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Abstract

Hydrocodes are valuable tools in the modeling of shock wave propagation through

solids due to high speed impact phenomena. To model high speed impacts, hy-

drocodes use the conservation equations of mass, momentum and energy, constitutive

equations to model the materials response and equations of state (EOS). CTH is a

hydrocode built with the ability to use multiple EOSs, including the semi-emperical

Mie-Gruneisen EOS and tabular Sesame EOS. Modeling high speed impacts necessi-

tates modeling the non-equilibrium thermodynamic states caused by these impacts.

A discussion of the non-equilibrium thermodynamics that may be applied to the re-

gion directly behind a shock wave is presented, including details of recent attempts to

model non-equilibrium impact phenomena in solids. Also, in order to better determine

the applicability of the Mie-Gruneisen EOS and the Sesame EOS in situations that in-

clude non-equilibrium thermodynamics, the high speed, uniaxial impacts between two

iron bars are modeled in CTH. These impacts are modeled using the Mie-Gruneisen

EOS, Sesame EOS and a two state EOS called PTRAN. The results generated using

these different EOS are then compared to experimental data to determine how well the

different EOS model the thermodynamic non-equilibrium physics of the high speed

impacts. The differences between the Mie-Gruneisen EOS and the Sesame EOS are

established. A finite volume uniaxial hydrocode is validated. Finally, CTH is shown

to be able to model some irreversibilities occurring in impact phenomena.
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Comparison of Thermodynamic

Equilibrium and Non-Equilibrium

Representations of Materials

I. Introduction

1.1 Introduction

A hydrocode is a computer code that is able to model the waves caused by

high speed impacts as they travel through solid materials. As Zukas [43] explains

in his hydrocode book, early hydrocodes were given the name because they relied

on the hydrodynamic assumption. The hydrodynamic assumption states that if the

pressures generated in a high speed impact are much greater than the strength of the

materials involved in the impact, then the strength may be ignored and the materials

may be modeled as fluids. Modern hydrocodes are able to account for the strength of

the materials by using constitutive equations in these impact scenarios, however the

name hydrocode has stuck.

Today, hydrocodes are used to model an array of different hypervelocity impact

scenarios. These scenarios may include debris striking a space vessel, or flying debris

from an explosion striking a hardened target. Cinnamon [9], Szmerekovsky [35] and

Laird [24] used the Sandia National Labortories hydrocode CTH to model the gouging

caused by impact between the shoes of the sleds used at the Holloman High Speed

Test Track (HHSTT) and the railing of the track itself.

Hydrocodes use three different types of equations to model impacts. These

time dependent equations include conservation equations, the previously mentioned

constitutive equations and equations of state [43].

According to continuum theory, the conservation equations include the con-

servation of mass, momentum and energy. These equations give us the variables of
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velocity (v), density (ρ), pressure (P), and internal energy (e). Temperature (T), may

also be determined using these equations, but is not necessary. In isothermal sys-

tems the temperature and internal energy of the system remain constant. Then the

conservation equations and an isothermal relationship between two thermodynamic

variables, excluding temperature and internal energy may act as a complete system

of equations and thus are the only equations necessary to solve for desired material

properties [30].

The previously mentioned impact conditions are not isothermal, requiring an

additional equation to close the system of equations, hence the need for an equation

of state (EOS). EOS act as a bridge between the macroscopic continuum mechanics

represented by the conservation equations and the microscopic thermodynamics of the

system [43]. Also, the extremely high pressures generated in the aforementioned im-

pact scenarios cause the EOS used to dominate the answers generated by hydrocodes.

This necessitates that the EOS accurately model the thermodynamics.

Unlike in the study of gas dynamics, where a general EOS can be applied to a

wide range of gasses, the EOS of solids tend to be specific to a material or material type

(metals, ceramics, etc...). Also, depending on the origin of the EOS (empirical, semi-

empirical, theoretical, etc...), said EOS may have a limited range of applicability [43].

For example, empirical based equations of state may mean nothing when used in

conditions far from the experiments used to generate them. The applicability of

a theoretical EOS will depend on the thermodynamics used to derive it. In the

area immediately behind a shock wave, for example, conditions are changing at an

extremely high rate, so there exists a state of non-equilibrium necessitating the use of

non-equilibrium thermodynamics (NET). Conversely, in regions where the conditions

are not changing as fast, a state of local equilibrium may be assumed allowing for the

use of equilibrium thermodynamics [26].
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Equilibrium based thermodynamics were used in the generation of the popular

Mie-Gruneisen EOS and in the generation of the tabular EOS such as the Sesame

EOS [22].

In the 1930’s work began in Classical Irreversible Thermodynamics (CIT), which

used thermodynamic fluxes in addition to the classic thermodynamic state variables

in the description of a system in an assumed local equilibrium state. The assumption

of a local equilibrium state allows CIT to extend beyond the range of equilibrium

thermodynamics, but still requires a system to remain ”near” an equilibrium state [26].

In the 1960’s another form of irreversible thermodynamics referred to as ratio-

nal dynamics (RT) was introduced. RT assumes materials have memories and that

complimentary variables (entropy, internal energy, heat flux, etc...) are functions of

the histories of the independent state variables [27].

Two branches of modern irreversible thermodynamics are referred to as ex-

tended irreversible thermodynamics (EIT) and internal variable theory (IVT). EIT

uses macroscopic thermodynamic fluxes as non-equilibrium state variables to com-

plement the use of classical equilibrium state variables in the description of a local

non-equilibrium state [18]. IVT identifies additional variables that describe the mi-

croscopic effects of a system.

Today researchers such as Lu and Hanagud [26] [27]are able to use a mixture of

irreversible thermodynamic theories to model the non-equilibrium thermodynamics

of a solid material’s response to impact loading.

1.2 Procedure

There are several portions to the numerical investigation in this investigation.

These parts include the comparison of the results generated using the Mie-Gruneisen

and PTRAN EOS to those produced using the Sesame EOS, the validation of the finite

volume Eulerian hydrocode and a comparison of the results generated using CTH to

3



those generated using the Non-Equilibrium Thermodynamic hydrocode developed by

Lu and Hanagud.

Each portion of the numerical investigation composes its own chapter to avoid

confusion. Each chapter consists of a description of the numerical procedure followed

immediately by the results generated. Chapter 2 discusses the theories behind the

modeling of equilibrium and non-equilibrium thermodynamic impact systems. Chap-

ter 3 provides the procedures and results from comparing the Mie-Gruneisen and

PTRAN EOS to the Sesame EOS using uniaxial impacts of aluminum and iron, a

reversibility test to determine if the Sesame EOS can model irreversibilites in the

regions of a phase change, and a recreation of the flyer plate experiments performed

by Cinnamon [9] using 1080 steel. Chapter 4 explains how the finite volume hy-

drocode is validated comparing the results generated by the finite volume hydrocode

to those generated by CTH. Chapter 5 compares the results generated by CTH to

those produced by Lu and Hanagud’s non-equilibrium hydrocode. Finally, Chapter 6

presents any conclusions made and provides recommendations for the further study of

non-equilibrium thermodynamics and the development of the finite volume Eulerian

hydrocode.
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II. Theory

This chapter discusses the basic concepts behind the numerical modeling of dynamic

impact phenomena. A general overview of the numerics behind the hydrocodes is

provided along with the basic form of the equations used in these hydrocodes. A

Thermodynamics review is then presented followed by the development of equations

of state. This will be followed by an introduction to current methods used to model

the non-equilibrium thermodynamics in impact scenarios. All the numeric simulations

in this investigation are performed using a uniaxial strain solver in CTH, therefore

all the equations in this theory section are written in uniaxial form where applicable.

2.1 Numerical Modeling

Two programs, the hydrocode CTH and a finite volume code written in Fortran

90, are used to compare the abilities of different equations of state to model high speed

impact phenomena. A brief description of how each program works is presented here

to familiarize the reader with these two programs.

2.1.1 Numeric Terminology. Two terms used while analyzing a code’s abil-

ity to numerically model discontinuities such as a shock wave (defined in Section

2.3) are dissipation and dispersion. Dissipation refers to the process of taking a dis-

continuity and spreading it out over several numerical grid cell widths. Dispersion

refers to oscillations in the numerical solution caused by discontinuities, and is often

located around the discontinuity itself. Figure 2.1 illustrates the difference between

the types of numerical errors compared to an ”ideal” representation of a numerical

discontinuity [36].

a. Dissipation b. Discontinuity c. Dispersion

Figure 2.1: Illustration of Dissipation and Dispersion Error
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2.1.2 CTH. Hertel et al. [15] provide a concise explanation of how CTH

works. CTH is an Eulerian based hydrocode that uses a two step process to solve the

conservation equations. The first step is the Lagrangian step, in which the mesh is

deformed and the governing equations are integrated through time. Mass, momentum,

energy and volume are conserved during the Lagrangian step. Mass is conserved, due

to the movement of the mesh, which stops all matter from moving across the cell

boundaries. The rest of the conservation equations are replaced by explicit finite

volume forms of the original integral equations.

The Lagrangian step is followed by a remap step in which, the distorted mesh is

re-mapped onto the original Eulerian mesh. During the remap step mass, momentum,

energy and volume are transported from the deformed mesh to the original mesh using

advection algorithms [6]. To do this, CTH first calculates the flux of the volume

between the old and new cells. Then, an interface tracking algorithm decides which

materials from the old cells get moved with the volume flux. The mass and energy

of materials being moved are then transferred from the old cells to the new ones.

Finally information from the interface tracker is used to move the momentum and

kinetic energy of the cells [15].

Benson [6] provides a good illustration of what is happening numerically when

the operator split is being used. When modeling a continuum, the conservation equa-

tions equations take the form:
∂φ

∂t
+ c

∂φ

∂x
= f (2.1)

This equation is referred to as the linear advection equation, where φ is the field

variable, c is the constant flow velocity and f is a source term. The operator split

divides this equation into two parts. The Langrangian equation, which is solved by

moving the mesh is:
∂φ

∂t
= f (2.2)
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and the Eulerian equation solved during the remap step has the form:

∂φ

∂t
+ c

∂φ

∂x
= 0 (2.3)

In order to control the discontinuity caused by shock waves in the Lagrangian

time step, a three term ”artificial viscosity” is utilized. Artificial viscosities are numer-

ical tools, added to the pressures, that smear the discontinuities in continuum based

codes over several mesh widths, allowing hydrocodes to handle any discontinuities

that may arise. Though the artificial viscosity distorts the area around discontinu-

ities, the solution is only affected in the area of the shock front and the accuracy of

the calculations are preserved. [43]

In CTH, a vector subset of the full viscosity tensor including linear and quadratic

terms is used. In three dimensions, the vector includes xx, yy and zz terms. A third

linear term controling a singular point during the update of the stress deviators along

the axis of symmetry when the two-dimensional cylindrical geometry is also used [15].

2.1.3 The Vanderhyde Finite Volume Code (VFVC). A finite volume, Eu-

lerian hydrocode that utilizes the Mie-Gruneisen EOS is also used to model uniaxial

impacts. This code, refered to as the Vanderhyde Finite Volume Code (VFVC), was

adopted from a computational fluid dynamics (CFD) shock tube code. It solves the

partial differential equation, shown in finite difference form, of [38]:

∂Qvec

∂t
+

∂Fvec

∂x
= f(Qvec) (2.4)

where Qvec is the vector of conserved variables, Fvec is the flux vector and f(Qvec) is

a source term vector.

For clarification, a finite volume solver applies the conservation equations to a

fixed region of space, called a control volume [36]. In finite volume form this is written
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Figure 2.2: One Dimensional Grid

as: ∫
V ol

∂Qvec

∂t
dV ol +

∫
A

Fvec · dA =

∫
V ol

f(Qvec) (2.5)

where A is referred to as an area vector and Vol is the volume of the cell, which in one

dimension is the width of the cell, or dx. Upon integrating Equation 2.5 becomes:

∂Qvec

∂t
=

1

V ol

∑
Fvec · dA + f(Qvec) (2.6)

The flux vector numerically represents the flux of the conservation variables (mass,

momentum, energy, etc) at the boundary of the control volume, and is used in the

spatial integration of the conservation equations. Finally, the source term refers to

the non-hyperbolic portion (the right side) of Equations (2.4)and (2.5). An example

of a one dimensional grid is shown in Figure 2.2.

The VFVC uses a flux routine to solve for the flux variables moving through

the mesh and to handle any discontinuities that may present themselves. Fi − Fi+1

represents the flux through the faces of individual cells where i represents the node

numbers of the cell. The flux routine used in the VFVC is referred to as the Lax-

Friedrichs flux routine [38]. Equation (2.7) gives the form of the Lax-Friecrichs flux.

Lax-Friedrichs is a first order approximation of the flux vector values at the cell face

and works by taking the average values of the flux vector at the cell boundaries and

adds a dissipation term, αi+ 1
2
(q(xi) − q(xi+1)), to the average, allowing the code to

handle discontinuities.
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Fi+ 1
2

=
1

2

[
f(q(xi)) + f(q(xi+1)) + αi+ 1

2
(q(xi) − q(xi+1))

]
(2.7)

A second order MUSCL Scheme [36] is used to remove excess dissipation intro-

duced by the Lax-Friedrich flux routine and provides second order spatial accuracy

with the use of numerical limiters that remove non-physical dispersion error.

After the flux routines solve for the flux vector values, the flux vector values

are inserted into the right side of Equation (2.6), also called the right hand vector,

R(Qvec), which becomes:

R(Qvec) =
Fi − Fi+1

dx
+ D(Qvec) (2.8)

where dx is the cell width and D is the source term operator [38].

Explicit time integration schemes are used to integrate the following PDE with

respect to time. [38]:
∂Qvec

∂t
= R(Qvec) (2.9)

Three different time integration schemes are used to integrate through time: a first

order Euler Explicit Scheme [36], a third order Runge-Kutta scheme [38] and a fourth

order Runge-Kutta scheme [36]. The Euler Explicit Scheme used is given in Equation

(2.10), while the other integration schemes are contained in Appendix 1. The Euler

Explicit method uses first order forward difference schemes in space (i) and time

(n), to integrate through time. A more detailed development of the uniaxial code is

available in Appendix 1.

Qn+1
i − Qn

i

Δt
+ c

Qn
i+1 − Qn

i

Δx
= 0 (2.10)

2.2 Equations of Motion

In the numerical modeling of a dynamic system several classes of the equations

of motion equations are needed. These equations of motion include the conservation
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equations, an equation of state (EOS) and when modeling systems where the strength

of materials needs to be taken into account, a set of constitutive equations.

2.2.1 Conservation Equations. The conservation equations typically are

used to solve for the values of the mass, momentum and energy. Since all the numer-

ical simulations being considered are uniaxial, the conservation equations below are

written one dimensionally in the x direction. CTH and the FVC are both Eulerian

based hydrocodes, meaning they track matter as it proceeds through a fixed mesh. Eu-

lerian hydrocodes are typically used when the distortions caused by an event are very

large, something pure Langrangian codes have trouble modeling because cell volumes

may approach zero, or the cells become inverted producing negative volumes [43].

Since both hydrocodes are Eulerian, the conservation equations are presented here in

Eulerian form.

2.2.1.1 Conservation of Mass. Simply stated the conservation of mass

dictates that mass can neither be created or destroyed as a system undergoes changes.

[1]

The mathematical form of the conservation of mass is written as [37]:

∂ρ

∂t
+

∂(ρv)

∂x
= 0 (2.11)

The first term of the conservation of mass accounts for compressibility. Compressibil-

ity effects refer to a changes, over time, in the density of a material at a given point

in space, or a change of the entire volume of a system. The second term accounts for

the change in the amount of material flowing through a control volume with respect

to spatial position.

2.2.1.2 Conservation of Momentum. Conservation of momentum can

be stated as: the time rate of change of momentum of a body equals the net force

exerted on said body. This is also Newton’s second law stating that force exerted on a
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body is equal to the product of the mass of the body and the amount of acceleration

the body is undergoing, or F = ma [1].

The Eulerian form of the conservation of momentum is written as [37]:

ρF =
∂(ρv)

∂t
+

∂(ρv2 − σ)

∂x
(2.12)

where F is the force per unit mass acting on the system and σ represents the stress

being applied to the system. In the conservation of momentum, the ρF term repre-

sents the entire force acting on the system. The first component of the right hand

side of Equation (2.12), accounts for changes in the amount of mass flowing through a

control volume over time. The second term accounts for changes of the total momen-

tum inside a control volume, with respect to spatial position, by taking the difference

in net flow of momentum, ρv2, and the total stress, σ, applied to the system.

2.2.1.3 Conservation of Energy. The conservation of energy dictates

that energy can neither be created or destroyed; it can only change form. The con-

servation of energy incorporates the thermodynamics of a system with the systems

motion, by relating a system’s kinetic energy with other forms of energy.

The Eulerian form of the conservation of energy is [37]:

ρ(q + Fv) =
∂ρ

(
e + 1

2
v2

)
∂t

+
∂
(
vρ

[
e + 1

2
v2

] − σv
)

∂x
(2.13)

where q represents heat diffusion. In English, the conservation of energy states the

total work done, ρ(q +Fv), equals the time rate of change of energy, ρ
(
e + 1

2
v2

)
, plus

the flow of energy across a specified area, vρ
[
e + 1

2
v2

]
, minus the materials resistance

to the energy flow, σv, in that area [1].

2.2.2 Constitutive Equations. When modeling impact dynamics, the re-

sponses of the materials need to be taken into consideration. The material response is

often represented in two components, the hydrodynamic response and the deviatoric
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response. The hydrodynamic stress makes up the diagonal of the stress tensor, is

related to pressure and is calculated from the EOS [43].

σhydro = −Pδij (2.14)

The deviatoric or shear stress of the material is designated as, σD
ij . The total material

response is the sum of the hydrodynamic and deviatoric stresses. [38]

σij = σD
ij − Pδij (2.15)

In high speed phenomena, hydrostatic stresses are typically orders of magnitude

greater than the deviatoric stress. This justifies the hydrodynamic assumption dis-

cussed in the introduction. It also explains why the magnitude of stress produced by

a very high speed impact is approximately equal to the pressures produced. Through-

out this investigation, constitutive relationships are used to describe the material re-

sponse in impacts. However, due to high magnitudes of pressure typically generated,

this response is assumed negligible.

