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Abstract  

Oil distillates are considered important elements to accomplish the missions of the 

Argentine Air Force (AAF). Of all oil products consumed by the AAF, jet fuel is the 

resource with highest demand and at the end of the day the most expensive support item 

procured by the Argentine Air Force. Accurate predictions of Argentine jet fuel prices are 

necessary to improve AAF financial and logistics planning. This thesis presents a 

systematic, statistical regression approach to forecast Argentine jet fuel prices. This 

methodology has allowed us to obtain a very useful model that utilizes information 

available on the internet to produce forecasting with average percentage absolute errors 

lower than 3%. An adjusted R2 higher than 0.99 allows us to conclude that the model 

presents an excellent goodness of fit. Mathematically, the model (after some rounding for 

display purposes only) can be expressed as: 

ˆ 0.034 0.425 ( 1) 0.01 0.00062 ( & ) 0.1995y JFP L WTI IPP O G= + × + × + × + ×Dummy ,      

where represent our prediction of Argentine jet fuel price expressed in Argentine pesos 

per liter, JPF (L1) is the Argentine jet fuel price lagged one month in the same unit of 

measure, WTI is the West Texas Intermediate in US Dollar per Barrel lagged one month, 

IPP (O&G) is the Price Index of Argentine-Produced Wholesale Goods for natural gas 

and oil also lagged one month, and the dummy variable takes the value of 1 for 

calculations from February 2006 and zero otherwise.  

ŷ
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PREDICTING ARGENTINE JET FUEL PRICES  

1. The Problem and its Setting 

Background  

Oil distillates are considered important elements to accomplish the missions of the 

Argentine Air Force (AAF). Of all oil products consumed by the AAF, jet fuel is the 

resource with highest demand and at the end of the day the most expensive support item 

procured by the Argentine Air Force. The AAF consumes more than 12 million gallons 

each year and spends almost 35% of its total material budget in the acquisition of this 

resource (Argentine Air Force, 2006). High consumption rates, volatility of the prices, 

and limited storage capacity are only some of the aspects that affect budget prediction of 

this item. 

Crude oil is the main element in the production of jet fuel. Especially during 

recent years, crude oil price instability has brought additional problems to budget and 

logistics planning. Inaccurate forecasts over fuel prices can cause major problems in the 

AAF budget. High jet fuel price predictions result in the AAF receiving more funds than 

required for this concept, resources that otherwise could be used to meet other priorities. 

In contrast, low jet fuel predictions mean that the received funds are not sufficient to pay 

for the cost of fuel, prompting the AAF to either request a supplemental appropriation or 

transfer funds from another account which produces other significant negative effects 

over the organization.  

Accurate oil predictions are also important to improve AAF strategy to face the 

contractual relationship with its provider. The AAF is tied to a fixed price contract with a 

clause of adjustment with a unique provider. Each time international and domestic 
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conditions change, the parties meet with each other to agree upon the price adjustment of 

the product. For this reason, a model that helps the AAF to accurately predict jet fuel 

prices would provide an invaluable tool to protect taxpayer contributions.  

Individual efforts have been attempted in the AAF to solve this issue such as the 

use of simple regression models, but the results have never been universally accepted in 

the organization. Not only is there a lack of understanding of the variables that affect the 

problem, but there also are difficulties in finding the appropriate tools to address this 

issue. 

The Problem and the Research Questions 

Accurate predictions of jet fuel prices are necessary to address a variety of budget 

and logistics problems that affect the AAF. This thesis attempts to analyze and develop a 

comprehensive model that allows the AAF to make better predictions of jet fuel price to 

improve the AAF financial and logistic planning. Taking into account this problem, this 

thesis seeks to answer the following research question: 

• How can the Argentine Air Force better predict jet fuel prices to improve 

financial and logistic planning? 

To answer this question, some critical areas should be analyzed. Distinguishing 

the appropriate factors that exert influence over jet fuel prices, the methods that can be 

used to predict jet fuel prices, and the data that are necessary and available to build any 

forecasting model are important components of the problem that have to be considered. 

The following research subproblems should be addressed to find the solution to the 

established research question: 
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• What are the necessary variables to introduce in the model to predict jet fuel 

price in Argentina?  

• What are the necessary data to solve the problem? Are they available? 

• Can jet fuel prices be adequately predicted using multiple regression models? 

• Would a multiple regression model provide a useful planning and decision aid 

for the Argentine Air Force? 

The answers to these questions would help us to address the purpose of this thesis in a 

manageable and systematic form.   

Summary of Current Knowledge 

Predictions of prices have always been a challenge for analysts. This is 

particularly true in the case of the prediction of oil and its subproducts. Several methods 

have been used to predict jet fuel prices with varied results over the years. Artificial 

networks (Kasprzak, 1995), multiple regression models (United States Department of 

Energy, 2002) and econometric forecasting (Coloma, 1998; Mercuri, 2001) have proved 

to be effective to forecast oil distillates prices like gas, fuel oil and jet fuel prices. All 

these models have been developed to forecast the variable of interest in the particular 

environment of the market of reference. Despite this, the direct application of these 

models to the particular conditions of the Argentine market to forecast jet fuel prices has 

brought meager results.  

In the same way, the variables used to build comprehensive models to improve oil 

predictions include an ample range of domestic and international factors depending on 

the forecaster. The domestic factors we should consider comprise the particular 

conditions of the market in the analyzed country, including supply and demand 
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relationships, domestic policies, inflation rates, and production capacity; the international 

factors involve aspects that are related with the international conditions of the oil market 

and how they affect the domestic oil price or the prices of its distillates. Understanding 

these domestic and international elements is critical for building and interpreting a 

prediction model to forecast jet fuel prices. 

Assumptions 

One of the most important aspects of all problem solving strategies is to establish 

the assumptions involved with the problem to be solved. Assumptions are propositions 

taken for granted; they are an integral part of the problem and have to be defined and 

treated carefully. 

First of all, we know that, for its own characteristic, constructing a multiple 

regression model implies the use of a large amount of data. These data have to be 

classified and analyzed in an appropriated form to reach positive results. We assume that 

the required data will be available, accurate and complete. The data provided by the 

Argentine Secretary of Energy, the Argentine Institute of Statistic and Census (official 

statements of the Argentine government), and Platts, Corporation (a worldwide provider 

of oil market information) will allow us to approach this problem with greater probability 

of success. 

The second assumption is related to the Argentina economic policy. The country 

has suffered from a variety of economic problems. Extremely high inflation rates, 

continuous changes in economic policies, and modifications of the rules of the game of 

the market can be considered normal in the history of the country. These elements have 

made it difficult to introduce models that assist in making domestic predictions about the 
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future of any assets; this fact is especially true for the case of forecasting prices of oil and 

its subproducts.  

In spite of historical instability, during the last five years the country has achieved 

an economic stability which can be expected to continue in the future. Forecasting oil 

prices in a chaotic environment can be difficult. For this reason, this work is based on the 

assumption that current stable Argentine economic conditions will continue. 

Finally, independent of the model chosen to predict jet fuel prices, some 

assumptions, inherent to the model, have to be met. These are going to be described in 

future chapters when we explain in depth the research methodology.   

Scope and Limitations 

The scope of this work is limited to forecasting Argentine jet fuel prices. This 

means that, except where reasonable data for a required variable do not exist, any other 

response factor will not be forecasted. This limitation does not mean that only variables 

inside the Argentine environment will be considered. Predicting Argentine jet fuel price 

will involve analysis of the behavior of some variables in the international sphere and the 

influence that they exert in the domestic price of jet fuel.  

Approach and Methodology 

A statistical analysis will be used to answer the research question. The chosen 

methodology to predict Argentine jet fuel prices is a multiple regression model based on 

historical data provided by the Argentine Secretary of Energy, the Argentine Institute of 

Statistics and Census, and a worldwide provider of oil market information: Platts, Co. 

Later we describe in depth the methodology used to investigate the research question. 

However, the following paragraphs summarize the methodology. 
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As a first step, based on the review of applicable models and expertise opinions, a 

preliminary set of domestic and international variables that are supposed to influence 

Argentine jet fuel prices will be preliminary selected. In the second step, data provided by 

the Argentine Secretary of Energy, Argentine Institute of Statistic and Census, and Platt, 

Co. will be collected to perform a stepwise analysis to determine the variables that are the 

best predictors to forecast jet fuel prices in Argentina. Only eighty percent, randomly 

selected data will be used to build a multiple regression model using the least squares 

approach, reserving the remaining twenty percent of the data to validate the model.  

The validated model will permit the AAF to introduce a model to accurately 

predict jet fuel prices inside the Argentina environment. The appropriate use of this 

model would allow the AAF to improve its financial and logistics planning. Jet fuel not 

only represents an important asset to accomplish the Argentine Air Force mission, but it 

is also the resource with highest demand and the most expensive item procured by the Air 

Force. Therefore, accurate prediction of its price is a necessity to improve financial and 

logistic planning. 

Understanding the Argentine oil market, the potential predictor of jet fuel prices 

and different methodologies that have been applied to forecast oil prices and its derivates 

will help us to overcome our first step in the process; they are the goals of Chapter 2 of 

this work. Chapter 3 describes in depth the multiple regression techniques, which have 

been selected as methodology to predict Argentine jet fuel prices. In Chapter 4, the 

selected methodology is applied to the specific case of Argentina jet fuel market; this 

chapter shows us the analysis of the data and the model that results from this analysis. 
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Finally, conclusions, model applications, and limitations, as well as future areas of 

interest in the addressed topic are included in Chapter 5.    
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2. Literature Review 

Introduction 

Jet fuel is a light oil distillate obtained by a chemical process called hydrocraking; 

it is normally defined as: “a high-quality kerosene product used primarily as fuel for 

commercial turbojet and turboprop aircraft engines” (New York Mercantile Exchange 

Glossary, 2001:24).  

Jet fuel is considered not only an important element to accomplish the mission of 

the Argentine Air Force (AAF), but it is also responsible for the largest amount of its 

material budget. The influence that this element exerts on the AAF budget demands 

accurate prediction of its price. To increase its budget efficiency, the AAF should 

improve its financial and logistics planning, and to do that the development of a 

comprehensive model that helps the AAF to predict jet fuel prices is required. 

The purpose of this literature review is to increase the understanding of the 

problem and its importance for the AAF, to analyze the Argentina oil market situation, 

and finally to introduce the reader to the variables that could be considered in a potential 

model to predict jet fuel prices in Argentina. 

Understanding the Problem and its Importance for the AAF 

Of all oil products consumed by the AAF, jet fuel is the element with highest 

demand and in the long run the most expensive support item procured by the Argentina 

Air Force. The AAF consumes more than 12 million gallons of jet fuel each year and 

spends almost 35% of its annual material budget in the acquisition of this resource 

(Argentine Air Force, 2006). The material budget includes all the funds that are necessary 

to acquire the required assets to support the flight activity. 
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Accurate oil price predictions have not been easy to achieve since the oil embargo 

occurred in 1973, and have been the focus of several international studies (Burke, 2005). 

Especially during the last decade, jet fuel prices have been extremely volatile, led by the 

erratic behavior of crude oil prices, the main component in jet fuel production. Figure 2-1 

illustrates the erratic behavior of crude oil prices (WTI) and jet fuel prices (JetKero 54) 

from 1994 to 2006. The data were extracted from Platts, Co., one of the largest 

companies in the world that provides oil market information.  

