3:  Computer Developed Model (a) Solid Model, (b) FE Model ..................................... 8 

Figure 2.1:  Stress Field for a Beam in Bending........................................................................... 11 

Figure 2.2:  Six Degrees-of-Freedom ........................................................................................... 16 

Figure 2.3:  Three-Dimensional Two Element System ................................................................ 19 

Figure 2.4:  Connectivity Diagram for a Two-Element System ................................................... 22 

Figure 2.5:  Sub-Categorization of Nodal and Connection Matrices............................................ 22 

Figure 2.6:  Five Node, Four Element Component....................................................................... 23 

Figure 2.7:  Segmented Five-Node, Four-Element Component ................................................... 24 

Figure 2.8:  Segmented, Re-Numbered, Five-Node, Four-Element Component.......................... 25 

Figure 2.9:  Segmented, Re-Numbered, Fifty Node, Forty-Nine Element Component ............... 26 

Figure 2.10:  (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component 

Structure without Nodal Segregation............................................................................................ 28 

Figure 2.11:  (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component 

Structure Utilizing Nodal Segregation.......................................................................................... 29 

Figure 2.12:  (a) Cube Structure and (b) Associated Component................................................. 30 

Figure 2.13:  Rotation of Beam Component from X-Axis to Y-Axis. ......................................... 32 

Figure 2.14:  (a) Three Beam assembled Structure and (b) Associated Global Stiffness Matrix K

....................................................................................................................................................... 34 

Figure 2.15:  (a) Assembled Cubic Structure and (b) Associated Global Stiffness Matrix K ...... 35 

Figure 2.16:  (a) Assembled Square Structure and (b) Associated Low-Resolution K Matrix .... 36 

Figure 2.17:  (a) High Resolution Beam Nodal Placement and (b) Structure K Matrix............... 38 

Figure 3.1:  Machined SimpleSat Components ............................................................................ 43 

Figure 3.2:  (a) Solar Panel Support Pro/Engineer Model and (b) Machined Component........... 44 

Figure 3.3:  (a) Corner Unit Pro/Engineer Model and (b) Machined Component........................ 44 

Figure 3.4:  (a) SimpleSat Pro/Engineer Model and (b) Assembled SimpleSat Hardware .......... 46 

Figure 3.5:  SDT model of Low Resolution Four Inch Beam ...................................................... 48 

Figure 3.6:  SDT model of (a) the Low Resolution and (b) the High Resolution Solar Panel ..... 48 

Figure 3.7:  (a) Three Beam Object and (b) the Associated Connectivity Tree ........................... 51 

Figure 3.8:  Mass and Stiffness Matrices for the (a) Analytical and (b) Graphical Methods....... 54 

Figure A.1:  Attachment Point Drawing ....................................................................................... 62 

Figure A.2:  Four Inch Beam Drawing ......................................................................................... 63 

Figure A.3:  Solar Attachment Collar Drawing ............................................................................ 63 

Figure A.4:  Solar Assembly Attachment Cross Member Drawing ............................................. 64 

Figure A.5:  Solar Panel Drawing................................................................................................. 65 

Figure A.6:  Solar Panel Support Drawing ................................................................................... 66 

 



 

viii 

List of Tables 

Page 

Table 2.1:  Three-Dimensional Frame DOF Definition................................................................ 15 

Table 3.1:  SimpleSat FE Model stored files ................................................................................ 49 

Table 3.2:  Model Tree File Entries for Connecting and Non-Connecting Members .................. 51 

Table 3.3:  Time Comparison Data for Four SimpleSat Iterations with Varying Complexity..... 56 

Table 3.4:  Comparison of Modal Frequency Determinations ..................................................... 58 

 

 



 

1 

 

 

QUICK-TURN FINITE ELEMENT ANALYSIS FOR  

PLUG-AND-PLAY SATELLITE STRUCTURES 

 

 

 

1 Introduction 

The US Air Force has initiated programmatic efforts to revolutionize the development of 

space assets.  For years, the acquisition of US Air Force space resources has severely lagged 

behind their operational need.  Satellite developmental timelines of two to three years for 

each asset is unacceptable to meet the overlying needs of the Air Force [8].  Therefore, the 

concept of modifying the acquisition cycle to accommodate immediate reaction to stated 

needs is a must. 

To achieve a space initiative that responds quickly to user need, a paradigm shift must 

occur within the space industry.  We know that the development of systems and their 

timelines are greatly affected by the number of assets planned and the availability of existing 

technologies utilized within each asset.  The acquisition cycle of satellite development can be 

strategically altered to better reflect these development limiting factors.  The Operational 

Responsive Space (ORS) program is undertaking the task of altering the development model 

to allow space assets to be available when the mission requires it. 

 

1.1 Operational Responsive Space 

 

 The effort to develop an ORS program has been in existence for many years.  Many US 

government organizations are involved in the project, to include the Air Force Research 

Laboratory (AFRL), the National Reconnaissance Organization (NRO), National Air and 

Space Administration (NASA), and many other Department of Defense (DoD) organizations. 

 The primary goal has been to demonstrate the ability to produce and launch a time 

sensitive satellite with a rapid development cycle.  The first successful launch was TACSAT 
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2, launched in December 2006, followed by the Launch of TACSAT 1 in January 2007.  

Each of these missions shared the same development map of twelve months between mission 

initiation and launch.  The TACSAT missions confirmed the belief that given the advances in 

technology and the availability of Commercial-Off-The-Shelf (COTS) components, a quick-

delivery spacecraft is within grasp.   

 While the construction of the TACSAT programs has seen success, it also has fallen 

victim to the standard acquisition pitfalls that affect all programs.  TACSAT 1 launch has 

slipped over a year and a half from initial schedule, bringing the timeline to that of a standard 

acquisition cycle.  The future goals of the ORS program detail the need to provide mission 

specific satellite support by configuring and launching a satellite to a selected orbit within 

days, not years, of the request.  To achieve this, a new acquisition cycle has been developed 

that re-organizes the key components of the standard cycle to provide an acquisition 

environment that allows the complete construction of individual elements without final 

declaration of mission intent. 

 Current space system acquisition maintains a strict step-by-step procedure for the 

development of systems.  The first step is centered on mission requirements; everything must 

be defined prior to any further activity.  Upon completion, system design is initiated.  The 

majority of the work is achieved with a stove-pipe mentality; all work is completed on a 

component prior to any system level integration activity.  After the majority of the 

integration has occurred, typically around eighty percent, final assembly and test are 

initiated.  At the conclusion of all testing activities, the satellite is launched, completing the 

two to three year cycle.  The comparison between the standard acquisition cycle and the 

proposed ORS cycle is demonstrated in Figure 1.1. 

Many differences can be seen between the proposed ORS cycle and existing satellite 

procurement approaches.  To begin with, the first step within the ORS cycle is not mission 

requirement development, but an overall definition of the interface for the spacecraft. 

Following that, the component level design begins, which is closely tracked by the system 

integration step.  When it is ensured that all components are fully integrated, they are placed 

in storage to await a need within a mission.   
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Figure 1.1:  Comparison of Acquisition Model Timelines 

 

The final process is the key to a successful responsive system.  At mission call up, a 

seven day window opens and the final activities begin.  The mission requirements are 

analyzed and the specific components required for the given mission are selected.  For 

example, if the mission is reconnaissance oriented, a group of components dealing with 

imaging or surveillance would be selected.  The spacecraft design is then finalized, 

assembled, and tested prior to launch.  On the seventh and final day, the satellite is launched 

to the required orbit. 

As can be seen, the ORS conceptual acquisition plan redefines the paradigm for 

spacecraft fabrication by dictating a two-phase effort.  The first, defined as the component 

development and integration stage, provides the ability to design and integrate a multitude of 

components for all types of missions.  With the given integration concept, each specific 

component will have the ability to communicate with the designated segments, independent 
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of the location or bus attachment of the device.  Included in this stage of development is all 

interoperational testing to assure all systems readily communicate with the associated 

applications.  With this model in place, all components and the associated busses would 

reach full system maturation prior to any assembly activities. 

The second stage, or satellite assembly stage, is dedicated to the development of a given 

satellite by utilizing the previously produced components.  The overall design of the satellite 

will be dependent on the needs of the mission and will not be completed until the assembly 

stage.  Once the design is finalized, the overall assembly and test of the vehicle is initiated.  

Because all basic communication, interoperability, and system effectiveness testing will have 

been completed during the system integration stage, only pre-flight checks will be required 

for the satellite’s hardware.  The remaining design element that is incomplete at this point is 

the structure: the definition of how the hardware will be contained for operational use.  

Because the structure of the satellite will differ for every iteration and will not be defined 

until the assembly stage, all standard vibration and thermal testing will be accomplished 

within this stage.  The development of a finite element (FE) model of the finalized design 

would be valuable in preventing errors within the assembly stage testing.  However, due to 

the unknown quantity of potential satellite configurations, modeling of each system prior to 

this stage is not a feasible option. 

 

1.2 Plug-and-Play Satellite Development 

The major concept that provides the ORS program with the ability to construct a satellite 

within days of mission call-up is the utilization of Plug-and-Play (PnP) components.  The 

PnP model’s defining characteristics are the development of all system equipment (both 

hardware and software) and the completion of all integration and interoperability testing prior 

to mission design.  The remaining activities to be completed prior to launch are then limited 

to system assembly and checkout. 

The ORS program acquisition model presented earlier requires that all development and 

integration activities occur prior to availability of any mission requirements.  Therefore, 

many assumptions must be made with respect to anticipated satellite capability.  In order for 

the PnP concept to be effective for most missions, the development of ‘capability’ packages, 
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or mission kits, must be accomplished.  For instance, a sensor group would be specifically 

designed for imaging support, like infrared or visuals.  Likewise, a communication group 

would be another package.  The individual modules within a specified package are inherently 

interoperable within that package.  The major system wide integration effort between each of 

the capability packages will occur within the integration stage of the ORS cycle.  The ORS 

concept is demonstrated in Figure 1.2. 

The development of the satellite bus will be a vastly different effort than in previous non-

PnP development programs.  The intrinsic capabilities of a PnP system allow for the addition 

or subtraction of any properly formatted device at any available connection point.  To present 

a relevant example of this capability, we examine the current Universal Serial Bus (USB) 

used within the personal computing markets.  The USB standard allows a processing unit to 

connect with any peripheral device that shares the same USB standard.  While the current 

USB version 2.0 is not suitable for the space environment or the amount of data transfer, a 

more robust update will be instrumental to the success of the PnP concept.  
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Figure 1.2:  Responsive Space Plug-and-Play Concept [14] 
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While the PnP model is suited for the sensor packages and the spacecraft bus, the 

application of the PnP model to the satellite structure is a key component for overall success.  

Each satellite produced by the ORS effort will be different, and therefore each structure’s 

configuration will differ.  For instance, a dedicated surveillance satellite will have different 

power and envelope requirements than a communications satellite, and therefore the 

structures will differ.  Due to the time limit imposed, the development of a proprietary, 

spacecraft specific structure is not feasible.  Therefore, all structural components must be 

designed and developed within the component development stage of the ORS cycle.  If the 

mentality that governs sensor development is directly applied to the structure, development 

of individual parts can occur while the final design of the system is not complete until the 

assembly stage.  A generic list of structural parts can be developed and prepped for use prior 

to the assembly stage, including varying sizes of structural beams, panels, and attachment 

points.  At the point of mission definition, the selected configuration would then dictate the 

structural arrangement and design. 

 

1.3 System Modeling within the PnP Concept 

One aspect of spacecraft development that does not readily fit within the ORS paradigm 

is modeling and simulation (M&S) of the complete satellite.  Within a standard acquisition 

cycle, computer simulation of a product can significantly reduce the cost and time of design 

and test cycle, but typically takes between two and four months to produce a validated, 

accurate model.  Given the time available for satellite assembly, the standard approach for 

computer simulation cannot be applied within the ORS model. 

Two questions arise with regards to M&S from the limitation applied to the simulation 

development.  First, and foremost, “Can we eliminate the requirement to simulate the 

assembled vehicle?”  The quick answer is no.  Two major testing applications benefit from 

the use of M&S, the response from harmonic loading (vibration testing) and the effect that 

extreme heat and cold will have on the system (thermal testing).  All testing with respect to 

these two areas must be completed on the assembled structure prior to launch.  By creating a 

computer simulation of the satellite, we can accurately predict the system responses and 
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modify the design if necessary, all prior to actual construction and testing.  If the simulation 

effort does not occur, the satellite could fall into a test-fix-retest cycle that can easily drive a 

system wide delay. 

The second question, “Can we complete the M&S effort prior to mission definition?”, 

again is answered with no.  Due to the nature of the ORS effort, the large number of potential 

configurations drives the structural design to change with each asset produced.  Development 

of many models that can accurately simulate every configuration produced is not practical. 

An approach evaluated in this research is the development of accurate and validated 

models of each component available for use and assembling the models after mission 

definition, commonly referred to as a substructuring approach.  Substructuring is a common 

practice in the automotive and aerospace industries [3].  We apply the substructuring 

approach to the structural components of a satellite. 

The development of FE models requires experienced manpower to properly ensure the 

entire model, whether substructures are used or not, is correctly assembled.  If correction 

must occur within the model after it has been completed, the attachment of each element 

must be rechecked within the modified sections; otherwise further errors may be introduced.  

It is common practice to simply create a generic model with slight additions or subtractions 

based on the unit being tested.  This approach is not applicable to the ORS as the creation of 

a given satellite FE model does not validate all of the potential variations than can exist 

within the ORS approach. 

 

1.4 Industry Standard Practices for Model Creation 

The development of FE models is significantly eased by utilizing the computer based 

object drawing and analysis applications, also known as Computer Automated Engineering 

(CAE).  The most common FE analysis solver is Nastran; developed by the MacNeal 

Schwindler Corporation (MSC) in 1968 for use by the NASA for spacecraft development.  

Today, Nastran is the solver for many popular FE software titles.  Many other companies 

have developed proprietary FE analysis code that does not utilize the NASTRAN engine, but 
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provides equivalent results: i.e. Abaqus, Pro/Mechanica, Structural Dynamics Toolbox for 

MATLAB (SDT), etc. 

The advantages of computer-based analysis deal with the ability to perform significant 

numbers of calculations quickly, predicting the behavior of a structure.  It is not uncommon 

to have FE models within the automotive and aeronautical industry that have more than 

several million Degrees of Freedom (DOF).  FE analysis associated with such large models 

requires significant computing power to complete in a reasonable amount if time.  Figure 

1.3(a) demonstrates a component developed with a solid modeling application and Figure 

1.3(b) shows the associated FE mesh.   

 

 
 

Figure 1.3:  Computer Developed Model (a) Solid Model, (b) FE Model 

 

1.5 Utilization of Substructures within Model Development 

The use of substructures within a complex model is common practice in modern FE 

model development.   The best example for substructure models is the classic airplane model.  

Two methods can be utilized in construction of a FE model for the structure of the aircraft.  

The first is to mesh the entire structure in one complete model and the second is to break the 

model into distinct, separate sub-models, or substructures, and create an element mesh for the 

individual sections.  The separate meshes are later connected at their respective interfaces.  

The development of substructure models can be extremely advantageous.  By breaking a 

structure into substructures, or superelements, typically associated with development 

(a) (b) 
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departments (i.e. wing, fuselage, tail section, and landing gear), the individual FE models can 

be created and refined independently of the complete model.  It is ideal to have the FE 

models of each substructure created by the specific component designers, ensuring that areas 

of specific analytical concern can be effectively inserted into the model.   

