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Abstract

It has been proposed that the implementation of a pulsed detonation combustor

in a high-bypass turbofan engine would result in an engine that is both more efficient

and more reliable. The validity of the performance claims are evaluated based on a

comparison between the baseline and hybrid turbofans as modeled in the Numerical

Propulsion System Simulation (NPSS). The engine cycle of the baseline high-bypass

turbofan is evaluated and compared using both the Aircraft Engine Design System

(AEDsys) and NPSS programs. The baseline engine agreed to within 1% on the net

thrust calculation and specific fuel consumption between the two programs. Differ-

ences are traceable to the variation in specific heat models and to different methods of

calculating temperature across the turbine and compressor components. The hybrid

pulsed detonation engine model shares a common architecture with the baseline tur-

bofan model. Inlet mass flow and core mass flow are maintained, but the combustor

of the baseline engine is replaced with a pulsed detonation combustor for the hybrid

engine. The effect of detonation on the core air flow is calculated using a closed

form solution of the Chapman-Jouguet Mach number with a total energy correction

applied. Cycle time is calculated to provide a reasonable estimate of frequency for

the user input geometry. Effects of sub-component design choices within the pulsed

detonation combustor are evaluated using simple parametric studies. These studies

are used to select an optimal architecture for the combustor. The effects of detonation

are accounted for by applying pressure and temperature losses to the fluid exiting the

combustor. A parametric study was performed to demonstrate what level of loss con-

tinues to yield a more efficient engine. Results show improvement in thrust specific

fuel consumption with careful selection of combustor design parameters. There is a

definite level of acceptable loss that if surpassed makes pulsed detonation combustion

a good candidate for inclusion into a hybrid turbofan engine.

iv



Acknowledgements

This thesis represents more than one man’s work. Their names may not appear on

the cover page, but it belongs as much to those who have helped as to me.

To Dr. King goes a special note of thanks. You provided the quiet and consistent

guidance needed to move this work forward. Thank you for the hours of your time

spent listening and questioning.

Many professors and teachers have contributed to my education. From Mrs.

Black who taught me phonics in Kindergarten to the professors at AFIT, one concept

at a time, motivating one person to go a little farther.

Dr. Kuprowicz and Dr. Schauer who spend their days cultivating a technology

that may some day revolutionize aircraft propulsion.

Thanks to the ENY-2 lunch crowd who kept the 18 months in the proper Air

Force frame of reference.

I shall not ignore the magnificent support from the NPSS team at NASA/GRC.

This work would not be possible without them.

And to The Almighty, who I believe has guided me in this path thus far. To

Him I owe the greatest degree of gratitude, without Him I would not be.

My children have a debt of gratitude. You sacrificed time with your Dad,

weekend trips to the zoo and museum, bedtime stories, and one-on-one time so I

could do homework and a thesis. Only time will tell if the sacrifice you made in these

early years will give you more of the father that you need.

Thank you Mrs. Andrus; no man could ask for a better wife. You’ve been

willing to sacrifice your time with me, your health, your rest, and your spare time so

that I could work on this. Soon your husband will be able to spend his evenings with

you instead of his books.

Ionio Q. Andrus

v



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Turbofan Comparison in NPSS and AEDsys . . 2

1.2.2 Comparison of PDC Hybrid with Baseline Tur-
bofan . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Prior Work on Pulsed Detonation Combustors . . . . . . . . . . . 4
2.1 Thermodynamics of Pulsed Detonation Engines . . . . . 4

2.1.1 Chapman Jouguet Detonation . . . . . . . . . . 4

2.1.2 The Zeldovich-Von Neumann- Döring and Multi-
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ṁcore air Mass Flow Rate Through Detonation Tubes and Internal

Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Fn Net Thrust . . . . . . . . . . . . . . . . . . . . . . . . . . 67

TSFC Thrust Specific Fuel Consumption . . . . . . . . . . . . . 67

xiii



List of Abbreviations
Abbreviation Page

PDE Pulsed Detonation Engine . . . . . . . . . . . . . . . . . . 1

PDC Pulsed Detonation combustor . . . . . . . . . . . . . . . . 1

SFC Specific Fuel Consumption . . . . . . . . . . . . . . . . . . 1

NPSS Numerical Propulsion System Simulation . . . . . . . . . . 2

AEDsys Aircraft Engine Design System . . . . . . . . . . . . . . . 2

CJ Chapman-Jouguet . . . . . . . . . . . . . . . . . . . . . . 4

ZND Zeldovich, Von Neumann, and Döring . . . . . . . . . . . 6
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Comparative Analysis

of a High Bypass Turbofan

Using a Pulsed Detonation Combustor

I. Introduction

A significant effort has been made in the past ten years to develop pulsed det-

onation engines (PDE) as a means of aircraft propulsion. Detonation combustion

holds the promise of a more efficient engine due to the simultaneous pressure increase

and combustion. Additionally, fewer moving parts mean lower maintenance costs in

association with this engine.

Efficiency is the impetus for development, but PDEs still face several key techni-

cal hurdles. Noise is a significant issue for any aviation engine, and detonation creates

more of it than previous aircraft engines.

It is hoped that a marriage of the PDE with traditional turbomachinery will

result in an engine that is more efficient than turbine engines and quieter than a pure

PDE. The engine configuration of interest to this work involves replacing the burner

or high pressure spool of a turbofan with a pulsed detonation combustor (PDC).

The studies of Petters and Felder [1] and Smith et al. [2] have indicated that specific

fuel consumption (SFC) might be improved by 5 to 15% with the inclusion of a

PDC. These claims are significant, and they require explanation through some sort

of thermodynamic modeling.

1.1 Purpose

This thesis was generated in order to better understand how PDC technology

will impact future engines. Specifically, the objective of this thesis was to generate

a model for a PDC-turbofan hybrid engine, and to compare the hybrid model to a

conventional (or “baseline”) turbofan engine. Pursuing the hybrid engine cycle only

1



makes sense if the comparison demonstrates an increase in propulsive efficiency. Thus,

the goal of the comparison is to test the claims that a hybrid engine cycle is more

efficient than the baseline technology.

1.2 Procedure

Two steps were taken to ensure results demonstrated only the change in com-

bustion technology. First, the baseline high bypass turbofan with separate exhaust

streams was modeled in two programs to corroborate the engine cycle solutions. Then

a PDC hybrid turbofan was modeled and compared with the baseline engine.

1.2.1 Turbofan Comparison in NPSS and AEDsys. The baseline high by-

pass turbofan engine was modeled in the Numerical Propulsion System Simulation

(NPSS)and in the Aircraft Engine Design system (AEDsys). The engine cycle calcula-

tion result comparison assured us that the engine configuration was identical between

the two programs and acceptable to the propulsion community.

Each piece of software was selected for a different reason. In order to allow the

models generated for this thesis to be useful to the sponsor (AFRL/PRTA), NPSS

was mandated for the both the baseline and hybrid engines. NPSS was developed

within the cooperative framework established between industry and NASA, and is

becoming an industry standard. AEDsys was selected as the second piece of software

because it is easy to use, available, and well documented. AEDsys was developed by

Mattingly [3] for use in preliminary and academic situations. The comparison was

not intended to demonstrate the accuracy of either code, nor to provide a qualitative

judgment of either code. Instead, the intent was to ensure that the results generated

by the model constructed in NPSS are reasonably correct.

1.2.2 Comparison of PDC Hybrid with Baseline Turbofan. Once the baseline

engine was well-established the thermodynamic performance of a PDC was coded

into an NPSS element based on the work of on the work of Heiser and Pratt [4] and

2



Dyer and Kaemming [5]. This NPSS element was then called by the NPSS hybrid

engine model to perform cycle analysis calculations. This hybrid model required some

minor configuration changes to the baseline engine’s high pressure section in order to

accommodate the new element.

An acceptable pulsed detonation configuration had to be identified before the

baseline and hybrid engines could be compared. This configuration was determined

through parametric studies which showed how various PDC parameters affected the

overall engine performance. Once an acceptable PDC configuration was identified,

a component impulse analysis was performed using NPSS for both the hybrid and

baseline engines at design conditions. The effects of the unsteady and noisy flow gen-

erated by the pulsed detonation in the hybrid cycle performance was then simulated

through the application of pressure and temperature losses to the flow exiting the

combustor.

The results indicate that a hybrid engine can be more efficient than a conven-

tional high-bypass turbofan engine. Care must be taken to prevent significant total

pressure loss as the flow is transitioned to a steady state in order to see the improve-

ment. Detonation tube fill time has a significant impact on the density of the engine

- shorter tube fill times will result in fewer tubes being required to provide the same

thrust.
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II. Prior Work on Pulsed Detonation Combustors

A significant amount of work has been performed to model pulsed detonation

combustors. This chapter reviews some of the detonation theories, detonation

engine performance work, PDC models, and the results generated from those models.

The models are central to the pulsed detonation process, which in turn is central to

the hybrid engine cycle.

2.1 Thermodynamics of Pulsed Detonation Engines

The models seeking to mimic actual pulsed detonation are based on the underly-

ing thermodynamics. Both Kuo [6] and Glassman [7, 221-265] have good explanations

of two basic models of detonation summarized in sections 2.1.1 and 2.1.2.

2.1.1 Chapman Jouguet Detonation. Only a few brief points on Chapman-

Jouguet (CJ) theory are given here since Kuo [6] provides a detailed description and

derivation. CJ theory builds on the (Rankine-) Hugoniot relation defined by:

γ

γ − 1

(
p2

ρ2

− p1

ρ1

)
− 1

2
(p2 − p1)

(
1

ρ1

+
1

ρ2

)
= q (2.1)

where ρ is density, p is pressure, and γ. When exit pressure p2 is plotted as a function

of specific volume 1
ρ2

for a constant heat flux (q) value, the result is the Hugoniot

curve. Recall that q is defined as

q = h◦1 − h◦2 (2.2)

where h◦ is the heat of reaction. So we can control the offset of the Hugoniot curve

(and CJ wave velocity uCJ) by changing the q value through fuel-to-air ratio (FAR)

or fuel lower heating value (hpr).

The Hugoniot curve is traditionally broken into five regions, as shown in Figure

2.1. Consider the Rayleigh line equation in region V where both density (ρ) and
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Hugoniot Relations

P2

1/ρ2ρ1

P1

Region I

Region II

Region V

Region III
Region IV

Upper CJ point

Lower CJ point

Figure 2.1: Diagram of Hugoniot curve. Combustion is generally only observed in
region III and at the upper Chapman-Jouguet points.

pressure (p) at station 2 are greater than at station 1:

ρ2
1u

2
1 =

p2 − p1

1
ρ1
− 1

ρ2

= ṁ2 (2.3)

For these conditions, equation 2.3 implies an imaginary solution for the fluid velocity

(u) or mass flow rate (ṁ). Region I is rarely observed, requiring an overdriven shock.

Region II is likewise rarely observed, requiring a fast-reacting mixture. Region IV will

require that the gas be accelerated transonically through the deflagration wave and

is therefore defined as forbidden. The lower CJ point bordering region IV is also not

seen experimentally and is therefore excluded. This leaves only region III - referred

to as weak-deflagration - and the upper Chapman-Jouguet point. Since detonation is

the region of interest to this work we will ignore deflagration and focus on the upper

CJ point.

The Chapman-Jouguet points are located where the following equality holds

true:
p2 − p1

1
ρ2
− 1

ρ1

= −γρ2p2 (2.4)
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Figure 2.2: Diagram of the 1-dimensional detonation model used for ZND detona-
tion theory.

This equality can be combined with equation 2.3 to yield equation 2.5.

u2
2 =

γp2

ρ2

= a2
2 or |u2| = a2 (2.5)

where a is the speed of sound in the fluid. This implies that at the CJ points,

M2 = 1. The upper CJ point corresponds to the minimum detonation wave speed.

Since commonly observed detonation corresponds to the upper CJ point, we seek to

obtain the corresponding velocity. There are several methods of doing this that are

iterative in nature, but a closed-form solution has also been obtained and will be

discussed in section 2.1.3.

2.1.2 The Zeldovich-Von Neumann- Döring and Multi-Dimensional Detona-

tion Models. Zeldovich, Von Neumann, and Döring (ZND) independently made

the same assumption that detonation flow is one dimensional. The result is the ZND

model of detonation, extending the Chapman-Jouguet theory of detonation. Their

model treats the detonation as a shock wave propagating into the quiescent mixture

that pre-heats the reactants to a level that allows the ensuing combustive reaction to

travel at the speed of the shock. This is easily seen in Figure 2.2. As the unreacted
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Von Neumann Spike

P2

1/ρ2ρ1

P1

Upper CJ point

Von Neumann Spike

Figure 2.3: As the detonation initiates, it drives the fluid properties along the
dashed path, causing a pressure spike first seen by von Neumann.

gas (q = 0) passes through the shock, the pressure rise drives it along the Hugoniot

curve to the point described in Figure 2.3 as the von Neumann spike. It is at this

point that combustion begins to occur, releasing heat and moving the fluid to a new

Hugoniot curve with a different value of q. Height of the spike depends on the rate

of chemical kinetics, with faster chemical interactions resulting in a smaller spike. If

the spike is not high enough, or non-existent, the detonation may not have enough

power to sustain itself.

These models demonstrate the underlying effects of detonation , but the reality

is always more complex. Detonation occurs in three dimensions, and is a complex

interaction where pressure, temperature, and density vary in all directions as shown

in Kuo [6] and Strehlow [8]. Detonations are cellular in nature, so the geometry of

the detonation tube can have a dramatic impact on the ability to reliably detonate

reacting mixtures. Indeed, for a cylindrical tube, the detonation wave prefers to travel

in a spiral whose pitch for the leading transverse wave is defined by the first helical

acoustic mode.
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2.1.3 Thermodynamic Performance Models. Heiser and Pratt [4] pre-

sented a simplified model for thermodynamic performance calculation of a PDE. Their

method is based on solving for the Chapman-Jouguet Mach number of the detonation

wave flowing into the quiescent mixture. The CJ Mach number is then used to calcu-

late entropy and pressure rise across the detonation volume. With these properties,

they can then calculate all fluid properties of the fluid exiting the PDE. The closed

form algebraic solutions developed by Shapiro and others [8–10] are summarized here.

First, a non-dimensional heat addition term is calculated

q̃ ≡ qsupplied

CpT0

=
fhpr

CpT0

(2.6)

where q̃ is the non-dimensional heat addition, CP , f is the mass fuel-air ratio, and hpr

is the lower heating value of the fuel. Having calculated q̃ it is possible to calculate

the Chapman-Jouguet Mach number using equation 4 from Heiser and Pratt [4]:

M2
CJ = (γ + 1)

(
q̃

Ψ

)
+ 1 +

√[
(γ + 1)

(
q̃

Ψ

)
+ 1

]2

− 1 (2.7)

where Ψ equal T3

T0
, the ratio of the compressed static temperature to the free-stream

static temperature. Having calculated the Chapman-Jouguet Mach number (MCJ)

it is possible to calculate the entropy S generated using equation 5 from Heiser and

Pratt [4]:

s4 − s3

Cp

= − ln

[
M2

CJ

(
γ + 1

1 + γM2
CJ

) γ+1
γ

]
(2.8)

For a real PDE cycle, the non-dimensional heat addition term, q̃, is multiplied by a

burning efficiency (ηb) and a pressure ratio (πb) is calculated across the tubes using

equation 18 from Heiser and Pratt [4]

p4

p0

=
1 + γM2

CJ

γ + 1

p3

p0

≥ 1 (2.9)
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Dyer & Kaemming Correction

T
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(S-S0)/CP

3

4

4’

1010’

0

Ramjet

PDE

Energy Conserved
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(h0+qadd)/CP

Figure 2.4: The T-S diagram shown in Dyer and Kaemming paper [5, fig 10] with
the proposed correction to the PDE thermodynamic cycle. Conservation of energy
will prevent incorrect calculation of entropy as the fluid exits the engine.

With both the entropy and pressure of the fluid post-combustion known it is possible

to solve for all the other fluid properties through look-up tables or linear approxima-

tions.

Harris et al. [11] faulted the method of Heiser and Pratt [4] as overly optimistic

because it neglects the fill portion of the cycle. Neglecting the fill portion does not

invalidate the solutions obtained for pressure and entropy, but it does change the time

averaged value of the properties. There is, however, a more significant drawback to

using the cycle solution proposed by Heiser and Pratt [4]: energy is not conserved.

Dyer and Kaemming [5] proposed a different thermodynamic performance esti-

mation and compared their results with ramjet thermodynamic performance. Their

work is very similar to the work of Heiser and Pratt [4], but differs in how it ac-

cesses the fluid properties at station 4 (detonation tube exit). Figure 2.4 shows a

temperature-entropy diagram of three cycles: a ramjet cycle, the PDE cycle as pro-

posed by Heiser and Pratt, and the energy conserved PDE cycle. They realized that

using a nozzle efficiency (ηN) accesses the kinetic energy at station 4, an energy level

that is not truly available since the velocity will be “paid back” when gasses expand
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back to static conditions. Instead, they use the nozzle gross thrust coefficient (Cv)

that utilizes the entropy at tube exit and ambient pressure - not the energy. The

result is that less entropy is calculated between generation from tube exit (station 4)

and system exit (station 10). They propose that an accurate representation of the

available energy is to use the known CJ entropy as calculated by Heiser and Pratt [4]

coupled with the known system enthalpy calculated as (h0 + qadd) where h0 is the

enthalpy at the beginning of the cycle and qadd is the heat flux into the system.

2.2 Pulsed Detonation Combustor Models

Embedding pulsed detonation within a turbine engine has been examined by

groups from NASA [1,12,13], G.E. Global Research [14–20], the U.S. Air Force [4,21],

and Indiana University and Liberty Works [2,22]. The results of this work have gener-

ated hope that a marriage between pulsed detonation and turbomachinery will result

in a more efficient engine that is simultaneously mechanically simpler. Work initi-

ated at NASA has been moved to industry through the Constant Volume Combustion

Cycle Engine program (CVCCE)

2.2.1 Pulsed Detonation Combustor Performance Maps. Work done at

General Electric Global Research [17] under the CVCCE program implemented a

CFD code to achieve a converged pulse detonation cycle that described fluid elements

and cycle timing. CFD results were ported into a performance map as described

by Paxson [13]. This approach uses the CFD cycle results for inlet temperature,

fraction of time that the flow contains a reacting mixture, and mixture stoichiometry

to calculate PDC performance. The map returns total enthalpy and total pressure

ratios given the three input parameters of 1) fill fraction 2) purge fraction and 3)non-

dimensional heat of reaction (q0). There were some minor modifications to Paxson’s

[13, 23] formulae, but the process remained unchanged. This method was nearly

selected for implementation in this work because of the ability to base a performance

map on experimental data, but time limitations drove the work in a different direction.
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The CFD simulation was a 1-D MacCormack predictor-corrector time march-

ing algorithm, second order accurate in time and space. A 1-D simulation does not

capture all the effects of inlet valves and combustor exhaust, however, it does pro-

vide information about change in fluid properties at combustor exit. Also, cycle time

calculations that provided accurate detonation frequency and mass flow rates. Sig-

nificantly, a parametric study to demonstrate the effect of constant specific heats

was performed and included in the report by Tangirala et al. [17]. It demonstrated

that maintaining a constant specific heat through a PDC analysis results in a flawed

prediction of total pressure ratios and cycle times.

Additionally, the stated geometry of the detonation tube used for the PDC was

not realistic: its length was only 3 diameters long. This is not long enough to allow

for a detonation cycle to occur. Although not stated, the assumption is that since the

model is one dimensional only the length of the tube, and total cross-sectional area

are important to find a solution.

2.2.2 Exhaust into Turbines. One major hurdle to the implementation of

a PDC into hybrid engines is the interaction between the cyclic pulsation of the

detonations and the flow through the turbines. In order to maintain the efficiency of

the baseline engine, a pulsed engine will require efficient power extraction from the

combusted fluid. A good understanding of the pulsed detonation exhaust is required

if current turbine technology is to be used.

A significant body of work exists for PDE applications, and results have con-

verged to agreement over the past five years or so. The data that has converged to

agreement for unconfined venting of PDE exhaust. A PDC, on the other hand, vents

into a volume confined by the detonation tube exhaust plane, splitter plates, and the

stator/turbine assembly. Schauer et al [21] noted that when venting into a turbine,

blowdown times of a single PDE tube increased from 3 ms to more than 10 ms, often

extending into the fill portion of the next cycle. This delay subsequently impacts the

11



fill negatively. Recognizing this fundamental difference, Rasheed et al. [14] performed

some research to better understand this process.

Under the NASA CVCCE program, GE Global Research [16,18–20] performed a

series of tests on an eight-tube PDC exhausting into a turbine taken from a locomotive

turbocharger. The detonation tubes used in this experiment were un-valved; flow

entered the inlet plenum perpendicular to the detonation tubes, and tube cooling air

was flowed through a separate inlet. These conditions differ from those that were

modeled for our work, but the results gained from this effort provide valuable insight

into how a PDC will work in conjunction with a turbine.

In an effort to better understand how a pulsed detonation engine affects the flow

through the turbine, the G.E. Global Research group [14] also performed a series of

CFD and experimental studies examining how the detonation waves interacted with

a 2-dimensional cascade of stator blades. Their work shows that there is significant

fluctuation in mass flow rate, pressure, and temperature across the turbine during

the pulse detonation cycle. The fluctuations induced by the detonation are passed

through the turbine and will affect the other rotor stages as well.