Two common constitutive equations used by CTH are the Johnson-Cook (JC)

and Zerilli-Armstrong (ZA) models. In this investigation the availability of predefined

material coefficients in CTH dictates which constitutive relationship is used to model

different materials.

2.2.2.1 Johnson-Cook Constitutive Equations. The Johnson-Cook

constitutive model is an empirical based relationship that takes the form:

σ = (A + Bεn) (1 + C lnε̇) (1 − T ∗m) (2.16)

where ε represents strain, ε̇ represents strain rate, and A,B,n,C and m are experi-

mentally determined material specific constants. The value of T ∗ is found by the

ratio (T − Troom) / (Tmelt − Troom) where T is the absolute temperature of the ma-
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terial. The material constants are determined experimentally. The first expression

in this equation represents the stress as a function of strain. The second and third

expressions represent strain rate and temperature effects, respectively [17].

2.2.2.2 Zerilli-Armstrong Constitutive Equations. The Zerilli-Armstrong

constitutive relationship was developed for the purpose of improving the numerical

results generated using the Johnson-Cook relationship. Zerilli-Armstrong model has

a strong empirical basis, but also takes into account effects caused by the microscopic

properties of the materials such as grain size and lattice structure. The dependence

on the type of lattice structure a material is made of requires different forms of the

Zerilli-Armstrong relationships [41]. The face centered cubic (fcc) form of the Zerilli-

Armstong relationship is:

σ = Δσ′
G + c2ε

1/2 ∗ e(−c3T+c4T lnε̇) + kl−
1
2 (2.17)

The body centered cubic (bcc) form of the Zerilli-Armstrong model is:

σ = Δσ′
G + c1e

(−c3T+c4T lnε̇) + c5ε
n + kl−

1
2 (2.18)

For both the bcc and fcc equations Δσ′
G represents an additional component of stress,

k is the microstructural stress intensity, l
−1
2 is the inverse of the square root of the

average grain diameter and c1, c2, c3, c4, c5 and n are experimentally determined

values [41].

2.2.2.3 Material Values. In this investigation, the material response

of aluminum will be described using the Johnson-Cook relationship, while iron’s re-

sponses will be described using the Zerilli-Armstrong constitutive relationship. CTH’s

internal coefficients are used to describe both materials, however these coefficients are

not available. Publicly available material properties are given here for use in pro-
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grams needing these input parameters. The Johnson-Cook coefficients are given in

Table 2.1 [40]. The Zerilli-Armstrong coefficients are given in Table 2.2 [41].

Table 2.1: Johnson-Cook Coefficients of 99.5% Aluminum
Coefficient Value Units
A 265.0 MPa
B 426.0 MPa
C 0.015
m 1
n 0.34

Table 2.2: Zerilli-Armstrong Coefficients of Iron
Coefficient Value Units
Δσ′

G 0.0 MPa
c1 1033 MPa
c2 na MPa
c3 0.00698 k−1

c4 0.000415 k−1

c5 266.0 MPa
n 0.284

k 22.0 MPa mm
1
2

l
1
2 3.0 mm

−1
2

2.3 Wave Propagation in Solids

This work depends heavily on the propagation of waves through solids, thus a

brief description of wave propagation through solids is presented.

When an object is struck by another, a compression or stress wave is produced.

The type of stress wave depends on the velocity of the impactor and on the strength

of the material being struck. Three different wave scenarios are possible. If the

amount of strain produced due to the applied stress is below a material value called

the Hugoniot Elastic Limit (HEL), a single elastic wave will propagate through the

material. If the amount of strain produced by the stress is above the HEL an elastic

”precursor” will precede at a velocity of cE, which is faster than the wave speed of

the plastic wave, cP . Figure 2.3 [43] shows this second scenario. If a high enough
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Figure 2.3: Stress Wave Profile

value of stress is generated by the impact, the plastic wave will overtake the elastic

wave and become a shockwave. At this amount of stress, the material exhibits plastic

behavior and displays fluid like characteristics. The material particles behind a stress

wave move with a velocity particle velocity, vi [43].

When a propagating compression wave reaches a boundary, how it reacts is a

property of the boundary condition. There are two conditions that must be met at

the boundary: 1) The forces on both sides of the boundary must be equal, and 2) the

particle velocities at the boundary must be continuous. Figure 2.4 illustrates these

two conditions. The first condition leads to [43]:

A1(σI + σR) = A2σT (2.19)

where A represents the cross-sectional area of the objects on both sides of the bound-

ary, and the subscripts T and R, represent transmitted and reflected waves, respec-

tively. The second condition states:

vI − vR = vT (2.20)

Assuming that σ = ρcv [43], the values of the transmitted and reflected stresses can

be shown to be:

σT = σI
2A1ρ2c2

A1ρ1c1 + A2ρ2c2

(2.21)
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Figure 2.4: Boundary Conditions Between Two Materials

Figure 2.5: Reflection of a Stress Wave

and

σR = σI
A2ρ2c2 − A1ρ1c1

A1ρ1c1 + A2ρ2c2

(2.22)

At a free surface, A2

A1
approaches 0 and ρ2c2 = 0 so there is no transmitted wave

and σR = −σI . This means that a compression wave reflects as a tensile or rarefaction

wave (and vice versa), and that the particle velocity is doubled at the free surface [43].

Figure 2.5 shows how this wave reflection affects the stress due to the compression

wave, and is included because free boundaries are used in this investigation.

At a fixed surface, A2

A1
approaches infinity, σR = σI and σT = 0. This means

that a compression wave reflects as a compression wave, and that the particle velocity

is zero at the free surface [43].

If A2ρ2c2 = A1ρ1c1 then σR = 0 (there is no reflected wave) and the value of

the transmitted stress wave is:

σT = σI

√
E2ρ2

E1ρ1

(2.23)

where E is the modulus of elasticity [43].
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2.4 Equilibrium and Non-Equilibrium Thermodynamics

A good understanding of thermodynamics in necessary to follow the develop-

ment the EOS used in this investigation. In this section, the laws of thermodynamics

are presented. Key assumptions made in the use of equilibrium and non-equilibrium

thermodynamics are also presented with an explanation of what each type of thermo-

dynamics each. An introduction to non-equilibrium thermodynamics is also presented

here.

2.4.1 The Laws of Thermodynamics. Anderson [1] simply defines thermody-

namics as ”the science of energy (and entropy).” The users of thermodynamics use it

to approximate the thermodynamic properties of systems, in other words, the known

thermodynamic properties of a system are used to calculate its unknown properties

at equilibrium states. [13]

The thermodynamic state of a system may be described by a set of physical

values called state variables. It is important to note that the values of these state

variables of a system are independent of how the system arrived at a particular state.

When one of the state variables changes, the thermodynamic state also changes [34].

The first law of thermodynamics states: ”Energy cannot be created or destroyed,

only converted from one form to another.” [13] Mathematically this law becomes [39]:

de = dQ − P ∗ dV (2.24)

Where de is the total change in internal energy, dQ is the amount of heat the system

receives from its surroundings and P and V are the pressure and specific volume of

the system. If a system is in a state of equilibrium thermodynamics P and e are state

functions that are related to the state variables, specific volume, V, and absolute

temperature T using equations of the form [39]:

P = P (V, T ) (2.25)
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and

e = e(V, T ) (2.26)

If the system is in a state of non-equilibrium, additional state variables that do

not appear in the equations of conservation are needed to model the system. In a

state of non-equilibrium thermodynamics, Equations (2.4.1) and (2.4.1) become [39]:

P = P (V, T, N1.....Nn) (2.27)

and

e = e(V, T, N1.....Nn) (2.28)

where Ni represent the additional state variables needed to describe the system. Ad-

ditional equations are also needed to solve for these variables [39]. There are several

irreversible thermodynamic theories used to identify and define these additional vari-

ables. Two of these theories, Internal Variable Theory and Extended Irreversible

Thermodynamics are described in Section 2.4.3.

The second law of thermodynamics deals with the state function of entropy.

Gasser and Richards, among others, define entropy as ”a measure of the chaos or

disorder of the system” [13], in other words it quantifies the amount of unknown

information in a thermodynamic system. The statement of the second law varies

between equilibrium thermodynamics and non-equilibrium thermodynamics. In equi-

librium thermodynamics, the second law is stated in two parts. The first part applies

to reversible processes, while the second part may be applied to irreversible process.

In equilibrium thermodynamics, when a reversible process affects a closed sys-

tem, the change in entropy is given by [39]:

SB − SA =

∫ B

A

(
dQ

T

)
rev

(2.29)
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and when the same system is affected by a irreversible process the change in entropy

is given by [39]:

SB − SA >

∫ B

A

(
dQ

T

)
irrev

(2.30)

The first part explains how to calculate the difference in entropy caused by

a reversible process changing equilibrium state A into an equilibrium state B. The

second part mandates that in an irreversible process, the value of the integral,
∫

dQ
T

,

is less than the change of entropy as calculated for a reversible process.

In non-equilibrium thermodynamics, the first part of the second law states that

the change in entropy can be divided into two parts, shown in Equation (2.31) [39]:

dS = deS + diS (2.31)

where dsE is entropy lost from the system to its surroundings and diS is the entropy

produced by the irreversible process within the system.

The second law also states, for a non-equilibrium system, the amount of entropy

produced is never less than zero, if the entropy produced equals zero the process

affecting the system is reversible, and if the amount of entropy produced is greater

than zero the process affecting the system is irreversible [39].

⎧⎪⎨
⎪⎩

diS = 0 (reversible process)

diS > 0 (irreversible process)

(2.32)

The discerning reader will notice the entropy produced in an irreversible, or non-

equilibrium, process, is calculated using only equilibrium thermodynamics in Equation

(2.30). This is possible because in equilibrium thermodynamics, the entropy produc-

tion is found using the difference between two equilibrium states. In non-equilibrium

thermodynamics, the entropy production is found at an instantaneous point in time.
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The third part of the second law states that deS of a closed system affected by

either a reversible or an irreversible process can be calculated with the relationship

[39]:

deS =
dQ

T
(closed system, any process) (2.33)

The differential forms of the second law in Equations (2.31 and 2.33) indicate

the system is in a state of non-equilibrium, opposed to the equilibrium form of the

second law comparing two equilibrium end states. Also note, in non-equilibrium

thermodynamics, the irreversible statement assumes that meaningful values of the

temperatures and entropy exist and that their values can be explicitly solved for. This

condition limits the applicability of the irreversible statement to certain problems [39].

The third law of thermodynamics states, ”The entropy of any system in a state

of stable equilibrium tends to a finite value as the absolute temperature tends to

zero [34].” The third law indicates you don’t need to know that absolute values of

the entropy in a system at end states A and B, it is only the change in entropy

between the end states that is important. The third law also reduces the amount of

needed data necessary to calculate the thermodynamic properties of the system after

it has undergone changes. Also, if the chemical composition of the system remains

constant as the system undergoes a change, the third law allows for thermodynamic

calculations when only the respective values of entropy above a reference state are

known.

2.4.2 Equilibrium Thermodynamics. According to equilibrium thermody-

namics when a system is in an equilibrium state, the state variables are mathemat-

ically related to each other through equations of state (EOS). An EOS consists of

independent state variables and dependent state variables, or state functions. With

an EOS it is only necessary to know the value of a few of the state variables in order

to be able to describe the thermodynamic state of the system [34].
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A static system can be considered to be in thermodynamic equilibrium when

several criteria are met. These criteria consist of mechanical equilibrium, thermal

equilibrium and chemical equilibrium. A state of mechanical equilibrium indicates

there are no unbalanced forces, internally or externally, in the system. A state of

thermal equilibrium indicates the whole system is at the same temperature matching

the temperature of the environment. Finally, a state of chemical equilibrium indicates

there are no spontaneous changes to the internal structure of the system [30]. A dy-

namic system may also be considered to be in a state of equilibrium if it proceeds slow

enough the system consists of multiple stable equilibrium states. After a shockwave

passes, the value of the thermodynamic variables will continue to change for a speci-

fied period of time in a process called relaxation. If the order of the time between the

equilibrium states is greater than the order of the relaxation time the, process may

be considered slow, allowing the use of equilibrium thermodynamics. When a process

proceeds such that it cannot be considered as a set of equilibrium states of a system,

it is considered to be a non-equilibrium process. These equilibrium states generally

do not happen in nature, however the effort of considering all the complexities of non-

equilibrium systems may not be worth the effort, justifying the use of equilibrium

thermodynamics. [34]

According to the previous conditions for equilibrium, the region directly behind

a shockwave, due to the relaxation times, cannot be considered to be in a state of

equilibrium. In order to describe the thermodynamics conditions behind a shock wave,

however, equilibrium based thermodynamics and some irreversible thermodynamic

theories have introduced the assumption of a local equilibrium. The local equilibrium

assumption allows state functions to be described in a ”local” region using the same

state variables necessary to describe an equilibrium state. Even though a state of

local equilibrium is assumed, the overall system still produces entropy, the change

in entropy of a system in local-equilibrium is described using the Gibbs equation for

entropy production:

dS =
1

T
de +

1

T
PdV (2.34)
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The terms on the right hand side of Equation (2.34) refer to the contributions of

temperature and pressure to the production of entropy [18].

The thermodynamic state of a system can also be described using Statistical

Mechanics, in which the behavior of behavior of many molecules and atoms are consid-

ered. The collective behavior of the microscopic particles are then averaged, producing

statistical concepts of pressure, temperature, internal energy and entropy [34]. For

example entropy is found by relating the distribution of the microscopic particles to

the macroscopic thermodynamics using Boltzmann’s relation. [39]:

S = k ln Ω (2.35)

where k is Boltzman’s constant and Ω is the number of ways to distribute the particles

in a system [13]. Also, in statistical mechanics atoms are modeled as quantized

oscillators, with each oscillator containing three directions of vibration and possessing

a mean energy ε [29].

When a system is in either global equilibrium, meaning the entire system is

in equilibrium, or local equilibrium, meaning only an isolated part of a system is in

equilibrium, the frequencies atoms oscillate at, geq, are described by the Maxwell-

Boltzman distribution function [18]:

geq = n

(
2πkT

m

) 3
2

e

(
−mC2

2kT

)
(2.36)

where n is the number of atoms per unit volume, m is the mass of the atom and C is

the relative velocity of the atom with respect to the mean velocity of the system [39].

2.4.3 Non-Equilibrium Thermodynamics (NET). If a system undergoes a

change, and the rate of said change is relatively slow when compared to the time

required for a system to relax to an equilibrium state, the applicability of the local

equilibrium assumption is no longer valid and the system is considered to be in a state
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of non-equilibrium. A shock wave traveling through a solid is an example of such a

non-equilibrium process [18].

The study of non-equilibrium thermodynamics (NET) puts a great emphasis

on the determination of the amount of entropy produced in a irreversible or non-

equilibrium system. The second law introduced in equation 2.31, introduces entropy

as a system variable and states entropy is produced when a system undergoes an

irreversible or non-equilibrium process. This law can also be written in terms of

equilibrium and non-equilibrium entropy [18]:

Seq,f = Sneq,i + Sprod (2.37)

where the subscripts i and f indicate the initial and final states respectively, and Sprod

represents the entropy produced when the system goes from the initial to the final

state.

In equilibrium thermodynamics entropy is considered a characteristic state func-

tion. This means it is able to describe all the conceivable thermodynamic informa-

tion about a system, if the entropy is expressed using the system’s extensive nat-

ural variables [19]. For example Callen [8] use Equation (2.34) and differentiate it

to produce equations of state for temperature and pressure, T−1(e, V ) = ∂S
∂e

and

T−1P (e, V ) = ∂S
∂V

, respectively. In NET it is assumed that non-equilibrium entropy

and temperature exist and that they have the potential to be useful in the description

of systems in non-equilibrium.

As discussed in in Section 2.4.1 the determination of the entropy being produced

differs between equilibrium and non-equilibrium thermodynamics. In equilibrium

thermodynamics, the production of entropy in an irreversible process is calculated

between two equilibrium states, as shown in Equation (2.30):

SB − SA >

∫ B

A

(
dQ

T

)
irrev
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However, if any relaxation is occurring and the order of the relaxation time is equal to

or greater than the order of the time between equilibrium states, Equation (2.30) will

be unable to capture the relaxation process. When this is the case, the entropy pro-

duction needs to be described instantaneously. A term capturing the non-equilibrium

relaxation is also needed. Equation (2.31) shown here:

dS = deS + diS

accounts for both conditions necessary to solve for the amount of entropy production

by being written in differential form, allowing an instantaneous description of the en-

tropy generation, and including a non-equilibrium term accounting for the relaxation

time.

Due to the local equilibrium assumption’s lack of applicability, both classic ther-

modynamic state variables and non-equilibrium state variables are used to describe

the irreversible processes of a system in NET. The nature of these extra variables

depends on the system being studied. Theories of irreversible thermodynamics allow

for the identification of these variables. Modern irreversible thermodynamics include,

extended irreversible thermodynamics (EIT) and internal variable theory (IVT) [19].

2.4.3.1 Extended Irreversible Thermodynamics (EIT). EIT incorpo-

rates dissipative fluxes with the use of the classical state variables to describe the

thermodynamics of a system. Dissipative fluxes refer to irreversible and dissipative

process used to describe the interaction of a material with its surroundings [26]. For

example Jou et al [18] [19] use the heat flux q, bulk viscous pressure pv and the devi-

atoric part of the viscous pressure tensor Pv
0, with corresponding evolution equations,

to describe fluid consisting of one component.

The heat flux refers to the flow of heat into and out of a system. The bulk

viscosity pressure and the deviatoric part of the viscous pressure make up the viscous

pressure tensor, Pv, through the relationship, Pv = pvI + Pv
0. In this relationship I
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is identity tensor. The total pressure tensor, P is then composed of the pressure, P,

and the viscous pressure tensor, Pv, using the relationship, P = PI + Pv.

