
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-14-2007

Quick-Turn Finite Element Analysis for Plug-and Play Satellite Quick-Turn Finite Element Analysis for Plug-and Play Satellite

Structures Structures

Jeffrey E. Naff

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Aerospace Engineering Commons

Recommended Citation Recommended Citation
Naff, Jeffrey E., "Quick-Turn Finite Element Analysis for Plug-and Play Satellite Structures" (2007). Theses
and Dissertations. 2992.
https://scholar.afit.edu/etd/2992

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F2992&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2992?utm_source=scholar.afit.edu%2Fetd%2F2992&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

QUICK-TURN FINITE ELEMENT ANALYSIS FOR

PLUG-AND-PLAY SATELLITE STRUCTURES

THESIS

Jeffrey E Naff, Captain, USAF

AFIT/GA/ENY/07-M15

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the United States Air Force, Department of Defense, or the United States

Government.

AFIT/GA/ENY/07-M15

QUICK-TURN FINITE ELEMENT ANALYSIS

FOR PLUG-AND-PLAY SATELLITE STRUCTURES

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Jeffrey E. Naff, BS

Captain, USAF

March 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GA/ENY/07-M15

QUICK-TURN FINITE ELEMENT ANALYSIS

FOR PLUG-AND-PLAY SATELLITE STRUCTURES

Jeffrey E. Naff, BS

Captain, USAF

 Approved:

 Signed 14 March 2007

 Maj. Eric D. Swenson, Ph.D (Chairman) Date

 Signed 14 March 2007

 Richard G. Cobb, Ph.D (Member) Date

 Signed 14 March 2007

 Robert A. Canfield, Ph.D (Member) Date

iv

AFIT/GA/ENY/07-M15

Abstract

Plug-and-play (PnP) satellite construction is a key component of the US Air Force

Operational Responsive Space (ORS) effort. The goal of ORS is to provide mission specific

satellite support by configuring and launching a satellite to a selected orbit within days of the

request. One major challenge during the time limited process is to accurately predict the

response of the satellite to harmonic loads that occur during launch and satellite operation.

Given the time limitations, constructing finite element (FE) models by traditional methods is

not currently a viable option for the ORS timeline. By implementing an approach for rapid

FE model creation, we can significantly reduce the timeline from weeks to hours. The

advantages to our approach include simplification of model creation, ease of design

modifications, and significant reduction in the FE model creation timeline; all lending this

approach for utilization within the ORS acquisition cycle.

v

Table of Contents

Page

ABSTRACT__ IV

TABLE OF CONTENTS __ V

LIST OF FIGURES __ VII

LIST OF TABLES ___VIII

1 INTRODUCTION __ 1

1.1 OPERATIONAL RESPONSIVE SPACE__ 1

1.2 PLUG-AND-PLAY SATELLITE DEVELOPMENT __________________________________ 4

1.3 SYSTEM MODELING WITHIN THE PNP CONCEPT ________________________________ 6

1.4 INDUSTRY STANDARD PRACTICES FOR MODEL CREATION ________________________ 7

1.5 UTILIZATION OF SUBSTRUCTURES WITHIN MODEL DEVELOPMENT _________________ 8

1.6 ISSUES ASSOCIATED WITH PATCHWORK SOLUTIONS ____________________________ 9

2 FINITE ELEMENT ANALYSIS METHODOLOGY __________________________ 10

2.1 BASIC FINITE ELEMENT ANALYSIS___ 10

2.1.1 Extension to Three-Dimension Beams __________________________________ 15

2.1.2 Assembly of the Global Stiffness Matrix (K)______________________________ 19

2.2 BASICS OF NODAL SEGREGATION__ 21

2.3 NODAL PLACEMENT __ 23

2.4 CONSTRUCTION OF GLOBAL STIFFNESS MATRIX ______________________________ 28

2.5 MODEL CONSTRUCTION ___ 30

2.6 MATRIX STORAGE TECHNIQUES___ 36

2.7 CONNECTION INTERFACE RULES __ 38

3 APPLICATION OF NODAL SEGREGATION WITHIN PLUG-AND-PLAY

STRUCTURES ___ 40

3.1 ORS PROGRAM REQUIREMENTS FOR SUCCESSFUL FE ANALYSIS _________________ 40

3.2 COMPONENT MODEL DEVELOPMENT _______________________________________ 41

3.3 RESOLUTION MODIFICATIONS WITHIN THE COMPILED FE MODEL _________________ 41

3.4 PLUG-AND-PLAY SAMPLE STRUCTURE______________________________________ 42

3.4.1 SimpleSat Design __ 42

Individual Components __ 42

3.4.1.1 Assembled Structure __ 45

3.4.2 Computer Modeling and Simulation____________________________________ 46

3.4.2.1 Finite Element Model Development __________________________________ 47

3.4.2.2 Model Tree__ 50

3.4.2.3 Model Construction ___ 52

3.4.3 Results of SimpleSat Analysis ___ 55

3.4.3.1 Timeline Analysis___ 55

3.4.3.2 Validation of SimpleSat Model ______________________________________ 57

vi

4 CONCLUSIONS AND FUTURE WORK ____________________________________ 59

4.1 CONCLUSIONS __ 59

4.2 FUTURE WORK __ 60

4.2.1 Approach Refinement ___ 60

4.2.2 Model Complexity __ 60

4.2.3 Analysis Approaches__ 61

4.2.4 Modeling Flight Hardware___ 61

APPENDICES__ 62

APPENDIX A: SIMPLESAT MANUFACTURING DRAWINGS_____________________________ 62

APPENDIX B: VALIDATION OF THE SIMPLESAT FE MODEL ___________________________ 67

Appendix B.1: SDT Modal Frequency Analysis _________________________________ 67

Appendix B.2: Nastran Modal Frequency Analysis ______________________________ 69

Appendix B.3: Experimental Modal Frequency Analysis __________________________ 70

APPENDIX C: FINITE ELEMENT MODEL CONSTRUCTION CODE ________________________ 89

BIBLIOGRAPHY__ 108

Page

vii

List of Figures

Page

Figure 1.1: Comparison of Acquisition Model Timelines ... 3

Figure 1.2: Responsive Space Plug-and-Play Concept [14] .. 5

Figure 1.3: Computer Developed Model (a) Solid Model, (b) FE Model 8

Figure 2.1: Stress Field for a Beam in Bending... 11

Figure 2.2: Six Degrees-of-Freedom ... 16

Figure 2.3: Three-Dimensional Two Element System .. 19

Figure 2.4: Connectivity Diagram for a Two-Element System ... 22

Figure 2.5: Sub-Categorization of Nodal and Connection Matrices.. 22

Figure 2.6: Five Node, Four Element Component... 23

Figure 2.7: Segmented Five-Node, Four-Element Component ... 24

Figure 2.8: Segmented, Re-Numbered, Five-Node, Four-Element Component.......................... 25

Figure 2.9: Segmented, Re-Numbered, Fifty Node, Forty-Nine Element Component 26

Figure 2.10: (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component

Structure without Nodal Segregation.. 28

Figure 2.11: (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component

Structure Utilizing Nodal Segregation.. 29

Figure 2.12: (a) Cube Structure and (b) Associated Component... 30

Figure 2.13: Rotation of Beam Component from X-Axis to Y-Axis. ... 32

Figure 2.14: (a) Three Beam assembled Structure and (b) Associated Global Stiffness Matrix K

... 34

Figure 2.15: (a) Assembled Cubic Structure and (b) Associated Global Stiffness Matrix K 35

Figure 2.16: (a) Assembled Square Structure and (b) Associated Low-Resolution K Matrix 36

Figure 2.17: (a) High Resolution Beam Nodal Placement and (b) Structure K Matrix............... 38

Figure 3.1: Machined SimpleSat Components .. 43

Figure 3.2: (a) Solar Panel Support Pro/Engineer Model and (b) Machined Component........... 44

Figure 3.3: (a) Corner Unit Pro/Engineer Model and (b) Machined Component........................ 44

Figure 3.4: (a) SimpleSat Pro/Engineer Model and (b) Assembled SimpleSat Hardware 46

Figure 3.5: SDT model of Low Resolution Four Inch Beam .. 48

Figure 3.6: SDT model of (a) the Low Resolution and (b) the High Resolution Solar Panel 48

Figure 3.7: (a) Three Beam Object and (b) the Associated Connectivity Tree 51

Figure 3.8: Mass and Stiffness Matrices for the (a) Analytical and (b) Graphical Methods....... 54

Figure A.1: Attachment Point Drawing ... 62

Figure A.2: Four Inch Beam Drawing ... 63

Figure A.3: Solar Attachment Collar Drawing .. 63

Figure A.4: Solar Assembly Attachment Cross Member Drawing ... 64

Figure A.5: Solar Panel Drawing... 65

Figure A.6: Solar Panel Support Drawing ... 66

viii

List of Tables

Page

Table 2.1: Three-Dimensional Frame DOF Definition.. 15

Table 3.1: SimpleSat FE Model stored files .. 49

Table 3.2: Model Tree File Entries for Connecting and Non-Connecting Members 51

Table 3.3: Time Comparison Data for Four SimpleSat Iterations with Varying Complexity..... 56

Table 3.4: Comparison of Modal Frequency Determinations ... 58

1

QUICK-TURN FINITE ELEMENT ANALYSIS FOR

PLUG-AND-PLAY SATELLITE STRUCTURES

1 Introduction

The US Air Force has initiated programmatic efforts to revolutionize the development of

space assets. For years, the acquisition of US Air Force space resources has severely lagged

behind their operational need. Satellite developmental timelines of two to three years for

each asset is unacceptable to meet the overlying needs of the Air Force [8]. Therefore, the

concept of modifying the acquisition cycle to accommodate immediate reaction to stated

needs is a must.

To achieve a space initiative that responds quickly to user need, a paradigm shift must

occur within the space industry. We know that the development of systems and their

timelines are greatly affected by the number of assets planned and the availability of existing

technologies utilized within each asset. The acquisition cycle of satellite development can be

strategically altered to better reflect these development limiting factors. The Operational

Responsive Space (ORS) program is undertaking the task of altering the development model

to allow space assets to be available when the mission requires it.

1.1 Operational Responsive Space

 The effort to develop an ORS program has been in existence for many years. Many US

government organizations are involved in the project, to include the Air Force Research

Laboratory (AFRL), the National Reconnaissance Organization (NRO), National Air and

Space Administration (NASA), and many other Department of Defense (DoD) organizations.

 The primary goal has been to demonstrate the ability to produce and launch a time

sensitive satellite with a rapid development cycle. The first successful launch was TACSAT

2

2, launched in December 2006, followed by the Launch of TACSAT 1 in January 2007.

Each of these missions shared the same development map of twelve months between mission

initiation and launch. The TACSAT missions confirmed the belief that given the advances in

technology and the availability of Commercial-Off-The-Shelf (COTS) components, a quick-

delivery spacecraft is within grasp.

 While the construction of the TACSAT programs has seen success, it also has fallen

victim to the standard acquisition pitfalls that affect all programs. TACSAT 1 launch has

slipped over a year and a half from initial schedule, bringing the timeline to that of a standard

acquisition cycle. The future goals of the ORS program detail the need to provide mission

specific satellite support by configuring and launching a satellite to a selected orbit within

days, not years, of the request. To achieve this, a new acquisition cycle has been developed

that re-organizes the key components of the standard cycle to provide an acquisition

environment that allows the complete construction of individual elements without final

declaration of mission intent.

 Current space system acquisition maintains a strict step-by-step procedure for the

development of systems. The first step is centered on mission requirements; everything must

be defined prior to any further activity. Upon completion, system design is initiated. The

majority of the work is achieved with a stove-pipe mentality; all work is completed on a

component prior to any system level integration activity. After the majority of the

integration has occurred, typically around eighty percent, final assembly and test are

initiated. At the conclusion of all testing activities, the satellite is launched, completing the

two to three year cycle. The comparison between the standard acquisition cycle and the

proposed ORS cycle is demonstrated in Figure 1.1.

Many differences can be seen between the proposed ORS cycle and existing satellite

procurement approaches. To begin with, the first step within the ORS cycle is not mission

requirement development, but an overall definition of the interface for the spacecraft.

Following that, the component level design begins, which is closely tracked by the system

integration step. When it is ensured that all components are fully integrated, they are placed

in storage to await a need within a mission.

3

Year 3Year 2Year 1

Mission

Requirements

Definition Component Design

System Integration

Satellite Assembly and Test L
a
u

n
c
h

Interface

Requirements

Definition Component Design

System Integration and Test

Day
7

Day
6

Day
5

Day
4

Day
3

Day
2

Day
1

Satellite Assembly and Test
Mission

Definition

Launch

ORS Acquisition Cycle

Standard Acquisition Cycle

Year 3Year 2Year 1

Mission

Requirements

Definition Component Design

System Integration

Satellite Assembly and Test L
a
u

n
c
h

Interface

Requirements

Definition Component Design

System Integration and Test

Day
7

Day
6

Day
5

Day
4

Day
3

Day
2

Day
1

Satellite Assembly and Test
Mission

Definition

Launch

Year 3Year 2Year 1 Year 3Year 2Year 1

Mission

Requirements

Definition Component Design

System Integration

Satellite Assembly and Test L
a
u

n
c
h

L
a
u

n
c
h

Interface

Requirements

Definition Component Design

System Integration and Test

Day
7

Day
6

Day
5

Day
4

Day
3

Day
2

Day
1

Satellite Assembly and Test
Mission

Definition

Launch

Day
7

Day
6

Day
5

Day
4

Day
3

Day
2

Day
1

Day
7

Day
6

Day
5

Day
4

Day
3

Day
2

Day
1

Satellite Assembly and Test
Mission

Definition

Launch

ORS Acquisition Cycle

Standard Acquisition Cycle

Figure 1.1: Comparison of Acquisition Model Timelines

The final process is the key to a successful responsive system. At mission call up, a

seven day window opens and the final activities begin. The mission requirements are

analyzed and the specific components required for the given mission are selected. For

example, if the mission is reconnaissance oriented, a group of components dealing with

imaging or surveillance would be selected. The spacecraft design is then finalized,

assembled, and tested prior to launch. On the seventh and final day, the satellite is launched

to the required orbit.

As can be seen, the ORS conceptual acquisition plan redefines the paradigm for

spacecraft fabrication by dictating a two-phase effort. The first, defined as the component

development and integration stage, provides the ability to design and integrate a multitude of

components for all types of missions. With the given integration concept, each specific

component will have the ability to communicate with the designated segments, independent

4

of the location or bus attachment of the device. Included in this stage of development is all

interoperational testing to assure all systems readily communicate with the associated

applications. With this model in place, all components and the associated busses would

reach full system maturation prior to any assembly activities.

The second stage, or satellite assembly stage, is dedicated to the development of a given

satellite by utilizing the previously produced components. The overall design of the satellite

will be dependent on the needs of the mission and will not be completed until the assembly

stage. Once the design is finalized, the overall assembly and test of the vehicle is initiated.

Because all basic communication, interoperability, and system effectiveness testing will have

been completed during the system integration stage, only pre-flight checks will be required

for the satellite’s hardware. The remaining design element that is incomplete at this point is

the structure: the definition of how the hardware will be contained for operational use.

Because the structure of the satellite will differ for every iteration and will not be defined

until the assembly stage, all standard vibration and thermal testing will be accomplished

within this stage. The development of a finite element (FE) model of the finalized design

would be valuable in preventing errors within the assembly stage testing. However, due to

the unknown quantity of potential satellite configurations, modeling of each system prior to

this stage is not a feasible option.

1.2 Plug-and-Play Satellite Development

The major concept that provides the ORS program with the ability to construct a satellite

within days of mission call-up is the utilization of Plug-and-Play (PnP) components. The

PnP model’s defining characteristics are the development of all system equipment (both

hardware and software) and the completion of all integration and interoperability testing prior

to mission design. The remaining activities to be completed prior to launch are then limited

to system assembly and checkout.

The ORS program acquisition model presented earlier requires that all development and

integration activities occur prior to availability of any mission requirements. Therefore,

many assumptions must be made with respect to anticipated satellite capability. In order for

the PnP concept to be effective for most missions, the development of ‘capability’ packages,

5

or mission kits, must be accomplished. For instance, a sensor group would be specifically

designed for imaging support, like infrared or visuals. Likewise, a communication group

would be another package. The individual modules within a specified package are inherently

interoperable within that package. The major system wide integration effort between each of

the capability packages will occur within the integration stage of the ORS cycle. The ORS

concept is demonstrated in Figure 1.2.

The development of the satellite bus will be a vastly different effort than in previous non-

PnP development programs. The intrinsic capabilities of a PnP system allow for the addition

or subtraction of any properly formatted device at any available connection point. To present

a relevant example of this capability, we examine the current Universal Serial Bus (USB)

used within the personal computing markets. The USB standard allows a processing unit to

connect with any peripheral device that shares the same USB standard. While the current

USB version 2.0 is not suitable for the space environment or the amount of data transfer, a

more robust update will be instrumental to the success of the PnP concept.