Crude Oil and Jet Fuel Prices
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Figure 2-1: Crude Oil and Jet Fuel Prices 1994-2006 
 (Source Platts Co., 2006) 

Volatility of jet fuel prices, high consumption rates, and limited storage capacity 

are some of the aspects that affect jet fuel budget prediction. The U.S. General 

Accounting Office (GAO) highlights the importance of better fuel pricing practices to 

improve budget accuracy (United States General Accounting Office, 2002). In its report 
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of June, 2002, the GAO highlights the problem produced by inaccurate fuel predictions 

and their consequences in the official budget system. As the document indicates, bad oil 

price predictions, added to the volatility in crude oil prices, have affected the cash 

balance flow of the budgeted funds to acquire oil and its derivatives; these facts have also 

increased the necessity of transferring funds from one account to another increasing the 

difficulties to provide the rationale for cash movements to the Congress.  

The AAF suffers from the same problem with the same consequences. When jet 

fuel prices are predicted higher than their real value, more funds than required are 

received thereby diminishing other priorities; on the other hand, when jet fuel prices are 

predicted lower than their true value, less funds than required are received, which 

requires the AAF to transfer funds from one account to another or to request 

supplemental appropriations. 

But perhaps this is not the most important issue related to the necessity of good jet 

fuel price predictions. A long-term, fixed price contract with an adjustment clause ties the 

AAF to its unique provider, REPSOL-YPF S.A. When international and domestic 

circumstances change, contractually the parties are called to discuss the required 

adjustments in jet fuel prices that will apply until the next change in conditions. Accurate 

jet fuel price prediction will help the AAF to trace a better strategy that would help to 

protect taxpayer contributions. 

Better jet fuel price predictions will help the AAF to improve financial and 

logistic planning as well as to increase its budget accuracy and to achieve a better 

efficiency of the contractual relationship with its fuel provider. In the next section, we 

analyze the characteristics of the Argentine jet fuel market. 
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The Argentine Jet Fuel Market 

An Analysis of the Argentine Oil History and its Consequences 

The lack of a vision is undoubtedly the main explanation for individual and 

corporate failures. It is difficult to think of any person or organization that has sustained 

some measure of greatness in the absence of goals, value and missions deeply inside the 

person or organization. In his book The Fifth Discipline, Peter Senge observes that: 

“When there is a genuine vision, people excel and learn, not because they are told to, but 

because they want to” (Senge, 1990:9). 

  Countries are not different from individuals and organizations in these aspects; 

they need visions that have to be transformed into objectives and policies by governments 

to achieve the well-being of their people. The lack of vision restricts the possibility of 

developing and sharing images of the future they want to create and the principles and 

practices by which they hope to get there (Senge, et al. 1999:32).  

The history of oil in Argentina has suffered from this problem; since its beginning 

on December 13th, 1907, when Humberto Baghin and Jose Fuchus, drilling for water in 

the city of Comodoro Rivadavia – Chubut, found oil, the lack of a clear vision has been 

the principal characteristic of the Argentinean oil policy (Gadano and Sturzenegger, 

1998). Since that date, the history of oil in Argentine has been associated with the ups 

and downs of the Argentine public policy. In practice until 1989, the Argentine oil 

industry was always under the strong influence of the state, limiting private participation 

in the sector (Gadano and Sturzenegger, 1998). 

The 1989 economic crisis in Argentina found the oil sector in one of its more 

difficult moments. High foreign debt of the public company and a remarkable incapacity 
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of increasing production rates showed that the ability of the country to maintain oil self-

sufficiency was only a dream (Gadano and Sturzenegger, 1998). 

To overcome the situation of the energy sector, Argentina initiated that year a 

series of privatization actions in its oil sector. By 1993, the country had totally privatized 

its oil production and exploitation. YPF, the main oil company owned by the state, had 

been transferred to the Spanish company REPSOL (Gadano and Sturzenegger, 1998). 

Introducing these changes has not been an easy task; arguments in favor of and 

against the privatization process can be heard even today, thirteen years after the starting 

point of the process. Any comparison between the pre- and post- privatization periods has 

suffered from some partiality in the analysis. Although judging the privatization process 

is not the goal of this work, we need to evaluate some of the main results of this process 

if we want to understand the current behavior of the Argentina market. 

Figures 2-2 and 2-3 illustrate the evolution, from 1994 to 2005, of two of the most 

important indicators of the Argentine oil market: crude oil exportation and total oil 

production. We can observe that the country on the average has almost doubled its oil 

production. This level of production has allowed the country to achieve self-sufficiency, 

to respond to the domestic increase in demand, and to increase its level of exportations 

(Argentine Secretary of Energy, 2006). In that process, jet fuel has followed a similar 

pattern; since 2002, the country has reached self-sufficiency and today the product is 

exported to other countries (Argentine Secretary of Energy, 2006). Although some 

criticism of the privatization process can be made, it is clear that the changes to the 

Argentina oil sector have begun to provide dividends to the country. 
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The Current Characteristics of the Market 

The new characteristics of the Argentine oil market have established the country 

as a non-OPEC (Organization of the Petroleum Exporting Countries) producer. Several 

studies have analyzed price practice models depending on whether the country is 

considered an OPEC producer or a non-OPEC producer (Dees, et al. undated; 

Ramcharran, 2002). Independently of the assumptions used to develop the models, 

generally the authors agree that in contrast to OPEC countries, non-OPEC countries 

behave as price takers instead of price formers when they sell their product on the 

international market. 
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Figure 2-2: Argentine Oil Production, 1994-2005 

 (Argentine Secretary of Energy, 2006) 

With respect to the domestic market, specifically for Argentina, studies were 

developed to evaluate the behavior of the oil market. Although the studies are exclusively 

based on analysis conducted on gasoline and diesel fuel, which are the oil derivates with 

the highest level of consumption rates, they also clearly emphasize that fuel prices are 
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highly correlated with international oil prices (De Dicco, 2004; Mercuri, 2001; Coloma, 

1998). 

Argentine Oil Exportations
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Figure 2-3: Argentine Oil Exportation, 1994-2005 

 (Argentine Secretary of Energy, 2006) 

Some interesting conclusions can be drawn from the De Dicco study. In his work, 

De Dicco analyzes how domestic oil prices are related with domestic production costs 

and international oil prices. De Dicco concludes that while production costs (finding, 

development and lifting cost) in the country have been pretty stable over the last 4 or 5 

years (around 7 dollars per barrel), the domestic costs that companies use to price oil 

derivatives for internal consumption have followed the increase of prices of crude oil in 

the international market. According to this finding, the behavior of the Argentine jet fuel 

market and the pricing policies used by the companies reflect fluctuations in the 

international oil market. 

Other factors have been the targets of studies of the Argentine oil market. From 

these, refining capacity (Coloma, 1998), seasonal variables like cool weather, and 
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variation in domestic and international stock levels (Scheimberg, 1998) have been also 

indicated as factors that exert some influence over oil prices and the prices of oil 

derivatives.   

One other important factor in analyzing the Argentine oil situation is its market 

concentration.  The total jet fuel supply in the Argentine market is limited to three 

companies: REPSOL-YPF S.A., ESSO S.A.P.A, and SHELL C.A.P.S.A. Figure 2-4 

shows that the Argentina jet fuel market is highly concentrated around REPSOL-YPF, 

which has dominated the market over time. 
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Figure 2-4: Argentine Jet Fuel Market Composition 1994-2005 
(Argentine Secretary of Energy, 2006) 

While some authors, like Coloma, have developed models that support the 

existence of competitive behavior inside the oil market and have concluded that market 

concentration does not exert any influence on fuel prices, other authors, like Mercuri, 
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have concluded that there is not enough evidence to support a competitive behavior in the 

Argentine oil market (Mercuri, 2001).  

In conclusion, since 1993 Argentina has initiated radical changes in its oil policy. 

The process used to implement these changes is beyond the scope of this study, but an 

understanding of its consequences is necessary to understand in depth the oil market 

structure of the country. Some of the characteristics of the Argentina market analyzed 

here will help us to define what factors should be considered in the future development of 

a model to predict Argentine jet fuel prices. The next section presents some models and 

potential predictors used to forecast jet fuel prices. 

An Overview of the Models and Predictors Used To Forecast Jet Fuel Prices 

Forecasting Models for Oil Prices 

After having developed a broader understanding of the Argentina oil market 

behavior, we now examine some of the models that have been used to predict jet fuel 

prices and the factors that have been included in their development. At the same time, it 

is important to realize that we are looking for a comprehensive model to predict jet fuel 

prices in Argentina. A comprehensive model refers to a model that is easy to understand, 

practical and useful. As we know, models are only simplifications of the real world, and 

these simplifications are necessary because otherwise they would be as complex and 

unwieldy as the natural setting itself (Michalewicz and Fogel, 2004). 

Although over time many complex, often intractable models have been created to 

predict oil prices and its derivatives, artificial neural networks (Kasprzak, 1995), 

econometric forecasting and intertemporal optimization (Powell, 1990; Gately, 1995), 

and multiple regression models (United Stated Department of Energy, 2002) have shown 
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very good results when used to forecast jet fuel prices in the United States market. These 

will be described briefly. Understanding the general idea behind each of the analyzed 

techniques can help us to understand how to face the problem of developing a 

comprehensive jet fuel predicting model for the AAF. The list of analyzed models does 

not pretend to be exhaustive; some of the most known methods have been chosen. 

Econometric forecasting is perhaps one of the earliest methods developed to 

forecast the prices of oil and its derivatives. The technique is based on the use of 

regression analysis to construct a cause and effect map that helps to predict the analyzed 

dependent variable. The necessity to find causality forces analysts to choose from a large 

variety of variables which affect the model’s complexity and the number of required 

equations to predict results. It is important to recall that statistics techniques capture 

correlation, not causation. Correlation is only one of the elements required to establish a 

cause and effect relationship between two variables; showing that precedence exists and 

removing all the other alternative explanations are also necessary conditions (Leedy and 

Ormrod, 2005:181-182). 

For that reason, no single rule exists to build the model; models representing the 

same phenomenon vary in their forms, involve different variables, and are composed of a 

varied number of equations. Econometric forecasting has proved to be effective in 

samples but not to extrapolate out of them (Burke, 2005). 

On the other hand, the application of intertemporal optimization to forecast oil 

prices is based on three assumptions in relation to the owner of oil: perfect knowledge, 

perfect foresight, and maximum return of investment as a goal; intertemporal 

optimization is rooted in Hotelling’s model of depletable natural resources. The theory 
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behind the model offers a rational explanation of the actors in the model, but its 

unrealistic assumptions have made difficult its application to solve real world problems 

(Powell, 1990; Gately, 1995). 

Artificial Neural Networks (ANN) is an information processing paradigm that is 

based on the manner in which biological nervous systems work to process information. 

ANN is a technique that has been applied to forecast jet fuel prices by Mary Kasprzak in 

1995 with results comparable to the National Energy Modeling System. The key element 

of this model is the existence of a large number of highly interconnected processing 

elements working in unison to solve specific problems (Stergiou and Siganos, 1996). 

As these authors indicate, the utility of artificial neural network models lies in the 

fact that they can be used to infer a function from observations. This is particularly useful 

in applications where the complexity of the data or tasks makes the design of such a 

function by hand impractical, as is the case of oil derivatives. The main drawbacks are: 

the requirement of specific software packages, high level of training, and unpredictable 

behavior when the network is poorly designed.  