Using these evolution equations the linear generalized Gibbs equation for en-

tropy production, in vector notation, becomes [19]:

dS = Θ−1de + Θ−1πdV − V τ1

λT 2
q · dq − V τ0

ζT
pvdpv − V τ2

2ηT
Pv

0 : dPv
0 (2.38)

where Θ is the absolute temperature, π is the thermodynamic pressure, λ, ζ and η are

the transport coefficients of thermal conductivity, bulk viscosity and shear viscosity,

respectively, and τ1, τo and τ2 are the respective relaxation times of the fluxes. The

right side of Equation (2.38) is composed of a temperature contribution, a pressure

contribution, the contribution of the heat flux, the contribution of the bulk viscous

pressure and the contribution of the viscous pressure tensor.

The evolution for the heat flux, the bulk viscous pressure and the deviatoric

part of the stress tensor are governed using the following equations respectively [19]:

τ1q̇ = −(q + λΔT ) + β′′λT 2Δ · Pv
0 + β′λT 2Δpv (2.39)

τ0ṗ
v = −(pv + ζΔ · v) + β′ζTΔ · q (2.40)

τ2(Ṗ
v

0) = −(Pv
0 + 2ηv0) + 2β′′ηT (Δ0q)S (2.41)

where the dots above the variables represent time derivatives of the variables, v is the

barycentric velocity and v0 is the deviatoric traceless part of the symmetric velocity

gradient. The material coefficients of β′ and β′′ are functions of the internal energy

and specific volume.

2.4.3.2 Internal Variable Theory (IVT). In internal variable theory,

internal variables are used to compliment the equilibrium state variables in the de-

scription of a system, for example Maugin and Muschik [28] define a constitutive

25



equation in the form of:

σ = σ̄(χ, α) (2.42)

where χ represents the equilibrium state variables and α represents any internal

variables used. Complimenting the classic thermodynamic variables with internal

variables produces a better description of the fast changing non-equilibrium system.

Internal variables, such as microscopic dislocation density, are used to describe micro-

scopic effects that are not easily observed. Also, unlike the macroscopic equilibrium

state variables and EIT fluxes, internal variables cannot be controlled, only measured.

Internal variables are also subject to evolution laws, for example α in equation 2.42

follows an evolution law of the form:

α̇ = f(χ, α) + g(χ, α)χ̇ (2.43)

The use of IVT indicates the assumption of a local equilibrium state [26]. This

allows IVT to extend beyond equilibrium thermodynamics, but requires that the

thermodynamic system stay near an equilibrium state.

There are three main differences between EIT and IVT. These differences in-

clude the selection of different non-equilibrium variables, differences in the evolution

equations of said variables and the ability to control the non-equilibrium state vari-

ables. The internal variables used in IVT describe microscopic features of the systems

being described, while the flux variables used in EIT are invariably independent of

the system. The equations describing how internal variables change with time, or

evolution equations, are relaxation equations with no divergence term opposed to the

flux of the EIT field variables, which are part of the balance equation themselves.

Finally, the flux variables used in EIT can be controlled externally, whereas internal

variables cannot [19].
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2.5 Equations of State

CTH is capable of using several different equations of state in its calculations,

which makes this particular hydrocode so useful in investigating the differences be-

tween different EOS. The equations of state being investigated are the Mie-Gruneisen

EOS, and the Sesame EOS. The development of non-equilibrium equations of state

are also presented here.

2.5.0.3 Mie-Gruneisen EOS. The use of the Mie-Gruneisen EOS

begins with the Hugoniot curve. The Hugoniot curve is an experimentally determined

relationship that relates two of the following variables: pressure (P), speed of sound

(c), particle velocity (v) and volume (V). Of the six potential relationships (P-c, P-

v, P-V, c-v, v-V and c-V), the c-v, P-V and P-v are particularly useful. In this

derivation the c-v relationship is very important. The graph of the c-v relationship

typically results in a straight line. The vertical intercept (c) is referred to as the bulk

speed of sound and is denoted by the variable C0. The slope of the line, S, is also

an important quantity to know. Figure 2.6 illustrates how C0 and S are determined

from the c-v Hugoniot [43].

Figure 2.6: The c-v Hugoniot
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Modern methods of statically producing pressure cannot be used in the experi-

mental determination of the shock Hugoniots for pressures greater than 10 GPa. This

is where the Mie-Gruneisen EOS becomes valuable. Meyers [29] presents a derivation

of the Mie-Gruneisien EOS, which is included here to give the reader an understand-

ing of the assumptions made. The Gruneisen parameter, Γ, is derived using statistical

mechanics. In statistical mechanics, the total mean vibrational energy of the crystals

making up a material is equal to the sum of the product of the number of energy

levels, n, the frequencies of the quantized oscillators, ν, and Plank’s constant, h, over

each of the 3N number of oscillators [29]:

E =
3N∑
j=1

njhνj =
3N∑
j=1

εj (2.44)

The summation on the right side of the equation states the total mean vibrational

energy is equal to the summation of the mean energies of the total oscillators, εj.

Equation(2.44) also indicates the mean energy of a harmonic oscillator is equal to

the product of the number of possible energy levels, the frequencies of the quantized

oscillators and Plank’s constant, ε = nhν [29].

By assuming discrete energy levels, the mean energy of an oscillator can be

determined. In statistical mechanics, an energy level with more than one possible

state is considered to be degenerate. Degeneracy is the number of states with a

common energy level contained in a state. The relative probability of finding a system

with specified levels of degeneracy, g, and energy, εi, in the ith level of the system is:

Pi = gie
− εi

kT (2.45)

where k is Boltzmann’s constant. The absolute probability of finding a system with

the specified energy levels in its ith level is found by dividing Equation (2.45) by the
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total number of events,
∑

j gje
− εj

kT , where j is summed over all energy levels [29]:

Pi =
gie

− εi
kT∑

j gje
− εj

kT

(2.46)

The system’s mean energy, ε is found by summing the total probability and the mean

energies of the oscillators over i number of energy levels [29]:

ε =
∑

i

Piεi =

∑
i εigie

− εi
kT∑

j gje
− εj

kT

= − d

d
(

1
kT

) log

(∑
j

gie
−−εi

kT

)
(2.47)

The summation term,
∑

i gie
− εi

kT , is refereed to as the partition function and is

designated by Q. The partition function is the ratio of the total number of molecules

present to the number of molecules on the lowest energy level. In other words Q

is the population spread among the available energy levels. The partition function

contains the information necessary to describe equilibrium states, meaning if Q and

its temperature dependence is known, Q may be used to calculate the thermodynamic

properties of a system in thermodynamic equilibrium. This is accomplished by relating

the statistical description of the system (using Q) to macroscopic thermodynamics

through Boltzman’s relationship, Equation (2.35), to determine the entropy in the

system. As discussed in Section 2.4.3 entropy is a characteristic function that may

be used to describe the thermodynamic information of a system. This process allows

the partition function to act as a tool in the description of the thermodynamics in a

system [13].

By assuming each energy level contains only one energy state, gi becomes one,

meaning the levels are not degenerate. This causes the partition function to become

[29]:

Q =
1

1 − e−
hν
kT

(2.48)
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Invoking this in Equation(2.47), the value of the mean energy becomes [29]:

ε = − d

d
(

1
kT

) log
(
1 − e−

hν
kT

)
=

hν

e
hν
kT − 1

(2.49)

The total mean energy is then determined by summing ε over 3N number of energy

levels [29]:

E =
3N∑
j=1

hνj

e
hνj
kT − 1

(2.50)

In one gram-atom of material, the total energy is given by the sum of the vibrational

energy, including the energy at the ground state, and the potential energy of the

atoms, φ, where [29]:

φ =
1

2
hν (2.51)

The total energy of one gram-atom of material becomes [29]:

E = φ(ν) +
3N∑
j=1

1

2
hνj +

3N∑
j=1

njhνj = φ(ν) +
3N∑
j=1

[
1

2
hνj +

hνj

e
hνj
kT − 1

]
(2.52)

If the system is assumed to be at chemical equilibrium and constant tempera-

ture, the entropy will tend to reach a maximum, while the energy tends to reach a

minimum. Free energy is a state function that describes the balance between these

two state variables. There are two types of free energy, the Helmholtz free energy

and the Gibbs Free Energy. If a constant volume is assumed, the type of free energy

is defined as the Helmholtz free energy, A, which is calculated using the following

relationship [13]:

A = e − TS (2.53)

If a constant pressure is assumed, the Gibbs Free energy is used [13]:

G = H − TS (2.54)
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where H is the thermodynamic function of enthalpy equal to the sum of internal

energy and the product of pressure and specific volume, H = e + PV .

Assuming a constant volume and inserting the total energy from Equation (2.52)

into the Helmholtz free energy produces the following equation [13]:

A = −kT ln
∑

e−
Ej
kT = φ(ν) +

3N∑
j=1

1

2
hνj + kT

3N∑
j=1

ln
(
1 − e−

hνj
kT

)
(2.55)

By differentiating Equation (2.55) with respect to volume at a constant temperature,

the equilibrium value of pressure can be found [13]:

P = −
(

∂A

∂V

)
T

= − dφ

dV
+

1

V

3N∑
j=1

Γj

[
1

2
hνj +

hνj

e
hνj
kT − 1

]
(2.56)

A relationship between pressure and volume has now been established, thus complet-

ing the relationship between microscopic statistical mechanics and the thermodynam-

ics of the macroscopic system. The term Γj is [13]:

Γj = −V

νj

(
∂νj

∂V

)
T

= −
(

∂ ln νj

∂ ln V

)
T

(2.57)

A crystal’s resistance to compression causes the frequency the particles are vibrating

at to increase with an increase in the pressure applied to the crystal. Since the

vibrational frequency increases as volume decreases, Γ > 0. Gruneisen assumed all

oscillators in a system have the same Γ, named the Gruneisen constant [13]:

Γ = −
(

∂ ln ν

∂ ln V

)
T

(2.58)

Making all Γ equal in the pressure equation allows for the removal of the summation

term from Equation (2.56), thus [13]:

P = − dφ

dV
+

Γ

V
EV IB (2.59)
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When this pressure equation is applied atS a temperature of 0 K it becomes [13]:

P0K = − dφ

dV
+

Γ

V
E0K (2.60)

Subtracting Equation (2.60) from Equation (2.59) yields [13]:

P − P0K =
Γ

V
(E − E0K) (2.61)

This equation is a form of the Mie-Gruneisen EOS that relates P, V and E to the

pressure and internal energy at 0 K. A point on the Hugoniot plot may also be used

in which case the Mie-Gruneisen EOS becomes [13]:

P − PH =
Γ

V
(E − EH) (2.62)

Equations (2.61) and (2.62) can each be divided into two parts [10]. The first

is either a Hugoniot or a zero-Kelvin isotherm, defined in Section 2.5.0.4, which rep-

resents the pressure at a known state. The second part of the equations is the con-

tribution of vibrational, or thermal energy of the crystal lattices. In other words the

Mie-Gruneisen EOS can be represented mathematically as [22]:

P = P0 + Pvib (2.63)

2.5.0.4 Sesame EOS. CTH also contains the Sesame tabular equation

of state in which the thermodynamic state of the system is described using tables

within CTH. This allows CTH to reach solutions for conditions where materials are

present in various phases due to extreme pressures and temperatures. Kerley [20] [21]

provides detailed descriptions on how the Sesame EOS tables are built for iron and

aluminum respectively. The methods used to built both tables are contained in this

section.
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The Sesame EOS for iron was developed by first constructing the EOS for the α,

γ and ε phases of iron using the PANDA code, which provides the capability to model

materials with complex phase diagrams. These solid phases include contributions from

the zero-Kelvin isotherm, lattice vibrations, and thermal electronic excitations. The

α phase also includes a magnetic contribution. Thus the thermodynamic functions of

pressure, internal energy and Helmholtz free energy are assumed to have the following

forms [20]:

P (ρ, T ) = Pc(ρ) + Pl(ρ, T ) + Pm(ρ, T ) + Pe(ρ, T ), (2.64)

e(ρ, T ) = ec(ρ) + el(ρ, T ) + em(ρ, T ) + ee(ρ, T ) + Δeb, (2.65)

and

A(ρ, T ) = ec(ρ) + Al(ρ, T ) + Am(ρ, T ) + Ae(ρ, T ) + Δeb, (2.66)

Where the subscripts c, l, m and e represent the contributions from the zero-Kelvin

curve, lattice vibrations (including the zero point term), magnetic excitations (con-

tribute to the α phase only) and thermal electronic excitations, respectively. ΔEb

represents cohesive energy, which is used to correct for the zero-point lattice energy.

The zero-Kelvin curves are also referred to as cold curves, and account for ma-

terials in ground states with the nuclei of the atoms arranged in perfect crystal lat-

tices. This partition of the EOS accounts for the cohesive forces leading to condensed

phases of materials and the repulsive forces that determine a materials response to

compression. This term is also the largest contributor to the EOS over much of the

density-temperature regions commonly studied. [22]

The zero-Kelvin curves are developed by taking the experimentally determined

compression curves for the α and ε phases developed similarly to the Hugoniot curves

mentioned in Section 2.5.0.3, and subtracting the contributions from Pl and Pe as

they are calculated in the subsequent paragraphs. The remaining pressure is then fit

to the Birch-Murnaghan isothermal EOS, which defines pressure in terms of the ratio

of the density to the reference density, η = ρ/ρ0 and the isothermal bulk modulus,
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β0 [42]:

Pc(p) =
2

3
β0

(
η

7
3 − η

5
3

) [
1 +

3

4

(
η

2
3 − 1

)
(β′

0 − 4)

]
(2.67)

For the γ phase, ρ0 is fixed by fitting the thermal expansion data, and the values of

β0 and β′
0 are taken as intermediate values between the values of the α and ε phases.

Panda is then used to compute a thermodynamically consistent energy. [20]

The Lattice vibration, or nuclear degree of freedom (DOF) contribution, is

calculated using the popular Debye model. Debye hypothesized the strong bonds

in a solid dictate the oscillations of one atom affects those of other atoms, and an

idealized frequency distribution of these vibrations is required to model these effects.

The Debye distribution is built defining a maximum frequency vibration of νm that

acts as an upper limit, and then assigns values to the rest of the frequencies [14]:

⎧⎪⎨
⎪⎩

g(ν) = 12πEpν2

c3
(if ν < νm)

g(ν) = 0 (if ν > νm)

(2.68)

where Ep is the potential energy, ν is the vibration frequency, νm is an upper limit

of vibration frequency and c is the wave velocity. The use of the Debye distribution

allows for the description of the principle features of the lattice vibration term by

using simple select parameters. The parameters used to find the lattice vibration

contribution to the overall EOS includes the Debye temperature, Θref = hνm

k
[14],

the Gruneisen parameter at room temperature, Γref , the densityρref , and a constant,

τ which helps define the Gruneisen function’s dependence on density. The lattice

contribution to the Sesame EOS is calculated using the Sandia code Panda, the inner

workings of which are unavailable, however a simple form of the energy contribution

is found using [22]:

el(ρ, T ) = Nk

[
9Θref

8
+ 3TD (xm)

]
(2.69)
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where D represents the Debye function [42]:

D(xm) =
3

x3
m

∫ xm

0

x3dx

ex − 1
(2.70)

and xm =
Θref

T
. The pressure contribution, Pl is found using by multiplying the

density, Gruneisen parameter and Equation (2.69) [22]:

Pl(ρ, T ) = ρΓ(ρ)el (2.71)

This assumes the Gruneisen parameter is a function of density and is found using the

relationship [20]:

Γ(ρ) = (Γref − 0.5)

(
ρref

ρ

)τ

− 0.5 (2.72)

Note that when the EOS accounts for only the zero-Kelvin curve and the lattice

vibration term, it can be shown that the EOS will reduce to the Mie-Gruneisen EOS.

For example, without the electronic contribution term the pressure equation looks

like [22]:

P (ρ, T ) = Pc(ρ) + Pl(ρ, T ) (2.73)

which is similar to Eqn (2.63).

The magnetic contribution to the Sesame EOS, was handled similarly to that of

Andrews [3] and is included because it provides a significant contribution to the spe-

cific heat of α iron allowing for the determination of temperature and internal energy.

The magnetic contribution to the α phase of iron relies heavily on the noted behavior

of the Curie temperature of α iron. The Curie temperature is the temperature above

which a material loses its ferromagnetic properties [33]. The Curie temperature for

iron has been observed to be independent of pressure, which leads to the ability to

approximate the magnetic contribution to the EOS as independent of density. This

leads to the conclusion that the magnetic contribution to the pressure term is negli-

gible (Pm = 0). Below the Curie temperature, the heat capacity is found using the

35



empirical formula [20]:

CVm(T ) =
kT 1.5

(T0 − T )
(2.74)

where T0 is the Curie temperature and k is an empirical constant, both of which were

adjusted to match experimental data. In a departure from Andrews, at tempera-

tures above the Curie point CVm = 0. Equation (2.74) is numerically integrated to

determine Em and Am.

Impact phenomena, among other phenomena (thermal gradients, explosions,

etc...), may cause the material to become hot enough the electrons become very ex-

cited and consequently leave their ground energy states. This electronic excitation

may have a significant effect on the thermodynamic properties of materials at high

temperatures, and if the temperature is high enough, the electronic excitation term

may dominate the EOS. For iron, the Sesame EOS model predicts that thermal elec-

tronic contribution begins to take effect at temperatures above 500K. Electronic ex-

citation also makes a significant contribution to the thermal expansion, which agrees

well with experimental data [20] [22].

Two separate models are used to calculate the contribution of electronic exci-

tation to the Sesame EOS. For densities above 6 g
cm3 the INFERNO model of Liber-

man [25] is used, and for densities below 1 g
cm3 the ionization equilibrium (IONEQ) is

used. An average of the two models is used in the intermediate densities. [20]

The INFERNO model, models the potential of an atom by taking an ion sphere

and surrounding it with a positive charge and an electron gas simulating the neigh-

boring atoms. Then uses statistical and quantum mechanics to develop the desired

EOS. The energies and wave functions for the discrete and continuum electronic levels

are obtained by solving the Dirac equation for kinetic energy of electrons [20]. The

INFERNO model simplifies the computation of the electronic excitation term at high

densities [22].