Rapid
Assembly

and Test

Responsive Space
Concept

Mission
Design

Tool

Spacecraft and Payload
Component Production

System Integration Inventory of Satellite
Cores & Mission Kits

New Payload
Development

Mission
Call

Responsive
Launch

Mission

Operations

Rapid
Launch
Vehicle
integration

Development/Fabrication for 6-36 Months Inventory for <3 years Call-up to Operations in Days

Inventory

Management
Interface

Standards

Propulsion

Star Tracker

Thrusters

Batteries

Solar Array

Structure

Comm

Telescope

…

Core Bus

Propulsion

Star Tracker

Thrusters

Batteries

Solar Array

Structure

Comm

Telescope

…

Core Bus

Attitude Control System

GEO HEO LEO

Attitude Control System

GEO HEO LEO

Satellite Core

ISR Comm

Satellite Core

ISR Comm

Propulsion

Battery

Propulsion

…

Figure 1.2: Responsive Space Plug-and-Play Concept [14]

6

While the PnP model is suited for the sensor packages and the spacecraft bus, the

application of the PnP model to the satellite structure is a key component for overall success.

Each satellite produced by the ORS effort will be different, and therefore each structure’s

configuration will differ. For instance, a dedicated surveillance satellite will have different

power and envelope requirements than a communications satellite, and therefore the

structures will differ. Due to the time limit imposed, the development of a proprietary,

spacecraft specific structure is not feasible. Therefore, all structural components must be

designed and developed within the component development stage of the ORS cycle. If the

mentality that governs sensor development is directly applied to the structure, development

of individual parts can occur while the final design of the system is not complete until the

assembly stage. A generic list of structural parts can be developed and prepped for use prior

to the assembly stage, including varying sizes of structural beams, panels, and attachment

points. At the point of mission definition, the selected configuration would then dictate the

structural arrangement and design.

1.3 System Modeling within the PnP Concept

One aspect of spacecraft development that does not readily fit within the ORS paradigm

is modeling and simulation (M&S) of the complete satellite. Within a standard acquisition

cycle, computer simulation of a product can significantly reduce the cost and time of design

and test cycle, but typically takes between two and four months to produce a validated,

accurate model. Given the time available for satellite assembly, the standard approach for

computer simulation cannot be applied within the ORS model.

Two questions arise with regards to M&S from the limitation applied to the simulation

development. First, and foremost, “Can we eliminate the requirement to simulate the

assembled vehicle?” The quick answer is no. Two major testing applications benefit from

the use of M&S, the response from harmonic loading (vibration testing) and the effect that

extreme heat and cold will have on the system (thermal testing). All testing with respect to

these two areas must be completed on the assembled structure prior to launch. By creating a

computer simulation of the satellite, we can accurately predict the system responses and

7

modify the design if necessary, all prior to actual construction and testing. If the simulation

effort does not occur, the satellite could fall into a test-fix-retest cycle that can easily drive a

system wide delay.

The second question, “Can we complete the M&S effort prior to mission definition?”,

again is answered with no. Due to the nature of the ORS effort, the large number of potential

configurations drives the structural design to change with each asset produced. Development

of many models that can accurately simulate every configuration produced is not practical.

An approach evaluated in this research is the development of accurate and validated

models of each component available for use and assembling the models after mission

definition, commonly referred to as a substructuring approach. Substructuring is a common

practice in the automotive and aerospace industries [3]. We apply the substructuring

approach to the structural components of a satellite.

The development of FE models requires experienced manpower to properly ensure the

entire model, whether substructures are used or not, is correctly assembled. If correction

must occur within the model after it has been completed, the attachment of each element

must be rechecked within the modified sections; otherwise further errors may be introduced.

It is common practice to simply create a generic model with slight additions or subtractions

based on the unit being tested. This approach is not applicable to the ORS as the creation of

a given satellite FE model does not validate all of the potential variations than can exist

within the ORS approach.

1.4 Industry Standard Practices for Model Creation

The development of FE models is significantly eased by utilizing the computer based

object drawing and analysis applications, also known as Computer Automated Engineering

(CAE). The most common FE analysis solver is Nastran; developed by the MacNeal

Schwindler Corporation (MSC) in 1968 for use by the NASA for spacecraft development.

Today, Nastran is the solver for many popular FE software titles. Many other companies

have developed proprietary FE analysis code that does not utilize the NASTRAN engine, but

8

provides equivalent results: i.e. Abaqus, Pro/Mechanica, Structural Dynamics Toolbox for

MATLAB (SDT), etc.

The advantages of computer-based analysis deal with the ability to perform significant

numbers of calculations quickly, predicting the behavior of a structure. It is not uncommon

to have FE models within the automotive and aeronautical industry that have more than

several million Degrees of Freedom (DOF). FE analysis associated with such large models

requires significant computing power to complete in a reasonable amount if time. Figure

1.3(a) demonstrates a component developed with a solid modeling application and Figure

1.3(b) shows the associated FE mesh.

Figure 1.3: Computer Developed Model (a) Solid Model, (b) FE Model

1.5 Utilization of Substructures within Model Development

The use of substructures within a complex model is common practice in modern FE

model development. The best example for substructure models is the classic airplane model.

Two methods can be utilized in construction of a FE model for the structure of the aircraft.

The first is to mesh the entire structure in one complete model and the second is to break the

model into distinct, separate sub-models, or substructures, and create an element mesh for the

individual sections. The separate meshes are later connected at their respective interfaces.

The development of substructure models can be extremely advantageous. By breaking a

structure into substructures, or superelements, typically associated with development

(a) (b)

9

departments (i.e. wing, fuselage, tail section, and landing gear), the individual FE models can

be created and refined independently of the complete model. It is ideal to have the FE

models of each substructure created by the specific component designers, ensuring that areas

of specific analytical concern can be effectively inserted into the model.

Application of the substructuring concept can also reduce the complexity of analysis

completed on the entire models. Due to independent model development by the specified

design team, the verification and validation of the model to the actual structure can occur

prior to inclusion within the overarching model, lending a higher level of confidence of the

data received through analysis. With accurate data in hand, design and deployment decisions

can be simplified and faster response can occur.

1.6 Issues Associated with Patchwork Solutions

While the substructure approach has been widely adapted, the compilation of the models

into a final, complete model is still a concern. Traditionally, when FE models are created

independently of each other, the elemental meshes are considerably different, providing a

complicated task of stitching the meshes together at their respective interfaces, commonly

referred to as a patchwork solution. Each model produced has a series of nodes that are

specifically designated as connection nodes. The connection points between the models can

insert a large quantity of unknown vibratory reactions and if not properly meshed together,

the validation of the entire model is placed at risk. The method presented in this paper

evaluates an approach for automating the process of compiling the complete FE model by

standardizing the satellite model interfaces, eliminating the inconsistency at the model

connection points and the requirement for a patchwork solution.

10

2 Finite Element Analysis Methodology

In order to rapidly and accurately develop a finite element (FE) model to predict the

response of a complete satellite within the Operational Responsive Space (ORS) program

concept, we must first discuss the fundamentals of FE modeling. In this chapter, we will

look into the current methods utilized within industry. Mathematical development of the

mass and global stiffness matrices is the basic starting point for any FE model development.

The similarities of the approach presented in this chapter apply equally to both the mass and

stiffness matrices; we will only discuss the global stiffness matrix (K). The development of

basic FE models is widely published; if more information is needed, any introductory FE

analysis book can be referenced.

Standard FE analysis and model development give us a method to develop accurate

results for a modeled system. However, the standard methods do not provide the ability to

develop and analyze a system quickly. In fact, the standard methods are quite time

consuming. To demonstrate quick FE model assembly, we will present a method that utilizes

simplistic models but develops construction guidelines that can be applied to more complex

structures. The following equation development is extracted from Tirupathi Chandrupatla’s

textbook “Introduction to Finite Elements in Engineering.” [1]

2.1 Basic Finite Element Analysis

The development of the global stiffness matrix (K) and the mass matrix (M), the key

components of FE analysis, requires us to examine the basic attributes of an elastic body. To

begin the analysis, we utilize the elementary beam equations for stress (σ), strain (ε), and the

deflection of the centroidal axis (v). The axial stress equations are functions of the bending

moment (M) and the moment of inertia (I). Figure 2.1 depicts the graphical representation of

the elementary stress field for a beam.

11

zM+zM+
y x

z

zM+zM+
y x

z

Figure 2.1: Stress Field for a Beam in Bending

y
I

M

z

z

x −=σ or z
I

M

y

y

x −=σ (2.1)

E

σ
ε = (2.2)

EI

M

dx

vd
=

2

2

 (2.3)

The potential energy of the beam, П, is defined by Equation 2.4 where u is defined as the

displacement of a given point, f is the distributed force per unit volume, T is the surface

traction, and Pi is a load acting at point i.

∑∫∫∫ −−−=Π
i

i

T

i
S

T

V

T

V

T
PudSTudVfudVεσ

2

1
 (2.4)

Equation 2.2 can then be broken into two segments, Strain Energy (U) and Work Potential

(WP).

WPU +=Π (2.5)

∫=
V

T
dVU εσ

2

1
 (2.6)

12

∑∫∫ −−−=
i

i

T

i
S

T

V

T
PudSTudVfuWP (2.7)

When developing the stiffness matrix for a given element, we only use the strain energy

portion of the potential energy equation. The work potential is used for applied forces and

has no effect on the element’s stiffness.

The volume within Equation 2.6 can be broken out to determine the strain energy of an

element with a fixed length dx.

dxdAy
EI

M

dAdxdU

A

A

T

=

=

∫

∫

2

2

2

2

1

2

1
εσ

 (2.8)

Equation 2.8 can then simplified further by the utilizing the equation for the moment of

inertia (Equation 2.9) which further reduces to Equation 2.10.

=I ∫A
dAy

2 (2.9)

dx
EI

M
dU

2

2

1
= (2.10)

By using the relation developed in Equation 2.3, the total strain energy of the beam is

derived.

∫

=

L

dx
dx

vd
EIU

0

2

2

2

2

1
 (2.11)

The Hermite shape functions used for beam analysis give us an equation for the deflection of

the centroidal axis (v), while looking at nodal displacement and slope.

2

423

1

211

++

+=

ξξ d

dv
HvH

d

dv
HvHv (2.12)

13

The coordinate transformation gives the relationship between x and ξ. The length of the

element, l, is defined as the distance between the node locations, x1 and x2.

ξ
22

1221 xxxx
x

−
+

+
= (2.13)

where

ξξ d
l

d
xx

dx
22

12 =
−

= (2.14)

By using the chain rule and Equation 2.14, we transform the slope of v to be valid in terms of

x.

dx

dvl

d

dx

dx

dv

d

dv

2
==

ξξ
 (2.15)

By rewriting Equation 2.12 with inclusion of the nodal displacement vector q, we can

simplify the equation as follows.

34332211
22

q
l

HqHq
l

HqHv +++= (2.17)

Hqv = (2.18)

{ { { {

T

Node

RotationnTranslatio

Node

RotationnTranslatio

qqqqq

H
l

HH
l

HH

=

=

44 344 2144 344 21
2

43

1

21

4321
22

 (2.19)

14

Given the relationship in Equation 2.15, we can expand it to incorporate Equation 2.18.

q
d

Hd

ld

vd

ldx

vd

d

dv

ldx

dv

2

2

22

2

22

2 44

2

ξξ

ξ

==

=

 (2.20)

By substituting Equation 2.20 into Equation 2.11, we get an equation for strain that utilizes

the shape functions.

∫

=

l

dxq
d

Hd

l
EIU

0

2

2

2

2

4

2

1

ξ
 (2.21)

∫
+

−

=

1

1 2

2

2

2

4 2

16

2

1
ξ

ξξ
d

l
q

d

Hd

d

Hd
q

l
EIU

T

T (2.22)

() ()

 +
−

 −
=

4

13

2

3

4

13

2

3
2

2
ll

d

Hd ξ
ξ

ξ
ξ

ξ
 (2.23)

∫

∫

∫

+

−

+

−

+

−

=

=

=

1

1

1

1

1

1

2

2

0

3

2

ξ

ξξ

ξξ

d

d

d

 (2.24)

When Equation 2.22 is substituted into Equation 2.21 and the relationships in Equation 2.24

are applied, the potential can be compactly written as Equation 2.25.

q

llll

ll

llll

ll

l

EI
qU

T

−

−−−

−

−

=

22

22

3

4626

612612

2646

612612

2

1
 (2.25)

15

The potential energy equation is then simplified and k, the elemental stiffness matrix, is

defined.

kqqU
T

2

1
= (2.26)

−

−−−

−

−

=

22

22

3

4626

612612

2646

612612

llll

ll

llll

ll

l

EI
k (2.27)

The development of the elemental stiffness matrix k has been derived using a two-

dimensional (2D) beam. While utilizing a 2D beam is ideal for initial equation development,

we must broaden the equations to represent the three-dimensional (3D) environment for

realistic modeling of the beam.

2.1.1 Extension to Three-Dimension Beams

The major difference between the two-deminsional beam used previously and the ideal

three dimensional beam element used from this point forward are the rotations allowed in

each axis at each node and the additional third axis translation. The categorization frame is

simply a beam that has a given degree of freedom that is designated as rotation. Therefore, a

3D frame has six degrees of freedom (DOF) as seen in Table 2.1.

Table 2.1: Three-Dimensional Frame DOF Definition

DOF Number Node Relation

1 X-Direction Translation

2 Y-Direction Translation

3 Z-Direction Translation

4 Rotation about X Axis

5 Rotation about Y Axis

6 Rotation about Z Axis

16

Figure 2.2: Six Degrees-of-Freedom

Given that all six DOFs will be used, the nodal displacement vector q for a two-node beam

element will have twelve components; six generalized displacements per node with three

each for translation and rotation, as represented in Figure 2.2.

T

node

RotationnTranslatio

node

RotationnTranslatio

qqqqqqqqqqqq

=

44444 344444 21
443442143421

4444 34444 21
4342143421

2

121110987

1

654321q (2.28)

The elemental stiffness matrix (k) for the three dimensional beam will be an extension of

Equation 2.27. The main difference will be the inclusion of the axial (AS) and shear (TS)

terms. There are six generic equations needed to fill the stiffness matrix. The quantity GJ is

representative of the torsional stiffness. G is the shear modulus and J is the polar moment of

inertia.

l

EA
AS = (2.27)

x

z

y

q1

q4

q2

q5

q3

q6

17

l

GJ
TS = (2.28)

The constants ai, bi, ci, and di are defined as follows.

yzi
l

EI
a i

i ,,12
3

== (2.29)

yzi
l

EI
b i

i ,6
2

== (2.30)

yzi
l

EI
c i

i ,,4 == (2.31)

yzi
l

EI
d i

i ,,2 =
′

= (2.32)

Now, the assembly of the elemental stiffness matrix k is a straight forward use of the

previous equations.

−

−

−

−−−

−

−

=′

z

y

yy

zz

zzz

yyy

yyyy

zzzz

cc

ci

TSr

bat

bae

ASm

dbcm

dbcy

TSTSS

baba

baba

ASAS

k

0

00

00

000

00000

0000

00000

0000000

000000

0000000

0000000000

 (2.33)

18

The final step for the elemental stiffness matrix k’ development is to perform a coordinate

transfer from local to global coordinates. The local stiffness matrix k’ transformation is

projected on the global coordinate system by use of a transformation matrix L. L is

composed of a series of direction cosine matrices (λ), where li, mi, and ni are the cosines

between the elemental i-axis (i.e. i = x, y, z) and the global x, y, and z axis respectively.

=

333

222

111

nml

nml

nml

λ (2.34)

Because λ is a 3x3 matrix, it is repeated along the diagonal of L until the proper dimension is

attained. For the two-node, twelve-DOF element expressed in Equation 2.33, λ is repeated

four times, ensuring the dimension of the transformation matrix L matches the dimension of

k. L is then filled with zeros, represented in Equation 2.35 as 0.

=

λ

λ

λ

λ

0

0

L (2.35)

The elemental displacement vector (q’) and the elemental stiffness matrix (k’) are defined in

the global coordinates as follows.

qq L=′ (2.36)

LkLk
T ′= (2.37)

19

2.1.2 Assembly of the Global Stiffness Matrix (K)

After the elemental stiffness matrices kj have been created and transformed to the global

coordinate system, we place them in the global stiffness matrix (K). Figure 2.3 shows an

example system we will use to discuss the assembly process. Both element 1 and 2 have 12

DOF, and the global stiffness matrix has a total DOF of 18, because both elements share

node 2. The dimension of the global stiffness matrix K is the number of nodes multiplied by

six.

Figure 2.3: Three-Dimensional Two Element System

We begin by calculating the elemental stiffness k’ of each of the two elements in their local

coordinate systems. Equation 2.38 shows the k’ for each member where j represents the

member number, 1 or 2. Note that the stiffness matrices are symmetric about the diagonal.

We will continue to utilize the symmetry throughout the paper, but will eliminate the

designation.

y

1: (x1,y1,,z1)

2: (x2,y2,z2)

1

2
3: (x3,y3,z3)

x

z

20

−

−

−

−−−

−

−

=′

zj

yj

j

yjyj

zjzj

j

zjzjzj

yjyjyj

jj

yjyjyjyj

zjzjzjzj

jj

j

cc

ci

TSr

bat

bae

ASm

dbcm

dbcy

TSTSS

baba

baba

ASAS

k

0

00

00

000

00000

0000

00000

0000000

000000

0000000

0000000000

 (2.38)

The global stiffness matrix K is a combination of both element stiffness matrices, after

transformation to the local coordinate system using Equation 2.37. Equation 2.39 shows the

placement of each element’s transformed k matrix, demonstrating the overlap between each

element due to the sharing of node 2 between both elements.

k 2

K =

k 1 0

Equation

2.34

(2.39)

The submatrix specific to node 2 is highlighted in Equation 2.40. Because the elements share

this node, the 6x6 matrix that overlaps is the sum of k1 and k2 at those DOF.

