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AFIT/GAE/ENY/07-M24 

Abstract 

Cooper-Harper ratings (CHRs) have been used to describe and compare aircraft 

handling qualities for over 40 years, but are by their very nature, subjective.  The 

subjective and sometimes ambiguous results obtained from qualitative handling quality 

ratings are inconsistent with the rest of the flight test process, where quantifiable results 

followed by statistical analysis are the norm. This thesis presents a method for obtaining 

accurate and consistent flight test data that quantifies the handling qualities of a specific 

aircraft. The method is demonstrated using both pilot-in-the-loop simulations and flight 

tests with the NF-16D Variable-Stability In-Flight Simulator Test Aircraft (VISTA).    

 Boundary Avoidance Tracking (BAT), introduced in 2004 by Mr. William Gray 

III, a test pilot at the US Air Force Test Pilot School (TPS), is used here to provide a 

novel approach for forcing an increase in pilot workload and tracking performance in 

order to assess an aircraft’s handling qualities.  By utilizing BAT with shrinking desired 

performance boundaries on a point tracking task, pilots are forced to their maximum 

performance (i.e. minimum error) on the tracking task. This maximum achievable BAT 

performance can then be used as a measure of the aircraft’s handling “quality”. 

   The BAT method of assessing an aircraft’s handling quality was used with both 

pilot-in-the-loop simulations and flight tests to obtain quantitative tracking performance 

data. This data was compared and correlated to CHR data. In order to collect the data, a 

6-degrees-of-freedom (DOF) pilot-in-the-loop F-16 simulator was developed and 

implemented on a desktop computer.  Twenty seven test subjects flew the BAT profile on 

the desktop simulator; these subjects also flew the same profile in AFRL/VA’s Infinity 
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Cube simulator.  Data from these two simulations were used to develop a flight test plan 

for implementation on AFRL/VA’s Large Amplitude Multi-mode Aerospace Research 

Simulator (LAMARS) and on TPS’s NF-16D VISTA.  Seven test subjects then flew a 

modified BAT profile on the desktop simulator, the LAMARS, and 13.7 flight hours in 

the VISTA.   Data collected included tracking and boundary information, as well as 

CHRs for each of four different pitch control models.  Results supporting the existence of 

boundary awareness were found, as well as a correlation between total bounded 

simulation run time and Cooper-Harper rating. 
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AN ANALYSIS OF AIRCRAFT HANDLING QUALITY DATA OBTAINED 
FROM BOUNDARY AVOIDANCE TRACKING FLIGHT TEST TECHNIQUES 

 
 

1.  Introduction 

1.1  Motivation 

Accurate and consistent data that quantify the handling qualities of a specific 

aircraft are difficult to acquire.  Cooper-Harper ratings (CHRs) (Cooper, 1966) have been 

used to describe and compare aircraft handling qualities for over 40 years, but are by their 

very nature, subjective.  Additionally, the data obtained through Cooper-Harper ratings 

are difficult to reduce (i.e. you can’t average CHRs), and by assigning a single CHR to an 

aircraft, some data may be lost. 

Current handling qualities flight test techniques call for the test pilot to perform 

an operationally representative task, and then rate the aircraft using the Cooper-Harper 

scale (Appendix E).  This rating, when pooled with other pilots’ ratings, is used to 

categorize the aircraft’s handling qualities.  The two primary considerations of the pilot 

assigning a CHR are task performance and pilot workload.  If a pilot performs as desired 

on the task, but is working extremely hard, then the aircraft is given a downgraded rating.  

Similarly, if a pilot performs poorly on the task, but is not working very hard, a 

downgraded rating is also given, even though the pilot might have been able to achieve 

better performance with a higher workload.  The subjective nature and variability of how 

a pilot defines his or her workload may greatly influence the CHR.  Once the CHRs from 

several different pilots have been gathered, there is no definitive guidance on interpreting 
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the data.  An informal survey of flight test professionals produced several different 

methods for interpreting a histogram distribution of CHRs.  

 The subjective and sometimes ambiguous results obtained by qualitative handling 

quality ratings are inconsistent with the rest of the flight test process, where quantifiable 

results subjected to statistical analysis is highly desired.   

 

1.2  Research Objectives and Hypotheses 

 The objective of this research was to determine if a bounded tracking task could 

be used to produce numerical aircraft handling qualities data.  To do this, four goals were 

developed that directed the research and experimentation: 

 

1.2.1  Goal 1 - Determine if boundaries influence task performance. 

If boundaries can affect pilot performance, then specifically designed boundaries 

might be used to “force” the pilot to alter pilot workload and achieve different 

performance levels. 

 

1.2.2  Goal 2 - Determine if boundaries can increase task performance 

If a specific sequence or type of boundary can increase task performance, then 

that sequence or type of boundary can be used to drive the pilot to the best performance 

possible in that aircraft on a specific task. 
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1.2.3  Goal 3 - Determine if the performance on bounded tracking tasks can 

be used to estimate aircraft handling qualities.   

If pilots can be forced to perform to the limit of their abilities, then the maximum 

achievable task performance (by any pilot) can be obtained in an aircraft on a specific 

task.  This performance limit can be used as a determination of the aircraft’s best possible 

performance, or its handling “quality”.   

 

1.2.4  Goal 4 - Quantify the relationship between bounded tracking 

performance and Cooper-Harper ratings. 

Finding a correlation between BAT data and CHRs will help validate the use of 

BAT data in handling qualities flight test, and possibly focus future test on relevant 

avenues of research. 

 

1.3  Experiment Overview 

An F-16 aircraft model and bounded tracking task were developed on a desktop 

computer and 27 test subjects flew the tracking task with variable boundaries and 3 

different stabilator rate limits (60, 30 and 15 degrees per second).  The 27 test subjects 

then flew a similar aircraft model and identical tracking task, with the same boundaries 

and rate limits on the Air Force Research Laboratory’s (AFRL) Infinity Cube simulator.  

The results were compared to determine if the different control schemes present in the 

two simulators produced different tracking performance.  Data collected focused on the 
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tracking error as a measure of task performance, as well as the length of time the 

simulation was flown prior to impacting a boundary. 

Research was continued as part of the USAF TPS Test Management Project 

(TMP) BAT DART, at Edwards AFB, CA.  Pitch control models representative of 

Cooper-Harper levels 1, 2, and 3 were developed and flown, in addition to the previously 

used desktop computer pitch control model, on the AFRL Large Amplitude Multi-mode 

Aerospace Research Simulator (LAMARS) and TPS’s Variable-Stability In-Flight 

Simulator Test Aircraft (VISTA).  Cooper-Harper performance rating definitions were 

developed for the previously mentioned tracking task, and an additional 7 test subjects 

flew the tracking task once with no boundaries to produce a baseline CHR, and once with 

boundaries.  Data collected included all aircraft performance and longitudinal axis data, 

as well as Heads-Up Display (HUD) and Multi-Function Display (MFD) video. 

 

1.4  Preview of Results 

The initial simulator studies conducted at the Air Force Institute of Technology 

(AFIT) were focused on achieving different tracking performance on one aircraft model 

with different stabilator rate limits.  Tighter boundaries produced smaller errors in 

tracking performance up to a point.  When the boundaries became too small, the tracking 

errors usually increased and a boundary was often rapidly impacted.  Despite achieving 

the goal of improving tracking performance with boundaries, different tracking 

performance was not achieved with different stabilator rate limits.  Pilot performance 

with 15 degrees per second stabilator rate limit was almost the same as the model with 60 
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degrees per second stabilator rate limit.  However, the two different simulators (Desktop 

simulation and Infinity Cube simulator) produced markedly different tracking 

performance.  The difference in pitch control models was theorized to have caused the 

difference in performance.  However, additional differences in the simulation 

environment and hardware could have caused the different tracking performance, and the 

effects of these (mostly) unknown variables could not be eliminated. 

The three different pitch control models that were later developed, in addition to 

the original desktop simulation pitch control model, produced dramatically different 

tracking performances on the VISTA, with the same environment, hardware, and aircraft 

model.  An apparent correlation between Boundary Avoidance Tracking (BAT) task 

performance and CHRs was found.   

Additionally, most test subjects’ initial average tracking performance did not 

appear to be related to boundary size.  Farther into a given model run, when the 

boundaries decreased in distance from the tracking target to a certain size, nearly all test 

subjects began performing better on the tracking task at the same boundary value.  This 

point is theorized to be the point of “Boundary Awareness” and appeared to be consistent 

throughout the different pitch control models. 

 

1.5  Thesis Overview 

 In Chapter 2, a review of the previous work conducted by Mr. Gray on 

Boundary Avoidance Theory (BAT) is provided.  Additional boundary avoidance work 

done by Capt Randy Warren for his thesis “An Investigation of the Effect of Boundary 
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Avoidance on Pilot Tracking” (Warren, 2006) and USAF TPS TMP “HAVE BAT” 

(Warren et. all, 2006) is also addressed.  Chapter 3 presents the design of the boundary 

avoidance tracking (BAT) task and boundary profile.  Chapter 4 details the research 

conducted at the Air Force Institute of Technology, to include the Desktop (DT) 

computer simulator and AFRL’s Infinity Cube simulator, as well as the experimental 

setup and results of the tracking task.  Chapter 5 chronicles the research conducted at TPS 

under the ‘BAD DART” TMP and the results of the LAMARS and VISTA flight test.  

Chapter 6 presents the conclusions and recommendations as well as a summary of the 

results. 
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2.  Background 

2.1  Handling Qualities Testing 

 Traditional handling qualities testing uses tracking tasks to simulate an 

operational representative environment or task (DoD, 1990).  For example, a test pilot 

might be instructed to track another aircraft with a HUD pipper, which is very 

operationally representative.  Following the task, the test pilot is asked to rate the aircraft 

on that specific task using CHRs (Appendix F).  This task is a good example of point 

tracking. 

 

2.1.1  Point Tracking 

Point tracking is where the pilot is given a target, or “point”, and told to track it.  