Behavior simulation is a dynamic model that has been developed incorporating 

system dynamics and the bounded rationality school of thought. Its dynamism permits the 

model to embrace the uncertainty of the market, which is useful to show how the market 

changes over time. The U.S. National Energy Modeling System (NEMS) has designed a 

behavioral simulation model to represent the important interactions of supply and 

demand in U.S. energy markets. The description of the system establishes that: “NEMS 

represents the market behavior of the producers and consumers of energy at a level of 

detail that is useful for analyzing the implications of technological improvements and 
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policy initiatives” (United States Department of Energy, 2003:4). NEMS is composed of 

several modules, one of which is used to predict the prices of oil derivatives.  Jet fuel 

prices are predicted using the Short-Term Integrated Forecasting System (STIFS), which 

will be described next. 

A Brief Analysis to the U. S. Short-Term Integrated Forecasting System 

(STIFS) 

The U.S Department of Energy through the Energy Information Administration 

has developed the Short-Term Integrated Forecasting System (STIFS) as a part of its 

Integrating Module of the National Energy Modeling System. STIFS allows the U.S. 

Government to generate short-term (up to eight quarters) monthly forecasts of U.S. 

supplies, demands, imports, stocks, and prices of various forms of energy (United States 

Department of Energy, 2002). 

In a broad sense, the STIFS model comprises more than 300 equations, of which 

over 100 are estimated. The estimated equations are linear regression equations 

interrelated to provide a system of forecasting equations. The estimation techniques are 

generally done on an equation-by-equation basis using the least squares method (United 

States Department of Energy, 2002). 

In the specific case of jet fuel, the price is estimated through the use of the 

following linear regression model: 
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where Pjetfuel is the average retail price of jet fuel; 0α , 1α , 2α , 3α , 4α , and 5α are the 

regression coefficients of the model;  is the average retail price of jet fuel lagged 
1−tjetfuelP
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one month; Pcrudeoil is the price of crude oil; CDUM is a dummy variable that represents the 

period of December 1989 through January 1990, when cold weather caused oil product 

prices to go up; is the previous month’s jet fuel supply; D
1−tjetfuelS jetfuel  is the projected jet 

fuel demand for the coming month; and It-1 is the wholesale price index for non-energy 

products as a measure of inflation. Overall, equation 2-1 calculates the price of jet fuel in 

a linear regression equation using previous month’s jet fuel price, current crude oil price, 

a relation between previous month’s jet fuel supply and current estimated jet fuel 

demand, and an economic indicator of inflation as predictors. 

What Can Influence Argentine Jet Fuel Prices? 

Having analyzed the Argentina jet fuel market and some of the more common 

methods use to predict oil prices and its derivatives, it is time to analyze what variables 

can be used as predictors to forecast jet fuel prices. As can be observed, the election of 

the methodology to approach the problem influences the amount of data required to 

obtain a comprehensive model capable of describing reality accurately. 

Before mentioning the variables that have often been used to predict jet fuel 

prices, two elements have to be stated: first, oil reserve estimates are problematic and 

confusing (Cavallo, 2003); second, the market price of oil is decoupled from the 

production cost (De Dicco, 2004; Cavallo, 2003). Based on these statements, we can 

conclude that the market price for oil derivatives does not reflect neither how rapidly 

reserves are being consumed by society nor the influence of production costs in the 

supply chain. 

With this in mind, from the analyzed methods some interesting conclusions with 

respect to predictor variables can be drawn: 
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1. As a crude oil derivate, jet fuel prices have shown strong correlation with 

crude oil prices and all the factors that affect oil prices (government 

policies, economic growth, energy demand and supply) (Kasprzak, 1995: 

3-4; U.S. Department of Energy, 2002; De Dicco, 2004; Mercuri, 2001; 

Coloma, 1998). 

2. Supply is influenced by the total capacity to produce jet fuel and the 

relation of this product with other oil products that are obtained with the 

same process from the same basic product (crude oil). In that sense, 

heating oil has been highlighted as a good predictor for jet fuel (Kasprzak, 

1995:3-4; BMO Commodity Derivatives Group, 2005). 

3. Supply and demand for the product are also influenced by causes related 

to seasonality and natural disasters (Kasprzak, 1995: 3-4). 

Summary  

Jet fuel is not only an important asset that allows the AAF to accomplish its 

mission, but it is also responsible for the largest amount of its material budget. The 

influence that this element exerts on the AAF budget demands accurate prediction of its 

price to improve financial and logistics planning. A complex environment characterized 

by high volatility in prices, high consumption rates, the lack of understanding of the 

variables that influence jet fuel prices, and the ways in which these variables are 

interrelated have made it difficult to predict jet fuel prices in the AAF. Several models 

have been developed to forecast jet fuel prices in the world; they have been developed 

considering the particular conditions of the market where the models will be applied; 

conditions that differ from the particular characteristics of the Argentine market turning 
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the application of those models inappropriate. Finding a comprehensive model to predict 

jet fuel prices in Argentina is a real challenge. 

From all the analyzed methodologies, multiple regression analysis is widely 

accepted in several, very different disciplines such as business, economics, engineering, 

and the social and biological sciences (Kutner, 2005:2), but successful application of this 

method requires not only a deep understanding of the underlying theory, but also its 

practical uses. For that reason before introducing the readers to the analysis of the data to 

address our research question, Chapter 3 reviews the theory behind multiple regression 

methodology, its assumptions and limitations, and outlines of the model-building and 

model-validation process.  
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3. Methodology 

Introduction 

Good forecasts enable management to achieve effective and efficient planning. As 

defined in Chapter 1, predicting Argentine jet fuel prices is essential to improve the 

financial and logistic planning in the Argentine Air Force. Having defined the problem 

and its setting in Chapter 1, Chapter 2 helped us to understand the problem inside the 

Argentine environment, and also to investigate models and potential predictors that have 

been used to forecast jet fuel prices.  

Chapter 2 shows us that an ample array of forecasting methods is available to 

forecast jet fuel prices. These methods range from the easiest ones to highly complex 

approaches such us econometric forecasting or neural networks. Complex environments 

such as predicting oil prices cannot easily be simplified to the application of the simplest 

forecasting method, and normally requires the analysis of several variables under specific 

conditions and assumptions.  During this chapter we will analyze in depth the multiple 

regression technique that has been chosen to investigate our research question. We will 

take a look at the required assumptions that form part of the methodology and how we 

plan to meet them, some approaches to build useful models with this technique and the 

validation process to be implemented.    

What is a multiple regression model? 

In general, regression analysis models the relationship between one or more 

response variables (also called predictive or dependent variables) and a number of 

predictors (also called explanatory or independent variables) (McClave et al. 2005:694). 

The association between only one dependent variable and a unique independent variable 
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is called simple regression, while the use of a set of explanatory variables to predict the 

behavior of a response is known as multiple regression. It can be established that multiple 

regression models are probabilistic models in which the behavior of a dependent variable 

(predictive) is influenced by more than one independent variable (predictors), and that 

simple regression models could be understood as a simplification of multiple regression 

(McClave et al. 2005:768-769; Makridakis et al. 1998:248-249).  

One of the most important advantages of multiple regression models is that they 

allow analysts to include both quantitative and qualitative variables in the model 

(McClave et al. 2005:825). This is not a minor point in some fields like economics and 

human science where regression models are normally applied. Qualitative variables, also 

called categorical, indicator and most commonly dummy variables, cannot be measured 

on a numerical scale as quantitative variables. These variables are used to introduce in the 

model discrete events as seasonality effects, and holidays like Christmas and 

Thanksgiving for example (McClave et al. 2005:825), and through them estimate the 

effect these events have on the response variable. Dummy variables are normally coded 

as 0 or 1 depending on the studied event has influence or not.  

Independently of the inclusion of qualitative and quantitative variables into the 

model, the general, mathematical form of a multiple regression model can be written as: 

                                 iikkiii xxxy εββββ +++++= ,,22,110 ... ,                      (3.1) 

where y represents the dependent variable (in our case Argentine jet fuel prices), i=1,…,n 

represent subjects, β0, …, βk are the regression coefficients, x1, …, xk symbolize the 

independent variables or predictors and ε is a error term that captures the effects of all 

omitted variables. Equation 3.1 can also be expressed in vectorial form as: 
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     y=xβ+ε,                                                        (3.2) 

where y, β , and ε are the nx1, px1, and nx1 vectors that represent the dependent variable, 

the regression coefficients and the errors respectively and x is the nxp design matrix that 

symbolizes what we want to introduce in the model to explain the behavior of our 

dependent variable. Equation 3.2 can be divided in two parts: a deterministic portion (the 

product of the β coefficients and the independent variables x), and a probabilistic portion 

represented by the error term (ε), which represents a random error (McClave et al. 2005).  

The set of β coefficients indicates the contribution of each independent variable 

and has to be estimated from the data. Several methods can be used to estimate the β 

parameters; one of the most common approaches is known as the method of ordinary 

least squares (OLS). This method is based on finding the set of β coefficients that 

minimizes the sum of squared errors (SSE), which is defined as the difference between 

the observed value (yi) and the estimated value using the regression model ( ).  iŷ

The least squares approach can be expressed mathematically as minimizing 
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In vectorial form, the regression coefficients, 0β̂ , 1̂β , …, ˆ
kβ can be calculated through 

the following expression: 

                                                           yxxx TT 1)(ˆ −=β                                                   (3.3) 

The application of OLS is subject to the accomplishment of the following 

assumptions that involves not only the data but also the probability distribution of the 

random error:  
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1. Continuity: This assumption implies that the distribution of the 

dependent variable is relatively continuous. Histograms and steam-and-

leaf plots of historical data collected for the response variable can be used 

to test this assumption. 

2. Linearity: Normally, it is assumed that the relationships between 

response and each predictor are linear. Confirming this assumption is not 

an easy matter, but fortunately multiple regression procedures are not 

greatly affected by minor deviations from this assumption. However, 

scatter plots help analysts not only to draw conclusions about the nature 

and the strength of the bivariate relationships between each of the 

considered predictor and the response variable, but also to identify the 

type of relation that exists between them (Kutner et al. 2005:232). If 

curvature in the relationships is evident, mathematical transformations 

can be applied to the variables to simulate the behavior of the 

relationship, which means introducing non-linear terms in the regression 

model. 

3. Normality: It is assumed that the model residuals (random errors) are 

normally distributed with mean zero and constant variance. Departures 

from normality are not serious except when major departures are present 

(Kutner et al. 2005:110). Several methods have been applied to test this 

assumption; graphical representations of the residuals and goodness of fit 

tests are common. For the latter ones Shapiro-Wilks W test, Kolmogorov-

Smirnov, and the chi-square test can be used to test normality of the error 
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terms (Kutner, et al. 2005:215). All of them are tests to determine whether 

or not a sample comes from a normal distribution; in the case of the 

Shapiro-Wilks test, it is conducted by comparing the quartiles of the 

observed data against that of the best-fitting normal distribution (Kutner 

et al. 2005:216). P-values higher than the chosen level of significance 

(normally 0.05) allow concluding that there is not enough evidence to 

reject the hypothesis that the distribution of the residuals is normally 

distributed. This test is recommended for sample size smaller than 200 

data points; for larger samples Kolmogorov-Smirnov test is generally 

used (Garson, undated).   

4. Independence: OLS also assumes that the random errors are independent 

in the probabilistic point of view what means that no correlation or 

association of the residuals exists.  Although this assumption can be 

difficult to test, if data is gathered at equal intervals of time, the Durbin-

Watson test or runs test are useful tools to consider (Kutner, et al. 