21

+

+

+

−+

−+

+

=→

21

21

21

2121

1221

21

127

0

00

00

000

00000

zz

yy

yyyy

zzzz

cc

cc

TSTS

bbaa

bbaa

ASAS

K (2.40)

2.2 Basics of Nodal Segregation

To automate the process of assembling the global stiffness matrix from the component

stiffness matrices, we need to define a procedure that easily places the component matrices

into the global stiffness matrix but maintains the individual component characteristics. By

recognizing that the component stiffness matrix kc can be viewed as a compilation of specific

nodal information and the associated connectivity information, we can break kc into

submatrices; nodal and connectivity, as demonstrated by the single element matrix in

Equation 2.41.

−

−

−

−−

−−

−

−

=

→

444444 3444444 21

4444444 84444444 7644444 844444 76

2

211

0

00

00

000

00000

0000

0000

00000

0000

0000

00000

0

00

00

000

00000

Node

z

y

yy

zz

tyConnectivi

zz

yy

yy

zz

Node

z

y

yy

zz

c

c

c

TS

ba

ba

AS

db

db

TS

ba

ba

AS

c

c

TS

ba

ba

AS

k (2.41)

22

To demonstrate the submatrix separation in a more complex system, we will examine the

two-element, three-node example shown in Figure 2.3. From the applicable global stiffness

matrix K for this system, Equation 2.38, and the graphical drawing, we can produce an

element connectivity diagram which will help with the separation of nodes within K.

Figure 2.4: Connectivity Diagram for a Two-Element System

Figure 2.4, shows element 1 and 2 are connected by node 2. The global stiffness matrix K is

shown in Figure 2.5.

0

Sym
m

etric

Node

3

Connection

1→2

Connection

2→3
K =

Node

2

Node

1

Sym
m

etric

Node

3

K =

Figure 2.5: Sub-Categorization of Nodal and Connection Matrices

Element

1

Element

2

Node

2

z

y

yy

zz

c

c

TS

ba

ba

AS

0

00

00

000

00000

− Node

Matrix
zz

yy

yy

zz

db

db

TS

ba

ba

AS

0000

0000

00000

0000

0000

00000

−

−

−−

−−

−

 Connection

Matrix

23

As stated before, the global stiffness matrix K for this system has a dimension of 18x18.

When broken into 6x6 nodal submatrices, it’s easy to see the distinction between each node

and the associated connectivity, as shown in Figure 2.5. Note that the outermost nodal and

connection matrices mirror the submatrices of Equation 2.41. The inner matrices, node 2 in

Figure 2.5, will be different due to the connectivity within the component.

From the nodal point of view, the component stiffness matrix kc can be divided into

submatrices that have distinct sections dependent upon individual nodal characteristics, from

which a symbolic representation can be established. We created a numbering system by

representing each 6x6 nodal matrix by a single variable designated as N and its respective

component node number. The connection 6x6 submatrix will be represented as C with a

subscript indicating the nodes connected. We demonstrate the symbolic representation with

the five node beam shown in Figure 2.6 and the component stiffness matrix kc in Equation

2.42.

Figure 2.6: Five Node, Four Element Component

=

5

454

343

232

121

0

00

000

N

CN

CN

CN

CN

kc (2.42)

2.3 Nodal Placement

When generating a large FE model with multiple components, having the capability to

readily determine which nodes are used to connect each component is ideal. Therefore, the

appropriate placement of nodes within a component is essential. To discuss the nodal

1 2 3 4 5

24

placement, we will utilize the five-node beam shown in Figure 2.6, with the previously

established notation for the symbolic representation of the matrices, as seen in Equation 2.42.

One attribute of the FE process is the ability to separate each element from the next.

Because of the sub-structures we have defined, this capability can be taken one step further

with the separation of the node and the connection matrices from the element structure.

With this in mind, we separate the beam into three sections demonstrated in Figure 2.7; the

left connection node, the body, and the right connection node. These separations are applied

to the component stiffness matrix kc as can be seen in Equation 2.43.

Figure 2.7: Segmented Five-Node, Four-Element Component

=

5

454

343

232

121

0

00

000

N

CN

CN

CN

CN

kc (2.43)

With the simplified submatrix notation established, we can look at the location of the

nodes within the matrix itself. Nodal placement within the matrix can be adjusted as long as

the connection segment is placed properly. If a node is moved to the right of a connecting

node, within the matrix only, the connection matrix is transposed. For instance, if we move

node one within the matrix, not the beam itself, the connection matrix between nodes one and

two is transposed (Equation 2.44). But, if a node is moved and remains to the right of the

1 2 3 4 5

Left

Connection

Right

Connection

Body

25

node it is connected to, the connection matrix is not changed, demonstrated by nodes two and

three.

[]

=

5

454

341

3

12232

0

000

00

N

CN

CN

N

CCN

k

T

c (2.44)

From these movements, we can see that if the correct connection properties are

maintained, the nodes within a given beam can be placed anywhere within the appropriate

matrices. These practices can be utilized for any size or shape of beam.

Knowing that we can move the nodes within the matrix with little effort, we place the

stiffness submatrix for the body before the first and last connecting nodes.

()

=

5

1

454

343

12232

0

0

00

00

N

N

CN

CN

CCN

k

T

c (2.45)

Within the five node example beam, the component node numbers do not hold significance

other than to designate a location within the component FE model. Therefore, we re-number

the nodes of the beam to coincide with our matrix movement and place the body before the

connectors (Figure 2.8), providing the same matrix as above, but with sequential node

numbering.

Figure 2.8: Segmented, Re-Numbered, Five-Node, Four-Element Component

4 1 2 3 5

26

=

5

4

353

232

14121

0

0

00

00

N

N

CN

CN

CCN

kc (2.46)

The transpose of the connection between nodes one and four is removed due to the implied

direction of the connection. After re-numbering the local nodes, the connection is from node

one to node four, which inherently transposes the original connection, which maintained the

direction of node four to node one.

The configuration detailed above is an advantageous node order for components within a

FE model. By placing the body of the component before the connecting nodes within the

stiffness matrix, the connecting nodes are always easily accessible due to the position they

occupy, regardless of the number of nodes of the component. For instance, if the beam we

used in the previous example is increased in resolution to fifty nodes (Figure 2.9), the

stiffness matrix in Equation 2.47 increases in size, but the connection nodes remain in the last

diagonal positions. The bolded zero, 0, represents the upper triangular remainder of the body

matrix, which are all zeros.

Figure 2.9: Segmented, Re-Numbered, Fifty Node, Forty-Nine Element Component

=

50

49

504848

48

49111

0

0

0

0

0

N

N

CN

C

CCN

kc

MO

MOO

L

L
0

 (2.47)

49 1 … 48 50

27

Separating the connection nodes from the body is advantageous when we assemble a

model with multiple connected components. A methodology is used to define the storage

requirements for the component. The storage of the segregated matrix will require separation

into five segments: body, connector 1 (Cnctr1), connection 1 (Cnx1), connector 2 (Cnctr2),

and connection 2 (Cnx2).

=

48

48

11

N

C

CN

kBody

L

L

O

OO

0

 (2.48)

[]491 NkCnctr = (2.49)

[]
4911 CkCnx = (2.50)

[]502 NkCnctr = (2.51)

[]
50482 CkCnx = (2.52)

The re-combined component stiffness matrix is shown in Equation 2.53.

[]

[]
[]

[]

=

2

1

2

1

0

0

0

Cnctr

Cnctr

Cnx

Cnx

Body

c

k

k

k

k

k

k

MM

 (2.53)

By inspection, it is seen that the segmented and un-segmented matrices are equivalent.

28

2.4 Construction of Global Stiffness Matrix

Construction of an entire FE model utilizing the methods previously described

significantly reduces the complication and ambiguity of the standard global K. The

traditional assembly method for a complex system of components yields a global stiffness

matrix K that has no clear indications of the location of component connectivity. For

example, we look at the structure in Figure 2.10 (a) and the associated K matrix (b).

Figure 2.10: (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component

Structure without Nodal Segregation

(a)

=

9

988

877

766

655

544

433

322

211

0

00

000

0000

00000

000000

0000000

N

CN

CN

CN

CN

CN

CN

CN

CN

K

(b)

1 2 3 4 5

6

7

8

9

1

2

29

Examination of the K matrix without the graphical representation reveals no information

as to where the connecting node is located. When using this nodal segregation approach, the

separation of connecting nodes from the body nodes, the connecting node is obvious,

demonstrated in Figure 2.10 (b). Due to the guidelines established in section 2.3, the local

component numbering scheme can be modified in any matter as long as the connectivity

characteristics are maintained. Therefore, we are able to renumber the local component nodes

to place the bodies of the components at the top left of the global stiffness matrix K. The

numbering modifications also apply to the connecting nodes, and are numbered last for ideal

placement within K.

Figure 2.11: (a) Graphical Representation and (b) Global Stiffness Matrix of Two Component

Structure Utilizing Nodal Segregation

(a)

[]
[]

[]

=

9

8

7

86

84

6

655

544

83

71

3

322

211

0

00

0

0

0

0

0

0

00

0

0

0

0

0

0

00

0

N

N

N

C

C

N

CN

CN

C

C

N

CN

CN

K

(b)

7 1 2 3 8

4

5

6

9

1

2

30

By examining the global stiffness matrix K, shown in Figure 2.11, we can demonstrate

the benefits of this nodal segregation approach. The connectivity of the two elements is

readily available; from Figure 2.11 (b), we can easily see that node eight is the connecting

node between components one and two. We can also determine the end points if further uses

of those are needed. Independent of the size or number of nodes a component has, if this

nodal segregation approach is used, the defining connectivity information will be accessible.

2.5 Model Construction

For realistic FE model generation, a more complex structure must be examined. Figure

2.12 (a) shows a cube structure created from identical beams on each side. This avails the

development of a single component model for the beam, and the reuse of it twelve times.

(a)

(b)

Figure 2.12: (a) Cube Structure and (b) Associated Component

x

z

y

4 1 2 3 5

31

The FE model for this component is a repeat of the beam utilized in the previous sections.

The nodal segregation is maintained within the component’s kc matrix at this point. The

example is a five node component, and therefore, the body matrix, kBody, dimension is 18x18

while the connector node, kCnctr, and connection node, kCnx, matrices are 6x6. For each

component, the component stiffness matrix kc maintains a 30x30 dimension. Equation 2.54

depicts the kc matrix for each component within the cube structure.

[]

[]
[]

[]

=

2

1

2

1

0

0

0

Cnctr

Cnctr

Cnx

Cnx

Body

cj

k

k

k

k

k

k

MM

 where 121L=j (2.54)

Before the individual component FE models are assembled to form the global stiffness

matrix K, each component stiffness matrix must be transformed from local to global

coordinates. As in Equation 2.37, the transformation of the component stiffness matrix kc

will be dependent on the cosines between two vectors; the component unit vector and a

global axis. The transformation can be equated by using a Rodrigues’ angle rotation formula.

Rodrigues’ formula is similar to the Euler angle transform matrix but uses an axis vector and

angle to calculate the transformation matrix where the Euler method uses three axis angles.

Either method may be applied in this situation, but Rodrigues’ use of vectors is more

convenient for these models due to the availability of a designated positioning unit vector

within each component FE model.

To demonstrate the use of the Rodrigues’ formula, we will rotate the beam component in

Equation 2.48 to align with the global y-axis. The unit vector for the component, Vu, is

(1,0,0) because it is oriented along the x-axis, and the global placement vector, VGP, is

(0,1,0). Figure 2.13 shows the specified rotation.

32

Figure 2.13: Rotation of Beam Component from X-Axis to Y-Axis.

()
()

Cross

GPUDot

GPUCross

GP

U

VN

VVV

VVV

V

V

=

•=

×=

=

=

010

001

 (2.55)

If Vu is equal to VGP, the magnitude of the cross product, N, is equal to zero and the rotation

is then only dependent on the dot product of the two vectors (VDot). If VDot is equal to one,

the matrix is not rotated and is placed as is. If VDot is equal to negative one, the axis vector

(A) is defined as (0,-1,0) Otherwise, the following step is taken for calculation of A.

[]321 aaaA

N

V
A Cross

=

=
 (2.56)

x

z

y

4 1 2 3 5

Rotation

33

Despite the method for calculating A, the cosine and sine of the axis angle are computed for

use in the Rodrigues’ transformation formula R, developed in Equation 2.57.

()() ()() ()()
()() ()() ()()
()() ()() ()()

−⋅+⋅+−⋅⋅⋅−−⋅⋅

⋅−−⋅⋅−⋅+⋅+−⋅⋅

⋅+−⋅⋅⋅−−⋅⋅−⋅+

=

cAcAscAAAscAA

AscAAcAcAscAA

AscAAAscAAcAc

R

111

111

111

2

3132231

132

2

2321

231321

2

1

 (2.57)

where,

()
()
()θ

θ

θ

sin

cos

cos 1

=

=

⋅
= −

s

c

VV

V

GPu

Dot

(2.58)

Equation 2.34 defines the directional cosine matrix as λ. The Rodrigues derivation is the

same matrix, just derived using different inputs. Therefore, we substitute R for λ within the

diagonal transformation matrix L and get Equation 2.59.

=

R

R

L

0

0

O (2.59)

To perform the transformation on the component’s k’ matrix, the standard matrix

multiplication method is used. The transformed component matrix will be designated as kc.

LkLk c

T

c

′
=′ (2.60)

For proper assembly of our example, the cube structure, this transformation will need to

occur for all twelve components. For four beams, the transformation will not change the

matrix, as the placement vector is in the x-direction, matching that of the beam model.

With the utilization of Rogrigues’ formula for matrix transformation in place, generation

of the global model is initiated. We begin by placing the first component in the x-direction.

34

As previously mentioned, there is no modification necessary because the unit vector is in the

same direction as the global placement vector. Therefore, the global K at this point is shown

in Equation 2.53. Placement of the next two components, one in the y-direction (VGP = [0 1

0]), and one in the z-direction (VGP = [0 0 1]), will make the dimension of K equal 78x78,

demonstrated in Figure 2.14. The component nodes are re-numbered to the global node

numbering scheme each time maintaining the connection points at the bottom right corner of

the matrix.

1→10

3→11

4→10

6→12

7→10

9→13

10

11

12

13

Connecting Node Connection

Body

1
(Nodes 1→3)

Body

2
(Nodes 4→6)

Body

3
(Nodes 7→9)

Body

K =

 (a) (b)

Figure 2.14: (a) Three Beam assembled Structure and (b) Associated Global Stiffness Matrix K

By utilizing these component submatrix generation tactics on the remaining nine components

within the cube structure, we develop the complete global stiffness matrix K. The 264x264

matrix is shown in Figure 2.15.

2

1

3

35

(a)

37

38

39

40

41

42

43

44

Body

9

Body

10

Body

11

Body

12

Body

5

Body

6

Body

7

Body

8

Body ConnectionConnecting Node

Body

1

Body

2

Body

3

K =

Body

4

(b)

Figure 2.15: (a) Assembled Cubic Structure and (b) Associated Global Stiffness Matrix K

36

2.6 Matrix Storage Techniques

The next step within the nodal segregation concept is the storage of the component

submatrices. The body portion of the component stiffness matrix kc can be stored separate

from the connector node and connection matrices. If the five node beam used previously

(Figure 2.12) is segregated for storage, a total of three separate submatrices can be derived;

the body, connector node, and connection matrices.

Storing the component submatrices separately works well for a system whose design is

fixed with no potential changes. But, what if we want to refine the mesh, or increase the

resolution, of a component FE model without modifying the entire global K?

(a)

13

14

15

16

Connection

Body

1

Body

2

Body

3

Body Connecting Node

K =

Body

4

(b)

Figure 2.16: (a) Assembled Square Structure and (b) Associated Low-Resolution K Matrix

37

For instance, if we take the square beam structure in Figure 2.16 (simplified from the

previously discussed cube), but want to redefine the mesh on one beam, what effect does this

have on our global K? If the model is modified using a straight forward, evenly spaced node

distribution, all three of the pertinent beam matrices (Body, Connecting Node, and

Connection) are changed; necessitating a complete restructure of the global K. But, if we

define a component development rule that requires the placement of the connecting nodes at

the end of the components and the distance between those nodes and the body nodes must

remain constant, the only change to the global stiffness matrix K is the dimension of the body

matrix. For example, the number of nodes within the body of beam two has been doubled

(Figure 2.17(a)) which increases the DOF from 18 to 36. The placement of the connecting

node and connection matrices do not change with respect to the body matrix for beam

number two (Figure 2.17(b)).