Application of the substructuring concept can also reduce the complexity of analysis 

completed on the entire models.  Due to independent model development by the specified 

design team, the verification and validation of the model to the actual structure can occur 

prior to inclusion within the overarching model, lending a higher level of confidence of the 

data received through analysis.  With accurate data in hand, design and deployment decisions 

can be simplified and faster response can occur. 

 

1.6 Issues Associated with Patchwork Solutions 

While the substructure approach has been widely adapted, the compilation of the models 

into a final, complete model is still a concern.  Traditionally, when FE models are created 

independently of each other, the elemental meshes are considerably different, providing a 

complicated task of stitching the meshes together at their respective interfaces, commonly 

referred to as a patchwork solution.  Each model produced has a series of nodes that are 

specifically designated as connection nodes.  The connection points between the models can 

insert a large quantity of unknown vibratory reactions and if not properly meshed together, 

the validation of the entire model is placed at risk.  The method presented in this paper 

evaluates an approach for automating the process of compiling the complete FE model by 

standardizing the satellite model interfaces, eliminating the inconsistency at the model 

connection points and the requirement for a patchwork solution. 
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2 Finite Element Analysis Methodology 

In order to rapidly and accurately develop a finite element (FE) model to predict the 

response of a complete satellite within the Operational Responsive Space (ORS) program 

concept, we must first discuss the fundamentals of FE modeling.  In this chapter, we will 

look into the current methods utilized within industry.  Mathematical development of the 

mass and global stiffness matrices is the basic starting point for any FE model development.  

The similarities of the approach presented in this chapter apply equally to both the mass and 

stiffness matrices; we will only discuss the global stiffness matrix (K).  The development of 

basic FE models is widely published; if more information is needed, any introductory FE 

analysis book can be referenced.   

Standard FE analysis and model development give us a method to develop accurate 

results for a modeled system.  However, the standard methods do not provide the ability to 

develop and analyze a system quickly.  In fact, the standard methods are quite time 

consuming.  To demonstrate quick FE model assembly, we will present a method that utilizes 

simplistic models but develops construction guidelines that can be applied to more complex 

structures.  The following equation development is extracted from Tirupathi Chandrupatla’s 

textbook “Introduction to Finite Elements in Engineering.” [1] 

 

2.1 Basic Finite Element Analysis 

The development of the global stiffness matrix (K) and the mass matrix (M), the key 

components of FE analysis, requires us to examine the basic attributes of an elastic body.  To 

begin the analysis, we utilize the elementary beam equations for stress (σ), strain (ε), and the 

deflection of the centroidal axis (v).  The axial stress equations are functions of the bending 

moment (M) and the moment of inertia (I).  Figure 2.1 depicts the graphical representation of 

the elementary stress field for a beam. 

 



 

11 

zM+zM+
y x

z

zM+zM+
y x

z  

 

Figure 2.1:  Stress Field for a Beam in Bending 
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The potential energy of the beam, П, is defined by Equation 2.4 where u is defined as the 

displacement of a given point, f is the distributed force per unit volume, T is the surface 

traction, and Pi is a load acting at point i.  
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Equation 2.2 can then be broken into two segments, Strain Energy (U) and Work Potential 

(WP). 
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∑∫∫ −−−=
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When developing the stiffness matrix for a given element, we only use the strain energy 

portion of the potential energy equation.  The work potential is used for applied forces and 

has no effect on the element’s stiffness.   

The volume within Equation 2.6 can be broken out to determine the strain energy of an 

element with a fixed length dx. 
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Equation 2.8 can then simplified further by the utilizing the equation for the moment of 

inertia (Equation 2.9) which further reduces to Equation 2.10. 
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By using the relation developed in Equation 2.3, the total strain energy of the beam is 

derived. 
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The Hermite shape functions used for beam analysis give us an equation for the deflection of 

the centroidal axis (v), while looking at nodal displacement and slope. 
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The coordinate transformation gives the relationship between x and ξ.  The length of the 

element, l, is defined as the distance between the node locations, x1 and x2. 

ξ
22

1221 xxxx
x

−
+

+
=  (2.13) 

where  

ξξ d
l

d
xx

dx
22

12 =
−
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By using the chain rule and Equation 2.14, we transform the slope of v to be valid in terms of 

x. 

dx

dvl
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By rewriting Equation 2.12 with inclusion of the nodal displacement vector q, we can 

simplify the equation as follows. 
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Given the relationship in Equation 2.15, we can expand it to incorporate Equation 2.18. 
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By substituting Equation 2.20 into Equation 2.11, we get an equation for strain that utilizes 

the shape functions. 

∫ 







=

l

dxq
d

Hd

l
EIU

0

2

2

2

2

4

2

1

ξ
 (2.21) 

  

∫
+

− 















=

1

1 2

2

2

2

4 2

16

2

1
ξ

ξξ
d

l
q

d

Hd

d

Hd
q

l
EIU

T

T  (2.22) 

  

( ) ( )















 +
−







 −
=

4

13

2

3

4

13

2

3
2

2
ll

d

Hd ξ
ξ

ξ
ξ

ξ
 (2.23) 

  

∫

∫

∫

+

−

+

−

+

−

=

=

=

1

1

1

1

1

1

2

2

0

3

2

ξ

ξξ

ξξ

d

d

d

 (2.24) 

 

When Equation 2.22 is substituted into Equation 2.21 and the relationships in Equation 2.24 

are applied, the potential can be compactly written as Equation 2.25. 
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The potential energy equation is then simplified and k, the elemental stiffness matrix, is 

defined. 

kqqU
T
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The development of the elemental stiffness matrix k has been derived using a two-

dimensional (2D) beam.  While utilizing a 2D beam is ideal for initial equation development, 

we must broaden the equations to represent the three-dimensional (3D) environment for 

realistic modeling of the beam. 

 

2.1.1 Extension to Three-Dimension Beams 

The major difference between the two-deminsional beam used previously and the ideal 

three dimensional beam element used from this point forward are the rotations allowed in 

each axis at each node and the additional third axis translation.  The categorization frame is 

simply a beam that has a given degree of freedom that is designated as rotation.  Therefore, a 

3D frame has six degrees of freedom (DOF) as seen in Table 2.1. 

 

Table 2.1:  Three-Dimensional Frame DOF Definition 

DOF Number Node Relation 

1 X-Direction Translation 

2 Y-Direction Translation 

3 Z-Direction Translation 

4 Rotation about X Axis 

5 Rotation about Y Axis 

6 Rotation about Z Axis 
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Figure 2.2:  Six Degrees-of-Freedom 

 

Given that all six DOFs will be used, the nodal displacement vector q for a two-node beam 

element will have twelve components; six generalized displacements per node with three 

each for translation and rotation, as represented in Figure 2.2. 
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The elemental stiffness matrix (k) for the three dimensional beam will be an extension of 

Equation 2.27.  The main difference will be the inclusion of the axial (AS) and shear (TS) 

terms.  There are six generic equations needed to fill the stiffness matrix.  The quantity GJ is 

representative of the torsional stiffness.  G is the shear modulus and J is the polar moment of 

inertia.   
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l

GJ
TS =  (2.28) 

 

The constants ai, bi, ci, and di are defined as follows. 
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Now, the assembly of the elemental stiffness matrix k is a straight forward use of the 

previous equations. 

 













































−

−

−

−−−

−

−

=′

z

y

yy

zz

zzz

yyy

yyyy

zzzz

cc

ci

TSr

bat

bae

ASm

dbcm

dbcy

TSTSS

baba

baba

ASAS

k

0

00

00

000

00000

0000

00000

0000000

000000

0000000

0000000000

 (2.33) 



 

18 

 

The final step for the elemental stiffness matrix k’ development is to perform a coordinate 

transfer from local to global coordinates.  The local stiffness matrix k’ transformation is 

projected on the global coordinate system by use of a transformation matrix L.  L is 

composed of a series of direction cosine matrices (λ), where li, mi, and ni are the cosines 

between the elemental i-axis (i.e. i = x, y, z) and the global x, y, and z axis respectively.   
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Because λ is a 3x3 matrix, it is repeated along the diagonal of L until the proper dimension is 

attained.  For the two-node, twelve-DOF element expressed in Equation 2.33, λ is repeated 

four times, ensuring the dimension of the transformation matrix L matches the dimension of 

k.  L is then filled with zeros, represented in Equation 2.35 as 0. 
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The elemental displacement vector (q’) and the elemental stiffness matrix (k’) are defined in 

the global coordinates as follows. 
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2.1.2 Assembly of the Global Stiffness Matrix (K) 

After the elemental stiffness matrices kj have been created and transformed to the global 

coordinate system, we place them in the global stiffness matrix (K).  Figure 2.3 shows an 

example system we will use to discuss the assembly process.  Both element 1 and 2 have 12 

DOF, and the global stiffness matrix has a total DOF of 18, because both elements share 

node 2.  The dimension of the global stiffness matrix K is the number of nodes multiplied by 

six.   

 

 

 

Figure 2.3:  Three-Dimensional Two Element System 

 

We begin by calculating the elemental stiffness k’ of each of the two elements in their local 

coordinate systems.  Equation 2.38 shows the k’ for each member where j represents the 

member number, 1 or 2.  Note that the stiffness matrices are symmetric about the diagonal.  

We will continue to utilize the symmetry throughout the paper, but will eliminate the 

designation. 
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The global stiffness matrix K is a combination of both element stiffness matrices, after 

transformation to the local coordinate system using Equation 2.37.  Equation 2.39 shows the 

placement of each element’s transformed k matrix, demonstrating the overlap between each 

element due to the sharing of node 2 between both elements.  

 

k 2
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k 1 0
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(2.39) 

 

The submatrix specific to node 2 is highlighted in Equation 2.40.  Because the elements share 

this node, the 6x6 matrix that overlaps is the sum of k1 and k2 at those DOF. 
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2.2 Basics of Nodal Segregation 

To automate the process of assembling the global stiffness matrix from the component 

stiffness matrices, we need to define a procedure that easily places the component matrices 

into the global stiffness matrix but maintains the individual component characteristics.  By 

recognizing that the component stiffness matrix kc can be viewed as a compilation of specific 

nodal information and the associated connectivity information, we can break kc into 

submatrices; nodal and connectivity, as demonstrated by the single element matrix in 

Equation 2.41. 
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To demonstrate the submatrix separation in a more complex system, we will examine the 

two-element, three-node example shown in Figure 2.3.  From the applicable global stiffness 

matrix K for this system, Equation 2.38, and the graphical drawing, we can produce an 

element connectivity diagram which will help with the separation of nodes within K. 

 

 

 

 

 

 

Figure 2.4:  Connectivity Diagram for a Two-Element System 

 

Figure 2.4, shows element 1 and 2 are connected by node 2.  The global stiffness matrix K is 

shown in Figure 2.5.   
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Figure 2.5:  Sub-Categorization of Nodal and Connection Matrices  
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As stated before, the global stiffness matrix K for this system has a dimension of 18x18.  

When broken into 6x6 nodal submatrices, it’s easy to see the distinction between each node 

and the associated connectivity, as shown in Figure 2.5.  Note that the outermost nodal and 

connection matrices mirror the submatrices of Equation 2.41.  The inner matrices, node 2 in 

Figure 2.5, will be different due to the connectivity within the component. 

From the nodal point of view, the component stiffness matrix kc can be divided into 

submatrices that have distinct sections dependent upon individual nodal characteristics, from 

which a symbolic representation can be established.  We created a numbering system by 

representing each 6x6 nodal matrix by a single variable designated as N and its respective 

component node number.  The connection 6x6 submatrix will be represented as C with a 

subscript indicating the nodes connected.  We demonstrate the symbolic representation with 

the five node beam shown in Figure 2.6 and the component stiffness matrix kc in Equation 

2.42. 

 

 

 
 

Figure 2.6:  Five Node, Four Element Component  
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2.3 Nodal Placement 

When generating a large FE model with multiple components, having the capability to 

readily determine which nodes are used to connect each component is ideal.  Therefore, the 

appropriate placement of nodes within a component is essential.  To discuss the nodal 

1 2 3 4 5 
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placement, we will utilize the five-node beam shown in Figure 2.6, with the previously 

established notation for the symbolic representation of the matrices, as seen in Equation 2.42. 

One attribute of the FE process is the ability to separate each element from the next.  

Because of the sub-structures we have defined, this capability can be taken one step further 

with the separation of the node and the connection matrices from the element structure.   

With this in mind, we separate the beam into three sections demonstrated in Figure 2.7; the 

left connection node, the body, and the right connection node.  These separations are applied 

to the component stiffness matrix kc as can be seen in Equation 2.43. 

 

 

 

 

Figure 2.7:  Segmented Five-Node, Four-Element Component  
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With the simplified submatrix notation established, we can look at the location of the 

nodes within the matrix itself.  Nodal placement within the matrix can be adjusted as long as 

the connection segment is placed properly.  If a node is moved to the right of a connecting 

node, within the matrix only, the connection matrix is transposed.  For instance, if we move 

node one within the matrix, not the beam itself, the connection matrix between nodes one and 

two is transposed (Equation 2.44).  But, if a node is moved and remains to the right of the 
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node it is connected to, the connection matrix is not changed, demonstrated by nodes two and 

three. 
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From these movements, we can see that if the correct connection properties are 

maintained, the nodes within a given beam can be placed anywhere within the appropriate 

matrices.  These practices can be utilized for any size or shape of beam. 

Knowing that we can move the nodes within the matrix with little effort, we place the 

stiffness submatrix for the body before the first and last connecting nodes.   
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Within the five node example beam, the component node numbers do not hold significance 

other than to designate a location within the component FE model.  Therefore, we re-number 

the nodes of the beam to coincide with our matrix movement and place the body before the 

connectors (Figure 2.8), providing the same matrix as above, but with sequential node 

numbering. 

 

 

 

 

Figure 2.8:  Segmented, Re-Numbered, Five-Node, Four-Element Component  
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The transpose of the connection between nodes one and four is removed due to the implied 

direction of the connection.  After re-numbering the local nodes, the connection is from node 

one to node four, which inherently transposes the original connection, which maintained the 

direction of node four to node one. 

The configuration detailed above is an advantageous node order for components within a 

FE model.  By placing the body of the component before the connecting nodes within the 

stiffness matrix, the connecting nodes are always easily accessible due to the position they 

occupy, regardless of the number of nodes of the component.  For instance, if the beam we 

used in the previous example is increased in resolution to fifty nodes (Figure 2.9), the 

stiffness matrix in Equation 2.47 increases in size, but the connection nodes remain in the last 

diagonal positions.  The bolded zero, 0, represents the upper triangular remainder of the body 

matrix, which are all zeros. 

 

 

 

 

 

Figure 2.9:  Segmented, Re-Numbered, Fifty Node, Forty-Nine Element Component  
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Separating the connection nodes from the body is advantageous when we assemble a 

model with multiple connected components.  A methodology is used to define the storage 

requirements for the component.  The storage of the segregated matrix will require separation 

into five segments:  body, connector 1 (Cnctr1), connection 1 (Cnx1), connector 2 (Cnctr2), 

and connection 2 (Cnx2). 
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The re-combined component stiffness matrix is shown in Equation 2.53. 
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By inspection, it is seen that the segmented and un-segmented matrices are equivalent.   
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2.4 Construction of Global Stiffness Matrix 

Construction of an entire FE model utilizing the methods previously described 

significantly reduces the complication and ambiguity of the standard global K.  The 

traditional assembly method for a complex system of components yields a global stiffness 

matrix K that has no clear indications of the location of component connectivity.  For 

example, we look at the structure in Figure 2.10 (a) and the associated K matrix (b). 