2.2.3 Converting Pulsed Flow into Steady State Flow. The results reported

by Schauer et al. [21] and G.E. Global Research [19,20] indicate that current turbine

technology will not perform as expected unless the pulsed nature of the PDC is

somehow balanced to produce steady-state or near steady-state flow into the turbines.

The machinery required between the pulsed flow generated by a PDC and the

steady flow desired for optimal turbine performance has not yet been identified. It may

involve ejectors, capacitive tanks, diffusers or a combination of these items combined

with new ideas. It seems reasonable to assume that whatever the machinery, some

pressure and enthalpy loss to the fluids that traverse them. The level of losses is not

known at this time, but certainly there will be a definite efficiency required before the

hybrid technology can present an improvement over a baseline high bypass turbofan

engine.
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We are left with the broader question: what level of losses can be incurred in

the transition to steady state before the benefit gained by pulsed detonation is lost?

13



III. Baseline and Hybrid Models

Models of the baseline and the hybrid high bypass turbofan were generated

with great care to ensure consistency. The baseline model was evaluated

using both AEDsys and NPSS. This secured a good understanding of the high bypass

turbofan and provided a solid foundation for comparing it to the hybrid engine. Once

the baseline model was defined, the hybrid model implementing the PDC could be

completed .

3.1 Baseline High Bypass Turbofan

The modeled engine was based on public information of the TF-39-GE-1C engine

currently used on the C-5 Galaxy to certify that it was both relevant to the Air Force

and easily verifiable. Table 3.1 shows a comparison of available information on the

TF-39-GE-1C and the engine model generated for this exercise. The engine model

was created without implementation of a requirements analysis and remains notional

at this point. Since the component efficiencies were unknown, they were selected

from Mattingly’s table 4.4 [3, 107], using a level 4 technology. Level 4 technology

corresponds not to the engine technology currently used, but to the technology level

projected ten to twenty years in the future. The level 4 technology also projects a

higher turbine inlet temperature (TIT) than the engines currently found in service.

Table 3.1: Fundamental parameters for baseline engine.
Engine TF39-GE-1C Notional Baseline
Aircraft C-5 N/A
Fn (lb) 40805 41500
Weight (lb) 7186 N/A
Length (in) 100 N/A
Max Diam (in) 203 N/A
BPR 8 8
FPR 1.56 1.56
OPR 26 26
TSFC (1/h) 0.315 0.325
Airflow (lbm/s) 1549 1500
TIT (F) 2350 2830
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Figure 3.1: High bypass separate stream turbofan engine con-
figuration and station numbering.
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Figure 3.2: High bypass turbofan engine configuration in
NPSS. Shown here are the named components and how the fluid
is passed from one component to the other.
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3.1.1 Baseline Engine Configuration. The engine model coded in NPSS

is constrained by the fixed architecture of the high bypass split stream turbofan

engine described by Mattingly [3, 569-587]. Indeed, the engine was first modeled

using AEDsys with the input parameters given in Tables 3.2, 3.3, and 3.4. This high

bypass turbofan engine is described in the most fundamental level by figure 3.1. The

engine employs a separate exhaust stream for the bypass. A mixer for combining the

fluid exiting the burner and one of the bleeds is implemented between stations 4 and

4.1. A similar mixer is implemented between stations 4.4 and 4.5. Fixed conical nozzle

assumptions are used, and the fan is the outer portion of the first stage on the low-

pressure compressor disk. Figure 3.1 shows the bypass and core airflows splitting at

the fan exit, but the NPSS architecture required the split at the fan entry for correct

implementation of separate fan and low-pressure compressor maps. The model file

that defines the NPSS engine can be found in Appendix A. A component diagram of

the engine is shown in Figure 3.2

Table 3.2: AEDsys reference design input variables for the baseline
turbofan engine and thermodynamic package selection.

Input Variables Value Units
Gas Model

Constant,Modified,Variable Specific Heat MSH
Reference Engine Design

Flight Conditions
Mach Number 0
Altitude 0 ft
Temperature 518.67 R
Pressure 14.696 psia

Size
Mass Flow Rate 1500 lbm/s

Design Limits
total temperature leaving combustor 2900 R

Design Variables
Compressor Pressure Ratio (Pt3/Pt2) 26
LPC PR (Pt2.5/Pt2) 1.56
Fan PR (Pt13/Pt2) 1.56
Bypass ratio 8
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Table 3.3: AEDsys thermodynamic inputs for the modified specific
heat option.

Input Variables Value Units
Fuel/Gas properties, Component Efficiency

Fuel/Gas Properties
Fuel Heating Value 18400 BTU/lbm
CP compressor 0.2415 BTU/(lbm R)
gamma c 1.3986
CP turbine 0.295 BTU/(lbm R)
gamma turbine 1.2957

Bleed air/ Coolant air
Bleed Air 1 %
Coolant Air 5 %
Coolant Air 2 5 %

Power Takeoff
CTOL 0.00
CTOH 0.0005330
LP Spool Mechanical Efficiency 0.99
HP Spool Mechanical Efficiency 0.99

Component total Pressure Ratio
π diffuser max (Pt2/Pt1) 0.995
π burner (Pt4/Pt3) 0.96
π nozzle (Pt9/Pt7) 0.985
π fan nozzle 0.98

Polytropic Efficiencies
Fan 0.89
LPC 0.89
HPC 0.90
HPT 0.89
LPT 0.89

Component Efficiencies
Burner 0.995
Mechanical shaft LP spool 0.99
Mechanical shaft HP spool 0.99
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Table 3.4: AEDsys engine control inputs.
Input Variables Value Units
Controls / Install Model/ # Engines

Engine Controls
Max Temperature at Station 4 (Tt4 3200 R
Max Compressor Pressure Ration 32
Max Pressure at station 3 650 psia
Max Temperature at station 3 1860 R
Max % Ref RPM - LP Spool 110
Max % Ref RPM - HP Spool 110

3.2 Baseline Model Similarity Between AEDsys and NPSS

Although the baseline turbofan engine shares a common architecture in both

programs, the two softwares require different methods of characterizing the compo-

nents. Great care had to be taken to ascertain that the configurations not only had

the same form, but also shared the same definition of component performance. In-

evitably, differences in each program’s solution process will produce some variation in

the results. This section describes the greatest contributor to solution differences.

Design parameters were carefully ported into the NPSS model from the AEDsys

program to eliminate differences due to component performance inputs. NPSS handles

efficiencies of several types differently than AEDsys, so a translation had to be made

in order to confirm models were similar. For some components, efficiencies input in

AEDsys had to be translated to a normalized pressure drop term ∆P
P

for NPSS. For

other components, the calculated values of efficiency output from AEDsys had to be

copied and input into the NPSS model. Table 3.5 shows the translation between

the two sets of inputs. Also note that mechanical efficiencies from AEDsys translate

to fractional losses in NPSS. The most significant item in this table is that NPSS

requires adiabatic efficiency input whereas AEDsys requires polytropic efficiency for

the compressors and turbines as an input.

Engine control inputs are not included in Table 3.5 because there is not a simple

element that will impose restrictions on the engine. Instead, the control limitations
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ṁ

)
B

le
ed

B
L
D

3
po

rt
na

m
e.

fr
ac

W
D

iv
id

e
A

E
D

sy
s

va
lu

e
by

10
0

C
oo

la
nt

A
ir

1
(%

ṁ
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are imposed through the use of independent and dependent variable declarations.

These declared variables are then added to the NPSS solver. More information can

be found in the NPSS user guide [24, sec 6.8].

With two different types of input for efficiency, a significant certification effort

ensured that the turbines and compressors had the same performance. The poly-

tropic and adiabatic efficiencies could not be matched simultaneously between the

engines because the two programs work the progression from the input efficiency to

the calculated efficiency in reverse order from each other.

Recognizing the need to relate the polytropic and isentropic (or adiabatic) ef-

ficiencies, a review of a fundamental turbomachinery text was performed. At a sim-

plified level, Oates [25, 214 & 222] and Wilson and Korakianitis [26] recorded the

formulae for computing the adiabatic efficiencies (ηc and ηtb) given the polytropic

efficiencies (ec and etb):

ηc =
π

γc−1
γc

c − 1

π
γc−1
ecγc
c − 1

=
Ẇin ideal

Ẇin actual

(3.1)

ηtb =
1− π

etb
(γtb−1)

γtb
tb

1− π
γtb−1

γtb
tb

=
1− τtb

1− τ
1

etb
tb

=
Ẇout actual

Ẇout ideal

(3.2)

where Ẇ is the power put into or taken out of the component. However, this re-

lationship is observed in AEDsys only for the constant and modified specific heat

thermodynamic cycles. Using this relationship to calculate the adiabatic efficiency

does not account for the variation of specific heat calculated with the AEDsys vari-

able specific heats (VSH) option or NPSS thermodynamic packages. The formulae for

variable specific heats become more complicated since the variation of temperature

across the components requires a complete thermal properties solution at exit.

With the goal of understanding the difference between AEDsys and NPSS, an

examination of the methods employed by these programs was made. Mattingly [3, 106]

chose to use the polytropic efficiency as input for his VSH because it is a measure of
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technology. The polytropic efficiency is used to obtain the reduced pressure (Pr) at

compressor exit:

Pr exit = Pr inlet · π1/ef
c (3.3)

Pr exit ideal = Pr inlet · πc (3.4)

where πc is the total pressure ratio across the compressor. With the reduced pressure

and a fuel fraction of 0, the FAIR subroutine (described in more detail in section

3.2.1) is called to obtain all remaining fluid properties (including enthalpy (h) ) at

compressor exit.

A slightly different variation is employed to get the total pressure ratio across

the turbine (πtb). Assuming the conditions at burner exit (station 4) are known, the

temperature ratio across the turbine (τtb) is identified using the required power across

the shaft. The enthalpy drop across the turbine is calculated:

htb exit = htb inletτtb (3.5)

The enthalpy at turbine exit( htbexit) is then passed into FAIR to obtain turbine exit

conditions. This allows the calculation of the turbine pressure ratio:

πtb =

(
Pr tb exit

Pr tb inlet

)1/etb

(3.6)

With the pressure ratio across the turbine we can get the ideal conditions using FAIR

if we first calculate the reduced pressure:

Pr tb exit ideal = πtbPr tb inlet (3.7)
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Using the exit ideal and non-ideal conditions, the adiabatic efficiency is calculated for

both the compressor and the turbine using total enthalpy differences:

ηc =
ht ex ideal − ht in

ht ex actual − ht in

=
Ẇin ideal

Ẇin actual

(3.8)

ηtb =
ht in − ht ex actual

ht in − ht ex ideal

=
Ẇout actual

Ẇout ideal

(3.9)

The adiabatic efficiency is stored as an output for on-design conditions, and is used

in the off-design conditions.

NPSS takes a different approach to calculating the properties across compressors

and turbines. As with AEDsys, inlet properties are known and the user specifies the

pressure ratio across the component. The total pressure (Pt) at exit is calculated as

Pt exit = Pt inlet · πc (3.10)

or

Pt exit =
Pt inlet

πtb

(3.11)

However, in order to obtain the enthalpy at exit, the ideal fluid conditions must first

be calculated. The thermodynamic packages in NPSS requires two properties besides

the fuel fraction when calculating all other fluid properties. Having the ideal total

pressure, we still need one more ideal fluid attribute to obtain all fluid properties. In

an ideal component there is no entropy change from inlet to exit so the fluid property

solution can be obtained using the inlet entropy and calculated total exit pressure

from equation 3.10 or 3.11. Non-ideal total enthalpy at component exit can then be

calculated using the enthalpies and user input adiabatic efficiencies:

ht exit c =
ht ex ideal − ht inlet

ηc

+ ht inlet (3.12)

ht exit tb = ht inlet − (ht inlet−ht ex ideal
) · ηtb (3.13)
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This equation is the same as Equation 3.9; it has only been re-arranged. Subsequently,

the thermodynamics routine is called using the non-ideal exit total pressure and total

enthalpy as calculated above to obtain the fluid attributes.

Once the actual inlet and exit properties are known the polytropic efficiency is

calculated.

ec =
Rt inlet · ln(πc)

Rt inlet · ln(πc) + Sexit − Sinlet

(3.14)

etb =
Rt inlet · ln(πtb)

Rt inlet · ln(πtb) + Sexit − Sinlet

(3.15)

There are two reasons to match the adiabatic efficiency between the two pro-

grams: first, the adiabatic (isentropic) efficiency is implemented by both programs

identically using some form of equation 3.8. The second is that both programs utilize

this efficiency for off-design calculations.

When the fluid properties at component exit are being calculated, small vari-

ations in the thermodynamic codes will result in a fluid properties discrepancy be-

tween programs. The resulting differences in the entropy across the component causes

a small change in calculated efficiencies and a small temperature divergence. Small

differences in temperature between the two programs can result in sizeable variations

of reported power since, as Çengal and Boles put it [27]:

−Ẇ = ṁ
[
(h2 − h1)−

(
V 2

2 − V 2
1

)− g (z2 − z1)
]

(3.16)

and enthalpy (h) not only dominates the other terms in the power equation, but is

also a function of temperature.

To better understand how the small temperature variations between NPSS and

AEDsys result in a difference of thrust, we must take a closer look at the thermody-

namic models that are the basis of the two programs.

3.2.1 Thermodynamic Models. Two types of error might be encountered

when comparing thermodynamic codes. As shown in Figure 3.3, the first type of error
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Enthalpy Errors
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Figure 3.3: Two ways that errors might be introduced into a
solution through use of the thermodynamics package.

is introduced when the specific heat model deviates from the true characteristics of

the gas or other models. The area between the specific heat models is integrated to

obtain the enthalpy at the given temperature using the formula:

h(T ) =

∫ Tref

T

Cp dT (3.17)

Thus, any variation included in the integrated specific heat will yield a change in the

area. Changing the area results in changing the enthalpy.

The second type of error is generated when temperature calculations across com-

ponents report discrepant results. When this happens, the specific heat is integrated

over different intervals. So, even if the thermodynamic model is shared the enthalpy

will differ. The lesson here is that small alterations in specific heat modeling and

fractions of a degree can translate into noticeable differences in final results.

To better understand the deviations in baseline engine results between AEDsys

and NPSS, the thermodynamic packages of each were evaluated in order to mea-
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Table 3.6: The coefficients used for the FAIR subroutine. FAIR provides the vari-
able specific heat thermodynamic cycle calculations in AEDsys.

Pure Air Vitiated Air
A0 2.5020051x10−1 A0 7.3816638x10−2

A1 −5.1536879x10−5 A1 1.2258630x10−3

A2 6.5519486x10−8 A2 −1.3771901x10−6

A3 −6.7178376x10−12 A3 9.9686793x10−10

A4 −1.5128259x10−14 A4 −4.2051104x10−13

A5 7.6215767x10−18 A5 1.0212913x10−16

A6 −1.4526770x10−21 A6 −1.3335668x10−20

A7 1.0115540x10−25 A7 7.2678710x10−25

href −1.7558886Btu
lbm

href 30.58153Btu
lbm

φref 0.0454323 Btu
lbm deg R

φref 0.6483398 Btu
lbm deg R

sure and correct any mismatches in reported enthalpy. The AEDsys thermodynamic

package is a subroutine termed FAIR. FAIR is an 8th order polynomial fit to JANAF

specific heat data for pure air, and CEA data for vitiated air according to Mat-

tingly [28, 89-91]. First recorded by Capt. McKinney [29, 30], enthalpy and entropy

functions are calculated using the relationships

Cp = A0 + A1T + A2T
2 + A3T

3 + A4T
4 + A5T

5 + A6T
6 + A7T

7 (3.18)

h = href + A0T +
A1

2
T 2 +

A2

3
T 3 +

A3

4
T 4 +

A4

5
T 5 +

A5

6
T 6 +

A6

7
T 7 +

A7

8
T 8 (3.19)

φ = φref + A0 ln T + A1T +
A2

2
T 2 +

A3

3
T 3 +

A4

4
T 4 +

A5

5
T 5 +

A6

6
T 6 +

A7

7
T 7 (3.20)

the same coefficients used for the calculation of specific heat (CP ) are also used for

calculation of enthalpy (h) and entropy function (φ). The coefficients are recorded in

Table 3.6. Since FAIR was not available as a stand alone routine a simplified routine

titled unFAIR was written using Fortran90. The unFAIR subroutine is less robust

than FAIR since it is only able to calculate the fluid properties if the temperature is
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passed in. Fluid property output matches the tabulated data reported by Mattingly

[28, 812-813]. A copy of this subroutine may be found in Appendix B.

NPSS is more flexible than AEDsys. It has several thermodynamic packages

available [24, sec 4.1]. Four mentioned in this study are:

• GasTbl, Package developed by Pratt & Whitney based on Therm, but adding

humidity calculations and some chemical equilibrium capabilities.

• allFuel, Package developed by General Electric that contains gas properties and

fuel properties.

• janaf, Implementation of the National Institute of Standards and Technology

gas properties prepared by Honeywell

• CEA, Implementation of NASA’s Chemical Equilibrium code; however, it is not

a full implementation and lacks the capability to solve detonation.

Unlike AEDsys, NPSS is designed to allow the user to control the engine ar-

chitecture and implementation of controls. Responsibility for configuration does not

come without a price: more control given requires more control be exercised. Care-

ful attention to the inputs and a good understanding of the thermodynamic models

should prevent the generation of incorrect solutions that appear to be valid.

In order to understand the difference in results between AEDsys and NPSS, a

study was performed to measure the variations between the two programs’ thermo-

dynamic subroutines. Since specific heat is the fundamental property that defines the

other thermodynamic values, the specific heat was differenced between the AEDsys

and NPSS thermodynamic routines.

Figure 3.4 shows differences of the NPSS solution from the AEDsys solution for

specific heat in pure air (no fuel added) for conditions at 1 atm and 40.8 atm. Above

2000 ◦R and 1 atm the GasTbl and allFuel values diverge from FAIR, janaf, and CEA

to approximately 15% difference at 4000 ◦R.There is a slight difference between the

two plots at the higher temperatures: note that the high-pressure data from NPSS
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Comparison of Thermodynamic Routines at 1atm, 

Pure Air
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Figure 3.4: Differences between FAIR and four thermodynamic routines found in
NPSS for specific heat of pure air.(a) 1 atm (b) 40.8 atm. (Cp NPSS − Cp FAIR)

is closer to the FAIR data. Below 2000 ◦R the variations are small, with the peak at

500 ◦R representing a 2% difference.

The differences in the specific heat indicate differences in enthalpy as well. Since

there was no documentation about the specific relationship between enthalpy and

specific heat, it was decided to plot enthalpy differences as well. Figures 3.5 and 3.6

show that for pure air, the enthalpies calculated between the two programs diverge

(with the exception of janaf.) The change in enthalpy appears to be minor, but by

looking at the change in ∆h that occurs between 518 ◦R and 598 ◦R (temperature

change across the fan and low-pressure compressor), the difference in computed power

can be calculated. If the ∆h values were constant (and the line shown in Figure 3.6

had no slope) then the programs would suffer from a simple bias that would have very

little effect upon the power calculation (such is the case of janaf above about 1500 ◦R

for pure air). Consider the GasTbl enthalpy change across the fan and low pressure

compressor: the changing ∆h value between 525 and 600 ◦R results in a difference

between the enthalpy change (h2 − h1) calculations of 0.05 BTU/lbm. Recall that

power for a compressor might be written as:

−Ẇ = ṁ
[
(h2 − h1)−

(
V 2

2 − V 2
1

)− g (z2 − z1)
]

(3.21)
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Comparison of Enthalpy Calculations at 1atm, 

Pure Air
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Figure 3.5: Difference between the NPSS calculation of enthalpy and FAIR calcu-
lation at (a)1 and (b) 40.8 atm. FAIR calculates h independent of pressure, but is in
better agreement when the NPSS calculations use high pressures.
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Figure 3.6: Detailed plot of the differences between FAIR and NPSS thermody-
namics package calculation of enthalpy for un-reacted air at 1 atm. Although the
changes are very small, when they are multiplied by a large mass flow, they can
create noticeable deviations.
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Differences in Specific Heat at Temperatures of Interest, and 

14.696 psia for combusted air, FAR = 0.0253
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Differences in Specific Heat at Temperatures of Interest, and  

600.0 psia for combusted air, FAR = 0.0253

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1000 2000 3000 4000

Temperature (R)

∆∆ ∆∆
C

p
 (

B
T

U
/l

b
m

R
)

GasTbl vs FAIR

allFuel vs FAIR

Janaf vs FAIR

CEA vs FAIR

Figure 3.7: Difference in specific heats for combusted air (FAR = 0.0253) between
FAIR and AEDsys routines at (a) 1 atm and (b) 40.8 atm.

so the difference in computed power becomes:

−Ẇ = ṁ (∆h2 −∆h1) (3.22)

where ∆h is the difference in enthalpy between NPSS and AEDsys. For our low

pressure compressor the change in power might be approximated as:

−Ẇ = 1500
lbm

s
(0.301082− 0.266627)

BTU

lbm
= 51.68

BTU

s
= 73.12hp (3.23)

For the high pressure compressor, the temperature rises from approximately 600 ◦R

to 1425 ◦R, and the −Ẇ is computed as

−Ẇ = 166.67
lbm

s
(0.414196− 0.301082)

BTU

lbm
= 18.98

BTU

s
= 26.85hp (3.24)

We note that the errors in computed power will be greatest where the slope of the ∆h

line is the greatest, and that even relatively small differences in calculated enthalpy

can be magnified by a large mass flow through the component.