(a)

x
z

y

7 1 2 3 8 4 5 6

38

16

17

18

19

Connection

Body

1

Body

2

Body

3

Body Connecting Node

K =

Body

4

(b)

Figure 2.17: (a) High Resolution Beam Nodal Placement and (b) Structure K Matrix

Note that even though the size of the body matrix doubled, the placement of the

connection matrix remains constant at the first and last nodes. This would be consistent with

any size body matrix, as long as the connection remains constant.

2.7 Connection Interface Rules

To maintain a consistent interface for each component within a model, certain guidelines

have been established and must be strictly followed when utilizing this nodal segregation

approach. The following sum up the development criteria into two dominant rules.

1. For any number of nodes that the component has, the distance between any

connection node and the closest body node must maintain a fixed distance.

2. When the mesh is numbered, all connection nodes are numbered last.

39

When these rules are maintained, the body and connection matrices can be moved within

the global matrix independent on the size of the body matrix. This methodology also allows

us to vary the number of components in a model and the resolution of each component to

produce adequate results for a system.

40

3 Application of Nodal Segregation within Plug-and-Play Structures

The methodology behind the nodal segregation presented in this thesis is directly

applicable to the modeling of the Plug-and-Play (PnP) structures utilized within the

Operational Responsive Space (ORS) effort. By utilizing the FE model construction

technique and strictly following the development rules, a complete model for a finalized

configuration can be assembled and analyzed within the ORS timeframe.

3.1 ORS Program Requirements for Successful FE Analysis

Due to the non-traditional timeline that ORS follows, described in Chapter One, each

component must reach technological maturation prior to any inclusion in satellite design,

typically a one to three year process. The key to the success of the ORS program is the

adherence to the provided guidance for the development and interoperability of the

component’s interface. When a mission is defined and it requires the componentry to be

assembled, the maturity level and consistent interface ensure that the assembly is successful.

The paradigm that is used for hardware development is applied to the creation of FE

models of the entire structure. The modeling of individual components would follow the

same acquisition process as the hardware development. The creation of each component FE

model should be an iterative process throughout the hardware design cycle, validating the

computed response against actual harmonic excitation of the hardware to achieve accurate

and representative FE models.

Similar to the hardware design, the component FE models will follow an established set

of parameters that govern the interface of each model. Specifically, the number of

connecting nodes and the distance between the connecting node and the closest neighboring

body node must remain constant for each component. By maintaining an interface

convention within each model, the system placement of each component can be achieved in a

fraction of the time required by traditional methods.

41

3.2 Component Model Development

If a FE model is to be generated for the entire system, each individual component’s

model must accurately reflect the characteristics of the component. Without an appropriate

validation process for each component model, the analysis of the model has potential to

provide inaccurate results. The usage of such models within an assembled structure would

invalidate any results achieved during system analysis.

The advantage of the approach presented here is that several component models can be

created each with varying mesh refinement or resolution dependant upon specific load or

vibrational concerns. In addition, a low resolution, or low nodal count, model could be

generated for initial analysis. The generation of the specified series of models for each

component will allow for the complete satellite model to be refined at the component level

while maintaining a fully validated model.

Similar to the example problem presented in Chapter 2, a model’s mass and stiffness

matrices would be broken into submatrices according to the previously developed

procedures. Each component’s body, connector node and connection submatrices would be

stored separately, but, due to the requirement that the connection node maintain the same

distance to the closest body node, only the body matrices would vary. The connector node

and associated connectivity matrices would remain unchanged for all component models.

3.3 Resolution Modifications within the Compiled FE Model

After FE analysis of any system is completed, interpretation of the analysis results

provide specific areas that will need further examination. Typically, modifying the system

model to incorporate the higher resolution necessary is a time consuming process.

Specifically, the refined portion of the mesh must be inserted manually to ensure all model

connectivity remains intact. But, if the governing mesh interface design parameters are

maintained, the swapping of the different resolution models can be effortless.

The mesh refinement within Section 3.5 demonstrates that even though the resolution of

the body of the beam is doubled, the attachment of the connecting nodes remains constant on

the first and last node of the body. While the models within the ORS program will be

42

significantly more complex, the basic theory still applies. Independent of the number of

connection points within a given model, the explicit amount and their specified locations

remain constant, allowing for the immediate replacement of models when specified. The

resolution of any given component within a compiled model can therefore be changed at will,

as long as the required model is produced and validated prior to system assembly. By

utilizing the nodal segregation approach within design and assembly of the component FE

models, the time savings received ensures this approach is favorable with respect to the ORS

program.

3.4 Plug-and-Play Sample Structure

To demonstrate the Plug-and-Play (PnP) concept and how the approach developed in this

research applies to a structural model, we designed and produced a small, scaled down

sample satellite structure, called SimpleSat. SimpleSat was created to demonstrate how the

main structural components of a satellite can be assembled by utilizing pre-fabricated

structural components. In mimicking the established guidelines for the ORS program, we

have produced a selection of parts that can be utilized for construction in a variety of

configurations. SimpleSat is for demonstration purposes only, therefore the configuration

options are limited.

3.4.1 SimpleSat Design

All components produced within SimpleSat were designed using Pro/Engineer, a solid

modeling application produced by Parametric Technologies Corporation. All of the parts

were made of either 6061-T6 or 2024-T4 aluminum.

 Individual Components

A total of eight separate machined components were created in the development of

SimpleSat (see Figure 3.1). The body structural beams, measuring four, six, and eight

inches, were constructed from half inch round 2024 stock. Each beam has a #8X32 threaded

hole at each end for attachment. The representative solar panel measures four inches by

43

seven inches and is constructed from 0.05 inch thick aluminum sheet. The solar cross

member is one 0.25 inches thick and measures six inches from each hole, measured

horizontally and vertically. Both the panel and cross member were cut from aluminum sheet

using a high pressure water cutting machine. The attachment collar was produced from

0.375 inch round stock and turned on a machine lathe to achieve the shoulder feature and

drilled to make it hollow.

Figure 3.1: Machined SimpleSat Components

Two components within the system were machined using a standard machine mill and

were time and manpower intensive. The first, the solar panel support, was created from

0.625 square aluminum stock. To achieve the desired strength and maintain a lightweight

component, a linear taper was machined from the connection shoulder to the solar panel

connecting fork. The part was then turned using the machine lathe to produce the attachment

threads. The solid model and final product can be seen in Figures 3.2 (a) and (b)

respectively.

44

(a) (b)

Figure 3.2: (a) Solar Panel Support Pro/Engineer Model and (b) Machined Component

(a)

(b)

Figure 3.3: (a) Corner Unit Pro/Engineer Model and (b) Machined Component

45

The structural connecting component, the corner unit, is the most geometrically

complicated piece within the entire SimpleSat structure; designed to maintain the cubic shape

of the satellite body while retaining the ability to connect the solar panel assembly and be

disassembled easily. Many different configurations were examined prior to production, but

all had conflicts within the assembly. Figure 3.3 (a) depicts the Pro/Engineer solid model

and Figure 3.3 (b) shows final machined component. The corner component was cut from a

0.625 inch thick sheet of aluminum using the high pressure water jet cutting machine. The

unit was then drilled through the center; this hole was not modeled but was required for

milling. A custom indexing jig was created to mill the angled attachment points. The

machining of this piece was complicated by the antiquated machinery used and resulted in

three to four hours of machining for each unit constructed. By utilizing a modern five-axis

Computer Numerical Code (CNC) machine mill, the process time could be reduced by as

much as seventy-five percent and the setup would be a one-time pre-machining event.

3.4.1.1 Assembled Structure

By utilizing the eight components described previously, a complete structure can be

assembled. Due to design limitations, the only Plug-and-Play components that can change

the configuration of SimpleSat are the structural beams. The longitudal beams within the

model have the ability of being exchanged within the assembled structure to change the

model length. This is demonstrated in Figure 3.4 as the Pro/Engineer model (Figure 3.4 (a))

is constructed with four inch beams and the machined assembly pictured (Figure 3.4 (b))

utilizes the eight inch beams in the longitudal direction. The SimpleSat model is assembled

using standard size eight socket-head screws with thirty-two threads per inch (#8X32).

46

(a)

(b)

Figure 3.4: (a) SimpleSat Pro/Engineer Model and (b) Assembled SimpleSat Hardware

3.4.2 Computer Modeling and Simulation

As with the modeling of the structure for physical production, SimpleSat was modeled

for analysis and system simulation. In order to demonstrate the basic application of the nodal

separation approach described in Chapter 2, multiple FE models were produced for each

individual component, varying resolution in each. The models were stored on disk, ready for

assembly within the global model. The assembly process starts with the development of a

47

component connectivity plan, called the Model Tree. From the Model Tree, the code

developed in this research assembles the complete FE model from the components selected

and initiates the FE analysis.

For all FE model construction and analysis, the Structural Dynamic Toolbox (SDT) was

utilized. SDT is a MATLAB
®

 toolbox created and distributed by Etienne Balmes, and is

used throughout the world for complex FE modeling and analysis. SDT develops the FE

model using proprietary code and takes advantage of the MATLAB
®

 calculation engine for

solution computation. SDT is an ideal product for this research because we were able to

manipulate the mass and stiffness matrices at the nodal level.

3.4.2.1 Finite Element Model Development

The production of each FE model began with the definition of required connection nodes

and applicable distances. For consistency, the connection length for all connecting nodes

within the structure is set at 0.1 inch. All nodes within the body of a component are spaced

evenly between the remaining distances. For instance, the low resolution, four-inch beam

has a total of ten nodes; the first and last node spacing is set at 0.1 inch from the nearest body

nodes, while the remaining node spaces are equally spaced at 0.543 inches each.

The resolution for each part is of interest as well. Three specific parts were of major

concern: the solar panel, attachment collar and structural beams. The structural beams were

modeled with three resolutions for each length. The nine instances of the beams consist of

ten, one hundred, and one thousand nodes per the component lengths of four, six, and eight

inches. Figure 3.5 depicts the SDT model of the four inch beam modeled with ten nodes. As

can be seen, the body of the beam is represented with nodes one thru eight and the

connection nodes are nodes nine and ten. The constant connection length on 0.1 inch is also

shown. The attachment collar is modeled very similarly to the structural beams with the

three separate resolutions.

48

Figure 3.5: SDT model of Low Resolution Four Inch Beam

The modeling of the solar panel is delineated by two separate resolutions. The size is

constant; therefore the resolution differs only in the distance between nodes within the body.

The lower resolution model incorporates a total of twenty-seven nodes while the higher

resolution model uses forty five. Again, the distance between the connecting node and the

body nodes is 0.1 inch. Figure 3.6 shows the resolution differences between instances of the

solar panel.

(a) (b)

Figure 3.6: SDT model of (a) the Low Resolution and (b) the High Resolution Solar Panel

A naming convention for each model has been established based on the component name,

the change in length, and the resolution of the model i.e. Component.Length.Resolution.

Each developed component follows the naming convention to the extent that if the model

does not utilize a field, the field is eliminated. For instance, the corner component does not

require a length change so the length field is eliminated.

 1 2 3 4 5 6 7 8 9 10

x

y

z

 1

 2

 3

 4

 5 6 7 8

 9

10

11

12 13 14

15 16

17 18 19

20

21

22

23 24 25

26 27

 1

 2

 3

 4

 5 6 7 8

 9

10

11

12 13 14

15 16

17 18 19

20

21

22

23 24 25

26 27

28

29

30 31

32

33

34 35

36 37

38

39

40 41

42 43 44 45

49

Table 3.1: SimpleSat FE Model stored files

Component
Length

(inches)
Resolution

File

Extension

of

Nodes
Matrix Size

.M 48 X 48

.K 48 X 48

.Nodes 10 X 7
Four, Low

.Elt

8

10 X 6

.M 588 X 588

.K 588 X 588

.Nodes 100 X 7
Six, Med

.Elt

98

100 X 6

.M 5988 X 5988

.K 5988 X 5988

.Nodes 1000 X 7

Beam

and

Eight
High

.Elt

998

1000 X 6

.M 48 X 48

.K 48 X 48

.Nodes 10 X 7
Low

.Elt

8

10 X 6

.M 588 X 588

.K 588 X 588

.Nodes 100 X 7

Collar

Med

.Elt

98

100 X 6

.M 162 X 162

.K 162 X 162

.Nodes 27 X 7
Low

.Elt

27

31 X 6

.M 270 X 270

.K 270 X 270

.Nodes 45 X 7

Solar Panel

Med

.Elt

45

49 X 6

.M 72 X 72

.K 72 X 72

.Nodes 12 X 7
Corner

.Elt

12

16 X 6

.M 78 X 78

.K 78 X 78

.Nodes 17 X 7
Solar Cross Member

.Elt

17

17 X 6

.M 66 X 66

.K 66 X 66

.Nodes 11 X 7
Solar Support

.Elt

11

11 X 6

50

Each FE model is stored electronically in two formats, graphical and analytical. SDT

requires two model specific files for graphical analysis, the .Node, which gives the location

of each node and the .Elt, which provides the element connectivity. The analytical file

requirements are for two model specific files as well. The mass matrix for the component

model is contained within the .M file and the .K file houses the global stiffness matrix. All

component global mass and stiffness matrices are stored using the MATLAB
®

 sparse storage

format, storing only the non-zero terms, to minimize storage space and processing time.

Table 3.1 provides a list of all of the stored FE models and their associated information for

SimpleSat. Note that all stored components only contain the nodes for the body.

3.4.2.2 Model Tree

The assembly of the SimpleSat FE model begins with the definition of the Model Tree.

The connectivity between each component and the physical placement of the component is

all stored within the Model Tree file, and can be depicted graphically as a connectivity

diagram. Figure 3.7 (b) demonstrates the connectivity for the three beam example shown in

Figure 3.7 (a). The three bodies within the model connect with each other through the one

connector node.

While the diagram depicted in Figure 3.7 is a good visual representation of the model

connectivity, the Model Tree file is significantly more complex. The physical placement

within the model is as important as the connectivity for the successful assembly of the global

M and K matrices. The Model Tree contains three placement fields that are key to proper

placement of the model: placement point, position vector, and rotation. As described in

Chapter 2, each FE model was constructed with a reference unit vector for placement. The

placement point dictates the spot within the graphical model where the reference vector

initiates. The position vector provides the direction in which the reference vector should

point. If a rotation about the positioned vector is required, that angle is entered in the

rotation field.

51

 (b)

Figure 3.7: (a) Three Beam Object and (b) the Associated Connectivity Tree

Table 3.2: Model Tree File Entries for Connecting and Non-Connecting Members

Model Tree Member Information

Connecting Member

Non-Connecting Member

Type 'Corner' Type 'Beam.Four.Low'

Placement Point [0 0 0] Placement Point [1 0 0]

Placement Vector [1 0 0] Placement Vector [1 0 0]

Rotation [0] Rotation [0]

Connecting Member 1 Connecting Member 0

Member 1 Connection

(1) Type 'Pos'

Member 4 Connection

(2) Type 'Pos'

Member 5 Connection

(3) Type 'Pos'

Body

1

Body

3

Body

2

Cntr

Node

Connection 1

Connection 3

Connection 2 (a)

52

To facilitate in model construction, each component has been given a designator of

connecting member or non-connecting member. The purpose of the designation is to

determine which member the connecting node should be built from. In the theoretical

development of the models, assigning a member as connecting or non-connecting is not

applicable. However, for real world model development, the distinction is made to dictate

the correct connection with the appropriate body. In Table 3.2, the field “Connecting

Member” determines whether a member is a connecting member (1) or a non-connecting

member (0).

The connecting members within the Model Tree contain additional information that the

non-connecting members do not require. For the example listed in Table 3.2, a corner piece,

the member has three connection points. The connections of the corner piece can be seen in

Figure 3.3. Each connection is assigned an associated number and annotated within the

table. The connection is then assigned a member that it is connected to. For placement of

the non-connecting member, a connection type is generated as “Pos” or “Neg”. The “Pos”

connection dictates that the member is attached by the first node of the body and a “Neg”

type connects the member through the last body node.

The SimpleSat Model Tree contains a total of thirty-four members (see Appendix C),

twelve of which are structural beams. Also included are eight corners, eight collars, two

solar cross members, two solar supports, and two solar panels.

3.4.2.3 Model Construction

The construction of the complete FE model for SimpleSat is accomplished by utilizing

the component FE models and the Model Tree. The nodal relationship within the component

FE models is maintained, but the entire component model’s nodal numbers are assigned

global node numbers consecutively based on the placement of the members within the Model

Tree with member number one’s first body node having the value of one, continuing in that

fashion until all member bodies are numbered. The connector nodes are numbered last to

place all connectors at the end of the global matrices, as discussed in Chapter 2.

The process of adding the individual components to the compiled model utilizes a two

path construction technique. The two segmented paths are the development of the graphical

53

and analytical models. The graphical model is not specifically required for analysis purposes

and is only used within the Structural Dynamics Toolbox (SDT) to ensure the analytical

model is correct. The analytical model has the global mass and stiffness matrices which are

used for eigenvalue and eigenvector analysis.

Although two significantly different paths are taken for analysis, all modifications to the

nodal numbers and compilation of matrices is done coincidently to assure placement of each

node within the models is consistent. Each member’s stored model files are read in

sequentially based on location within the Model Tree. The nodal characteristics are initially

read in from the .Node file and the physical location is transformed based on the position

vector. The nodal relationship is then modified to reflect the new nodal numbers. A matrix

transformation is then required for the global mass, M, and stiffness, K, matrices for the

specified node, again based on the position vector. These new values are then added to the

system level Node, Elt, M and K files.

