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Abstract 

 
 

Determining accurate cost and schedule is a crucial step to planning acquisition 

expenditures but history has shown that estimates are routinely low.  Several researchers 

have attempted to forecast cost and schedule growth; we pick up this stream of research 

with a new approach.  Our data collection and analysis focused on bringing in new data 

sources and added longitudinal variables to account for changes that took place over time.  

We assessed cost and schedule parameters for 37 major acquisition programs between 

Milestones II and III, resulting in 172 input variables and 5 regression models, 2 for 

schedule slippage and 3 for cost growth. 

All five models passed statistical scrutiny and exhibited an Adjusted r2 in excess 

of 0.80.  The primary discriminator was the inclusion of strictly qualitative variables, 

taken from Selected Acquisition Report narratives and change justifications.  We called 

these “soft” variables and coded them on a scale of 1 to 5 in the categories of funding 

problems, political problems, technical challenges, and contractor cost growth.  Models 

with and without soft variables are presented to demonstrate their relative benefit.  

Finally, implications and implementation examples provide users a path to what-if 

analysis and decision-making. 
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PREDICTING THE EFFECT OF LONGITUDINAL VARIABLES 

ON COST AND SCHEDULE PERFORMANCE  

 
 
 

I.  Introduction 
 

Overview 

Weapon systems procurement is a long-standing hot issue within the Department 

of Defense (DoD) due to a reputation of cost and schedule overruns and the resulting 

congressional scrutiny.  Acquisition reform is reducing the level of contract ambiguity 

and allowing milestone decision authorities and project managers enhanced abilities to 

administer their procurement programs, but there remains a need to accurately predict 

future program costs and the opportunity cost of major program changes.  Recent 

research has focused on finding and refining variables that describe the dynamics of cost 

and schedule growth with the intent of mathematically predicting their impact.  These 

variables come principally from the Selected Acquisition Reports (SARs), the primary 

documents submitted by the DoD to Congress regarding the status of Major Defense 

Acquisition Programs (MDAPs) (Jarvaise et al., 1996:3).  Over time, the SARs have 

undergone significant evolutionary changes at the hands of Congress and other 

organizations such as the Government Accountability Office (GAO) (Cross, 2006:23).  

This instability results in a data set that is less than ideal for making statistical 

conclusions but recent research has found some predictive capabilities. 

When attempting to balance program cost, procurement schedule, and product 

quality, cost and schedule garner the most emphasis and quality is generally taken for 

granted.  The acquisition system incorporates a rigorous requirements validation process 
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that drives the product’s minimum acceptable quality, or capability, and with this 

dimension held constant, cost and schedule must absorb program fluctuations.  Therefore, 

this research focuses on quantifying internal and external change effects on cost growth 

and schedule slippage. 

As with any government or commercial endeavor, accurately estimating per-item 

cost is an important first step in determining whether to make a purchase.  In contrast, the 

DoD defines capabilities needed to overcome a potential threat and attempts to purchase 

that capability, at almost any cost.  These philosophies clash when new and unproven 

technologies come into play, making it very difficult to estimate total cost.  Since the 

needed capability is often still on the drawing board, technological challenges escalate 

cost and create an unpredictable schedule.  Despite reform initiatives and laws requiring 

technological maturity, the problem has remained relatively constant over several 

decades.  The problem finds recognition in several studies, including a 1993 RAND study 

stating that of the Acquisition Category (ACAT) I programs, approximately 20 percent 

will experience cost growth from initial estimates (Drezner, 1993:xiii).   

While cost growth catches the congressional scrutiny, perhaps more apparent to 

the end user is schedule growth.  As with cost, immature technologies, poor contractor 

performance, and funding changes create schedule delays and weapon systems are slow 

to field.  As recently as April of 2006, the GAO reported that even with recent reforms, 

there are still cost and schedule problems (GAO-06-368, 2006: Introduction).  History 

continues to demonstrate that cost and schedule growth will frequently occur and 

identifying growth triggers will save time and money. 
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Specific Issue 

A review of several studies covering different aspects of cost and schedule growth 

showed that although promising indicators are available, there is little consistency among 

resulting models.  Previous approaches incorporated static variables generated from the 

most recent SAR or contract data (Singleton, 1991; Wandland, 1993; Sipple, 2002; 

Bielecki, 2003; Moore, 2003; Genest, 2004; Lucas, 2004; McDaniel, 2004; Rossetti, 

2004; Monaco, 2005).  Those that strayed from this philosophy endeavored to 

demonstrate the effect of some specific historical change, such as acquisition reform, on 

cost growth (Abate, 2004; Phillips, 2004).  These studies found their best available 

predictor variables but little consistency or consensus as to what variables might apply 

across programs or time periods. 