The pilot’s inputs to the aircraft control system are intended to maintain the desired 

condition.  As the aircraft or system deviates from the desired track condition, the pilot 

alters his or her inputs to regain the track.  Generally, as the tracking error grows, the 

pilot will use larger control inputs to correct the track error.  Figure 1 illustrates a simple 

point tracking task.   

 
Figure 1 – Example Point Tracking Task 
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A bicycle rider is instructed to ride down a road and “track” the centerline of the 

road.  Various external inputs into the system (rocks, bumps in the road, winds, etc…) 

may cause tracking errors that should be corrected.  The farther away from the centerline 

that the bicycle rider finds himself, the larger the input will generally be to correct the 

error.  Assuming that fatigue, a learning curve, and asymmetrical external inputs into the 

system do not exist, the rider’s average absolute track error will be consistent from one 

section to another identical section.   

 

2.1.2  Cooper-Harper Ratings 

Prior to the tracking task, the rider would be informed that the desired 

performance of the bicycle is to keep the wheels within 1 foot of the centerline for the 

entire ride.  Adequate performance would be defined as keeping the wheels within 3 feet 

of the centerline for the entire ride.  These definitions, in addition to the rider’s 

performance, and some measure of the workload required to obtain that performance on 

the task, are what is required to generate a Cooper-Harper rating.  Following the tracking 

task, the rider would be asked to rate the bicycle on the Cooper-Harper rating scale 

(Appendix F), using performance and workload to determine the CHR.  We can assume 

that the rider’s experience level will have some effect on how easily he or she can track 

the target.  A 6 year old who just learned to ride a bicycle will have large average and 

peak errors compared to Lance Armstrong, as an extreme example. 
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2.2  Boundary Avoidance Tracking (BAT) 

 Now let us assume that there are real physical boundaries, instead of desired 

performance boundaries, imposed on the bicycle rider.  We will suspend the 6 foot wide 

“road” over the Grand Canyon, and ask the rider to perform the same task.  

 

Figure 2 – Example Bounded Point Tracking Task 

 

The tracking task and target have not changed, and the boundaries haven’t really 

changed.  It is still “adequate” to maintain an error of less than 3 feet from the centerline 

of the road.  Only the consequence of “impacting” the boundary has changed.  However, 

we can surmise that the rider’s control inputs will change when a boundary is approached 

compared to the unbounded case shown in Figure 1.  In this case, as a boundary is 

approached, the rider will change his or her inputs to avoid the boundary.  The control 
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inputs at any given instant are theorized to be approximately proportional to the time 

remaining to impact the boundary at that instant following a slight lag due to pilot 

perception (Gray).  The theorized relationship of the inputs to the boundary will be 

examined more in Section 2.3.1. 

Mr. Gray, an instructor at the USAF Test Pilot School, introduced the concept of 

Boundary Avoidance Tracking (BAT) in a paper to the Society of Experimental Test 

Pilots in 2004 (Gray, 2004).  Mr. Gray proposed a type of pilot-induced oscillation (PIO) 

that was driven by the boundaries on a pilot’s point tracking task.  When the boundaries 

got too close to the tracking target, pilots would cease tracking the target and track the 

boundaries instead, decreasing their point tracking performance. 
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2.2.1  Desired vs. Achieved Performance 

The following figure is taken from the USAF TPS Flying Qualities curriculum 

(TPS, 2006). 

 

 
Figure 3 – Effect of Desired Performance on Achieved Tracking Performance 
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Figure 3 illustrates another aspect of Mr. Gray’s theory: that increasing the 

expectations on a pilot’s performance (i.e. narrowing the boundaries) will increase the 

performance achieved.  As can be seen from the figure, there is a theoretical minimum to 

the achieved tracking performance, or minimum error achievable.  If many different 

pilots flew the same task on the same aircraft, many different tracking performance 

curves could be plotted on the same chart.  Then, the curve(s) with the lowest achieved 

tracking error could be used to postulate the minimum error achievable for that specific 

aircraft on that specific task.   

An additional possible effect of adding boundaries to a tracking task can be seen 

in the red line portion of Figure 3.  When the boundaries or expectations on the tracking 

task become too restrictive, the pilot will cease to track the target and begin tracking or 

avoiding the boundaries.  The pilot’s performance will suffer, tracking errors will grow, 

and a PIO may be encountered. 

 

2.2.2  Testing Limitations on Simulating Real Boundaries 

One of the difficulties in using boundaries in simulators or actual flight test is 

simulating a real-world boundary, like the ground.  The consequences of an aircraft 

unintentionally hitting the ground are almost always catastrophic.  Hence, the pilot 

response generated by approaching this type of boundary is nearly always very rapid and 

of large magnitude – usually at the maximum capability of the pilot and control 

inceptor(s).  It is this maximum deflection input and aircraft response that is so difficult 

to reproduce with simulated boundaries.   
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2.3  Previous Testing 

2.3.1  Mr. Gray’s Desktop Simulator 

Following theoretical and computer modeling work on his theory, Mr. Gray 

developed a pilot-in-the-loop simulation using the flying qualities data of a North 

American Navion (Gray, 2005:6).  Using Matlab© and Simulink©, Mr. Gray presented a 

bounded tracking task to the subject pilots.  The tracking task consisted of matching the 

altitude of a “lead” Navion that was 

constantly changing (Gray, 2005:6).  

The test subjects were provided 

with a display that showed the 

relative altitude of the pilot’s 

aircraft (also a Navion model) with 

respect to the lead Navion (Figure 

4).  The task was to minimize the 

altitude error between the two 

aircraft by maintaining their aircraft 

altitude delta line on the zero error 

reference and to avoid impacting 

the boundaries. 

   

                

Figure 4 – Mr. Gray’s Navion Simulator Display 

 

Delta 
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The boundaries were moved closer to the zero-error reference by 25% once every 

60 seconds, and the oscillatory flight path of the lead Navion was repeated every minute 

as well.  Eight test subjects each flew three different scenarios:  first, the standard Navion 

tracking task as described above; second, a 300 millisecond time delay was added to the 

pilot’s inputs; and third, a 17 degree per second rate limit was placed on the deflection of 

the horizontal tail of the pilot’s Navion (Gray, 2005:6).  The simulation was terminated 

when the altitude error between the lead and subject’s aircraft exceeded one of the current 

boundary limits. 

Mr. Gray’s data reduction focused on characterizing certain boundary tracking 

parameters which focused on the time to impact the boundary.  However, he also noted a 

loose grouping of the successful tracking times of the different scenarios (Figure 5) 

                 

Figure 5 – Grouping of Navion Simulator Tracking Times (Gray, 2004) 

The Boundary Tracking Parameter axis shown in Figure 5 is a separate parameter 

under investigation by Mr. Gray and holds no relevance to this thesis.  Discussions with 

Mr. Gray about desired vs. achieved performance and the grouping of successful tracking 
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times of different flight control scenarios set the stage for the research that was conducted 

for this thesis. 

 

2.3.2  Capt Randy Warren’s Thesis & HAVE BAT TMP 

Captain Randy Warren’s TMP (Warren, et. All, 2006) and thesis (Warren, 2006) 

characterized BAT in a dynamic flight environment.  Repeated BAT events were flown 

in a T-38C aircraft and analyzed.  His research focused on characterizing initial 

parameters for BAT, and found that the time to boundary impact where pilots go to 

maximum feedback gain (tmax) was independent of pilot, maneuver, or flight conditions 

(Warren, 2006), but may be dependent on other unknown factors.  Warren’s thesis also 

addressed other BAT parameters, but their discussion is not relevant to the focus of this 

thesis, and will not be discussed further.  It should be noted that the information collected 

and analyzed on the HAVE BAT TMP was the first in-flight data to show that Boundary 

Avoidance Tracking (BAT) exists. 
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3. Tracking Task and Boundary Profile 

3.1  BAT Flight Path Angle (γ) Tracking Task 

The tracking task was designed to closely mirror Mr. Gray’s Navion tracking task 

described in Section 2.3.1.  However, since the ultimate goal was to fly the tracking task 

in the NF-16D VISTA aircraft, flight path angle (γ) was chosen as the target, instead of 

an altitude differential as in Mr. Gray’s simulator.  The aircraft flight path angle (γ), or 

velocity vector, is already calculated and displayed in all modern HUD equipped aircraft. 

A simulator arrangement similar to Mr. Gray’s, with a target aircraft model 

generating target information, and a separate pilot-in-the-loop model being flown by the 

test subject, was chosen.  The target aircraft control inputs were the gained sum of three 

sine waves.  The frequency and amplitudes of the inputs are shown in Table 1.  The sum 

of the three sine waves was gained by a factor of 200 prior to being input into the target 

aircraft pitch control, to provide appropriate target aircraft control input magnitude. 

 

Table 1 – Sine Waves Used Target Aircraft Control Input 
 

Input Frequency 
(rad/sec) Amplitude Phase 

Fast Sine wave 0.21 π/180 0 
Medium Sine wave 0.42 -π/180 π/3 

Slow Sine wave 0.84 π/180 π(2/3) 
 
 

The target flight path profile that resulted from the sum-of-sines input is shown in 

Figure 6.  There is a short repeat to the pattern approximately every 30 seconds.  This 
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repeat was designed into the simulation to ensure that the tracking task presented the 

same level of difficulty in subsequent boundary step sizes.   

 

 

 

Figure 6 – Desktop Simulation Target Aircraft Flight Path Angle (γ) Profile 

 

3.2  Boundary Profile 

The target aircraft’s flight path angle was the actual target for all of the tracking 

tasks.  The deviation from this target was given boundaries, and the test subjects were 

instructed to treat the displayed boundaries just as they would treat the ground or another 

physical object that would cause catastrophic damage if they contacted them with the 

FPM.  The boundary was initially set at a value of ±10°, and then the boundaries were 

stepped closer to the target by 25% every 60 seconds; the same boundary step size as Mr. 

Gray’s Navion simulator.  A time history of the boundary values for an entire simulation 

run is shown in Figure 7.  This figure shows the relative distance (in degrees displayed in 

the HUD) of the boundaries from the target flight path angle.   