Total property calculations for combusted gases follow similar trends as pure

air. Data was run for a FAR of 0.0253, and the difference between specific heats is

shown in Figure 3.7. Here the differences at high temperatures is notable because the
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Differences in Enthalpy at Temperatures of Interest, and 14.696 
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Figure 3.8: Differences in calculated enthalpies for combusted air with a FAR of
0.0253 at (a) 1 atm and (b) 40.8 atm. Agreement between the programs is much
better when NPSS enthalpies are calculated using high pressure

combusted air is often above the 2000 ◦R point. The extreme difference at 4000 ◦R,

1 atm represents an 18.2% difference between the two programs. At 3000 ◦R, where

the peak engine temperatures for this study were limited, the CP is approximately

2.5% different. Even more concerning is that this trend is repeated in the enthalpy

differences as seen in Figure 3.8. Again, when the NPSS data is generated assuming

a high pressure, the data at high temperatures enjoys better agreement. At 3000 ◦R,

there is approximately 5% reduction in the differences between the programs.

Since the baseline turbofan engines operate with a mass fuel-to-air ratio of

approximately 0.0253, we can use this data to calculate differences in turbine power

as well as compressor power. For the high pressure turbine work is performed between

2825 and 2125 ◦R. Our power difference between NPSS using GasTbl and AEDsys’

FAIR is calculated as:

−Ẇ = 160.42
lbm

s
(0.358752− 1.9993)

BTU

lbm
= −263.176

BTU

s
= −372.3hp (3.25)

For the low pressure turbine, work is calculated between 2075 and 1475 ◦R. The power

difference between the programs for this temperature range is:

−Ẇ = 160.42
lbm

s
(0.264505− 0.344959)

BTU

lbm
= −13.577

BTU

s
= −19.21hp (3.26)
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Differences in Specific Heat at Temperatures of 

Interest, 14.696 psia, and FAR of 0.0676
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Figure 3.9: Difference in specific heats for combusted air (FAR = 0.0676) between
FAIR and AEDsys routines at (a) 1 atm and (b) 40.8 atm.

By averaging the power extracted at the compressor with the power generated at

the turbine, we obtain an average power difference across a given shaft due to ther-

modynamic model differences. From the preceding analysis, we see that AEDsys

calculated approximately 50 hp net less power on the low pressure shaft and 200 hp

net less power done on the high-pressure shaft. If this were the only thermodynamic

difference between the two programs, it would be possible to apply the net power

difference to the AEDsys shaft to achieve a net thrust that was virtually identical to

that of the NPSS calculation. However, it will be shown in the results section that

the AEDsys results are lower than NPSS results to begin with. This is due to the

other thermodynamic difference - calculation of the temperature across a component,

as was discussed in 3.2.

It is also interesting to note that for an equivalence ratio near one, the ther-

modynamic models again follow the same trend. As seen in figures 3.9 and 3.10, the

quantities match each other more closely at low temperatures and high pressures.

3.3 Hybrid Turbofan - Pulsed Detonation Combustor Engine

3.3.1 Turbofan Configuration. The hybrid model contains the compres-

sors, fans, and turbines of the baseline high bypass turbofan, but the burner section

is replaced with a pulsed detonation combustor as seen in Figure 3.11. As much
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Differences in Enthalpy at Temperatures of Interest, and 14.696 

psia, FAR = 0.0676
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Figure 3.10: Differences in calculated enthalpies for combusted air with a FAR of
0.0676 at (a) 1 atm and (b) 40.8 atm. Agreement between specific heat models is
much closer when NPSS properties are calculated using high pressure.
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Figure 3.11: Configuration of the hybrid engine evaluated in this thesis.
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of the baseline configuration as possible was retained so that the change in engine

performance could be measured. The flow control at the detonation tube inlet was

modeled as a pressure loss ∆P
P

term between inlet and detonation tubes. This pressure

loss matched the dry-duct pressure loss experienced by the conventional combustor

(which is overly optimistic for the PDC). Mass inlet and bypass ratios were main-

tained constant between the hybrid and baseline models to mask the effect of thrust

augmentation due to increased bypass flow. Compressor pressure ratios were also held

constant, causing shaft power to remain identical to the baseline engine for all results

with the exception of one of the trade off studies.

A mixer was introduced to combine the tube and internal bypass flows exiting

the combustor. Utilizing the mixer introduced some difficulties since it occasionally

allows NPSS to arrive at an incorrect converged solution without generating an error.

The erroneous solution can be identified by a negative mach number for the secondary

incoming flow (the internal bypass flow for this model). All solutions included in this

thesis were checked for a correct mixer solution, with no data being reported for cycle

solutions with incorrect mixer data.

3.3.2 Pulsed Detonation Combustor. The mathematics that define the det-

onation within the PDC model are taken from the work of Heiser and Pratt [4] with

a Dyer and Kaemming correction [5]. The detonation occurs cyclically, introducing

an unsteady flow. In order to assume steady flow through the same turbines as the

baseline engine, a correction was made for transitioning the pulsing flow to steady

state flow. No attempt was made to define an architecture for accomplishing the

transition, instead, an arbitrary adjustment was made to the total temperature and

pressure to account for the thermodynamic changes effected by the transition.

The pulsed detonation combustor was conceptually divided into three sections

as shown in Figure 3.12:

• Flow control at detonation tube inlet
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Figure 3.12: Configuration of the pulsed detonation combustor used for the hybrid
engine.
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• Detonation tubes

• Transition to steady state and bypass mixing device

Figure 3.12 shows how the fluid flows through the pulsed detonation combustor,

but not how the information is passed through the code that calculates the fluid

properties at entry and exit. The NPSS subroutine or “Element” for the PDC is

included in Appendix C. Most of the code is borrowed from the NPSS “burner.int”

file included in NPSS release 1.6.3. Major modifications to support the modeling

pulsed detonation combustion occur after line 750.

A diagram of the information flow through the PDC burner algorithm is shown

in Figure 3.13. Although it appears complex, the diagram is meant to illustrate how

the properties of the fuel an inlet flow are used to calculate the Chapman-Jouguet

detonation solutions. This information is then combined with geometry inputs to

determine mass flow and cycle times. Once mass flow is determined, the energy-

conserved PDE solution is calculated and applied to the portion of the mass flow

allocated to the detonation process. All fluids are mixed and corrected for the tran-

sition to steady state.

3.3.2.1 Detonation Properties. Central to the processes of the pulsed

detonation combustor is detonation. The model used for this thesis calculates fluid

properties behind the shock using the thermodynamic model described by Heiser and

Pratt [4]. Implementation into NPSS required a few modifications to equations 2.7

to 2.9. This was accomplished by re-arranging the quantity q̃
Ψ

as follows:

(
q̃

Ψ

)
=

(
qsupplied

CpT0

)
(

T3

T0

) =
h4 − h3

Cp · T3

(3.27)

This allowed the PDC subroutine to utilize the component inlet temperature

instead of trying to find the temperature at engine inlet. The modified equation uses

specific heat and enthalpies (γ, Cp, h4 − h3) from both the conditions that are given
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and those that are solved for. Using the solved properties in the solution requires

either iteration, or pre-calculation of the combustion.

Having calculated the
(

q̃
Ψ

)
value, MCJ is calculated using equation 2.7.

M2
CJ = (γ + 1)

(
q̃

Ψ

)
+ 1 +

√[
(γ + 1)

(
q̃

Ψ

)
+ 1

]2

− 1 (3.28)

The Chapman-Jouguet Mach number is then used to calculate entropy gain and

pressure rise across the shock using equations 2.8 and 2.9.

s4 − s3

Cp

= − ln

[
M2

CJ

(
γ + 1

1 + γM2
CJ

) γ+1
γ

]
(3.29)

p4

p0

=
1 + γM2

CJ

γ + 1

p3

p0

≥ 1 (3.30)

The forms of the equations are fairly simple, and give rise to the question of their

accuracy. Glassman [7, p 248] provides MCJ data plotted as a function of equivalence

ratio (φ) at standard pressure and temperature for a variety of fuels. Figure 3.14

shows the Chapman-Jouguet Mach number calculated using the closed form solution

and NPSS thermodynamic routines at standard temperature and pressure overlaid

on the data from Glassman. The calculated properties utilize fuel properties similar

to those of Jet-A fuel. It will be noted that the GasTbl thermodynamic package is

limited to results whose equivalence ratio is less than unity, so the allFuel package

was used to generate results for and equivalence ratio greater than one. The MCJ was

shown in these charts to be marginally above values for a large hydro-carbon such as

octane (C8H18). To determine whether this discrepancy is conservative or not requires

an examination of what the MCJ value is used for. The examination occurs through

the calculation of entropy gain. Entropy gain is one of the two fluid properties input

to solve for pressure and temperature. Figure 3.15 shows how entropy error has a

large effect on pressure and a negligible effect on temperatures. Also, a larger Mach

will result in a larger entropy gain, pushing us to the right on this figure. Lower
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Computed Detonation CJ Mach Number Overlaid 

on Glassmans' Data (inlet 1 atm, 540 R)
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Figure 3.14: Chapman-Jouguet Mach number data overlaid on the chart from Glass-
man. [7, 248].

pressure decreases system performance, and the result is a conservative estimate of

net thrust and TSFC.

Since the PDC is embedded in a turbofan, it experiences detonation at higher

pressures than exist for the reviewed data [7, p248-250]. Figure 3.16 shows that MCJ

increases with increasing pressure. This is expected since increasing pressure decreases

the mean free path between reacting particles, allowing for a faster transmission of

energy. The calculated Mach number and the data from Glassman agree fairly well

with experimental pulsed detonations, which see a detonation wave move at a Mach

number slightly above 5 at standard conditions.

Having solved for pressure and entropy at detonation tube exit (station 4),

it is possible to solve for all the all properties of the fluid at this point through

thermodynamic relationships. However, Dyer and Kaemming [5] noted that this would

be inaccurate since it ignores the eventual pressure loss that the gas will go through

due to expansion waves. Figure 3.17 contains a T-S diagram explaining their proposed

correction to the cycle. The expansion also results in the lowering of kinetic energy.
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Effect of Entropy Error on Temperature and Pressure 

For Constant Enthalpy
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Figure 3.15: Small errors in calculation of the entropy strongly affect the pressure,
but barely affect the temperature when all fluid properties are solved for using entropy
and enthalpy.
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Dyer & Kaemming Correction
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Figure 3.17: The T-S diagram shown in Dyer and Kaemming paper [5, fig 10] with
the proposed correction to the PDE thermodynamic cycle. Conservation of energy
will prevent incorrect calculation of entropy as the fluid exits the engine.

They proposed that the fluid properties should be solved for using the entropy gain

as calculated above and the change in enthalpy liberated by the combustion process.

Recall that this is the same change in enthalpy that was used to calculate q̃
Ψ
. This

would result in a different temperature and pressure profile for the gasses at station 4.

Figures 3.18 and 3.19 show the deviation that the Dyer and Kaemming [5] formulation

causes to the pressure and temperature of a detonated fluid at standard conditions.

The underlying data are taken from Glassman [7, pp 249-250]. It should be noted that

none of the P2/P1 data and Heiser and Pratt [4] calculations match the pressure ratio

immediately behind the shock, but overestimate the time-averaged pressure ratio over

the detonation time. Dyer and Kaemming [5] values appear to under-estimate the

time-averaged pressure ratio over the detonation portion of the cycle.

The pressure ratio across the shock as computed by using enthalpy and entropy

should give us the correct system performance, but may not accurately represent the

actual conditions in the detonation tube. Note that the pressure ratio actually be-

comes inverted over portions of the equivalence ratio plot for atmospheric conditions.
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P2/P1 as Calculated in the PDC Burner Element

Overlaid on Data from Glassman
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Figure 3.18: Ratio of the pressure behind to the pressure ahead of the detonation
shock overlaid on data from Glassman [7, 250]. The upper line represents the pressure
ratio as calculated by Heiser and Pratt, [4] the lower is the calculation using the Dyer
and Kaemming [5] correction. .
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Figure 3.19: Ratio of the temperature behind to the temperature ahead of the
detonation shock as calculated using the Dyer-Kaemming correction [5] . Overlaid on
data from Glassman. [7, 249].
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In section 3.3.2.3 we will see that we will use the pressure ratio based on the Heiser

and Pratt [4] formulation to calculate the blowdown time of the system.

3.3.2.2 Determining Mass Flow Rate. Heat flow into the engine is

controlled by the fuel flow and for a PDC fuel flow is defined by fill flow. PDC oper-

ation demands that the FAR be near unity for consistent detonation. Consequently

the amount of air flowing into the tubes becomes the prime control of the engine.

The air flowing through the detonation tubes is divided into two portions based on

whether or not it is mixed with fuel. The mixed portion is termed the fill air, while

the unmixed portion is called the purge air. Purge air is used for cooling of the det-

onation tubes while acting as a barrier between the hot combustion products of the

previous and current cycle. The purge fraction pf and fill fraction ff are defined as

fractions of the distance the fuel/air mixture or purge air flows relative to the tube

length. Mathematically it looks like:

pf =
lpurge air

ltube

(3.31)

ff =
lfuel−air mixture

ltube

(3.32)

where l denotes a length.

Purge and fill fractions can also be defined in terms of the volume (and subse-

quently mass) of the air for their respective portions of the tube filling process. Since

the cross section of the fluid and the tube share the same area and the fractions are

defined by the length that the respective fluids flow down the tube, the equations

become:

pf =
Vpurge air

Atube · ltube

(3.33)

ff =
Vfuel−air mixture

Atube · ltube

(3.34)
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where Atube is the cross sectional area of the tube, ltube is tube length, Vpurge air is the

purge air for one cycle, and Vfuel−air mixture is the volume that the fuel-air mixture

occupies in the detonation tube. Also, equation 3.34 can be re-arranged to define the

volumes of purge and fill fluids in terms of tube volume and the purge/fill fractions:

Vpurge air = pf · Atube · ltube (3.35)

Vfuel−air mixture = ff · Atube · ltube (3.36)

The purge air mass mpurge and fuel-air mass used for filling (mfuel−air mixture) can be

found using the total density (ρt), since the air is stopped in the tube once the valve

closes:

mpurge = pf · Vtube · ρt (3.37)

mfuel−air mixture = ff · Vtube · ρt (3.38)

These equations represent the amount of purge air and fuel-air mixture will flow into

one tube during each cycle. The practice of allowing the purge and fill to sum to unity

was observed when results were generated. This practice corresponds to completely

filling a detonation tube each cycle without allowing any spillage or retention of hot

gasses from the previous cycle.

Knowing how much air to send through the valve at the opening of the deto-

nation tube requires separating the fuel from the air in the fill portion of the pulse-

detonation cycle. This can easily be done at this point because mixed fuel air mass

can be written as:

mfuel−air mixture = mfill air + mfuel (3.39)

mfuel−air mixture

mfill air

=
mfill air

mfill air

+
mfuel

mfill air

(3.40)

mfuel−air mixture

mfill air

= 1 + FAR (3.41)
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mfill air =
mfuel−air mixture

1 + FAR
(3.42)

mfill air =
ff · Vtube · ρt

1 + FAR
(3.43)

where mfill air is the mass of the air that will be detonated and mfuel is the fuel used

during one cycle. Once the mass of the air flowing into the tubes during one cycle

is known, we can get the time averaged steady state mass flow rate (ṁair total) by

multiplying it with the cycle frequency (f).

ṁair total = (mfill air + mpurge) · f (3.44)

However, since the valve is only open for a fraction of the detonation cycle, the actual

mass flow rate through the valve may be much greater than the steady-state depending

on synchronization of multiple tubes. The maximum mass flow rate through the inlet

valves must be calculated to ensure that the mass flow does not exceed the capabilities

of the system. Treating the valve as a nozzle, and assuming the geometry allows for

choking, we follow Mattingly [3, 9-10] and Wilson and Korakianitis [26, 70-71] in

writing the mass flow rate during the valve-open time (ṁvo) as:

ṁvo =
Avalve · Pt√

Tt

√
γ

R
MFP (3.45)

Where MFP is the mass flow parameter that can be written as a function of Mach

number, or static-to-stagnation pressure ratio:

MFP = M

(
1 +

γ − 1

2
M2

)−(γ+1)
2(γ−1)

(3.46)

MFP =

√√√√
(

2

γ − 1

) [(
Pt

P

) γ−1
γ

− 1

] (
Pt

P

)−(γ+1)
γ

(3.47)

This allows us to define the maximum mass flow rate for a given Mach number and

valve inlet area. The flow rate during the purge and fill portions of the cycle will help

43



to define cycle time. More importantly, it will determine the valve-open time fraction

(τvo). This parameter is important because it prescribes how many tubes need to be

open at one time in order to maintain a constant flow into the PDC.

3.3.2.3 Cycle Time. Cycle time could have easily been an input for

the program, but the work of Schauer et al. [21] showed that when a detonation tube

is fired into a turbine the detonation cycle is changed. In order to get a more realistic

feeling for what a minimum cycle time would be calculations were made based on some

simple assumptions: choked flow at tube exit for blowdown, a detonation moving at

MCJ , and a valve flow at or below choked conditions. As described in Section 3.3.2.2,

mass flow rate through the engine is calculated for the on-design condition as the

mass of air to fill and purge multiplied by the frequency of filling. Frequency of filling

is determined by the inverse of the cycle time (tcycle):

f =
1

tcycle

(3.48)

Cycle time is the sum of several smaller periods of time: detonation time, blowdown

time, purge time, and fill time. Detonation time is approximated as the time to

initiate detonation and move the wave down the detonation tube at M2 = 1, where

the subscript 2 indicates the detonated fluid. Implementation requires the calculation

of the velocity:

tdetonation = DDT +
ltube

uCJ

(3.49)

Where DDT is the detonation-to-deflagration time, uCJ is the Chapman-Jouguet

detonation wave velocity and ltube is the length of the detonation tube. Detonation-to-

deflagration time is poorly understood, and is requested as a user input. Ideally, uCJ

would be calculated using the speed of sound in the combusted air. In the algorithm

coded for this thesis, the properties of the detonated fluid were never completely

solved for, thus, the detonation wave velocity was calculated using MCJ multiplied

by the speed of sound in the pre-detonation fuel-air mixture.
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uCJ = MCJ ·
√

γ1R1Tt1 (3.50)

where the subscript 1 indicates that the fluid properties of the fuel-air mixture are

taken before detonation. Again, since the pre-detonation fuel-air mixture is essentially

at rest, the stagnation properties were used to calculate the speed of sound. It can

easily be seen from Equation 3.49 that detonation time is directly proportional to the

length of the tube.

Blowdown time (tBlowdown) begins after the detonation shock has exited the

tube. The shock leaves behind a hot compressed fluid expanding out of the end of the

tube. If we assume the tube exit to be choked, then we will see an exponential decay of

pressure and mass within the tube. As the mass flows through the choked throat at the

end of the tube, the static properties of the gas change, ρ decreases, pressure decreases,

and volume remains constant. Our basic steady-flow thermodynamic equation ṁ =

ρAu will not allow us to calculate the amount of time it takes to discharge the gasses;

this is not steady flow. Instead, we use the relationship identified in an experiment

designed by Dutton and Coverdill [33] based off of the pressure ratio across the throat:

∆t =
ln

(
P2

P1

)

(
γ+1

2

)−(γ+1)
2(γ−1)

· Vol

Ata1

(3.51)

As seen in Figure 3.20, blowdown time is strongly influenced by the pressure ratio.

What is not shown in this plot is how little γ influences blowdown time; its effect is

inconsequential over the range of possible specific heat ratios found in an air breathing

engine. Significantly, when the tube exit has a constant cross section, and the exit

area is the same as that cross section, the trailing term will reduce to ltube/a1 forcing

the blowdown time to be directly proportional to the tube length.

Blowdown time is the most complex piece of the cycle time to calculate. It

utilizes a fraction of the pressure ratio calculated using the Heiser and Pratt formu-

lation [4, eq 18]. Figure 3.18 indicates the Heiser and Pratt formula calculates the
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Blowdown time as a function of pressure ratio
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Figure 3.20: Calculated blowdown time plotted as a function of pressure ratio for
a 36 inch tube and sonic velocity of 2200 ft/s.

pressure ratio corresponding to the characteristic pressure spike seen in PDE, while

the Dyer and Kaemming [5] formulations generates a lower pressure ratio than is seen

in the laboratory during blowdown. Attempting to err on the conservative side, we

pick the over-estimate of the pressure ratio that yields a longer time. In order to keep

the blowdown time reasonable, the pressure ratio is calculated as 4
10

of the Chapman-

Jouguet pressure rise calculated from the formulae from Heiser and Pratt [4].