With these traditional snapshot approaches nearly exhausted, we focus on the 

recommendation to view variables in a longitudinal manner (Cross, 2006:100).  We also 

see the need to look outside the SAR confines to any other likely source, including the 

political climate, economic conditions, and the threat of enemy aggression.  Supporting 

our stated purpose, we concentrate on finding readily available longitudinal variables, in 

the SAR and elsewhere, that predict total acquisition cost early enough in the process to 

affect change.  

Scope and Limitations 

After an extensive search for data, Cross determined that the SAR is the most 

reliable source and that others proved virtually useless (Cross, 2006:94).  However, other 

researchers have pointed out that the SAR is less useful for cost calculations (Gordon, 

1996:11).  One challenge with using SAR data is that over time, the acquisition process 
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has changed and along with it, terminology.  This creates a mismatch between programs 

that challenges the analyst to determine valid comparisons across acquisition reform 

initiatives.  For example, the Milestone III event had clear meaning until 2000, when the 

Full-Rate Production (FRP) decision review took its place in the acquisition vernacular.  

As a rule, we consider these equivalent.  Keeping this in mind, we focus on SAR data and 

the most universally accepted acquisition events that can be determined regardless of 

acquisition process changes.  Chapter III presents a detailed review of key events and 

outlines our assumptions of equivalency across major acquisition reforms.   

Previous research applied both logistic and multiple regression techniques to build 

a predictive model but with mixed success.  Depending upon the variables selected, 

missing data points resulted in such a small sample that logistic regression proved 

inadequate (Cross, 2006:65).  However, multiple regression and least squares analysis 

have been successful and provide a good starting point.  Since we employ a new 

longitudinal variable concept, we do not artificially limit our analysis to any specific 

technique but rather, we conduct an exploratory analysis using techniques appropriate to 

the resulting data. 

Research Objectives 

Specifically, this research establishes a relevant model by 1) determining the 

significance of historical data in light of external influences and acquisition reform 

initiatives, 2) building a longitudinal database of pertinent historical data, and 3) 

identifying non-traditional variables and confounders that influence the resulting model.  

The end goal is to produce an easy-to-use model that predicts cost and schedule growth, 

from readily available information, in time for the program manager and milestone 
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decision authority to take action.  A good model is able to answer the question, “if I 

initiate a program with the given characteristics of magnitude, quantity, difficulty, and 

external environment, how much cost growth and schedule slippage will occur?”   

Thesis Overview 

Chapter II reviews the current literature on the subjects of acquisition reporting 

and the SAR along with a detailed review of previous work in this research stream.  After 

a thorough review to set the groundwork, Chapter III presents a detailed research 

strategy, discusses data gathering, states preliminary assumptions, and frames the 

analytical methodology.  Once the data and methods are determined, we build and 

validate our model and discuss the results in Chapter IV.  Finally, Chapter V presents 

conclusions, lessons learned, and ideas for follow-on research. 
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II.  Literature Review 

 
 

This chapter reviews previous research in the area of statistical cost and schedule 

growth for major DoD acquisition programs and summarizes the achievements made in 

this research stream.  While several organizations such as the RAND Corporation and the 

GAO have conducted similar research, students from the Air Force Institute of 

Technology have extensively utilized SAR data in their statistical analyses.  This review 

does not completely recapitulate the body of previous work but rather establishes a 

footing from which to take the next step by first outlining major contributions and 

second, reviewing the current state of the acquisition process.  From these building 

blocks, a methodology will be constructed for the current effort. 

AFIT Research 

At least 23 Air Force Institute of Technology (AFIT) theses have been written 

addressing cost and schedule growth since 1986.  Of these, approximately one third have 

focused on building a 

comprehensive SAR database 

to support statistical modeling 

with the intent of giving project 

managers a tool to predict cost 

and/or schedule growth.   