 

 

 

Figure 2.10:  (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component 

Structure without Nodal Segregation 
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Examination of the K matrix without the graphical representation reveals no information 

as to where the connecting node is located.  When using this nodal segregation approach, the 

separation of connecting nodes from the body nodes, the connecting node is obvious, 

demonstrated in Figure 2.10 (b).  Due to the guidelines established in section 2.3, the local 

component numbering scheme can be modified in any matter as long as the connectivity 

characteristics are maintained. Therefore, we are able to renumber the local component nodes 

to place the bodies of the components at the top left of the global stiffness matrix K.  The 

numbering modifications also apply to the connecting nodes, and are numbered last for ideal 

placement within K. 

 

Figure 2.11:  (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component 

Structure Utilizing Nodal Segregation 
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By examining the global stiffness matrix K, shown in Figure 2.11, we can demonstrate 

the benefits of this nodal segregation approach.  The connectivity of the two elements is 

readily available; from Figure 2.11 (b), we can easily see that node eight is the connecting 

node between components one and two.  We can also determine the end points if further uses 

of those are needed.  Independent of the size or number of nodes a component has, if this 

nodal segregation approach is used, the defining connectivity information will be accessible. 

 

2.5 Model Construction 

For realistic FE model generation, a more complex structure must be examined.  Figure 

2.12 (a) shows a cube structure created from identical beams on each side.  This avails the 

development of a single component model for the beam, and the reuse of it twelve times. 
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(b) 

Figure 2.12:  (a) Cube Structure and (b) Associated Component 
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The FE model for this component is a repeat of the beam utilized in the previous sections.  

The nodal segregation is maintained within the component’s kc matrix at this point.  The 

example is a five node component, and therefore, the body matrix, kBody, dimension is 18x18 

while the connector node, kCnctr, and connection node, kCnx, matrices are 6x6.  For each 

component, the component stiffness matrix kc maintains a 30x30 dimension.  Equation 2.54 

depicts the kc matrix for each component within the cube structure. 
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Before the individual component FE models are assembled to form the global stiffness 

matrix K, each component stiffness matrix must be transformed from local to global 

coordinates.  As in Equation 2.37, the transformation of the component stiffness matrix kc 

will be dependent on the cosines between two vectors; the component unit vector and a 

global axis.  The transformation can be equated by using a Rodrigues’ angle rotation formula.  

Rodrigues’ formula is similar to the Euler angle transform matrix but uses an axis vector and 

angle to calculate the transformation matrix where the Euler method uses three axis angles.  

Either method may be applied in this situation, but Rodrigues’ use of vectors is more 

convenient for these models due to the availability of a designated positioning unit vector 

within each component FE model.  

To demonstrate the use of the Rodrigues’ formula, we will rotate the beam component in 

Equation 2.48 to align with the global y-axis.  The unit vector for the component, Vu, is 

(1,0,0) because it is oriented along the x-axis, and the global placement vector, VGP, is 

(0,1,0).  Figure 2.13 shows the specified rotation.  
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Figure 2.13:  Rotation of Beam Component from X-Axis to Y-Axis. 
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If Vu is equal to VGP, the magnitude of the cross product, N, is equal to zero and the rotation 

is then only dependent on the dot product of the two vectors (VDot).  If VDot is equal to one, 

the matrix is not rotated and is placed as is.  If VDot is equal to negative one, the axis vector 

(A) is defined as (0,-1,0)   Otherwise, the following step is taken for calculation of A. 
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Despite the method for calculating A, the cosine and sine of the axis angle are computed for 

use in the Rodrigues’ transformation formula R, developed in Equation 2.57. 
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Equation 2.34 defines the directional cosine matrix as λ.  The Rodrigues derivation is the 

same matrix, just derived using different inputs.  Therefore, we substitute R for λ within the 

diagonal transformation matrix L and get Equation 2.59. 
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To perform the transformation on the component’s k’ matrix, the standard matrix 

multiplication method is used.  The transformed component matrix will be designated as kc.  
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For proper assembly of our example, the cube structure, this transformation will need to 

occur for all twelve components.  For four beams, the transformation will not change the 

matrix, as the placement vector is in the x-direction, matching that of the beam model. 

With the utilization of Rogrigues’ formula for matrix transformation in place, generation 

of the global model is initiated.  We begin by placing the first component in the x-direction.  
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As previously mentioned, there is no modification necessary because the unit vector is in the 

same direction as the global placement vector.  Therefore, the global K at this point is shown 

in Equation 2.53.  Placement of the next two components, one in the y-direction (VGP = [ 0 1 

0 ]), and one in the z-direction (VGP = [ 0 0 1]), will make the dimension of K equal 78x78, 

demonstrated in Figure 2.14.  The component nodes are re-numbered to the global node 

numbering scheme each time maintaining the connection points at the bottom right corner of 

the matrix. 
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Figure 2.14:  (a) Three Beam assembled Structure and (b) Associated Global Stiffness Matrix K 

 

 

By utilizing these component submatrix generation tactics on the remaining nine components 

within the cube structure, we develop the complete global stiffness matrix K.  The 264x264 

matrix is shown in Figure 2.15. 
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Figure 2.15:  (a) Assembled Cubic Structure and (b) Associated Global Stiffness Matrix K 
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2.6 Matrix Storage Techniques 

The next step within the nodal segregation concept is the storage of the component 

submatrices.  The body portion of the component stiffness matrix kc can be stored separate 

from the connector node and connection matrices.  If the five node beam used previously 

(Figure 2.12) is segregated for storage, a total of three separate submatrices can be derived; 

the body, connector node, and connection matrices. 

Storing the component submatrices separately works well for a system whose design is 

fixed with no potential changes.  But, what if we want to refine the mesh, or increase the 

resolution, of a component FE model without modifying the entire global K?   
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Figure 2.16:  (a) Assembled Square Structure and (b) Associated Low-Resolution K Matrix 
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For instance, if we take the square beam structure in Figure 2.16 (simplified from the 

previously discussed cube), but want to redefine the mesh on one beam, what effect does this 

have on our global K?  If the model is modified using a straight forward, evenly spaced node 

distribution, all three of the pertinent beam matrices (Body, Connecting Node, and 

Connection) are changed; necessitating a complete restructure of the global K.  But, if we 

define a component development rule that requires the placement of the connecting nodes at 

the end of the components and the distance between those nodes and the body nodes must 

remain constant, the only change to the global stiffness matrix K is the dimension of the body 

matrix.  For example, the number of nodes within the body of beam two has been doubled 

(Figure 2.17(a)) which increases the DOF from 18 to 36.  The placement of the connecting 

node and connection matrices do not change with respect to the body matrix for beam 

number two (Figure 2.17(b)). 
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(b) 

 

Figure 2.17:  (a) High Resolution Beam Nodal Placement and (b) Structure K Matrix 

 

Note that even though the size of the body matrix doubled, the placement of the 

connection matrix remains constant at the first and last nodes.  This would be consistent with 

any size body matrix, as long as the connection remains constant.  

  

2.7 Connection Interface Rules 

To maintain a consistent interface for each component within a model, certain guidelines 

have been established and must be strictly followed when utilizing this nodal segregation 

approach.  The following sum up the development criteria into two dominant rules. 

 

1. For any number of nodes that the component has, the distance between any 

connection node and the closest body node must maintain a fixed distance.   

2. When the mesh is numbered, all connection nodes are numbered last. 
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When these rules are maintained, the body and connection matrices can be moved within 

the global matrix independent on the size of the body matrix.  This methodology also allows 

us to vary the number of components in a model and the resolution of each component to 

produce adequate results for a system. 
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3 Application of Nodal Segregation within Plug-and-Play Structures 

The methodology behind the nodal segregation presented in this thesis is directly 

applicable to the modeling of the Plug-and-Play (PnP) structures utilized within the 

Operational Responsive Space (ORS) effort.  By utilizing the FE model construction 

technique and strictly following the development rules, a complete model for a finalized 

configuration can be assembled and analyzed within the ORS timeframe. 

 

3.1 ORS Program Requirements for Successful FE Analysis 

Due to the non-traditional timeline that ORS follows, described in Chapter One, each 

component must reach technological maturation prior to any inclusion in satellite design, 

typically a one to three year process.  The key to the success of the ORS program is the 

adherence to the provided guidance for the development and interoperability of the 

component’s interface.  When a mission is defined and it requires the componentry to be 

assembled, the maturity level and consistent interface ensure that the assembly is successful.  

The paradigm that is used for hardware development is applied to the creation of FE 

models of the entire structure.  The modeling of individual components would follow the 

same acquisition process as the hardware development.  The creation of each component FE 

model should be an iterative process throughout the hardware design cycle, validating the 

computed response against actual harmonic excitation of the hardware to achieve accurate 

and representative FE models.   

Similar to the hardware design, the component FE models will follow an established set 

of parameters that govern the interface of each model.  Specifically, the number of 

connecting nodes and the distance between the connecting node and the closest neighboring 

body node must remain constant for each component.  By maintaining an interface 

convention within each model, the system placement of each component can be achieved in a 

fraction of the time required by traditional methods.   
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3.2 Component Model Development 

If a FE model is to be generated for the entire system, each individual component’s 

model must accurately reflect the characteristics of the component.  Without an appropriate 

validation process for each component model, the analysis of the model has potential to 

provide inaccurate results.  The usage of such models within an assembled structure would 

invalidate any results achieved during system analysis. 

The advantage of the approach presented here is that several component models can be 

created each with varying mesh refinement or resolution dependant upon specific load or 

vibrational concerns.  In addition, a low resolution, or low nodal count, model could be 

generated for initial analysis.  The generation of the specified series of models for each 

component will allow for the complete satellite model to be refined at the component level 

while maintaining a fully validated model.   

Similar to the example problem presented in Chapter 2, a model’s mass and stiffness 

matrices would be broken into submatrices according to the previously developed 

procedures.  Each component’s body, connector node and connection submatrices would be 

stored separately, but, due to the requirement that the connection node maintain the same 

distance to the closest body node, only the body matrices would vary.  The connector node 

and associated connectivity matrices would remain unchanged for all component models.   

 

3.3 Resolution Modifications within the Compiled FE Model 

After FE analysis of any system is completed, interpretation of the analysis results 

provide specific areas that will need further examination.  Typically, modifying the system 

model to incorporate the higher resolution necessary is a time consuming process. 

Specifically, the refined portion of the mesh must be inserted manually to ensure all model 

connectivity remains intact.  But, if the governing mesh interface design parameters are 

maintained, the swapping of the different resolution models can be effortless.   

The mesh refinement within Section 3.5 demonstrates that even though the resolution of 

the body of the beam is doubled, the attachment of the connecting nodes remains constant on 

the first and last node of the body.  While the models within the ORS program will be 
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significantly more complex, the basic theory still applies.  Independent of the number of 

connection points within a given model, the explicit amount and their specified locations 

remain constant, allowing for the immediate replacement of models when specified.  The 

resolution of any given component within a compiled model can therefore be changed at will, 

as long as the required model is produced and validated prior to system assembly.  By 

utilizing the nodal segregation approach within design and assembly of the component FE 

models, the time savings received ensures this approach is favorable with respect to the ORS 

program. 

 

3.4 Plug-and-Play Sample Structure 

To demonstrate the Plug-and-Play (PnP) concept and how the approach developed in this 

research applies to a structural model, we designed and produced a small, scaled down 

sample satellite structure, called SimpleSat.  SimpleSat was created to demonstrate how the 

main structural components of a satellite can be assembled by utilizing pre-fabricated 

structural components.  In mimicking the established guidelines for the ORS program, we 

have produced a selection of parts that can be utilized for construction in a variety of 

configurations.  SimpleSat is for demonstration purposes only, therefore the configuration 

options are limited. 

 

3.4.1 SimpleSat Design 

All components produced within SimpleSat were designed using Pro/Engineer, a solid 

modeling application produced by Parametric Technologies Corporation.  All of the parts 

were made of either 6061-T6 or 2024-T4 aluminum.   

 Individual Components 

A total of eight separate machined components were created in the development of 

SimpleSat (see Figure 3.1).  The body structural beams, measuring four, six, and eight 

inches, were constructed from half inch round 2024 stock.  Each beam has a #8X32 threaded 

hole at each end for attachment.  The representative solar panel measures four inches by 
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seven inches and is constructed from 0.05 inch thick aluminum sheet.  The solar cross 

member is one 0.25 inches thick and measures six inches from each hole, measured 

horizontally and vertically.  Both the panel and cross member were cut from aluminum sheet 

using a high pressure water cutting machine.  The attachment collar was produced from 

0.375 inch round stock and turned on a machine lathe to achieve the shoulder feature and 

drilled to make it hollow.  

 

 

Figure 3.1:  Machined SimpleSat Components 

 

Two components within the system were machined using a standard machine mill and 

were time and manpower intensive.  The first, the solar panel support, was created from 

0.625 square aluminum stock.  To achieve the desired strength and maintain a lightweight 

component, a linear taper was machined from the connection shoulder to the solar panel 

connecting fork.  The part was then turned using the machine lathe to produce the attachment 

threads.  The solid model and final product can be seen in Figures 3.2 (a) and (b) 

respectively. 
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(a)       (b) 

 

Figure 3.2:  (a) Solar Panel Support Pro/Engineer Model and (b) Machined Component 

 

 

 

 

 

 

     
(a) 

 

 
(b) 

 

Figure 3.3:  (a) Corner Unit Pro/Engineer Model and (b) Machined Component 
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The structural connecting component, the corner unit, is the most geometrically 

complicated piece within the entire SimpleSat structure; designed to maintain the cubic shape 

of the satellite body while retaining the ability to connect the solar panel assembly and be 

disassembled easily.  Many different configurations were examined prior to production, but 

all had conflicts within the assembly.  Figure 3.3 (a) depicts the Pro/Engineer solid model 

and Figure 3.3 (b) shows final machined component.  The corner component was cut from a 

0.625 inch thick sheet of aluminum using the high pressure water jet cutting machine.  The 

unit was then drilled through the center; this hole was not modeled but was required for 

milling.  A custom indexing jig was created to mill the angled attachment points.  The 

machining of this piece was complicated by the antiquated machinery used and resulted in 

three to four hours of machining for each unit constructed.  By utilizing a modern five-axis 

Computer Numerical Code (CNC) machine mill, the process time could be reduced by as 

much as seventy-five percent and the setup would be a one-time pre-machining event. 

 

3.4.1.1 Assembled Structure 

By utilizing the eight components described previously, a complete structure can be 

assembled.  Due to design limitations, the only Plug-and-Play components that can change 

the configuration of SimpleSat are the structural beams.  The longitudal beams within the 

model have the ability of being exchanged within the assembled structure to change the 

model length.  This is demonstrated in Figure 3.4 as the Pro/Engineer model (Figure 3.4 (a)) 

is constructed with four inch beams and the machined assembly pictured (Figure 3.4 (b)) 

utilizes the eight inch beams in the longitudal direction.  The SimpleSat model is assembled 

using standard size eight socket-head screws with thirty-two threads per inch (#8X32). 
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(a) 

 

 

(b) 

 

Figure 3.4:  (a) SimpleSat Pro/Engineer Model and (b) Assembled SimpleSat Hardware 

 

3.4.2 Computer Modeling and Simulation 

As with the modeling of the structure for physical production, SimpleSat was modeled 

for analysis and system simulation.  In order to demonstrate the basic application of the nodal 

separation approach described in Chapter 2, multiple FE models were produced for each 

individual component, varying resolution in each.  The models were stored on disk, ready for 

assembly within the global model.  The assembly process starts with the development of a 
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component connectivity plan, called the Model Tree.  From the Model Tree, the code 

developed in this research assembles the complete FE model from the components selected 

and initiates the FE analysis. 