2005:114, and 487-490). On the other hand, if data is not equally spaced 

in time, a detail analysis of the scatter plots of the residuals can help to 

detect any type of patterns or anomalies. In cases where patterns are 

present in the residuals, it can be an indication of the necessity to 

introduce new predictors into the analysis; predictors that explain the lack 

of randomness in the error terms. 

5. Constant variance: Another OLS assumption requires the residuals to 

display constant variance; a descriptive plot (response versus residual) 
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and the Breusch-Pagan test can be used to test this assumption (Kutner, et 

al. 2005:234-235). Mathematically, it can be expressed as: 

2
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, where SSR is the regression sum of squares when 

regressing the e2 against the explanatory variables of the model, df is the 

degree of freedom of the model, SEE is the error sum of squares when 

regressing y against the predictors, and n is the number of data points 

considered to build the model. 2
BPχ  follows a Chi-square distribution, so 

p-values higher than the chosen level of significance (0.05) are preferred 

because indicates that there is no statistical evidence to reject the 

hypothesis that the residuals display constant variance (Kutner, et 

al.2005:118-119).   

6. Outliers: These are data points that lay more than three standard 

deviations ( 3σ) away from the mean of the distribution of the residuals; 

this assumption can be met through an analysis of the residual distribution 

plot. The presence of outliers should require a detailed analysis of the 

respective data points to look for the causes and their possible 

implications in the future model building. If the probability that in n 

observations an outlier will be obtained by chance is small, the data point 

considered an outlier can be eliminated, but otherwise it has to be retained 

(Kutner, et al. 2005:115, 390-400).  

±
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7. Multicollinearity: This is a common problem in many correlation 

analyses and plays a key roll in the regression model. Multicollinearity is 

present when explanatory variables are correlated among themselves and 

with other variables related to the response variable not included in the 

model. When multicollinearity exists the normal interpretation given to 

the β coefficients is no longer valid. The notion that only one predictor 

changes by one unit while the others remain constant is not fully 

applicable when high correlation exists between predictors. As a result a 

unique solution for the regression coefficients (β’s) according to equation 

3.3 cannot be found (multicollinearity does not allow us to find a unique 

solution for the inverse of the matrix in that equation), and so the 

regression line cannot be calculated (Kutner, et al. 2005:278-284). 

Multicollinearity is checked through VIF scores (Variance Inflation 

Factor). These measures compute how much the variances of the 

estimated β coefficients are magnified compared to the β coefficients 

when the explanatory variables are not linearly related (Kutner, et al. 

2005: 406-410). High VIF scores (higher than 10) implies the presence of 

linear redundancy in the explanatory variables which has to be removed 

to avoid this issue (Kutner, et al. 2005:409). 

8. Influential data points: Finally, the last element to consider is the 

existence of influential data points in the data. The presence of influential 

data points can seriously bias the result by “pulling” or “pushing” the 

regression line in a particular direction. The elimination of these data 
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points should be taken carefully; we should balance the accuracy of the 

chosen model against the manipulation of the data to obtain the model. 

The Cook’s distance approach is used to test for the existence of 

influential data points; Cook’s distance values smaller than 0.25 are 

preferable, values between 0.25 and 0.50 are consider “moderate” 

influential data points and values greater than 0.50 are considered “major” 

influential data points (Kutner, et al. 2005:402-403).    

Meeting these assumptions is an important step not only during the model 

validation process, but also important to determinate the precise limits of the chosen 

model. Once the assumptions are met and the regression coefficients calculated, it is 

natural to ask if the observed relation between response variable and predictors is 

significant. The F-test for overall significance has been developed to test that; this 

statistic measures the relation between the explained mean square (MS) and the 

unexplained mean square. Mathematically, it can be expressed as: 

2

2

ˆ( )
exp 1

ˆexp ( )

i

i i

Y Y
lainedMS mF

un lainedMS Y Y
n m

−
−= =
−
−

∑

∑
 , where m is the number of parameters (coefficients) 

in the model (Makridakis, et al. 1998:211:215). Software packages normally provide P-

values of the F statistic. These P-values represents “the probability of obtaining an F 

statistic as large as the one calculated for our data, if in fact the true slope is zero” 

(Makridakis, et al. 1998:213). As a result small p-values correspond to significant 

regression and vice versa.  
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If the overall F-test indicates significant of the regression model, the next step is 

to analyze whether the term βKXK can be dropped from the model. In other words we 

want to know whether the variable XK is significant for the regression or not. The goal in 

the end is to produce a significant but parsimonious model. The t-statistic is used to test 

that. P-values for the t-statistics lower than the chosen level of significance refers to 

correlation between the dependent and the analyzed independent variable; it means that 

this particular variable should remain in the model. 

As it can be observed, the analyzed methodology depends to a great extent of the 

chosen variables to simulate the behavior of the dependent variable. The major 

conceptual limitation of all regression techniques is that one can only ascertain 

relationships, but never be sure about underlying causal mechanisms. Due to this fact 

difficulties arise to determine the correct independent variables that could assure a useful 

regression model. Several approaches have been developed to face this problem, some of 

which will be discussed in the following section. 

Choosing a Useful Model 

George Box's adage “all models are wrong, but some models are useful” is 

appropriate for those who are too incredulous of models, and for those who are not 

skeptical enough (Box, 1976). Since models are by their nature approximations to a 

complicated reality, they are of course literally false. But, on the other hand, models are 

in practice the only instruments we have for understanding complex phenomena.  

Building a regression model for real data is not a simple process. The use of 

regression methodology assumes that we have specified the appropriate model. I.e., we 

have been able to find an appropriate set of significant and useful independent variables 
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to explain the behavior of our dependent variable (Freund et al. 2003:125-126). The use 

of expert opinions and other knowledgeable people are very useful in the process; it was 

one of the goals of our literature review developed in Chapter 2. But, the development of 

a useful model is also dependent upon the existence of appropriate historical data. It 

would be pointless to find a “perfect” variable if the data for this variable is not available 

or difficult to understand.  

Having taken into consideration these two elements (expert opinions and data 

availability) a set of independent variables can be listed and data can be collected. A 

subset of explanatory variables could be obtained through the examination of all possible 

combinations of the original set of variables. This could probably give us the best answer, 

but this procedure could be hard and tedious depending on the number of variables 

selected. Fortunately, highly efficient algorithms have been developed and are available 

in several software packages. One of the most recognized methods is known as stepwise 

regression. A stepwise regression can be used to help sort out the relevant explanatory 

variables to introduce in the model (Makridakis et al. 1998: 274-279). Three approaches, 

forward, backward and forward with a backward look regression, have been used to 

conduct this analysis. The last one of these approaches is more complex, but gives the 

better results because it involves an iterative process that combines the forward and 

backward methods (Makridakis et al, 1998:285-286).   

The use of stepwise regression normally produces an array of subsets of variables 

that can be used to model the behavior of the dependent variable. Some statistics have 

been developed to help in the final selection of the independent variables. The two more 

useful statistics are the coefficient of determination (R2) and the Cp statistic proposed by 
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Mallows (Freund et al, 2003:129). The R2 coefficient is a measure of how well the 

predicted values from a forecast model "fit" with the real-life data, and varies from one to 

zero; models with larger values of R2 are preferred to models with lower R2. 

Mathematically, the R2 coefficient can be calculated as (McClave et al, 2005:732): 

    
SST
SSER −= 12 ,                                                    (3.4) 

where SSE represents the unexplained variance of the dependent variable (the sum of 

squared errors as defined earlier) and SST is the total variance of the dependent variable. 

R2 measures the proportion of the total sample variability that is explained by the model. 

Although relevant, the R2 calculation has a weakness. While the denominator is 

fixed for a determinate data set for the dependent variable, the numerator can only 

increase when we incorporate explanatory variables into the regression model; this could 

result therefore in a higher R2 even when the new variable causes the equation to become 

less efficient (worse). In theory, using an infinite number of independent variables to 

explain the change in a dependent variable would result in an R2 of one. In other words, 

the R2 value can be manipulated and should be suspect (McClave et al, 2005: 792-793). 

The statistic called Adjusted R2 is used to correct this issue; it is done by adjusting 

both the numerator and the denominator by their respective degrees of freedom. Unlike 

R2, adjusted R2 can decline in value if the contribution to the explained deviation by the 

additional variable is less than the impact on the degrees of freedom (Makridakis et al. 

1998:279-280). Mathematically, adjusted R2 can be expressed as: 
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where r2 represent the adjusted R2, n the number of observations, k the number of 

independent variables and R2 the initial correlation coefficient. The values of R2 and the 

adjusted R2 are also used to compute the overall fitting of the regression model. By 

definition these values take into consideration the total deviation explained by the model 

and the total deviation; so higher values of these statistics are coincident with the least 

squares methods applied to calculate the regression coefficients. 

Cp values defined by Mallows have also been used as a tool to help analysts to 

look for a decent model. Mallows defined this coefficient as (Freund et al. 2003:129-

131): 

                                        1)2( +−−= kn
SST
SSECp .                                            (3.6) 

As all the variables of equation 3.6 are known, the calculation for a given subset of 

independent variables can be easily computed. According to Mallows, when Cp is higher 

than (k+1), evidence exists of bias due to an incompletely specified model; on the other 

hand, when Cp reaches values lower than (k+1), the model is considered overspecified, 

containing too many variables (Freund, 2003:129-131). 

The application of these discussed techniques will help us to find an appropriate 

subset of explanatory variables for our problem. From them and after testing the required 

assumptions of the model described earlier, we can calculate the regression coefficients 

and determine the regression equation to predict values of our dependent variable. 

Several software packages have been developed to be used as a platform to compute the 

statistics required to follow the regression process; JMP® is one of them and has been 

chosen to perform our analysis. 
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At this point, it is important to highlight that there is not an exclusive way of 

searching for a good subset of independent variables to introduce in the regression model; 

subjective elements like analyst judgment can play an important role into the exploratory 

process. This means that no automatic procedure will always come across with the “best” 

model and judgment should play a key role in model building especially for explanatory 

studies (Kutner et al. 2005:368). 

Finally, the amount of available data is also an important element to consider (Mc 

Clave et al. 2005:789). The number of independent variables to introduce in the model is 

strongly influenced by data availability, and it has to make sense; it is difficult to imagine 

a model constructed from 20 or 30 data points that contains 10 or 15 independent 

variables; these should be a balance between the amount of data and the number of 

independent variables introduced in the regression model. It is generally accepted that a 

ratio greater than 6:1 (6 data points for each independent variable present in the model), 

but if possible greater than 10:1, is preferred for any model building method (Kutner, et 

al. 2005:372).  

The final step in all model-building process is the validation of the model. To be 

useful, the selected regression model should be validated against reality. Several methods 

have been developed to perform the validation process of a constructed model; the 

following section will help us to understand the validation process that will be 

implemented to validate our regression model.  

The Validation Process of the Model 

Validation can be defined as a process in which the model and its behavior are 

compared to the real system and its behavior (Banks et al. 2004:361-365). The objective 
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of the process is a judgment regarding how well suited a particular model is for a specific 

application. (Hughes and Rolek, 2003:977). Actually, models are merely limited 

representations of complex reality and for that reason they cannot be totally validated, but 

the quality of a model depends on how well those that develop the model understand the 

reality it supposes to represent. 