After all body submatrices are transformed, the connection nodes and relationships are

then placed in the global matrices, all derived from the connection information in the Model

Tree. During the renumbering process performed on the body submatrices, the locations of

the key nodes are recorded. The connection nodes are placed within the Node, M, and K

files. Based on the detailed connection information and location of the connection, the

relationship between the connection node and the nodes it is connecting to is annotated

within the Elt, M and K matrices.

The model assembly process is completed using a single MATLAB
®

 script titled

MatrixConst.m (Appendix C). The entire process is eased due to the symmetry of the M and

K matrices and by the limited amount of information due to the sparse matrices. An

additional section of code is used to fill the symmetric portion of the matrices because only

the upper right triangle of the global M and K are processed within the matrix construction

code. To ensure that the two processes produce the same result, a M and K matrix are

produced from the graphical analysis and both are compared using the MATLAB
®

 “Spy”

command. Figure 3.8 displays the output of the “Spy” command for both the graphical and

analytical results. From visual inspection of these matrices, one can see that the two methods

match and nodal placement is maintained between the methods.

54

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 14720

Analytical.M - Mass

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 17196

Analytical.K - Stiffness

(a)

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 13752

Graphic.M - Mass

0 500 1000 1500 2000

0

500

1000

1500

2000

nz = 17618

Graphic.K - Stiffness

(b)

Figure 3.8: Mass and Stiffness Matrices for the (a) Analytical and (b) Graphical Methods

The nodal segregation and grouping of the member bodies is demonstrated quite well in

Figure 3.8. The connection nodes and connecting matrices between the nodes and the

member bodies is shown as well.

55

3.4.3 Results of SimpleSat Analysis

The successful modeling of the SimpleSat is determined by two criteria: timeline for

computation and whether the model used is valid. For the timeline comparison, time checks

will be made within the MATLAB
®

 code. The validity of the model will be accomplished by

comparing the SDT SimpleSat model with an additional computer generated model as well

as experimental tests to determine the modal frequencies. Each has been outlined in the

following sections.

3.4.3.1 Timeline Analysis

For comparison, four iterations of the model analysis were completed to determine time

differences of the code segments. The first run utilizes the model with all components at the

lowest resolution, resulting in a total of 384 nodes for the complete FE model. In the second

iteration, the resolution of the solar panels was increased to the maximum resolution, from 27

to 45 nodes, increasing the total number of nodes to 420. The third run increases the

resolution of two longitudinal structural beams to medium resolution and maintains the solar

panels at high resolution. The total number of nodes within the third run is 600. The fourth

and final iteration of the model was to increase all available resolutions to the medium

resolution. This included the structural beams in all directions, the attachment collars, and

the solar panels. The total node count increased by 900 resulting in a total number of 1500

nodes, or 9000 DOF.

Table 3.3 shows specific time information for each of the iterations. The development of

the component FE models remains relatively the same for every configuration. The obvious,

and expected, time constraint is the model assembly. By simply averaging the number of

nodes used compared to the time of computation, we can use a figure for calculation of 1 to

1.5 seconds per node, due to the renumbering scheme required to make the model follow the

established guidelines of nodal segregation approach. Table 3.3 does not depict the time

required to establish the initial models and modify the overall model to include the changes

56

in resolution. That is because the construction of the models does not factor into the analysis

time because they were created prior to Model Tree development, which is the foundation for

this approach. The modification to the Model Tree is insignificant, as the time required to

change a small number of characters and to resave the file is miniscule.

Table 3.3: Time Comparison Data for Four SimpleSat Iterations with Varying Complexity

SimpleSat Model Analysis

Iteration #1 (384 Nodes)

Action
Time Required

(mm:ss.ss)

% of Total

Time

Component FE Model Creation 00:12.63 5.54%

Model Assembly 03:30.08 92.20%

Eigenpair Analysis 00:05.15 2.26%

Total Time 03:47.86

Iteration #2 (420 Nodes)

Action
Time Required

(mm:ss.ss)

% of Total

Time

Component FE Model Creation 00:12.63 4.57%

Model Assembly 04:21.00 94.49%

Eigenpair Analysis 00:02.58 0.94%

Total Time 04:36.22

Iteration #3 (600 Nodes)

Action
Time Required

(mm:ss.ss)

% of Total

Time

Component FE Model Creation 00:12.87 2.46%

Model Assembly 08:27.09 97.00%

Eigenpair Analysis 00:02.83 0.54%

Total Time 08:42.79

Iteration #4 (1500 Nodes)

Action
Time Required

(mm:ss.ss)

% of Total

Time

Component FE Model Creation 00:12.58 0.40%

Model Assembly 52:09.06 99.42%

Eigenpair Analysis 00:05.80 0.18%

Total Time 52:27.44

57

It is noted that the size of the models used in the SimpleSat demonstration are small

compared to a complex FE model, which can easily consist of multi-millions of DOF. The

size of the assembled model directly effects the time required for analysis computation. As

the number of nodes increases, the dimension of M and K increase by a factor of six, and

therefore effect the time required to compute the eigenpairs increases on the order of the

number of nodes cubed. As the size of the models increase, the eigen analysis will quickly

become the dominant time consumer.

All of the iterations of the SimpleSat model were completed using a Dell 700M notebook

computer with an Intel 1594 MHz Centrino
TM

 processor with 1024 MB of RAM. This

machine was running Microsoft
®

 Windows
®

 XP Home Edition. Since most computations

are floating point, the analysis process would be significantly faster given a computer with a

faster floating point unit.

3.4.3.2 Validation of SimpleSat Model

Validation of a model can entail many different tests to prove that the model matches the

characteristics of the actual hardware. For our comparison, only the modal frequencies will

be compared. This limits the true validity of this model, but is adequate to determine

whether the results achieved are acceptable. Three sets of data are compared for the

SimpleSat validity determination, the SDT modal frequencies, modal frequencies determined

by a Nastran model, and frequency determination by experimentation on the machined

hardware as seen in Table 3.4. The background data for which Table 3.4 is developed is

included in Appendix B.

The experimental results are are derived from a series vibration response tests on the

SimpleSat hardware. We placed the assembled SimpleSat model in free space, hanging from

a simple damperless rubberband setup, and struck the model at various locations. The

response was recoded via two accelerometers and then plotted with MATLAB. The results

in Table 3.4 depict the average of the similar modal frequencies. The complete results from

our testing can be found in Appendix B.3.

58

Table 3.4: Comparison of Modal Frequency Determinations

Modal Frequency Comparison

SDT Nastran Experimental

Frequency (Hz) Frequency (Hz) Frequency (Hz)

158.7 71.28 72.89

163.2 82.16 86.89

174.1 133.12 92.81

192.5 209.38 137.12

199.9 212.54 198.58

Table 3.4 is a simple comparison of the first five modal frequencies from the three

separate modeling methods. Basic interpretation of the data indicates that the three methods

utilized for model construction provide vastly differing results. The experimental and

Nastran results demonstrate concurrence within four of the five modes, differing with the

exclusion of the third mode within Nastran. The deleted node is most likely due to the

modeling process within Nastran. The Nastran model developed only utilized the Solar

Panel and the Solar Support, ignoring the effect the remainder of the system provided.

The SDT results do not agree in the low frequencies, but are closer near mode 5, which is

merely coincidental due to the mode shape differences. Appendix B.1 shows the mode

shapes from the SDT analysis. Inspection of these shows that there is a major flaw within the

SDT processes. The mode shapes demonstrate a non-symmetric vibration throughout all

frequencies, providing incorrect results due to no off axis boundary conditions. The errors

within SDT may also be associated with the toolbox’s unit conversion factors. The model is

developed in US units, specifically inches and pounds, and SDT converts the units to SI.

From basic code manipulation, it has been determined that the conversion is flawed, and

must be corrected before adequate results can be achieved.

59

4 Conclusions and Future Work

The purpose of the research presented was to prove that with a finite element (FE) model

development paradigm shift, a finalized satellite FE model could be produced within the

Operational Responsive Space (ORS) assembly timeframe. Within the major research goal

were several smaller objectives, including the development of a series of models, both

hardware and FE, to test the concept as well as the development of MATLAB
®

 code to

assemble the global FE model.

4.1 Conclusions

The results from the analysis presented shows that our research was partially successful.

We took the first of many steps required to generate a method to place FE modeling within

the ORS assembly window. We proved that, if a FE model is constructed following the

dedicated interface rules, a global FE model can be assembled within the ORS program

timeline. The nodal segregation approach demonstrated that by utilizing a constant distance

between a connector node and the associated body node, the interface of the modeled

component with the assembled FE model did not change, providing the opportunity to

exchange refined models with very little impact. The result is an assembled model that can

be refined on-the-fly.

We demonstrated that by producing a variety of models for each component prior to any

assembly activity, the majority of the work required for global FE model assembly is

accomplished before any need is defined, significantly reducing the amount of time and

effort required to assemble the global model. The work remaining in assembly is limited to

the connectivity definition of each component used.

The MATLAB
®

 routine developed to build the component models, assemble the global

model, and perform the eigenpair analysis showed that the nodal segregation approach to FE

development will significantly improve the model development time. With the completion

of the code and the success of the trials performed, the developed routine is considered to be

a “proof-of-concept’ of the nodal segretation approach.

60

The potential within the application of our nodal segregation approach is limitless within

the modeling and simulation of component based systems, to include the astronautical,

aeronautical, and automotive industries. The research performed is vital to the success of the

ORS program, and will be beneficial to many other Air Force specific programs.

4.2 Future Work

While much work has been completed in the development of the FE model production

methodology as presented in this paper, a great deal of work remains incomplete. The

assembly process has proved successful, but the timeline and effort required can be reduced

further. The modeling within Structural Dynamics Toolbox (SDT) was successful to a

limited extent, but, as mentioned previously, must be refined. As effective as SimpleSat is in

demonstrating the basic concepts of Plug-and-Play componentry, it would be ideal to begin

modeling the actual hardware components currently being developed by AFRL/VS.

4.2.1 Approach Refinement

The nodal segregation approach was widely successful in the proof of concept. However,

during the analysis trials for SimpleSat, the majority of the processing time was spent

assembling the global FE model. We can further optimize the assembly process by moving

additional model development prior to assembly. Because the majority of the component

configurations are known, the development of additional component FE models representing

all known model rotations could be accomplished. The existence of the rotated models can

eliminate the need to rotate the placement vectors and matrices for each node, removing a

significant portion of the computing time.

4.2.2 Model Complexity

The models created within SDT are limited with regard to practical modeling of the

SimpleSat componentry. To ensure compatibility of each component’s FE model with the

method processes, each component was modeled with essentially a one-dimensional

61

mentality. In every instance, the models developed are a single string of nodes, no more than

one node deep. A system-wide overhaul of the models to increase nodal density, mesh

refinement, and to include plate and solid elements would significantly increase the realism

of the assembled model. The complete validation of the models with respect to the

SimpleSat hardware will also significantly improve results.

Due to the results found from the comparison of the model analysis to the actual

experimental values, the SimpleSat SDT model holds no validity to the actual system. The

moments of inertial (MOI) need to be verified as correct within the models. The stiffness

characteristics within the model should also be checked.

4.2.3 Analysis Approaches

To reduce the dimension of the component mass and stiffness matrices, a component

mode synthesis (CMS) approach would be used. Using a CMS or Craig-Bampton [4]

approach, we could project the component mass and stiffness matrices onto their respective

truncated eigenspaces. A reduction in dimension of the system matrices of a factor of several

thousand is fairly common for large FE models. This approach could be used in the ORS

approach.

4.2.4 Modeling Flight Hardware

The next logical step in applying nodal segregation to the Plug-and-Play structural

environment is to model the hardware being developed for the Operational Responsive Space

(ORS) program. Currently, the Air Force Research Laboratory’s Space Vehicle Division

(AFRL/VS) is working with a multitude of contractors to begin development of basic flight

hardware for this effort. To model these components and assemble a mock system would be

the final step to proving the methodology presented is legitimate.

62

APPENDICES

Appendix A: SimpleSat Manufacturing Drawings

Figure A.1: Attachment Point Drawing

63

Figure A.2: Four Inch Beam Drawing

Figure A.3: Solar Attachment Collar Drawing

64

Figure A.4: Solar Assembly Attachment Cross Member Drawing

65

Figure A.5: Solar Panel Drawing

66

Figure A.6: Solar Panel Support Drawing

67

Appendix B: Validation of the SimpleSat FE Model

Appendix B.1: SDT Modal Frequency Analysis

Mode 1 – 158.7

7 @ 158.7 Hz

Mode 2 – 163.2

8 @ 163.2 Hz

68

Mode 3 – 174.1

9 @ 174.1 Hz

Mode 4 – 192.5

10 @ 192.5 Hz

Mode 5 – 199.9

11 @ 199.9 Hz

69

Appendix B.2: Nastran Modal Frequency Analysis

Mode 1 – 71.28 Hz

Mode 2 – 82.16 Hz

Mode 3 – 133.12 Hz

Mode 4 – 209.38 Hz

70

Appendix B.3: Experimental Modal Frequency Analysis

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Appendix C: Finite Element Model Construction Code

Main.m

clear all;clf;clc;

Time(1,:)=clock;

ModelProps;

Build = 0

if Build == 0

 Beam;

 CornerCreate;

 CollarCreate;

 SolarCrossCreate;

 SolarSupportCreate;

 SolarPanelCreate;

 save Body.mat Body*;

 save Connect.mat Connect*;

 save Corner.mat Corner*;

 save Collar.mat Collar*;

 save SolarCross.mat SolarCross*;

 save SolarSupport.mat SolarSupport*;

 save SolarPanel.mat SolarPanel*;

 save L.mat L*;

 save N.mat N*;

elseif Build == 1

 load Body.mat

 load Connect.mat

 load Corner.mat

 load Collar.mat

 load SolarCross.mat

 load SolarSupport.mat

 load SolarPanel.mat

 load L.mat

 load N.mat

end

Time(2,:)=clock

ModelTree_new;

%ModelTreeCheck;

ModelConst;

Time(3,:)=clock

ModelBuild;

Spymatrix;

Time(4,:)=clock

ModelProps.m

model.pl = [1 0.411646966 1.04E07 0.3 0.000252 4.016E06;

 2 0.411646966 3.04579e+007 0.285 0.000729866 1.18513e+007];

typ=fe_mat('p_beam','IN',1); % standard beam

model.il = [1 typ 1.66667E-05 8.33333E-06 8.33333E-06 0.01 % .1 X .1

 2 typ 0.09817477 0.049087385 0.049087385 0.785398163 % .5 circle

 3 typ 6.77083E-05 2.60417E-06 6.51042E-05 0.0125 % .25 X .05

 4 typ 0.000526042 5.20833E-06 0.000520833 0.025 % .5 X .05

 5 typ 6.77083E-05 6.51042E-05 2.60417E-06 0.0125 % .05 X .25

 6 typ 0.000526042 0.000520833 5.20833E-06 0.025 % .05 X .5

 7 typ 0.000651042 0.000325521 0.000325521 0.0625 % .25 X .25

 8 typ 0.003295898 0.001647949 0.001647949 0.140625 % .375 .375

 9 typ 0.010416667 0.005208333 0.005208333 0.25 % .5 X .5

 10 typ 0.003255208 0.000651042 0.002604167 0.125 % .5 X .25

 11 typ 0.003255208 0.002604167 0.000651042 0.125]; % .25 X .5

90

Beam.M

close all;clf;

eval(demosdt('echooff'))

L_Text={'Four';'Six';'Eight'};

N_Text={'Low';'Med';'High'};

FEelt=[];

L=[4;6;8];

N=[10;100;1000];

for i=1:length(L);

 femesh('reset'); % initialize FEMESH

 for j=1:length(N);

 a=(L(i)-(.2))/(N(j)-3); %note the 3, 2 nodes + 1 for start

 FEelt(1,:)=[Inf abs('beam1')];

 for n=1:(N(j)-2);

 FEnode(n,:)= [(n) 0 0 0 (.1+((n-1)*a)) 0 0];

 FEelt((n+1),:)=[(n) (n+1) 1 2 50 0];

 end

 FEelt((n+1),:)=[(n) (n+2) 1 2 50 0];

 FEnode((N(j)-1),:) = [(N(j)-1) 0 0 0 0 0 0];

 FEelt(N(j),:)=[(N(j)-1) 1 1 2 50 0];

 FEnode(N(j),:) = [N(j) 0 0 0 L(i) 0 0];

 text_model=strcat('Body.',char(L_Text(i)),'.',char(N_Text(j)),'.')

 text_M=strcat(text_model,'model=femesh');

 eval(text_M)

% model=femesh;

 text_Cnxs=strcat(text_model,'Cnxs=2');

 eval(text_Cnxs)

 quote=char(39);

 text_pl=strcat(text_model,'model.pl=model.pl');

 eval(text_pl)

% model.pl=[m_elastic('dbval 1 aluminum')]

 text_il=strcat(text_model,'model.il=model.il');

 eval(text_il)