 Target flight path angle (γ) (degrees) 

 time (sec) 
Time (s) 

0            100          200       300                      400                    500                 600
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Figure 7 – Boundary Profile 

 

If the flight path error (γerror), or deviation of the ownship flight path angle (γ) from the 

target flight path angle (γtgt), exceeded the current boundary limit, the simulation was 

terminated. 
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4.  Air Force Institute of Technology (AFIT) Research 

4.1  Test Subjects 

Twenty seven test subjects consisting of a mix of fighter pilots, heavy/transport 

pilots, and non-pilots participated in the research by flying a desktop simulator at AFIT.  

Relevant flight time of the test subjects is presented in Appendix D.  Test subjects were 

instructed to track a target line and to treat displayed boundaries as if they were life or 

death boundaries.  Some role-play was required to be a good test subject.  A steak dinner 

was also offered to the test subject that flew the longest without impacting a boundary. 

The same 27 test subjects that participated in the AFIT desktop simulator also 

flew the simulation in AFRL’s Infinity Cube simulator.  A random selection of test 

subjects flew the Infinity Cube prior to the desktop simulator in an effort to remove the 

learning curve factor from the two different simulator runs.  The increased “realism” of 

the Infinity Cube simulator due to the wide horizontal display caused a few of the non-

pilots to state that they felt a slight motion sickness following the end of their simulator 

runs.  However, no test subject reported reduction in tracking capability due to the 

phenomenon.   

 

4.2  AFIT Desktop Pilot-In-The-Loop Simulator 

The desktop simulator was constructed on a Windows™ based dual Xenon 

processor computer with 1 GB of RAM.  Separate video cards drove the simulation 

display and the control display.  The simulation was constructed in MatLab© and 

Simulink© and used Aircraft Visual Display Software (AVDS, 2005) for the visual 
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displays and control stick interface.  A Microsoft™ Flightstick Pro force feedback 

joystick was used as the control inceptor, but no force profile was programmed. 

 

4.2.1  Aircraft Aerodynamic Model 

The aerodynamic model data used for the desktop simulation was obtained from a 

NASA Langley wind tunnel study of a subscale F-16 (Nguyen, 1979) and provided as 

part of the AFIT ‘MECH 628’ course on flight controls.  The limits of the data used were 

-10° to +45° alpha, and ±30° beta.  The data were collected up to an airspeed of 

approximately Mach 0.6.  The leading edge flap (LEF) deflection data was merged into 

the aerodynamic data matrix, and included deflection limits, but no deflection rate limits 

(Nguyen, 1979).  The NASA data also included a model of the F-16 afterburning 

turbofan engine, in which the thrust response was modeled with a first-order lag.  The lag 

time constant was a function of the actual engine power level and the commanded power 

(Stevens, 2003).   

The data consisted of values for the body-axes dimensionless aerodynamic 

coefficients of the F-16 model divided into separate data files.  The aerodynamic data 

files, engine model, and associated subroutines can be found in Appendix A and B of 

“Aircraft Control and Simulation” (Stevens, 2004) and will not be reproduced in this 

document.  For reference, the state-space model of the open-loop (unaugmented) 

longitudinal dynamics at 300 KIAS and 15,000 feet is given in Appendix A (Witte, 

2004).  The poles of that state space model are listed in Table 2 below to give an idea of 

the type of open-loop response that can be expected at these flight conditions. 
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Table 2 – Desktop Simulator Model Open-Loop Longitudinal Dynamics 
 

Model Bare Aircraft Poles ωsp ζsp 

Desktop -1.5196 ± 2.0071j 
-0.0165 ± 0.0787j 2.52 0.60

 
 

Some changes were made to the simulation conditions to more accurately reflect 

an operationally relevant flight condition and aircraft response.  The reference center of 

gravity (Xcg) location used in the desktop simulation was: c35.0Xcg = , where c  is the 

mean aerodynamic chord.  Initial conditions of 400 KCAS and 10000 feet Mean Sea 

Level (MSL) were chosen.  Initial equilibrium positions were set by trimming the control 

surfaces for straight and level flight at the desired airspeed and altitude using the 

‘trimmer.m’ file supplied with the F-16 aerodynamic data (Stevens, 2004).   

For the BAT DART TMP, the initial conditions were changed to 350 KCAS and 

20000 feet MSL to mirror the conditions chosen for the in-flight testing portion.  These 

conditions were changed due to VISTA Variable Stability System (VSS) limitations and 

terrain safety margin concerns. 

 

4.2.2  Pitch Control Model 

The pitch control model for the desktop simulator was initially intended to mirror 

the VISTA pitch control system; however, the VISTA control system, which allows the 

aircraft to simulate other aircraft, is quite complex.  So for the research conducted on the 

desktop simulator, a simpler pitch control model was chosen.  The Advanced Fighter 

Technology Integration (AFTI) F-16 was a joint NASA and USAF program to integrate 

and demonstrate new aviation technologies.   The aircraft demonstrated extreme 
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maneuverability including flat turns and selective fuselage pointing using forward-

mounted canards, and contained a triplex digital flight control computer system with 

custom programming (NASA, 2002).  The digital flight controls incorporated a back-up 

mode that could be accessed by flipping a hardware cockpit switch that would lock out 

the custom digital control computers and implement a simple delta pitch rate feedback 

control loop to enable the pilot to safely recover and land the aircraft in case of control 

computer failure.  Figure 8 shows the AFTI back-up pitch rate feedback transfer 

functions. 

1
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2
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1
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Figure 8 – AFTI F-16 Back-Up Pitch Control Feedback  

 

The AFTI back-up pitch control laws provided a simple starting point for the 

desktop simulator.  Feedback and total control gains were modified to produce an 

adequate handling aircraft.  The resulting desktop simulator pitch control model is shown 

below in Figure 9, and reproduced in Appendix B. 
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Figure 9 – Desktop Simulator Pitch Control Model 

 

The basic F-16 pitch stick dead-zone (-1.75 to 1.75 lbs) and pitch stick command 

gradient (Appendix B) were inserted into the stabilator control path, as well as the basic 

F-16 stabilator actuator limits, stabilator actuator rate limits, and stabilator control path 

transport delay.  These parameters were obtained from the VISTA flight control 

schematics (General Dynamics, 1989).  The same F-16 simulation model was used for 

the desktop simulator studies at AFIT and TPS. 

 

4.2.3  Simulink© Environment 

The rest of the Simulink© simulation environment is shown below in Figure 10, 

and reproduced in Appendix B. 
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Figure 10 – Desktop Simulation Simulink© Environment 

 

The aircraft model that the test subject flew (Figure 9) was inside the “F-16 AC 

Dynamics” block of Figure 10.  The control inputs and visuals were input to and 

extracted from the Matlab© environment through the AVDS program block.   

The target aircraft (F-16) dynamics and control were inside the “Target F-16 AC” 

block.  An identical aerodynamic model, pitch control model, and thrust model as the test 

subject’s aircraft were used for the target aircraft.  Control inputs to the target aircraft 

were provided as a sum of three sine waves.  The frequency and amplitude of the inputs 

were designed to keep the target aircraft’s flight path response (γtgt) roughly within a ±15 

degree limit.  They were also designed to provide a control input response that was at 

most, 50% of the control system inceptor limits, actuator limits, and actuator rate limits.  

A proportional throttle controller was used to maintain the target aircraft’s airspeed 

within 3% of the initial conditions; however, the altitude deviated up to 50% from the 

AVDS
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initial altitude due to the flight maneuvers.    A proportional throttle controller was also 

used to match the test subject’s throttle command to the target aircraft’s throttle 

command.  

The simulation visuals were constructed through AVDS and consisted of a typical 

modern fighter aircraft Heads-Up Display (HUD) with airspeed, altitude, and attitude 

information.  The desktop simulation display is shown in Figure 11. 

 

Figure 11 – Desktop Simulation Visual Display 

 

Additionally, the target aircraft flight path angle (γtgt) was shown as a dashed 

horizontal line.  The current boundaries were shown as solid horizontal lines above and 

Target Line 

FPM 

Boundaries 
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below the target line.  Ownship flight path angle (γ) was displayed as a flight path marker 

(FPM), which is typical of modern HUDs.  Out-the-window terrain and visuals were 

inherent capabilities of the AVDS software.  Sufficient terrain detail and range were 

chosen to provide no distractions from the tracking task and HUD information, but to 

provide a visual attitude reference similar to that in an actual aircraft.  Recorded 

parameter sinks, links, and Simulink© blocks are not shown in Figure 10 for simplicity.  

A list of recorded parameters for the desktop simulation can be found in Appendix C. 

 

4.2.4  Results 

As stated in Section 1.4, the initial desktop simulation focused on obtaining 

dissimilar handling qualities through different stabilator rate limits on the pitch control 

model.  Figure 12 illustrates one method of determining ‘performance’ on a bounded 

tracking task.  The task is flown until boundary impact, and then the boundary value (in 

degrees) at impact is plotted vs. the average tracking error in the 5 seconds prior to 

boundary impact.  This method shows total performance of a simulation run represented 

as how tight a boundary was achieved.  It also can show oscillatory motion or poor 

tracking performance just prior to a boundary impact, as this will produce a data point 

that is closer to or above the ‘desired line’.  The ‘desired line’ is a line that represented 

achieved performance exactly matching desired performance – in this case, average flight 

path tracking error equaling the boundary value.   
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Figure 12 – Desktop Simulator Boundary Impact Analysis 

 

As can be seen in Figure 12, varying the stabilator rate limit produced very little 

differentiation in performance.  These results and those of the Infinity Cube simulator 

prompted the abandonment of stabilator rate limiting as a handling quality driver.  

 

4.3  Infinity Cube 

The Infinity Cube was an out-the-window visual system that surrounded the pilot 

with four displays to provide a continuous, collimated, 200° horizontal by 120° vertical 

field-of-view (AFRL, 2000).  It provided a 45:1 contrast ratio and an effective resolution 

 Desired Line 

Centroids
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of 6.5 arc min/line pair.  Images 

were collimated to between -0.11 

and 0.0083 diopters to present a 

focus distance near infinity.  