Naylor and Finger (1967) have formulated a three-step validation approach 

(Banks et al, 2004: 362): 

1. Build a model that has high face validity. 

2. Validate model assumptions. 

3. Compare the model input-output transformations to corresponding input-

output transformations for the real system. 

Face validity is defined as the extent to which an instrument looks like it is 

measuring a particular characteristic. Through this measure we look for constructing a 

reasonable model for users and other people who know how the real system works and 

understand how it is being simulated. The use of expert opinions and the experiences of 

users and modelers are very useful to construct face validity (Banks et al. 2004: 362). 

The validation of the model assumptions can be classified as structural and data 

assumptions (Banks et al. 2004: 362). The first ones are related with the simplifications 

and abstraction inside the methodology used to build the model. In our case it includes 

the model assumptions presented previously such as continuity, normality and 

independence between observations. On the other hand, data assumptions involves testing 

for data reliability, and also testing that the particular environmental conditions used to 
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perform the analysis of the data will be present to allow model’s users to extrapolate 

future values from the original data.  

The final validation test, and perhaps the most objective one, is related to the 

model’s ability to predict future values. Kutner describes three basic ways of validating 

the regression model (Kutner, et al. 2005:369-375): 

1. Checking the model’s ability to predict values against new data. 

2. Compare the result of the model with theoretical expectations, empirical 

results or simulation. 

3. Reserve part of the original data set to be used only in the validation 

process. 

 As it will be described in the next chapter, actual data have been chosen to 

perform the regression analysis; this limits our ability to gather new data to be used to test 

our model. In addition to that, the lack of a pre-existing methodology to predict jet fuel 

prices in Argentina makes it difficult to introduce theoretical or empirical evidence to 

determine whether the chosen model is reasonable. As a result the third way described by 

Kutner has been selected for our case. Implementing this implies that the modeler 

normally reserves part of the acquired, historical data for the validation process only. For 

these data points, values are predicted and confidence intervals calculated with the 

regression model and then these values are compared to determine how well the model 

simulated the behavior of the real data. 

Also two forecasting error measures and the Theil’s U-statistic will be used to 

evaluate the performance of the model. The two forecasting errors to be used are the 
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Mean Absolute Error (MAE) and the Mean Absolute Percentage Error (MAPE). These 

measures can be mathematically expressed as follow (Makridakis et al. 1998:42-45): 
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, and n represents the number of data points used in the error 

calculations. The MAE error has the advantage of being more interpretable and easy to 

explain to non-specialists because it represents the average of the absolute error of the 

forecast. On the other hand, the MAPE measure is the average percentage of the absolute 

error of the forecast and it is considered an important measure especially when we want 

to compare different forecasting models (Makridakis et al. 1998:43-45). 

The Theil’s U statistic allows a relative comparison of our model with the naïve 

approach. Mathematically this statistic is defined as 

2
1

1 1

1
21

1

1

ˆn
i i

i i

n
i i

i i

Y Y
Y

U
Y Y

Y

−
+ +

=

−
+

=

⎛ ⎞−
⎜ ⎟
⎝=
⎛ ⎞−
⎜ ⎟
⎝ ⎠

∑

∑

⎠ ; it can be 

observed that the numerator represents the sum of the squares of the relation between the 

error of our forecast model and the previous data point, while the denominator represents 

the sum of the squared of the relation between the errors of the naïve forecast most 

commonly used, which is considering our current data point as the forecast of the next 

period and the previous data point (Makridakis et al. 1998:48-49). U-values greater than 

1 indicates that naïve forecast error are lower than our forecast model, so naïve forecast is 
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preferred, while U-values lower than 1 denotes that our forecast model is better than the 

naïve forecast (Makridakis et al. 1998:50).  

Model-building and model-validation processes are important aspects to be 

considered in multiple regression analysis. To be implemented successfully, the described 

processes require a large amount of accurate data. The next chapter describes the data 

used to implement the described methodology to build the regression model to predict 

Argentine jet fuel prices, as well as, the results obtained by the regression analysis and 

their implications on the AAF environment. 
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4. Data Analysis 

Introduction 

Earlier chapters have helped us to define the problem to forecast Argentine jet 

fuel prices, to identify potential predictors that affect this asset inside the Argentine 

environment, and to describe the selected methodology to build the model to make 

inferences of the price of jet fuel in Argentina. In this chapter, we first describe the data 

required and how they can be obtained, then based on those data we illustrate how the 

described model-building process applies to obtain a model that would allow us to predict 

Argentine jet fuel prices, and finally we relay the validation process to determine the 

usefulness of our model.     

The Data 

Statistics is the science of data; no-statistical analysis is possible without the 

existence of data over which to perform the analysis. For its own characteristics our study 

can be identified as an exploratory observational study. In this, analysts look for 

explanatory variables that could be related to the response variable (Kutner et al. 

2005:345-346); the main characteristic of this study is that the investigator examines the 

experimental unit in their natural setting and records the variables of interest (McClave et 

al. 2005:19).  

Looking for the appropriate set of data that can be used to build any statistical 

model is not an easy matter. Investigators are often forced to search explanatory variables 

that might plausibly be associated in any form with the response variable under study. In 

our case, beside Argentine jet fuel prices (measured in Argentine Peso per liter), based on 

the literature review (Chapter 2), the following list of domestic and international factors 
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have been selected as potential predictors of Argentine jet fuel prices to perform the 

statistical analysis:  

1. International factors: 

a. West Texas Intermediate (WTI), a type of crude oil used as a 

benchmark in oil pricing, measured in US Dollars per barrel. 

b. JetKero 54 index (JK 54), the price of jet fuel in the Gulf of 

Mexico, measured in cents of dollar per gallon. 

2. Domestic factors: 

a. The value of the Argentine Peso in relation to the US Dollar 

(VPD), measured in peso per dollar. 

b. Argentine Industrial Growth (IG) as percentage of the previous 

month. 

c. Consumption Inflation Rate (IR) as percentage of previous month. 

d. Price Index of Argentine-Produced Wholesale Goods (IPP). 

e. Internal Wholesale Price Index (IPIM). 

f. Price Index of Argentine-Produced Wholesale Goods (natural gas 

and oil) (IPP O&G). 

g. Argentine Total Jet Fuel Production (TJFP) measured in cubic 

meters. 

h. Argentine Jet Fuel Demand (TJFD), measured in cubic meters. 

i. Relation between the Argentine jet fuel demand and Argentine jet 

fuel production (RDP). 
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These factors tend to consider the international influence of oil market over the Argentine 

oil market, the own characteristic of the market of jet fuel in Argentine, and how the 

market is influenced by economic indicators. 

Monthly data from March, 2002 to September, 2006 involving Argentine jet fuel 

prices, as well as, data from the same period concerning the described domestic and 

international factors have been collected from different sources. The Argentine Secretary 

of Energy and the Argentine Institute of Statistic and Census (official statements of the 

Argentine government) have been used as source to collect the data for the domestic 

factors; while the Platts, Co. has been chosen for the data involving the considered 

international factors. 

The data was selected from March, 2002 to avoid possible distortions in prices 

produced during the financial crisis that affected Argentina in 2001-2002. Although the 

analysis of this crisis is beyond the scope of this thesis, it is important to highlight that 

this crisis was one of the most difficult situations that affected the country. This crisis had 

politic, economic and social implications. Five presidents governed in a two month 

period. The default of the public debt (which reached values close to 150 billon dollars) 

had international implications (inability to access to international credit and lost of 

international credibility) as well as internal implications (instability and fiscal 

insolvency). Other ramifications included: devaluation of the Argentine currency with 

respect to U.S. Dollar, unbalance pesification of deposit which affected the whole 

financial system, and the consequent lost of people purchasing power (Cortés, 2003). 
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Model to Predict Argentine Jet Fuel Prices 

From the whole set of data (55 observations), 43 data points, selected by random, 

have been used to build the model and test the model assumptions during the validation 

process; the entire set of data have been used to calculate the forecast error measures and 

confidence intervals. Although the selection by random can be easily questioned when 

working in forecasting, it seem to be more appropriated to simulate the behavior of a 

response variable when the conditions of the market of reference is subject to little 

instability which is the case of Argentine after the 2001-2002 crisis. 

The analysis was performed lagging one month all the considered explanatory 

variables, including the Argentine jet fuel price also considered as a possible predictor; a 

fact that has practical and logical implications. The first is that a month is the typical 

delay to obtain the information; normally all the domestic factors can be easily obtained 

during the first days of the next month in relation to the monthly information required. 

Also, as it was described in Chapter 2, Argentine is a price taker with respect to the oil 

market, so selecting lagging international reference prices of oil and its derivatives seem 

to be more adequate.  

The building-model process can be divided in two steps: reducing the number of 

predictors and building the regression model. To implement the first step to reduce the 

number of explanatory variables, a multivariate scatterplot matrix can be obtained using 

JMP® (Figure 4-1). Table A.1 in Appendix A shows us the corresponding correlation 

coefficients. As it can be observed, jet fuel prices are highly correlated with previous 

value of jet fuel prices in Argentina (JFP(L1)), the selected international factors (WTI 

and JetKero 54) and the Argentine indexes of inflation for wholesales: IPIM, IPP and IPP 
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(O&G). Small or no correlation can be detected between jet fuel price and jet fuel 

production, jet fuel demand, demand / production relationship, value of Argentine peso in 

relation to U.S. dollar, consumption inflation rate, and industrial growth. Also strong 

correlations can also be observed between WTI and JK 54 index, and between the three 

selected wholesale inflation indexes. These facts suggest that only one of the 

international and domestic factors should be introduced in the model to reduce possible 

multicollinearity issues. A closer look of a new multivariate scatterplot matrix reduced to 

the explanatory variables that show correlation with our response variable can help us to 

extract other conclusions (Figure 4.2).  
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 Figure 4.1: Multivariate Scatterplot Matrix 
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Figure 4.2: Reduced Multivariate Scatterplot Matrix  

Figure 4.2 shows us two additional, important facts that should be considered 

before selecting the explanatory variables to introduce in the model to predict Argentine 

jet fuel prices. The first fact involves a discrete event that affects the values of the 

variables from February 2006 to September 2006. Although this discrete event cannot be 

easily attributable to a specific fact, it can be simulated by the use of a dummy variable to 

be introduced in the model. This dummy variable takes values of one for data points from 

February 2006 and zero otherwise. The second fact is related to the presence of non-

linear relation between the Argentine jet fuel prices and IPIM and IPP indexes. If the use 
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of these explanatory variables cannot be avoided then the necessity of introducing 

transformations should be considered. But to avoid multicollinearity issues we have to 

choose only one of the wholesale inflation indexes. Because of comparable association 

and that the relation between jet fuel price and IPP (O&G) seem to be more linear, we 

can avoid transformations selecting this explanatory variable.  