% model.il=[p_beam('dbval 1 rectangle .1 .1')]

 text_mknaming=strcat('[Beam.M,Beam.K,Beam.mdof]=');

 text_modelselect=strcat('fe_mknl(',text_model,'model);');

 text_mknl=strcat(text_mknaming,text_modelselect);

 eval(text_mknl)

%

[Beam.Length(i).Res(j).M,Beam.Length(i).Res(j).K,Beam.Length(i).Res(j).mdof]=fe_mknl(model);

 H(i,j)=length(Beam.M);

 text_bodyM=strcat(text_model,'M=Beam.M(1:(H(i,j)-12),1:(H(i,j)-12));');

 eval(text_bodyM)

 text_bodyK=strcat(text_model,'K=Beam.K(1:(H(i,j)-12),1:(H(i,j)-12));');

 eval(text_bodyK)

 text_bodySize=strcat(text_model,'Size=length(',text_model,'M);');

 eval(text_bodySize)

 end

end

 Connect.Pos.M=Beam.M((H(i,j)-11):(H(i,j)-6),(H(i,j)-11):(H(i,j)-6));

 Connect.Pos.Mcx=Beam.M(1:6,(H(i,j)-11):(H(i,j)-6));

 Connect.Pos.K=Beam.K((H(i,j)-11):(H(i,j)-6),(H(i,j)-11):(H(i,j)-6));

 Connect.Pos.Kcx=Beam.K(1:6,(H(i,j)-11):(H(i,j)-6));

 Connect.Pos.Size=length(Connect.Pos.M);

91

 Connect.Neg.M=Beam.M((H(i,j)-5):H(i,j),(H(i,j)-5):H(i,j));

 Connect.Neg.Mcx=Beam.M((H(i,j)-17):(H(i,j)-12),(H(i,j)-5):H(i,j));

 Connect.Neg.K=Beam.K((H(i,j)-5):H(i,j),(H(i,j)-5):H(i,j));

 Connect.Neg.Kcx=Beam.K((H(i,j)-17):(H(i,j)-12),(H(i,j)-5):H(i,j));

 Connect.Neg.Size=length(Connect.Neg.M);

CornerCreate.m

eval(demosdt('echooff'))

femesh('reset'); % initialize FEMESH

FEelt=[];

FEnode = [1 0 0 0 1 0 0.5;

 2 0 0 0 1 0.5 0;

 3 0 0 0 0.5 1 0;

 4 0 0 0 0 1 0.5;

 5 0 0 0 0 0.5 1;

 6 0 0 0 0.5 0 1;

 7 0 0 0 1 0 0;

 8 0 0 0 0 1 0;

 9 0 0 0 0 0 1;

 10 0 0 0 1.1 0 0;

 11 0 0 0 0 1.1 0;

 12 0 0 0 0 0 1.1];

FEelt = [Inf abs('beam1');

 1 2 1 7 50 0;

 2 3 1 7 50 0;

 3 4 1 7 50 0;

 4 5 1 7 50 0;

 5 6 1 7 50 0;

 6 1 1 7 50 0;

 1 7 1 7 50 0;

 7 2 1 7 50 0;

 3 8 1 7 50 0;

 8 4 1 7 50 0;

 5 9 1 7 50 0;

 9 6 1 7 50 0;

 7 10 1 7 50 0;

 8 11 1 7 50 0;

 9 12 1 7 50 0];

% 7 13 1 7 50 0];

Corner.model=femesh;

Corner.Cnxs=3;

Corner.model.pl=model.pl

Corner.model.il=model.il

[C.M,C.K,C.mdof]=fe_mknl(Corner.model);

lsize=length(C.M)%-(6*Corner.Cnxs)

Corner.M=C.M(1:lsize,1:lsize);

Corner.K=C.K(1:lsize,1:lsize);

Corner.Size = length(Corner.M);

cf=feplot; cf.model=Corner.model;

92

CollarCreate.m

close all;clf;

eval(demosdt('echooff'))

ClrL_Text={'One'};
ClrN_Text={'Low';'High'};
FEelt=[];

ClrL=[1.25];

ClrN=[10;100];

for i=1:length(ClrL);
 femesh('reset'); % initialize FEMESH
 for j=1:length(ClrN);
 a=(ClrL(i)-(.2))/(ClrN(j)-3); %note the 3, 2 nodes + 1 for start
 FEelt(1,:)=[Inf abs('beam1')];

 for n=1:(ClrN(j)-2);
 FEnode(n,:)= [(n) 0 0 0 (.1+((n-1)*a)) 0 0];

 FEelt((n+1),:)=[(n) (n+1) 1 2 50 0];

 end

 FEelt((n+1),:)=[(n) (n+2) 1 2 50 0];

 FEnode((ClrN(j)-1),:) = [(ClrN(j)-1) 0 0 0 0 0 0];

 FEelt(ClrN(j),:)=[(ClrN(j)-1) 1 1 2 50 0];

 FEnode(ClrN(j),:) = [ClrN(j) 0 0 0 ClrL(i) 0 0];

 text_model=strcat('Collar.',char(ClrN_Text(j)),'.')
 text_M=strcat(text_model,'model=femesh');
 eval(text_M)

 text_Cnxs=strcat(text_model,'Cnxs=2');
 eval(text_Cnxs)

 quote=char(39);

 text_pl=strcat(text_model,'model.pl=model.pl');
 eval(text_pl)

 text_il=strcat(text_model,'model.il=model.il');
 eval(text_il)

 text_mknaming=strcat('[Collar.M,Collar.K,Collar.mdof]=');
 text_modelselect=strcat('fe_mknl(',text_model,'model);');
 text_mknl=strcat(text_mknaming,text_modelselect);

 eval(text_mknl)

 H(i,j)=length(Collar.M);

 text_bodyM=strcat(text_model,'M=Collar.M(1:(H(i,j)-12),1:(H(i,j)-12));');
 eval(text_bodyM)

 text_bodyK=strcat(text_model,'K=Collar.K(1:(H(i,j)-12),1:(H(i,j)-12));');
 eval(text_bodyK)

 text_bodySize=strcat(text_model,'Size=length(',text_model,'M);');
 eval(text_bodySize)

 end
end

93

SolarCrossCreate.m

%clear all;close all;clf;

eval(demosdt('echooff'))

femesh('reset'); % initialize FEMESH

FEelt=[];

FEnode = [1 0 0 0 0 0 0;

 2 0 0 0 -1 -1 0;

 3 0 0 0 1 -1 0;

 4 0 0 0 1 1 0;

 5 0 0 0 -1 1 0;

 6 0 0 0 -2 -2 0;

 7 0 0 0 2 -2 0;

 8 0 0 0 2 2 0;

 9 0 0 0 -2 2 0;

 10 0 0 0 -3 -3 0;

 11 0 0 0 3 -3 0;

 12 0 0 0 3 3 0;

 13 0 0 0 -3 3 0;

 14 0 0 0 -3 -3 0.1;

 15 0 0 0 3 -3 0.1;

 16 0 0 0 3 3 0.1;

 17 0 0 0 -3 3 0.1];

%FEelt(1,:)=[Inf abs('beam1')];

FEelt = [Inf abs('beam1');

 1 2 1 11 50 0;

 2 6 1 11 50 0;

 6 10 1 11 50 0;

 1 3 1 11 50 0;

 3 7 1 11 50 0;

 7 11 1 11 50 0;

 1 4 1 11 50 0;

 4 8 1 11 50 0;

 8 12 1 11 50 0;

 1 5 1 11 50 0;

 5 9 1 11 50 0;

 9 13 1 11 50 0;

 10 14 1 11 50 0;

 11 15 1 11 50 0;

 12 16 1 11 50 0;

 13 17 1 11 50 0];

SolarCross.model=femesh;

SolarCross.Cnxs=4;

SolarCross.model.pl=model.pl

SolarCross.model.il=model.il

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarCross.model);

lsize=length(SP.M)-(6*SolarCross.Cnxs)

SolarCross.M=SP.M(1:lsize,1:lsize);

SolarCross.K=SP.K(1:lsize,1:lsize);

SolarCross.Size = length(SolarCross.M);

cf=feplot; cf.model=SolarCross.model;

94

SolarSupportCreate.m

%clear all;close all;clf;

eval(demosdt('echooff'))

femesh('reset'); % initialize FEMESH

FEelt=[];

FEnode = [1 0 0 0 0 0 0;

 2 0 0 0 0 1 0;

 3 0 0 0 0 2 0;

 4 0 0 0 0 3 0;

 5 0 0 0 0 3.5 0;

 6 0 0 0 .2 3.5 0;

 7 0 0 0 -.2 3.5 0;

 8 0 0 0 .2 4 0;

 9 0 0 0 -.2 4 0;

 10 0 0 0 .2 5 0;

 11 0 0 0 -.2 5 0];

FEelt = [Inf abs('beam1');

 1 2 1 9 50 0;

 2 3 1 9 50 0;

 3 4 1 8 50 0;

 4 5 1 8 50 0;

 5 6 1 8 50 0;

 6 8 1 7 50 0;

 8 10 1 7 50 0;

 5 7 1 8 50 0;

 7 9 1 7 50 0;

 9 11 1 7 50 0];

SolarSupport.model=femesh;

SolarSupport.Cnxs=0;

SolarSupport.model.pl=model.pl

SolarSupport.model.il=model.il

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarSupport.model);

lsize=length(SP.M)-(6*SolarSupport.Cnxs)

SolarSupport.M=SP.M(1:lsize,1:lsize);

SolarSupport.K=SP.K(1:lsize,1:lsize);

SolarSupport.Size = length(SolarSupport.M);

cf=feplot; cf.model=SolarSupport.model;

SolarPanelCreate.m

%clear all;close all;clf;

eval(demosdt('echooff'))

%Low Resolution

femesh('reset'); % initialize FEMESH

FEelt=[];

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 0 1 0;

 3 0 0 0 0 1.5 0; 4 0 0 0 0 2 0;

 5 0 0 0 0 3 0; 6 0 0 0 .5 3 0;

 7 0 0 0 1.5 3 0; 8 0 0 0 2.5 3 0;

95

 9 0 0 0 2.5 2 0; 10 0 0 0 2.5 1.5 0;

 11 0 0 0 2.5 1 0; 12 0 0 0 2.5 0 0;

 13 0 0 0 1.5 0 0; 14 0 0 0 0.5 0 0;

 15 0 0 0 .5 1.5 0; 16 0 0 0 1.5 1.5 0;

 17 0 0 0 -.5 3 0; 18 0 0 0 -1.5 3 0;

 19 0 0 0 -2.5 3 0; 20 0 0 0 -2.5 2 0;

 21 0 0 0 -2.5 1.5 0; 22 0 0 0 -2.5 1 0;

 23 0 0 0 -2.5 0 0; 24 0 0 0 -1.5 0 0;

 25 0 0 0 -.5 0 0; 26 0 0 0 -.5 1.5 0;

 27 0 0 0 -1.5 1.5 0];

%FEelt(1,:)=[Inf abs('beam1')];

FEelt = [Inf abs('beam1');

 1 2 1 4 50 0; 2 3 1 4 50 0;

 3 4 1 4 50 0; 4 5 1 4 50 0;

 5 6 1 3 50 0; 6 7 1 3 50 0;

 7 8 1 3 50 0; 8 9 1 3 50 0;

 9 10 1 3 50 0; 10 11 1 3 50 0;

 11 12 1 3 50 0; 12 13 1 3 50 0;

 13 14 1 3 50 0; 14 1 1 3 50 0;

 3 15 1 4 50 0; 15 16 1 4 50 0;

 16 10 1 4 50 0; 5 17 1 3 50 0;

 17 18 1 3 50 0; 18 19 1 3 50 0;

 19 20 1 3 50 0; 20 21 1 3 50 0;

 21 22 1 3 50 0; 22 23 1 3 50 0;

 23 24 1 3 50 0; 24 25 1 3 50 0;

 25 1 1 3 50 0; 3 26 1 4 50 0;

 26 27 1 4 50 0; 27 21 1 4 50 0];

SolarPanel.Low.model=femesh;

SolarPanel.Low.Cnxs=0;

SolarPanel.Low.model.pl=model.pl

SolarPanel.Low.model.il=model.il

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarPanel.Low.model);

lsize=length(SP.M)-(6*SolarPanel.Low.Cnxs)

SolarPanel.Low.M=SP.M(1:lsize,1:lsize);

SolarPanel.Low.K=SP.K(1:lsize,1:lsize);

SolarPanel.Low.Size = length(SolarPanel.Low.M);

%Medium Resolution

femesh('reset'); % initialize FEMESH

FEelt=[];

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 0 1 0;

 3 0 0 0 0 1.5 0; 4 0 0 0 0 2 0;

 5 0 0 0 0 3 0; 6 0 0 0 .5 3 0;

 7 0 0 0 1.5 3 0; 8 0 0 0 2.5 3 0;

 9 0 0 0 2.5 2 0; 10 0 0 0 2.5 1.5 0;

 11 0 0 0 2.5 1 0; 12 0 0 0 2.5 0 0;

 13 0 0 0 1.5 0 0; 14 0 0 0 0.5 0 0;

 15 0 0 0 .5 1.5 0; 16 0 0 0 1.5 1.5 0;

 17 0 0 0 -.5 3 0; 18 0 0 0 -1.5 3 0;

 19 0 0 0 -2.5 3 0; 20 0 0 0 -2.5 2 0;

 21 0 0 0 -2.5 1.5 0; 22 0 0 0 -2.5 1 0;

 23 0 0 0 -2.5 0 0; 24 0 0 0 -1.5 0 0;

 25 0 0 0 -.5 0 0; 26 0 0 0 -.5 1.5 0;

 27 0 0 0 -1.5 1.5 0; 28 0 0 0 0 .5 0;

 29 0 0 0 0 2.5 0; 30 0 0 0 1 3 0;

 31 0 0 0 2 3 0; 32 0 0 0 2.5 2.5 0;

 33 0 0 0 2.5 0.5 0; 34 0 0 0 2 0 0;

 35 0 0 0 1 0 0; 36 0 0 0 -1 3 0;

 37 0 0 0 -2 3 0; 38 0 0 0 -2.5 2.5 0;

96

 39 0 0 0 -2.5 .5 0; 40 0 0 0 -2 0 0;

 41 0 0 0 -1 0 0; 42 0 0 0 -1 1.5 0;

 43 0 0 0 -2 1.5 0; 44 0 0 0 1 1.5 0;

 45 0 0 0 2 1.5 0];

%FEelt(1,:)=[Inf abs('beam1')];

FEelt = [Inf abs('beam1');

 2 3 1 6 50 0;

 3 4 1 6 50 0;

 5 6 1 5 50 0;

 9 10 1 5 50 0; 10 11 1 5 50 0;

 14 1 1 5 50 0;

 3 15 1 6 50 0;

 5 17 1 5 50 0;

 20 21 1 5 50 0;

 21 22 1 5 50 0;

 25 1 1 5 50 0; 3 26 1 6 50 0;

 1 28 1 6 50 0; 28 2 1 6 50 0;

 4 29 1 6 50 0; 29 5 1 6 50 0;

 6 30 1 5 50 0; 30 7 1 5 50 0;

 7 31 1 5 50 0; 31 8 1 5 50 0;

 8 32 1 5 50 0; 32 9 1 5 50 0;

 11 33 1 5 50 0; 33 12 1 5 50 0;

 12 34 1 5 50 0; 34 13 1 5 50 0;

 13 35 1 5 50 0; 35 14 1 5 50 0;

 17 36 1 5 50 0; 36 18 1 5 50 0;

 18 37 1 5 50 0; 37 19 1 5 50 0;

 19 38 1 5 50 0; 38 20 1 5 50 0;

 22 39 1 5 50 0; 39 23 1 5 50 0;

 23 40 1 5 50 0; 40 24 1 5 50 0;

 24 41 1 5 50 0; 41 25 1 5 50 0;

 26 42 1 6 50 0; 42 27 1 6 50 0;

 27 43 1 6 50 0; 43 21 1 6 50 0;

 15 44 1 6 50 0; 44 16 1 6 50 0;

 16 45 1 6 50 0; 45 10 1 6 50 0];

SolarPanel.Med.model=femesh;

SolarPanel.Med.Cnxs=0;

SolarPanel.Med.model.pl=model.pl

SolarPanel.Med.model.il=model.il

[SP.M,SP.K,SP.mdof]=fe_mknl(SolarPanel.Med.model);

lsize=length(SP.M)-(6*SolarPanel.Med.Cnxs)

SolarPanel.Med.M=SP.M(1:lsize,1:lsize);

SolarPanel.Med.K=SP.K(1:lsize,1:lsize);

SolarPanel.Med.Size = length(SolarPanel.Med.M);

cf=feplot; cf.model=SolarPanel.Med.model;%cf.def=def;

ModelTree_new.m

Tree.Mbr(1).Type='Body.Six.Low';%1,2,3

Tree.Mbr(1).Loc=[1,0,0];

Tree.Mbr(1).Vec=[1,0,0];

Tree.Mbr(1).Rot=[0];

Tree.Mbr(1).CntMbr=0;

Tree.Mbr(2).Type='Body.Four.Low';%4,5,6

97

Tree.Mbr(2).Loc=[L(2)+2,1,0];

Tree.Mbr(2).Vec=[0,1,0];

Tree.Mbr(2).Rot=[0];

Tree.Mbr(2).CntMbr=0;