Purge and fill times are closely related since they both deal with the flow of

air into the detonation tube through a valve. As mentioned in subsection 3.3.2.2,

we assume that the flow into the tube is constrained by flow through a valve whose

throat has an area smaller than the tube cross section area. Once the mass flow

rate for choked flow has been established (the maximum mass flow rate) based on a

design valve inlet Mach number, purge and fill times (tpurge and tfill) become a simple

calculation:

tfill =
mfill air

ṁvo

(3.52)

tpurge =
mpurge

ṁvo

(3.53)
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3.3.2.4 Internal Bypass Ratio. The configuration of the hybrid engine

sets the main bypass ratio to a fixed value for all cases. This means that there is a

constant mass flow rate into the core of the engine. Not all of this core flow will pass

through the tubes however. Recall that only a small amount of purge air is needed

to act as a buffer between the hot combusted gases of the previous cycle, and the

volatile fuel-air mixture in the current cycle. If the baseline engine only required a

fuel mass flow rate of 1 lbm/sec, then we expect the hybrid engine to require a similar

flow rate. Since the detonation engine operates at a higher equivalence ratio than

normal engines, it should require less air to mix with the fuel for a similar enthalpy

generation. Balancing the mass flowing through the tubes with the fuel necessitates

shunting some of the air around the detonation tubes. Ideally, this internal bypass

(iBPR) air provides cooling of the tube walls, and will be mixed with the combustion

products to lower the gas temperature before entering the turbines. This internal

bypass might be utilized in the transition-to-steady-state device. This may not be

desirable since such a connection provides a link to the compressor exit.

Mass flow for the iBPR is assumed to be steady state and, at design conditions,

is defined by the formula:

iBPR =
ṁiBPR

ṁtube air

(3.54)

where air mass flow rate through the internal bypass (ṁiBPR) is defined as:

ṁiBPR = ṁcore air − ṁtube air (3.55)

and where ṁcore air is the combined mass flow rate coming into the PDC before it is

split.

No pressure loss term is applied to the iBPR because it is separated from the

core flow after a dry-duct pressure loss term was applied. For the flow going into
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the tubes, this dry duct pressure loss is intended to represent pressure loss through a

valve.

Heat transfer from the detonation tubes to the iBPR could be accomplished

through implementation of a simple heat transfer wall element in NPSS. This element

is evoked after the detonation calculations are performed. Another option is to include

a heat transfer element imbedded within the PDC element. Either choice will require

several inputs:

• areas available to the two fluids

• film transfer coefficients

• fluid inlet properties

• wall mass

• wall specific heat

Attempts were made to include the wall heat transfer element in the model for this

thesis, but NPSS solver difficulties caused this option to be pushed aside until more

time can be devoted to improving the initial conditions for the solver.

3.3.2.5 Iterations. If the Chapman-Jouguet Mach number is calcu-

lated before we calculate mass flow and cycle time, we should be able to carefully craft

a PDC routine that does not require iteration. Otherwise, iteration is required to bal-

ance the mass flow through the tubes for a given geometry since mass flow depends

on cycle time, and cycle time depends on mass flow rate. Recall that total mass flow

rate through the tubes is calculated using the air mass required for filling the tube to

the designated purge and fill fractions, multiplied by the inverse of the cycle time (see

equation 3.44). Fill and purge portions of the detonation cycle are calculated using

the mass required to fill the tubes. Blowdown time is only a function of pressure ratio

calculated using the Chapman-Jouguet Mach number, and is therefore independent

of mass flow if the Mach number can be calculated at the outset. Detonation time is

calculated using the DDT and the time it takes the detonation wave to traverse the
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length of the tube, leaving it independent of mass flow but dependent on a detona-

tion wave Mach number. As seen in Appendix C, the method of obtaining the shock

properties for this thesis allows for a non-iterative solution.

3.3.2.6 Transition to Steady State Flow. Rasheed et al. [21] showed

that exhausting a pulsed detonation combustor directly into a turbine lowers the tur-

bine efficiency, and Rasheed et al. [18] discussed the structural ramifications affecting

engine life. Since the pulsed flow into the turbine is unfavorable, the hybrid model

is based on the assumption that the flow into the turbine sections is steady flow. No

attempt was made to define the specific architecture that would transition the pulsed

flow back to steady flow. Instead, a subelement to the PDC was created that allows

for the application of a pressure drop and an enthalpy loss. Pressure loss was cho-

sen because it translates to a diffusion process, whereas the enthalpy loss was chosen

because it translates to work rates through equation 3.16.

3.3.2.7 Improvements. It has been said for centuries that “Rome

was not built in a day,” and the idea it communicates holds true for any engineering

endeavor. Just as improvements were made to Rome with each passing year, improve-

ments could be made with this. Some of the improvements that should be considered

are:

• Replacing the detonation wave property calculations

• Implementation of a pulsed-detonation performance map built from CFD or

experimental data similar to the method proposed by Paxson, [12]and imple-

mented by Tangirala et al. [17]

• Improving blowdown time calculations

• Calculating heat transfer to bypass air

• Calculating heat transfer to purge air
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• Calculating compression of purge air due to the shock initially generated by

detonation

• Adaptation of the PDC element to allow for off-design performance

It had been hoped that many of these improvements could be included in the model

used for the results section, but there came a point where work on the model had to

stop so that deadlines for documentation could be met. Any of these changes have

the potential to shift all results by several percent, which would then change any

conclusions made in this thesis.
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IV. Results

This chapter contains not only the data generated using the hybrid engine mod-

eled in NPSS, it also contains data that demonstrate the close agreement of

the baseline engine solutions generated using AEDsys and NPSS. The baseline engine

comparison is significant because it provides an acceptable foundation for comparing

the hybrid engine.

4.1 Comparison of Baseline Turbofan

Both the NPSS and AEDsys models of the baseline high-bypass turbofan were

evaluated at on- and off-design conditions. For on-design conditions, reports for the

component analysis were generated and engine parameters were carefully matched

between the two programs. The close correlation in the results indicate a reasonable

understanding of the NPSS program was achieved.

4.1.1 Baseline Engine On-Design Results. Tables 4.1 and 4.2 show the

results and input parameters for baseline engine on-design. The off-design point in-

cluded in these tables is not of any significance, but foreshadows the divergence of the

off-design solutions. On-design thrust varies by approximately 1%, and thrust-specific

fuel consumption (TSFC) varies by approximately 0.8%. The NPSS results using the

janaf thermodynamic package (shown in tables 4.2 and 4.4) are marginally lower than

results generated in NPSS by other thermodynamic packages such as GasTbl. It will

be noted that the conditions at the inlet are nearly identical and slowly diverge at

each station moving through the engine. This trend is even more apparent in the

component interface reports in tables 4.3 and 4.4.

4.1.2 Baseline Turbofan Comparison Off-Design. Figure 4.1 shows throttle

hooks generated by NPSS and AEDsys across several altitudes and range of thrust

levels. The NPSS data was generated using the GasTbl thermodynamics package

since it is the easiest to implement. An attempt was made to produce a similar chart

using the janaf thermodynamics package. As seen in Figure 4.2, there was some
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Table 4.1: AEDsys engine test data showing the design point. It is from this report
that the calculated adiabatic efficiency may be taken.
AEDsys (Ver. 4.010) Turbofan -

Separate Exhaust, Dual Spool Date:11/22/2006 9:40:50 PM

Engine File: C:\AFIT\MENG733\AEDsys\HBtbfan\eng13 vsh.REF

Input Constants

Pidmax= 0.9950 Pi b = 0.9600 Eta b = 0.9950 Pi n = 0.9850

Eta cL= 0.8827 Eta cH= 0.8573 Eta tH= 0.9057 Eta tL= 0.9084

Eta mL= 0.9900 Eta mH= 0.9900 Eta PL= 0.9900 Eta PH= 0.9900

Eta f = 0.8827 PTO L = 0.0KW PTO H = 105.7KW hPR = 18400

Bleed = 1.00% Cool 1= 5.00% Cool 2= 5.00% Pi nf = 0.9800

Control Limits: Tt4 = 3200.0 Pi c = 32.00 Tt3 = 1859.7

Pt3 = 650.0 %N LP = 110.00 %N HP = 110.00

** Thrust Scale Factor = 1.0000

Parameter Reference** Test**

Mach Number @ 0 0.0100 0.0100

Temperature @ 0 518.67 518.67

Pressure @ 0 14.6960 14.6960

Altitude @ 0 0 0

Total Temp @ 4 2900.00 3118.30

Pi r / Tau r 1.0001/ 1.0000 1.0001/ 1.0000

Pi d 0.9950 0.9950

Pi f / Tau f 1.5600/ 1.1540 1.6943/ 1.1848

Pi cL / Tau cL 1.5600/ 1.1540 1.6943/ 1.1848

Pi cH / Tau cH 16.6667/ 2.4379 18.4128/ 2.5106

Tau m1 0.9711 0.9705

Pi tH / Tau tH 0.2324/ 0.7163 0.2329/ 0.7199

Tau m2 0.9821 0.9811

Pi tL / Tau tL 0.1991/ 0.6808 0.1737/ 0.6624

Control Limit PIC Max

LP Spool RPM (% of Reference Pt) 100.00 109.57

HP Spool RPM (% of Reference Pt) 100.00 103.86

Alpha 8.000 7.693

Pt19/P19 1.5213 1.6522

P0/P19 1.0000 1.0000

Mach Number @ 19 0.8011 0.8819

Pt9/P9 1.1323 1.1873

P0/P9 1.0000 1.0000

Mach Number @ 9 0.4351 0.5138

Mass Flow Rate @ 0 1500.00 1667.02

Corr Mass Flow @ 0 1499.88 1666.89

Flow Area @ 0 1761.143 1957.117

Flow Area* @ 0 30.428 33.814

Flow Area @ 8 + 18 27.442 27.442

MB - Fuel/Air Ratio (f) 0.02523 0.02825

Overall Fuel/Air Ratio (fo) 0.00249 0.00289

Specific Thrust (F/m0) 27.43 30.55

Thrust Spec Fuel Consumption (S) 0.3274 0.3407

Thrust (F) 41145 50934

Fuel Flow Rate 13472 17355

Propulsive Efficiency (%) 2.47 2.23

Thermal Efficiency (%) 34.76 37.04

Overall Efficiency (%) 0.86 0.83
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Table 4.2: On design engine parameters for NPSS using janaf thermodynamics in
a format similar to the AEDsys engine test format. Polytropic efficiencies displayed
here (ef , ecL, ecH , etH , etL) are different than those input into the AEDsys program.
NCP NPSS_1.6.3 - Rev: B model:CmpareAEDsys.mdl with mixers

run by: Ionio solutionMode= STEADY_STATE

converge= 1 case: 1 time: 0.000 timeStep:0.0500

therm_package: Janaf iter/pas/Jac/Broy= 11/ 20/ 1/ 9 run: 11/22/06 21:51:14

Design Values

Pidmax= 0.99500 Pi b = 0.96000 Eta b = 0.99500 Pi n = 0.98500

Eta f = 0.88270 Eta cL= 0.88270 Eta cH= 0.85730 Eta tH= 0.90570 Eta tL= 0.90840

e f = 0.88982 e cL = 0.88982 e cH= 0.89984 e tH= 0.88414 e tL= 0.88912

gam2 = 1.40023 gam25= 1.39843 gam3= 1.35088 gam4= 1.27704 gam45= 1.30092

Eta mL= 0.99000 Eta mH= 0.9900 gam5=1.32930

PTO L = 0.0kW PTO H = 106.8kW hPr = 18400

Bleed = 1.00% Cool 1= 5.00% Cool 2= 5.00% Pi nf = 0.98000

** Thrust scale DOES NOT APPLY...

CASE 0: DESIGN CASE 1: OFFDESIGN

Converged? (0 - no, 1 - yes) 1 1

Mach Number at 0 0.0100 0.0100

Temperature at 0 518.6700 518.6700

Pressure at 0 14.6960 14.6960

Altitude at 0 0.0000 0.0000

Total Temp at 4 2900.0 3118.3

Pi r / Tau r 1.0001/ 1.0000 1.0001/ 1.0000

Pi d 0.9950 0.9950

Pi f/ Tau f 1.5600/ 1.1534 1.6221/ 1.1867

Pi cL/ Tau cL 1.5600/ 1.1534 1.7073/ 1.1870

Pi cH/ Tau cH 16.6667/ 2.3727 17.4925/ 2.4219

Tau m1 0.9760 0.9757

Pi tH/ Tau tH 0.2372/ 0.7466 0.2411/ 0.7534

Tau m2 0.9849 0.9841

Pi tL/ Tau tL 0.2030/ 0.7078 0.1821/ 0.6952

LP Spool RPM (\% reference pt) 100.000 106.219

HP Spool RPM (\% reference pt) 100.000 98.957

Alpha 8.000 7.528

Pt19/P19 1.5213 1.5818

P0/P19 1.0000 1.0000

Mach Number at 19 0.7979 0.8367

Pt9/P9 1.1778 1.2340

P0/P9 1.0000 1.0000

Mach Number at 9 0.4995 0.5690

Mass Flow Rate at 0 1500.0000 1569.9409

Corr Mass Flow at 0 1499.9050 1569.8415

Flow Area at 0 (ft2) 1756.6819 1838.5912

Flow Area* at 0 (ft2) 30.3544 31.7698

Flow Area at 8 and 18 (ft2) 26.4735 26.4735

MB - Fuel/Air Ratio (f) 0.02527 0.02845

Overall Fuel/Air Ratio (fo) 0.00250 0.00297

Specific Thrust (F/m0) 28.0445 30.0347

Thrust Spec Fuel Consumption (S) 0.3248 0.3601

Thrust (Fn) 41546.2151 46607.8897

Fuel Flow Rate (lbm/hr) 13496.0711 16783.0420

Propulsive Efficiency (%) 2.4480 2.2861

Thermal Efficiency (%) 35.3755 34.1603

Overall Efficiency (%) 0.8660 0.7809
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Throttle Hook Comparison using GasTbl
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Figure 4.1: Throttle hook comparison of AEDsys and NPSS using the GasTbl
thermodynamic package.

Throttle Hook Comparison using Janaf
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Figure 4.2: Throttle hook comparison of AEDsys and NPSS (using janaf thermo-
dynamics routine) indicating model convergence problems.
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difficulty in this implementation. It is unknown why the NPSS solver converged on

the solutions at 7,500 and 15,000 feet that are so different than the data generated

with an identical model using the GasTbl package. One explanation may be that

there are subtle differences in the required inputs for the different thermodynamic

packages that were not addressed. Further help from the NASA/GRC group should

clear up any remaining difficulties and render the two charts nearly identical.

4.1.3 Explanation of Differences Between AEDsys and NPSS. The two

programs display good agreement at the design point, and the off-design performance

near the design rpm of the spool also matches closely. Differences for on- and off-

design conditions are both noticeable and traceable. A detailed examination of the

discrepancies between the two programs’ solutions follows.

4.1.3.1 On-design. As seen in tables 4.1 and 4.2, there is an under-

standable 1% difference between the two net thrust calculations at design conditions.

Part of the difference is due to a variation in temperature calculation across the com-

pressor and turbine components as discussed in sections 3.2. The rest of the difference

can be calculated by using the specific heat and enthalpy model variations as discussed

in section 3.2.1.

The component reports displayed in tables 4.3 and 4.4 show the gradual diver-

gence of total temperature as calculated by the two programs. In order to isolate

the difference in power due to variations in total temperature solutions generated by

each program we use the Tt and FAR values in the component analysis and calculate

enthalpy using only one subroutine. As seen in Table 4.5, the NPSS engine cycle

has more power being done across the components. The difference in engine thrust

could be balanced by applying the average power difference to the respective spool:

approximately 185 to 195 hp on the low pressure spool and 580 to 600 hp on the high

pressure spool. The positive number indicates that the power should be applied to

the NPSS generated solution, since AEDsys calculated the greater power. However,
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Table 4.5: Difference in calculated power due to variations in temperature calcula-
tions across components in the NPSS and AEDsys engine cycle programs. For this
table, the thermodynamic routine in column 2 was used to define the Tt and FAR
while unFAIR was used to calculate the enthalpy.

Routine Tt in(◦R) FAR hin(BTU
lbm ) AEDsys

Component for Tt4 Tt out(◦R) ṁfuel( lbm
s ) hout(BTU

lbm ) ṁ( lbm
s ) −Ẇ (hp) −NPSS

LPC FAIR 518.68 0.00 123.9208 1500 40619.6
/FAN 598.56 0.00 143.0604

NPSS 518.68 0.00 123.9208 1500 40466.82 152.7812
(GasTbl) 598.26 0.00 142.9884

NPSS 518.68 0.00 123.9208 1500 40451.54 168.0592
(janaf) 598.23 0.00 142.9812

HPC FAIR 598.56 0.00 143.0604 166.67 48669.5
1425.49 0.00 349.4501

NPSS 598.26 0.00 142.9884 166.67 48326.64 342.8601
(GasTbl) 1419.66 0.00 347.9242

NPSS 598.23 0.00 142.9812 166.67 48313.53 355.9703
(janaf) 1419.42 0.00 347.8614

HPT FAIR 2829.75 0.023886 765.7417 160.41 -49443.2
2099.67 3.7421 547.8886

NPSS 2830.35 0.023921 765.9601 160.41 -48628 -815.193
(GasTbl) 2112.67 3.74753 551.6988

NPSS 2830.26 0.023929 765.9409 160.42 -48601 -842.18
(janaf) 2113.04 3.74891 551.8118

LPT FAIR 2068.49 0.02268 538.069 168.74 -41152.4
1456.12 3.742136 5.6976

NPSS 2080.72 0.022712 541.6363 168.75 -40936.4 -215.918
(GasTbl) 1472.54 3.74753 370.1795

NPSS 2081.19 0.022721 541.7784 168.75 -40931.8 -220.518
(janaf) 1473.12 3.74891 370.3408

this will not resolve the differences because there is another variation between the

programs causing the numbers to stand apart.

Following the same analysis described in section 3.2.1 we can calculate the dif-

ference in power computed across the compressors and turbines. Both the Tt and

FAR values were held constant across all thermodynamic routines for this effort in

order to isolate the error due only to variation in specific heat models. As seen in

4.6, the power difference generated by variations of the specific heat/enthalpy model

is smaller and in the opposite direction of the temperature induced difference. The

average power difference for the low and high pressure spools are -(42 to 52) hp and

-(207 to 215) hp respectively. The negative sign indicates that AEDsys has under-
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Table 4.6: Difference in calculated power based on variations between specific heat
and enthalpy models used for AEDsys and NPSS. Temperatures and FAR values were
generated using a rough mean of all solutions, while the enthalpies are calculated using
the thermodynamic routine shown in column 2.

Thermo Tt in(◦R) FAR hin(BTU
lbm ) FAIR

Component routine Tt out(◦R) ṁfuel( lbm
s ) hout(BTU

lbm ) ṁ( lbm
s ) −Ẇ (hp) −NPSS

LPC FAIR 518.68 0.00 123.9208 1500 41352.94
/FAN 600.00 0.00 143.4059

NPSS 518.68 0.00 124.183 1500 41435.39 -82.4525
(GasTbl) 600.00 0.00 143.707

NPSS 518.68 0.00 -6.17665 1500 41444.84 -91.8966
(janaf) 600.00 0.00 13.3518

HPC FAIR 600.00 0.00 143.4059 166.67 48557.77
1425.00 0.00 349.3218

NPSS 600.00 0.00 143.707 166.67 48584.44 -26.6705
(GasTbl) 1425.00 0.00 349.736

NPSS 600.00 0.00 13.3518 166.67 48587.08 -29.3116
(janaf) 1425.00 0.00 219.392

HPT FAIR 2830.00 0.023886 765.8178 160.41 -49438.7
2100.00 3.7421 547.9847

NPSS 2830.00 0.023921 767.887 160.41 -49825.8 387.1551
(GasTbl) 2100.00 3.74753 548.348

NPSS 2830.00 0.023929 186.544 160.42 -49836.3 397.6378
(janaf) 2100.00 3.74891 -33.0275

LPT FAIR 2075.00 0.02268 539.9567 168.74 -40375.7
1475.00 3.742136 370.8385

NPSS 2075.00 0.022712 540.324 168.75 -40399.0 23.35082
(GasTbl) 1475.00 3.74753 371.118

NPSS 2075.00 0.022721 -18.749 168.75 -40369.6 -6.0401
(janaf) 1475.00 3.74891 -187.832

calculated power relative to NPSS based on the specific heat model. That is to say,

if the power across the NPSS spools is decreased by the magnitude of these averages

it will correct this difference.

When the two errors discussed above are summed, the results is a net power

difference between the two programs of 131 to 151 hp on the low pressure spool and

372 to 385 hp on the high pressure spool. The positive number indicates that the

AEDsys program has calculated a more power done on each spool, and this can be

corrected by applying the power difference to the NPSS shaft. Tables 4.7 and 4.8 show

the convergence upon a single solution when the two differences due to the variations

in the programs are applied. This analysis only corrected for the differences across
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Table 4.7: Comparison of thrust after application of extra shaft Power. Here the
HPX is the difference between the two estimates described above.

Program Thermo Fn (lbf) % Fn (lbf) %
Routine uncorrected Difference w/ Corrective HPX Difference

AEDsys FAIR 41145
NPSS GasTbl 41667 1.268684 41292 0.357

Shaft Power Additions (hp) LP: 131 HP: 372

Table 4.8: Comparison of thrust after application of extra shaft power. Here the
HPX is the difference between the two estimates described above.