For all FE model construction and analysis, the Structural Dynamic Toolbox (SDT) was 

utilized.  SDT is a MATLAB
®

 toolbox created and distributed by Etienne Balmes, and is 

used throughout the world for complex FE modeling and analysis.  SDT develops the FE 

model using proprietary code and takes advantage of the MATLAB
®

 calculation engine for 

solution computation.   SDT is an ideal product for this research because we were able to 

manipulate the mass and stiffness matrices at the nodal level. 

 

3.4.2.1 Finite Element Model Development 

The production of each FE model began with the definition of required connection nodes 

and applicable distances.  For consistency, the connection length for all connecting nodes 

within the structure is set at 0.1 inch.  All nodes within the body of a component are spaced 

evenly between the remaining distances.  For instance, the low resolution, four-inch beam 

has a total of ten nodes; the first and last node spacing is set at 0.1 inch from the nearest body 

nodes, while the remaining node spaces are equally spaced at 0.543 inches each. 

The resolution for each part is of interest as well.  Three specific parts were of major 

concern: the solar panel, attachment collar and structural beams.  The structural beams were 

modeled with three resolutions for each length.  The nine instances of the beams consist of 

ten, one hundred, and one thousand nodes per the component lengths of four, six, and eight 

inches.  Figure 3.5 depicts the SDT model of the four inch beam modeled with ten nodes.  As 

can be seen, the body of the beam is represented with nodes one thru eight and the 

connection nodes are nodes nine and ten.  The constant connection length on 0.1 inch is also 

shown.  The attachment collar is modeled very similarly to the structural beams with the 

three separate resolutions. 
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Figure 3.5:  SDT model of Low Resolution Four Inch Beam 

 

The modeling of the solar panel is delineated by two separate resolutions.  The size is 

constant; therefore the resolution differs only in the distance between nodes within the body.  

The lower resolution model incorporates a total of twenty-seven nodes while the higher 

resolution model uses forty five.  Again, the distance between the connecting node and the 

body nodes is 0.1 inch.  Figure 3.6 shows the resolution differences between instances of the 

solar panel. 

 

          
(a)       (b) 

 

Figure 3.6:  SDT model of (a) the Low Resolution and (b) the High Resolution Solar Panel 

 

A naming convention for each model has been established based on the component name, 

the change in length, and the resolution of the model i.e. Component.Length.Resolution.  

Each developed component follows the naming convention to the extent that if the model 

does not utilize a field, the field is eliminated.  For instance, the corner component does not 

require a length change so the length field is eliminated.   
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Table 3.1:  SimpleSat FE Model stored files 

Component 
Length 

(inches) 
Resolution 

File 

Extension 

# of 

Nodes 
Matrix Size 

.M 48 X 48 

.K 48 X 48 

.Nodes 10 X 7 
Four, Low 

.Elt 

8 

10 X 6 

.M 588 X 588 

.K 588 X 588 

.Nodes 100 X 7 
Six, Med 

.Elt 

98 

100 X 6 

.M 5988 X 5988 

.K 5988 X 5988 

.Nodes 1000 X 7 

Beam 

and               

Eight 
High 

.Elt 

998 

1000 X 6 

.M 48 X 48 

.K 48 X 48 

.Nodes 10 X 7 
Low 

.Elt 

8 

10 X 6 

.M 588 X 588 

.K 588 X 588 

.Nodes 100 X 7 

Collar 

Med 

.Elt 

98 

100 X 6 

.M 162 X 162 

.K 162 X 162 

.Nodes 27 X 7 
Low 

.Elt 

27 

31 X 6 

.M 270 X 270 

.K 270 X 270 

.Nodes 45 X 7 

Solar Panel 

Med 

.Elt 

45 

49 X 6 

.M 72 X 72 

.K 72 X 72 

.Nodes 12 X 7 
Corner 

.Elt 

12 

16 X 6 

.M 78 X 78 

.K 78 X 78 

.Nodes 17 X 7 
Solar Cross Member 

.Elt 

17 

17 X 6 

.M 66 X 66 

.K 66 X 66 

.Nodes 11 X 7 
Solar Support 

.Elt 

11 

11 X 6 
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Each FE model is stored electronically in two formats, graphical and analytical.  SDT 

requires two model specific files for graphical analysis, the .Node, which gives the location 

of each node and the .Elt, which provides the element connectivity.  The analytical file 

requirements are for two model specific files as well.  The mass matrix for the component 

model is contained within the .M file and the .K file houses the global stiffness matrix.  All 

component global mass and stiffness matrices are stored using the MATLAB
®

 sparse storage 

format, storing only the non-zero terms, to minimize storage space and processing time.  

Table 3.1 provides a list of all of the stored FE models and their associated information for 

SimpleSat.  Note that all stored components only contain the nodes for the body. 

 

3.4.2.2 Model Tree 

The assembly of the SimpleSat FE model begins with the definition of the Model Tree.  

The connectivity between each component and the physical placement of the component is 

all stored within the Model Tree file, and can be depicted graphically as a connectivity 

diagram.  Figure 3.7 (b) demonstrates the connectivity for the three beam example shown in 

Figure 3.7 (a).  The three bodies within the model connect with each other through the one 

connector node.   

While the diagram depicted in Figure 3.7 is a good visual representation of the model 

connectivity, the Model Tree file is significantly more complex.  The physical placement 

within the model is as important as the connectivity for the successful assembly of the global 

M and K matrices.   The Model Tree contains three placement fields that are key to proper 

placement of the model: placement point, position vector, and rotation.  As described in 

Chapter 2, each FE model was constructed with a reference unit vector for placement.  The 

placement point dictates the spot within the graphical model where the reference vector 

initiates.  The position vector provides the direction in which the reference vector should 

point.  If a rotation about the positioned vector is required, that angle is entered in the 

rotation field. 
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        (b) 

Figure 3.7:  (a) Three Beam Object and (b) the Associated Connectivity Tree 

 

 

Table 3.2:  Model Tree File Entries for Connecting and Non-Connecting Members 

Model Tree Member Information 

 
Connecting Member 

 
Non-Connecting Member 

Type 'Corner'  Type 'Beam.Four.Low' 

Placement Point [0 0 0]  Placement Point [1 0 0] 

Placement Vector [1 0 0]  Placement Vector [1 0 0] 

Rotation [0]  Rotation [0] 

Connecting Member 1  Connecting Member 0 

Member 1     Connection 

(1) Type 'Pos'     

Member 4     Connection 

(2) Type 'Pos'     

Member 5     Connection 

(3) Type 'Pos'       

 

Body 

1 

Body 

3 

Body 

2 

Cntr 

Node 

Connection 1 

Connection 3 

Connection 2 (a) 
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To facilitate in model construction, each component has been given a designator of 

connecting member or non-connecting member.  The purpose of the designation is to 

determine which member the connecting node should be built from.  In the theoretical 

development of the models, assigning a member as connecting or non-connecting is not 

applicable.  However, for real world model development, the distinction is made to dictate 

the correct connection with the appropriate body.  In Table 3.2, the field “Connecting 

Member” determines whether a member is a connecting member (1) or a non-connecting 

member (0). 

The connecting members within the Model Tree contain additional information that the 

non-connecting members do not require.  For the example listed in Table 3.2, a corner piece, 

the member has three connection points.  The connections of the corner piece can be seen in 

Figure 3.3.  Each connection is assigned an associated number and annotated within the 

table.  The connection is then assigned a member that it is connected to.  For placement of 

the non-connecting member, a connection type is generated as “Pos” or “Neg”.  The “Pos” 

connection dictates that the member is attached by the first node of the body and a “Neg” 

type connects the member through the last body node. 

The SimpleSat Model Tree contains a total of thirty-four members (see Appendix C), 

twelve of which are structural beams.  Also included are eight corners, eight collars, two 

solar cross members, two solar supports, and two solar panels. 

 

3.4.2.3 Model Construction 

The construction of the complete FE model for SimpleSat is accomplished by utilizing 

the component FE models and the Model Tree.  The nodal relationship within the component 

FE models is maintained, but the entire component model’s nodal numbers are assigned 

global node numbers consecutively based on the placement of the members within the Model 

Tree with member number one’s first body node having the value of one, continuing in that 

fashion until all member bodies are numbered.  The connector nodes are numbered last to 

place all connectors at the end of the global matrices, as discussed in Chapter 2. 

The process of adding the individual components to the compiled model utilizes a two 

path construction technique.  The two segmented paths are the development of the graphical 
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and analytical models.  The graphical model is not specifically required for analysis purposes 

and is only used within the Structural Dynamics Toolbox (SDT) to ensure the analytical 

model is correct.  The analytical model has the global mass and stiffness matrices which are 

used for eigenvalue and eigenvector analysis. 

Although two significantly different paths are taken for analysis, all modifications to the 

nodal numbers and compilation of matrices is done coincidently to assure placement of each 

node within the models is consistent.  Each member’s stored model files are read in 

sequentially based on location within the Model Tree.  The nodal characteristics are initially 

read in from the .Node file and the physical location is transformed based on the position 

vector.  The nodal relationship is then modified to reflect the new nodal numbers.  A matrix 

transformation is then required for the global mass, M, and stiffness, K, matrices for the 

specified node, again based on the position vector.  These new values are then added to the 

system level Node, Elt, M and K files. 

After all body submatrices are transformed, the connection nodes and relationships are 

then placed in the global matrices, all derived from the connection information in the Model 

Tree.  During the renumbering process performed on the body submatrices, the locations of 

the key nodes are recorded.  The connection nodes are placed within the Node, M, and K 

files.  Based on the detailed connection information and location of the connection, the 

relationship between the connection node and the nodes it is connecting to is annotated 

within the Elt, M and K matrices. 

The model assembly process is completed using a single MATLAB
®

 script titled 

MatrixConst.m (Appendix C).  The entire process is eased due to the symmetry of the M and 

K matrices and by the limited amount of information due to the sparse matrices.  An 

additional section of code is used to fill the symmetric portion of the matrices because only 

the upper right triangle of the global M and K are processed within the matrix construction 

code.  To ensure that the two processes produce the same result, a M and K matrix are 

produced from the graphical analysis and both are compared using the MATLAB
®

 “Spy” 

command.  Figure 3.8 displays the output of the “Spy” command for both the graphical and 

analytical results.  From visual inspection of these matrices, one can see that the two methods 

match and nodal placement is maintained between the methods. 
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Figure 3.8:  Mass and Stiffness Matrices for the (a) Analytical and (b) Graphical Methods 

 

The nodal segregation and grouping of the member bodies is demonstrated quite well in 

Figure 3.8.  The connection nodes and connecting matrices between the nodes and the 

member bodies is shown as well. 
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3.4.3 Results of SimpleSat Analysis 

The successful modeling of the SimpleSat is determined by two criteria: timeline for 

computation and whether the model used is valid.  For the timeline comparison, time checks 

will be made within the MATLAB
®

 code.  The validity of the model will be accomplished by 

comparing the SDT SimpleSat model with an additional computer generated model as well 

as experimental tests to determine the modal frequencies.  Each has been outlined in the 

following sections. 

 

3.4.3.1 Timeline Analysis 

For comparison, four iterations of the model analysis were completed to determine time 

differences of the code segments.  The first run utilizes the model with all components at the 

lowest resolution, resulting in a total of 384 nodes for the complete FE model.  In the second 

iteration, the resolution of the solar panels was increased to the maximum resolution, from 27 

to 45 nodes, increasing the total number of nodes to 420.  The third run increases the 

resolution of two longitudinal structural beams to medium resolution and maintains the solar 

panels at high resolution.  The total number of nodes within the third run is 600.  The fourth 

and final iteration of the model was to increase all available resolutions to the medium 

resolution.  This included the structural beams in all directions, the attachment collars, and 

the solar panels.  The total node count increased by 900 resulting in a total number of 1500 

nodes, or 9000 DOF. 

Table 3.3 shows specific time information for each of the iterations.  The development of 

the component FE models remains relatively the same for every configuration.  The obvious, 

and expected, time constraint is the model assembly.  By simply averaging the number of 

nodes used compared to the time of computation, we can use a figure for calculation of 1 to 

1.5 seconds per node, due to the renumbering scheme required to make the model follow the 

established guidelines of nodal segregation approach.  Table 3.3 does not depict the time 

required to establish the initial models and modify the overall model to include the changes 
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in resolution.  That is because the construction of the models does not factor into the analysis 

time because they were created prior to Model Tree development, which is the foundation for 

this approach.  The modification to the Model Tree is insignificant, as the time required to 

change a small number of characters and to resave the file is miniscule. 

 

 

Table 3.3:  Time Comparison Data for Four SimpleSat Iterations with Varying Complexity 

SimpleSat Model Analysis 

Iteration #1 (384 Nodes) 

Action 
Time Required 

(mm:ss.ss) 

% of Total 

Time 

Component FE Model Creation 00:12.63 5.54% 

Model Assembly 03:30.08 92.20% 

Eigenpair Analysis 00:05.15 2.26% 

Total Time 03:47.86   

Iteration #2 (420 Nodes) 

Action 
Time Required 

(mm:ss.ss) 

% of Total 

Time 

Component FE Model Creation 00:12.63 4.57% 

Model Assembly 04:21.00 94.49% 

Eigenpair Analysis 00:02.58 0.94% 

Total Time 04:36.22   

Iteration #3 (600 Nodes) 

Action 
Time Required 

(mm:ss.ss) 

% of Total 

Time 

Component FE Model Creation 00:12.87 2.46% 

Model Assembly 08:27.09 97.00% 

Eigenpair Analysis 00:02.83 0.54% 

Total Time 08:42.79   

Iteration #4 (1500 Nodes) 

Action 
Time Required 

(mm:ss.ss) 

% of Total 

Time 

Component FE Model Creation 00:12.58 0.40% 

Model Assembly 52:09.06 99.42% 

Eigenpair Analysis 00:05.80 0.18% 

Total Time 52:27.44   
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It is noted that the size of the models used in the SimpleSat demonstration are small 

compared to a complex FE model, which can easily consist of multi-millions of DOF.  The 

size of the assembled model directly effects the time required for analysis computation.  As 

the number of nodes increases, the dimension of M and K increase by a factor of six, and 

therefore effect the time required to compute the eigenpairs increases on the order of the 

number of nodes cubed.  As the size of the models increase, the eigen analysis will quickly 

become the dominant time consumer. 

All of the iterations of the SimpleSat model were completed using a Dell 700M notebook 

computer with an Intel 1594 MHz Centrino
TM

 processor with 1024 MB of RAM.  This 

machine was running Microsoft
®

 Windows
®

 XP Home Edition.  Since most computations 

are floating point, the analysis process would be significantly faster given a computer with a 

faster floating point unit. 

 

3.4.3.2 Validation of SimpleSat Model 

Validation of a model can entail many different tests to prove that the model matches the 

characteristics of the actual hardware.  For our comparison, only the modal frequencies will 

be compared.  This limits the true validity of this model, but is adequate to determine 

whether the results achieved are acceptable.  Three sets of data are compared for the 

SimpleSat validity determination, the SDT modal frequencies, modal frequencies determined 

by a Nastran model, and frequency determination by experimentation on the machined 

hardware as seen in Table 3.4.  The background data for which Table 3.4 is developed is 

included in Appendix B. 