As a result of the preceding analysis the selected variables to introduce in the 

model are: Argentine jet fuel prices (Argentine $/liter) lagged one month, WTI (US$ per 

barrel) lagged one month, IPP (O&G) index lagged one month, and the described dummy 

variable. A final Multivariate Scatterplot Matrix for the selected variables is shown in 

Figure 4.3 to show how the created dummy variable works. The model parameters 

calculated using JMP® are shown in Tables 4.1: Summary of Fit, Table 4.2: Analysis of 

Variance, Table 4.3: Parameter Estimates. 
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Figure 4.3: Multivariate Scatterplot Matrix of selected explanatory variables 
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Table 4.1:  Model Summary of Fit 

RSquare 0.993514 
RSquare Adj 0.992832 
Root Mean Square Error 0.04413 
Mean of Response 1.445581 
Observations  43 

 
Table 4.2: Model Analysis of Variance 

 
Source DF Sum of Squares Mean Square F Ratio 
Model 4 11.336257 2.83406 1455.256 
Error 38 0.074004 0.00195 Prob > F 
C. Total 42 11.410260  <.0001 

 

Table 4.3: Model Parameter Estimates 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept 0.0337725 0.034891 0.97 0.3392 
JFP (L1) 0.424805 0.057151 7.43 <.0001 
WTI 0.0101046 0.001336 7.56 <.0001 
IPP (O&G)  0.0006242 0.000167 3.75 0.0006 
Dummy 0.1995058 0.029592 6.74 <.0001 

 

Analyzing Table 4.1, we conclude that the model presents a high Adjusted-R2 

(0.9928), which implies a good overall fitting of our regression model. Table 4.2 shows 

us that the F-test for overall significance indicates significance of our regression model 

(p-value is lower than our state level of significance assumed to be 0.05). Finally Table 

4.3 also shows us that the selected explanatory variables are also significant (the 

individual p-values of our explanatory variables are all lower than our level of 

significance). Summarizing, the multiple regression model to predict Argentine jet fuel 

prices (after some rounding for display purposes only) can be mathematically expressed 

as: 
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where represents our prediction of Argentine jet fuel price in Argentine pesos per liter, 

JFP(L1) is the Argentine jet fuel price of the previous month in Argentine pesos per liter, 

WTI is the West Texas Intermediate in US Dollars per Barrel lagged one month, IPP 

(O&G) is the Price Index of Argentine-Produced Wholesale Goods for natural gas and oil 

also lagged one month, and the dummy variable takes the value of 1 for calculations from 

February 2006 and zero otherwise. 

ŷ

The Model Validation Process 

As it was described in previous chapters, the validation process is the process by 

which the model and its behavior are compared to the real system and its behavior. This 

process implies to demonstrate that the model has high face validity, meets the model 

assumptions, and is capable of providing similar outputs compared to the real system 

when they are subject to similar inputs. 

Demonstrating that the model has high face validity is perhaps the most difficult 

part of the analysis because it is commonly based on a subjective point of view of the 

builder of the model. The use of adequate techniques to select the appropriate explanatory 

variables to predict the response variable and expert opinions are common elements used 

to help an analyst to achieve confidence that the model is an instrument that measures 

what it is supposed to measure. In our case, we have used expert opinions to select our 

initial list of explanatory variables; also we have obtained data of these variables from 

recognized (domestic and international sources) sources; and finally we have applied a 

rational, statistical process to reduce the number of explanatory variables and to obtain 
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our multiple regression model. All these facts allow us to conclude that the reached 

model presents face validity. 

Assuming that our model has high face validity, our next step is to test our model 

assumptions: normality, independence and constant variance of residuals, linearity of the 

β’s coefficients, outliers and influential data points, and multicollinearity issues; 

assumptions that have been described in detail in Chapter 3. 

1. Testing Normality on Residuals: As we know the model residuals are 

suppose to be normally distributed with mean equal to zero and variance 

equal to 1. We have used the Shapiro-Wilks test provided by JMP® and a 

histogram of the random errors to test that the distribution of our residuals 

is normal. Figure 4.4 shows us the histogram of the residuals compared to 

a normal distribution; we can observe that the distribution of our residuals 

looks normal. This is corroborated through the Shapiro-Wilks test (Table 

4.4). As it can be seen the p-value of this test (0.8716) is higher than our 

level of significance (0.05); this fact allows us to conclude that there is no 

statistical evidence to reject the hypothesis that our residuals are normally 

distributed. 

Table 4.4: Shapiro-Wilks Test (Goodness of Fit test) 

W Prob<W 
0.983495 0.8716 
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Figure 4.4: Distribution of Residual Jet Fuel Prices 

2. Testing Independence on Residuals: OLS also assumes that random 

errors are independent in the probabilistic point of view; neither 

correlation nor association of the residual exists. The random selection of 

data points for the validation process deprives us of the capability of using 

Durbin-Watson or runs test to test for this assumption on the data points 

used to build the model. The salomonic solution to that is the visual 

analysis of the scatterplot of the residuals to test for the presence of any 

trend, pattern, or abnormality, and performing Durbin-Watson test over 

the entire set of data points which are definitely equally spaces in time. 

Figure 4.5 shows us the scatterplot of the residuals; no pattern, trend or 

abnormality can be easily observed through this plot.  On the other hand 

the results of the Durbin-Watson test over the entire set of data can be 

observed in Table 4.5. The p-value (0.3632) for this test is higher than our 
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level of significance (0.05), so we can conclude that our residuals are 

independent over time. 
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Figure 4.5:  Run Plot of Residuals 

Table 4.5 Durbin-Watson Test  

Durbin-Watson Number of Obs. Autocorrelation P-value 
2.0315657 55 -0.0674 0.3632 

 

3. Testing Constant Variance on Residuals: Also we know that another 

OLS assumption requires the residuals to display constant variance; a 

descriptive plot (Figure 4.6) and the Breusch-Pagan test (Table 4.6), 

described in Chapter 3, can be used to test this assumption. As it can be 

observed in Table 4.6, our p-value is equal to 0.02706, lower than our 

level of significance (0.05), fact that allows us to conclude that constant 

variance assumption could be an issue. A close analysis of Figure 4.6 

shows us that the data points that correspond to April-02 and June-06 
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could be the problem; if we perform the analysis again excluding these 

data points we find that the new p-value for the Breush-Pagan test 

becomes 0.1688, higher that our chosen level of significance (Table 4.7). 

As a conclusion we can assume that if these data points are not influential, 

analysis that we are going to perform later on in this chapter, we can keep 

them in the model, to make a robust model, and assume that constant 

variance is met. On the other hand if these data points are influential we 

should remove them of the model and also consider that our assumption 

that the residuals display constant variance is met.   

Table 4.6: Breusch-Pagan Test 

n dfmodel SSE SSR t-statistic p-value 
42 4 0.074004 0.00006803 10.9561676 0.027061072

 

 

 

Figure 4.6: Residuals’ Scatterplot 
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Table 4.7: Breush-Pagan Test 2 

n dfmodel SSE SSR t-statistic p-value 
40 4 0.0452725 0.00001649 6.43638017 0.168843347

 

4. Testing Linearity on β’s coefficients: This assumption implies that the 

β’s coefficients, which are the slope of the line that model the behavior of 

each predictor with the response variable, are constant over time. As there 

is no a real way to test that a non-linear model would be better, we can 

only take a look to the multivariate scatterplot matrix (Figure 4.3). As we 

can observe the relation between response and each selected explanatory 

variable looks linear, which allow us to assume that this assumption is also 

met.  

5. Testing for the Existence of Outliers and Influential Data Points: As 

we have said in previous chapters the existence of outliers and influential 

data points can bias our regression model. To test for these we use the 

Cook’s Distance overlay plot (Figure 4.7). According to the figure, the 

point corresponding to April 2002 seems to be an influential data point; 

the figure does not allow us to conclude in the same form when we look at 

the data point corresponding to June 2006. Although eliminating the April 

2002 data point could be considered appropriate because it is close to the 

period of crisis that affected Argentine’s economy, a deeper analysis of the 
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model parameters and p-values for the overall model and for the 

independent explanatory variable without this data point is required.  

As it can be observed in Table 4.8: Summary of Fit, Table 4.9:Analysis of 

Variance, and Table 4.10: Parameters estimates, the adjusted R2 of the 

new model, the F-test for overall significance and the p-values for each 

independent explanatory variables do not show us changes when we 

exclude this point from the analysis. These facts suggest that keeping these 

data points is appropriate and would allow us to increase the robustness of 

our model.   
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Figure 4.7: Cook’s Distance Overlay Plot 
 

Table 4.8: Model 2 Summary of Fit 
 

 RSquare 0.99416 
RSquare Adj 0.993529 
Root Mean Square Error 0.040773 
Mean of Response 1.467619 
Observations (or Sum Wgts) 42 
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Table 4.9: Model 2 Analysis of Variance 

 
Source DF Sum of Squares Mean Square F Ratio 
Model 4 10.471653 2.61791 1574.765 
Error 37 0.061509 0.00166 Prob > F 
C. Total 41 10.533162 <.0001 

 
Table 4.10: Model 2 Parameter Estimates 

 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 0.0893476 0.03808 2.35 0.0244 
JFP lagged 1 month 0.405903 0.053252 7.62 <.0001 
WTI 0.0115271 0.001339 8.61 <.0001 
IPP (O&G)  0.0004489 0.000167 2.69 0.0106 
Dummy 0.2267128 0.029086 7.79 <.0001 

 
6. Testing for Multicollinearity issues: Possible multicollinearity is present 

when explanatory variables are correlated among themselves and with 

other variables related to the response variable not included in the model. 

This test is very important because the presence of multicollinearity 

directly affects the calculation of the β’s coefficients. It was highlighted in 

Chapter 3 that the Variance Inflation Factor is normally used to test this 

issue. JMP® provides the VIF scores which are shown in Table 4.11: 

Parameter Estimates and VIF scores.  

We can observe that some of the VIF scores are higher than 10, which can 

alert us about some multicollinearity issues. The presence of this problem 

should be expected due to the fact that we are trying to predict prices of jet 

fuel which is a derivative of a commodity (oil). Additionally it is 

important to consider that high VIF scores are frequently tied to high p-

values which is not our case. Although the VIF scores show that predictors 
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overlap each other, the individual contributions of each predictor to the 

predictive variable are high, as we can observe in the p-values of Table 

4.11. This fact allows us to conclude that keeping the selected explanatory 

variables into the model is appropriate.  

Table 4.11: Model Parameter Estimates and VIF scores 

Term Estimate Std Error t Ratio Prob>|t| VIF
Intercept 0.0337725 0.034891 0.97 0.3392 
JFP lagged 1 month 0.424805 0.057151 7.43 <.0001 18.413055
WTI 0.0101046 0.001336 7.56 <.0001 9.621175
IPP (O&G)  0.0006242 0.000167 3.75 0.0006 13.435453
Dummy 0.1995058 0.029592 6.74 <.0001 2.63525

 

Having analyzed how our model respond to the theoretical model assumptions, 

we now need to know if the model behaves as the real system behaves. Figure 4.8 

illustrates the real price of jet fuel during the analyzed period of time and the result 

obtained applying the constructed model to predict Argentine jet fuel prices. The 

apparently good response showed by the model in Figure 4.8 has to be corroborated with 

the use of statistical measures that allow us to quantify the level of response of our model 

compared to the real system behavior. As we have defined in Chapter 3, three different 

measures have been used to determine the accuracy of our model: Forecasting error 

measures (Mean Absolute Error and Mean Absolute Percentage Error), Theil’s U 

statistic, and percentage of prediction that fall inside the confidence interval of the real 

output. We look for low forecasting errors (lower than 5%), values of Theil’s U lower 

than one, and more than 95 % of predictions to fall inside the respective confidence 

intervals. 
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Figure 4.8: Real and Predicted Jet Fuel Prices Comparison 

 Table B.1 of Appendix B shows us the entire calculation of these measures which 

are summarized in Table 4.12. It can be observe that the average absolute error is lower 

than 4 cents of Argentine pesos, while the average absolute percentage error is lower than 

3 %. These measures indicate that our model shows a good behavior compared to the real 

system. The same table shows us that the Theil’s U statistic (0.5564) is lower than 1; this 

fact implies that the selected regression model provides better outcomes than the naïve 

approach of considering the last jet fuel price as the price of the following period. Finally, 

the table also illustrates that 100% of the model predictions fall inside the confidence 

intervals of the real system. 