Program Thermo Fn (lbf) % Fn (lbf) %
Routine uncorrected Difference w/ Corrective HPX Difference

AEDsys FAIR 41145
NPSS janaf 41546 0.974602 41147 0.00486

Shaft Power Additions (hp) LP: 151 HP: 385

the turbines and compressors, neglecting any deviations across ducts, mixers, burners,

and nozzles. The results for the janaf package presumably are a closer fit because both

janaf and FAIR are derived from the same NIST data, so the uncorrected components

are not that different from each other. The GasTbl results do accumulate a 0.353%

difference across the components.

4.1.3.2 Off-Design. In Figure 4.1 the throttle hooks generated by

NPSS and AEDsys mimic each other, sharing a few common points near what would

be considered 100% design shaft RPM. The two results diverge as the thrust require-

ments move the engine away from this central point. This is caused by differences in

off-design assumptions. Mattingly [3, p 142] describes the assumptions implemented

in AEDsys in detail. The third stated assumption is: off-design component efficien-

cies do not change from their on-design values. On the other hand, NPSS requires

efficiency maps be used for off-design performance analysis. These maps allow the

retrieval of an efficiency for the given conditions that may be different than the de-

sign condition. The solution for an off-design calculation might iterate several times

before converging on a final efficiency number. Compressor and turbine efficiencies

corresponding to the data displayed in Figure 4.1 is shown in Figure 4.3 and Figure
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Low Pressure Spool Polytropic Efficiencies
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Figure 4.3: Low pressure spool component adiabatic efficiencies returned from the
NPSS model using the GasTbl thermodynamic routine.

4.4. Note the severe drop in efficiency experienced by the fan above the 100% design

speed. The dramatic change in efficiency is enough to account for the 10% divergence

between the two sets of off-design data at high RPM, and the 4% difference at lower

RPM.

Another potential source of difference in off-design performance is the imple-

mentation of control limits. Limits set in the controls section of AEDsys may be

implemented in NPSS, but will affect the performance solution differently due to the

differences in thermodynamic routines, off-design assumptions, and efficiency calcu-

lations. For the data contributing to Figure 4.1, no limits were imposed upon the

NPSS model and the AEDsys model was only constrained by a maximum 110% of

on-design rotational speed.

4.2 PDC Hybrid Results

Care was taken to balance the design of the hybrid engine to ensure a legitimate

comparison with the baseline high bypass turbofan. Vigilance was required to verify
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High Pressure Spool Polytropic Efficiencies

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.96 0.98 1 1.02 1.04 1.06 1.08

Nc/(Nc design)

A
d

ia
b

a
ti

c
 E

ff
ic

ie
n

c
y

e HPC 0ft M0.0

e HPC 7.5kft M0.3

e HPC 15kft M0.5

e HPC 30kft, M.75

e HPT 0ft M0.0

e HPT 7.5kft M0.3

e HPT 15kft M0.5

e HPT 30kft, M.75

Figure 4.4: High pressure spool adiabatic efficiencies returned by NPSS model using
the GasTbl thermodynamics.

the increased benefit apparent in the hybrid results do not stem from a violation

of a design limit imposed only on the baseline engine. Most importantly, the total

temperature at turbine inlet, and overall pressure ratio were monitored to prevent

them from violating the limits for the baseline engine. This is important for on-design

performance, but will be crucial in the future off design and mission performance

analyses.

4.2.1 Sizing the PDC. Parametric studies were performed to understand

the trends associated with the input variables. For the studies in this section we used

an initial PDC configuration of 24 tubes as described in Table 4.9. The tubes were

run at an 80 + 20 100% fill+purge cycle where the 100% indicates the fill, purge,

and fuel masses completely fill the tube. When the results indicated that a 100%

purge+fill cycle was not possible the solution was considered invalid and not included

in the plots. The results had a few surprises.
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Table 4.9: Initial configuration and calculated properties for the
pulsed detonation combustor used to generate the trade studies in the
results section.

Input Variables Value Units
Inner Diameter 2.0 in.
Length 36.0 in
Number of Tubes 24
ARvalve 0.5
Mvalve 1.0
φ 0.8992
pf 0.20
ff 0.80

Output Parameter Value Units
iBPR 1.45684
Frequency 59.608 Hz
Fn 27337.6 lbf
TSFC 0.395653 1/hr
Tt4 2635.88 R
OPR 38.214

The parametric studies varied a single design input variable incrementally. The

effect on the internal bypass ratio (iBPR), frequency, net thrust (Fn), thrust specific

fuel consumption (TSFC), turbine inlet temperature (Tt4), and the overall pressure

ratio (OPR) were recorded. Experience indicates that the mixer may return a negative

Mach number for the secondary inlet flow without returning a program error, so

that quantity was included in all output data in order to ensure that a solution

was achieved. Also, since the cycle was run at 100%, fill fraction was calculated as

ff = 1.0− pf instead of varying it independently.

4.2.1.1 Tube Diameter. The first thing that needed clarification was

how the bypass ratio affected thrust, TSFC, Tt4, and overall pressure ratio. It was

decided to control this by changing the detonation tube diameter. As seen in Figure

4.5, there is an optimal bypass ratio for the engine when all other parameters are

fixed. At this optimal iBPR, the TSFC will hit a minimum. At greater bypass ratio
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both thrust and TSFC make unfavorable turns, and below this bypass ratio both the

net thrust and the TSFC climb gradually.

There were some issues varying the diameter, and the NPSS code only converged

on solutions over a surprisingly small range of diameters. Smaller diameters were

limited because the flow through the tube choked. At higher diameters, all the engine

core flow was being sucked into the tubes, and none was going into the bypass air,

resulting in a hotter turbine inlet temperature and preventing a 100% purge+fill cycle.

The range of tube diameters should increase if the tube length is decreased from 36

inches to something shorter.

4.2.1.2 Tube Length. It had been hypothesized that a shorter tube

length would allow for increased frequency and greater thrust. However, when we

varied tube length and plotted the results seen in Figure 4.6 it was apparent that

there would be a benefit to utilizing longer tubes. Not only did thrust increase

despite the falling frequency, but there was minimal impact to the total temperature

at turbine inlet. If tube length were varied in conjunction with tube diameter to

maintain a constant volume, this chart would look significantly different. Perhaps

that is something that can be done in the near future.

4.2.1.3 Number of Tubes. Future pulsed detonation combustors will

have to deal with the issue of how many tubes to utilize. This has greater ramifi-

cations than simply determining iBPR. If sequential firing of some sort is desired,

and an effort is made to keep the detonation pulses symmetric about the shafts, it

will be advantageous to have a number of tubes easily divisible by 1/τvo because that

term determines how many tubes are required to have a quasi-constant feed from the

inlet plenum into the tubes. Also, if firing more than one tube to balance the PDC

component, it will help to have an array of tubes divisible by 2, 3, 4, 6, etc.

Number of tubes has the same affect on each of the propulsive properties that

the tube diameter did. However, the steps between points are not continuous, since
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Effect of Varying Tube Diameter on Internal Bypass and 
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Figure 4.5: Tube diameter is one method of controlling mass flow through the det-
onation tubes. There is an internal bypass ratio that optimizes the TSFC. Increasing
mass flow through the tubes also increases the fuel flow, and raises the temperature
of the core flow.
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Effect of Varying Tube Length on Internal Bypass and 
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Figure 4.6: Increasing tube length slows the cycle time and allows for greater thrust
without a drastic impact on total temperature at turbine inlet.
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it is not possible to have 41
2

or 13.33333 tubes. It will be necessary to balance the

iBPR with a combination of tube diameter and number of tubes.

4.2.1.4 Valve Inlet Area Ratio. One of the most important design

choices that could be made is the size of the valves. Mass flow into the tubes is

governed by the area of the valve throat. As seen in Figure 4.8, when the area is

significantly smaller than the detonation tube diameter, the net thrust and thrust

specific fuel consumption will suffer. It should not be assumed that an area ratio of

0.6 is magical simply because the break point in Figure 4.8 is at 0.6; the problem is

more complex, and that number might shift if another parameter (such as fill fraction)

is modified.

It should be noted that Figure 4.8 indicates that there is a significant benefit

to be obtained in this design option, because the turbine inlet temperature does not

react drastically, even though the net thrust and TSFC in Figure 4.8 do.

4.2.1.5 Valve Inlet Mach Number. Not surprisingly, the detonation

tube inlet valve throat allows better Fn and TSFC for higher Mach numbers. The

Mach number and area at the valve throat define the fill time required to fill the tube,

which impacts frequency. If geometry is held constant, frequency will define thrust.

It appears that most of the benefit of a high filling rate can be obtained by a valve

throat Mach number of 0.8 for this configuration. It is anticipated that this trend

would continue for other configurations.

4.2.1.6 Compressor Pressure Ratio. Since overall pressure ratio was

not changed by any of the previous parametric studies, it was decided to see what effect

varying the high pressure compressor had. Figure 4.10 shows the plot. This is the

only set of plots that shows a varying OPR, which was expected. It was unexpected

to find the minima in TSFC. The TSFC plot of Figure 4.10 shows similar trends to

those of Figures 4.5, 4.7, and 4.8, which indicates that the odd shape is due to the

changing internal bypass ratio. The baseline engine’s high pressure compressor on-
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Effect of Varying Number of Tubes on Internal Bypass and 
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Figure 4.7: Increasing the number of tubes affects the hybrid engine in much the
same way as increasing tube diameter. It is the resulting internal bypass that causes
the change in performance.
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Figure 4.8: Increasing valve inlet area significantly benefits TSFC and Fn while
leaving a minimal impact upon Tt4.
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Figure 4.9: Choked flow at valve throat does allow more fill mixture to flow through
the tubes (lower iBPR), which causes a rise in Tt4. TSFC however, hits a minimum
at Mach 0.6 for the selected configuration.
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design pressure ratio is 16.66667, which is still on the left-hand portion of the TSFC

curve. Increasing the pressure ratio would result in a lower SFC, but the overall

pressure ratio is already rather high. The increase in turbine inlet temperature that

accompanies the drop in TSFC should not be ignored. It is possible to drop the fuel

consumption in other ways without increasing the pressure ratio. For the problem in

this thesis, the compressor pressure ratio in the hybrid engine was matched to the

ratio in the baseline engine to keep the power across shafts identical.

4.2.1.7 Mixer Primary Inlet Mach Number. Since the NPSS mixer

element has proven so difficult, it was decided to see how varying the inlet mach

number to the mixer affected the hybrid engine. Varying this parameter had no effect

on iBPR, frequency, OPR, or Tt4. However, there was some difference seen in the

TSFC and Fn. Figure 4.11 shows the effect that the inlet Mach number has on the

engine. Solutions were sought between a Mach number of 0.15 and 1.0, but only

achieved above 0.85. At Mach numbers below this value, the solver returned negative

values for the secondary inlet flow velocity. Since the mixer uses an energy balance to

find the mixed total temperature there is no reason that changing the Mach number

at inlet should affect a change in Tt4. However, since the mixer routine performs an

impulse balance, we do expect to see a change in impulse as inlet Mach numbers vary.

This effect should cascade down to the net thrust calculation.

4.2.1.8 Varying Fill, Purge, and Equivalence Ratio in a 100% Cycle.

Figures 4.12 and 4.13 show how varying the purge/fill fraction line and equivalence

ratio affect the net thrust and TSFC. This has important ramifications for the leap

to off-design studies, since this is the anticipated method of thrust control. It should

also be noted that the optimal TSFC does not occur at an equivalence ratio of unity.

4.2.1.9 Component Interface Report. A quick search was made based

on the results of the parametric studies for a possible hybrid configuration. It was

found that a bank of 24 tubes with the characteristics shown in Table 4.12 provided
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Figure 4.10: Varying the compressor pressure ratio increases Tt4 while also increas-
ing the frequency and thrust. Internal bypass decreases with increasing compressor
ratio.
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Effect of Varying Mixer Inlet Mach Number 

on Net Thrust and TSFC
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Figure 4.11: Mixer primary inlet Mach number affects only the thrust and TSFC.
Presumably this is due to the change in impulse terms generated.
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an improvement over the baseline engine shown in Table 4.11. This should not be

mistaken as an optimized hybrid engine: optimization is a multi-variable non-linear

problem requiring more time than is available for this thesis. However, optimization

should be done prior to using data to make decisions. The net thrust for the hybrid

engine was carefully matched to allow a correct comparison between the two engines.

The component interface data is shown in Table 4.12.

4.2.2 Effects of the Transition to Steady State. Shown here is the effect of

applying losses through the transition to steady state. For figures 4.14 and 4.15 an

array of 24 tubes, with 2.1 inch diameter and 36 inch lengths operating at an 80+20

100% cycle. Area ratio of the detonation tube inlet valves was set at 0.7, with a Mach

number of 0.8 was used. Equivalence ratio was set at approximately 90%. It should

be compared with the baseline turbofan whose on-design TSFC = 0.3268 1/h and Fn

= 41667 lbf.
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Table 4.10: Improved configuration of the PDC for the hybrid engine based off of
the parametric studies.

Parameter Value units
Tube Inner Diameter 2.10 inches
Tube Length 36.0 inches
Number of Tubes 24
ARvalve 0.70
Mvalve 0.80
φ 0.9012
pf 0.2349
ff 0.7651

Output Parameter Value Units
iBPR 1.05101
Frequency 64.906 Hz
Fn 41677.6 lbf
TSFC 0.298583 1/hr
Tt4 2798.11 R
OPR 38.02
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tion temperature retention (efficiency) and pressure loss as the flow exiting the PDC
transitions from pulsed to steady state.
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Figure 4.15: Net thrust is plotted as a function of combustion temperature retention
(efficiency) and pressure loss as the flow exiting the PDC transitions from pulsed to
steady state.

4.2.2.1 Effects on Thrust. Thrust is shown in Figure 4.15 to aid

the understanding of the TSFC plot. Turbofan engines do not enjoy a constant

TSFC throughout their operating range, and often the TSFC decreases with increasing

thrust. This said, the peak of the Fn carpet is slightly higher than our baseline engine.

All of the thrust between an efficiency of 0.96 and ∆P
P

of 0.3 are above the baseline

engine on-design thrust of 41667 lbf.

4.2.2.2 Effects on TSFC. Thrust specific fuel consumption (TSFC)

for the hybrid engine did see an improvement over the baseline engine. Figure 4.14

shows that the transition-to-steady-state can go through a normalized pressure drop

of 30% and still match the baseline engine performance for the chosen configuration.

Conversely, if no pressure were lost, it would need to retain 96% of its total temper-

ature rise in order to meet that same level of performance. The plot is marginally

optimistic since the Fn values corresponding to the TSFC below 0.325 are above the

baseline engine’s thrust. By adjusting the ff + pf it is possible to balance the hybrid
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engine’s thrust with the baseline engine’s thrust. This would not significantly change

the region of improved TSFC over what is shown here, however.
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V. Conclusions

Hybrid turbofan engines utilizing a pulsed detonation combustor continue to

hold the promise of improving propulsive efficiency. In order to achieve an

improvement in efficiency, total fluid losses before passing through the turbine must

be minimized.

5.1 Baseline Engine Comparison

In order to make a correct comparison between the hybrid and baseline en-

gine, the baseline engine first had to be shown as acceptable. Comparison efforts

demonstrated the agreement of the NPSS model with an industry accepted model in

AEDsys. The discrepancies exist due to differences in solution approach, thermody-

namic models, and underlying efficiency assumptions.

5.1.1 On-Design Comparison. On-design net thrust and TSFC for the

baseline high bypass turbofan engine cycle was shown to agree to within 1.2% between

AEDsys and NPSS. When differences in temperature calculations and thermodynamic

models are translated into shaft power, the model agreement between the two engines

drops to under 0.35%.

5.1.2 Off-Design Comparison. For off-design conditions both programs pro-

duce the same trends for Fn and TSFC, but the solutions diverge as the conditions

move the shaft RPM from the design point. Close evaluation shows that this diver-

gence is due to Mattingly’s [3] assumption of constant efficiency for compressors and

turbines. Great care must be taken when utilizing the NPSS package to ensure that

the solutions generated are valid.

5.2 Hybrid Engine Performance

Only a well-designed PDC will produce a more efficient engine. If minimal

losses are experienced in the transition to steady state flow the hybrid engine will

outperform the baseline engine.
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5.2.1 Geometric Constraints. Parametric studies for the initial configura-

tion indicated that it is important to keep valve openings relatively large. It is also

important to optimize the internal bypass ratio by carefully selecting the number and

diameter of detonation tubes. Our optimized hybrid engine held 24 tubes that were

each 36 inches long and had an inner diameter of 2.1 inches. The tubes were run on an

80% fill + 20% purge 100% total air cycle using an equivalence ratio of approximately

0.9. Valve throat area was set at 70% of the tube cross section, and mass flowed

through the throat at Mach number 0.8.

5.2.2 Promise of a More Efficient Engine. Once the design of the PDC has

been optimized, the hybrid engine can be evaluated for potential improvements. The

detonation combustor describe in section 5.2 showed that an ideal transition to steady

state flow would allow a 8.0% decrease in TSFC while maintaining thrust at design

conditions. An optimization exercise should be able to increase that improvement,

and enlarge the region in which the engine can experience losses while transitioning

the pulsed flow to steady state.

5.3 Recommendations

Hybrid turbofan engines utilizing pulsed detonation combustors hold the promise

of improved fuel efficiency and greater thrust. The work documented in this thesis

should be continued and improved. A greater range of engine parameters needs to

be evaluated in order to achieve the best engine configuration. Measurements of

how promising the technology can be will only be realized once an optimized PDC is

identified.

There are things that should be done to improve the model. Cycle time cal-

culations need to be improved to reflect experimental data. This may require the

implementation of CFD studies or look-up tables. Effects of heat transfer through

the tube walls might be improved, and the effect of the detonation wave on the purge

fluid sitting in the tube should also be considered. A specific architecture for a device
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that transitions the flow to steady state could be introduced and programmed. These

are things that cannot be completed before this work must be evaluated, but which

might be performed in the coming months.
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Appendix A. NPSS Model Code

This is the code that defines the models in NPSS. It shows which thermodynamic

package was being used, and which elements are called. These files would be

called through use of a run file that tells NPSS what to do with the calculations, and

then changes variables as needed to generate data.

Listing A.1: Model file for the baseline high-bypass turbofan engine.
//
// -------------------------------------------------------------
// T U R B O J E T E N G I N E B U I L D |
// |

5 // B U I L D A N D V E R I F Y T U R B O J E T |
// |
// D E S I G N P O I N T O N L Y |
// |
// -------------------------------------------------------------

10 // T U R B O J E T C O N F I G U R A T I O N
// -------------------------------------------------------------

cout <<"\t----------------------------------------------------\n"
<<"\t Baseline High Bypass Turbfan Built to Match AEDsys \n"

15 <<"\t----------------------------------------------------\n\n"...
;

// Set model name
MODELNAME = "Baseline HBTF CmpareAEDsys.mdl with mixers";
// --------------------------------------------------------

20 // set the thermo package
// --------------------------------------------------------
// setThermoPackage (" GasTbl ");

setThermoPackage("Janaf");

25 // --------------------------------------------------------
// include the standard intepretted things
// --------------------------------------------------------
#include <InterpIncludes.ncp >
#include "ncp.view"

30 //#include " bleed_macros.fnc"
//#include " NewDuct.int"

// ----------------------------------------------------------
// # include the definition file for the user defined engine

35 // performance component
// ----------------------------------------------------------
#include "EngPerf.cmp" ;

40 // --------------------------------------------------------
// MODEL DEFINITION
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// --------------------------------------------------------
// #################### FLIGHT CONDITIONS ####################
Element FlightConditions AMBIENT {

45 // Specify Design conditions
alt = 0.0; // design altitude (ft)
MN = 0.01; // design Mach number
// Ps = 14.696; // ambient pressure (psia)
// Ts = 59.0; // ambient temperature (F)

50 W = 1500.00; // design mass flow (lbm/s)
}

// ######################### Inlet ############################
Element Inlet INLET {

55
eRamBase = 0.995; //Ram Recovery Factor?