The experimental results are are derived from a series vibration response tests on the 

SimpleSat hardware.  We placed the assembled SimpleSat model in free space, hanging from 

a simple damperless rubberband setup, and struck the model at various locations.  The 

response was recoded via two accelerometers and then plotted with MATLAB.  The results 

in Table 3.4 depict the average of the similar modal frequencies.  The complete results from 

our testing can be found in Appendix B.3. 
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Table 3.4:  Comparison of Modal Frequency Determinations 

Modal Frequency Comparison 

SDT Nastran Experimental 

Frequency (Hz) Frequency (Hz) Frequency (Hz) 

158.7 71.28 72.89 

163.2 82.16 86.89 

174.1 133.12 92.81 

192.5 209.38 137.12 

199.9 212.54 198.58 

 

 

Table 3.4 is a simple comparison of the first five modal frequencies from the three 

separate modeling methods.  Basic interpretation of the data indicates that the three methods 

utilized for model construction provide vastly differing results.  The experimental and 

Nastran results demonstrate concurrence within four of the five modes, differing with the 

exclusion of the third mode within Nastran.   The deleted node is most likely due to the 

modeling process within Nastran.  The Nastran model developed only utilized the Solar 

Panel and the Solar Support, ignoring the effect the remainder of the system provided. 

The SDT results do not agree in the low frequencies, but are closer near mode 5, which is 

merely coincidental due to the mode shape differences.  Appendix B.1 shows the mode 

shapes from the SDT analysis.  Inspection of these shows that there is a major flaw within the 

SDT processes.  The mode shapes demonstrate a non-symmetric vibration throughout all 

frequencies, providing incorrect results due to no off axis boundary conditions.  The errors 

within SDT may also be associated with the toolbox’s unit conversion factors.  The model is 

developed in US units, specifically inches and pounds, and SDT converts the units to SI.  

From basic code manipulation, it has been determined that the conversion is flawed, and 

must be corrected before adequate results can be achieved.  
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4 Conclusions and Future Work 

The purpose of the research presented was to prove that with a finite element (FE) model 

development paradigm shift, a finalized satellite FE model could be produced within the 

Operational Responsive Space (ORS) assembly timeframe.  Within the major research goal 

were several smaller objectives, including the development of a series of models, both 

hardware and FE, to test the concept as well as the development of MATLAB
®

 code to 

assemble the global FE model. 

 

4.1 Conclusions 

The results from the analysis presented shows that our research was partially successful.  

We took the first of many steps required to generate a method to place FE modeling within 

the ORS assembly window.  We proved that, if a FE model is constructed following the 

dedicated interface rules, a global FE model can be assembled within the ORS program 

timeline.  The nodal segregation approach demonstrated that by utilizing a constant distance 

between a connector node and the associated body node, the interface of the modeled 

component with the assembled FE model did not change, providing the opportunity to 

exchange refined models with very little impact.  The result is an assembled model that can 

be refined on-the-fly. 

We demonstrated that by producing a variety of models for each component prior to any 

assembly activity, the majority of the work required for global FE model assembly is 

accomplished before any need is defined, significantly reducing the amount of time and 

effort required to assemble the global model.  The work remaining in assembly is limited to 

the connectivity definition of each component used. 

The MATLAB
®

 routine developed to build the component models, assemble the global 

model, and perform the eigenpair analysis showed that the nodal segregation approach to FE 

development will significantly improve the model development time.   With the completion 

of the code and the success of the trials performed, the developed routine is considered to be 

a “proof-of-concept’ of the nodal segretation approach. 
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The potential within the application of our nodal segregation approach is limitless within 

the modeling and simulation of component based systems, to include the astronautical, 

aeronautical, and automotive industries.  The research performed is vital to the success of the 

ORS program, and will be beneficial to many other Air Force specific programs. 

 

4.2 Future Work 

While much work has been completed in the development of the FE model production 

methodology as presented in this paper, a great deal of work remains incomplete.  The 

assembly process has proved successful, but the timeline and effort required can be reduced 

further.  The modeling within Structural Dynamics Toolbox (SDT) was successful to a 

limited extent, but, as mentioned previously, must be refined.  As effective as SimpleSat is in 

demonstrating the basic concepts of Plug-and-Play componentry, it would be ideal to begin 

modeling the actual hardware components currently being developed by AFRL/VS. 

 

4.2.1 Approach Refinement 

The nodal segregation approach was widely successful in the proof of concept.  However, 

during the analysis trials for SimpleSat, the majority of the processing time was spent 

assembling the global FE model.  We can further optimize the assembly process by moving 

additional model development prior to assembly.  Because the majority of the component 

configurations are known, the development of additional component FE models representing 

all known model rotations could be accomplished.  The existence of the rotated models can 

eliminate the need to rotate the placement vectors and matrices for each node, removing a 

significant portion of the computing time. 

 

4.2.2 Model Complexity 

The models created within SDT are limited with regard to practical modeling of the 

SimpleSat componentry.  To ensure compatibility of each component’s FE model with the 

method processes, each component was modeled with essentially a one-dimensional 
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mentality.  In every instance, the models developed are a single string of nodes, no more than 

one node deep.  A system-wide overhaul of the models to increase nodal density, mesh 

refinement, and to include plate and solid elements would significantly increase the realism 

of the assembled model.  The complete validation of the models with respect to the 

SimpleSat hardware will also significantly improve results. 

Due to the results found from the comparison of the model analysis to the actual 

experimental values, the SimpleSat SDT model holds no validity to the actual system.  The 

moments of inertial (MOI) need to be verified as correct within the models.  The stiffness 

characteristics within the model should also be checked.  

 

4.2.3 Analysis Approaches 

To reduce the dimension of the component mass and stiffness matrices, a component 

mode synthesis (CMS) approach would be used.  Using a CMS or Craig-Bampton [4] 

approach, we could project the component mass and stiffness matrices onto their respective 

truncated eigenspaces.  A reduction in dimension of the system matrices of a factor of several 

thousand is fairly common for large FE models.  This approach could be used in the ORS 

approach. 

 

4.2.4 Modeling Flight Hardware 

The next logical step in applying nodal segregation to the Plug-and-Play structural 

environment is to model the hardware being developed for the Operational Responsive Space 

(ORS) program.  Currently, the Air Force Research Laboratory’s Space Vehicle Division 

(AFRL/VS) is working with a multitude of contractors to begin development of basic flight 

hardware for this effort.  To model these components and assemble a mock system would be 

the final step to proving the methodology presented is legitimate.  
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APPENDICES 

Appendix A:  SimpleSat Manufacturing Drawings 

 

 

 

 

Figure A.1:  Attachment Point Drawing 
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Figure A.2:  Four Inch Beam Drawing 

 

 

Figure A.3:  Solar Attachment Collar Drawing 
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Figure A.4:  Solar Assembly Attachment Cross Member Drawing 
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Figure A.5:  Solar Panel Drawing 
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Figure A.6:  Solar Panel Support Drawing
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Appendix B:  Validation of the SimpleSat FE Model 

Appendix B.1:  SDT Modal Frequency Analysis 

 

 

Mode 1 – 158.7 

7 @ 158.7 Hz

 

Mode 2 – 163.2 

8 @ 163.2 Hz
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Mode 3 – 174.1 

9 @ 174.1 Hz

 

Mode 4 – 192.5 

10 @ 192.5 Hz

 

Mode 5 – 199.9 

11 @ 199.9 Hz
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Appendix B.2:  Nastran Modal Frequency Analysis 

 

Mode 1 – 71.28 Hz 

Mode 2 – 82.16 Hz 

Mode 3 – 133.12 Hz 

 

Mode 4 – 209.38 Hz 
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Appendix B.3:  Experimental Modal Frequency Analysis 
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Appendix C:  Finite Element Model Construction Code 

Main.m 

clear all;clf;clc; 

Time(1,:)=clock; 

ModelProps; 

Build = 0 

if Build == 0 

    Beam; 

    CornerCreate; 

    CollarCreate; 

    SolarCrossCreate; 

    SolarSupportCreate; 

    SolarPanelCreate; 

    save Body.mat Body*; 

    save Connect.mat Connect*; 

    save Corner.mat Corner*; 

    save Collar.mat Collar*; 

    save SolarCross.mat SolarCross*; 

    save SolarSupport.mat SolarSupport*; 

    save SolarPanel.mat SolarPanel*; 

    save L.mat L*; 

    save N.mat N*; 

elseif Build == 1 

    load Body.mat 

    load Connect.mat 

    load Corner.mat 

    load Collar.mat 

    load SolarCross.mat 

    load SolarSupport.mat 

    load SolarPanel.mat 

    load L.mat 

    load N.mat 

end 

Time(2,:)=clock 

ModelTree_new; 

%ModelTreeCheck; 

ModelConst; 

Time(3,:)=clock 

ModelBuild; 

Spymatrix; 

Time(4,:)=clock 

 

 

ModelProps.m 

model.pl = [1   0.411646966 1.04E07         0.3     0.000252    4.016E06; 

            2   0.411646966 3.04579e+007    0.285   0.000729866 1.18513e+007]; 

  

          

          

typ=fe_mat('p_beam','IN',1); % standard beam 

model.il = [1 typ  1.66667E-05  8.33333E-06 8.33333E-06 0.01            % .1 X .1 

            2 typ  0.09817477   0.049087385 0.049087385 0.785398163     % .5 circle 

            3 typ  6.77083E-05  2.60417E-06 6.51042E-05 0.0125          % .25 X .05 

            4 typ  0.000526042  5.20833E-06 0.000520833 0.025           % .5 X .05 

            5 typ  6.77083E-05  6.51042E-05 2.60417E-06 0.0125          % .05 X .25 

            6 typ  0.000526042  0.000520833 5.20833E-06 0.025           % .05 X .5 

            7 typ  0.000651042  0.000325521 0.000325521 0.0625          % .25 X .25 

            8 typ  0.003295898  0.001647949 0.001647949 0.140625        % .375  .375 

            9 typ  0.010416667  0.005208333 0.005208333 0.25            % .5 X .5 

            10 typ 0.003255208  0.000651042 0.002604167 0.125           % .5 X .25 

            11 typ 0.003255208  0.002604167 0.000651042 0.125];         % .25 X .5 
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Beam.M 

close all;clf; 

  

eval(demosdt('echooff')) 

  

L_Text={'Four';'Six';'Eight'}; 

N_Text={'Low';'Med';'High'}; 

FEelt=[]; 

  

L=[4;6;8]; 

N=[10;100;1000]; 

  

for i=1:length(L); 

    femesh('reset'); % initialize FEMESH 

    for j=1:length(N); 

        a=(L(i)-(.2))/(N(j)-3);    %note the 3, 2 nodes + 1 for start 

        FEelt(1,:)=[Inf     abs('beam1')]; 

  

        for n=1:(N(j)-2); 

             FEnode(n,:)= [(n)  0 0 0  (.1+((n-1)*a)) 0 0]; 

             FEelt((n+1),:)=[(n) (n+1) 1 2 50 0]; 

        end 

         

        FEelt((n+1),:)=[(n) (n+2) 1 2 50 0]; 

        FEnode((N(j)-1),:) = [(N(j)-1)  0 0 0  0 0 0]; 

        FEelt(N(j),:)=[(N(j)-1) 1 1 2 50 0]; 

        FEnode(N(j),:) = [N(j)  0 0 0  L(i) 0 0]; 

  

        text_model=strcat('Body.',char(L_Text(i)),'.',char(N_Text(j)),'.') 

        text_M=strcat(text_model,'model=femesh'); 

        eval(text_M) 

%        model=femesh; 

         

        text_Cnxs=strcat(text_model,'Cnxs=2'); 

        eval(text_Cnxs) 

  

        quote=char(39); 

         

        text_pl=strcat(text_model,'model.pl=model.pl'); 

        eval(text_pl) 

%        model.pl=[m_elastic('dbval 1 aluminum')] 

        text_il=strcat(text_model,'model.il=model.il'); 

        eval(text_il) 

%        model.il=[p_beam('dbval 1 rectangle .1 .1')] 

  

        text_mknaming=strcat('[Beam.M,Beam.K,Beam.mdof]='); 

        text_modelselect=strcat('fe_mknl(',text_model,'model);'); 

        text_mknl=strcat(text_mknaming,text_modelselect); 

        eval(text_mknl) 

%        

[Beam.Length(i).Res(j).M,Beam.Length(i).Res(j).K,Beam.Length(i).Res(j).mdof]=fe_mknl(model); 

  

        H(i,j)=length(Beam.M); 

         

        text_bodyM=strcat(text_model,'M=Beam.M(1:(H(i,j)-12),1:(H(i,j)-12));'); 

        eval(text_bodyM) 

        text_bodyK=strcat(text_model,'K=Beam.K(1:(H(i,j)-12),1:(H(i,j)-12));'); 

        eval(text_bodyK) 

        text_bodySize=strcat(text_model,'Size=length(',text_model,'M);'); 

        eval(text_bodySize) 

    end 

end 

  

        Connect.Pos.M=Beam.M((H(i,j)-11):(H(i,j)-6),(H(i,j)-11):(H(i,j)-6)); 

        Connect.Pos.Mcx=Beam.M(1:6,(H(i,j)-11):(H(i,j)-6)); 

        Connect.Pos.K=Beam.K((H(i,j)-11):(H(i,j)-6),(H(i,j)-11):(H(i,j)-6)); 

        Connect.Pos.Kcx=Beam.K(1:6,(H(i,j)-11):(H(i,j)-6)); 

        Connect.Pos.Size=length(Connect.Pos.M); 
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        Connect.Neg.M=Beam.M((H(i,j)-5):H(i,j),(H(i,j)-5):H(i,j)); 

        Connect.Neg.Mcx=Beam.M((H(i,j)-17):(H(i,j)-12),(H(i,j)-5):H(i,j)); 

        Connect.Neg.K=Beam.K((H(i,j)-5):H(i,j),(H(i,j)-5):H(i,j)); 

        Connect.Neg.Kcx=Beam.K((H(i,j)-17):(H(i,j)-12),(H(i,j)-5):H(i,j)); 

        Connect.Neg.Size=length(Connect.Neg.M); 

 

 

CornerCreate.m 

eval(demosdt('echooff')) 

  

femesh('reset'); % initialize FEMESH 

FEelt=[]; 

  

FEnode = [1  0 0 0  1 0 0.5; 

          2  0 0 0  1 0.5 0; 

          3  0 0 0  0.5 1 0; 

          4  0 0 0  0 1 0.5; 

          5  0 0 0  0 0.5 1; 

          6  0 0 0  0.5 0 1; 

          7  0 0 0  1 0 0; 

          8  0 0 0  0 1 0; 

          9  0 0 0  0 0 1; 

          10  0 0 0  1.1 0 0; 

          11  0 0 0  0 1.1 0; 

          12  0 0 0  0 0 1.1]; 

       

FEelt = [Inf     abs('beam1'); 

         1 2 1 7 50 0; 

         2 3 1 7 50 0; 

         3 4 1 7 50 0; 

         4 5 1 7 50 0; 

         5 6 1 7 50 0; 

         6 1 1 7 50 0; 

         1 7 1 7 50 0; 

         7 2 1 7 50 0; 

         3 8 1 7 50 0; 

         8 4 1 7 50 0; 

         5 9 1 7 50 0; 

         9 6 1 7 50 0; 

         7 10 1 7 50 0; 

         8 11 1 7 50 0; 

         9 12 1 7 50 0]; 

%         7 13 1 7 50 0]; 

  

Corner.model=femesh; 

Corner.Cnxs=3; 

  

Corner.model.pl=model.pl 

           

Corner.model.il=model.il 

  

[C.M,C.K,C.mdof]=fe_mknl(Corner.model); 

  

lsize=length(C.M)%-(6*Corner.Cnxs) 

Corner.M=C.M(1:lsize,1:lsize); 

Corner.K=C.K(1:lsize,1:lsize); 

  

Corner.Size = length(Corner.M); 

  

cf=feplot; cf.model=Corner.model; 
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CollarCreate.m 

close all;clf; 
  

eval(demosdt('echooff')) 
  