Ionization equilibrium theory handles a system as a mixture of free electrons

and ions at its simplest form [22]. The free electrons are treated as an ideal gas,
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while the ionic contributions are modeled using partition functions. The state of

ionization is described using temperature and density, and is determined by either

minimizing the free energy or balancing the rates of ionization and recombination

of the atoms involved. Both methods assume thermodynamic equilibrium, thus the

name ionization equilibrium theory. The calculation of the electronic excitation term

using IONEQ is numerically expensive, limiting its use to low densities.

A table of iron’s fluid phase was built with the thermal electronic term and fluid

perturbation theory, which treats the atomic motions of the material. The fluid phase

EOS also describes the material in the vapor and supercritical regimes [20].

The Sesame tables for the different phases of iron are built using the theories

listed above. Then, where possible, experimental data are used to match the material

parameters used in iron’s Sesame EOS [20].

A Sesame EOS also exists for aluminum, in which the equations for pressure,

internal energy and Helmholtz free energy are given by [21]:

P (ρ, T ) = Pc(ρ) + Pl(ρ, T ) + Pe(ρ, T ) (2.75)

e(ρ, T ) = ec(ρ) + el(ρ, T ) + ee(ρ, T ) (2.76)

and

A(ρ, T ) = ec(ρ) + Al(ρ, T ) + Ae(ρ, T ) (2.77)

The subscript c stands for the contributions of the zero-Kelvin curve, represented

by the analytic formula [21]:

ec(ρ) = −E0

(
1 + ξ + 0.05ξ3

)
e−ξ (2.78)

where

ξ =

(
9β0

ρ0E0

) 1
2

[(
ρ0

ρ

) 1
3

− 1

]
(2.79)
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and ρ0 is the density, E0 is the cohesive energy, and β0 is the solid bulk modulus, all

taken at zero pressure.

The subscript l indicates the contribution from the lattice vibrations, and the

subscript e indicates the contribution of electronic excitation. Both of which are

computed in the same way the respective iron contributions are calculated.

The fluid phase of Aluminum is calculated using the CRIS [23], model which

includes contributions from the ground state electronic degrees of freedom and the

contribution of the nuclear degrees of freedom. The contribution from the CRIS model

is added to the electronic contribution to describe the thermodynamic state of the

fluid [21]:

Afluid(ρ, T ) = An(ρ, T ) + Ae(ρ, T ) (2.80)

where n indicates the contribution of the CRIS model.

2.5.0.5 Multi-Phase Equations of State. The numerical modeling of

impacts involving iron present unique numerical difficulties due to the fact that at

pressures of approximately 13 MPa, iron undergoes a solid-solid phase change from

its original α phase to the ε phase [5]. In order to model these different phases

accurately, two different sets of Mie-Gruneisen parameters are needed. In CTH you

are only able to use the parameters for one phase at a time. This means great care

is needed in selecting which set of Mie-Gruneisen parameters to use. However, CTH

has a composite EOS named Phase Transition Reactive Burn (PTRAN) that enables

a material exhibiting multiple phases to be modeled. PTRAN is referred to as a

composite model, because it is constructed from basic EOS models such as Sesame

and the Mie-Gruneisen EOS. The PTRAN EOS uses a phase boundary to assist in

describing the pressure of iron in the phase transition region using the formula [7]:

P (ρ, T, λ) = PT + βT

(
1 − ρT

ρ

)
+ AT (T − T0) + Aλλ (2.81)
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where PT and ρT are the pressure of the transition and the density of phase 1 or α

phase of iron, λ is the mass fraction of phase 2 or ε phase of iron, T0 denotes room

temperature, βT in the bulk modulus in the transition region and AT and Aλ are the

derivatives of the transition pressure with respect to T and λ. PTRAN has the option

to be run in either reversible or irreversible mode, though the documentation does

not specify the theory behind either. Unfortunately there is limited documentation

on this EOS, hindering the ability to understand what it is doing. The PTRAN EOS

is also capable of incorporating some non-equilibrium thermodynamic effects into an

equation of state around a phase change region using λ as an additional internal

variable.

The Sesame equation of state is able to model the thermodynamic properties of

impacts involving iron much better as it has tables on three different solid phases of

iron. The multiphase EOS table is constructed from the EOS tables of the individual

phases. In a phase transition, more than one phase is present. In equilibrium thermo-

dynamics when two phases are present the Gibbs free energy of the two phases must

be equal. When only one phase is present, it is the one with the lower value of the

Gibbs free energy [2]. For this reason in the iron Sesame table, the phase exhibiting

the lower value of Gibbs free energy, at a given temperature and pressure, is consid-

ered to be the more stable phase and its thermodynamic properties are used [20]. The

use of the Gibbs free energy indicates a constant pressure is assumed and is used be-

cause the thermodynamic description of the phase used is specified using temperature

and more importantly, pressure. The Helmholtz free energy, which assumes constant

volume, would be used if temperature and density were specified.

CTH allows cells in the mesh to be divided into subcells, with each subcell

representing different materials. This allows for the ε phase of the iron to be present in

the same cells as the original α phase. CTH is also capable of modelling the different

phases of iron contained in a cell at different temperatures and pressures [15]. To

determine the cells final temperature and pressure a weighted average is used. This

thermodynamic setting is not able to account for pressure relaxation.
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Table 2.3: EIT Variable Definitions
Variable Definition
q Heat Flux
S Entropy
pv Viscous Pressure
Pv

0 Viscous Pressure Tensor
π Thermodynamic Pressure
Θ Absolute Temperature
λ Thermal Conductivity Transport Coefficient
ζ Bulk Viscosity Transport Coefficient
η Shear Viscosity Transport Coefficient
τn Relaxation Time of Respective Fluxes

2.5.0.6 Non-Equilibrium Equations of State. The development of an

EOS that can describe how solid materials act behind shock waves is of great interest

and the irreversible thermodynamic theories discussed in Section 2.4.3.2 may be used

to help model such phenomena. Non-equilibrium EOS for a one component fluid and

developed with the use of EIT are given below as an example of how irreversible

thermodynamic theories may be utilized in the modeling of non-equilibrium systems.

For convenience Table 2.3 includes the variables used in these EOS, first introduced

in Section 2.4.3.1.

In their review of EIT, Jou et al [19] integrate the Gibbs equation in the form

of Equation (2.38):

dS = Θ−1de + Θ−1πdV − V τ1

λT 2
q · dq − V τ0

ζT
pvdpv − V τ2

2ηT
Pv

0 : dPv
0

to develop non-equilibrium equations of state for the thermodynamic pressure and

absolute temperature. The EOS for Θ is found by integrating Equation (2.38) with

respect to internal energy [19]:

Θ−1 = T−1 − 1

2

⎡
⎣∂

(
V τ1
λT 2

)
∂e

q · q +
∂
(

V τ0
ζT

)
∂e

(pv)2 +
∂
(

V τ2
2ηT

)
∂e

Pv
0 : Pv

0

⎤
⎦ (2.82)
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and the EOS for π is found by integrating Equation (2.38) with respect to specific

volume [19]:

Θ−1π = T−1p − 1

2

⎡
⎣∂

(
V τ1
λT 2

)
∂V

q · q +
∂
(

V τ0
ζT

)
∂V

(pv)2 +
∂
(

V τ2
2ηT

)
∂V

Pv
0 : Pv

0

⎤
⎦ (2.83)

The use of these expressions assumes that non-equilibrium definitions of Θ and π

exist. Third order terms in these equations of state are considered to be negligible

and therefor are not included. Had second order flux terms been included in Equation

2.38, a third order term would be present.

Another method of producing a quasi non-equilibrium EOS, is including an

equilibrium EOS, such as the Mie-Gruneisen or Sesame EOS, inside a rate equation

enabling it to describe the thermodynamics of a system away from equilibrium . Lu

and Hanagud [27] [26] use this method in their works detailed in the following section.

Although this method allows the EOS to describe the system instantaneously, the

equilibrium EOS are still limited by the equilibrium thermodynamic assumptions

used in the development of the respective EOS. An example of such equilibrium

assumptions is the use of the ionization equilibrium theory in the Sesame EOS, which

assumes the rates of ionization and recombination occurring are equal and frozen.

In reality, the rates of ionization and recombination are not equal to each other and

change over time. Thus, this assumption limits the ability of the Sesame EOS to

describe a system in non-equilibrium, even when used in a rate equation.

2.6 Modeling of Non-Equilibrium Thermodynamic Systems

Lu and Hanagud [27] [26] model an impact loading scenario in the framework

of continuum mechanics and non-equilibrium thermodynamics by combining the use

of classical equilibrium state variables and selected non-equilibrium state variables,

with their evolution equations, in the framework of EIT and IVT.
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The set of governing equations used in the modeling of the non-equilibrium

system requires 12 equations consisting of the conservation equations (Equations 2.95,

2.96 and 2.97), equilibrium constitutive equations (Equations 2.91, 2.92 and 2.86),

non-equilibrium constitutive equations (Equations 2.89, 2.90 and 2.88), a kinematic

equation (Equation 2.84), a geometric equation (Equation 2.85) and some additional

equations (Equations 2.93 and 2.94). The governing equations used are given below

as an example of how non-equilibrium thermodynamics may be used to model impact

phenomena. For brevity, just the governing equations previously listed and some

evolution equations are included here, sources [27] [26] may be consulted to determine

how supporting variables are calculated.

The non-equilibrium components of the governing equations are developed using

IVT and EIT. IVT is used to describe the microscopic dislocation of segments in

the crystal lattice in an active slip system, α. The orientation of the slip system

is described by the internal variable tensor, Zα
ij and is referred to as the Schmidt

orientation tensor. The other internal variable utilized is the dislocation density, ρα
d ,

is a scalar density describing the collective length of dislocation segments in α.

The rate of plastic deformation, Uplastic
ij is a kinematic relationship used to help

describe the NET system. It is a function of ρα
d , the magnitude of the vector describing

the motion of the slip system, or gliding velocity, vα, the magnitude of the Burgers

vector, bα and Zα
ij. It is determined using the following equation:

Uplastic
ij =

1

2

∑
α

ρα
d bαvα(Zα

ij + Zα
ji) (2.84)

To account for lattice rotations, the spin vector, ωi = −eijkΩ and the angle

of Zα
ij, Γi = −eijkZ

α
ij are utilized. By combining these terms the evolution of Zα

ij is

determined using the geometric description:

∂Ωi

∂t
= ωi (2.85)
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where Ω is the angle of orientation, and ωi represents the rate of change of Ω and is

refered to as the spin vector.

As the material undergoes deformation, the number of dislocations in a system

are going to change, affecting the value to the dislocation density. The evolution equa-

tion governing the change of ρα
d is described using the following differential equation:

∂ρα
d

∂t
+

∂(ρα
dvk)

∂xk

= Kα (2.86)

where Kα is a source term made of contribution of the dislocation nucleation by shock

loading, Kα
n the dislocation multiplication, Kα

m and the dislocation reaction, Kα
j :

Kα = Kα
n + Kα

m + Kα
j (2.87)

The thermodynamic fluxes derived from EIT include the dislocation motion, vα
i ,

the non-equilibrium stress, σne
ij and the heat flux, qi. The dislocation motion describes

the motion of the slip system and is made of the magnitude of the velocity, vα and

the gliding direction, mα
i . The evolution of the dislocation motion is described using:

⎧⎪⎨
⎪⎩

τα
d

Dvα

Dt
= −vα +

σeff

kα
d T

(if σα
ext > σext,cr)

vα = 0 (otherwise)

(2.88)

where σα
eff is the local resolved shear stress, σα

ext is the external shear stress, σα
ext,cris

the critical stress, kα
d is the resistance to dislocation motion and Dvα

Dt
is referred to

as the substantial derivative of dislocation motion, which in one-dimension consists

of the local derivative, ∂vα

∂t
and the convective derivative, v ∂vα

∂x
. As Equation (2.88)

indicates, the dislocation motion in a system is zero until a critical stress, σext,cr is

reached.

The non-equilibrium stress, σne
ij , is a function of the elastic strain rate, U e

kl and

the relaxation time of the viscous process, τν . In solid metallic materials viscous

processes include the viscous slip of the phase and grain boundaries or viscous lattice
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stretching. In liquid metals the viscous process refers to the viscous flow of the

material. Using the aforemention processes the evolution of the non-equilibrium stress

is governed by the following differential equation:

τν(σ̈ne
ij ) = −σne

ij + ηijkl U
e
kl (2.89)

in which¨represents the material time derivative.

The evolution of the heat flux, qi, is also found using a differential equation:

τq q̈i = −qi − kij
∂T

∂xj

(2.90)

where τq is the relaxation time of the heat flux.

In order to instantaneously define the value of pressure, the equilibrium EOS,

P e = P e(ρ, T ), is found using the differential equation:

Ṗ e = A(ρ, T )

(
1

3
U e

ii

)
+ B(ρ, T )Ṫ (2.91)

This is an example of using an equilibrium EOS in a rate equation to give the NET

hydrocode the ability to instantaneously describe the thermodynamics of the system.

The deviatoric stress, σed
ij , is a function of the elastic modulus, Gijkl, and the

deviatoric portion of the deformation tensor, U ed
kl . It is found using the rate equation:

σ̈ed
ij = GijklU

ed
kl (2.92)

The total deformation and stress tensors are found by summing their equilibrium

and non-equilibrium components, as shown in Equations (2.93) and (2.94).

σij = σe
ij + σne

ij (2.93)
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and

Uij = U e
ij + Uneij (2.94)

Finally, the equilibrium based governing equations consists of the familiar con-

servation equations [26]:
Dρ

Dt
+ ρ̄

∂vk

∂xk

= 0 (2.95)

ρ
Dui

Dt
− ∂σij

∂xk

= ρFi (2.96)

ρ
De

Dt
− ∂qi

∂xi

− σijUij = 0 (2.97)
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III. Comparison of Sesame and Mie-Gruneisen Based EOS

This portion of the numerical investigation compares the ability of different EOS to

model impact phenomena. The EOS being compared consist of the Mie-Gruneisen

EOS for aluminum, the PTRAN EOS for iron, which includes the Mie-Gruneisen EOS

of α and ε iron, and the Sesame EOS for both aluminum and iron. The comparison

of these EOS will be performed in four different parts. The first part compares the

ability of the Mie-Gruneisen and Sesame EOS to model uniaxial impacts of aluminum

over a range of impact velocities. The second part consists of simulating uniaxial iron

plate impact experiments with the PTRAN and Sesame EOS. The third part consists

of comparing the Sesame EOS to both the reversible and irreversible PTRAN EOS

to determine the Sesame EOS’s ability to model irreversible systems. The fourth and

final part compares the answers generated using all three EOS to flyer plate data

gathered by Cinnamon [9] while investigating gouging phenomena for the HHSTT.

Non-equilibrium thermodynamic theories build upon equilibrium thermody-

namics. This requires a thorough understanding of equilibrium thermodynamic theo-

ries. By comparing the equilibrium thermodynamics contained in the Mie-Gruneisen

EOS to those of the Sesame EOS, a thorough understanding of how CTH models im-

pact phenomena is built. Understanding these differences also assists in determining

the physics the currently equilibrium VFVC may fail to capture.

The uniaxial mesh cell width used in all the CTH simulations is 0.002 cm.

This size concurs with what Szmerkovsky [35] found to best model the continuum

mechanics of the system. The uniaxial mesh used in each simulation is also designed

to be wider than the combined width of the flyer and target plates, with empty space

next to the outside of each plate. This allows the outside boundaries of both plates

to act as free surfaces allowing for the appropriate reflection of the shock waves.

The equilibrium thermodynamic values in each run are measured off the wave

history generated using tracer points. In each impact scenario, the tracer point used

is located in the center of the target. This allows the compression waves to fully

form in a region free from the interference and wave reflections seen at the edges
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Figure 3.1: Position of Captured Thermodynamic Values

of the targets. The values of the thermodynamic state variables are measured at

locations on the compression wave well behind the front of the wave, as shown in

Figure 3.1. Measuring the value of the thermodynamic variables at this location,

assures the value is free from any numerical noise, or possibly any non-equilibrium

effects, thereby assuring the equilibrium values of the thermodynamic variables are

obtained.

3.1 Comparing the Mie-Gruneisen and Sesame EOS in the Uniaxial

Impact of Aluminum

3.1.1 Numerical Setup and Procedure for Aluminum Impacts. The compar-

ison of the Mie-Gruneisen and Sesame EOS compares how the respective EOS model

the uniaxial impact of aluminum. The material choice of aluminum is made for two

reasons. First, the documentation describing the development of these equations of

state is publicly available. The availability of this documentation, specifically the

Sesame EOS, is necessary to make sure the Sesame tables are built using the same

theories used in the development of the iron EOS. In addition, said documentation

is beneficial in the design of the numerical simulation contained in this investigation.

The second reason is aluminum, unlike iron, is not polymorphic. This allows for

a direct comparison between the Mie-Gruneisen EOS and the Sesame EOS without
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Table 3.1: Mie-Gruneisen Coefficients Used in CTH
Coefficient ρ0 C0 S Γ0 Cv

Value 2.760 kg
m3 5330 m

s
1.34 2.16 900 J

kg K

Source [21] [29] [29] [21] [4]

Figure 3.2: CTH Mesh Used to Match the Experimental Setup of Bekinskii and
Khristoforov

the need to handle the phase changes occurring in polymorphic materials under high

temperatures or pressures.

The form of the Mie-Gruneisen EOS used by CTH is given in Equation (3.1) [7]:

⎧⎪⎨
⎪⎩

P (ρ, e) = PH(ρ) + Γ0ρ0 [e − eH(ρ)]

e(ρ, T ) = eH(ρ) + Cv [T − TH(ρ)]

(3.1)

Where the H subscript denotes values determined using the Hugoniot and the 0

subscript denotes the original values for Γ and ρ. The CTH EOS package does not

contain predefined Mie-Gruneisen coefficients for aluminum, so said inputs need to be

given to CTH. Table 3.1.1 contains the Mie-Gruneisen coefficients manually specified

inside the CTH input deck in SI units. These coefficients come from several different

references, each of which is noted in Table 3.1.1.