}

// #################### Splitter #############################
60 Element Splitter SPLIT {

BPR = 8.0; // Bypass Ratio

}

65 // ######################## FAN #############################
// here the fan represents the outer portion of the
// Low pressure compressor spool
Element Compressor Fan21 {
// // use these lines if no compressor map is imlemented

70 // effDes = 0.88042; //0.882886;
// PRdes = 1.56;

// use these lines if compressor map is used ...
#include "fan.map" ; // Compressor sub -element map

75 S_map.effDes = 0.8827; // 0.88289;
S_map.PRdes = 1.56;

}

80 // ################ Bypass Duct/ Nozzle / Sink #################
Element Duct Bypass13 {

// AEDsys assumes flow in bypass duct is
// isentropic (p109 , #9)

}
85

Element Nozzle Noz18 {
dPqP = 1.0 -0.98;
// pressure loss from nozzle inlet to throat

90 PsExhName = "AMBIENT.Fl_O.Ps";

// AEDsys uses a fixed convergent nozzle
switchType = "CONIC";
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}
95

Element FlowEnd NozSink19 {

}

100 // ############## Low Pressure Compressor ###################
Element Compressor LPC20 {
// // use these lines if no compressor map is imlemented
// effDes = 0.88042; // set on -x isentropic efficiency
// PRdes = 1.56;

105
// use these lines if compressor map is used ...
#include "lpc.map";
S_map.effDes = 0.8827; // set on -x isentropic efficiency
S_map.PRdes = 1.56;

110
}

// ############### High Pressure Compressor ##################
Element Compressor HPC25 {

115 // // use these lines if no compressor map is imlemented
// effDes = 0.85755; // set on -x isentropic efficiency
// PRdes = 16.66667;

// use these lines if compressor map is used ...
120 #include "hpc.map" ; // Compressor sub element map

S_map.effDes = 0.8573 ; // on -x isentropic efficiency
S_map.PRdes = 16.66667 ; // Set on -x pressure ratio

}
125

// ############### Bleed starting point ###################
Element Bleed BLD3 {

// ========================= BLEEDS ====================
// Three Bleeds are taken off of the back side of the

130 // High pressure Compressor
BleedOutPort BL_Cool_301 {

fracW = 0.05; // mass flow (5% for cooling HPT)
}
BleedOutPort BL_Cool_302 {

135 fracW = 0.05; // mass flow (5% for cooling LPT)
}
BleedOutPort BL_Env_303 {

fracW = 0.01; // mass flow fraction (1% bleed)
}

140
}

// ######################### Fuel ###########################
Element FuelStart FUEL32{

145 LHV = 18400; // BTU/lbm - Lower Heating Value of fuel -
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// default is 18400 BTU/lbm

}

150 // ########################## Burner #######################
Element Burner BRN36{

effBase = 0.995; // component efficiency
dPqPBase = 1.0 - 0.96;
//pi b = 1.0 -(dP/P) pressure drop acrss burner

155
// Change from burner default of FAR to TEMPERATURE
switchBurn = TEMPERATURE;

// Total temp. at exit ( degrees Rankine)
160 // ***** not to be used with FAR

TtCombOut = 2900.0;

}

165 // ################### Bleed Mixer/IGV #####################
Element Bleed MIX40 {

BleedInPort BlIn40{
Pscale = 0.88;

}
170

}

// ##################### HP Turbine ########################
Element Turbine HPT41 {

175 #include "hpt.map"; //High Pressure Turbine Map
S_map.effDes = 0.9057; // 0.90555;0.91075;

}

180 // ##################### Bleed Mixer ########################
Element Bleed MIX44 {

BleedInPort BlIn44{
Pscale = 0.68;

}
185

}

// ###################### LP Turbine ########################
Element Turbine LPT45 {

190 #include "lpt.map" //Low Pressure Turbine Map
S_map.effDes = 0.9084; // 0.90836;0.90906;

}

195 // ######################### Nozzle #######################
Element Nozzle Noz8 {

dPqP = 1.0 -0.985;
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PsExhName = "AMBIENT.Fl_O.Ps";
// AEDsys uses a fixed convergent nozzle for core exit

200 switchType = "CONIC";

}

// ####################### Terminate Flow ################
205 Element FlowEnd Sink39 {

// sink for the environmental bleed ...
}

Element FlowEnd NozSink9 {
210 // sink for the core airflow

}

// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Put shafts in the model

215 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

// ##################### Low -Pressure Shaft ################
Element Shaft LPShf {

ShaftInputPort LPC , FAN , LPT ;
220 Nmech = 2000.0; // Shaft RPM at design point

inertia = 1.0;
// inertia is only needed for transient analysis

HPX = 0.0 +131.;
225 // Horsepower extracted from the shaft hp ( = 325.7 kW)

fracLoss = 1.0 - 0.99;
// Fractional loss on positive port torque (1.0 - eta_m)

230 }

// ##################### High Pressure Shaft ###################
Element Shaft HPShf {

ShaftInputPort HPT , HPC ;
235 Nmech = 11000.0;

inertia = 1.0;

HPX = 143.178 +372;
// Horsepower extracted from the shaft hp

240 // ( = 105.7 kW)/ eta m ( = 0.99)

fracLoss = 1.0 - 0.99;
// Fractional loss on positive port torque (1.0 - eta_m)

245 }

// ##################### Engine Performance ######################
Element EngPerf PERF{

// defined in another file to do
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250 //post -processing for viewers
}

// ___________________________________________________________
// Flow Connections //

255 // //
// This is where the flow is defined for the engine //
// _________________________________________________________ //
//

260 // ############# Ambient to Splitter #########################
linkPorts ( "AMBIENT.Fl_O", "INLET.Fl_I", "FL0" );
linkPorts ( "INLET.Fl_O", "SPLIT.Fl_I", "FL1" );

// ############# Bypass air #############################
265 linkPorts ( "SPLIT.Fl_02", "Fan21.Fl_I", "FLb2" );

linkPorts ( "Fan21.Fl_O", "Bypass13.Fl_I", "FLb3" );
linkPorts ( "Bypass13.Fl_O", "Noz18.Fl_I", "FLb7" );
linkPorts ( "Noz18.Fl_O", "NozSink19.Fl_I", "FLb8" );

270 // ############# Core Air Flow #############################
linkPorts ( "SPLIT.Fl_01", "LPC20.Fl_I", "FL2" );
linkPorts ( "LPC20.Fl_O", "HPC25.Fl_I", "FL25" );
linkPorts ( "HPC25.Fl_O", "BLD3.Fl_I", "FL3" );
linkPorts ( "BLD3.Fl_O", "BRN36.Fl_I", "FL31");

275 // ############## Fuel Flow ##############################
linkPorts ( "FUEL32.Fu_O", "BRN36.Fu_I", "Fu3" );
linkPorts ( "BRN36.Fl_O", "MIX40.Fl_I", "FL4" );
linkPorts ( "MIX40.Fl_O", "HPT41.Fl_I", "FL41");
linkPorts ( "HPT41.Fl_O", "MIX44.Fl_I", "FL44");

280 linkPorts ( "MIX44.Fl_O", "LPT45.Fl_I", "FL45");
linkPorts ( "LPT45.Fl_O", "Noz8.Fl_I", "FL7" );
linkPorts ( "Noz8.Fl_O", "NozSink9.Fl_I", "FL8" );

// ############## Bleed port linkage ##########################
285 // linkBleedCB ("BLD3", "MIX40 " , 0.05 , 1.0 , 1.0 , "BL 1");

// linkBleedCB ("BLD3", "MIX44 " , 0.05 , 1.0 , 1.0 , "BL 2");
// linkBleedCB ("BLD3", " Sink39 " , 0.01 , 1.0 , 1.0 , "BL 3");
linkPorts ( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1");
linkPorts ( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2");

290 linkPorts ( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3");

// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
// Mechanical ( Shaft) connections
// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

295
// ############### Low -Pressure Spool #######################
linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1");
linkPorts("LPT45.Sh_O", "LPShf.LPT", "LP2");
linkPorts("Fan21.Sh_O", "LPShf.FAN", "LP3");

300
// ############## High -Pressure Spool #######################

88



linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1");
linkPorts("HPT41.Sh_O", "HPShf.HPT", "HP2");

305 // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// Begin Run Definition
// vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"
310 << " Begin Run Input definitions \n "

<< "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n";

======================================

Listing A.2: Model file for the hybrid high-bypass turbofan engine.
//
// --------------------------------------------------------------
// T U R B O J E T E N G I N E B U I L D |
// |

5 // B U I L D A N D V E R I F Y T U R B O J E T |
// |
// D E S I G N P O I N T O N L Y |
// |
// --------------------------------------------------------------

10 // T U R B O J E T C O N F I G U R A T I O N
// --------------------------------------------------------------

cout <<"\t--------------------------------------------------\n"
<<"\t Hybrid Pulsed Detonation Combustor High Bypass Turbofan...

\n"
15 <<"\t--------------------------------------------------\n\n";

// Set model name
MODELNAME = "PDC HBTF"; // Pulsed Detonation Combustor

// High Bypass Turbofan ";
20 // --------------------------------------------------------

// set the thermo package
// --------------------------------------------------------

setThermoPackage("GasTbl");
// setThermoPackage (" Janaf ");

25
// --------------------------------------------------------
// include the standard intepretted things
// --------------------------------------------------------
#include <InterpIncludes.ncp >

30 #include "ncp.view"

// ---------------------------------------------------------
// # include the definition file for the user defined engine
// performance component

35 // ---------------------------------------------------------
#include "EngPerf.cmp" ;
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// --------------------------------------------------------
40 // MODEL DEFINITION

// --------------------------------------------------------
// ################ FLIGHT CONDITIONS #####################
Element FlightConditions AMBIENT {

// Specify Design conditions
45 alt = 0.0; // design altitude (ft)

MN = 0.01; // design Mach number
W = 1500.00; // design mass flow (lbm/s)

}

50 // ####################### Inlet ###########################
Element Inlet INLET {

eRamBase = 0.995; //Ram Recovery Factor
}

55 // #################### Splitter ##########################
Element Splitter SPLIT {

BPR = 8.0; // Bypass Ratio

}
60

// ##################### FAN ############################
// here the fan represents the outer portion of the Low
// pressure compressor spool
Element Compressor Fan21 {

65 // // use these lines if no compressor map is used
// effDes = 0.88042; //0.882886;
// PRdes = 1.56;

// use these lines if compressor map is used ...
70 #include "fan.map" ; // Compressor sub -element map

S_map.effDes = 0.8827; // 0.88289;
S_map.PRdes = 1.56;

}
75

// ############## Bypass Duct/ Nozzle / Sink ################
Element Duct Bypass13 {

// AEDsys assumes flow in bypass duct is
80 // isentropic (p109 , #9)

}

Element Nozzle Noz18 {
// pressure loss from nozzle inlet to throat

85 dPqP = 1.0 -0.98;

PsExhName = "AMBIENT.Fl_O.Ps";
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// AEDsys uses a fixed convergent nozzle for bypass exit
90 switchType = "CONIC";

}

Element FlowEnd NozSink19 {

95 }

// ############### Low Pressure Compressor ##################
Element Compressor LPC20 {
// // use these lines if no compressor map is used

100 // effDes = 0.88042; // set on -X isentropic efficiency
// PRdes = 1.56;

// use these lines if compressor map is used ...
#include "lpc.map";

105 S_map.effDes = 0.8827; //set on -X isentropic efficiency
S_map.PRdes = 1.56;

}

110 // ################# High Pressure Compressor ##################
Element Compressor HPC25 {
// // use these lines if no compressor map is imlemented
// effDes = 0.85755; // set on -X isentropic efficiency
// PRdes = 16.66667;

115
// use these lines if compressor map is used ...
#include "hpc.map" ; // Compressor sub element map
S_map.effDes = 0.8573; // set on -X isentropic efficiency
S_map.PRdes = 16.66667 ; // Set the pressure ratio on -X

120
}

// ############### Bleed starting point ###################

125 Element Bleed BLD3 {
// ===================== BLEEDS ======================
// Three Bleeds are taken off of the back side of the
// High pressure Compressor
BleedOutPort BL_Cool_301 {

130 fracW = 0.05;
// mass flow (5% for cooling turbine)

}
BleedOutPort BL_Cool_302 {

fracW = 0.05;
135 // mass flow (5% for cooling turbine)

}
BleedOutPort BL_Env_303 {

fracW = 0.01;
// mass flow fraction (1% environmental bleed)

140 }
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}

// ########################## Fuel #############################

145 Element FuelStart FUEL32{

LHV = 18400; // BTU/lbm - Lower Heating Value of the fuel
// default is 18400 BTU/lbm

150 }

// ########################### Burner #########################
#include "PDC_burner.int"
Element PulseDetonationCombustor BRN36{

155 effBase = 0.995;
dPqPBase = 1.0 -0.96;
switchBurn = FAR;
FAR = (0.0683 * 1.00) ; // approx . stoichiometric conditions
purgeFrac = 0.2;

160 fillFrac = 0.8;
lTube = 36;
n_tubes = 24;
dTube = 2.0;

}
165 // ####################### Wall heat exchange #################

// Element Wall WALL38{
// Ahx1 = PI *36; // area of wall inside PDT
// Ahx2 = PI *36*1.02; // area that bypass flow sees
// ChxDes1 = 0.7;// heat transfer film coefficient - blind guess ...

170 // ChxDes2 = 0.7;//
// CpMat = 0.1481;// specific heat of material ( titanium @ 2160 R)
// // # tubes pi/4 length oD iD(in) rho(lbm/ft...

^3) Titanium
// massMat = 36.*( PI /4.*(36./12.) *(2.25**2 -2.**2) /144.) *280.93;//...

mass of material in lbm
//

175 //}

// ############## PDC bypass mixer / ############
Element Mixer MIX39{

Fl_I1.MN = .15;
180 Fl_I2.MN = .15;

}

// ########################## Bleed Mixer/IGV ###################
185 Element Bleed MIX40 {

BleedInPort BlIn40{
Pscale = 0.88;

}

190 }
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// ########################## HP Turbine #######################
Element Turbine HPT41 {

#include "hpt.map"; //High Pressure Turbine Map
195 S_map.effDes = 0.9057; // 0.90555;0.91075;

}
// ########################## Bleed Mixer #####################
Element Bleed MIX44 {

200 BleedInPort BlIn44{
Pscale = 0.68;

}

}
205

// ########################## LP Turbine #####################
Element Turbine LPT45 {

#include "lpt.map" //Low Pressure Turbine Map
210 S_map.effDes = 0.9084; // 0.90836;0.90906;

}

// ######################### Nozzle #######################
215 Element Nozzle Noz8 {

dPqP = 1.0 -0.985;
PsExhName = "AMBIENT.Fl_O.Ps";
switchType = "CONIC";
// AEDsys uses a fixed convergent nozzle for core exit

220
}

// ########################## Terminate Flow ################
Element FlowEnd Sink39 {

225 // BleedInPort BlIn44{
// Pscale = 0.96;
// }

// sink for the environmental bleed ...
}

230
Element FlowEnd NozSink9 {

// sink for the core airflow
}

235 // %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Put shafts in the model
// %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

// #################### Low -Pressure Shaft ################
240 Element Shaft LPShf {

ShaftInputPort LPC , FAN , LPT ;
Nmech = 2000.0;
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inertia = 1.0; // inertia only for transient analysis

245 // Horsepower extracted from the shaft hp ( = 325.7 kW)
HPX = 0.0;

// Fractional loss on positive port torque (1.0 - eta_m)
fracLoss = 1.0 - 0.99;

250 }

// ##################### High Pressure Shaft ###################
Element Shaft HPShf {

ShaftInputPort HPT , HPC ;
255 Nmech = 11000.0;

inertia = 1.0;

// Horsepower extracted from the shaft hp
// ( = 105.7 kW)/ eta m ( = 0.99)

260 HPX = 143.178;

// Fractional loss on positive port torque (1.0 - eta_m)
fracLoss = 1.0 - 0.99;

}
265

// ################## Engine Performance #####################
Element EngPerf PERF{
}

270 // _________________________________________________________ //
// Flow Connections //
// //
// This is where the flow is defined for the engine //
// _________________________________________________________ //

275 //

// ############# Ambient to Splitter #########################
linkPorts ( "AMBIENT.Fl_O", "INLET.Fl_I", "FL0" );
linkPorts ( "INLET.Fl_O", "SPLIT.Fl_I", "FL1" );

280
// ############# Bypass air #############################
linkPorts ( "SPLIT.Fl_02", "Fan21.Fl_I", "FLb2" );
linkPorts ( "Fan21.Fl_O", "Bypass13.Fl_I", "FLb3" );
linkPorts ( "Bypass13.Fl_O", "Noz18.Fl_I", "FLb7" );

285 linkPorts ( "Noz18.Fl_O", "NozSink19.Fl_I", "FLb8" );

// ############# Core Air Flow #############################
linkPorts ( "SPLIT.Fl_01", "LPC20.Fl_I", "FL2" );
linkPorts ( "LPC20.Fl_O", "HPC25.Fl_I", "FL25");

290 linkPorts ( "HPC25.Fl_O", "BLD3.Fl_I", "FL3" );
linkPorts ( "BLD3.Fl_O", "BRN36.Fl_I", "FL31");
// ############## Fuel Flow ##############################
linkPorts ( "FUEL32.Fu_O", "BRN36.Fu_I", "Fu3" );
// linkPorts ( " BRN36.Fl_O1", "WALL38.Fl_I1", "Wa1 " );
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295 // linkPorts ( " BRN36.Fl_O2", "WALL38.Fl_I2", "Wa2 " );
// linkPorts ( " WALL38.Fl_O1", "MIX39.Fl_I1", "Fl39");
// linkPorts ( " WALL38.Fl_O2", "MIX39.Fl_I2", "Fl392");
linkPorts ( "BRN36.Fl_O1", "MIX39.Fl_I1", "Fl39");
linkPorts ( "BRN36.Fl_O2", "MIX39.Fl_I2", "Fl392");

300 linkPorts ( "MIX39.Fl_O", "MIX40.Fl_I", "FL4");
linkPorts ( "MIX40.Fl_O", "HPT41.Fl_I", "FL41" );
linkPorts ( "HPT41.Fl_O", "MIX44.Fl_I", "FL44");
linkPorts ( "MIX44.Fl_O", "LPT45.Fl_I", "FL45" );
linkPorts ( "LPT45.Fl_O", "Noz8.Fl_I", "FL7");

305 linkPorts ( "Noz8.Fl_O", "NozSink9.Fl_I", "FL8" );

// ############## Bleed port linkage ##########################
// linkBleedCB ("BLD3", "MIX40 " , 0.05 , 1.0 , 1.0 , "BL 1");
// linkBleedCB ("BLD3", "MIX44 " , 0.05 , 1.0 , 1.0 , "BL 2");

310 // linkBleedCB ("BLD3", " Sink39 " , 0.01 , 1.0 , 1.0 , "BL 3");
linkPorts ( "BLD3.BL_Cool_301", "MIX40.BlIn40", "BL 1");
linkPorts ( "BLD3.BL_Cool_302", "MIX44.BlIn44", "BL 2");
linkPorts ( "BLD3.BL_Env_303", "Sink39.Fl_I", "BL 3");

315 // $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
// Mechanical ( Shaft) connections
// $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

// ############### Low -Pressure Spool #######################
320 linkPorts("LPC20.Sh_O", "LPShf.LPC", "LP1");

linkPorts("LPT45.Sh_O", "LPShf.LPT", "LP2");
linkPorts("Fan21.Sh_O", "LPShf.FAN", "LP3");

// ############## High -Pressure Spool #######################
325 linkPorts("HPC25.Sh_O", "HPShf.HPC", "HP1");

linkPorts("HPT41.Sh_O", "HPShf.HPT", "HP2");

// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// Begin Run Definition

330 // vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

cout << "^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"
<< " Begin Run Input definitions \n "
<< "vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv\n\n";
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Appendix B. Fortran unFAIR Code

In order to better understand the differences between AEDsys and NPSS, the un-

derlying thermodynamic routines were evaluated. Since the FAIR routine from

AEDsys was not available as a callable routine or stand-alone package, it was coded

in FORTRAN based on the formulas included in Mattingly [28]. Output was checked

with the tabulated results included in that same text.