Table 4.12: Summary of Model Behavior Results. 

MAE MAPE Theil's U % Inside CI 
0.0372 2.86% 0.5564 100% 
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Having built and validated the model, the following chapter presents the 

conclusion of this thesis work, the limitation of the developed model, and suggestions of 

future development that would improve this work.  
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 5. Conclusion 

This chapter presents the answer to the investigative and research questions 

proposed in Chapter 1, the limitation of the developed model to predict Argentine jet fuel 

prices, an exploration of possible areas of further research, and the research summary.   

Addressing the Research Questions 

During this section, we first review the investigative questions traced in Chapter 1 

to address the research question in conjunction with the result of our thesis. Finally, as a 

summary of the work we address the research question itself.   

Can jet fuel prices be adequately predicted using multiple regression models? 

Yes, multiple regression models have shown to be effective to predict the prices 

of oil and its derivatives in the United States market. Although other methods such as 

econometric forecasting and neural networks have normally shown better results, their 

complexity have been an impediment to select one of these models. Introducing a new 

methodology in a complex environment such as the AAF requires a balance between 

complexity and accuracy. Multiple regression analysis provides a good trade off between 

these two aspects permitting us to obtain a model easy to understand, practical and useful. 

What are the necessary variables to introduce in the model to predict jet fuel 

price in Argentina?  

The successful application of any methodology strongly depends on the particular 

conditions of the market where it is applied. It makes no sense to believe that a model 

that has proved to be useful predicting jet fuel prices in the U.S. market or any other 

market in the world can be directly applied to the Argentine market. Accordingly twelve 

variables including international and domestic factors that may affect Argentine jet fuel 
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prices have been analyzed to select the best predictors. Using a stepwise process the 

original number of potential predictors were reduced to six, and further analysis allowed 

us to choose four significant predictors of Argentine jet fuel prices: the price of Argentine 

jet fuel lagged 1 month, the West Texas Intermediate Index (WTI), the Price Index of 

Argentine-Produced Wholesale Goods (natural gas and oil) (IPP O&G), and a dummy 

variable which takes values of one from February 2006 and zero otherwise. The adjusted 

R2 of the resulting model is high (approximately 0.99) showing an excellent goodness of 

fit to the real data in the analyzed period of time.   

What are the necessary data to solve the problem? Are they available? 

Any statistical approach requires the analysis of a considerable amount of data. In 

our case, monthly data of the selected variables (international and domestic factors) from 

March 2002 to September 2006 have been used to build the multiple regression model. 

To minimize the possible negative effect of the considered assumption of complete and 

accurate data, we have used data from worldwide providers of oil market information 

(Platts, Co.), and two different Argentine governmental organizations: the Argentine 

Secretary of Energy, and the Argentine Institute of Statistics and Census.  

Another important factor considered during this thesis has been the repeatable 

characteristics of any thesis work; this factor strongly depends on data availability. All 

the data used in this paper are available on the internet; any person should be capable of 

obtaining the same results using the analyzed methodology, which assures the thesis 

repeatability.  
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Would a multiple regression model provide a useful planning and decision aid 

for the Argentine Air Force? 

To be useful, a model should be validated against model assumptions and real 

system behavior. A model validation process including the validation of the theoretical 

model assumption and the comparison between model results and real system behavior 

have been included in this thesis work. In relation to the comparison of the model with 

the real system behavior, the obtained high adjusted R2 (0.99) shows us an excellent 

goodness of fit of the model. A reduced average absolute error (2.98%) of the model has 

also corroborated this fact. Finally, the resulting Theil’s U statistic (0.55) lower than 1 

allows us to conclude that the model presented in this thesis is better than using the 

classical naïve approach to forecast Argentine jet fuel prices. All these calculations have 

proved that the model could provide a useful planning and decision aid for the Argentine 

Air Force. 

How can the Argentine Air Force better predict jet fuel prices to improve 

financial and logistic planning? 

This thesis has proved that accurate predictions of Argentine jet fuel prices are 

essential to improve financial and logistic planning. It has also demonstrated that 

predicting Argentine jet fuel price is neither easy nor impossible. The application of a 

logical methodology to the correct data is the key to achieve success. A systematic 

application of statistical principles has allowed us to build a multiple regression model to 

predict the price of jet fuel considering the particular conditions of the Argentine market.  

The usefulness of any model is always based on a trade off between model 

accuracy and model complexity. The presented model has proved to be accurate 
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(Average Absolute Error lower than 3%) and better than the naïve approach (Theil’s U 

statistic lower than 1), methodology normally used when no model exists to predict jet 

fuel prices in the AAF. Added to that, model complexity has been reduced trough the use 

of only four variables which are easily available in normally consulted URL addresses 

such us the Argentine Secretary of Energy and the Institute of Statistics and Census; this 

fact increases the usefulness of the model, and at the same time facilitates its introduction 

in the AAF environment. As a result, the application of the presented model would help 

the AAF to increase forecast accuracy of jet fuel prices facilitating budget process and 

logistic planning.  

The model developed to predict Argentine jet fuel prices can mathematically be 

written (after some rounding for display purposes only) as: 

   ,      

where represent our prediction of Argentine jet fuel price, JFP (L1) is the price of jet 

fuel in Argentina in the previous month in Argentine Pesos per Liter, WTI is the West 

Texas Intermediate in US Dollars per Barrel lagged one month, IPP (O&G) is the Price 

Index of Argentine-Produced Wholesale Goods for natural gas and oil also lagged one 

month, and the dummy variable takes the value of 1 for calculations from February 2006 

and zero otherwise.  

ˆ 0.034 0.425 ( 1) 0.01 0.00062 ( & ) 0.1995y JFP L WTI IPP O G= + × + × + × + ×Dummy

ŷ

As any model, our model is not perfect; it is only a simplification of the real 

world and presents some limitations. For our case, the most important limitation is related 

with the assumption that current Argentine economic conditions will continue in the 

future. Having considered data from 2002 to 2006, a period in which economic indicators 
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of the country has grown; the model is limited to forecast Argentine jet fuel prices where 

the present conditions continue.  

Areas of Further Research 

This thesis has presented a systematic, statistical approach to forecast Argentine 

jet fuel prices. Although this approach has proved to be effective, the develop process can 

be considered static because past data have been used to predict future jet fuel prices. A 

new interesting point of view could present a more dynamic approach. This further area 

of research should address the problem month by month, regression coefficients could be 

recalculated each month when new data is available, new variables could be analyzed and 

introduced in the model if they show to be significance. This more dynamic approach 

should allow the AAF to obtain a more responsive forecast of jet fuel prices generating a 

process of continue improvement for budgeting and logistic planning. 

It is important to remember that Argentine oil companies have taken advantage of 

favorable conditions in the international market to increase oil exportations. Chapter 2 of 

this thesis has shown us that Argentine exportations of crude oil and its by-products have 

grown in the last decade; if this trend continues, it would be interesting to analyze the 

relationship between the level of exportation and the number of wells drilled in 

Argentina, how exportations and level of production could impact domestic prices of 

crude oil and its derivative products, and how government intervention could influence 

these prices. Finally, it would be also attractive to study the relation that exists between 

OPEC production and non-OPEC production and how this relation affects oil prices not 

only in the international market, but also in the particular characteristics of the Argentine 

market. 
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Research Summary 

Jet fuel is considered an important asset to accomplish the Argentine Air Force 

(AAF) missions; it is also the element with highest demand and the most expensive item 

supported by the AAF. Crude oil price instability, the main component on the production 

of jet fuel, added to high consumption rates and other unique factors of the Argentine 

market have caused problems that have directly affected budget process and logistics 

planning. The situation has created a real challenge for military personnel working in the 

acquisition of jet fuel for the Argentine Air Force. For years, they have tried to predict the 

price of this asset to improve financial and logistic planning, but the great number of 

variables that affect the problem and the lack of an adequate methodology have been the 

biggest impediments to achieve an acceptable solution.  

This thesis shows us that no magical way exists to find solution of complex 

problems; using a rational line of attack, it shows that Argentine jet fuel prices can be 

accurately predicted through the use of multiple regression analysis. This logic process 

has included the problem definition (Chapter 1), a literature review (Chapter 2), the 

description of the methodology to be applied (Chapter 3), and the application of this 

methodology to real data to build the model to predict Argentine jet fuel prices (Chapter 

4). The model provided in this thesis can help the AAF to considerably improve the 

forecast accuracy of Argentine jet fuel prices; forecast that could become in an important 

tool to introduce improvements in its budget and logistic process. 



Appendix A 
 

Correlation Coefficients of Potential Predictors 
 

Table A.1: Multivariate Correlations of Potential Predictors 
 

 
 JFP JFP 

(L1) 
WTI JK 54 IG RDP VPD IR IPIM IPP IPP (O&G) TJFD TJFP Dummy

JFP 1.0000 0.9819 0.9514 0.9260 -0.1502 0.0509 -0.0692 -0.2974 0.9237 0.9183 0.9676 0.1878 0.1129 0.6899
JFP (L1) 0.9819 1.0000 0.9208 0.9004 -0.1782 0.0856 -0.0766 -0.3747 0.9373 0.9345 0.9566 0.1873 0.0639 0.6422
WTI 0.9514 0.9208 1.0000 0.9781 -0.1450 0.0235 -0.2199 -0.2029 0.8621 0.8555 0.9076 0.1847 0.1484 0.5347
JK 54 0.9260 0.9004 0.9781 1.0000 -0.1724 0.0336 -0.2033 -0.1933 0.8376 0.8313 0.8970 0.2288 0.1787 0.4622
IG -0.1502 -0.1782 -0.1450 -0.1724 1.0000 -0.0704 -0.0459 0.2562 -0.2248 -0.2307 -0.1923 -0.1881 -0.0734 0.0911
RDP 0.0509 0.0856 0.0235 0.0336 -0.0704 1.0000 0.1614 0.1117 0.0816 0.0840 0.0944 0.5420 -0.5459 0.0232
VPD -0.0692 -0.0766 -0.2199 -0.2033 -0.0459 0.1614 1.0000 0.0092 0.0399 0.0277 0.0734 0.4328 0.2717 0.0449
IR -0.2974 -0.3747 -0.2029 -0.1933 0.2562 0.1117 0.0092 1.0000 -0.5241 -0.5402 -0.3511 0.0909 0.0448 -0.0321
IPIM 0.9237 0.9373 0.8621 0.8376 -0.2248 0.0816 0.0399 -0.5241 1.0000 0.9990 0.9396 0.1952 0.0743 0.4925
IPP  0.9183 0.9345 0.8555 0.8313 -0.2307 0.0840 0.0277 -0.5402 0.9990 1.0000 0.9364 0.1940 0.0692 0.4877
IPP (O&G)  0.9676 0.9566 0.9076 0.8970 -0.1923 0.0944 0.0734 -0.3511 0.9396 0.9364 1.0000 0.2703 0.1435 0.6337
TJFD 0.1878 0.1873 0.1847 0.2288 -0.1881 0.5420 0.4328 0.0909 0.1952 0.1940 0.2703 1.0000 0.4002 0.0266
TJFP 0.1129 0.0639 0.1484 0.1787 -0.0734 -0.5459 0.2717 0.0448 0.0743 0.0692 0.1435 0.4002 1.0000 0.0033
Dummy 0.6899 0.6422 0.5347 0.4622 0.0911 0.0232 0.0449 -0.0321 0.4925 0.4877 0.6337 0.0266 0.0033 1.0000
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Appendix B 
 

Forecasting Error Measures 
 

Table B.1: Error Measure Calculation 
 

  Multiple regression model Confidence Interval 

  
Jet 

Fuel 
Price 

Jet Fuel 
Price 

lagged 1 
month 

WTI 
(U$S/Barrel) 

lagged 1 
month 

IPP   
(Oil and 

gas) 
lagged 1 
month  

Dummy 
Predicted 
Jet Fuel 

Price 
e |e| PE APE Theil's U Upper 

bound 
Lower-
bound 

Prediction 
included? 