To validate these coefficients, they are used in an impact simulation in CTH

with an impact velocity of 2020 m
s
, matching an impact experiment performed by

Bekinskii and Khristoforov [16]. The mesh used in this validation attempt is an

uniaxial recreation of Bekinskii and Khristoforov’s flyer plate geometry and is shown

in Figure 3.2. According to Bekinskii and Khristoforov the pressure behind the shock

waves should reach a pressure of 18.3 GPa. A tracer point is placed in the center
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Figure 3.3: Altered CTH Mesh Used to Match the Experimental Data of Bekinskii
and Khristoforov

of the target and is used to show the history of the pressure wave, which is shown

in Figure 3.4a. Looking at the figure, it is obvious that the numerically generated

pressure of 12.6 GPa is well short of the predicted 18.3 GPa. This inaccurate pressure

is caused by a mixture of the artificial viscosity and wave reflection. The artificial

viscosity spreads the front of the shock wave over several cells, allowing CTH to

handle the discontinuity. However, this also slows the development of the shockwave.

While CTH develops the shock wave front, a rarefaction wave from the flyer passes

through and stops the shock wave from completely forming. To fix this, the width

of the flyer plate is extended to 3.0 mm, producing the final mesh shown in Figure

3.3. Lengthening the flyer plate increases the time it takes for the rarefaction wave

to reach to the location of the tracer point, allowing CTH to fully develop the front

of the shockwave.

The results generated by CTH using this second mesh are located in Figure 3.4b.

The numerical pressure of 18.4 GPa compares favorably with the results of Bekinskii

and Khristoforov. For this reason, the mesh shown in Figure 3.3 is the mesh used in

the numerical simulations.

The Johnson Cook constitutive relationship is used to model the material re-

sponse of aluminum in the impact scenarios. The pre-defined JC coefficients for

aluminum contained within CTH are used.

The comparison of the Mie-Gruneisen and Sesame EOS consists of modeling the

impact of two aluminum bars over a range of impact velocities. The impact velocities

begin at an impact velocity of 500 m
s
, and are increased in increments of 500 m

s
until

a max velocity of 6000 m
s

is reached. The maximum velocity of 6000 m
s

is set to avoid
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a b
Flyer Plate Thickness of 0.13 mm Flyer Plate Thickness of 3.0 mm

Figure 3.4: Pressures Generated by Aluminum at an Impact Velocity of 2020 m/s
Using Different Flyer Plate Lengths

any melting that may occur at the higher impact velocities [21]. Any melting will

render the results generated by the Mie-Gruneisen EOS useless, due to the EOS’s

inability to handle phase transitions on its own. Both EOS will be used to model the

impact at each impact velocity value. The results generated for each EOS will then

be compared.

3.1.2 Results of Uniaxial Impact Simulations with Aluminum Comparing the

Mie-Gruneisen and Sesame EOS. In this section, the results generated by the

uniaxial impacts of Aluminum are presented and analyzed. First, the values of the

thermodynamic variables generated are plotted against their respective impact ve-

locities. This compares the ability of the Mie-Gruneisen and Sesame EOS to model

impact phenomena. Then the thermodynamic variables are plotted against each other

determining how the two EOS handle the thermodynamics of the system.

Figure 3.5 shows how the different thermodynamic variables change with respect

to impact velocity. Upon study, Figure 3.5 shows the numerical values of temperature
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Figure 3.5: Comparison of Numerical Values of Density, Temperature, Pressure and
Internal Energy Generated by the Sesame and Mie-Gruneisen EOS for Aluminum

and density generated by the Mie-Gruneisen and Sesame EOS diverging as the impact

velocity increases. This is in contrast with the generated values of internal energy and

pressure, which appear to correlate well over the entire range of impact velocities.

This correlation indicates the pressures and internal energies generated for particular

impact scenarios will be close in value, regardless of whether the Mie-Gruneisen or

Sesame EOS are used.

Figure 3.6 gives the percent difference between the thermodynamic values gener-

ated by the Sesame and Mie-Gruneisen EOS over the entire range of impact velocities.

The percent difference of temperature is represented by a dashed line, showing as the
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impact velocity increases the percent difference between the EOS also increases. This

increase in difference between the values generated with the different EOS is reflective

of what is seen in Figure 3.5b, meaning the generated temperatures correlate well at

impact velocities below 3500 m
s

with percent differences of less than 2%, while at

higher impact velocities the percent difference increases at a faster rate. The density

percent difference curve, represented with a solid line, shows the difference between

the values generated using the two EOS remains within remain between 2% and 3%,

while showing a steady increase over the entire range of impact velocities. The density

curve also reflects what is seen in Figure 3.5a.

The percent differences of internal energy and pressure, represented by the

dashed dot line and dotted line respectively, do not appear to reflect what is seen

in their respective graphs in Figure 3.5, meaning the graphs in Figure 3.5 appear to

follow the same line, while the respective percent differences begin with high values

and decrease over the range of the impact velocities. These great percent difference

values at the low impact velocities and the low percent difference values at the high

impact values is due to the range of internal energy and pressure values generated.

For example, the standard deviation, a measure of variability representing the average

difference of two sets of data from the mean of said data sets [11], of the difference

between the values of internal energy generated with the two equations of state is

13.9 kJ
kg

. The standard deviation of the difference is 4.4% of the internal energy

(283 kJ
kg

) generated at an impact velocity of 500 m
s
, but it is 0.3% of the internal

energy (4659.1 kJ
kg

) generated at an impact velocity of 6000 m
s
. The values of pressure

follow a similar pattern, though not as extreme. Bottom line, this all means the two

EOS correlate better at high impact velocities than they do at lower ones.

The effects the different EOS have on the temperature generated over the range

of impact velocities is now considered. Recall from Section 2.5.0.4, below a certain

temperature, Te, the Sesame EOS of aluminum is made up of two different parts, the

zero-Kelvin curve, pc and the lattice vibration term, pl. These two partitions are the

same partitions that compose the Mie-Gruneisen EOS. This indicates below Te, the
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Figure 3.6: Percent Difference in Values Generated with the Sesame and Mie-
Gruneisen EOS for Aluminum for Given Impact Velocities

numerical values generated by each EOS should correspond with each other. The

numerical answers generated by the two EOS may even match, if particular material

values coefficients are used by the Mie-Gruneisen EOS. Above Te, the Sesame EOS

contains a component accounting for the electronic excitation component, pe. This

suggests at temperatures above Te, the numerical answers generated by the Sesame

EOS will diverge from those generated by the Mie-Gruneisen EOS.

For Aluminum, the value of Te is approximately 940 K [21], which according to

Figure 3.5b, occurs between the 3500 m
s

and 4000 m
s

impact velocities. Figure 3.5b

shows, as predicted, at impact velocities below 4000 m
s

the answers for the Mie-

Gruneisen and Sesame EOS correspond well with each other. It also shows at impact

velocities above 4000 m
s

the temperatures generated using the Mie-Gruneisen EOS

increase at a faster rate than those generated using the Sesame EOS. This trend is

also seen in Figure 3.6 where the percent difference between the numerical values

of temperature is less than 2% at impact velocities below 4000 m
s

while at impact

velocities equal to or greater than 4000 m
s

the value of percent difference is greater

than 2%. Also apparent in Figure 3.6 is an inflection point in the percent difference
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curve located below the impact velocity of 4000 m
s

corresponding to the impact velocity

where the electronic excitation contribution to the Sesame EOS begins.

This difference in temperature stems from the electronic excitation term in the

Sesame EOS. When the temperature of a material becomes high enough, the electrons

become excited and leave their ground states. During this process thermal energy is

absorbed, resulting in the lower temperatures produced above Te when using the

Sesame EOS.

Figure 3.5a is used to determine how the densities generated with the different

EOS change over the range of impact velocities. In this figure the density generated

by the Sesame EOS is represented by a solid line, the densities generated by the

Mie-Gruneisen EOS are represented by a dashed line, and a third set of densities

represented by the dashed/dotted were generated by translating the Mie-Gruneisen

generated densities downward. This third line allows an easier comparison of how

the Mie-Gruneisen and Sesame EOS affect the densities generated over the range of

impact velocities.

From Figure 3.5a it is apparent that the densities generated begin to diverge

from each other right away. To better determine the cause of this, the densities are

plotted against the respective temperatures as shown in Figure 3.7. In this figure it is

observed that at lower temperatures, values of the densities generated by the different

EOS are very close, then at a temperature of just above 420 K the densities begin

to diverge. Since 420 K is smaller than the value of Te for aluminum, it is indicative

that the density’s divergence is a result of the different theories used to generate the

vibrational terms used in the Mie-Gruneisen and Sesame EOS. The density at which

this divergence occurs will be referred to as ρl and is about 3.2 kg
m3 . This density

divergence is also apparent in Figure 3.6, showing an inflection point at an impact

velocity of about 1500 m
s
, which produces a density just under ρl.

The cause of the divergence at the earlier temperature is explained using Equa-

tions (2.69) and (2.70) from Section 2.5.0.4. These equations determine the Debye
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Figure 3.7: Densities Generated Using the Mie-Gruneisen and Sesame EOS Plotted
Against Their Corresponding Temperatures

function and lattice vibration’s contribution to the internal energy, respectively . The

Debye function is a parameter used in Equation (2.69). The key parameter in the De-

bye function is the ratio of the Debye temperature to the absolute temperature,
Θref

T
.

When this value is equal to one an inflection point occurs. The Debye temperature

for aluminum is 426 K [14], approximately the same temperature where the two EOS

begin to diverge. This confirms the divergence is due to the different theories used in

development of the lattice vibration contributions and is not numerical.

In CTH internal energy and pressure are state functions of temperature and

density, not impact velocity. So, internal energy and pressure need to be plotted

against the thermodynamic state parameters of temperature and density before any

observations are made about the thermodynamics included in the Sesame or Mie-

Gruneisen EOS.

Figure 3.8 shows the values of pressure and internal energy generated with

their respective temperatures. Looking at these graphs it is obvious that at a given

temperature value, the values of pressure and internal energy generated using the

different EOS begin to diverge. In Figure 3.8 it is quite apparent the values of internal

energy produced by the two EOS begin to diverge at a temperature of 490 K, the

value of Te for aluminum. For clarification, a heavily dotted line is inserted in Figures
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Figure 3.8: Comparison of Numerical Values of Pressure and Internal Energy Gen-
erated by the Sesame and Mie-Gruneisen EOS Graphed with Respect to the Corre-
sponding Temperatures

3.8a and 3.8b at the temperature value of 490 K. However, the temperature where

the divergence begins to occur on the pressure graph appears to be greater than the

value of 490 K. To determine if this is truly the case, consider Figure 3.9, where it

is apparent that up until Te the values of pressure generated with the different EOS

follow the same line, then, as the temperature reaches Te, the values of the pressures

begin to diverge, albeit slowly. This slow rate of divergence would indicate that for

temperatures between 940 K and 1400 K the contribution of the electronic excitation

term to the Sesame EOS for pressure is minimal and depending on the application,

could be assumed negligible when modeling impact phenomena.

Figure 3.10 has the variables of internal energy and pressure graphed against

their respective densities to illustrate how the different EOS generate these values

over a range of densities. Upon studying Figure 3.10, it is apparent that the values

for both internal energy and pressure begin to diverge at the value of ρl, and then

begin to diverge more at a density of 3.6 kg
m3 , which is the density that corresponds to

Te. Again, a heavily dotted line is provided to easily distinguish the position of ρl in

Figures 3.10a and 3.10b.
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Figure 3.10: Comparison of Numerical Values of Pressure and Internal Energy
Generated by the Sesame and Mie-Gruneisen EOS Graphed with Respect to the
Corresponding Densities
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It is interesting to note that when compared with respect to temperature as

in Figure 3.8, the values of internal energy and pressure do not show the divergence

caused by the different lattice vibration theories used in the two EOS. However, this

divergence is more obvious when internal energy and pressure are compared using

density as is the case in Figure 3.10. This signifies that both the Sesame and Mie-

Gruneisen EOS are more sensitive to changes in pressure than they are to changes in

temperature.

3.2 Comparison of Sesame and PTRAN EOS Using the Impact of Iron

Plates

3.2.1 Procedure and Setup of Iron Impact Simulation. Section 3.1 lays

out the method used to compare the Mie-Gruneisen and Sesame EOS for a non-

polymorphic material, allowing for a direct comparison between the EOS. Iron, as

mentioned in Chapter 2, is a polymorphic material that, when certain pressures are

reached, undergoes a solid-solid phase transition from the α iron state to the ε iron

state. Since the Mie-Gruneisen EOS cannot handle this phase change on its own, the

composite EOS, PTRAN, will be compared to the Sesame EOS. Recall, PTRAN uses

the α and ε Mie-Gruneisen EOS in their respective pressure regions and uses Equation

(2.81) (shown here) to solve for the pressure in the region of the phase transition.

P (ρ, T, λ) = PT + βT

(
1 − ρT

ρ

)
+ AT (T − T0) + Aλλ

Since the purpose of this portion of the investigation is to compare the equilibrium

values of the thermodynamic variables generated by the PTRAN EOS, as an equi-

librium substitute for the Mie-Gruneisen EOS, the reversible option of the PTRAN

EOS is used.

The Sesame and PTRAN EOS will simulate experiments involving the impact

of iron, as is detailed in Barker and Hollenbach [5]. Figure 3.11 shows the experi-

mental setup used in their experiments. Figure 3.11 shows the flyer plate on the left,
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Figure 3.11: Schematic of Iron Plate Experiment Setup [5]

supported by the projectile body and an aluminum support providing added stability

if the thickness of the steel flyer plate is less than 12 mm thick. The target plate is

shown on the right along with the velocity probes measuring the the impact velocity

protruding from the target plate, and the Velocity Interferometer System for Any

Reflector (VISAR) laser system used to measure the peak free surface velocity be-

hind the stress wave. The geometries and impact velocities of the experiments being

modeled are given in Table 3.2.

In the experiment, the relatively small thicknesses of the flyer plate and target

compared to their diameters, allows the assumption that any effects from the outer

surfaces will not affect wave propagation in the centers of the flyer plate and target.

This assumption allows the system to be modeled uniaxially. Initially the tracer

points used to measure the wave history of the material are placed at the back of

the target, matching the experimental setup. However, interference caused by shock

waves reflecting off the back of the target stunted the development of the shock waves.

To correct this, the location of the tracer point is moved to the center of the target,

allowing the compression waves to fully develop.
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Table 3.2: Summary of Barker and Hollenbach’s Experimental Configurations
Experiment Flyer Target Impact
Number Thickness Thickness Velocity

(mm) (mm) (m
s
)

1 6.330 6.317 991.6
2 6.350 6.312 1150
3 19.14 15.82 997
4 19.14 15.82 1247
5 6.314 6.314 1292
6 6.337 6.370 1567
7 12.82 19.14 1292
8 12.81 19.13 1557
9 6.337 6.345 1900
10 6.325 6.335 1871
11 6.330 19.07 1887
12 6.327 19.06 1908
13 6.320 6.380 671.1
14 6.335 6.375 612.7
19 19.15 15.76 1396

The geometry and impact velocity of each experiment is numerically simulated

in CTH using both the PTRAN and Sesame EOS. The pre-defined Mie-Gruneisen

coefficients contained in CTH are used for the modeling of the α and ε phases of iron

with the PTRAN EOS. The Zerrili-Armstrong constitutive relationship is utilized to

model iron’s material response to the impacts using the predefined ZA coefficients for

iron.

3.2.2 Results Generated by the Numerical Simulation of the Impact of Iron

Plates .

3.2.2.1 Comparison of the Equilibrium Values. In this section CTH

results generated using the Sesame and PTRAN EOS, in the numerical simulation of

Barker and Hollenbach’s experiments are presented and discussed. Then, for further

understanding of the differences between the Sesame and PTRAN EOS, additional

impact simulations are performed and their results discussed.
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Table 3.3: Barker and Hollenbach’s Experimental Results
Impact Free Surface Specific Peak
Velocity Velocity Volume Stress

(m
s
) (m

s
) (m3

kg
) (GPa)

612.7 308.35 0.1197 12.1
671.1 337.58 0.1187 13.2
991.6 500.30 0.1123 17.3
997.0 505.83 0.1122 17.3
1150 581.98 0.1108 20.4
1247 633.64 0.1100 22.6
1292 655.17 0.1095 23.6
1292 657.84 0.1096 23.7
1396 711.88 0.1086 26.1
1557 791.56 0.1072 30.1
1567 792.21 0.1071 30.4
1871 949.26 0.1047 38.6
1887 NA 0.1046 39.1
1900 961.54 0.1046 39.6
1908 969.02 0.1045 39.8

Barker and Hollenbach used a VISAR laser to measure the peak free-surface

velocity behind the stress wave. Hugoniot relationships were then used to determine

the peak stresses and specific volumes behind the stress wave. Table 3.3 [5] contains

their measured velocities, calculated stresses and calculated specific volumes. In this

section the results in Table 3.3 are compared to numerically generated values using

the procedure laid out in Section 3.2.

The numerically generated results using the Sesame and PTRAN EOS are

graphed with Barker and Hollenbach’s results in Figure 3.12. In Figures 3.12a and

3.12b it is evident that the numerical answers generated with the Sesame and PTRAN

EOS both match the free surface velocity and peak stress, which relies heavily on pres-

sure, quite well. However, in Figure 3.12b the values of specific volume generated by

the Sesame EOS are lower than those generated by the PTRAN EOS in regions where

the impact velocity is high enough to cause the ε phase of iron to be present. Since the

specific volume is the reciprocal of density, these results indicate the Sesame EOS is
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Figure 3.12: Comparison of Experimental and Numerical Values of Free Surface
Velocity, Specific Volume and Peak Stress for Barker and Hollenbach’s Impact Exper-
iments with Iron

generating higher values for density than the experimental values and those generated

by the ε Mie-Gruneisen part of the PTRAN EOS.