Tree.Mbr(3).Type='Body.Six.Low';%7,8,9

Tree.Mbr(3).Loc=[1,L(1)+2,0];

Tree.Mbr(3).Vec=[1,0,0];

Tree.Mbr(3).Rot=[0];

Tree.Mbr(3).CntMbr=0;

Tree.Mbr(4).Type='Body.Four.Low';%10,11,12

Tree.Mbr(4).Loc=[0,1,0];

Tree.Mbr(4).Vec=[0,1,0];

Tree.Mbr(4).Rot=[0];

Tree.Mbr(4).CntMbr=0;

Tree.Mbr(5).Type='Body.Four.Low';%13,14,15

Tree.Mbr(5).Loc=[0,0,1];

Tree.Mbr(5).Vec=[0,0,1];

Tree.Mbr(5).Rot=[0];

Tree.Mbr(5).CntMbr=0;

Tree.Mbr(6).Type='Body.Four.Low';%16,17,18

Tree.Mbr(6).Loc=[L(2)+2,0,1];

Tree.Mbr(6).Vec=[0,0,1];

Tree.Mbr(6).Rot=[0];

Tree.Mbr(6).CntMbr=0;

Tree.Mbr(7).Type='Body.Four.Low';%19,20,21

Tree.Mbr(7).Loc=[L(2)+2,L(1)+2,1];

Tree.Mbr(7).Vec=[0,0,1];

Tree.Mbr(7).Rot=[0];

Tree.Mbr(7).CntMbr=0;

Tree.Mbr(8).Type='Body.Four.Low';%22,23,24

Tree.Mbr(8).Loc=[0,L(1)+2,1];

Tree.Mbr(8).Vec=[0,0,1];

Tree.Mbr(8).Rot=[0];

Tree.Mbr(8).CntMbr=0;

Tree.Mbr(9).Type='Body.Six.Low';%25,26,27

Tree.Mbr(9).Loc=[1,0,L(1)+2];

Tree.Mbr(9).Vec=[1,0,0];

Tree.Mbr(9).Rot=[0];

Tree.Mbr(9).CntMbr=0;

Tree.Mbr(10).Type='Body.Four.Low';%28,29,30

Tree.Mbr(10).Loc=[L(2)+2,1,L(1)+2];

Tree.Mbr(10).Vec=[0,1,0];

Tree.Mbr(10).Rot=[0];

Tree.Mbr(10).CntMbr=0;

Tree.Mbr(11).Type='Body.Six.Low';%31,32,33

Tree.Mbr(11).Loc=[1,L(1)+2,L(1)+2];

Tree.Mbr(11).Vec=[1,0,0];

Tree.Mbr(11).Rot=[0];

Tree.Mbr(11).CntMbr=0;

Tree.Mbr(12).Type='Body.Four.Low';%34,35,36

Tree.Mbr(12).Loc=[0,1,L(1)+2];

Tree.Mbr(12).Vec=[0,1,0];

Tree.Mbr(12).Rot=[0];

Tree.Mbr(12).CntMbr=0;

Tree.Mbr(13).Type='Corner';%1

Tree.Mbr(13).Loc=[0,0,0];

Tree.Mbr(13).Vec=[1,0,0];

98

Tree.Mbr(13).Rot=[0];

Tree.Mbr(13).CntMbr=1;

Tree.Mbr(13).Cnx(1).Mbr=1;

Tree.Mbr(13).Cnx(1).Type='Connect.Pos';

Tree.Mbr(13).Cnx(2).Mbr=4;

Tree.Mbr(13).Cnx(2).Type='Connect.Pos';

Tree.Mbr(13).Cnx(3).Mbr=5;

Tree.Mbr(13).Cnx(3).Type='Connect.Pos';

%Tree.Mbr(13).Cnx(4).Mbr=0;

Tree.Mbr(14).Type='Corner';%2

Tree.Mbr(14).Loc=[L(2)+2,0,0];

Tree.Mbr(14).Vec=[0,0,1];

Tree.Mbr(14).Rot=[0];

Tree.Mbr(14).CntMbr=1;

Tree.Mbr(14).Cnx(1).Mbr=6;

Tree.Mbr(14).Cnx(1).Type='Connect.Pos';

Tree.Mbr(14).Cnx(2).Mbr=2;

Tree.Mbr(14).Cnx(2).Type='Connect.Pos';

Tree.Mbr(14).Cnx(3).Mbr=1;

Tree.Mbr(14).Cnx(3).Type='Connect.Neg';

Tree.Mbr(15).Type='Corner';%3

Tree.Mbr(15).Loc=[L(2)+2,L(1)+2,0];

Tree.Mbr(15).Vec=[-1,0,0];

Tree.Mbr(15).Rot=[pi];

Tree.Mbr(15).CntMbr=1;

Tree.Mbr(15).Cnx(1).Mbr=3;

Tree.Mbr(15).Cnx(1).Type='Connect.Neg';

Tree.Mbr(15).Cnx(2).Mbr=2;

Tree.Mbr(15).Cnx(2).Type='Connect.Neg';

Tree.Mbr(15).Cnx(3).Mbr=7;

Tree.Mbr(15).Cnx(3).Type='Connect.Pos';

Tree.Mbr(16).Type='Corner';%4

Tree.Mbr(16).Loc=[0,L(1)+2,0];

Tree.Mbr(16).Vec=[0,-1,0];

Tree.Mbr(16).Rot=[0];

Tree.Mbr(16).CntMbr=1;

Tree.Mbr(16).Cnx(1).Mbr=4;

Tree.Mbr(16).Cnx(1).Type='Connect.Neg';

Tree.Mbr(16).Cnx(2).Mbr=3;

Tree.Mbr(16).Cnx(2).Type='Connect.Pos';

Tree.Mbr(16).Cnx(3).Mbr=8;

Tree.Mbr(16).Cnx(3).Type='Connect.Pos';

Tree.Mbr(17).Type='Corner';%5

Tree.Mbr(17).Loc=[0,0,L(1)+2];

Tree.Mbr(17).Vec=[0,0,-1];

Tree.Mbr(17).Rot=[0];

Tree.Mbr(17).CntMbr=1;

Tree.Mbr(17).Cnx(1).Mbr=5;

Tree.Mbr(17).Cnx(1).Type='Connect.Neg';

Tree.Mbr(17).Cnx(2).Mbr=12;

Tree.Mbr(17).Cnx(2).Type='Connect.Pos';

Tree.Mbr(17).Cnx(3).Mbr=9;

Tree.Mbr(17).Cnx(3).Type='Connect.Pos';

Tree.Mbr(18).Type='Corner';%6

Tree.Mbr(18).Loc=[L(2)+2,0,L(1)+2];

Tree.Mbr(18).Vec=[-1,0,0];

Tree.Mbr(18).Rot=[0];

Tree.Mbr(18).CntMbr=1;

Tree.Mbr(18).Cnx(1).Mbr=9;

Tree.Mbr(18).Cnx(1).Type='Connect.Neg';

Tree.Mbr(18).Cnx(2).Mbr=10;

Tree.Mbr(18).Cnx(2).Type='Connect.Pos';

Tree.Mbr(18).Cnx(3).Mbr=6;

Tree.Mbr(18).Cnx(3).Type='Connect.Neg';

99

Tree.Mbr(19).Type='Corner';%7

Tree.Mbr(19).Loc=[L(2)+2,L(1)+2,L(1)+2];

Tree.Mbr(19).Vec=[-1,0,0];

Tree.Mbr(19).Rot=[-pi/2];

Tree.Mbr(19).CntMbr=1;

Tree.Mbr(19).Cnx(1).Mbr=11;

Tree.Mbr(19).Cnx(1).Type='Connect.Neg';

Tree.Mbr(19).Cnx(2).Mbr=7;

Tree.Mbr(19).Cnx(2).Type='Connect.Neg';

Tree.Mbr(19).Cnx(3).Mbr=10;

Tree.Mbr(19).Cnx(3).Type='Connect.Neg';

Tree.Mbr(20).Type='Corner';%8

Tree.Mbr(20).Loc=[0,L(1)+2,L(1)+2];

Tree.Mbr(20).Vec=[1,0,0];

Tree.Mbr(20).Rot=[pi];

Tree.Mbr(20).CntMbr=1;

Tree.Mbr(20).Cnx(1).Mbr=11;

Tree.Mbr(20).Cnx(1).Type='Connect.Pos';

Tree.Mbr(20).Cnx(2).Mbr=12;

Tree.Mbr(20).Cnx(2).Type='Connect.Neg';

Tree.Mbr(20).Cnx(3).Mbr=8;

Tree.Mbr(20).Cnx(3).Type='Connect.Neg';

Tree.Mbr(21).Type='Collar.Low';

Tree.Mbr(21).Loc=[1,0,0];

Tree.Mbr(21).Vec=[-1,0,0];

Tree.Mbr(21).Rot=[0];

Tree.Mbr(21).CntMbr=2;

Tree.Mbr(21).Cnx(1).Mbr=13;

Tree.Mbr(21).Cnx(1).Type='Connect.Pos';

Tree.Mbr(21).Cnx(1).Connecter='Cnx(1)';

Tree.Mbr(22).Type='Collar.Low';

Tree.Mbr(22).Loc=[L(2)+1,0,0];

Tree.Mbr(22).Vec=[1,0,0];

Tree.Mbr(22).Rot=[0];

Tree.Mbr(22).CntMbr=2;

Tree.Mbr(22).Cnx(1).Mbr=14;

Tree.Mbr(22).Cnx(1).Type='Connect.Pos';

Tree.Mbr(22).Cnx(1).Connecter='Cnx(3)';

Tree.Mbr(23).Type='Collar.Low';

Tree.Mbr(23).Loc=[L(2)+1,L(1)+2,0];

Tree.Mbr(23).Vec=[1,0,0];

Tree.Mbr(23).Rot=[0];

Tree.Mbr(23).CntMbr=2;

Tree.Mbr(23).Cnx(1).Mbr=15;

Tree.Mbr(23).Cnx(1).Type='Connect.Pos';

Tree.Mbr(23).Cnx(1).Connecter='Cnx(1)';

Tree.Mbr(24).Type='Collar.Low';

Tree.Mbr(24).Loc=[1,L(1)+2,0];

Tree.Mbr(24).Vec=[-1,0,0];

Tree.Mbr(24).Rot=[0];

Tree.Mbr(24).CntMbr=2;

Tree.Mbr(24).Cnx(1).Mbr=16;

Tree.Mbr(24).Cnx(1).Type='Connect.Pos';

Tree.Mbr(24).Cnx(1).Connecter='Cnx(2)';

Tree.Mbr(25).Type='Collar.Low';

Tree.Mbr(25).Loc=[1,0,L(1)+2];

Tree.Mbr(25).Vec=[-1,0,0];

Tree.Mbr(25).Rot=[0];

Tree.Mbr(25).CntMbr=2;

Tree.Mbr(25).Cnx(1).Mbr=17;

Tree.Mbr(25).Cnx(1).Type='Connect.Pos';

Tree.Mbr(25).Cnx(1).Connecter='Cnx(3)';

100

Tree.Mbr(26).Type='Collar.Low';

Tree.Mbr(26).Loc=[L(2)+1,0,L(1)+2];

Tree.Mbr(26).Vec=[1,0,0];

Tree.Mbr(26).Rot=[0];

Tree.Mbr(26).CntMbr=2;

Tree.Mbr(26).Cnx(1).Mbr=18;

Tree.Mbr(26).Cnx(1).Type='Connect.Pos';

Tree.Mbr(26).Cnx(1).Connecter='Cnx(1)';

Tree.Mbr(27).Type='Collar.Low';

Tree.Mbr(27).Loc=[L(2)+1,L(1)+2,L(1)+2];

Tree.Mbr(27).Vec=[1,0,0];

Tree.Mbr(27).Rot=[0];

Tree.Mbr(27).CntMbr=2;

Tree.Mbr(27).Cnx(1).Mbr=19;

Tree.Mbr(27).Cnx(1).Type='Connect.Pos';

Tree.Mbr(27).Cnx(1).Connecter='Cnx(1)';

Tree.Mbr(28).Type='Collar.Low';

Tree.Mbr(28).Loc=[1,L(1)+2,L(1)+2];

Tree.Mbr(28).Vec=[-1,0,0];

Tree.Mbr(28).Rot=[0];

Tree.Mbr(28).CntMbr=2;

Tree.Mbr(28).Cnx(1).Mbr=20;

Tree.Mbr(28).Cnx(1).Type='Connect.Pos';

Tree.Mbr(28).Cnx(1).Connecter='Cnx(1)';

Tree.Mbr(29).Type='SolarCross';%1

Tree.Mbr(29).Loc=[-.45,3,3];

Tree.Mbr(29).Vec=[0,0,-1];

Tree.Mbr(29).Rot=[0];

Tree.Mbr(29).CntMbr=1;

Tree.Mbr(29).Cnx(1).Mbr=25;

Tree.Mbr(29).Cnx(1).Type='Connect.Neg';

Tree.Mbr(29).Cnx(2).Mbr=21;

Tree.Mbr(29).Cnx(2).Type='Connect.Neg';

Tree.Mbr(29).Cnx(3).Mbr=24;

Tree.Mbr(29).Cnx(3).Type='Connect.Neg';

Tree.Mbr(29).Cnx(4).Mbr=28;

Tree.Mbr(29).Cnx(4).Type='Connect.Neg';

Tree.Mbr(30).Type='SolarCross';%1

Tree.Mbr(30).Loc=[L(2)+2.45,3,3];

Tree.Mbr(30).Vec=[0,0,1];

Tree.Mbr(30).Rot=[0];

Tree.Mbr(30).CntMbr=1;

Tree.Mbr(30).Cnx(1).Mbr=22;

Tree.Mbr(30).Cnx(1).Type='Connect.Neg';

Tree.Mbr(30).Cnx(2).Mbr=26;

Tree.Mbr(30).Cnx(2).Type='Connect.Neg';

Tree.Mbr(30).Cnx(3).Mbr=27;

Tree.Mbr(30).Cnx(3).Type='Connect.Neg';

Tree.Mbr(30).Cnx(4).Mbr=23;

Tree.Mbr(30).Cnx(4).Type='Connect.Neg';

Tree.Mbr(31).Type='SolarSupport';

Tree.Mbr(31).Loc=[-.65,3,3];

Tree.Mbr(31).Vec=[0,1,0];

Tree.Mbr(31).Rot=[pi/2];

Tree.Mbr(31).CntMbr=2;

Tree.Mbr(31).Cnx(1).Mbr=29;

Tree.Mbr(31).Cnx(1).Type='Connect.Pos';

Tree.Mbr(31).Cnx(1).Connecter='Pos';

Tree.Mbr(32).Type='SolarSupport';

Tree.Mbr(32).Loc=[L(2)+2.65,3,3];

Tree.Mbr(32).Vec=[0,-1,0];

Tree.Mbr(32).Rot=[pi/2];

101

Tree.Mbr(32).CntMbr=2;

Tree.Mbr(32).Cnx(1).Mbr=30;

Tree.Mbr(32).Cnx(1).Type='Connect.Pos';

Tree.Mbr(32).Cnx(1).Connecter='Pos';

Tree.Mbr(33).Type='SolarPanel.Med';

Tree.Mbr(33).Loc=[-4.65,3,3];

Tree.Mbr(33).Vec=[0,1,0];

Tree.Mbr(33).Rot=[0];

Tree.Mbr(33).CntMbr=3;

Tree.Mbr(33).Cnx(1).Mbr=31;

Tree.Mbr(33).Cnx(1).Type='Connect.Pos';

Tree.Mbr(33).Cnx(1).Connecter='Neg - 3';

Tree.Mbr(33).Cnx(2).Mbr=31;

Tree.Mbr(33).Cnx(2).Type='Connect.Neg';

Tree.Mbr(33).Cnx(2).Connecter='Neg - 2';

Tree.Mbr(33).Cnx(3).Mbr=31;

Tree.Mbr(33).Cnx(3).Type='Connect.Pos';

Tree.Mbr(33).Cnx(3).Connecter='Neg -1';

Tree.Mbr(33).Cnx(4).Mbr=31;

Tree.Mbr(33).Cnx(4).Type='Connect.Neg';

Tree.Mbr(33).Cnx(4).Connecter='Neg';

Tree.Mbr(34).Type='SolarPanel.Med';

Tree.Mbr(34).Loc=[L(2)+6.65,3,3];

Tree.Mbr(34).Vec=[0,-1,0];

Tree.Mbr(34).Rot=[0];

Tree.Mbr(34).CntMbr=3;

Tree.Mbr(34).Cnx(1).Mbr=32;

Tree.Mbr(34).Cnx(1).Type='Connect.Pos';

Tree.Mbr(34).Cnx(1).Connecter='Neg - 3';

Tree.Mbr(34).Cnx(2).Mbr=32;

Tree.Mbr(34).Cnx(2).Type='Connect.Neg';

Tree.Mbr(34).Cnx(2).Connecter='Neg - 2';

Tree.Mbr(34).Cnx(3).Mbr=32;

Tree.Mbr(34).Cnx(3).Type='Connect.Pos';

Tree.Mbr(34).Cnx(3).Connecter='Neg -1';

Tree.Mbr(34).Cnx(4).Mbr=32;