Listing B.1: Constants module used for the unFAIR subroutine.
module constant_module

! Programmer : 1Lt Ionio Andrus
! AFIT/ENY MENG 732

5 ! 16 Apr 05

integer , public , parameter :: RKIND = selected_real_kind (13)

real(kind = RKIND), public , parameter :: zero = 0.0 _RKIND
10 real(kind = RKIND), public , parameter :: one = 1.0 _RKIND

real(kind = RKIND), public , parameter :: two = 2.0 _RKIND
real(kind = RKIND), public , parameter :: three = 3.0 _RKIND
real(kind = RKIND), public , parameter :: four = 4.0 _RKIND
real(kind = RKIND), public , parameter :: five = 5.0 _RKIND

15 real(kind = RKIND), public , parameter :: six = 6.0 _RKIND
real(kind = RKIND), public , parameter :: seven = 7.0 _RKIND
real(kind = RKIND), public , parameter :: eight = 8.0 _RKIND
real(kind = RKIND), public , parameter :: nine = 9.0 _RKIND
real(kind = RKIND), public , parameter :: ten =10.0 _RKIND

20 real(kind = RKIND), public , parameter :: half = 0.5 _RKIND
real(kind = RKIND), public , parameter :: quarter = 0.25 _RKIND
real(kind = RKIND), public , parameter :: tenth = 0.1 _RKIND
real(kind = RKIND), public , parameter :: one_n_half = 1.5 _RKIND
real(kind = RKIND), public , parameter :: thousand = 1000.0 _RKIND

25 !real(kind = RKIND), public , parameter :: zero = 0.0 _RKIND
!real(kind = RKIND), public , parameter :: zero = 0.0 _RKIND
!
real(kind = RKIND), public , parameter :: R_Air =286.96 _RKIND !J/...

kgK

30 !define some conversion multipliers
real(kind=RKIND),public ,parameter :: K_to_R = 1.800
real(kind=RKIND),public ,parameter :: kJ_kg_to_BTU_lbm =0.4299226139
real(kind=RKIND),public ,parameter :: BTU_lbm_to_ft2_s2 = 25037.00
real(kind=RKIND),public ,parameter :: BTU_s_to_hp = 1.41485320412

35

end module constant_module
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Listing B.2: Main callable unFAIR subroutine.
subroutine unFAIR(T, h, Pr , phi , Cp , R, gam , a, FAR)
use constant_module
implicit none

5 REAL (kind = RKIND) :: A0 , A1 , A2 , A3 , A4 , A5 , A6 , A7
REAL (kind = RKIND) :: h_ref , phi_ref , phi_r1 , phi_r2
REAL (kind = RKIND) :: T, FAR !intent in
REAL (kind = RKIND) :: Pr , R, Cp , h, phi , gam , a !intent out
REAL (kind = RKIND) :: cp_a , h_a , phi_a , cp_p , h_p , phi_p

10 character *3 :: flow

!==============================================================
!Check to see if FAR affects
if (FAR .lt. 1.0E-9 _RKIND) flow = "no"

15
!===== Define coeficients from Table 2.2 for air alone ======

A0 = 2.5020051E-01 _RKIND
A1 = -5.1536879E-05 _RKIND
A2 = 6.5519486E-08 _RKIND

20 A3 = -6.7178376E-12 _RKIND
A4 = -1.5128259E-14 _RKIND
A5 = 7.6215767E-18 _RKIND
A6 = -1.4526770E-21 _RKIND
A7 = 1.0115540E-25 _RKIND

25 h_ref = -1.7558886 _RKIND !BTU/lbm
phi_r1 = 0.0454323 _RKIND !BTU/(lbm R)

!====== Equations 2.60 ,2.61 , 2.62 for air alone ===========
cp_a = A0 + A1*T + A2*T**2 + A3*T**3 + &

30 A4*T**4 + A5*T**5 + A6*T**6 + A7*T**7

h_a = h_ref +A0*T +A1/two*T**2 + A2/three*T**3 + A3/four*T**4 +&
A4/five*T**5 + A5/six*T**6 + A6/seven*T**7 + A7/eight*T**8

35 phi_a = phi_r1 +A0*log(T) + A1*T +A2/two*T**2 +A3/three*T**3 +&
A4/four*T**4 + A5/five*T**5 + A6/six*T**6 + A7/seven*T**7

!==============================================================

!==== Now change coefficients for the products of combustion . =
40 A0 = 7.3816638E-02 _RKIND

A1 = 1.2258630E-03 _RKIND
A2 = -1.3771901E-06 _RKIND
A3 = 9.9686793E-10 _RKIND
A4 = -4.2051104E-13 _RKIND

45 A5 = 1.0212913E-16 _RKIND
A6 = -1.3335668E-20 _RKIND
A7 = 7.2678710E-25 _RKIND
h_ref = 30.58153 _RKIND !BTU/lbm
phi_r2 = 0.6483398 _RKIND !BTU/(lbm R)

50
!===== Equations 2.60 , 2.61 , 2.62 for products of combustion =
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cp_p = A0 + A1*T + A2*T**2 + A3*T**3 + &
A4*T**4 + A5*T**5 + A6*T**6 + A7*T**7

55 h_p = h_ref +A0*T +A1/two*T**2 + A2/three*T**3 + A3/four*T**4 +&
A4/five*T**5 + A5/six*T**6 + A6/seven*T**7 + A7/eight*T**8

phi_p = phi_r2 +A0*log(T) +A1*T +A2/two*T**2 +A3/three*T**3 +&
A4/four*T**4 + A5/five*T**5 + A6/six*T**6 + A7/seven*T**7

60 !=============================================================

!============ Equation 4.26 a,b,c,d ===================
R = 1.9857117 _RKIND /(28.97 _RKIND - FAR *0.946186 _RKIND)

65 !BTU/(lbm R)
Cp = ( Cp_a + FAR*Cp_p)/(one+FAR)
h = ( h_a + FAR*h_p)/(one + FAR)
phi = ( phi_a + FAR*phi_p)/(one + FAR)

70 !============ Equation 2.55 - " reduced pressure " =======
phi_ref = 1.578420959 _RKIND ! BTU/(lbm R) phi@492 .00 R

! (a hair above freezin ’)
Pr = exp((phi - phi_ref)/R)

75 !============ do the additional calculations =============
gam = Cp/ (Cp-R)
a = sqrt(gam*R*BTU_lbm_to_ft2_s2*T)
!=============================================================

80 !=============================================================
end subroutine
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Appendix C. Pulsed Detonation Combustor Code

This appendix contains the NPSS code for the pulsed detonation combustor ele-

ment used by the NPSS model. The code is based on the work burner element

generated by NASA/GRC that was included with the NPSS release 1.6.3.

Listing C.1: NPSS element file for the pulsed detonation combustor.
#ifndef __PDC__
#define __PDC__

// *************************************************************
5 // * Air Force Institute of Technology

// * 2950 Hobson Way , Bldg 641
// * Wright Patterson AFB , OH 45433
// *
// * Ionio Q. Andrus , Capt., USAF

10 // *
// BASED ON " Burner.int" included in NPSS , written by~~
// * NASA Glenn Research Center
// * 21000 Brookpark Rd
// * Cleveland , OH 44135

15 // *
// **************************************************************

#include <InterpIncludes.ncp >

20 class PulseDetonationCombustor extends Element {

// ------------------------------------------------------------
// ******* DOCUMENTATION *******
// ------------------------------------------------------------

25
title = "";

description = isA() + " will calculate performance for
pulsed detonation combustor.";

30
usageNotes = "

The burner element performs high level burner performance
calculations . This element works with an entrance fluid and

35 fuel stream . It mixes the two flows together and then
performs the burn calculations . Please note that the burner
has no control over the actual fuel stream conditions --fuel type ,
LHV , etc. These values are properties of the fuel flow itself
and are usually set in the FuelStart element.

40
There are two ways to specify the burner exit conditions . The
first way is specify the burner fuel -to -air ratio. The second
way is to set equivalence ratio . The type of input used is
controlled by an option switch.
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45
The burner tracks several different pressure losses . The first ,
dPqP , accounts for duct friction pressure drops and approximates
the pressure loss through valves . The second , dPqPRayleigh ,
accounts for the Rayleigh pressure drop. dPRayleigh is input or

50 calculated - see switchHotLoss , an iteration is necessary since
the pressure loss itself is a function of the exit conditions.

The burner also allow two efficiencies to be input . The first
efficiency , eff , refers to the efficiency based on enthalpy

55 change . The second efficiency , effChem , refers to the efficiency
based on temperature change . Both terms can be input. However ,
the enthalpy efficiency is always applied first.

Additionally ,
60

The user can request a pre burner pressure loss dPqP. The
pressure loss calculations are performed before all the other
calculations are done. This means that the combustion entrance
pressure will not match the value indicated by the burner entrnce.

65
The user can request a heat transfer Qhx. The heat transfer
calculations are performed after all the other calculations are
done. This means that if heat transfer is being used , the exit
temperature will not match the value indicated by the burner

70 calculations.

";

background = "";
75

// ------------------------------------------------------------
// ******* SETUP VARIABLES ********
// ------------------------------------------------------------

80 real a_dPqP {
value = 0.0; IOstatus = "input"; units = "none";
description = "Duct friction pressure drop adder";

}
real a_dPqPAud {

85 value = 0.0; IOstatus = "unset"; units = "psia";
description = "Audit factor adder applied to pressure ratio";

}
real a_eff {

value = 0.0; IOstatus = "input"; units = "none";
90 description = "Adiabatic efficiency adder";

}

real a_effChem {
value = 0.0; IOstatus = "input"; units = "none";

95 description = "Chemical efficiency adder";
}

100



real ARvalve { // Added 15 Feb2007 - IA
value = 0.5; IOstatus = "input"; units = "none";
description = "Ratio of valve throat area to tube cross section...

area";
100 }

real deltaS { // Added 17 Jan2007 - IA
value = 0.0; IOstatus = "output"; units = "none";
description = "Change in entropy due to detonation";

}
105 real DDT { // Added 17 Jan2007 - IA

value = 0.0005; IOstatus = "input"; units = "none"; //...
seconds

description = "Detonation to deflaration time in seconds";
}
real dPqP {

110 value = 0.0; IOstatus = "output"; units = "none";
description = "Adjusted duct friction pressure drop";

}
real dPqPBase {

value = 0.0; IOstatus = "input"; units = "none";
115 description = "Duct friction pressure drop ";

}
real dPqPRayleigh {

value = 0.0; IOstatus = "input"; units = "none";
description = "Adjusted Rayleigh pressure drop";

120 }
real dTube { // Added 17 Jan2007 - IA

value = 2.0; IOstatus = "input"; units = "none"; // inches...
...

description = "Inside diameter of the detonation tube";
}

125 real eff {
value = 1.0; IOstatus = "output"; units = "none";
description = "Adjusted adiabatic burner efficiency";

}
real effBase {

130 value = 1.0; IOstatus = "input"; units = "none";
description = "Adiabatic burner efficiency , from socket ";

}
real effChem {

value = 1.0; IOstatus = "input"; units = "none";
135 description = "Adjusted chemical efficiency";

}
real effChemBase {

value = 1.0; IOstatus = "input"; units = "none";
description = "Chemical efficiency , from socket";

140 }
real eqRatio {

value = 1.0; IOstatus = "input"; units = "none";
description = "Equivalence ratio for fuel -air mixture";

}
145 real FAR {
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value = 0.0; IOstatus = "output"; units = "none";
description = "Fuel -to -air ratio";

}
real FARDes {

150 value = 0.0; IOstatus = "output"; units = "none";
description = "Fuel -to -air ratio at design";

}
real fillFrac { // Added 17 Jan2007 - IA

value = 1.0; IOstatus = "input"; units = "none";
155 description = "Fill fraction ";

}
real fuelFractV {

value = 0.0; IOstatus = "input"; units = "none";
description = "Fraction of the incoming flow velocity fuel

160 enters the burner";
}
real iBPR { //added 17 Jan2007 - IA

value = 1.0; IOstatus = "output"; units = "none";
description = "Bypass ratio internal to the PDC";

165 }
real iBPRdes { // added 1 Feb2007 - IA

value = 1.0; IOstatus = "output"; units = "none";
description = "Bypass ratio internal to the PDC at
design conditions";

170 }
real lTube { //added 17 Jan2007 - IA

value = 36; IOstatus = "input"; units = "none"; // inches ??
description = "length of the individual detonation tubes";

}
175 real n_tubes { //added 17 Jan2007 - IA

value = 36; IOstatus = "input"; units = "none";
description = "Total number of detonation tubes used
in the PDC";

}
180 real MCJ { //added 17 Jan2007 - IA

value = 3.0; IOstatus = "output"; units = "none";
description = "Chapman -Jouguet Mach number of the
detonation wave.";

}
185 real Mvalve { // added 15 Feb2007 - IA

value = 1.0; IOstatus = "input"; units = "none";
description = "Mach number of flow passing through
the valve throat.";

}
190 real qadd{ //added 17 Jan 2007 - IA

value = 0.0; IOstatus = "output"; units = "none";
description = "Heat addition due to fuel combustion";

}
real Qhx {

195 value = 0.0; IOstatus = "input"; units = "Btu/sec";
description = "Heat loss to thermal mass storage";

}
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real PqPRayleigh {
value = 1.0; IOstatus = "output"; units = "none";

200 description = "Adjusted Rayleigh pressure drop";
}
real PqPRayleighDelta {

value = 0.0; IOstatus = "output"; units = "none";
description = "Bounded Rayleigh pressure drop - for loop only"...

;
205 }

real PqPRayleighError {
value = 1.0; IOstatus = "output"; units = "none";
description = "Adjusted Rayleigh pressure drop error";

}
210 real PqPRayleighMin {

value = 0.05; IOstatus = "input"; units = "none";
description = "Rayleigh pressure drop lower limit - for loop ...

only";
}
real PqPRayleighStep {

215 value = 0.05; IOstatus = "input"; units = "none";
description = "Maximum step for Rayleigh pressure drop
- for loop only";

}
real PqPRayleighNew {

220 value = 1.0; IOstatus = "output"; units = "none";
description = "Previous adjusted Rayleigh pressure drop
- for loop only";

}
real purgeFrac { // Added 17 Jan2007 - IA

225 value = 0.25; IOstatus = "input"; units = "none";
description = "Purge fraction coefficient for flow";

}
real s_dPqP {

value = 1.0; IOstatus = "input"; units = "none";
230 description = "Duct friction pressure drop scalar";

}
real s_dPqPAud {

value = 1.0; IOstatus = "unset"; units = "none";
description = "Audit factor scalar applied to pressure ratio";

235 }
real s_eff {

value = 1.0; IOstatus = "input"; units = "none";
description = "Adiabatic efficiency scalar";

}
240 real s_effChem {

value = 1.0; IOstatus = "input"; units = "none";
description = "Chemical efficiency scalar";

}
real tauBlDn { // Added 17 Jan2007 - IA

245 value = 5.; IOstatus = "input"; units="none";
description = "Blowdown time constant";

}
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real tauValveOpen { // Added 18 Jan2007 - IA
value = 0.33333; IOstatus = "output"; units="none";

250 description = "time valve open/ time cycle - from 0 to 1";
}
real tCycle { // Added 17 Jan2007 - IA

value = 0.01; IOstatus = "output"; units = "none"; // seconds
description = "Detonation engine cycle time (= 1/ frequency)"...

;
255 }

real tolRayleigh {
value = 4e -05; IOstatus = "input"; units = "none";
description = "Iteration tolerance on momentum pressure drop";

}
260 real tolWfuel {

value = 1e -05; IOstatus = "input"; units = "none";
description = "Iteration tolerance on temperature burn";

}
real TtCombOut {

265 value = 0.0; IOstatus = "input"; units = "R";
description = "Exit temperature";

}
real TtLast {

value = 0.0; IOstatus = "input"; units = "R";
270 description = "Previous exit temperature - for loop only";

}
real TTSSeff { // Added 17 Jan2007 - IA

value = 1.0; IOstatus = "input"; units = "none";
description = "Efficiency factor for the transition device."...

;
275 }

real TTSSdPqP { // Added 17 Jan2007 - IA
value = 0.0; IOstatus = "input"; units = "none";
description = "Change in Pressure divided by Pressure
for transistion to steady state calculation.";

280 }
real tValve { // Added 17 Jan2007 - IA

value = 0.0002; IOstatus = "input"; units = "none"; //...
seconds

description = "Time for valves to open/close";
}

285 real Wfuel {
value = 0.0; IOstatus = "input"; units = "lbm/sec";
description = "Combustor fuel flow";

}
real WfuelError {

290 value = 0.0; IOstatus = "input"; units = "lbm/sec";
description = "Combustor fuel flow error";

}
real WfuelLast {

value = 0.0; IOstatus = "input"; units = "lbm/sec";
295 description = "Previous combustor fuel flow - for loop only";

}
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real WfuelNew {
value = 0.0; IOstatus = "input"; units = "lbm/sec";
description = "Next combustor fuel flow - for loop only";

300 }
int countFuel {

value = 0; IOstatus = "output";
description = "Fuel loop counter";

}
305 int countFuelMax {

value = 50; IOstatus = "input";
description = "Fuel loop maximum counter";

}
int countRayleigh {

310 value = 0; IOstatus = "output";
description = "Rayleigh loop counter";

}
int countRayleighMax {

value = 25; IOstatus = "input";
315 description = "Rayleigh loop maximum counter";

}
int flagRayleighLossTooMuch {

value = 0; IOstatus = "output";
description = "If true , Rayleigh loop results in too much loss...

";
320 }

int flagRayleighChoked {
value = 0; IOstatus = "output";
description = "If true , Rayleigh loop results in supersonic ...

flow";
}

325
// for backward compatibilty with old "aud"
FunctVariable a_dPqPaud {

units = "none"; IOstatus = "input";
getFunction = "get_aAud"; setFunction = "set_aAud";

330 }
real get_aAud () { return a_dPqPAud ; }
void set_aAud(real userValue) { a_dPqPAud = userValue ; }

FunctVariable s_dPqPaud {
335 units = "none"; IOstatus = "input";

getFunction = "get_sAud"; setFunction = "set_sAud";
}
real get_sAud () { return s_dPqPAud ; }
void set_sAud(real userValue) { s_dPqPAud = userValue ; }

340
// ----------------------------------------------------------
// ******* OPTION VARIABLE SETUP *******
// ----------------------------------------------------------

345 Option switchAud {
allowedValues = { "BASE", "AUDIT" }
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description = "Determines if the audit factors are used";
IOstatus = "input";
trigger=TRUE;

350 }

Option switchBurn {
allowedValues = { "FAR", "EQRATIO" }; //"FUEL", "WFUEL ", "...

TEMPERATURE ", __ mod 18 Dec 2006 - IA - added " FILLFRACTION...
"

355 description = "Switch determines if burner is running to fuel ...
flow , FAR , or T4. Setting option to FUEL will burn using ...
the burner value as an input . Setting the option to WFUEL ...
will burn using the value coming in from the fuel station."...
;

trigger=TRUE;
}

Option switchDes {
360 allowedValues = { "DESIGN", "OFFDESIGN" };

description = "Design switch";
trigger=FALSE;

}
// input kept in for backward compatible ( remove later)

365 Option switchHotLoss {
allowedValues = { "INPUT", "CALCULATE","input" };
description = "Switch determines if the hot pressure loss is ...

input or iterated on";
trigger=TRUE;

}
370

// ---------------------------------------------------------
// **** SETUP PORTS , FLOW STATIONS , SOCKETS , TABLES ******
// ---------------------------------------------------------

375 // FLUID PORTS
FluidInputPort Fl_I {

description = "Incoming flow";
}

380 FluidOutputPort Fl_O1 {
description = "Exiting combustion flow";

}

FluidOutputPort Fl_O2 {
385 description = "Exiting bypass flow";

}

// FUEL PORTS

390 FuelInputPort Fu_I {
description = "Incoming fuel flow";
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}

// BLEED PORTS
395

// THERMAL PORTS

// MECHANICAL PORTS

400 // FLOW STATIONS

// __________flow stations modified 18 Dec 2006 - IA
FlowStation Fl_Icomb {

description = "Inlet station to detonation tube section
405 of burner (after the initial pressure loss is applied)";

}

FlowStation Fl_IcombAir {
description = "Copy of the inlet station to detonation ...

tube
410 section of burner(after the initial pressure loss is ...

applied ,
before flow is split and partitioned)";

}

FlowStation Fl_Iprg {
415 description = "Station containing detonation tube purge ...

fluid";
}

FlowStation Fl_Ocomb {
description = "Exit station to combustion section of burner

420 (before thermal storage heat transfer is calculated)";
}

FlowStation Fl_Vit {
description = "Vitiated Fluid flow station before detonation (...

cold)";
425 }

// ____________________ ----end flow station modifications

// SOCKETS

430 Socket S_dPqP {
allowedValues = { "dPqPBase" };
description = "Dry duct and valve pressure loss"; //__ mod -...

IA - 18 Dec 2006
socketType = "dPqP";

}
435

Socket S_eff {
allowedValues = { "effBase", "effChemBase" };
description = "PulseDetonationCombustor adiabatic efficiency";
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socketType = "BURN_EFFICIENCY";
440 }

Socket S_Qhx {
allowedValues = { "Qhx" };
description = "Thermal storage socket";

445 socketType = "HEATTRANSFER";
}

// TABLES
450

// ----------------------------------------------------------
// ******* INTERNAL SOLVER SETUP *******
// ----------------------------------------------------------

455 // ----------------------------------------------------------
// ****** ADD SOLVER INDEPENDENTS & DEPENDENTS ******
// ----------------------------------------------------------

// ----------------------------------------------------------
460 // ******* VARIABLE CHANGED METHODOLOGY *******

// ----------------------------------------------------------
void variableChanged ( string name , any oldVal ) {
// Check to see what variables were changed ....
// Change input/output status as necessary - IA - 18 Dec 06

465
if( name == "switchBurn" ) {

if ( switchBurn == "FAR" ) {
FAR.IOstatus = "input";
Wfuel.IOstatus = "output";

470 TtCombOut.IOstatus = "output";
eqRatio.IOstatus = "output";

}
// else if ( switchBurn == " FUEL " ) {
// FAR.IOstatus = " output ";

475 // Wfuel.IOstatus = " input";
// TtCombOut.IOstatus = " output ";

// }
// else if ( switchBurn == " WFUEL " ) {
// FAR.IOstatus = " output ";

480 // Wfuel.IOstatus = " output ";
// TtCombOut.IOstatus = " output ";

// }
// _________ added 5 Feb 2007 -IA -

else if ( switchBurn == "EQRATIO" ) {
485 FAR.IOstatus = "output";

Wfuel.IOstatus = "output";
TtCombOut.IOstatus = "output";
eqRatio.IOstatus = "input";

}
490 // ___________ end of additions -IA -
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}

else if( name == "switchHotLoss" ) {
if ( switchHotLoss == "INPUT" ) {

495 dPqPRayleigh.IOstatus = "input";
}
else if ( switchHotLoss == "input" ){ switchHotLoss = "...