Aircraft models were driven on a 

Fedora Core PC.  The control 

inceptor used was a fixed position 

force sensing sidestick similar in 

characteristics to the control stick 

installed in an early production   F-

16. 

     Figure 13 – Infinity Cube Simulator 

 

4.3.1  Aircraft Aerodynamic and Pitch Control Model 

The aerodynamic model flown in the Infinity Cube was one with basic F-16 flight 

characteristics developed for previous research work done by Capt Hanley (Hanley, 

2003) and Capt Witte (Witte, 2004).  Hanley began with the same bare airframe F-16 

model used in the desktop simulation listed in Section 4.2.1.  He then modified the 

longitudinal poles to create 4 different dynamic models.  Hanley then computed the 

optimum angle-of-attack (α) and pitch-rate (q) feedback gains to move the closed loop 

poles back to the desired locations.  These feedback gains were then combined with the 

bare aircraft open-loop dynamics to produce a new state space model.  This model was 

implemented directly in the Infinity Cube simulator.  The Hanley model “B” was chosen 
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due to the ease of implementation, similarity to the desktop simulator aero model, and 

similarity to the actual VISTA (F-16) dynamics.  For reference, the state-space model of 

the resulting open-loop longitudinal dynamics is given in Appendix A.  The longitudinal 

poles of that state-space model are listed below in Table 3 (Witte, 2004). 

 

Table 3 – Infinity Cube Simulator Model Open-Loop Longitudinal Dynamics 
 

Model Bare Aircraft 
Poles ωsp ζsp Kq Kα Aircraft Poles with 

Stability Augmentation 
Infinity 
Cube 

-1.43 ± 1.85j 
-.017 ± .074j 2.34 0.61 0.156 0.123 -2.17 ± 2.22j 

-.017 ± .070j 
 
 

The initial conditions chosen for the tracking tasks were the same as that of the 

desktop simulator, 400 KIAS and 10,000 feet PA.  The Infinity Cube model was trimmed 

in a similar manner to the desktop simulation, but setup and simulation control were 

performed by an AFRL Engineer.  No stick shaping was used and the stick force was 

converted directly to an elevator deflection command, and then fed to a first order 

elevator actuator model.  This was chosen due to the ease of implementation, similarity of 

response to a recent F-16 flight by the author, and because the feedback loops and gains 

were already combined into the modified state-space A matrix. 

 

4.3.2  Simulation Environment 

The HUD information displayed to the test subjects was identical to that displayed 

in the desktop simulator, and shown in Figure 11.  Airspeed, altitude, attitude, target line, 

boundary lines and velocity vector were displayed as the same color and proportional size 

as the desktop simulator.  Out-the-window terrain and environment were similar but 
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generated by the Infinity Cube terrain computer and software, and were again chosen to 

minimize pilot distraction but also provide a visual attitude reference.  The presence of a 

wide (200°) horizontal visual reference allowed peripheral vision to aid in attitude 

recognition and maintenance.  A list of recorded parameters for the Infinity Cube 

simulation can be found in Appendix C. 

 

4.3.3  Flight Path Angle (γ) Tracking Task 

The tracking task presented to the test subjects was identical to the desktop 

simulator tracking task (Figure 6).  A 60 Hz time history vector of the desktop simulation 

target aircraft’s flight path angle (γtarget) was used as the input data for the target line in 

the Infinity Cube simulation.   The boundary profile was also identical to the desktop 

simulation boundaries. 

 

4.3.4  Results 

The Infinity Cube simulation trials were conducted at the same time as the AFIT 

desktop simulation trail, and were still under the assumption that stabilator rate limiting 

would result in significantly different handling qualities.  Figure 14 shows the results of 

the Infinity Cube simulations.  Boundary value (in degrees) at impact is plotted vs. the 

average tracking error in the 5 seconds prior to boundary impact.   
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Figure 14 – Infinity Cube Simulator Boundary Impact Analysis 

Figure 14 clearly illustrates the fact that the change in stabilator rate limit had 

very little effect on the handling qualities performance of the Infinity Cube simulation.  

All of the data is tightly grouped at small boundary values and low average error values.  

The figure below shows the desktop model simulation data plotted with the Infinity Cube 

simulation data. 
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Figure 15 – Infinity Cube and Desktop Simulator Boundary Impact Analysis 

 

The difference in task performance between the two simulators is readily apparent 

from Figure 15.  Every Infinity Cube simulation trial achieved lower average flight path 

track error just prior to boundary impact, and the data for the Infinity Cube simulator is 

grouped much tighter than that for the desktop simulator.  More importantly, the 

minimum achievable error (and boundary size), is much smaller for the Infinity Cube 

simulation.  However, as stated in Section 1.4, these differences were not necessarily due 

to the differences in pitch control models.  They could have been due to discrepancies in 

the simulation environment and hardware, and the effects of these (mostly) unknown 

variables could not be eliminated. 

The conclusions drawn from Figure 15 were the nucleus for the BAT DART 

TMP, where 4 different pitch control models were flown on one system, with identical 

hardware, visual systems, control inceptors, and in-flight initial conditions.
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5. USAF TPS Test Management Project (TMP) ‘BAT DART’ 

5.1 Test Subjects 

Seven test subjects, all TPS students or faculty and members of the BAT DART 

team, were used during the simulation runs at TPS.  The relevant flight experience of the 

test subjects is presented in Appendix D. 

 

5.2 Test Objective 

The BAT DART Test Management Project (TMP) was conducted under the 

syllabus of the USAF Test Pilot School (TPS) as part of the joint Air Force Institute of 

Technology (AFIT) – TPS program and in support of this thesis (Dotter and others, 

2006).   

The objective of the BAT DART test program was to determine if the pilot plus 

aircraft performance on a bounded pitch tracking task could be correlated to Cooper-

Harper ratings for longitudinal handling qualities, and to determine that correlation.  Four 

different pitch-control models, including one model designed for the desktop computer 

simulator, were flown by the seven BAT DART team members on the Large Amplitude 

Multi-mode Aerospace Research Simulator (LAMARS) and on the NF-16D Variable-

Stability In-Flight Simulator Test Aircraft (VISTA). The seven BAT DART team 

members also flew the desktop simulator, with initial conditions changed to match the 

VISTA and LAMARS flight profiles. 

The test project consisted of two full days of simulator studies in the LAMARS at 

Wright Patterson AFB, Ohio, two 2-hour ground tests, and 13.7 flight hours in the       
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NF-16D VISTA.  Flight test was accomplished from 8 to 18 September 2006.  Ten test 

sorties were flown in NF-16D 86-00048 within the R-2508 complex at Edwards Air 

Force Base, California.   

5.3  Flight Path Angle (γ) Tracking Task 

The simulation envelope of the VISTA and terrain located in the R-2508 airspace 

utilized at TPS necessitated a change to the initial flight conditions for the VISTA.  The 

desktop simulator and LAMARS initial conditions were changed to match those chosen 

for the VISTA to facilitate commonality between the data sets. The tracking task 

presented to the test subjects at TPS was not changed from that used at AFIT; however, 

because the initial conditions were changed, the flight path response from the same inputs 

was different.  The γtgt profile produced and used at TPS is shown in Figure 16.   

 

Figure 16 – USAF TPS Desktop Simulation Target Flight Path Profile 
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5.4  Cooper-Harper rating (CHR) task 

The desktop simulator runs at TPS, as well as the LAMARS and VISTA, also 

included a Cooper-Harper rating task.  This tracking task consisted of the same target 

profile as the boundary task, but with no boundaries.  Also, the flight path marker was 

changed from the typical HUD “aircraft like” symbol to two concentric circles with radii 

of 15 and 25 mils respectively.  The test subjects were instructed to track the target line 

with the new CHR flight path marker for one minute.  Desired performance was defined 

as maintaining the target line inside the inner circle for 90% of the time.  Adequate 

performance was defined as maintaining the target line inside the outer circle for 90% of 

the time.  At the end of the one minute run, the test subject was asked to rate the aircraft 

on the Cooper-Harper scale using perceived performance and pilot workload.  Figure 17 

shows the changes for the CHR task to the desktop simulation HUD.   

 

Figure 17 – TPS Desktop Simulation HUD – CHR task 
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5.5 TPS Desktop Simulator 

All model runs conducted at TPS used a 60 deg/sec stabilator rate limit.  The TPS 

portion of the desktop simulator study was conducted in an attempt to ensure continuity 

of data with the LAMARS and the VISTA data sets.  However, the differences in 

simulator hardware, control inceptors, and software interfaces negated any value in 

comparing the results in the manner anticipated.  The results of the TPS portion of the 

desktop simulator study are shown below in Figure 18.   
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Figure 18 – Comparison of AFIT and TPS Desktop Simulation Results 
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5.6  LAMARS  

The Large Amplitude Multi-Model Aerospace Research Simulator (LAMARS) 

was a 5 degree-of-freedom motion based simulator operated by the Air Force Research 

Laboratory.  The LAMARS consisted of a simulator dome and cockpit mounted on the 

end of a 30 foot arm.  The simulator dome and cockpit could rotate ±25° in pitch, roll and 

yaw at a maximum of 60° per second.  The arm could articulate ±10 feet vertically or 

horizontally, achieving a maximum acceleration of ±3 g vertically and ±2 g horizontally.  

 

Figure 19 – LAMAR Simulator 

The interior of the LAMARS display dome allowed a ±133° horizontal by -20° to 

+106° vertical image composition.  Current hardware installed in the display dome could 

project a ±60° horizontal by ±20° vertical image onto the interior surface.  The control 

inceptor used was a fixed position force sensing sidestick similar in characteristics to the 

control stick installed in the Infinity Cube and early production F-16s. The LAMARS 

was controlled by the same computers used for the Infinity Cube described in Section 4.3, 
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but with additional motion control computers, hydraulics, and different visual terrain 

projectors and software.   

The primary goal for the LAMARS portion of the study was to practice flight test 

techniques developed for the VISTA in-flight portion of the BAT DART TMP, as well as 

validate the difference in handling qualities that should be present in the 4 different pitch 

control models developed and selected for flight test.   