Tree.Mbr(34).Cnx(4).Type='Connect.Neg';

Tree.Mbr(34).Cnx(4).Connecter='Neg';

ModelConst.m

Model.pl=model.pl;

Model.il=model.il;

NC = 0;%Node Count

EC = 1;%Element Counter

fin=0;

for i=1:length(Tree.Mbr)

 i;

 t=strcat(char(Tree.Mbr(i).Type));

 t1=strcat(t,'.model.Node');

 t2=strcat(t,'.model.Elt');

 t3=strcat(t,'.Cnxs');

 h=eval(t2);

 g=eval(t3);

 f=eval(t1);

 Tree.Mbr(i).Node.Pos=NC+1;

 n=Tree.Mbr(i).Node.Pos;

 %Node Wright

 for j=1:(size(f)-g)

 j;

 NC=NC+1;

 Model.Node(NC,1:4)=[NC 0 0 0];

 v=strcat('v=',t1,'(j,5:7);');

102

 eval(v);

 [vprime,theta]=unitvec(Tree.Mbr(i).Vec,v,Tree.Mbr(i).Loc,Tree.Mbr(i).Rot);

 Tree.Mbr(i).Theta=theta;

 Model.Node(NC,5:7)=vprime;

 end

 Tree.Mbr(i).Node.Neg=NC;

 %ELT Wright

 Model.Elt(EC,:)=h(1,:);

 EC=EC+1;

 for m=1:(size(eval(t2))-(g+1))

 Model.Elt((EC),:)=[(h(m+1,1)+n-1) (h(m+1,2)+(n-1)) h((m+1),(3:6))];

 EC=EC+1;

 end

 if Tree.Mbr(i).CntMbr == 1

 for u=1:g

 Tree.Mbr(i).Node.Cnx(u) = Tree.Mbr(i).Node.Neg - g + u;

 end

 end

 if Tree.Mbr(i).CntMbr == 2

 Tree.Mbr(i).Node.Cnx = Tree.Mbr(i).Node.Pos;

 end

 if Tree.Mbr(i).CntMbr == 3

 Tree.Mbr(i).Node.Cnx(1) = Tree.Mbr(i).Node.Pos;

 Tree.Mbr(i).Node.Cnx(2) = Tree.Mbr(i).Node.Pos;

 Tree.Mbr(i).Node.Cnx(3) = Tree.Mbr(i).Node.Pos + 1;

 Tree.Mbr(i).Node.Cnx(4) = Tree.Mbr(i).Node.Pos + 1;

 end

 start=fin+1;

 temp=eval(Tree.Mbr(i).Type,'Size');

 fin=fin+temp.Size;

 [RotMat.M]=MatrixRotate(Tree.Mbr(i).Vec,temp.M,Tree.Mbr(i).Rot);

 Cube.M(start:fin,start:fin)=RotMat.M;

 [RotMat.K]=MatrixRotate(Tree.Mbr(i).Vec,temp.K,Tree.Mbr(i).Rot);

 Cube.K(start:fin,start:fin)=RotMat.K;

 Tree.Mbr(i).start=start;

 Tree.Mbr(i).fin=fin;

 if Tree.Mbr(i).CntMbr >= 1

 CnxNum=length(Tree.Mbr(i).Cnx);

 for p=1:CnxNum

 s=CnxNum*6-1;%initial cnx start point

 Tree.Mbr(i).Cnx(p).start=fin-s+(p-1)*6;

 end

 end

end

for i=1:length(Tree.Mbr)

 if Tree.Mbr(i).CntMbr >= 1

 for j=1:length(Tree.Mbr(i).Cnx)

 i;

 j;

 NC=NC+1;

 Model.Node(NC,1:4)=[NC 0 0 0];

 MN=Tree.Mbr(i).Cnx(j).Mbr ; %Member Number

 len=length(Tree.Mbr(i).Cnx(1).Type);

 BS=Tree.Mbr(i).Cnx(j).Type(len-2:len); % Beam Side

 if Tree.Mbr(i).CntMbr == 1

 temp=strcat('BN=Tree.Mbr(MN).Node.',char(BS)); % Beam Node

103

 else if Tree.Mbr(i).CntMbr >= 2

 BScnx=Tree.Mbr(i).Cnx(j).Connecter; % Beam Side

 temp=strcat('BN=Tree.Mbr(MN).Node.',char(BScnx)); % Beam Node

 end

 end

 eval(temp)

 CN=Tree.Mbr(i).Node.Cnx(j); %Connector Node

 U=Model.Node(BN,5:7); V=Model.Node(CN,5:7); W=(U-V)/2+V;

 Model.Node(NC,5:7)=W;

 EC=length(Model.Elt);

 EC=EC+1;

 Model.Elt(EC,:)=[NC CN 2 8 50 0];

 Model.Elt((EC+1),:)=[NC BN 2 8 50 0];

 start=fin+1;

 fin=start+size(Connect.Pos.M)-1;

 rot = 0;

 PreRotate.M=Connect.Pos.M+Connect.Neg.M;

 [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot);

 Cube.M(start:fin,start:fin)=RotMat.M;

 PreRotate.K=Connect.Pos.K+Connect.Neg.K;

 [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot);

 Cube.K(start:fin,start:fin)=RotMat.K;

 if BS == 'Pos'

 %beam

 nstart = Tree.Mbr(MN).start;

 nfin = nstart+size(Connect.Pos.Mcx)-1;

 PreRotate.M=Connect.Pos.Mcx;

 [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot);

 Cube.M(nstart:nfin,start:fin)=RotMat.M;

 PreRotate.K=Connect.Pos.Kcx;

 [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot);

 Cube.K(nstart:nfin,start:fin)=RotMat.K;

 %corner

 mstart = Tree.Mbr(i).Cnx(j).start;

 mfin = mstart+size(Connect.Neg.Mcx)-1;

 PreRotate.M=Connect.Neg.Mcx;

 [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot);

 Cube.M(mstart:mfin,start:fin)=RotMat.M;

 PreRotate.K=Connect.Neg.Kcx;

 [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot);

 Cube.K(mstart:mfin,start:fin)=RotMat.K;

 else if BS == 'Neg'

 %beam

 nstart = Tree.Mbr(MN).fin - size(Connect.Neg.Mcx) + 1;

 nfin = nstart+size(Connect.Neg.Mcx)-1;

 PreRotate.M=Connect.Neg.Mcx;

 [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot);

 Cube.M(nstart:nfin,start:fin)=RotMat.M;

 PreRotate.K=Connect.Neg.Kcx;

 [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot);

 Cube.K(nstart:nfin,start:fin)=RotMat.K;

 %corner

 mstart = Tree.Mbr(i).Cnx(j).start;

 mfin = mstart+size(Connect.Pos.Mcx)-1;

 PreRotate.M=Connect.Pos.Mcx;

 [RotMat.M]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.M,rot);

 Cube.M(mstart:mfin,start:fin)=RotMat.M;

 PreRotate.K=Connect.Pos.Kcx;

 [RotMat.K]=MatrixRotate(Tree.Mbr(MN).Vec,PreRotate.K,rot);

 Cube.K(mstart:mfin,start:fin)=RotMat.K;

 end

 end

104

 end

 end

end

[Graphic.M,Graphic.K,Graphic.mdof]=fe_mknl(Model);

l=length(Graphic.M);

for c=1:l

 for r=1:l

 if abs(Graphic.M(r,c))<10^(-9);

 Graphic.M(r,c)=0;

 end

 if abs(Graphic.K(r,c))<10^(-9);

 Graphic.K(r,c)=0;

 end

 end

end

l=length(Cube.M);

for c=1:l

 for r=1:l

 if abs(Cube.M(r,c))<10^(-9);

 Cube.M(r,c)=0;

 end

 if abs(Cube.K(r,c))<10^(-9);

 Cube.K(r,c)=0;

 end

 end

end

for r=1:l

 for c=r:l

 if Cube.M(r,c)~=0;

 Cube.M(c,r)=Cube.M(r,c);

 end

 if Cube.K(r,c)~=0;

 Cube.K(c,r)=Cube.K(r,c);

 end

 end

end

ModelBuild.m

def = fe_eig(Model,[5 20 1 11])

% generate a fairly complex plot as an illustration of feplot

cf=feplot; cf.model=Model;cf.def=def;

Spymatrix.m

figure('Name','Full Matrices (spy cmd) formed by Model Tree/Matrix Comp','NumberTitle','off');

hold on;

subplot(1,2,1)

spy(Cube.M);; title('Analytical.M - Mass');

subplot(1,2,2)

spy(Cube.K); title('Analytical.K - Stiffness');

hold off

105

figure('Name','Full Matrices (spy cmd) formed by Data Entry','NumberTitle','off');

hold on;

subplot(1,2,1)

spy(Graphic.M);; title('Graphic.M - Mass');

subplot(1,2,2)

spy(Graphic.K); title('Graphic.K - Stiffness');

hold off

unitvec.m

function [vprime,Theta]=unitvec(transvec,v,TreeStart,ThetaRot)

%v=[1,1,1]

%TreeStart=[0,0,0];

%transvec=[-1,1,1];

Vector1=[1,0,0];

Vector2=transvec/norm(transvec);

 % Calculate axis vector

 crossprod = cross(Vector1,Vector2);

 dotprod = dot(Vector1,Vector2);

 % Calculate norm of axis vector

 normal = norm(crossprod);

 c2=cos(ThetaRot);

 s2=sin(ThetaRot);

 if abs(c2)<10^(-9);

 c2=0;

 end

 if abs(s2)<10^(-9);

 s2=0;

 end

 R1 = [1 0 0;

 0 c2 s2;

 0 -s2 c2] ;

 if normal==0,

 if dotprod == 1

 vprime = v*R1+TreeStart;

 A = [];

 Theta = [];

 return

 else if dotprod == -1

 A = [0 -1 0];

 end

 end

 else

 A = crossprod/normal;

 end

 Theta = -acos(dotprod/(norm(Vector1)*norm(Vector2)));

 c = cos(Theta);

 s = sin(Theta);

 if abs(c)<10^(-9);

 c=0;

 end

 if abs(s)<10^(-9);

 s=0;

 end

 c2=cos(ThetaRot);

 s2=sin(ThetaRot);

 if abs(c2)<10^(-9);

 c2=0;

 end

106

 if abs(s2)<10^(-9);

 s2=0;

 end

 % Rodrigues' Rotation Formula using Theta and v, not Euler angles

 R2 = [(c+A(1)^2*(1-c)) (A(1)*A(2)*(1-c)-A(3)*s) (A(2)*s+A(1)*A(3)*(1-c));

 (A(3)*s+A(1)*A(2)*(1-c)) (c+A(2)^2*(1-c)) (-A(1)*s+A(2)*A(3)*(1-c));

 (-A(2)*s+A(1)*A(3)*(1-c)) (A(1)*s+A(2)*A(3)*(1-c)) (c+A(3)^2*(1-c))];

 v;

 vprime = v*R2*R1+TreeStart;

MatrixRotate.m

function [RotMat]=unitvec(transvec,matrix,ThetaRot)

%v=[1,1,1]

%TreeStart=[0,0,0];

%transvec=[-1,1,1];

Vector1=[1,0,0];

Vector2=transvec/norm(transvec);

 % Calculate axis vector

 crossprod = cross(Vector1,Vector2);

 dotprod = dot(Vector1,Vector2);

 % Calculate norm of axis vector

 normal = norm(crossprod);

 c2=cos(ThetaRot);

 s2=sin(ThetaRot);

 if abs(c2)<10^(-9);

 c2=0;

 end

 if abs(s2)<10^(-9);

 s2=0;

 end

 R1 = [1 0 0;

 0 c2 s2;

 0 -s2 c2] ;

 if normal==0,

 if dotprod == 1

 Lambda=sparse([R1 zeros(3,3);zeros(3,3) R1]);

 LambdaSize=size(matrix)/6;

 for q=1:LambdaSize

 D((q-1)*6+1:q*6,(q-1)*6+1:q*6)=Lambda;

 end

 RotMat = D'*matrix*D;

 A = [];

 Theta = [];

 return

 else if dotprod == -1

 A = [0 -1 0];

 end

 end

 else

 A = crossprod/normal;

 end

 Theta = -acos(dotprod/(norm(Vector1)*norm(Vector2)));

 c = cos(Theta);

 s = sin(Theta);

 if abs(c)<10^(-9);

 c=0;

107

 end

 if abs(s)<10^(-9);

 s=0;

 end

 c2=cos(ThetaRot);

 s2=sin(ThetaRot);

 if abs(c2)<10^(-9);

 c2=0;

 end

 if abs(s2)<10^(-9);

 s2=0;

 end

 % Rodrigues' Rotation Formula using Theta and v, not Euler angles

 R2 = [(c+A(1)^2*(1-c)) (A(1)*A(2)*(1-c)-A(3)*s) (A(2)*s+A(1)*A(3)*(1-c));

 (A(3)*s+A(1)*A(2)*(1-c)) (c+A(2)^2*(1-c)) (-A(1)*s+A(2)*A(3)*(1-c));

 (-A(2)*s+A(1)*A(3)*(1-c)) (A(1)*s+A(2)*A(3)*(1-c)) (c+A(3)^2*(1-c))];

 R=R2*R1;

 Lambda=sparse([R zeros(3,3);zeros(3,3) R]);

 LambdaSize=size(matrix)/6;

 for q=1:LambdaSize

 D((q-1)*6+1:q*6,(q-1)*6+1:q*6)=Lambda;

 end

 RotMat = D'*matrix*D;

108

Bibliography

1. Chandrupatla, Tirupathi R. and Ashok D Belegundu. Introduction to Finite Elements in

Engineering, Second Edition. Upper Saddle Rive, NJ: Prentice Hall, 1991.

2. Cook, Robert D. and others. Concepts and Applications of Finite Element Analysis, Third

Edition. New York, NY: John Wiley and Sons, 1989.

3. Craig, Roy R., Jr. “A Brief Tutorial on Substructure Analysis and Testing,” ASE-EM

Department, University of Texas at Austin.

4. Craig, R. R., Jr. and M. C. C. Bampton. “Coupling of substructures for dynamic analysis,”

AIAA Journal, 6: 1313-1319 (1968).

5. Leiven, N. A. F. “Structural Dynamics Toolbox Primer,” Department of Aerospace

Engineering, University of Bristol.

6. Balmes, Etienne. “Superelement Representation of a Model with Frequency Dependent

Properties,” ISMA 21, Leuven, September 1996.

7. Balmes, Etienne. “Model reduction for systems with frequency dependent damping

properties,” International Modal Analysis Conference. 223--229, 1997.

8. Cebrowski, Arthur K., Director of Force Transformation, Office of the Secretary of Defense.

“Statement before the Subcommittee on Strategic Forces,” Armed Services Committee,

United States Senate, 25 March 2004.

9. Jilla, Cyrus D. and Dr. David W. Miller. “Satellite Design: Past, Present, and Future,”

International Journal of Small Satellite Engineering, (12 Feb 1997).

10. Strunce, Robert, and others. “Responsive Space’s Spacecraft Design Tool (SDT),” AIAA, 4
th

Responsive Space Conference, 2006.

11. Knight, Don. “Concept of Operations for Operationally Responsive Space”, AIAA, 4
th

Responsive Space Conference, 2006.

12. Correll, Randall R. “Responsive Space: Transforming U.S. Space Capabilities,” Washington

Roundtable on Science and Public Policy, Washington, DC, August, 2004.

13. Wie, Bong. Space Vehicle Dynamics and Control. Tempe, AZ: American Institute of

Aeronautics and Astronautics, Inc. 1998.

14. Wegner, Peter M., AFRL JWS Office Lead, AFRL Space Vehicles Directorate, “Joint

Warfighting Space, Vision and Enabling Technologies”, Plug-and-Play Thermal

Workshop, 24 May 2005.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
22/03/2007

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Apr 06 – Mar 07

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

 Quick-Turn Finite Element Analysis for Plug-and-Play Satellite Structures

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Naff, Jeffrey E., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way

 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GA/ENY/07-M15

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/VSSV
Integrated Structural Systems
3550 Aberdeen Ave SE
Kirtland AFB, NM 87117

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Plug-and-play (PnP) satellite construction is a key component of the US Air Force Operational Responsive Space (ORS) effort. The goal of ORS

is to provide mission specific satellite support by configuring and launching a satellite to a selected orbit within days of the request. One major challenge

during the time limited process is to accurately predict the response of the satellite to harmonic loads that occur during launch and satellite operation.

Given the time limitations, constructing finite element (FE) models by traditional methods is not currently a viable option for the ORS timeline. By

implementing an approach for rapid FE model creation, we can significantly reduce the timeline from weeks to hours. The advantages to our approach

include simplification of model creation, ease of design modifications, and significant reduction in the FE model creation timeline; all lending this

approach for utilization within the ORS acquisition cycle.

15. SUBJECT TERMS
 Finite Element Analysis, Operational Responsive Space, Plug-and-Play, Nodal Segregation

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Eric D. Swenson, Maj, USAF (ENY)

REPORT

U
ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
118

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 7479; e-mail: eric.swenson@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Quick-Turn Finite Element Analysis for Plug-and Play Satellite Structures
	Recommended Citation

	Microsoft Word - SimpleSat_Thesis.doc