Table 3.4 lists the standard deviation of the difference between the experimen-

tal results and those generated using the Sesame and PTRAN EOS. The standard

deviation of the difference between the Sesame and PTRAN EOS is also included

in Table 3.4. By comparing the standard deviations in the table, the ability of the

different equations of state to generate answers comparable to experimentally deter-

mined values may be determined. From the table it is apparent the particle velocities

generated using both EOS compare equally well with the experimentally measured
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velocities. However, this is not the case for the numerically generated values of specific

volume and stress. According the the table, the values of specific volume and stress

generated using the PTRAN EOS are closer to the experimentally determined values

than the specific volumes and stresses generated using the Sesame EOS. As previously

discussed the large differences in the numerical specific volumes generated occur at

impact velocities producing ε iron. This is due to different reference densities used

by the PTRAN and Sesame EOS for ε iron. The difference in the numerical stresses

generated are likely caused by the dissimilar ε reference densities. Though stress is

not a thermodynamic variable and therefore is not found using a thermodynamic state

function, the Zerilli-Armstrong constitutive relationship is a function of temperature,

which relies on the density for its generation. Thus the numerical stresses rely on a

thermodynamic parameter and are affected indirectly by the difference in densities.

Table 3.4: Comparison of the Standard Deviations Between the Experimental Val-
ues, Values Generated Using the Sesame and Mie-Gruneisen EOS for the Impact of
Iron

State SD of Sesame EOS SD of PTRAN EOS SD of Sesame EOS
Variable & Experiment & Experiment & PTRAN EOS
Velocity

(
m
s

)
4.3977 4.6126 4.0316

Volume
(

m3

kg

)
3.0105 ∗10−4 1.0207 ∗10−4 2.4252 ∗10−4

Stress (GPa) 0.2005 0.1081 0.2504

The numerical values of temperature and internal energy generated by the dif-

ferent EOS can only be compared to each other, because Barker and Hollenbach did

not provide experimentally determined values of these variables for comparison. The

values of temperature and internal energy are plotted against their respective impact

velocities in Figure 3.13. In Figure 3.13a its apparent the values for internal energy

generated by different EOS are close in value. However, the temperatures values gen-

erated using different EOS in Figure 3.13b are significantly different. Figure 3.13b also

appears to show the Sesame EOS generated temperature values starting to diverge

from the PTRAN EOS values at the impact velocity of 1557 m
s
, corresponding to a

temperature of 511.2 K. These results agree with the Sesame EOS for iron, which has
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Figure 3.13: Comparison of Numerical Values of Temperature and Internal Energy
for Barker and Hollenbach’s Impact Experiments with Iron

a Te of 500 K. However it is difficult to determine if this is actually the case, because

the maximum values of the temperatures generated by the PTRAN and Sesame EOS

are 638 K and 600 K, respectively, which are not that much greater than iron’s Te.

Overall the numerical values generated using both the Sesame and PTRAN

EOS compare well with the experimental results. The exception being difference in

the density values generated with the Sesame EOS. The densities produced by CTH

using the Sesame EOS in the aluminum impacts, are different than those generated

using the Mie-Gruneisen or PTRAN EOS. However in both cases the pressures and

internal energies generated by the different EOS are similar. This suggests that the

”more accurate” EOS depends on the application, meaning if the pressures generated

are the important output, either EOS may be used. However, if knowing the density

is important, the selection of EOS is more critical. It also underlines the importance

of validating numerically generated solutions to assure the correct EOS is being used

for the desired application. For example, in the case of the iron experimental impacts,

the values of density generated with the Mie-Gruneisen EOS provide the better match

to the experimental values. This indicates the PTRAN EOS is the EOS of choice for

iron impact simulations at the velocities used by Barker and Hollenbach.
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In order to determine more about the differences between the PTRAN and

Sesame EOS additional data points are needed. To obtain these, additional runs are

performed at impact velocities of 400, 500, 2500, 3000, 3500, and 4000 m
s
. The impact

values of 400 and 500 m
s

are impact velocities where the pressures generated do not

cause the α → ε phase transition. These values compliment the experimental impact

velocity of 612.7 m
s

by providing more data points where only the α phase of iron is

present. The geometry used in the 612.7 m
s

is used for the impact velocities of 400 m
s

and 500 m
s
. The temperatures produced in the simulation of Barker and Hollenbach’s

experiments using either EOS are not much higher than iron’s Te value of 500 K. The

impact velocities of 2500, 3000, 3500 and 4000 m
s

are meant to produce significantly

higher temperatures than 500 K, providing clarification of how the different EOS act

at temperatures higher than Te.

Figure 3.14 presents the values of density, temperature, internal energy and

pressure generated by the Sesame and PTRAN EOS for the whole range of impact

velocities.

There are several observations that can be made while studying Figure 3.14. The

first is the similar results generated by each EOS for the values of pressure and internal

energy. This is consistent with what is seen when comparing the Mie-Gruneisen and

Sesame EOS in aluminum impact tests. In Figure 3.14b it is also apparent that at

temperatures above 500 K (corresponding with impact velocities greater than 1557 m
s
),

the temperature values generated by the Sesame and PTRAN EOS begin to diverge.

As is the case in the Sesame EOS for aluminum, the lower temperature generated in

the Sesame EOS is due to the thermal energy being absorbed as the iron’s electrons

become excited and leave their ground states. Also apparent in Figure 3.14a is the

difference in the densities generated for ε iron. This agrees with the results seen

in Figure 3.12a, however due to the greater range of density values in Figure 3.14a

it appears the density values generated by the different EOS correlate better than

originally thought. It may be possible to force the density values generated with

the Mie-Gruneisen EOS to match those generated by the Sesame EOS for the ε iron
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Figure 3.14: Comparison of Numerical Values of Density, Temperature, Pressure
and Internal Energy Generated by the Sesame and PTRAN EOS
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producing impact velocities. This however, will cause the Mie-Gruneisen EOS to

produce different pressures and internal energies, emphasizing the need to perform

validation runs to assure the EOS chosen for use in numerical simulations is the

appropriate one.

Figures 3.14a, 3.14c and 3.14d also contain α → ε phase transition regions in the

curves generated, denoted by regions containing several discontinuities. According to

these graphs, the impact velocities causing the phase change lie between 612.7 m
s
,

which is the last impact velocity resulting in the pure α phase, through the first

impact velocity resulting in a fully developed ε phase at 997 m
s
.

To provide more information on how well the numerical values of the thermo-

dynamic variables correlate with each other, Figure 3.15 shows the percent difference

between the values of the thermodynamic variables generated using the two EOS. Fig-

ure 3.15 shows that the values of density, internal energy and pressure generated by

the different EOS correlate well with each other throughout the entire range of impact

velocities, meaning the percent difference is never greater than 2%. This indicates

either the PTRAN or Sesame EOS will produce acceptable value of internal energy,

density and pressure when used to model impact phenomena. The percent difference

curve for temperature, represented by a dashed line, shows a great difference in the

values of the temperatures generated at impact velocities producing ε iron. The per-

cent difference then jumps again after iron’s Te value of 500 K is reached at impact

velocities greater than 1557 m
s
. So, if the values of temperatures generated in the

simulation of impacts are of great importance, the choice of EOS is critical. If high

temperatures are expected to be produced in the impacts, the use of the Sesame EOS

is necessary, because it accounts for the thermal effects from the electronic excitation

while the Mie-Gruneisen and therefore the PTRAN EOS do not.

Figure 3.16b shows the temperatures generated by both EOS are affected by the

phase transition. The figure also illustrates the temperatures generated by the Sesame

EOS in the ε region are lower than the temperatures generated by the PTRAN EOS.
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Figure 3.15: Percent Difference in Values Generated with the Sesame and Mie-
Gruneisen EOS of Iron for Given Impact Velocities

This agrees well with the percent difference curve for temperature in Figure 3.15.

There is no theoretical reason for the dissimilar values of temperature generated by

the two EOS for the ε phase of iron. This difference is most likely caused by the use

of dissimilar material properties values used by the different EOS for the ε iron phase.

As previously mentioned, impact velocity is not a thermodynamic state vari-

able, so further investigation of the Sesame and PTRAN EOS requires the relation-

ships between the thermodynamic variables of temperature, density, pressure and

internal energy be investigated. Figure 3.17 contains the values of density, pressure,

and internal energy generated by the Sesame and PTRAN EOS graphed against the

corresponding values of temperature.

Figures 3.17a, 3.17b and 3.17c all show the respective values of density, pressure

and internal energy for the different equations of state diverging at the Te value of

500 K, represented by a heavily dotted line. The electronic excitation term included

in the Sesame EOS accounting for the difference. In the density graph (Figure 3.17a),

a separate divergence precedes the divergence at Te, this divergence is due to the

dissimilar densities of the ε phase of iron used by the two EOS. This differs with
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Figure 3.16: Close-up of Temperature Values Generated by the Sesame and PTRAN
EOS Clearly Illustrating the Phase Transition in Iron

the cause of the early divergence of the densities seen in aluminum, which occurs

at the Debye temperature, the material property at which, the material lattices are

vibrating at the maximum frequency allowed by the Debye Distribution [33]. The

Debye temperature does not have an impact on the iron plate impact simulations

because neither iron phase ever cross their respective Debye temperatures. The Debye

temperature of α iron in the Sesame EOS is 425 K, but the maximum temperature

for α iron seen in the impact simulations is 343 K, occurring at an impact velocity of

612.7 m
s
. This indicates the α iron phase never reaches its Debye temperature. The ε

phase of iron has a Debye temperature of 385 K, which is reached just as the α → ε

phase transition is completed. This makes it difficult to determine if reaching the

Debye temperature has any impact on the thermodynamic properties generated by

the two EOS. If it does have an impact, it is difficult to determine what percentage of

the difference is caused by reaching ε iron’s Debye temperature and what percent of

the difference is caused by the different material properties used in the PTRAN and

Sesame EOS for ε iron.
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Figure 3.17: Comparison of Density, Pressure and Internal Energy generated by
the PTRAN and Sesame EOS with Respect to Temperature
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Figure 3.18: Comparison of Pressure and Internal Energy generated by the PTRAN
and Sesame EOS with Respect to Density

Figure 3.18 has the values of internal energy and pressure graphed against the

corresponding values of density. This figure shows values generated for internal energy

and pressure diverging at density values corresponding with the end of the α → ε phase

transition. This is consistent with the significant dissimilarities between the densities

generated with the different EOS shown in Figures 3.14a and 3.17b. Figures 3.14a

also show the density corresponding with the Debye temperature of ε iron, illustrating

the difficulty in determining if an additional divergence is occurring in this region.

3.3 Irreversible Thermodynamic Effects

In the previous sections the reversible option of PTRAN EOS is utilized to allow

for a comparison of the equilibrium thermodynamics included in the Mie-Gruneisen

and Sesame EOS. In this section the irreversible option of the PTRAN EOS is used,

and the results obtained are compared to those generated by the reversible form of

the PTRAN and the Sesame EOS. The purpose of this investigation is to use the

irreversible PTRAN EOS to determine if the the Sesame EOS is able to account for

any irreversibilities due to phase changes.

71



3.3.1 Procedure for Determining the Ability of the Sesame EOS to Generate

Irreversibilities. The PTRAN EOS with the reversible option is used in the simula-

tion of uniaxial impacts for three different impact velocities , 1557, 2500 and 3500 m
s
.

The impact geometries used are the same as those used in Section 3.2 for the impact

scenarios with the corresponding impact velocities. Table 3.5 contains the respective

geometries for the different impact velocities. The only difference in these simulations

is the use of the irreversible PTRAN option, everything else in the input deck remains

the same.

Table 3.5: Impact Velocities and Geometries for Irreversible PTRAN Investigation

Impact Flyer Target
Velocity Thickness Thickness(

m
s

)
(mm) (mm)

1292 6.314 6.314
2500 6.327 19.06
2500 6.327 19.06

3.3.2 Analysis of the Determining the Ability of the Sesame EOS to Gener-

ate Irreversibilities. Tables 3.6, 3.7 and 3.8 contain the thermodynamic values

of pressure, temperature, internal energy and density generated using the irreversible

PTRAN EOS, the reversible PTRAN EOS and the Sesame EOS for each of the impact

velocities used. These values are measured at a region well behind the front of the

compression wave to assure the respective values are equilibrium values. Comparing

the thermodynamic values generated behind the shock determines if the irreversibil-

ity effects of the irreversible PTRAN EOS affect the equilibrium thermodynamics

variables generated by the EOS.

Table 3.6 contains the thermodynamic values generated at an impact velocity

of 1292 m
s
. The values of internal energy and pressure generated by the three EOS

are all within 1% of each other, while the pressures generated are all within 2% of

each other. The temperatures generated with the different EOS represent the only

thermodynamic variable where all the values generated are not within a few percent
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or each other. This discrepancy is caused by the temperature generated using the

irreversible PTRAN EOS, which is 5.8% larger than the temperatures generated using

the reversible PTRAN and Sesame EOS.

From Tables 3.7 and 3.8 it is ascertained the values of pressure, internal energy

and density are all within 1.1% of each other. Again the temperatures generated at

the velocities of 2500 and 3500 m
s

are the only thermodynamic variables with a span

greater than 2% (8.5% for the impact velocity of 2500 m
s

and 10.1% at an impact

velocity of 3500 m
s
). In these cases however, the rouge temperatures are generated

by the Sesame EOS and are due to the inclusion of the electronic excitation term

included in the Sesame EOS.

Unfortunately the cause of the high temperature generated by the irreversible

PTRAN EOS cannot be satisfactorily explained. High temperature value aside, the

irreversible PTRAN EOS generates equilibrium thermodynamic values comparable to

the reversible PTRAN EOS, and compares well with the Sesame EOS also.

Table 3.6: Thermodynamic Variables Generated by the PTRAN EOS with Re-
versible and Irreversible Options and Sesame EOS for a Uniaxial Impact with an
Impact Velocity of 1292 m

s

EOS Pressure Temperature Internal Density
Energy

(GPa) (K)
(

kJ
kg

) (
kg
m3

)
PTRAN irreversible 23.75 451.6 361.96 9.121
PTRAN reversible 23.82 425.2 361.25 9.123
Sesame 23.43 425 364.5 9.183

One of the purposes of this thesis is to determine if the Sesame EOS is capable

of modeling any irreversible thermodynamics whatsoever. According to the results

generated in the simulations of uniaxial impacts involving aluminum, it is apparent no

irreversibilities are included in the Sesame EOS. However, by modeling a polymorphic

material, such as iron, an irreversibility is introduced in the phase transition. Looking

at the equilibrium values generated by the reversible and irreversible PTRAN EOS

and the Sesame EOS, no conclusions about the irreversible nature of the Sesame EOS
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Table 3.7: Thermodynamic Variables Generated by the PTRAN EOS with Re-
versible and Irreversible Options and Sesame EOS for a Uniaxial Impact with an
Impact Velocity of 2500 m

s

EOS Pressure Temperature Internal Density
Energy

(GPa) (K)
(

kJ
kg

) (
kg
m3

)
PTRAN irreversible 57.69 953.8 900 9.976
PTRAN reversible 57.5 952.4 891.67 9.963
Sesame 57.22 897.4 897.12 10.023

Table 3.8: Thermodynamic Variables Generated by the PTRAN EOS with Re-
versible and Irreversible Options and Sesame EOS for a Uniaxial Impact with an
Impact Velocity of 2500 m

s

EOS Pressure Temperature Internal Density
Energy

(GPa) (K)
(

kJ
kg

) (
kg
m3

)
PTRAN irreversible 93 1750 1625 10.611
PTRAN reversible 92.35 1750.4 1619 10.610
Sesame 92 1590 1625 10.656

may be made. So, now the ability of the different EOS to model the history of a

compression wave is investigated. Figure 3.19 shows the wave histories generated

using the three EOS discussed in this section.

Figures 3.19a and 3.19b show the irreversible and reversible forms of the PTRAN

EOS. Comparing these two figures it is noticed the front portion of the compression

wave is not affected by the irreversibility option. The back of the compression waves

are formed very different, however. The back of the compression wave generated

with the irreversible option on shows a rounded portion where the ε → α phase

change takes place followed by a sloped portion formed by the rarefaction wave. This

contrasts with the compression wave generated using the reversible PTRAN EOS

showing a flat ε → α region and a sharp drop off in the region formed after the phase

change formed by a rarefaction wave.
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a. Irreversible PTRAN EOS b. Reversible PTRAN EOS

c. Sesame EOS

Figure 3.19: Comparison of Sesame EOS to Reversible and Irreversible Forms of
the PTRAN EOS
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Figure 3.20: Schematic of Flyer Plate Test Setup

The compression wave history generated with the Sesame EOS has the same

drop off in the region behind the ε → α phase transition seen on the compression

wave generated using the reversible PTRAN EOS. However, in the region of the

ε → α transition it is rounded, similar to that of the irreversible PTRAN EOS gen-

erated compression wave. This signifies that the Sesame EOS, in spite of using an

equilibrium approach in determining the thermodynamics of the phase transition re-

gion by selecting the phase with the lower Gibbs free energy, is capable of modeling

irreversible thermodynamics in the region of a phase change.

3.4 Flyer Plate Experiment

3.4.1 Procedure and Experimental Setup. While Cinnamon [9] was conduct-

ing his research on gouging for the HHSTT, flyer plate tests were performed at the

University of Dayton Research Institute (UDRI) to assist in the determination of the

Zerrili-Armstrong (ZA) coefficients used to model the material response of 1080 steel.

A schematic of the test setup is shown in Figure 3.20, which shows the flyer plate

on the right attached to a sabot for support. The target plate is on the left with a

stress gauge between it and a layer of PMMA. The impact velocity is measured using

velocity pins located just to the right of the target and are shown protruding through

the barrel of the gas gun. To determine the correct ZA coefficients for 1080 steel,

Cinnamon produced a uniaxial flyer plate model in CTH using the Sesame EOS of

iron and manually specifying the ZA coefficients for 1080 steel. He then ran the simu-
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lations while modifying the values of the ZA coefficients, until the numerical answers

produced by CTH matched the experimental data.