 

5.6.1  Aircraft Aerodynamic and Pitch Control Model 

The initial aerodynamic model flown in the LAMARS was the same model used 

in the Infinity Cube.  This state-space model was re-trimmed at the new initial conditions 

(350 KIAS and 20,000 feet PA), wrapped with the desktop simulation pitch rate feedback 

and stick shaping characteristics, and became the DT (desktop) model.  In addition to the 

previously designed desktop simulation pitch control model, Calspan Corporation was 

contracted to design 3 different pitch control models.  The modes were required to be 

representative of a Cooper-Harper level 1, level 2, and level 3 aircraft in the longitudinal 

axis.  The models constructed each consisted of 6 different longitudinal state-space A 

matrices that corresponded with different fuel weights anticipated in the VISTA.  As the 

VISTA burned fuel in flight, different fuel weight versions of the same level model 

would be used to more accurately reproduce the same handling characteristics.  Only the 

6,000 lb fuel weight matrices were implemented in the LAMARS to prevent confusion 

and simplify testing procedures.  These fuel weight state-space A matrices are shown in 

Appendix F along with the B, C, and D matrices common to all models. The Calspan 

models’ open-loop short period dynamic characteristics are listed below in Table 4.  The 
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basic F-16 control laws utilized previously in the Infinity Cube were used for roll and 

yaw control of all models. 

 

Table 4 – Calspan Model Open-Loop Short Period Characteristics 
 

Model Short Period Poles ωsp ζsp 
Level 1 -3.15 ± 3.2137j 4.5 0.7 
Level 2 -0.72 ± 2.2985j 2.4 0.3 
Level 3 -0.31 ± 1.5187j 1.55 0.2 

 
 

Because the designed control feedbacks were inside the modified state-space 

matrices, the control stick to stabilator path was implemented as a direct force to pitch 

rate command.   

 

5.6.2  Simulation Environment 

The HUD information displayed to the test subjects was identical to that shown in 

Figures 11 and 17; the same code that drove the Infinity Cube simulator HUD was used 

to drive the HUD information in the LAMARS.  Airspeed, altitude, attitude, target line, 

boundary lines and velocity vector were displayed as the same color and proportional size 

as the desktop simulator, and the Infinity Cube.  Out-the-window terrain and environment 

were similar but generated by a separate LAMARS terrain computer and software, and 

were again chosen to minimize pilot distraction but also provide a visual attitude 

reference.  The presence of a wide (120°) horizontal visual reference again allowed 

peripheral vision to aid in attitude recognition and maintenance.  A list of recorded 

parameters for the LAMARS can be found in Appendix C. 
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5.6.3  LAMARS Calibration 

After some pilot-in-the-loop test flying, adjustments were made to the pitch stick 

gains to obtain the desired pitch response.  This was done in an attempt to produce 

models that fell into the target CHR range of level 1, level 2, and level 3.  The final pitch 

stick gains are shown in Table 5.  No adjustment was made to the pitch stick gain for the 

desktop simulator pitch control model; it was implemented as shown in Figure 9.  

 

Table 5 – Pitch Stick Gain Changes in the LAMARS 
 

Pitch Control Model Initial Stick Gain Final Stick Gain 
Level 1 1.0 1.00 
Level 2 1.0 0.25 
Level 3 1.0 0.50 

Desktop Sim 1.0 1.00 
 

 
The final combinations of stick gain and pitch control model were subjected to a 

10-lb aft stick step and the pitch rate was recorded for comparison and verification of the 

VISTA configurations.  The results of the step inputs are shown in Figure 20.  The level 3 

model was only subjected to a 2 lb aft stick step input, as this model was much more 

sensitive than the other 3 models.  The final stick gains shown in Table 5 were used as 

the starting point for the VISTA calibration flight. 
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Figure 20 – LAMARS Models’ pitch rate response to step input 

 

5.6.4  Test Procedures 

The same seven test subjects that participated in the desktop simulator study at 

TPS flew the LAMARS.  They were each assigned the four pitch control models (Level 

1, 2, 3, and Desktop) in a random order.  The test subjects were allowed one minute of 

free flight with each model to allow adjustment to the new control laws.  Each subject 

then flew the Cooper-Harper rating task described in Section 5.4, followed by the BAT 

task described in Section 3.1.  Data were collected and pilot comments were recorded, 

and then the subject moved on to the next pitch control model.  
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5.6.5  Results 

The total time that a test subject flew the LAMARS prior to a boundary impact 

was recorded for each pilot on each model.   

 

Table 6 – LAMARS BAT Boundary Impact Times 
 

Level 1 
model

Level 2 
model

Level 3 
model

DeskTop 
model

Pilot 1 600 458 550 549
Pilot 2 580 507 517 521
Pilot 3 600 489 430 518
Pilot 4 600 546 487 486
Pilot 5 468 489 369 416
Pilot 6 458 437 428 428
Pilot 7 467 490 224 368

Average: 539 488 429 469
stdev: 70.3 34.7 109.1 66.4

Run time (seconds)until boundary impact

 

 

It can be seen in Table 6 that the different pitch control models produced different 

average run times.  Also the Level 1 model produced, on average, better times than the 

Level 2 model, which produced better average times than the Level 3 model.  The 

Cooper-Harper ratings obtained in the LAMARS are shown below in Figure 21. 
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Figure 21 – LAMARS Cooper-Harper Ratings 

 

The CHRs show decent grouping with some overlap between the Level 1, 2, and 3 

models, and the DT model CHRs shows a very strong central tendency.  A correlation 

was attempted between the BAT run times and the CHRs obtained in the LAMARS.  

Figure 22 below shows that a very loose correlation may be seen, but the data is 

extremely noisy with wide confidence intervals.  
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Figure 22 – LAMARS CHR-BAT Correlation 

  

The data was further reduced in an effort to clean up the correlation by removing all of 

the non-pilots from the data set.  The results are shown below in Figure 23, and it can be 

seen that the correlation is still very poor 
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Figure 23 – LAMARS CHR-BAT Correlation – Only Experienced Pilots 

 

Taken as a whole, the LAMARS data was discouraging, as no good correlation 

was found and the boundary impact times were not grouped very well into distinct data 

sets for each model.  However, the primary LAMARS goals of test procedure checkout, 

flight test technique validation, and test team practice were met.  The value of the 

LAMARS and other simulator data will be further addressed in Sections 6.1 and 6.2. 
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5.7  VISTA 

The NF-16D VISTA was a unique aircraft based on a Block 30 F-16D in the 

Peace Marble II configuration.  The avionics were Block 40 configuration and a custom 

Digital Flight Control Computer (DFLCC) was installed.  The Variable Stability System 

(VSS), a five degree-of-freedom simulator, allowed the manipulation of flight control 

parameters in order to simulate specific characteristics of many different flight control 

systems and aircraft.  The evaluation pilot (EP) sat in the front cockpit (FCP) while the 

safety pilot (SP) controlled the VSS from the rear cockpit (RCP).  

 

Figure 24 – Variable-Stability In-Flight Simulator Test Aircraft (VISTA) 

 

When the VSS was engaged, the pilot controlled the aircraft in the FCP through a 

sidestick using control models programmed in the VSS.  Additional control modes 

allowed both the EP and the SP to fly the aircraft through the sidestick in either the FCP 

or RCP with a basic F-16 control model.  The displays in the VISTA, to include the 

HUD, were fully configurable and re-programmable. The VISTA HUD was programmed 

to show the same CHR task and BAT task symbols as the desktop simulator and the 

LAMARS.  However, due to pre-configured portions of the programmable HUD, the 
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altitude, airspeed, and horizon line were displayed differently than those of the other 

simulators.  This can be seen in Figures 11, 17, 25, and 28.  

 

 

Figure 25 – VISTA CHR Task HUD View 

 

 The modified altitude and airspeed displays were determined to have no effect on 

tracking performance, because these parameters were not in the test subjects cross check 

while performing the tasks.  The change in horizon line was determined to assist the test 

subjects in discriminating between the target line, boundary lines, and the horizon line, 

because the new horizon line was considerably wider than the target and boundary lines.   

The VISTA was capable of recording HUD and Multi Function Display (MFD) 

video as well as most of the parameters on the data bus of the VSS.  A list of the relevant 

data parameters recorded for the BAT DART TMP is listed in Appendix C. 

 Target line CHR Pipper 

Horizon Line

Airspeed 
Altitude 
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Specific modifications to the NF-16D VSS software for the BAT DART project included: 

1)  Programming to simulate four different pitch control models.  

2) Programming to input a target, boundary profile, and CHR pipper into the 
HUD, as shown in Figures 25 and 28. 

3) Programming to provide for simulation control by the SP. 

 

 
5.7.1  Aircraft Aerodynamic and Pitch Control Model 

The 4 pitch control models and pitch stick control paths were implemented on the 

VISTA in the same manner as on the LAMARS.  All six state space matrices for each 

model were available for execution, and the current fuel weight was used to select the 

appropriate state space model at the beginning of each model run. 

 

5.7.2  Ground Test Procedures 

Two 2-hour ground tests were conducted on 31 August and 7 September 2006 to 

test software integration on the VISTA.  Ground electrical and hydraulic power was 

applied to the VISTA, and a control computer was attached which allowed test inputs and 

modifications to be input into the VSS.  In this ground mode, the VISTA acted like a 

simulator, using the VSS computers and sample atmospheric data to simulate flight.  

Activation, control, and termination of the simulation profiles as well as data recording 

were tested.  In-flight procedures were also tested and the flight cards developed for the 

actual test were used to simulate and practice for the flight test missions.   
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5.7.3  VISTA In-Flight Calibration 

The first flight of the test program was used to calibrate, verify and validate the 

four pitch control model configurations, as well as practice flight test techniques and data 

recording. The flight test calibrations were performed at the same altitude and airspeed 

planned for the data flights: 350 KIAS and 20,000 feet PA.  Inputs used included stick 

raps and step inputs manually applied by the pilot, and automated step inputs applied by 

the VSS.  The data generated by these maneuvers were recorded by the VSS.   