ClrL_Text={'One'}; 
ClrN_Text={'Low';'High'}; 
FEelt=[]; 

  

ClrL=[1.25]; 

ClrN=[10;100]; 

  

for i=1:length(ClrL); 
    femesh('reset'); % initialize FEMESH 
    for j=1:length(ClrN); 
        a=(ClrL(i)-(.2))/(ClrN(j)-3);    %note the 3, 2 nodes + 1 for start 
        FEelt(1,:)=[Inf     abs('beam1')]; 
  

        for n=1:(ClrN(j)-2); 
             FEnode(n,:)= [(n)  0 0 0  (.1+((n-1)*a)) 0 0]; 

             FEelt((n+1),:)=[(n) (n+1) 1 2 50 0]; 

        end 
         

        FEelt((n+1),:)=[(n) (n+2) 1 2 50 0]; 

        FEnode((ClrN(j)-1),:) = [(ClrN(j)-1)  0 0 0  0 0 0]; 

        FEelt(ClrN(j),:)=[(ClrN(j)-1) 1 1 2 50 0]; 

        FEnode(ClrN(j),:) = [ClrN(j)  0 0 0  ClrL(i) 0 0]; 

  

        text_model=strcat('Collar.',char(ClrN_Text(j)),'.') 
        text_M=strcat(text_model,'model=femesh'); 
        eval(text_M) 

         

        text_Cnxs=strcat(text_model,'Cnxs=2'); 
        eval(text_Cnxs) 

  

        quote=char(39); 

         

        text_pl=strcat(text_model,'model.pl=model.pl'); 
        eval(text_pl) 

 

        text_il=strcat(text_model,'model.il=model.il'); 
        eval(text_il) 

 

        text_mknaming=strcat('[Collar.M,Collar.K,Collar.mdof]='); 
        text_modelselect=strcat('fe_mknl(',text_model,'model);'); 
        text_mknl=strcat(text_mknaming,text_modelselect); 

        eval(text_mknl) 

 

        H(i,j)=length(Collar.M); 

         

        text_bodyM=strcat(text_model,'M=Collar.M(1:(H(i,j)-12),1:(H(i,j)-12));'); 
        eval(text_bodyM) 

        text_bodyK=strcat(text_model,'K=Collar.K(1:(H(i,j)-12),1:(H(i,j)-12));'); 
        eval(text_bodyK) 

        text_bodySize=strcat(text_model,'Size=length(',text_model,'M);'); 
        eval(text_bodySize) 

         

  

     

    

    end 
end 
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SolarCrossCreate.m 

%clear all;close all;clf; 

  

eval(demosdt('echooff')) 

  

femesh('reset'); % initialize FEMESH 

FEelt=[]; 

  

FEnode = [1  0 0 0  0 0 0; 

          2  0 0 0  -1 -1 0; 

          3  0 0 0  1 -1 0; 

          4  0 0 0  1 1 0; 

          5  0 0 0  -1 1 0; 

          6  0 0 0  -2 -2 0; 

          7  0 0 0  2 -2 0; 

          8  0 0 0  2 2 0; 

          9  0 0 0  -2 2 0; 

          10 0 0 0  -3 -3 0; 

          11 0 0 0  3 -3 0; 

          12 0 0 0  3 3 0; 

          13 0 0 0  -3 3 0; 

          14 0 0 0  -3 -3 0.1; 

          15 0 0 0  3 -3 0.1; 

          16 0 0 0  3 3 0.1; 

          17 0 0 0  -3 3 0.1]; 

  

%FEelt(1,:)=[Inf     abs('beam1')];       

FEelt = [Inf     abs('beam1'); 

         1 2 1 11 50 0; 

         2 6 1 11 50 0; 

         6 10 1 11 50 0; 

         1 3 1 11 50 0; 

         3 7 1 11 50 0; 

         7 11 1 11 50 0; 

         1 4 1 11 50 0; 

         4 8 1 11 50 0; 

         8 12 1 11 50 0; 

         1 5 1 11 50 0; 

         5 9 1 11 50 0; 

         9 13 1 11 50 0; 

         10 14 1 11 50 0; 

         11 15 1 11 50 0; 

         12 16 1 11 50 0; 

         13 17 1 11 50 0]; 

  

SolarCross.model=femesh; 

SolarCross.Cnxs=4; 

  

SolarCross.model.pl=model.pl 

           

SolarCross.model.il=model.il 

  

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarCross.model); 

  

lsize=length(SP.M)-(6*SolarCross.Cnxs) 

SolarCross.M=SP.M(1:lsize,1:lsize); 

SolarCross.K=SP.K(1:lsize,1:lsize); 

  

SolarCross.Size = length(SolarCross.M); 

  

cf=feplot; cf.model=SolarCross.model; 
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SolarSupportCreate.m 

%clear all;close all;clf; 

  

eval(demosdt('echooff')) 

  

femesh('reset'); % initialize FEMESH 

FEelt=[]; 

  

FEnode = [1  0 0 0  0 0 0; 

          2  0 0 0  0 1 0; 

          3  0 0 0  0 2 0; 

          4  0 0 0  0 3 0; 

          5  0 0 0  0 3.5 0; 

          6  0 0 0  .2 3.5 0; 

          7  0 0 0  -.2 3.5 0; 

          8  0 0 0  .2 4 0; 

          9 0 0 0  -.2 4 0; 

          10  0 0 0  .2 5 0; 

          11 0 0 0  -.2 5 0]; 

 

FEelt = [Inf     abs('beam1'); 

         1 2 1 9 50 0; 

         2 3 1 9 50 0; 

         3 4 1 8 50 0; 

         4 5 1 8 50 0; 

         5 6 1 8 50 0; 

         6 8 1 7 50 0; 

         8 10 1 7 50 0; 

         5 7 1 8 50 0; 

         7 9 1 7 50 0; 

         9 11 1 7 50 0]; 

 

SolarSupport.model=femesh; 

SolarSupport.Cnxs=0; 

  

SolarSupport.model.pl=model.pl 

           

SolarSupport.model.il=model.il 

  

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarSupport.model); 

  

lsize=length(SP.M)-(6*SolarSupport.Cnxs) 

SolarSupport.M=SP.M(1:lsize,1:lsize); 

SolarSupport.K=SP.K(1:lsize,1:lsize); 

  

SolarSupport.Size = length(SolarSupport.M); 

  

cf=feplot; cf.model=SolarSupport.model; 

 

 

SolarPanelCreate.m 

%clear all;close all;clf; 

  

eval(demosdt('echooff')) 

  

%Low Resolution 

  

femesh('reset'); % initialize FEMESH 

FEelt=[]; 

  

FEnode = [1  0 0 0  0 0 0;          2  0 0 0  0 1 0; 

          3  0 0 0  0 1.5 0;        4  0 0 0  0 2 0; 

          5  0 0 0  0 3 0;          6  0 0 0  .5 3 0; 

          7  0 0 0  1.5 3 0;        8  0 0 0  2.5 3 0; 
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          9  0 0 0  2.5 2 0;        10 0 0 0  2.5 1.5 0; 

          11 0 0 0  2.5 1 0;        12 0 0 0  2.5 0 0; 

          13 0 0 0  1.5 0 0;        14 0 0 0  0.5 0 0; 

          15 0 0 0  .5 1.5 0;       16 0 0 0  1.5 1.5 0; 

          17 0 0 0  -.5 3 0;        18 0 0 0  -1.5 3 0; 

          19 0 0 0  -2.5 3 0;       20 0 0 0  -2.5 2 0; 

          21 0 0 0  -2.5 1.5 0;     22 0 0 0  -2.5 1 0; 

          23 0 0 0  -2.5 0 0;       24 0 0 0  -1.5 0 0; 

          25 0 0 0  -.5 0 0;        26 0 0 0  -.5 1.5 0; 

          27 0 0 0  -1.5 1.5 0]; 

%FEelt(1,:)=[Inf     abs('beam1')];       

FEelt = [Inf     abs('beam1'); 

         1 2 1 4 50 0;         2 3 1 4 50 0; 

         3 4 1 4 50 0;         4 5 1 4 50 0; 

         5 6 1 3 50 0;         6 7 1 3 50 0; 

         7 8 1 3 50 0;         8 9 1 3 50 0; 

         9 10 1 3 50 0;        10 11 1 3 50 0; 

         11 12 1 3 50 0;       12 13 1 3 50 0; 

         13 14 1 3 50 0;       14 1 1 3 50 0; 

         3 15 1 4 50 0;        15 16 1 4 50 0; 

         16 10 1 4 50 0;       5 17 1 3 50 0; 

         17 18 1 3 50 0;       18 19 1 3 50 0; 

         19 20 1 3 50 0;       20 21 1 3 50 0; 

         21 22 1 3 50 0;       22 23 1 3 50 0; 

         23 24 1 3 50 0;       24 25 1 3 50 0; 

         25 1 1 3 50 0;        3 26 1 4 50 0; 

         26 27 1 4 50 0;       27 21 1 4 50 0]; 

  

SolarPanel.Low.model=femesh; 

SolarPanel.Low.Cnxs=0; 

  

SolarPanel.Low.model.pl=model.pl 

           

SolarPanel.Low.model.il=model.il 

  

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarPanel.Low.model); 

  

lsize=length(SP.M)-(6*SolarPanel.Low.Cnxs) 

SolarPanel.Low.M=SP.M(1:lsize,1:lsize); 

SolarPanel.Low.K=SP.K(1:lsize,1:lsize); 

  

SolarPanel.Low.Size = length(SolarPanel.Low.M); 

  

  

  

  

%Medium Resolution 

femesh('reset'); % initialize FEMESH 

FEelt=[]; 

  

FEnode = [1  0 0 0  0 0 0;          2  0 0 0  0 1 0; 

          3  0 0 0  0 1.5 0;        4  0 0 0  0 2 0; 

          5  0 0 0  0 3 0;          6  0 0 0  .5 3 0; 

          7  0 0 0  1.5 3 0;        8  0 0 0  2.5 3 0; 

          9  0 0 0  2.5 2 0;        10 0 0 0  2.5 1.5 0; 

          11 0 0 0  2.5 1 0;        12 0 0 0  2.5 0 0; 

          13 0 0 0  1.5 0 0;        14 0 0 0  0.5 0 0; 

          15 0 0 0  .5 1.5 0;       16 0 0 0  1.5 1.5 0; 

          17 0 0 0  -.5 3 0;        18 0 0 0  -1.5 3 0; 

          19 0 0 0  -2.5 3 0;       20 0 0 0  -2.5 2 0; 

          21 0 0 0  -2.5 1.5 0;     22 0 0 0  -2.5 1 0; 

          23 0 0 0  -2.5 0 0;       24 0 0 0  -1.5 0 0; 

          25 0 0 0  -.5 0 0;        26 0 0 0  -.5 1.5 0; 

          27 0 0 0  -1.5 1.5 0;     28 0 0 0  0 .5 0; 

          29 0 0 0  0 2.5 0;        30 0 0 0  1 3 0; 

          31 0 0 0  2 3 0;          32 0 0 0  2.5 2.5 0; 

          33 0 0 0  2.5 0.5 0;      34 0 0 0  2 0 0; 

          35 0 0 0  1 0 0;          36 0 0 0  -1 3 0; 

          37 0 0 0  -2 3 0;         38 0 0 0  -2.5 2.5 0; 
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          39 0 0 0  -2.5 .5 0;      40 0 0 0  -2 0 0; 

          41 0 0 0  -1 0 0;         42 0 0 0  -1 1.5 0; 

          43 0 0 0  -2 1.5 0;       44 0 0 0  1 1.5 0; 

          45 0 0 0  2 1.5 0]; 

           

           

           

%FEelt(1,:)=[Inf     abs('beam1')];       

FEelt = [Inf     abs('beam1'); 

                 

         2 3 1 6 50 0; 

         3 4 1 6 50 0;         

         5 6 1 5 50 0;          

         9 10 1 5 50 0;        10 11 1 5 50 0;        

         14 1 1 5 50 0; 

         3 15 1 6 50 0;        

         5 17 1 5 50 0;    

         20 21 1 5 50 0; 

         21 22 1 5 50 0;        

         25 1 1 5 50 0;        3 26 1 6 50 0; 

         1 28 1 6 50 0;        28 2 1 6 50 0; 

         4 29 1 6 50 0;        29 5 1 6 50 0; 

         6 30 1 5 50 0;         30 7 1 5 50 0; 

         7 31 1 5 50 0;         31 8 1 5 50 0; 

         8 32 1 5 50 0;         32 9 1 5 50 0; 

         11 33 1 5 50 0;        33 12 1 5 50 0; 

         12 34 1 5 50 0;        34 13 1 5 50 0; 

         13 35 1 5 50 0;        35 14 1 5 50 0; 

         17 36 1 5 50 0;        36 18 1 5 50 0; 

         18 37 1 5 50 0;        37 19 1 5 50 0; 

         19 38 1 5 50 0;        38 20 1 5 50 0; 

         22 39 1 5 50 0;        39 23 1 5 50 0; 

         23 40 1 5 50 0;        40 24 1 5 50 0; 

         24 41 1 5 50 0;        41 25 1 5 50 0; 

         26 42 1 6 50 0;        42 27 1 6 50 0; 

         27 43 1 6 50 0;        43 21 1 6 50 0; 

         15 44 1 6 50 0;        44 16 1 6 50 0; 

         16 45 1 6 50 0;        45 10 1 6 50 0]; 

  

SolarPanel.Med.model=femesh; 

SolarPanel.Med.Cnxs=0; 

  

SolarPanel.Med.model.pl=model.pl 

           

SolarPanel.Med.model.il=model.il 

  

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarPanel.Med.model); 

  

lsize=length(SP.M)-(6*SolarPanel.Med.Cnxs) 

SolarPanel.Med.M=SP.M(1:lsize,1:lsize); 

SolarPanel.Med.K=SP.K(1:lsize,1:lsize); 

  

SolarPanel.Med.Size = length(SolarPanel.Med.M); 

  

cf=feplot; cf.model=SolarPanel.Med.model;%cf.def=def; 

 

 

ModelTree_new.m 

Tree.Mbr(1).Type='Body.Six.Low';%1,2,3 

Tree.Mbr(1).Loc=[1,0,0]; 

Tree.Mbr(1).Vec=[1,0,0]; 

Tree.Mbr(1).Rot=[0]; 

Tree.Mbr(1).CntMbr=0; 

  

Tree.Mbr(2).Type='Body.Four.Low';%4,5,6 
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Tree.Mbr(2).Loc=[L(2)+2,1,0]; 

Tree.Mbr(2).Vec=[0,1,0]; 

Tree.Mbr(2).Rot=[0]; 

Tree.Mbr(2).CntMbr=0; 

  

Tree.Mbr(3).Type='Body.Six.Low';%7,8,9 

Tree.Mbr(3).Loc=[1,L(1)+2,0]; 

Tree.Mbr(3).Vec=[1,0,0]; 

Tree.Mbr(3).Rot=[0]; 

Tree.Mbr(3).CntMbr=0; 

  

Tree.Mbr(4).Type='Body.Four.Low';%10,11,12 

Tree.Mbr(4).Loc=[0,1,0]; 

Tree.Mbr(4).Vec=[0,1,0]; 

Tree.Mbr(4).Rot=[0]; 

Tree.Mbr(4).CntMbr=0; 

  

Tree.Mbr(5).Type='Body.Four.Low';%13,14,15 

Tree.Mbr(5).Loc=[0,0,1]; 

Tree.Mbr(5).Vec=[0,0,1]; 

Tree.Mbr(5).Rot=[0]; 

Tree.Mbr(5).CntMbr=0; 