In this investigation, the CTH model used by Cinnamon is run using the α iron

Mie-Gruneisen EOS, the reversible and irreversible forms of the PTRAN EOS and

the Sesame EOS. For alloy metals such as steel, it is an accepted approximation to

model the alloy using the EOS for it’s prime constituent, in this case iron [43]. This

corresponds to what Cinnamon did in his simulation, and is the method used in this

investigation. Due to the relatively low impact velocity, only the α iron Mie-Gruneisen

EOS coefficients are used to simulate 1080 steel impacts.

The ZA coefficients for 1080 steel used in this simulation are located in Table

3.9. These are the coefficients determined by Cinnamon to accurately model the

reaction of 1080 steel when subjected to high velocity impacts.

Table 3.9: Zerilli-Armstrong Coefficients for 1080 Steel
Coefficient A c1 c2 c3 c4 c5 n
Value 0.825 4.0 0 160.0 12.0 0.266 0.089

The different EOS will be used to simulate the impact of 1080 steel at an

impact velocity of 891 m
s
. The results obtained from these simulation will then be

compared. The tracer point used to generate the stress wave histories is located in

the target 6.25 mm away from the point of impact. To avoid any interference from

wave reflections at the iron/PMMA interface, the PMMA will be modeled as iron.

This also matches the methodology used by Cinnamon, and is justified because the

PMMA is located behind the tracer point and has no effect on the development of

the stress wave.

3.4.2 Results of Flyer Plate Experiment. Figure 3.21 contains the stress

waves generated in the CTH simulation of the flyer plate experiments performed by

Cinnamon, using the α Mie-Gruneisen, reversible and irreversible PTRAN EOS and

the Sesame EOS. The stress wave measured in the lab is located in Figure 3.22,
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superimposed on the CTH generation of the stress wave Cinnamon used to determine

the correct ZA coefficients for 1080 Steel [9].

Upon study, all the EOS correctly generate the value of the Hugoniot Elastic

Limit (HEL) and are able to model the elastic precursor. This, however is the only

similarity between the numerical results generated with the Sesame, PTRAN and α

Mie-Gruneisen EOS. There are two reasons the single phase Mie-Gruneisen EOS is

able to model accurately model the value of the HEL. The first reason is the HEL

is a material response modeled by the constitutive equations and therefore is not

determined by the EOS. The other reason is the value of the HEL is well within the

limits of the α phase of iron.

The differences in the results generated using the Mie-Gruneisen EOS as opposed

to those generated by the Sesame and reversible PTRAN EOS will be examined first.

The two major differences in the Mie-Gruneisen generated results as opposed to those

generated with the Sesame or PTRAN EOS include, the higher value of peak stress

generated with the Mie-Gruneisen EOS and the relatively small depth to the stress

wave generated.

The lack of depth in the stress wave is caused by a rarefaction wave relieving

the stress wave sooner with the Mie-Gruneison generated results than the Sesame

or PTRAN results. The velocity of a shock wave propagating through a material is

found using the linear equation, Eqn 3.2 [38]:

Us = C0 + Sv (3.2)

where Us is the shock wave velocity. Us is linearly related to the velocity of the

material particles located behind the shock wave. Table 3.10 gives the values of the

peak particle velocity found with each EOS. Table 3.10 shows the peak particle speed

generated with the Mie-Gruneisen is approximately 32% higher than those generated

with the other EOS. This leads to a higher shock wave velocity causing the rarefaction
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a. Reversible PTRAN EOS b. Irreversible PTRAN EOS

c. Sesame EOS d. Mie-Gruneisen EOS for the α Iron Phase

Figure 3.21: Comparison of Stress Waves Generated with the Mie-Gruneisen,
PTRAN and Sesame EOS
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Figure 3.22: UDRI Results Superimposed on Cinnamon’s CTH Generated Stress
Wave

wave to reach the location of the tracer point in less time resulting in the smaller depth

of the Mie-Gruneisen generated stress wave.

Table 3.10: Peak Particle Velocities Generated by Different EOS
EOS Velocity (m

s
)

Mie-Gruneisen 738.5
Sesame 334.4
Reversible PTRAN 331.7
Irreversible PTRAN 329.4

The difference in peak stress value is caused by the inability of the Mie-Gruneisen

EOS to handle the phase change of iron. Equation (2.15) in Section 2.2.2 shows that

the hydrostatic pressure produced in an impact is a major contributor to the overall

value of stress seen by the material. The peak values of the pressures generated with

each EOS are given in Table 3.11. The values given in Table 3.11 show that the

pressures generated with the Sesame and PTRAN EOS are approximately equal to

the transition pressure of iron. The Mie-Gruneisen EOS does not account for iron’s
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phase transition and generates a higher value of peak pressure, resulting in a higher

peak stress value.

EOS Pressure (GPa)
Mie-Gruneisen 17.6
Sesame 12.9
Reversible PTRAN 12.8
Reversible PTRAN 12.7

Table 3.11: Peak Pressures Generated by Different EOS

Comparing the stress waves generated using the reversible and irreversible forms

of the PTRAN EOS shown in Figures 3.21a and 3.21b respectively it is apparent the

reversible - irreversible option in the PTRAN EOS may have a major impact on the

results generated. The reversible form of the PTRAN EOS generates a stress wave

with more depth than the stress wave produced using the irreversible form. Unlike

the difference seen between the Mie-Gruneisen and Sesame and reversible PTRAN

EOS generated stress waves, there is no obvious physical reason for the different

shape of the stress wave generated by the irreversible PTRAN EOS. Meaning the

velocities behind the stress waves generated using the different forms of the PTRAN

EOS compare very well (331.7 m
s

generated with the reversible form compared to

329.4 m
s

produced by the irreversible form), so the plastic wave velocities should also

compare well by generating stress waves of equal depth. In spite of the different stress

wave shapes, the magnitude of the peak stress generated with the irreversible PTRAN

EOS is comparable to that generated using the reversible form of the PTRAN EOS,

12.7 and 12.8 GPa respectively. The results generated using the two PTRAN EOS

indicate care must be used in the use of the PTRAN EOS in the modeling of impact

events causing phase transitions.

Finally, it has been determined the Sesame and reversible PTRAN EOS appear

to generate similiar results. To verify this, the results generated using the two EOS

are compared to the experimental results in Figure 3.22. Looking at the different

results, it is apparent that both the Sesame and reversible PTRAN EOS generate
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reasonable stress wave histories, both in peak stress value, just below 13 GPA, and

correct wave depth, around 2 μs.
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IV. Validation of the Vanderhyde Finite Volume Code

(VFVC)

4.1 Validation of VFVC Using Aluminum

4.1.1 Procedure. The validation of the VFVC consists of simulating the

impact of aluminum using the VFVC and comparing the answers generated with

answers generated by CTH using both the Mie-Gruneisen and Sesame EOS. The

simulation consist simulating the same set of impact velocities and geometries used

in Section 3.1. A cell width of 0.0018 cm is used in the validation using aluminum.

The VFVC also requires additional material properties in order to model aluminum’s

constitutive response to impact. These additional parameters are given in Table 4.1,

where Y is the value of aluminum’s yield stress, e0 is the initial value of the specific

internal energy of iron, G is the shear modulus of aluminum and H is the linear work

hardening rate.

Table 4.1: Additional Material Parameters Needed by the Eulerian Code
Coefficient Y e0 G H
Value 34.747 MPa 268125 J

kg
25 GPa 120 MPa

Source [12] [21] [4] [31]

For every simulation, the VFVC produces two output files. One shows what is

happening over the region of the entire grid, while the other output file provides the

history of a single point over the run time of the simulation. A post processing tool

written in Matlab then reads the output files and presents the data in an intelligible

manner.

The results generated by the VFVC are then compared to the numerical data

generated by CTH using both the Sesame and Mie-Gruneisen EOS.

4.1.2 Validation of the Finite Volume Code with Impacts Between Aluminum

Plates. Figure 4.1 shows the thermodynamic properties behind the shockwave

generated by the VFVC compared to those generated with the Mie-Gruneisen and

Sesame EOS in CTH. Figure 4.1a contains an additional curve that consists of the
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Figure 4.1: Comparison of Density, Internal Energy and Pressure generated by the
Finite Volume Code and CTH

density values generated by the VFVC translated to the right for an easier comparison

the densities generated with the VFVC and CTH, using the Sesame EOS, over the

range of impact velocities. Upon examination of Figures 4.1a and 4.1c, it is apparent

that the values of density, pressure and internal energy generated by the VFVC match

the values produced by CTH quite well.

For a quantitative comparison of how the well the VFVC matches the ther-

modynamic values generated with the different EOS in CTH, Table 4.2 contains the

standard deviations (SD) between the the results generated with the VFVC, Sesame

EOS and Mie-Gruneisen EOS in CTH. The SD is a measure of variability representing

the average difference of a sets of data from the mean of said data sets [11] making
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it an ideal value in determining how the values generated by the VFVC and CTH

compare. The SD in Table 4.2 of the densities and pressures generated, clearly shows

that the VFVC and Mie-Gruneisen EOS match very well with the respective SD of

0.0068 kg/kJ and 0.1471 GPa. The SD of 40.257 kJ/kg for internal energy is also

fairly small considering the the orders of magnitude for internal energy are 103 and

104. Table 4.2 also shows that the SD between the answers generated with the VFVC

and CTH using the Sesame EOS are comparable to the ST between the answers

generated using the Sesame and Mie-Gruneisen EOS in CTH. The values of the SD

between the different data sets generated lead to the conclusion that when modeling

a non-polymorphic material the thermodynamic variables generated by the VFVC

compare quite well to the values generated by CTH.

Table 4.2: Comparison of the Standard Deviations Between the VFVC, Sesame
EOS and Mie-Gruneisen EOS Generated Values

State SD of VFVC & SD of VFVC & STD of Sesame &
Variable Sesame EOS Mie-Gruneisen EOS Mie-Gruneisen EOS
Pressure (GPa) 0.3347 0.1471 0.3933

Density
(

kg
m3

)
0.0102 0.0068 0.0163

Internal
(

kJ
kg

)
39.191 40.257 44.303

Energy

Figure 4.2 shows the different wave profiles generated for pressure at an impact

velocity of 500 m
s

by CTH using both the Mie-Gruneisen EOS and the Sesame EOS,

and the results generated by the VFVC. Upon inspection the firgure shows that the

results generated by the VFVC behind the plastic wave are comparable to those

generated by CTH. The graphs also show that the VFVC fails to generate an elastic

precursor. This failure is caused by the 1st spatial order Lax-Friedrichs flux scheme,

which overloads the discontinuity with dissipation causing the compression wave to

spread itself out over several cells in the x-direction, thereby smearing out the elastic

precursor. Even with the addition of the MUSCL scheme, which produces a 2nd order

spatially accurate result is not enough to produce the elastic precursor. To remedy
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this problem either a less dissipative 1st order flux scheme needs to be used, or a third

order scheme needs to be introduced into the VFVC.

Overall several main observations are made about the similiarities and differ-

ences in the Mie-Gruneisen, PTRAN and Sesame EOS. This includes the similar

pressures and internal energies generated by the different EOS, allowing them to be

used in place of each other if the value of pressure or internal energy is of primary

interest. This also signifies the form of the Mie-Gruneisen used in the VFVC will

produce usable results. Also, both EOS are more sensitive to changes in density than

to changes in pressure. It is also shown that the densities generated with each EOS

are different in value, this may be corrected by using different Mie-Gruneisen EOS

coefficients, this however, will affect the pressures produced by the Mie-Gruneisen

EOS.

4.2 Validation of VFVC for Iron Impacts

4.2.1 Procedure. The experimental geometries and impact velocities used

in Section 3.2 are used in the validation of the Eulerian Code. In its current state

the Eulerian code is only capable of handling one phase at a time, meaning it cannot

accurately handle the phase change of iron. However the experimental data being used

to validate the code only has two impact scenarios that cause the pressures generated

to fall in the phase change region, and both of these impact velocities, 671.1 and 991.6

m
s
, are located near the either beginning or the end of the phase change region. This

proximity to these phase change boundaries allows the VFVC code to model these

velocities scenarios as single phases, in this case, the α and ε phases respectively.

The material coefficients of both the α and ε phases used by the Mie-Gruneisen

EOS are taken from Boucheron et al. and are located in Table 4.3. The VFVC utilizes

a Fortran ”if” statement to determine which coefficients to use. This determination

uses the magnitude of the pressure generated by the impact. In order to allow the

boundary impact scenarios to be modeled as single phases, the VFVC uses a pressure

value to 15 GPa to differentiate between the two phases of iron. This is done instead
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a. CTH with Mie-Gruneisen EOS b. CTH with Sesame EOS

c. VFVC

Figure 4.2: Comparison of Pressure waves generated by the Finite Volume Code
and CTH
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Table 4.3: Mie-Gruneisen Coefficients of the α and ε Phases of Iron
Coefficient α ε

C0 4600 m
s

4600 m
s

ρ0 7870 g
m3 8290 g

m3

S 1.46 1.51
Γ0 1.7 2.4

of beginning the phase transition at a pressure of 13 GPa and completing it around

a pressure of 17 GPa, as would be done in a code that can handle two phases.

Material coefficients are also required to describe iron’s constitutive response to

the impact phenomena. These coefficients are given in Table 4.4.

Table 4.4: Additional Materials Parameters Needed by the Eulerian Code
Coefficient Y e0 G H
Value 50.0 MPa 131800 J

kg
87.0 GPa 2600 MPa

Source [4] [21] [4] Extrapolated
from [32]

After all the experimental geometries and velocities are completed, the results

generated by the VFVC are compared to the results numerically generated by CTH

using both the PTRAN and Sesame EOS.

4.2.2 Validation of the Finite Volume Code with Impacts Between Iron Plates.

Figure 4.3 shows the thermodynamic variables of density, internal energy and pres-

sure plotted against the impact velocities producing said thermodynamic variables.

The densities generated by the different codes and EOS are located in Figure 4.3a.

Upon study, this figure shows the densities generated by the VFVC more closely fol-

low the CTH results produced with the Sesame EOS. This is contrary to the results

seen in Section 4.1.2, Figure 4.1a in which the VFVC generated results follow the

results produced in CTH using the Mie-Gruneisen EOS. This discrepancy is a result

of the Mie-Gruneisen EOS coefficients, which were the same for the VFVC and CTH

using the Mie-Gruneisen EOS for the simulation of aluminum impact scenarios. For

iron, however, CTH’s internal ε phase Mie-Gruneisen EOS coefficients are used in the

88



0 0.5 1 1.5 2 2.5 3 3.5 4
8

8.5

9

9.5

10

10.5

11

11.5

Impact Velocity (km/s)

D
en

si
ty

 (
kg

/m
3 )

Density Behind the Compression Wave

Finite Volume

Sesame EOS

PTRAN EOS

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

Impact Velocity (km/s)

In
te

rn
al

 E
ne

rg
y 

(k
J/

kg
)

Internal Energy Behind the Compression Wave

Finite Volume

Sesame EOS

PTRAN EOS

a. Density b. Internal Energy

0 0.5 1 1.5 2 2.5 3 3.5 4
0

20

40

60

80

100

120

Impact Velocity (km/s)

P
re

ss
ur

e 
(G

P
a)

Pressure Behind the Compression Wave

Finite Volume

Sesame EOS

PTRAN EOS

c. Pressure

Figure 4.3: Comparison of Density, Internal Energy and Pressure generated by the
Finite Volume Code and CTH

PTRAN EOS, while the VFVC requires the input of the ε Mie-Gruneisen coefficients.

In the case of iron, the coefficients input into the VFVC happen to match match the

material properties in the Sesame EOS better than they do for the PRTAN EOS.

This discrepancy highlights the need for to validate the VFVC with analytical data,

experimental data, or numerical data produced by a reliable hydrocode. Figure 4.3b

shows the numerical values of internal energy generated by the different codes and

EOS, once again are all quite similar. However in 4.3b it is apparent that at impact

velocities grater than 2.5 km
s

the VFVC generates pressures significantly lower than

those generated by CTH using both EOS.
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Table 4.5 contains the SD comparing the numerical values produced by the

VFVC, and CTH using the Sesame and PTRAN EOS. The SDs of 0.0210 and 0.0268

between the VFVC generated densities and those generated in CTH using the Sesame

EOS and PTRAN EOS respectively, are less than one percent of the values of density

being generated making this little difference acceptable. The SDs of the differences

in internal energies generated between the VFVC and CTH using the Sesame and

PTRAN EOS are 18.285 and 17.8018 kJ
kg

respectively. These values of SDs maintain

percentages on the order of 101 for most of the internal energy values generated. As

seen in Figure 4.3b it is at the higher impact velocities where the difference between the

VFVC and the CTH generated values of internal energy have the greatest differences

in value. So depending on the level of accuracy necessary, there exists an impact

velocity that will serve as an upper limit for the applicability of the VFVC when

modeling impact with iron, in the VFVC’s present form. The need for this upper

limit becomes quite evident when considering the SD for the values of the numerically

generated pressures are 1.5303 and 1.7815 GPa for the difference between the VFVC

and CTH values using the Sesame and PTRAN EOS respectively. These SD values

are only an order of magnitude smaller than the values of the pressures produced for

most of the range of impact velocities, which is a good percentage of the generated

values. Looking at Figure 4.3b it is apparent that, similar to the internal energy

results, the differences between the VFVC and CTH generated values occur at the

higher impact velocities.