During the calibration flight, it was determined that the stick gains were too high 

in all configurations.  Test profiles and step inputs results were compared to the results 

from the LAMARS test during post-flight analysis, and an initial approximation was 

made to decrease all of the stick gains by 50%. The final stick gains for the VISTA pitch 

control models were further reduced by another 20% on the first data flight, and were 

established more by test pilot feel than by analytical comparison to the LAMARS pitch 

response.  Those corrections are shown below in Table 7. 

 

Table 7 – VISTA Pitch Stick Gain Corrections 
 

Pitch Model Initial Stick Gain 
(from LAMARS)

Total Stick Gain 
Correction Final Stick Gain

Level 1 1.00 40% 0.40
Level 2 0.25 40% 0.10
Level 3 0.50 40% 0.20
Desktop 1.00 40% 0.40  

 

A step response comparison (Figure 26) of the final LAMARS and VISTA Level 1 stick 

gain-model combinations shows a large discrepancy in the measured pitch rate response.  

However, in the opinion of the test pilot present on the calibration flight, and the first data 
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collection flight, the final stick gains chosen for the VISTA produced responses that were 

within 10% of the LAMARS models’ responses.  The discrepancies in the pitch rate 

response to stick input could be due to inaccuracies in the LAMARS models, delays 

inherent in the LAMARS or VISTA pitch stick to actuator control paths, or other 

unknown factors. 
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Figure 26 – Comparison of LAMARS and VISTA Level 1 Model Pitch Rate 

Response to a 10 lb Aft Stick Step Input. 

 

Historically, this is not surprising.  The first flight of the YF-16 (Smith, 1979) and 

fourth flight of the C-17 (Kendall, 1996) both encountered severe pilot induced 

oscillations (PIOs) due to excessively high stick response sensitivity.  After an extensive 

series of flight tests to optimize the small-displacement sidearm controller in the F-16, the 
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final roll control gradient was only about one-fourth the value originally set in the 

simulator (DoD, 1995).  Mitchell and Klyde (Mitchell, 2005) also noted in their paper on 

testing for PIOs that in general, simulators are notoriously bad at accurately predicting 

actual aircraft responses.  

 

5.7.4  Flight Test Procedures 

Following the calibration flight, data for the BAT DART investigation were 

collected on the remaining nine flights.  Prior to each test, the aircraft was trimmed in 

straight and level, unaccelerated flight at the initial conditions.  The new pitch control 

model was initialized and the SP gave the EP control of the aircraft.  The EP was allowed 

1 minute of free-flight to adjust to the new pitch control model.  After free-flight was 

terminated, the SP prepared the CHR task.   

Setup parameters for the Cooper Harper task were 20,000 ± 500 feet pressure 

altitude and 350 ± 10 KIAS. The Cooper-Harper pitch-tracking task was flown for one 

minute. The pilot attempted to keep the HUD-displayed CHR pipper (Figure 25) over the 

flight path angle target (γtarget) for as long as possible, making as aggressive inputs as 

necessary in an effort to achieve desired performance. Desired performance was defined 

as maintaining the target line inside the inner circle 90 percent of the time; adequate 

performance was defined as maintaining the target line inside the outer circle 90 percent 

of the time.  

The tracking task (Figure 27) presented to the test subjects was identical to the 

desktop simulator tracking task used at TPS (Figure 16), as modified from the original 

AFIT desktop simulation tracking task.  A 25 Hz time history vector of the TPS desktop 
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simulation target aircraft’s flight path angle (γtarget) was used as the input data for the 

target line in the VISTA.  

 

Figure 27 – VISTA Target Flight Path Angle (γtarget) Tracking Task Profile 

 

The rear cockpit safety pilot (SP) controlled the throttle to maintain 350 ± 50 

KIAS throughout the task.  After one minute of tracking, the task was terminated.  The 

EP assigned a Cooper-Harper rating based on perceived performance and workload.  If a 

PIO was encountered, the pilot assigned a PIO rating (appendix E).  Any comments given 

by the EP were also recorded. 

Following the completion of the CHR tracking task, the EP then flew a boundary 

avoidance tracking (BAT) task using the same flight path angle target (γtarget) tracking 

profile (Figure 27) with the standard FPM (Figure 28) instead of the CHR pipper.  Setup 

parameters for the pitch tracking task were 20,000 ± 500 feet pressure altitude and 350 ± 

10 KIAS.  The pilot attempted to keep the flight path marker (FPM) over the moving 
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target line while remaining inside the displayed boundaries.  The SP controlled the 

throttle to maintain 350 ± 50 KIAS.  As each BAT task progressed, the boundaries 

tightened in 25% increments, identical to the boundary profiles used on the desktop 

simulator, Infinity Cube simulator, and LAMARS.  The tracking profile terminated when 

the center of the FPM crossed either boundary line.  

 

 

Figure 28 - VISTA BAT Task HUD View 

Successful testing required diligent role-playing – the pilot was instructed to treat 

the boundaries as real threats, like the ground or another aircraft, and not accept an 

impact if at all possible.  However, since test safety was of primary concern, the pilots 

could limit their inputs with discretion to avoid over-g, excessive buffet, wing rock, or 

other real-world limits such as Instrument Meteorological Conditions (IMC).  The pilot 

commented when these real-world limits affected decision making and/or tracking.  

Successfully tracking the target required significant negative and positive g loading.  All 

 Target line 
FPM 

Horizon Line 

Airspeed 
Altitude 

Boundary Line 
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test subjects were seated in the front seat (EP cockpit) of the VISTA, as the Safety Pilot 

(SP) retained all controls required for start/taxi/takeoff/landing/shutdown/and any 

contingences in the rear cockpit (RCP).    

 

5.7.5  VISTA Results and Analysis  

Two primary methods were developed to analyze the data acquired from flight 

test.  These methods included distinguishing the levels of aircraft performance based on 

the length of time before boundary impact, and mean tracking error from the target 

compared to boundary size.  

 

5.7.5.1  Boundary Impact Time Analysis 

The first method of determining aircraft handling qualities was based on length of 

time progressed through the tracking exercise before contacting a boundary.  The 

drawbacks of this method included the potential for small pilot mistakes such as 

momentary inattention, mannequin effect where aircraft motion induces pilot arm/hand 

motion on control inceptors, or external factors such as traffic or airspace boundaries to 

terminate a run early.  When an external effect caused the test subject to terminate the 

exercise early, they were instructed to start the tracking task completely over or to restart 

the tracking task at an intermediate boundary value. 

As can be seen below in Table 8, the different pitch control models produced very 

dissimilar results in the boundary tracking task.  There was some overlap in both Level 1 

compared to Level 2 results, and Level 2 compared to Level 3 results.  However, there 

was no overlap in boundary impact times between Level 1 and Level 3.   
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Table 8 – VISTA Boundary Tracking Task Times 
 

Level 1 
model

Level 2 
model

Level 3 
model

DeskTop 
model

Pilot 1 517 459 * 548
Pilot 2 499 339 369 488
Pilot 3 460 457 309 499
Pilot 4 438 367 308 546
Pilot 5 427 338 101 428
Pilot 6 488 427 310 371
Pilot 7 427 220 11 457

Average: 465 373 235 477
stdev: 36.6 84.9 143.1 63.8

* - Incomplete test point due to fuel state

Run time (seconds)until boundary impact

 

 

A one-tailed t-Test analysis (appendix F) of the times and averages of the Level 1, 

2, and 3 results showed a greater than 99.99 percent chance that the results are from 3 

separate models.  This is significant because it shows that the BAT method can 

differentiate between the in-flight handling qualities present in different aircraft models.  

These results appear to correlate with the Cooper-Harper ratings (CHR) collected from 

each pilot on all pitch control models.  The CHR results are shown below in Figure 29.   
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Figure 29 – VISTA Cooper-Harper Ratings 

 

A one-tailed t-Test analysis (Appendix F) of the CHR of the Level 1, 2, and 3 

results showed a 100 percent chance that the results are from three separate models.   

Note that the desktop simulation model produced very different results on the 

LAMARS (Table 6 and Figure 21) as compared to the VISTA (Table 8 and Figure 29).  

One possible reason for this change, compared to the Level 1, 2, and 3 models, is that the 

desktop model had an active pitch rate feedback control loop.  Or one of the 

implementations could have been different than the other one.  Because of this 

discrepancy, the desktop model data was not compared directly to the other models, but 

its data was used in the total correlations below. 
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Figure 30 – VISTA CHR-BAT Correlation 

 

Pilot assigned Cooper-Harper ratings were plotted against the subsequent BAT 

task simulation run time until boundary impact.  As can be seen in Figure 30, the data is 

fairly scattered.  If the test subjects’ data is pared down to only the test subjects with pilot 

ratings, the results are more coherent.  Figure 31 shows the same data with only pilot 

subjects included.   One data point was also removed due to a combination of factors that 

were deemed to have caused an early boundary impact by the test subject: clouds in the 

working area, improperly adjusted stick arm-rest, and mannequin effect. 
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Figure 31 – VISTA CHR-BAT Correlation – Pilot Only Test Subjects 

 

Conclusions were then made to predict Cooper-Harper ratings.  For example, 

from Figure 31, it can be concluded that should a pilot fly the model tracking task for 450 

seconds, he or she will also probably rate the aircraft between 4 and 7 on the Cooper-

Harper scale for that same task.   