  

Tree.Mbr(6).Type='Body.Four.Low';%16,17,18 

Tree.Mbr(6).Loc=[L(2)+2,0,1]; 

Tree.Mbr(6).Vec=[0,0,1]; 

Tree.Mbr(6).Rot=[0]; 

Tree.Mbr(6).CntMbr=0; 

  

Tree.Mbr(7).Type='Body.Four.Low';%19,20,21 

Tree.Mbr(7).Loc=[L(2)+2,L(1)+2,1]; 

Tree.Mbr(7).Vec=[0,0,1]; 

Tree.Mbr(7).Rot=[0]; 

Tree.Mbr(7).CntMbr=0; 

  

Tree.Mbr(8).Type='Body.Four.Low';%22,23,24 

Tree.Mbr(8).Loc=[0,L(1)+2,1]; 

Tree.Mbr(8).Vec=[0,0,1]; 

Tree.Mbr(8).Rot=[0]; 

Tree.Mbr(8).CntMbr=0; 

  

Tree.Mbr(9).Type='Body.Six.Low';%25,26,27 

Tree.Mbr(9).Loc=[1,0,L(1)+2]; 

Tree.Mbr(9).Vec=[1,0,0]; 

Tree.Mbr(9).Rot=[0]; 

Tree.Mbr(9).CntMbr=0; 

  

Tree.Mbr(10).Type='Body.Four.Low';%28,29,30 

Tree.Mbr(10).Loc=[L(2)+2,1,L(1)+2]; 

Tree.Mbr(10).Vec=[0,1,0]; 

Tree.Mbr(10).Rot=[0]; 

Tree.Mbr(10).CntMbr=0; 

  

Tree.Mbr(11).Type='Body.Six.Low';%31,32,33 

Tree.Mbr(11).Loc=[1,L(1)+2,L(1)+2]; 

Tree.Mbr(11).Vec=[1,0,0]; 

Tree.Mbr(11).Rot=[0]; 

Tree.Mbr(11).CntMbr=0; 

  

Tree.Mbr(12).Type='Body.Four.Low';%34,35,36 

Tree.Mbr(12).Loc=[0,1,L(1)+2]; 

Tree.Mbr(12).Vec=[0,1,0]; 

Tree.Mbr(12).Rot=[0]; 

Tree.Mbr(12).CntMbr=0; 

  

  

Tree.Mbr(13).Type='Corner';%1 

Tree.Mbr(13).Loc=[0,0,0]; 

Tree.Mbr(13).Vec=[1,0,0]; 
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Tree.Mbr(13).Rot=[0]; 

Tree.Mbr(13).CntMbr=1; 

Tree.Mbr(13).Cnx(1).Mbr=1; 

Tree.Mbr(13).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(13).Cnx(2).Mbr=4; 

Tree.Mbr(13).Cnx(2).Type='Connect.Pos'; 

Tree.Mbr(13).Cnx(3).Mbr=5; 

Tree.Mbr(13).Cnx(3).Type='Connect.Pos'; 

%Tree.Mbr(13).Cnx(4).Mbr=0; 

  

Tree.Mbr(14).Type='Corner';%2 

Tree.Mbr(14).Loc=[L(2)+2,0,0]; 

Tree.Mbr(14).Vec=[0,0,1]; 

Tree.Mbr(14).Rot=[0]; 

Tree.Mbr(14).CntMbr=1; 

Tree.Mbr(14).Cnx(1).Mbr=6; 

Tree.Mbr(14).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(14).Cnx(2).Mbr=2; 

Tree.Mbr(14).Cnx(2).Type='Connect.Pos'; 

Tree.Mbr(14).Cnx(3).Mbr=1; 

Tree.Mbr(14).Cnx(3).Type='Connect.Neg'; 

  

Tree.Mbr(15).Type='Corner';%3 

Tree.Mbr(15).Loc=[L(2)+2,L(1)+2,0]; 

Tree.Mbr(15).Vec=[-1,0,0]; 

Tree.Mbr(15).Rot=[pi]; 

Tree.Mbr(15).CntMbr=1; 

Tree.Mbr(15).Cnx(1).Mbr=3; 

Tree.Mbr(15).Cnx(1).Type='Connect.Neg'; 

Tree.Mbr(15).Cnx(2).Mbr=2; 

Tree.Mbr(15).Cnx(2).Type='Connect.Neg'; 

Tree.Mbr(15).Cnx(3).Mbr=7; 

Tree.Mbr(15).Cnx(3).Type='Connect.Pos'; 

  

Tree.Mbr(16).Type='Corner';%4 

Tree.Mbr(16).Loc=[0,L(1)+2,0]; 

Tree.Mbr(16).Vec=[0,-1,0]; 

Tree.Mbr(16).Rot=[0]; 

Tree.Mbr(16).CntMbr=1; 

Tree.Mbr(16).Cnx(1).Mbr=4; 

Tree.Mbr(16).Cnx(1).Type='Connect.Neg'; 

Tree.Mbr(16).Cnx(2).Mbr=3; 

Tree.Mbr(16).Cnx(2).Type='Connect.Pos'; 

Tree.Mbr(16).Cnx(3).Mbr=8; 

Tree.Mbr(16).Cnx(3).Type='Connect.Pos'; 

  

Tree.Mbr(17).Type='Corner';%5 

Tree.Mbr(17).Loc=[0,0,L(1)+2]; 

Tree.Mbr(17).Vec=[0,0,-1]; 

Tree.Mbr(17).Rot=[0]; 

Tree.Mbr(17).CntMbr=1; 

Tree.Mbr(17).Cnx(1).Mbr=5; 

Tree.Mbr(17).Cnx(1).Type='Connect.Neg'; 

Tree.Mbr(17).Cnx(2).Mbr=12; 

Tree.Mbr(17).Cnx(2).Type='Connect.Pos'; 

Tree.Mbr(17).Cnx(3).Mbr=9; 

Tree.Mbr(17).Cnx(3).Type='Connect.Pos'; 

  

Tree.Mbr(18).Type='Corner';%6 

Tree.Mbr(18).Loc=[L(2)+2,0,L(1)+2]; 

Tree.Mbr(18).Vec=[-1,0,0]; 

Tree.Mbr(18).Rot=[0]; 

Tree.Mbr(18).CntMbr=1; 

Tree.Mbr(18).Cnx(1).Mbr=9; 

Tree.Mbr(18).Cnx(1).Type='Connect.Neg'; 

Tree.Mbr(18).Cnx(2).Mbr=10; 

Tree.Mbr(18).Cnx(2).Type='Connect.Pos'; 

Tree.Mbr(18).Cnx(3).Mbr=6; 

Tree.Mbr(18).Cnx(3).Type='Connect.Neg'; 
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Tree.Mbr(19).Type='Corner';%7 

Tree.Mbr(19).Loc=[L(2)+2,L(1)+2,L(1)+2]; 

Tree.Mbr(19).Vec=[-1,0,0]; 

Tree.Mbr(19).Rot=[-pi/2]; 

Tree.Mbr(19).CntMbr=1; 

Tree.Mbr(19).Cnx(1).Mbr=11; 

Tree.Mbr(19).Cnx(1).Type='Connect.Neg'; 

Tree.Mbr(19).Cnx(2).Mbr=7; 

Tree.Mbr(19).Cnx(2).Type='Connect.Neg'; 

Tree.Mbr(19).Cnx(3).Mbr=10; 

Tree.Mbr(19).Cnx(3).Type='Connect.Neg'; 

  

Tree.Mbr(20).Type='Corner';%8 

Tree.Mbr(20).Loc=[0,L(1)+2,L(1)+2]; 

Tree.Mbr(20).Vec=[1,0,0]; 

Tree.Mbr(20).Rot=[pi]; 

Tree.Mbr(20).CntMbr=1; 

Tree.Mbr(20).Cnx(1).Mbr=11; 

Tree.Mbr(20).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(20).Cnx(2).Mbr=12; 

Tree.Mbr(20).Cnx(2).Type='Connect.Neg'; 

Tree.Mbr(20).Cnx(3).Mbr=8; 

Tree.Mbr(20).Cnx(3).Type='Connect.Neg'; 

  

Tree.Mbr(21).Type='Collar.Low'; 

Tree.Mbr(21).Loc=[1,0,0]; 

Tree.Mbr(21).Vec=[-1,0,0]; 

Tree.Mbr(21).Rot=[0]; 

Tree.Mbr(21).CntMbr=2; 

Tree.Mbr(21).Cnx(1).Mbr=13; 

Tree.Mbr(21).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(21).Cnx(1).Connecter='Cnx(1)'; 

  

Tree.Mbr(22).Type='Collar.Low'; 

Tree.Mbr(22).Loc=[L(2)+1,0,0]; 

Tree.Mbr(22).Vec=[1,0,0]; 

Tree.Mbr(22).Rot=[0]; 

Tree.Mbr(22).CntMbr=2; 

Tree.Mbr(22).Cnx(1).Mbr=14; 

Tree.Mbr(22).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(22).Cnx(1).Connecter='Cnx(3)'; 

  

Tree.Mbr(23).Type='Collar.Low'; 

Tree.Mbr(23).Loc=[L(2)+1,L(1)+2,0]; 

Tree.Mbr(23).Vec=[1,0,0]; 

Tree.Mbr(23).Rot=[0]; 

Tree.Mbr(23).CntMbr=2; 

Tree.Mbr(23).Cnx(1).Mbr=15; 

Tree.Mbr(23).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(23).Cnx(1).Connecter='Cnx(1)'; 

  

Tree.Mbr(24).Type='Collar.Low'; 

Tree.Mbr(24).Loc=[1,L(1)+2,0]; 

Tree.Mbr(24).Vec=[-1,0,0]; 

Tree.Mbr(24).Rot=[0]; 

Tree.Mbr(24).CntMbr=2; 

Tree.Mbr(24).Cnx(1).Mbr=16; 

Tree.Mbr(24).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(24).Cnx(1).Connecter='Cnx(2)'; 

  

Tree.Mbr(25).Type='Collar.Low'; 

Tree.Mbr(25).Loc=[1,0,L(1)+2]; 

Tree.Mbr(25).Vec=[-1,0,0]; 

Tree.Mbr(25).Rot=[0]; 

Tree.Mbr(25).CntMbr=2; 

Tree.Mbr(25).Cnx(1).Mbr=17; 

Tree.Mbr(25).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(25).Cnx(1).Connecter='Cnx(3)'; 
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Tree.Mbr(26).Type='Collar.Low'; 

Tree.Mbr(26).Loc=[L(2)+1,0,L(1)+2]; 

Tree.Mbr(26).Vec=[1,0,0]; 

Tree.Mbr(26).Rot=[0]; 

Tree.Mbr(26).CntMbr=2; 

Tree.Mbr(26).Cnx(1).Mbr=18; 

Tree.Mbr(26).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(26).Cnx(1).Connecter='Cnx(1)'; 

  

Tree.Mbr(27).Type='Collar.Low'; 

Tree.Mbr(27).Loc=[L(2)+1,L(1)+2,L(1)+2]; 

Tree.Mbr(27).Vec=[1,0,0]; 

Tree.Mbr(27).Rot=[0]; 

Tree.Mbr(27).CntMbr=2; 

Tree.Mbr(27).Cnx(1).Mbr=19; 

Tree.Mbr(27).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(27).Cnx(1).Connecter='Cnx(1)'; 

  

Tree.Mbr(28).Type='Collar.Low'; 

Tree.Mbr(28).Loc=[1,L(1)+2,L(1)+2]; 

Tree.Mbr(28).Vec=[-1,0,0]; 

Tree.Mbr(28).Rot=[0]; 

Tree.Mbr(28).CntMbr=2; 

Tree.Mbr(28).Cnx(1).Mbr=20; 

Tree.Mbr(28).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(28).Cnx(1).Connecter='Cnx(1)'; 

  

Tree.Mbr(29).Type='SolarCross';%1 

Tree.Mbr(29).Loc=[-.45,3,3]; 

Tree.Mbr(29).Vec=[0,0,-1]; 

Tree.Mbr(29).Rot=[0]; 

Tree.Mbr(29).CntMbr=1; 

Tree.Mbr(29).Cnx(1).Mbr=25; 

Tree.Mbr(29).Cnx(1).Type='Connect.Neg'; 

Tree.Mbr(29).Cnx(2).Mbr=21; 

Tree.Mbr(29).Cnx(2).Type='Connect.Neg'; 

Tree.Mbr(29).Cnx(3).Mbr=24; 

Tree.Mbr(29).Cnx(3).Type='Connect.Neg'; 

Tree.Mbr(29).Cnx(4).Mbr=28; 

Tree.Mbr(29).Cnx(4).Type='Connect.Neg'; 

  

Tree.Mbr(30).Type='SolarCross';%1 

Tree.Mbr(30).Loc=[L(2)+2.45,3,3]; 

Tree.Mbr(30).Vec=[0,0,1]; 

Tree.Mbr(30).Rot=[0]; 

Tree.Mbr(30).CntMbr=1; 

Tree.Mbr(30).Cnx(1).Mbr=22; 

Tree.Mbr(30).Cnx(1).Type='Connect.Neg'; 

Tree.Mbr(30).Cnx(2).Mbr=26; 

Tree.Mbr(30).Cnx(2).Type='Connect.Neg'; 

Tree.Mbr(30).Cnx(3).Mbr=27; 

Tree.Mbr(30).Cnx(3).Type='Connect.Neg'; 

Tree.Mbr(30).Cnx(4).Mbr=23; 

Tree.Mbr(30).Cnx(4).Type='Connect.Neg'; 

  

Tree.Mbr(31).Type='SolarSupport'; 

Tree.Mbr(31).Loc=[-.65,3,3]; 

Tree.Mbr(31).Vec=[0,1,0]; 

Tree.Mbr(31).Rot=[pi/2]; 

Tree.Mbr(31).CntMbr=2; 

Tree.Mbr(31).Cnx(1).Mbr=29; 

Tree.Mbr(31).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(31).Cnx(1).Connecter='Pos'; 

  

Tree.Mbr(32).Type='SolarSupport'; 

Tree.Mbr(32).Loc=[L(2)+2.65,3,3]; 

Tree.Mbr(32).Vec=[0,-1,0]; 

Tree.Mbr(32).Rot=[pi/2]; 
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Tree.Mbr(32).CntMbr=2; 

Tree.Mbr(32).Cnx(1).Mbr=30; 

Tree.Mbr(32).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(32).Cnx(1).Connecter='Pos'; 

  

Tree.Mbr(33).Type='SolarPanel.Med'; 

Tree.Mbr(33).Loc=[-4.65,3,3]; 

Tree.Mbr(33).Vec=[0,1,0]; 

Tree.Mbr(33).Rot=[0]; 

Tree.Mbr(33).CntMbr=3; 

Tree.Mbr(33).Cnx(1).Mbr=31; 

Tree.Mbr(33).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(33).Cnx(1).Connecter='Neg - 3'; 

Tree.Mbr(33).Cnx(2).Mbr=31; 

Tree.Mbr(33).Cnx(2).Type='Connect.Neg'; 

Tree.Mbr(33).Cnx(2).Connecter='Neg - 2'; 

Tree.Mbr(33).Cnx(3).Mbr=31; 

Tree.Mbr(33).Cnx(3).Type='Connect.Pos'; 

Tree.Mbr(33).Cnx(3).Connecter='Neg -1'; 

Tree.Mbr(33).Cnx(4).Mbr=31; 

Tree.Mbr(33).Cnx(4).Type='Connect.Neg'; 

Tree.Mbr(33).Cnx(4).Connecter='Neg'; 

  