Table 4.5: Comparison of the Standard Deviations Between the VFVC, Sesame
EOS and Mie-Gruneisen EOS Generated Values

State SD of VFVC & SD of VFVC & SD of Sesame &
Variable Sesame EOS PTRAN EOS PTRAN EOS
Pressure (GPa) 1.5303 1.7815 0.3332

Density
(

kg
m3

)
0.0210 0.0268 0.0201

Internal
(

kJ
kg

)
18.267 17.802 4.2016

Energy
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To determine if the difference in pressure at the high velocities is a result of

the Mie-Gruneisen coefficients used, or the codes inability to handle multiple phases,

the CTH values for the α and ε Mie-Gruneisen coefficients for iron were used in the

VFVC for impact velocities of 3500 m
s

and 4000 m
s
. The answers generated are given

in Table 4.6. From Table 4.6 it is apparent that the values generated by the VFVC

with the Mie-Gruneisen EOS coefficients from CTH are 2.6% and 3.6% lower than the

corresponding values generated by CTH for the impact velocities of 3500 and 4000 m
s
.

This indicates the differences in the pressures for generated by VFVC for the impact

of iron is caused by its inability to handle multiple material phases, and not by the

Mie-Gruneisen coefficients used.

Table 4.6: Comparison of Pressures Generated at Velocities of 3500 m
s

and 4000 m
s

by CTH using the Sesame and Mie-Gruneisen EOS and the VFVC Using the Mie-
Gruneisen Coefficients from Table 4.3 and CTH

Impact Sesame EOS PTRAN EOS VFVC VFVC
Velocity Origional w/CTH values
3500 m

s
92 GPa 92.4 GPa 87.9 GPa 89.6 GPa

4000 m
s

112.1 GPa 113.6 GPa 106 GPa 108 GPa

Figure 4.4 shows the wave profile resulting from an iron on iron impact with an

impact velocity of 612.7 m
s

at a time of 1 μs. Again, the added dissipation from the

Lax-Friedrich flux routine is smearing out the elastic precursor in the results generated

by the VFVC in Figure 4.4c. In Figure 4.4b, the compression waves have reached the

outside boundaries an have began to reflect as rarefaction waves. This is evident

while looking at two things; the first, is the sharp cutoff of the elastic precursor at

the boundaries, second, is the reduction in pressure at the upper ”corners” of he

compression wave. This lower pressure is due to the beginning of the rarefaction wave

relieving the pressure caused by the impact.

Overall, the VFVC appears to give answers quite comparable to those gener-

ated by CTH, especially for a non-polymorphic material. The necessity of validating

the initial results generated by the VFVC to determine if the proper values of Mie-

Gruneisen coefficients are being used, has also been established. The VFVC code
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Figure 4.4: Comparison of Pressure waves generated by the Finite Volume Code
and CTH
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will simulate impact with polymorphic material better if a subroutine capable of han-

dling the phase transition is added. Another desired addition to the VFVC is an

improvement to the flux routine.
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V. Comparison of CTH and NET Hydrocode

This part of the investigation consists of comparing the numerical results generated

in by Lu and Hanagud in Reference [26] to the results generated by CTH using the

Sesame and both PTRAN EOS. The impact scenario being modeled consists of an

iron target 1 mm long with a stress load of 50 GPa applied on one side to initiate a

stress wave.

In their simulations, Lu and Hanagud are incorporate a slip system into their

grid using slip angles, φ, of 0o and 45o degrees. The slip system of 0o is parallel to the

axis CTH uses when modeling uniaxial impacts, and thus is automatically accounted

for by CTH. To introduce a slip system at an angle of 45o the plane strain mesh in

Figure 5.1 is utilized. This mesh consists of a layer of PMMA inserted into the target

material at a 45o angle. The rigid boundary layers located at the top and bottom of

the mesh prohibit mass from flowing out of the mesh limiting any strain from occurring

in the vertical direction, effectively creating a uniaxial strain scenario. The layer of

PMMA acts as a dampener producing lower stresses in the back of the target than at

the front. This requires a higher impact velocity to account for the dampening effect

of the PMMA. In the plane strain mesh, each cell measures 0.002 mm by 0.002 mm,

this is smaller than the 0.002 cm cell size suggested by Szmerekovsky [35], however it

is used to match the cell size used by Lu and Hanagud. The 0.002 mm cell width is

also used in the uniaxial case. Overall, the uniaxial mesh is 2 mm long with a 1 mm

long target and a 1 mm long flyer plate. The length of the grid is 1000 cells long.

The plane strain mesh shares the same overall horizontal dimensions as the uniaxial

grid and is 0.2 mm tall, the overall mesh dimensions are 1000 cells in the horizontal

direction by 100 cells in the vertical direction.

Lu and Hanagud apply stress to initialize their impact scenario, CTH however,

requires a specified impact velocity. This requires the determination of the impact

velocity needed to generate 50 GPa of pressure. To do this, the curves in Figure 3.14d

are fit with a 6th degree polynomial, which is then used to solve for an initial impact

velocity equal to 2255.0 m
s
. A 6th degree polynomial is used because it came closest
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to fitting the curve in the region of interest. This velocity initially produces a stress

smaller than the requisite 50 GPa, in both the uniaxial and plane strain cases. To

fix this the velocity is then increased incrementally until the correct impact velocities

are determined. The final impact velocities are 2265.05 m
s

for the uniaxial case and

2280 m
s

for the plane strain case.

The 1 mm thick flyer plate is used to initiate the stress wave in the target. To

avoid interference from wave reflections at the boundaries, a semi-infinite boundary

condition is used at the far left and right boundaries.

CTH is used to reproduce Lu and Hanagud’s results, using both the reversible

and irreversible PTRAN and Sesame EOS, for the uniaxial and plane strain cases.

The results generated by CTH are then compared to those generated by Lu and

Hanagud.

5.1 Comparison of CTH to A NET Hydrocode

In this section, the results generated by Lu and Hanagud’s NET code are com-

pared to the results generated by CTH using the Sesame and both PTRAN EOS.

Then, any similarities or differences between the results generated by the two hy-

drocodes results will be analyzed.

5.1.1 Uniaxial Impact with σ0 = 50GPa and φ = 0◦. The first set of results

to be compared are the uniaxial impact results where σ0 = 50GPa and φ = 0◦. Figure

5.2 contains the CTH results using both PTRAN EOS and the Sesame EOS and the

results generated by Lu and Hanagud. The times the wave profiles are captured

Figure 5.1: Schematic of Mesh with 45 Degree Slip System
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at are 1.1318 ∗ 10−7, 1.1301 ∗ 10−7, 1.13097 ∗ 10−7 and 1.131 ∗ 10−7 s for Lu and

Hanagud’s results and those generated by CTH using the Sesame and the reversible

and irreversible PTRAN EOS, respectively. Lu and Hanagud use y as the horizontal

axis variable, explaining the difference in notation in these results ang those presented

for the plane strain case.

Examining the results contained in Figure 5.2, small differences in the results

generated using Lu and Hanagud’s code and those generated by CTH using the

PTRAN and Sesame EOS may be ascertained. First the difference in the results

generated using the different codes are presented. The most obvious difference in

results generated by the two codes is the amount of dispersion error (oscillations)

in Lu and Hanagud’s results. This dispersion error is caused by the magnitude of

the shockwave developed by their code and may be fixed by increasing the artificial

viscosity used in their code. Another difference in the results generated by the two

codes is the distance between the beginning of the elastic precursor and the begin-

ning of the plastic wave, of which CTH has the larger distance. This is caused by

the difference in plastic wave speed generated by the different codes, made apparent

by the extra distance that the plastic wave has covered. The cause of the different

plastic wave speed is most likely the use of different material parameters, such as the

reference density (ρ0) of ε iron, used by Lu and Hanagud compared to those contained

in CTH. The different ε iron material properties have more of an effect than the α

iron properties because, as is evident in Figure 5.2, the ε iron stress wave overtakes

α iron wave due to the high value of the stress applied. The only similarity in the

results generated by the different codes is the value of the equilibrium stress behind

the compression wave.

The results generated by CTH using the different EOS are fairly close. The

stress generated using both PTRAN EOS is slightly larger than 50 GPa, but not

significantly.
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a. CTH with Reversible PTRAN EOS b. CTH with Irreversible PTRAN EOS

c. CTH with Sesame EOS d. Lu and Hanagud

Figure 5.2: Comparison of CTH and Lu and Hanagud’s Results for σ0 = 50GPa
and φ = 0◦ Uniaxial Impact
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Unfortunately, not much can be ascertained from the results generated by the

different hydrocodes that may be used in determination of the different codes respec-

tive abilities to handle NET.

5.1.2 Uniaxial Impact with σ0 = 50GPa and φ = 45◦. The second set

of results to compared are the for the plane strain case where σ0 = 50GPa and

φ = 45◦. The wave reflections caused by inserting a layer of PMMA contribute to the

generation of very busy wave profiles. This necessitate the CTH results be presenting

using wave histories instead of profiles. A histogram created by placing a tracer

point just behind the layer of PMMA presents the wave information in a manner in

which the different waves generated may more easily be distinguished from each other.

Figure 5.3 contains the CTH results using the Sesame and both PTRAN EOS and

the results generated by Lu and Hanagud. Unlike the previous impact scenario, the

stress waves generated in this case consist of two distinguishable waves. As Lu and

Hanagud explain the initial wave is a elastic wave produced by the ε iron, a plastic

wave then follows behind the elastic wave [26]. The different waves are labelled in the

graph generated by Lu and Hanagud in Figure 5.3c.

The histograms produced by CTH show several waves. The first of these waves

have a peak stress between 10 GPa and 15 GPa. This wave begins at the PMMA/iron

boundary and propagates outward beginning at he time of impact. It is a result of the

method used to create the 45◦ slip system in the CTH model, and is not a real solution,

thus it can be ignored. The second wave corresponds to the elastic wave in Lu and

Hanagud’s results. The third wave is the plastic wave covered with oscillations.

The similarities in the compression waves generated using Lu and Hanagud’s

code and CTH include the production of separate elastic and plastic waves and the

production a a 50 GPa equilibrium stress value behind the plastic wave. CTH’s

production of elastic and plastic waves validates the simulation of a slip system by

inserting a layer of softer material in the PMMA at the desired slip angle. The

production of multivalent equilibrium stresses behind the plastic waves is expected,
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a. CTH with Reversible PTRAN EOS b. CTH with Irreversible PTRAN EOS

c. CTH with Sesame EOS d. Lu and Hanagud

Figure 5.3: Comparison of CTH and Lu and Hanagud’s Results for σ0 = 50GPa
and φ = 45◦ Plane Strain Impact
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because the equilibrium thermodynamics included in both codes should cause them

to generate the same equilibrium value of stress.

Another similarity observable in Figures 5.3a and 5.3b are the stress wave his-

tories produced using the Sesame and both PTRAN EOS. This indicates any ability

CTH may have in modeling the NET of this scenario are not generated by the EOS

and are most likely the product of CTH’s ability apply constitutive relationships.

Several differences in the answers generated using the different codes are ob-

served in Figure 5.3. These differences include the shape and magnitude of the elastic

wave and oscillations evident in CTH’s representation of the plastic wave. The large

oscillations are likely caused by excessive interference from wave reflections resulting

from inserting a layer of PMMA in the iron to produce the slip system.

Comparing the difference in magnitude and shape of the elastic wave allows

for the comparison of the different hydrocodes’ abilities to model the NET of an

impact system. In Figure 5.3 the elastic wave in Lu and Hanagun’s results reaches a

peak stress of approximately 46 GPa before sharply relaxing to a stress of just under

30 GPa. This contrasts with the elastic wave generated by CTH peaking at a stress

of approximately 37 GPa before relaxing to a stress of 30 GPa. Lu and Hanagud’s

hydrocode also has a faster relaxation time than seen in the CTH results, indicative

of their code’s ability to handle the non-equilibrium region immediately behind a

shockwave where NET conditions abound.

The difference in peak stress value is a result of Lu and Hanaguds hydrocode

to account for a non-equilibrium stress component as seen in Equation (2.93) shown

here.

σij = σe
ij + σne

ij

In Equation (2.93) the total stress tensor is composed of an equilibrium stress and a

non-equilibrium stress, σtotal = σeq + σneq. In this case, the 9 GPa difference in the

peak stresses is produced by the non-equilibrium stress component, σneq included in

Lu and Hanagud’s hydrocode. This stress component is a found using the differential
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equation given in Equation (2.89), shown here for convenience.

τν(σ̈ne
ij ) = −σne

ij + ηijkl V
e
kl

that includes the strain rate, V e
kl, and the relaxation time of the viscous processes,

τν [26]. These results suggest the Lu and Hanafud’s hydrocode is capable of modeling

system in non-equilibrium states.

While not accounting directly for τν , CTH does use strain rate in the Zerilli-

Armstrong constitutive relationship, allowing it to generate the first stress wave and to

account for some relaxation of the material after the stress wave passes. This is shown

in Figures 5.2a and 5.2b. This indicates, while CTH does not use the irreversible,

non-equilibrium variables from the theories of IVT and EIT, it is still capable of

accounting for the irreversible effects of material properties including stresses and

strains. In addition, CTH is also able to account for the irreversibilities of phase

changes.
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VI. Conclusions

6.1 Conclusions

This work had three separate objectives. The first objective was to deter-

mine the similarities and differences between the tabular Sesame EOS, and the semi-

empirical Mie-Gruneisen and PTRAN EOS. This objective provides guidance on the

application of the EOS to impact scenarios using both CTH and the FVC. The second

objective included validating the FVC by comparing its answers to those generated in

CTH using the Sesame and Mie-Gruneisen EOS. This validation is a key step in the

development of the FVC, which has the possibility being developed into a hydrocode

capable of modeling non-equilibrium thermodynamics. The final objective involved

comparing CTH results to those generated by a program capable of handling NET to

determine CTH’s ability to model NET.

Several conclusions were made in the comparison of the Sesame and Mie-Gruneisen

EOS. The first and most important conclusion for the further production of the VFVC,

stem from the similar values of internal energy and pressure generated by CTH us-

ing either the Sesame or Mie-Gruneisen and PTRAN EOS. These results lead to the

conclusion the Mie-Gruneisen EOS produces the similar results to those generated by

the Sesame EOS for the same impact velocities. However, the Mie-Gruneisen EOS

cannot produce the same results as the Sesame EOS for any value of density, or at

temperatures above the Te in the Sesame EOS for the material being modeled. It was

also shown that all the EOS are more sensitive to density then to temperature. An-

other finding is, the Sesame and Mie-Gruneisen EOS will produce different densities,

while producing the similar pressures. This difference may be corrected by changing

the Mie-Gruneisen coefficients used, however this will affect the pressures generated.

This highlights the need to validate numerically generated answers using experimen-

tal data or analytical solutions, to assure generated values for a parameter of interest

are correct. Finally, and most importantly in the determination of CTH’s ability to

model NET, the Sesame EOS is shown to generate irreversibilities in regions of phase

changes.
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The major conclusion stemming from the second objective is the validation

of the FVC using the hydrocode CTH. The FVC produced values of pressure and

internal energy similar to the numerical answers generated by CTH using the Sesame

and Mie-Gruneisen EOS at the same impact velocities in a non-polymorphic material.

For a polymorphic material, however, the pressures and internal energies generated by

the FVC were considerably different at high speeds. This indicates the need to add a

multi-phase capability to the FVC in order for the code to accurately model impacts

involving polymorphic materials. The need for an flux routine that can accurately

produce the HEL caused by impacts was also demonstrated.

In the comparison of results generated by CTH to those generated by Lu

and Hanagud’s NET hydrocode two conclusions were reached. The first, Lu and

Hanagud’s code is able to model a system outside an equilibrium state using irre-

versible, non-equilibrium thermodynamics from the taken from theories of IVT and

EIT. The second, and maybe more significant, is CTH is able to account for some

of the same irreversible parameters including stress, strain and strain rate contained

in the constitutive relationship and the phase changes in polymorphic materials con-

tained in the EOS.

6.2 Recommendations

In this investigation the ability of the Mie-Gruneisen and Sesame EOS to model

uniaxial impact scenarios was investigated. There are more EOS to be investigated

for the possible use in a hydrocode that can handle NET. Another investigation not

addressed in this work, is to comparison of EOS for alloys instead of those for pure

metals.

The study of NET is currently of great interest and is heavily reported on. To

further determine CTH’s ability to model NET, more comparisons should be made

with the numerical results presented in journals and conferences.
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Recommendations for the further development of the FVC include alterations

to the flux schemes, validation of the FVC’s constitutive model and adding an ability

to handle multiple phases. For the flux scheme change it is recommended the Lax-

Friedrich’s flux scheme be abandoned, then using a different 1st order flux scheme.

Another option is including higher order (3rd and 4th order) flux schemes, for example

the 4th order essentially non-oscillatory (ENO) scheme detailed in Udaykumar et

al. [38]. The constitutive model should be validated allow for accurate plastic flow

results. This is a key step in the development of a code that can model NET, because

the plastic deformation is a source of irreversible dissipation. Also, if impacts of

polymorphic materials are going to be modeled, the code needs to be adopted to

handle multi-phase materials.
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Appendix A. Conversion of CFD Code into a Hydrocode

This Appendix contains portions of a document written describing the equations

and procedure applied to an one dimensional CFD code intended to model the fluid

dynamics in a shock tube for the purpose of transforming it into an one dimensional

hydrocode capable of modeling uniaxial impacts. The document is intended to be a

stand alone document with its own bibliography, albeit a small one. The document

also assumes the reader is familiar with computational mechanics. However, after

reading this thesis, it should not be difficult to understand.
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Appendix B. CTH Input Deck

This Appendix contains the CTH Input deck used to model the impact of an iron

target with a 45◦ slip system introduced. This is the input deck used to generated

the results in Section 5.1.

111



112



113



114



115



Appendix C. CTH Input Deck

This Appendix contains the spreadsheets used to generate the graphs for impact

scenarios comparing the Mie-Gruneisen and Sesame EOS using aluminum, the com-

parison of the PTRAN and Sesame EOS using iron and the validation of the VFVC.

The values contained in these spreadsheets were generated using both CTH and the

VFVC.
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a. Mie-Gruneisen EOS Generated Results

b. Sesame EOS Generated Results

c. VFVC Generated Results

Figure C.1: Spreadsheets Generated Using Aluminum Impacts
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a. PTRAN EOS Generated Results

b. Sesame EOS Generated Results

c. VFVC Generated Results

Figure C.2: Spreadsheets Generated Using Iron Impacts
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