Mar-02 0.48                             
Apr-02 0.52 0.4800 24.42 203.20 0 0.61 -0.0913 0.0913 -17.55% 17.55% 0.0362 0.0069 0.75 0.48 y 
May-02 0.69 0.5200 26.27 275.75 0 0.69 -0.0022 0.0022 -0.32% 0.32% 0.0000 0.1069 0.83 0.56 y 
Jun-02 0.83 0.6900 27.02 335.29 0 0.81 0.0208 0.0208 2.51% 2.51% 0.0009 0.0412 0.95 0.67 y 
Jul-02 0.99 0.8300 25.52 361.11 0 0.87 0.1204 0.1204 12.16% 12.16% 0.0210 0.0372 1.01 0.73 y 
Aug-02 0.99 0.9900 26.94 408.79 0 0.98 0.0083 0.0083 0.84% 0.84% 0.0001 0.0000 1.12 0.85 y 
Sep-02 1.04 0.9900 28.38 465.95 0 1.03 0.0081 0.0081 0.77% 0.77% 0.0001 0.0026 1.17 0.90 y 
Oct-02 1.04 1.0400 29.67 497.14 0 1.09 -0.0457 0.0457 -4.39% 4.39% 0.0019 0.0000 1.22 0.95 y 
Nov-02 1.04 1.0400 28.85 491.24 0 1.07 -0.0337 0.0337 -3.24% 3.24% 0.0011 0.0000 1.21 0.94 y 
Dec-02 1.04 1.0400 26.27 459.59 0 1.03 0.0121 0.0121 1.16% 1.16% 0.0001 0.0000 1.16 0.89 y 
Jan-03 1.12 1.0400 29.42 473.50 0 1.07 0.0516 0.0516 4.61% 4.61% 0.0025 0.0059 1.20 0.93 y 
Feb-03 1.12 1.1200 32.94 505.15 0 1.16 -0.0377 0.0377 -3.37% 3.37% 0.0011 0.0000 1.29 1.02 y 
Mar-03 1.20 1.1200 35.87 477.85 0 1.17 0.0297 0.0297 2.48% 2.48% 0.0007 0.0051 1.31 1.03 y 
Apr-03 1.20 1.2000 33.55 433.21 0 1.15 0.0470 0.0470 3.92% 3.92% 0.0015 0.0000 1.29 1.02 y 
May-03 1.13 1.2000 28.25 413.42 0 1.09 0.0429 0.0429 3.80% 3.80% 0.0013 0.0034 1.22 0.95 y 
Jun-03 1.07 1.1300 28.14 399.76 0 1.05 0.0223 0.0223 2.09% 2.09% 0.0004 0.0028 1.18 0.91 y 
Jul-03 1.07 1.0700 30.72 408.32 0 1.05 0.0164 0.0164 1.53% 1.53% 0.0002 0.0000 1.19 0.92 y 
Aug-03 1.07 1.0700 30.76 402.87 0 1.05 0.0194 0.0194 1.81% 1.81% 0.0003 0.0000 1.19 0.91 y 
Sep-03 1.07 1.0700 31.59 430.90 0 1.08 -0.0065 0.0065 -0.61% 0.61% 0.0000 0.0000 1.21 0.94 y 
Oct-03 1.07 1.0700 28.29 411.98 0 1.03 0.0387 0.0387 3.61% 3.61% 0.0013 0.0000 1.17 0.90 y 
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  Multiple regression model Confidence Interval 

  
Jet 

Fuel 
Price 

Jet Fuel 
Price 

lagged 1 
month 

WTI 
(U$S/Barrel) 

lagged 1 
month 

IPP   
(Oil and 

gas) 
lagged 1 
month  

Dummy 
Predicted 
Jet Fuel 

Price 
e |e| PE APE Theil's U Upper 

bound 
Lower-
bound 

Prediction 
included? 

Nov-03 1.07 1.0700 30.33 407.32 0 1.05 0.0210 0.0210 1.96% 1.96% 0.0004 0.0000 1.18 0.91 y 
Dec-03 1.07 1.0700 31.09 423.09 0 1.07 0.0034 0.0034 0.32% 0.32% 0.0000 0.0000 1.20 0.93 y 
Jan-04 1.02 1.0700 32.15 460.81 0 1.10 -0.0808 0.0808 -7.92% 7.92% 0.0057 0.0022 1.24 0.96 y 
Feb-04 1.15 1.0200 34.27 438.42 0 1.09 0.0630 0.0630 5.48% 5.48% 0.0038 0.0162 1.22 0.95 y 
Mar-04 1.14 1.1500 34.74 450.11 0 1.15 -0.0143 0.0143 -1.25% 1.25% 0.0002 0.0001 1.29 1.02 y 
Apr-04 1.14 1.1400 36.76 447.51 0 1.17 -0.0288 0.0288 -2.53% 2.53% 0.0006 0.0000 1.30 1.03 y 
May-04 1.14 1.1400 36.69 452.81 0 1.17 -0.0314 0.0314 -2.76% 2.76% 0.0008 0.0000 1.31 1.04 y 
Jun-04 1.20 1.1400 40.28 468.82 0 1.22 -0.0177 0.0177 -1.48% 1.48% 0.0002 0.0028 1.35 1.08 y 
Jul-04 1.25 1.2000 38.02 459.46 0 1.21 0.0355 0.0355 2.84% 2.84% 0.0009 0.0017 1.35 1.08 y 
Aug-04 1.29 1.2500 40.69 500.55 0 1.29 0.0016 0.0016 0.13% 0.13% 0.0000 0.0010 1.42 1.15 y 
Sep-04 1.32 1.2900 44.94 572.17 0 1.39 -0.0730 0.0730 -5.53% 5.53% 0.0032 0.0005 1.53 1.26 y 
Oct-04 1.38 1.3200 45.95 562.39 0 1.41 -0.0299 0.0299 -2.16% 2.16% 0.0005 0.0021 1.55 1.27 y 
Nov-04 1.52 1.3800 53.13 584.36 0 1.52 -0.0016 0.0016 -0.11% 0.11% 0.0000 0.0103 1.66 1.39 y 
Dec-04 1.45 1.5200 48.46 523.62 0 1.50 -0.0460 0.0460 -3.17% 3.17% 0.0009 0.0021 1.63 1.36 y 
Jan-05 1.40 1.4500 43.33 535.96 0 1.42 -0.0221 0.0221 -1.58% 1.58% 0.0002 0.0012 1.56 1.29 y 
Feb-05 1.45 1.4000 46.84 468.54 0 1.39 0.0557 0.0557 3.84% 3.84% 0.0016 0.0013 1.53 1.26 y 
Mar-05 1.46 1.4500 47.97 492.53 0 1.44 0.0181 0.0181 1.24% 1.24% 0.0002 0.0000 1.58 1.31 y 
Apr-05 1.55 1.4600 54.31 526.16 0 1.53 0.0188 0.0188 1.21% 1.21% 0.0002 0.0038 1.67 1.40 y 
May-05 1.54 1.5500 53.04 595.20 0 1.60 -0.0597 0.0597 -3.88% 3.88% 0.0015 0.0000 1.74 1.46 y 
Jun-05 1.55 1.5400 49.83 578.43 0 1.55 -0.0025 0.0025 -0.16% 0.16% 0.0000 0.0000 1.69 1.42 y 
Jul-05 1.59 1.5500 56.26 567.57 0 1.61 -0.0250 0.0250 -1.57% 1.57% 0.0003 0.0007 1.75 1.48 y 
Aug-05 1.60 1.5900 58.70 595.66 0 1.67 -0.0742 0.0742 -4.64% 4.64% 0.0022 0.0000 1.81 1.54 y 
Sep-05 1.74 1.6000 64.97 629.08 0 1.76 -0.0226 0.0226 -1.30% 1.30% 0.0002 0.0077 1.90 1.63 y 
Oct-05 1.95 1.7400 65.57 706.89 0 1.88 0.0733 0.0733 3.76% 3.76% 0.0018 0.0146 2.01 1.74 y 
Nov-05 1.93 1.9500 62.37 717.63 0 1.94 -0.0103 0.0103 -0.53% 0.53% 0.0000 0.0001 2.08 1.80 y 
Dec-05 1.83 1.9300 58.30 665.12 0 1.86 -0.0279 0.0279 -1.53% 1.53% 0.0002 0.0027 1.99 1.72 y 
Jan-06 1.83 1.8300 59.43 703.26 0 1.85 -0.0207 0.0207 -1.13% 1.13% 0.0001 0.0000 1.99 1.71 y 
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  Multiple regression model Confidence Interval 

  
Jet 

Fuel 
Price 

Jet Fuel 
Price 

lagged 1 
month 

WTI 
(U$S/Barrel) 

lagged 1 
month 

IPP    
(Oil and 

gas) 
lagged 1 
month  

Dummy 
Predicted 
Jet Fuel 

Price 
e |e| PE APE Theil's U Upper 

bound 
Lower-
bound 

Prediction 
included? 

Feb-06 2.20 1.8300 65.51 755.28 1 2.14 0.0559 0.0559 2.54% 2.54% 0.0009 0.0409 2.28 2.01 y 
Mar-06 2.21 2.2000 61.63 798.77 1 2.29 -0.0792 0.0792 -3.58% 3.58% 0.0013 0.0000 2.43 2.15 y 
Apr-06 2.28 2.2100 62.90 736.64 1 2.27 0.0125 0.0125 0.55% 0.55% 0.0000 0.0010 2.40 2.13 y 
May-06 2.34 2.2800 69.69 795.12 1 2.40 -0.0623 0.0623 -2.66% 2.66% 0.0007 0.0007 2.54 2.27 y 
Jun-06 2.55 2.3400 70.94 777.31 1 2.43 0.1207 0.1207 4.73% 4.73% 0.0027 0.0081 2.57 2.29 y 
Jul-06 2.62 2.5500 70.96 785.73 1 2.52 0.0960 0.0960 3.66% 3.66% 0.0014 0.0008 2.66 2.39 y 
Aug-06 2.55 2.6200 74.41 796.00 1 2.60 -0.0450 0.0450 -1.77% 1.77% 0.0003 0.0007 2.73 2.46 y 

Sep-06 2.55 2.5500 73.05 797.53 1 2.55 -0.0025 0.0025 -0.10% 0.10% 0.0000 0.0000 2.69 2.42 y 

                

                

       ME MAE MPE MAPE Theil's U Total Yes 54 

       0.0003 0.0372 -0.13% 2.86% 0.5564 Total No 0 

             Total Points 54 

             % Yes 100.00% 
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