INPUT"; }
else {

dPqPRayleigh.IOstatus = "output";
500 }

}

else if( name == "switchAud" ) {
a_dPqPAud.IOstatus = "inactive";

505 s_dPqPAud.IOstatus = "inactive";
if( switchAud == "AUDIT" ) {

a_dPqPAud.IOstatus = "input";
s_dPqPAud.IOstatus = "input";

}
510 }

}

// ---------------------------------------------------------
515 // ******* PERFORM ENGINEERING CALCULATIONS *******

// ---------------------------------------------------------

void calcPreLoss () {

520
// -----------------------------------------------------------
// Check to see if the pressure sockets are empty , if not ...

thenexecute
// -----------------------------------------------------------
if ( ! S_dPqP.isEmpty () ) {

525 S_dPqP.execute ();
}
dPqP = dPqPBase * s_dPqP + a_dPqP ; // calculate pressure ...

losses (dry duct and Valve)
if( switchDes == "OFFDESIGN" ) {

if( switchAud == "AUDIT" ) {
530 dPqP = dPqP * s_dPqPAud + a_dPqPAud;

}
}

// comment -IA - Collect total enthalpy at inlet
real hin = Fl_I.ht;

535 real Pin = ( 1 - dPqP ) * Fl_I.Pt; // coment -IA - apply ...
pressure losses as calculated above
// comment -IA - copy flow to combustor flow

Fl_Icomb.copyFlowStatic ( "Fl_I" );
Fl_Icomb.setTotal_hP ( hin , Pin );
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540 }

void calcBurn () {

real TtCombOutTemp;
545 real htStoich;

real WFuelLimit;
real WFuelHeat;

Fl_Ocomb.copyFlow ( "Fl_Icomb" );
550

// --------------------------------------------------------
// Efficiency
// --------------------------------------------------------
if ( ! S_eff.isEmpty () ) {

555 S_eff.execute ();
}
eff = effBase * s_eff + a_eff;
effChem = effChemBase * s_effChem + a_effChem;

560 // ---------------------------------------------------------
// Burn
// ---------------------------------------------------------
Fl_Ocomb.burn( "Fu_I", eff );

565 // ---------------------------------------------------------
// if inputting a PW type of efficiency adjust the temperature
// ---------------------------------------------------------
if ( effChem < 1.0 ) {

TtCombOutTemp = effChem *( Fl_Ocomb.Tt - Fl_Icomb.Tt ) +
570 Fl_Icomb.Tt;

Fl_Ocomb.setTotalTP ( TtCombOutTemp , Fl_Icomb.Pt ); // use ...
Pin

}

}
575

void calcRayleighLoss () {

flagRayleighChoked = 0;
flagRayleighLossTooMuch = 0;

580
PqPRayleigh = 1.0;
PqPRayleighError = 0.0;

585 // --------------------------------------------------------
// self -convergent iteration loop for internal momentum ...

pressure drop calc
// --------------------------------------------------------
for( countRayleigh =0; countRayleigh <= countRayleighMax;
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countRayleigh ++) {
590

// -----------------------------------------------------
// input or output dPqPRayleigh
// -----------------------------------------------------

595 if( switchHotLoss == "INPUT" ) {
PqPRayleigh = 1.0 - dPqPRayleigh;

}
else if( switchHotLoss == "CALCULATE" ) {

dPqPRayleigh = 1.0 - PqPRayleigh;
600 }

// -----------------------------------------------------
// calculate momentum pressure drop

605 // -----------------------------------------------------
real PtCombOut = PqPRayleigh * Fl_Icomb.Pt;

Fl_Ocomb.setTotal_hP ( Fl_Ocomb.ht , PtCombOut );

610
// ------------------------------------------------------
// Check momentum pressure drop
// ------------------------------------------------------
PqPRayleighNew = PqPRayleigh;

615
if ( switchHotLoss == "CALCULATE" ) {

// ------------------------------------------------------
620 // make this thing a constant area burner

// ------------------------------------------------------
Fl_Ocomb.A = Fl_Icomb.A;
flagRayleighChoked = 0;
if( Fl_Ocomb.MN > 1.0 ) {

625 // when MN > 1.0 FlowStation static calc is
// not consistent with Area
// Fl_Ocomb.MN = 1.0;
// do not do this - creates major iteration problems
flagRayleighChoked = 1;

630 }

// -------------------------------------------------------
// Calculate the exit static pressure from the momentum eqn

635 // assume the fuel has the same velocity as the entrance flow
// -------------------------------------------------------
real PsMomMeth1;
PsMomMeth1 = Fl_Icomb.W*Fl_Icomb.V - Fl_Ocomb.W*Fl_Ocomb.V;
PsMomMeth1 = PsMomMeth1/C_GRAVITY;

640 PsMomMeth1 = PsMomMeth1 + Fl_Icomb.Ps * Fl_Icomb.A;

111



PsMomMeth1 = PsMomMeth1/Fl_Ocomb.A;
real PsMomMeth2;
// PsMomMeth2 = Fl_Ocomb.W*Fl_Icomb.V;
PsMomMeth2 = Fl_Icomb.W*Fl_Icomb.V + Wfuel*Fl_Icomb.V*...

fuelFractV;
645 PsMomMeth2 = PsMomMeth2/C_GRAVITY;

PsMomMeth2 = PsMomMeth2 + Fl_Icomb.Ps * Fl_Icomb.A;
PsMomMeth2 = PsMomMeth2/Fl_Ocomb.A;
PsMomMeth2 =

PsMomMeth2 /(1.0+ Fl_Ocomb.gams*Fl_Ocomb.MN*Fl_Ocomb.MN);
650 // PsMomMeth1 = PsMonMeth2;

// ------------------------------------------------------
// Note Meth1 = Meth2 when MN <= 1.0
// Use Meth2 - seems more stable the Meth1 when MN > 1.0

655 // ------------------------------------------------------
PqPRayleighNew = ( PsMomMeth2/Fl_Ocomb.Ps) * PqPRayleigh;

}

// Check against tolerance
660 PqPRayleighError = PqPRayleighNew - PqPRayleigh;

if( abs(PqPRayleighError) < tolRayleigh ) { break ; }

// Bounding of PqPRayleigh movement to PqPRayleighStep
real sign;

665 sign = PqPRayleighError/abs(PqPRayleighError);
PqPRayleighDelta = sign *

min(abs(PqPRayleighError),PqPRayleighStep);
PqPRayleighNew = PqPRayleigh + PqPRayleighDelta;

670 // Lower limit of PqPRayleigh - limit too much loss to ...
PqPRayleighMin

if( PqPRayleighNew < PqPRayleighMin ) {
if( flagRayleighLossTooMuch == 1 ) {

ESOreport ( 1023901 ,"Rayleigh pressure loss limited , too much...
loss", FALSE );

break;
675 }

PqPRayleighNew = PqPRayleighMin;
flagRayleighLossTooMuch = 1;

}
else {

680 flagRayleighLossTooMuch = 0;
}

/*
// debug info

685 cout << Fl_Ocomb.A << " ";
cout << Fl_Ocomb.MN << " ";
cout << Fl_Ocomb.Ps << " ";
cout << PsMomMeth1 << " ";
cout << PsMomMeth2 << " ";
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690 cout << PqPRayleigh << " ";
cout << PqPRayleighNew << " ";
cout << endl;
*/

695
// -----------------------------------------------------
// check for convergence
// -----------------------------------------------------
if( countRayleigh >= countRayleighMax ) {

700 ESOreport ( 1023901 ,"Rayleigh iteration failed to converge , ...
counter exceed max" , FALSE );

break;
}

PqPRayleigh = PqPRayleighNew;
705

}

if( flagRayleighChoked == 1 ) {
ESOreport ( 1023901 ,"Rayleigh Fl_Ocomb.MN exceed choked

710 condition", FALSE );
}

}

715 void calculate () {

// --------------------------------------------------------
// Preburning pressure loss

720 // --------------------------------------------------------
calcPreLoss (); // creates Fl_Icomb , applies pre -losses

real FARin = Fl_Icomb.FAR;
real WARin = Fl_Icomb.WAR;

725
if (Fl_I.MN == 0. && Fl_I.Aphy == 0.){

Fl_Icomb.MN = 0.4;
Fl_Icomb.setTotal_hP(Fl_Icomb.ht , Fl_Icomb.Pt);

}
730

// -------------------------------------------------------
// Pre -calculate Burning to obtain enthalpy ,etc.
// -------------------------------------------------------
if ( switchBurn == "FAR" ) {

735 // -----------------------------------------------------
// determine the fuel weight flow from the input FAR
// -----------------------------------------------------
Wfuel = ( Fl_Icomb.W/(1. + FARin + WARin))*(FAR -FARin);
Fu_I.Wfuel = Wfuel;

740 eqRatio = FAR/Fu_I.FARst ; // Added 5 Feb 2007 - IA
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calcBurn ();
calcRayleighLoss ();

745 TtCombOut = Fl_Ocomb.Tt;

}
// ######################################################
// Added 5 February 2007 - IA

750 // do an equivalence ratio calculation
else if ( switchBurn == "EQRATIO") {

FAR = eqRatio*Fu_I.FARst;
Wfuel = ( Fl_Icomb.W/(1.+ FARin+ WARin))*(FAR - FARin);
Fu_I.Wfuel = Wfuel;

755
calcBurn ();
calcRayleighLoss ();

TtCombOut = Fl_Ocomb.Tt;
760 }

// ------------------------------------------------------
//make a flow station that has props of cold vitiated air
// ------------------------------------------------------

765 Fl_Vit.copyFlowStatic("Fl_Ocomb");
Fl_Vit.setTotalTP(Fl_Icomb.Tt , Fl_Icomb.Pt);

// -------------------------------------------------------
//copy inlet flow for pure air reference to be used later

770 // -------------------------------------------------------
//Take a snapshot of air after it has entered detn tubes
Fl_IcombAir.copyFlowStatic("Fl_Icomb");

// Copy input flow properties for internal bypass flow
775 // - W set later

Fl_O2.copyFlow("Fl_IcombAir");

// ---------------------------------------------------
// On -design loop

780 // ---------------------------------------------------
if ( switchDes == "DESIGN"){

// ------------------------------------------------
// Initialize local variables

785 // ------------------------------------------------
real uCJ , a_1 , rhoVit , freq , PcqPi , errors;
real gamt , Cpt , beta , MCJ2 , PcqPi2;
real Atube , Vtube;// , mCycle , Wtube;
real MFP , Wvalve , gma_I;

790 real mFillAir , mPurgeAir , mPureAir;
real tDetonation , tDetProp , tBlowdown , tPurge , tFill , iVel;
real gam_s , gmm_fc;
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real WtotAir , Wbypass;

795 int count;

// ---- initiated but not iterated -----------------------
// static density of cool vitiated fluid
rhoVit = Fl_Vit.rhot; //(lbm/ft^3)

800
// speed of sound in pure air , stagnated in detonation
// tube that the detonation wave propogates in to
a_1 = sqrt(Fl_Icomb.gamt*Fl_Icomb.Rt*Fl_Icomb.Tt *25037.);

805
// ======================================================
// Calculate Chapman -Jouguet Mach number for wave
// as described in Heiser and Pratt
// =======================================================

810 //*** input variables : //
//*** output variables : //MCJ , deltaS , qadd //
//*** Flow Stations : //Fl_Ocomb , Fl_Icomb //
// local variables : //gamt , Cpt , qadd , beta , MCJ2 //

815 // ------ Arithmetically average specific heats -----------
// arithmetic mean of gamma for stopped fluid
gamt = ( Fl_Ocomb.gamt + Fl_Icomb.gamt)/2.0;

// arithmetic mean of Cp for a stopped fluid
820 Cpt = ( Fl_Ocomb.Cpt + Fl_Icomb.Cpt)/2.0;

// ----- Calculate heat addition per Heiser -Pratt cycle ---
// calculate non -dimensional heat addition
qadd = ( Fl_Ocomb.ht - Fl_Icomb.ht)/(Cpt*Fl_Icomb.Tt);

825
// ------- Calculate Chapman -Jouget Mach number --------
beta = ( gamt + 1.0)*qadd +1.0;
MCJ2 = beta + sqrt( beta **2 - 1.0 );
MCJ = sqrt(MCJ2);

830
// --------- Calculate Entropy gain based on CJ detonation -
deltaS = Cpt*(-log(MCJ2 *(( gamt +1.0)/

(1.0+ gamt*MCJ2))**(( gamt +1.0)/gamt)) );

835 // ---- calculate the pressure rise using the H &P method --
PcqPi = (1.0+ gamt*MCJ2)/(gamt +1.0);
uCJ = a_1*MCJ;

840 // ------ Calculate tube volume and Area -------------------
Atube = (PI/4.)*dTube **2/144.; // ft^2
Vtube = Atube*( lTube /12); // ft^3

// ------ calculate the valve inlet mass flow rate --------
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845 gma_I=Fl_IcombAir.gamt;
MFP = Mvalve*sqrt ( ( gma_I *32.174) /( Fl_IcombAir.Rt *778.16) )

*(1.+( gma_I -1.) /2.* Mvalve **2) **( ( gma_I +1.) /(2.*(1. - gma_I)...
));

Wvalve = ( Fl_IcombAir.Pt/sqrt(Fl_IcombAir.Tt))
*(Atube *144.* ARvalve)*MFP;

850
// ------------------------------------------------------
// On -Design : Calculate bypass ratio
// -----------------------------------------------------
//*** input Variables : //dTube , lTube , n_tubes , fillFrac

855 // // purgeFrac ,
//*** iterated Variables // freq
//*** output Variables : // iBPR
//*** local variables : //WfillAir , WpurgeAir , WpureAir , ...

WtotAir
// Wbypass , WpurgeAir , Wvit , //

860 //*** Flow Stations : // Fl_IcombAir , Fl_Icomb , Fl_Iprg , ...
Fl_Vit , //

// ---- Calculate the split and partition of flow ----------
// amount of air that will be mixed with fuel - 1 tube
mFillAir = Vtube*( rhoVit*fillFrac)/(1.+ FAR);

865
// amount of air that will purge during each cycle - 1 tube
mPurgeAir = Vtube*( Fl_IcombAir.rhos*purgeFrac);

// total air per cycle flowing though one tube
870 mPureAir = mFillAir + mPurgeAir;

// ------------------------------------------------------
// Timing - calculate frequency
// -------------------------------------------------------

875 //*** input Variables : // DDT , tValve , Ltube , ff , pf , tCycle
//*** iterated Variables : // uCJ , PcqPi
//*** output Variables // tCycle , tauValveOpen , freq
//*** local variables : // tDetonation , tDetProp , tBlowdown , ...

tPurge ,
// // tFill

880 // ------------------------------------------------------

// ---------------- Detonation time ------------------
// DetProp time is relatively independant of fill fractn

885 tDetProp = lTube/(uCJ *12);

//DDT is input , tDetonationPropogatio calcd
// (may need to iterate)
tDetonation = DDT + tDetProp;

890
// -------------- Blowdown time ----------------------
// assume choked flow at tube exit and calculateon
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// blowdown based draw -down time of a pressurized
// tank calculated on pressure differential

895 gam_s = Fl_IcombAir.gams; // larger gamma is more conservative
gmm_fc = ((gam_s + 1.) /2.) **(-( gam_s +1.) /( 2.*( gam_s -1.)) ); ...

//

// #### tBlowdown : Use ~1/2 calcd pressure (to match experimental ...
data)
// we’ll use CJ det wave velocity as the speed of sound in the...

gas
900 // since a cannot be directly calc’d

// note tBlowdown is proportional to tube length
// tauBlDn is proportional to tube length ...
tBlowdown = ( log (0.4* PcqPi)/gmm_fc)*( lTube/uCJ);

905 // ------------- Fill and Purge time -----------------
// Use the choked flow at valve inlet and the mass flow rate ...

as
// calculated outside the loop to calculate fill time (m/ mdot...

)
tPurge = tValve + mPurgeAir/Wvalve ; //(s)
tFill = tValve + mFillAir/Wvalve ; //(s)

910 // Improvement could be made by calculating vitiated air ...
velocity ...

// ----------- Cycle Time output calculation ------------
tCycle = tDetonation + tBlowdown + tPurge + tFill;
tauValveOpen = ( tPurge+tFill)/tCycle;

915 freq = 1./ tCycle;
//cout << "\n \n tDetonation , tBlowdown , tPurge , tFill PcqPi...

"<<" "<< tDetonation <<" "<< tBlowdown <<" "<< tPurge <<" "<< ...
tFill <<" freq" << 1/ tCycle << " " << PcqPi << endl;

// ---------- Set total mass flow through tubes ----------
WtotAir = mPureAir*n_tubes*freq;

920 // steady -state flow rate into tubes

// conservation of mass check
if ( WtotAir > Fl_I.W) {

925 fillFrac = fillFrac *(Fl_I.W/WtotAir);
purgeFrac = purgeFrac *(Fl_I.W/WtotAir);

mFillAir = Vtube*( rhoVit*fillFrac)/(1.+ FAR);
// amount of air that will be mixed with fuel - 1 tube

930
mPurgeAir = Vtube*( Fl_IcombAir.rhos*purgeFrac);
// amount of air that will purge during each cycle -1 tube

mPureAir = mFillAir + mPurgeAir;
935 // total air per cycle flowing though one tube
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WtotAir = Fl_I.W;
cout << " !pf & ff changed to: " << purgeFrac << " " << ...

fillFrac << endl;
}

940
// --------------- Set iBPR -----------------------------

Wbypass = Fl_I.W - WtotAir;
// steady -state flow rate sent to bypass

945 iBPR = Wbypass/WtotAir;
// steady -state internal PDC bypass ratio

iBPRdes = iBPR;

950 // --------- Set bypass exit flow SPLIT --------------
Fl_O2.W = Wbypass;

// ----- Set purge and fill stations PARTITION -------
Fl_Iprg.copyFlowStatic("Fl_IcombAir");

955 // copy flow for purge function

// ------------- PURGE AIR -------------------
Fl_Iprg.AphyDes = ( Atube *144)*n_tubes;//Set phys area
Fl_Iprg.W = mPurgeAir*freq*n_tubes ; //set m dot

960
// --------------- FILL AIR --------------------
Fl_Icomb.copyFlow("Fl_IcombAir");
Fl_Icomb.AphyDes = Atube *144.* n_tubes*tauValveOpen;
// Actual area is multiplied by tauVO to get equivalent

965 // area. - Fluid flows steadily through this area

Fl_Icomb.W = mFillAir*n_tubes*freq; //
Fl_Icomb.setTotal_hP(Fl_IcombAir.ht , Fl_IcombAir.Pt);
//sets time -averaged static conditions

970
// ----------------------------------------------------
// Burning
// ----------------------------------------------------
// FAR was calculated prior to enteringh this

975 // point - so we just need to modify
// Wfuel based on changed Fl_Icomb.W

Wfuel = ( Fl_Icomb.W /( 1. + FARin + WARin))*( FAR - FARin...
);

Fu_I.Wfuel = Wfuel;

980 calcBurn ();
calcRayleighLoss ();

TtCombOut = Fl_Ocomb.Tt;

985 // ====================================================
// Apply Dyer -Kaemming correction to obtain tube flow
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// at exit(ignores the kinetic energy of shock wave.)
// ====================================================
Fl_Ocomb.setTotal_hS(Fl_Ocomb.ht , Fl_Icomb.S+deltaS);

990
}

// OFF -DESIGN CODE GOES HERE

995 // -------------------------------------------------------
// Add split flows back to combusted flow
// -------------------------------------------------------
Fl_Ocomb.add("Fl_Iprg"); //add purge flow in ( uncorrected)

1000 // ==========================================================
// Apply corrections to the flow for transition to ...
// steady state (TTSS)
// ========================================================
//*** local Variables : // Snew , Pnew

1005 //*** Input Variables : // deltaS , TTSSeff , TTSSdPqP
//*** Flwo stations : // Fl_Ocomb , Fl_Vit
real hnew , Pnew; //

// ------ Calculate new Entropy and Pressure --------------
1010 // eff = ( dht)TTSF/(dht)comb + 1.

// current h - ( h gained)*(1.-eff)
hnew = Fl_Ocomb.ht - ( Fl_Ocomb.ht -

Fl_Icomb.ht)*(1.0 - TTSSeff);
Pnew = Fl_Ocomb.Pt*(1.0 - TTSSdPqP);

1015
//End of 12 Jan2007 additinos - IA
// ######################################################
Fl_O1.copyFlow ( "Fl_Ocomb" );

1020 // ------- update fluid properties based on new S & P
Fl_O1.setTotal_hP(hnew , Pnew); // added 12 Jan2007 - IA

// -------------------------------------------------------
1025 // Thermal storage calculations

// --------------------------------------------------------
if ( ! S_Qhx.isEmpty () ) {

S_Qhx.execute ();
}

1030 real hout = Fl_O1.ht - Qhx / Fl_O1.W;
Fl_O1.setTotal_hP ( hout , Fl_O1.Pt );

// -------------------------------------------------------
1035 // store the design value of FAR for use in guessing

// -------------------------------------------------------
if ( switchDes == "DESIGN" ) {

FARDes = FAR;
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}
1040

}

// ----------------------------------------------------------
// register the appropriate errors at build time

1045 // ----------------------------------------------------------
void VCinit ()
{

ESOregCreate ( 1023901 , 8 , "" , TRUE , FALSE , TRUE ); // ...
provisional

ESOregCreate ( 1093901 , 8 , "" , TRUE , FALSE , TRUE ); // ...
provisional

1050 }

}

#endif
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