One additional way to look at the similarities between the BAT data and the CHR 

data is to put the BAT data into a 1 Dimensional chart, similar to a histogram of Cooper-

Harper ratings.   
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Figure 32 – VISTA CHR-BAT Comparison – Pilot Only Test Subjects 

 

Figure 32 contains the same data points as Figure 31, and reveals a marked 

similarity between the location and distribution of the BAT data and the CHR data.  This 

positive correlation and similarities between BAT boundary impact times and CHR 

ratings shows that boundary avoidance tracking tasks can be used to compare different 

aircraft pitch control systems and achieve an accurate measure of actual aircraft handling 

qualities.   
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5.7.5.2  Mean Tracking Error Analysis 

The second method of determining aircraft handling qualities was based on mean 

tracking error.  This method was more effective in determining boundary avoidance, and 

also held some utility in determining aircraft handling qualities.  A typical boundary 

tracking task can be seen below in Figure 33.  The figure shows a plot of tracking error 

and the instantaneous displayed boundaries over the length of the task run. Also shown 

are the pilot’s longitudinal stick inputs on the same time scale. The run was terminated 

when the tracking error equaled the current boundary value, or from the EP’s HUD view, 

when the flight path marker crossed the displayed boundary.   
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Figure 33 – Tracking Error, Boundaries and Stick Inputs of Typical Boundary 

Tracking Task 
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 A closer look at the tracking error throughout the run shows little variability in the 

peak errors as the boundaries impose on the task.  However, a plot of the average tracking 

error for the 60 seconds each discreet boundary value was displayed illustrates that the 

boundaries have a definite impact on pilot performance.  As shown in Figure 34, as the 

boundaries got closer to the tracking task target, the pilot’s average error decreased to a 

minimum value.  After this point, the pilot was no longer able to increase performance 

and further shrinking of the boundaries disrupted the target track, causing an increase in 

average tracking error.  The result is that for this pilot flying this task on this ‘aircraft’, 

the minimum average tracking error, or best performance has been found.  Also, a 

boundary value that will produce the best performance has been identified, and can be 

used in subsequent tests to drive the pilot to maximum performance.   
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 To take this analysis method one step farther, the minimum average tracking error 

for all test subjects in each boundary step size on each model was compiled, and the 

minimum values for each model and boundary step size were plotted in Figure 35.  It is 

readily apparent that test subjects flying the Level 1 model could achieve performance 

(defined as smaller average error) that was equal to or better than the performance on the 

Level 2 model.  The same can be said for test subjects flying the Level 2 model versus 

the Level 3 model.   
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Figure 35 – Minimum Average Track Error - All Pilots, All Test Runs 

 

Another thing to note from Figure 35 is the fact that the decrease in boundary size 

does not consistently affect pilot performance until the boundaries are inside of 5.6 

degrees.  This is theorized to be the point of boundary awareness: the maximum 

boundary size that will consistently cause an increase in task performance.  The best 
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average performance does not decrease, and in many cases it increases while the 

boundaries are 5.6 degrees or larger.  The early increase in minimum average error with 

time may be due to pilot familiarity with the aircraft model and workload management 

prior to boundary awareness.  That the boundary awareness performance improvement 

seems to be consistent across all three models is significant. This implies that the setup of 

the tracking task and boundary relationships are factors that contribute to when boundary 

awareness occurs.  Or, even more significantly, that all pilots may have the same limit for 

boundary awareness.   

 

Figure 36 – Mean of Individual Pilot’s Average Tracking Errors  

Figure 36 shows the mean of the average track errors for each boundary value 

from all test subjects and all test runs.  The same boundary awareness break point at 5.6 

degrees boundary value can also be observed in this figure.  It is interesting to note that 
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the mean of the average tracking errors for the Level 1 and Level 2 models are within 3 

percent for boundary values of 1.33 and 1.78 degrees.  However, none of the test pilots 

was able avoid boundary impact on the Level 2 model long enough to achieve the 1 

degree boundary value, while three of the test pilots passed 540 seconds on the Level 1 

model test run and flew in the 1 degree boundary value.  Further analysis and/or testing 

of these two pitch control models at small boundary values is warranted to determine why 

the average tracking performance is similar only at these small boundary values, even 

though absolute minimum tracking error was different 

One additional comparison can be shown between average tracking error and 

boundary size.  Figure 37 shows the mean flight path error in the 5 seconds prior to 

boundary impact plotted against the boundary size at boundary impact.  
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Figure 37 – Mean Track Error vs. Boundary Size at Impact 

The grouping of the boundary impact times of the different models is very 

revealing as it shows that just about any pilot, regardless of experience level, could 

achieve very good performance on the Level 1 pitch control model.  However, the wide 

spread of the Level 3 impact times shows that pilot skill level and experience play a large 

role in determining the best performance achievable on a pitch control model with poor 

handling qualities.    In this case, the magnitude of the standard deviation of the impact 

times for each model seems to correlate with the Cooper-Harper Ratings, as seen in Table 

8 and Figure 29.   

 

Data:       BAT DART 
Test A/C: NF-16D VISTA 
Config:     Cruise 
Dates :     8-18 Sep 2006 
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6.  Conclusions and Recommendations 

6.1  Conclusions of Research 

Handling qualities research and testing is arguably the most important aspect of manned 

flight test.  Verifying that the response of the pilot-aircraft system matches the 

expectations and requirements is the ultimate goal of any flight test program.  

Historically, the flight test community has relied on two forms of data to evaluate 

handling qualities: pilot comments and Cooper-Harper ratings.  This thesis proposes a 

new set of techniques and data to evaluate aircraft handling qualities.   

 The goal of this research was to determine if a bounded tracking task could be 

used to produce numerical aircraft handling qualities data. To accomplish this goal a 

nonlinear 6 DOF F-16 aircraft model and bounded flight path angle (γ) tracking task were 

developed on a desktop computer.  Test subjects flew the model and tracking task with 

variable flight path angle boundaries and 3 different stabilator rate limits.  The test 

subjects then flew the tracking task with the same boundaries and rate limits on the 

AFRL’s Infinity Cube simulator.  Stabilator rate limiting was discarded as a method to 

produce different handling qualities, and further investigation focused on the dissimilar 

results obtained in the different simulators.  The results were compared to determine if 

the different control schemes present in the two simulators produced different tracking 

performance.  Data analysis focused on the average tracking error per boundary size as a 

measure of task performance, as well as the length of time the simulation was flown prior 

to impacting a boundary. 

Research was continued as part of the USAF TPS TMP ‘BAT DART’, at 

Edwards AFB, CA.  Pitch control models representative of Cooper-Harper levels 1, 2, 
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and 3 were developed by the Calspan Corporation for integration into the LAMARS and 

the VISTA.  Cooper-Harper performance rating definitions were developed for the 

tracking task, and an additional 7 test subjects flew the tracking task on the desktop 

simulator, the LAMARS, and the VISTA.  Each test subject flew the tracking profile 

twice: once with no boundaries to produce a baseline CHR, and once with boundaries to 

collect BAT data.   

Differences in simulation hardware, software, and control inceptors called into 

question the validity of the desktop simulation and LAMARS data in comparison with 

actual flight test data.  Overlaps and shifts in the range of model results in the LAMARS 

data were inconsistent with the data produced during flight test in the VISTA. However, 

the primary goal of the LAMARS visit was to prepare for the flight test portion of the 

research, and this was accomplished to the satisfaction of the test team. 

Analysis of the VISTA flight test data produced a correlation between total 

simulation run time prior to impacting a boundary, and Cooper-Harper rating for each 

model.   However, it should be noted that this correlation is only valid for the tracking 

task and boundaries used in this research.  Data supporting the existence of boundary 

awareness was obtained by examining the average flight path track error for all test 

subjects.  Prior to boundary awareness, a decrease in boundary size did not consistently 

produce an increase in performance; whereas immediately after boundary awareness 

occurred, nearly all pilots on all models improved their performance. 

The boundary avoidance tracking (BAT) flight test techniques developed during 

this thesis and the ‘BAT DART’ TMP have been shown to provide consistent and 

relevant handling qualities data, with the added benefit of being subject to statistical 
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analysis.  Pilot comments will always remain the primary method of evaluating and 

correcting aircraft handling quality deficiencies, but BAT data could conceivably 

augment or even replace the Cooper-Harper rating as a reference data set for comparing 

and evaluating aircraft handling qualities.  Further research and flight test is warranted to 

possibly generalize the proposed flight test techniques so that they can be applied on a 

variety of aircraft platforms. 

 

6.2  Lessons Learned 

The initial tracking task was designed with the goal of eventually implementing 

the test on the VISTA.  However, little knowledge of the limitations and system 

requirements of the VISTA was available at the time.  A thorough understanding of the 

intended platform of implementation is recommended to properly design a flight test task. 

Creation of the three pitch control models was requested of the Calspan 

Corporation for two reasons:  1) Again, unfamiliarity with the VISTA software interface 

and limitations.  2) Lack of time available to the test team due to the regular syllabus 

requirements in the middle of TPS.  However, the time gained by having someone 

outside the test team build and implement the pitch control models was lost to 

requirements creep caused by miscommunication. This was further exasperated by one 

contractor being responsible for passing required models and software to another 

contractor, and the miscommunications that developed therein.  Having a single 

individual or team that has ownership and responsibility for creation, distribution, and 

implementation of new models or ideas is recommended to avoid miscommunication of 

vital project concepts.   
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An initial goal for the LAMARS testing was to have aerodynamic models, pitch 

control model implementation, recorded parameters, and testing procedures identical to 

those planned for the VISTA.  However, practical implementation considerations as well 

as the complete difference in hardware and software systems between the two different 

testing platforms made this goal unobtainable.  However, the primary goal of test 

procedure and test team practice was met, and the testing continued as planned.  Focusing 

on the minimum data necessary to support the research, in this case different models 

flown on one system – the VISTA, allowed the research to continue to a valid conclusion.  

Historically, simulation of fly-by-wire or highly augmented aircraft has produced 

results which don’t necessarily match initial flight test responses.  A cautious and well 

thought out approach to stick sensitivity in initial flight testing of new aircraft designs or 

models will assist in mitigating the effect of any unexpected aircraft responses.   

 

6.3  Recommendations for Action and Future Research 

The general properties of the tracking task used throughout the research were 

taken from Mr. Gray’s initial pilot in-the-loop simulation.   However, the visual 

representation of the simulation information and boundaries chosen for this research 

allowed more precise aircraft control and tracking precision.  Thus, the tracking task was 

not optimally designed for the simulations used.  The result was that during a large 

percentage of the tracking task execution, the pilot was out of the loop with the aircraft, 

and the short period response dominated the aircraft dynamics.  A frequency analysis of 

the pitch stick inputs was attempted on the VISTA data, but the results were inconclusive.  