Tree.Mbr(34).Type='SolarPanel.Med'; 

Tree.Mbr(34).Loc=[L(2)+6.65,3,3]; 

Tree.Mbr(34).Vec=[0,-1,0]; 

Tree.Mbr(34).Rot=[0]; 

Tree.Mbr(34).CntMbr=3; 

Tree.Mbr(34).Cnx(1).Mbr=32; 

Tree.Mbr(34).Cnx(1).Type='Connect.Pos'; 

Tree.Mbr(34).Cnx(1).Connecter='Neg - 3'; 

Tree.Mbr(34).Cnx(2).Mbr=32; 

Tree.Mbr(34).Cnx(2).Type='Connect.Neg'; 

Tree.Mbr(34).Cnx(2).Connecter='Neg - 2'; 

Tree.Mbr(34).Cnx(3).Mbr=32; 

Tree.Mbr(34).Cnx(3).Type='Connect.Pos'; 

Tree.Mbr(34).Cnx(3).Connecter='Neg -1'; 

Tree.Mbr(34).Cnx(4).Mbr=32; 

Tree.Mbr(34).Cnx(4).Type='Connect.Neg'; 

Tree.Mbr(34).Cnx(4).Connecter='Neg'; 

 

 

ModelConst.m 

Model.pl=model.pl; 

Model.il=model.il; 

NC = 0;%Node Count 

EC = 1;%Element Counter 

fin=0; 

for i=1:length(Tree.Mbr) 

    i; 

    t=strcat(char(Tree.Mbr(i).Type)); 

    t1=strcat(t,'.model.Node'); 

    t2=strcat(t,'.model.Elt'); 

    t3=strcat(t,'.Cnxs'); 

    h=eval(t2); 

    g=eval(t3); 

    f=eval(t1); 

    Tree.Mbr(i).Node.Pos=NC+1; 

    n=Tree.Mbr(i).Node.Pos; 

    %Node Wright 

    for j=1:(size(f)-g) 

        j; 

        NC=NC+1; 

        Model.Node(NC,1:4)=[NC 0 0 0]; 

        v=strcat('v=',t1,'(j,5:7);'); 
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        eval(v); 

        [vprime,theta]=unitvec(Tree.Mbr(i).Vec,v,Tree.Mbr(i).Loc,Tree.Mbr(i).Rot); 

        Tree.Mbr(i).Theta=theta; 

        Model.Node(NC,5:7)=vprime; 

  

    end 

    Tree.Mbr(i).Node.Neg=NC; 

   %ELT Wright 

    Model.Elt(EC,:)=h(1,:); 

    EC=EC+1; 

    for m=1:(size(eval(t2))-(g+1)) 

        Model.Elt((EC),:)=[(h(m+1,1)+n-1) (h(m+1,2)+(n-1)) h((m+1),(3:6))]; 

        EC=EC+1; 

    end    

     

    if Tree.Mbr(i).CntMbr == 1 

    for u=1:g 

        Tree.Mbr(i).Node.Cnx(u) = Tree.Mbr(i).Node.Neg - g + u; 

  

    end 

    end 

     

    if Tree.Mbr(i).CntMbr == 2 

  

        Tree.Mbr(i).Node.Cnx = Tree.Mbr(i).Node.Pos; 

    end 

    if Tree.Mbr(i).CntMbr == 3 

  

        Tree.Mbr(i).Node.Cnx(1) = Tree.Mbr(i).Node.Pos; 

        Tree.Mbr(i).Node.Cnx(2) = Tree.Mbr(i).Node.Pos; 

        Tree.Mbr(i).Node.Cnx(3) = Tree.Mbr(i).Node.Pos + 1; 

        Tree.Mbr(i).Node.Cnx(4) = Tree.Mbr(i).Node.Pos + 1; 

    end 

     

    start=fin+1; 

    temp=eval(Tree.Mbr(i).Type,'Size'); 

    fin=fin+temp.Size; 

    [RotMat.M]=MatrixRotate(Tree.Mbr(i).Vec,temp.M,Tree.Mbr(i).Rot); 

    Cube.M(start:fin,start:fin)=RotMat.M; 

    [RotMat.K]=MatrixRotate(Tree.Mbr(i).Vec,temp.K,Tree.Mbr(i).Rot); 

    Cube.K(start:fin,start:fin)=RotMat.K; 

    Tree.Mbr(i).start=start; 

    Tree.Mbr(i).fin=fin; 

     

    if Tree.Mbr(i).CntMbr >= 1 

        CnxNum=length(Tree.Mbr(i).Cnx); 

        for p=1:CnxNum 

            s=CnxNum*6-1;%initial cnx start point 

            Tree.Mbr(i).Cnx(p).start=fin-s+(p-1)*6; 

        end 

    end 

     

     

     

end 

  

for i=1:length(Tree.Mbr) 

    if Tree.Mbr(i).CntMbr >= 1 

        for j=1:length(Tree.Mbr(i).Cnx) 

            i; 

            j; 

            NC=NC+1; 

            Model.Node(NC,1:4)=[NC 0 0 0]; 

            MN=Tree.Mbr(i).Cnx(j).Mbr ;  %Member Number 

             

            len=length(Tree.Mbr(i).Cnx(1).Type);     

            BS=Tree.Mbr(i).Cnx(j).Type(len-2:len); % Beam Side 

            if Tree.Mbr(i).CntMbr == 1 

                temp=strcat('BN=Tree.Mbr(MN).Node.',char(BS));  %  Beam Node 
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            else if Tree.Mbr(i).CntMbr >= 2 

                BScnx=Tree.Mbr(i).Cnx(j).Connecter; % Beam Side 

                temp=strcat('BN=Tree.Mbr(MN).Node.',char(BScnx));  %  Beam Node 

                end 

            end 

                         

             

                 

            eval(temp) 

            CN=Tree.Mbr(i).Node.Cnx(j);   %Connector Node 

            U=Model.Node(BN,5:7); V=Model.Node(CN,5:7); W=(U-V)/2+V; 

            Model.Node(NC,5:7)=W; 

            EC=length(Model.Elt); 

            EC=EC+1; 

            Model.Elt(EC,:)=[NC CN 2 8 50 0]; 

            Model.Elt((EC+1),:)=[NC BN 2 8 50 0]; 

             

            start=fin+1; 

            fin=start+size(Connect.Pos.M)-1; 

            rot = 0; 

            PreRotate.M=Connect.Pos.M+Connect.Neg.M; 

            [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot); 

            Cube.M(start:fin,start:fin)=RotMat.M; 

            PreRotate.K=Connect.Pos.K+Connect.Neg.K; 

            [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot); 

            Cube.K(start:fin,start:fin)=RotMat.K; 

             

            if BS == 'Pos' 

                %beam 

                nstart = Tree.Mbr(MN).start; 

                nfin = nstart+size(Connect.Pos.Mcx)-1; 

                PreRotate.M=Connect.Pos.Mcx; 

                [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot); 

                Cube.M(nstart:nfin,start:fin)=RotMat.M; 

                PreRotate.K=Connect.Pos.Kcx; 

                [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot); 

                Cube.K(nstart:nfin,start:fin)=RotMat.K; 

                %corner 

                mstart = Tree.Mbr(i).Cnx(j).start; 

                mfin = mstart+size(Connect.Neg.Mcx)-1; 

                PreRotate.M=Connect.Neg.Mcx; 

                [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot); 

                Cube.M(mstart:mfin,start:fin)=RotMat.M; 

                PreRotate.K=Connect.Neg.Kcx; 

                [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot); 

                Cube.K(mstart:mfin,start:fin)=RotMat.K; 

  

                 

            else if BS == 'Neg' 

                    %beam 

                    nstart = Tree.Mbr(MN).fin - size(Connect.Neg.Mcx) + 1; 

                    nfin = nstart+size(Connect.Neg.Mcx)-1; 

                    PreRotate.M=Connect.Neg.Mcx; 

                    [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot); 

                    Cube.M(nstart:nfin,start:fin)=RotMat.M; 

                    PreRotate.K=Connect.Neg.Kcx; 

                    [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot); 

                    Cube.K(nstart:nfin,start:fin)=RotMat.K; 

                    %corner 

                    mstart = Tree.Mbr(i).Cnx(j).start; 

                    mfin = mstart+size(Connect.Pos.Mcx)-1; 

                    PreRotate.M=Connect.Pos.Mcx; 

                    [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot); 

                    Cube.M(mstart:mfin,start:fin)=RotMat.M; 

                    PreRotate.K=Connect.Pos.Kcx; 

                    [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot); 

                    Cube.K(mstart:mfin,start:fin)=RotMat.K; 

                end 

            end 
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        end 

    end 

end 

  

[Graphic.M,Graphic.K,Graphic.mdof]=fe_mknl(Model); 

  

l=length(Graphic.M); 

for c=1:l 

    for r=1:l 

        if abs(Graphic.M(r,c))<10^(-9); 

            Graphic.M(r,c)=0; 

        end 

        if abs(Graphic.K(r,c))<10^(-9); 

            Graphic.K(r,c)=0; 

        end 

    end 

end 

  

l=length(Cube.M); 

  

for c=1:l 

    for r=1:l 

        if abs(Cube.M(r,c))<10^(-9); 

            Cube.M(r,c)=0; 

        end 

        if abs(Cube.K(r,c))<10^(-9); 

            Cube.K(r,c)=0; 

        end 

    end 

end 

  

for r=1:l 

    for c=r:l 

        if Cube.M(r,c)~=0; 

           Cube.M(c,r)=Cube.M(r,c); 

        end 

        if Cube.K(r,c)~=0; 

           Cube.K(c,r)=Cube.K(r,c); 

        end 

    end 

end     

  

 

 

ModelBuild.m 

def = fe_eig(Model,[5 20 1 11]) 

  

% generate a fairly complex plot as an illustration of feplot 

cf=feplot; cf.model=Model;cf.def=def; 

 

 

Spymatrix.m 

figure('Name','Full Matrices (spy cmd) formed by Model Tree/Matrix Comp','NumberTitle','off'); 

hold on; 

subplot(1,2,1) 

spy(Cube.M);; title('Analytical.M - Mass'); 

subplot(1,2,2) 

spy(Cube.K); title('Analytical.K - Stiffness'); 

hold off 
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figure('Name','Full Matrices (spy cmd) formed by Data Entry','NumberTitle','off'); 

hold on; 

subplot(1,2,1) 

spy(Graphic.M);; title('Graphic.M - Mass'); 

subplot(1,2,2) 

spy(Graphic.K); title('Graphic.K - Stiffness'); 

hold off 

 

 

unitvec.m 

function [vprime,Theta]=unitvec(transvec,v,TreeStart,ThetaRot) 

%v=[1,1,1] 

%TreeStart=[0,0,0]; 

%transvec=[-1,1,1]; 

Vector1=[1,0,0]; 

Vector2=transvec/norm(transvec); 

  

  % Calculate axis vector 

    crossprod = cross(Vector1,Vector2); 

    dotprod = dot(Vector1,Vector2); 

    % Calculate norm of axis vector 

    normal = norm(crossprod); 

     

    c2=cos(ThetaRot); 

    s2=sin(ThetaRot); 

        if abs(c2)<10^(-9); 

            c2=0; 

        end 

        if abs(s2)<10^(-9); 

            s2=0; 

        end 

    R1 =  [   1    0   0; 

              0   c2  s2; 

              0   -s2  c2]   ; 

         

         

    if normal==0, 

        if dotprod == 1 

          vprime = v*R1+TreeStart; 

          A = []; 

          Theta = []; 

        return 

        else if dotprod == -1 

          A = [0 -1 0 ]; 

            end 

        end 

    else 

        A = crossprod/normal; 

    end 

    Theta = -acos(dotprod/(norm(Vector1)*norm(Vector2))); 

     

    c = cos(Theta); 

    s = sin(Theta); 

        if abs(c)<10^(-9); 

            c=0; 

        end 

        if abs(s)<10^(-9); 

            s=0; 

        end 

    c2=cos(ThetaRot); 

    s2=sin(ThetaRot); 

        if abs(c2)<10^(-9); 

            c2=0; 

        end 
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        if abs(s2)<10^(-9); 

            s2=0; 

        end 

    % Rodrigues' Rotation Formula using Theta and v, not Euler angles 

    R2 =  [ (c+A(1)^2*(1-c))         (A(1)*A(2)*(1-c)-A(3)*s)    (A(2)*s+A(1)*A(3)*(1-c)); 

          (A(3)*s+A(1)*A(2)*(1-c))     (c+A(2)^2*(1-c))        (-A(1)*s+A(2)*A(3)*(1-c)); 

          (-A(2)*s+A(1)*A(3)*(1-c))   (A(1)*s+A(2)*A(3)*(1-c))    (c+A(3)^2*(1-c))]; 

  

                 

    v; 

    vprime = v*R2*R1+TreeStart; 

 

 

MatrixRotate.m 

function [RotMat]=unitvec(transvec,matrix,ThetaRot) 

%v=[1,1,1] 

%TreeStart=[0,0,0]; 

%transvec=[-1,1,1]; 

Vector1=[1,0,0]; 

Vector2=transvec/norm(transvec); 

  

  % Calculate axis vector 

    crossprod = cross(Vector1,Vector2); 

    dotprod = dot(Vector1,Vector2); 

    % Calculate norm of axis vector 

    normal = norm(crossprod); 

     

    c2=cos(ThetaRot); 

    s2=sin(ThetaRot); 

        if abs(c2)<10^(-9); 

            c2=0; 

        end 

        if abs(s2)<10^(-9); 

            s2=0; 

        end 

    R1 =  [   1    0   0; 

              0   c2  s2; 

              0   -s2  c2]   ; 

         

         

    if normal==0, 

        if dotprod == 1 

            Lambda=sparse([R1 zeros(3,3);zeros(3,3) R1]); 

            LambdaSize=size(matrix)/6; 

            for q=1:LambdaSize 

                D((q-1)*6+1:q*6,(q-1)*6+1:q*6)=Lambda; 

            end 

            RotMat = D'*matrix*D; 

  

            A = []; 

            Theta = []; 

        return 

        else if dotprod == -1 

          A = [0 -1 0 ]; 

            end 

        end 

    else 

        A = crossprod/normal; 

    end 

    Theta = -acos(dotprod/(norm(Vector1)*norm(Vector2))); 

     

    c = cos(Theta); 

    s = sin(Theta); 

        if abs(c)<10^(-9); 

            c=0; 
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        end 

        if abs(s)<10^(-9); 

            s=0; 

        end 

    c2=cos(ThetaRot); 

    s2=sin(ThetaRot); 

        if abs(c2)<10^(-9); 

            c2=0; 

        end 

        if abs(s2)<10^(-9); 

            s2=0; 

        end 

    % Rodrigues' Rotation Formula using Theta and v, not Euler angles 

    R2 =  [ (c+A(1)^2*(1-c))         (A(1)*A(2)*(1-c)-A(3)*s)    (A(2)*s+A(1)*A(3)*(1-c)); 

          (A(3)*s+A(1)*A(2)*(1-c))     (c+A(2)^2*(1-c))        (-A(1)*s+A(2)*A(3)*(1-c)); 

          (-A(2)*s+A(1)*A(3)*(1-c))   (A(1)*s+A(2)*A(3)*(1-c))    (c+A(3)^2*(1-c))]; 

  

                 

    R=R2*R1; 

    Lambda=sparse([R zeros(3,3);zeros(3,3) R]); 

    LambdaSize=size(matrix)/6; 

    for q=1:LambdaSize 

        D((q-1)*6+1:q*6,(q-1)*6+1:q*6)=Lambda; 

    end 

    RotMat = D'*matrix*D; 
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