Four frequencies dominated the data, obtained from fast Fourier transforms (FFTs) and 
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power spectral densities (PSDs) of the pilot pitch stick inputs.  These four frequencies 

corresponded to the approximate short period of the pitch model, and the three input 

frequencies to the tracking task.  At smaller boundary values, some frequencies slightly 

higher than the aircraft short period began to manifest, but the data was too noisy to make 

any conclusions.  If the data recording frequency were increased, and the pilot in-the-loop 

time maximized, it might be possible to observe a change in the pilot’s input bandwidth 

in the frequency domain as the boundaries decrease in size. 

In any future BAT research that will attempt to analyze pilot inputs in the 

frequency domain, it is recommended that the tracking task be designed to keep the pilot 

in the aircraft control loop for as large a percentage of time as possible. 

Due to the fact that the frequency content of a pilot’s stick inputs could occur up 

to approximately 20 Hz, the minimum sample rate to observe this data should be 

approximately 50 Hz.  However, the data from the VISTA was recorded at 66.66 Hz and 

the FFTs and PSDs were still extremely noisy.  An increase in sample rate might allow a 

better analysis of the data in the frequency domain.  
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Appendix A – Aerodynamic State Space Models 

Unaugmented F-16 Longitudinal State Space Equations (Witte, 2004): 

 

 

Hanley Case “B” State Space Equations used in Infinity Cube (Witte, 2004): 
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Calspan constructed Cooper-Harper Level 1, 2, and 3 models: 

Level 1 A matrix: 

0100
09044.4015.1416363.0
095555.03797.1015213.0

56157.0040619.00043.1024639.0

a
−−−

−−
−−−

=              

 Level 2 A matrix:  
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 Level 3 A matrix:  
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a
−−
−−

−−−

=               

 

B, C, and D matrices common to all Calspan models (Level 1, 2, and 3): 

0
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b
−

−
=                    
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0100
0010
0001
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Appendix B – Pitch Control Models 
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Appendix C – Simulation Environments 
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Appendix D – Recorded Parameter Lists 

Desktop Simulation: 
 airspeed       (KCAS) 
 pitch attitude (θ)      (degrees) 
 flight path angle (γ)      (degrees) 
 rate of change of flight path angle (γ )  (degrees/sec) 
 stick force       (lbs) 
 elevator displacement      (degrees) 
 load factor      (g) 
 target altitude      (feet) 
 target airspeed      (KCAS) 
 target flight path angle (γtgt)    (gamma) 
 boundary value     (degrees) 
 flight path track error (γerror)    (degrees) 
 rate of change of flight path track error (γ error) (degrees/sec) 

 
 

Infinity Cube Simulation: 
 flight path angle (γ)      (degrees) 
 rate of change of flight path angle (γ )  (degrees/sec) 
 stick force       (lbs) 
 elevator command (TEU)    (degrees) 
 elevator displacement  (TEU)    (degrees) 
 elevator rate      (degrees/sec) 
 load factor      (g) 
 target flight path angle (γtgt)    (gamma) 
 boundary value     (degrees) 
 flight path track error (γerror)    (degrees) 
 rate of change of flight path track error (γ error) (degrees/sec) 
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LAMARS: 
time       (sec) 
pitch stick force     (lbs) 
aileron stick force     (lbs) 

 elevator command (TEU)    (degrees) 
elevator position (TEU)    (degrees) 

 elevator rate      (degrees/sec) 
flight path angle (γ)     (degrees) 

 rate of change of flight path angle (γ )  (degrees/sec) 
target flight path angle track error (γerror)  (degrees) 

 rate of change of flight path track error (γ error) (degrees/sec) 
target flight path angle (γtgt)    (degrees) 
boundary      (degrees) 
acceleration in z-axis     (g) 
pitch (θ)      (degrees) 
pitch rate (q)      (deg/sec) 
true airspeed      (KTAS) 
indicated airspeed     (KIAS) 
barometric pressure altitude    (feet) 

 
 
VISTA: 

elapsed time      (sec) 
boundary      (degrees) 
flight path angle (γ)     (degrees) 
target flight path angle (γtgt)    (degrees) 
flight path angle track error (γerror)   (degrees) 
target HUD display elevation    (degrees) 
calibrated air speed     (KCAS) 
pressure alt      (feet) 
true airspeed      (KTAS) 
true heading      (degrees) 
configuration number     (#) 
flight path marker elevation (in HUD)  (degrees) 
forward pitch stick command    (lbs) 
forward roll stick command    (lbs) 
forward rudder pedal command   (lbs) 
mach number      (M) 
acceleration in y-axis     (g) 
acceleration in z-axis     (g) 
rate of change of velocity in x-axis   (ft/sec2) 
angle of attack (α)     (degrees) 
bank angle (φ)      (degrees) 
roll rate (p)      (deg/sec) 
rate of change of roll rate ( p )   (deg/sec2) 
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pitch (θ)      (degrees) 
pitch rate (q)      (deg/sec) 
rate of change of pitch rate ( q )   (deg/sec2) 
sideslip (β)      (degrees) 
yaw rate (r)      (deg/sec) 
rate of change of yaw rate ( r )   (deg/sec2) 
record number      (#) 
left flaperon position     (degrees) 
left horizontal tail position    (degrees) 
left leading edge flap position    (degrees) 
right flaperon position     (degrees) 
right horizontal tail position    (degrees) 
right leading edge flap position   (degrees) 
rudder position     (degrees) 
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Appendix E – Test Subject Data 
 

 

AFIT Desktop simulation and Infinity Cube Test Subjects: 

Test Subject Flight Hours Test Subject Flight Hours Test Subject Flight Hours
Pilot 1 2100 Pilot 10 2700 Pilot 16 300
Pilot 2 1150 Pilot 11 1800 Pilot 17 0
Pilot 3 2300 Pilot 12 3800 Pilot 18 0
Pilot 4 2000 Pilot 13 2000 Pilot 19 0
Pilot 5 1600 Pilot 14 1500 Pilot 20 200
Pilot 6 1100 Pilot 15 2100 Pilot 21 0
Pilot 7 2500 Pilot 22 8
Pilot 8 1000 Pilot 23 0
Pilot 9 1900 Pilot 24 20

Pilot 25 0
Pilot 26 0
Pilot 27 0

Fighter Pilots Heavy Pilots Non-Pilots

 

 

TPS Desktop simulation, LAMARS, and VISTA Test Subjects: 

Test Subject Flight Hours Test Subject Flight Hours
Test Pilot 1 1300 Test Pilot 5 100
Test Pilot 2 3000 Test Pilot 6 200
Test Pilot 3 2000 Test Pilot 7 0
Test Pilot 4 4000

Test Pilots Non-Pilots
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Appendix F – Rating Scales 
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Appendix G – Statistical Analysis of VISTA Data 

Level1 Level2 Level1 Level3 Level2 Level3
Pilot 1 427 338 427 101 338 101
Pilot 2 438 367 438 308 367 308
Pilot 3 488 427 488 310 427 310
Pilot 4 460 457 460 129 457 129
Pilot 5 517 459 517 459
Pilot 6 427 220 427 11 220 11
Pilot 7 499 339 499 369 339 369

t-Test: Two-Sample t-Test: Two-Sample t-Test: Two-Sample
 Assuming Equal Variances Assuming Equal Variances Assuming Equal Variances

Level1 Level2 Level1 Level3 Level2 Level3
Mean 465.171 372.516 Mean 465.171 204.782 Mean 372.516 204.782
Variance 1342.06 7210.27 Variance 1342.06 20536.3 Variance 7210.27 20536.3
Observations 7 7 Observations 7 6 Observations 7 6
Pooled Variance 4276.16 Pooled Variance 10066.7 Pooled Variance 13267.6
Hypothesized Mean 
Difference 0

Hypothesized Mean 
Difference 0

Hypothesized Mean 
Difference 0

df 12 df 11 df 11
t Stat 2.65079 t Stat 4.6648 t Stat 2.61746

99.99 P(T<=t) one-tail 0.01057 100.00 P(T<=t) one-tail 0.00034 99.99 P(T<=t) one-tail 0.01197
t Critical one-tail 1.78229 t Critical one-tail 1.79588 t Critical one-tail 1.79588
P(T<=t) two-tail 0.02115 P(T<=t) two-tail 0.00069 P(T<=t) two-tail 0.02394
t Critical two-tail 2.17881 t Critical two-tail 2.20099 t Critical two-tail 2.20099

 

Boundary Impact Time Statistical Analysis 
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Level1 Level2 Level1 Level3 Level2 Level3
Pilot 1 4 5 4 9 5 9
Pilot 2 4 6 4 8 6 8
Pilot 3 3 4 3 9 4 9
Pilot 4 4 6 4 10 6 10
Pilot 5 4 6 4 9 6 9
Pilot 6 4 5 4 8 5 8
Pilot 7 5 9 5 10 9 10

t-Test: Two-Sample t-Test: Two-Sample t-Test: Two-Sample
 Assuming Equal Variances Assuming Equal Variances Assuming Equal Variances

Level1 Level2 Level1 Level3 Level2 Level3
Mean 4 5.85714 Mean 4 9 Mean 5.85714 9
Variance 0.33333 2.47619 Variance 0.33333 0.66667 Variance 2.47619 0.66667
Observations 7 7 Observations 7 7 Observations 7 7
Pooled Variance 1.40476 Pooled Variance 0.5 Pooled Variance 1.57143
Hypothesized 
Mean Difference 0

Hypothesized 
Mean Difference 0

Hypothesized 
Mean Difference 0

df 12 df 12 df 12
t Stat -2.9314 t Stat -13.229 t Stat -4.6904

100.0 P(T<=t) one-tail 0.00629 100.0 P(T<=t) one-tail 8.1E-09 100.0 P(T<=t) one-tail 0.00026
t Critical one-tail 1.78229 t Critical one-tail 1.78229 t Critical one-tail 1.78229
P(T<=t) two-tail 0.01257 P(T<=t) two-tail 1.6E-08 P(T<=t) two-tail 0.00052
t Critical two-tail 2.17881 t Critical two-tail 2.17881 t Critical two-tail 2.17881
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