Figure 1 shows the magnitude 

of this research stream. 
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Figure 1 - AFIT cost and schedule growth theses 
 by year, 1986 - 2006 

 
 

 6



 

Singleton, 1991 

Singleton focused her research on making accurate program cost estimates from a 

grass roots approach of engineering methods and work breakdown (1991:39).  The result 

was a “most probable cost (MPC) estimate” that could be used early in the source 

selection process.  Subject data was derived from 16 Aeronautical Systems Division 

(ASD) programs between 1980 and 1988.  Problem areas were identified by phase 

configuration in the development phase and schedule in the production phase.  These 

represent two of the three factors listed by the ASD Research and Cost Division as 

creating challenges for all acquisition programs: technical risk, configuration stability, 

and schedule risk (Singleton, 1991:vii). 

During her research, Singleton assembled a panel of industry experts who 

identified controllable and contributing factors.  Controllable cost factors included 

unrealistic inflation estimates, lack of competition, high-risk design, poor management, 

specification changes, unrealistic schedules, concurrent production and development 

efforts, and technical advances (Singleton, 1991:39).  Contributing factors were 

contractor experience, contractor familiarity with government business, technical risk, 

degree of Engineering and Manufacturing, Development (EMD), and production overlap, 

comparability to historical data, requirement stability, data availability for comparable 

systems, and schedule slippage (Singleton, 1991:50). 

Singleton also listed three approaches to estimating costs.  The first approach was 

parametric, which dictates correlating current design parameters to historical costs.  The 

second approach was estimating by analogy.  In this approach, the current program is 

compared to similar programs with differences accounted for via adjustments to technical 
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definitions.  The final and perhaps most ambiguous was the expert opinion approach.  

Expert opinion is subjective but may be the only option for new, beyond state-of-the-art, 

products. 

Singleton proposed using a range rather than a point estimate to overcome the 

overlapping of different estimating techniques in use (1991:24).  A single-value point 

estimate clouds decisions when competing alternatives are close (i.e. no statistical 

difference).  Singleton derived unique cost growth range tables for different process 

phases (Table 1 shows the developmental phase) from which the decision-maker could 

predict a range of growth factors given their assessment of technical risk, configuration 

stability, and schedule. 

 
Table 1 - Cost Growth Range Table Example (Singleton, 1991:70) 

 

Development Potential Cost Growth Range 

Tech 
Risk 

Config 
Stability 

Schedule 
Impact 

Upper 
CF 

Med 
CF 

Lower 
CF 

High High Low  1.18  
High High High 1.10 1.06 1.02 
Low High Low  1.31  
Low High High 1.57 1.02 0.83 
High Low High 2.25 1.60 1.28 
Low Low Low 1.07 1.05 1.03 
Low Low High 1.70 1.51 1.31 

CF = Cost Factor 

 

Gordon, 1996 

Gordon provides a rich source of information gathered from the 1986 to 1996 

period.  His research showed that there were several inconsistencies in the causal 

variables offered.  For example, Nystrom (1995) found influences due to stage of 

completion but Elkington and Gondeck (1994) come to the opposite conclusion.  
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Wandland (1993) says that contract type is not a factor and Buchfeller and Kehl (1994) 

conclude that there was no significant difference in cost growth due to contract category 

but others disagree (Nystrom, 1995; Terry and Vanderburgh, 1993; Blacken, 1986).  

Although these researchers focused on different outcomes, the fact that specific variables 

have a contradictory impact among studies demonstrates the need for more dependable 

indicators.  Researchers have obviously found it difficult to define a parsimonious cost 

growth model.   

The central question of Gordon’s research was whether contract cost performance 

is sensitive to contract baseline volatility (1996:12).  Gordon focused his efforts 

quantifying the effect of baseline changes and cites the fact that weak requirements lead 

to contracts not being fully defined even when awarded, making later modifications 

necessary (1996:9).  This created a source of instability commonly called the “rubber 

baseline” (Gilbraeth, 1986:139) as demonstrated by the apparent differences in estimated 

cost growth.  Aggregate cost growth based on a review of 197 programs is about 20 

percent (Drezner et al., 1993:49).  However, because cost growth is the difference 

between a baseline estimate and the latest prediction (baseline) of total cost (Hough, 

1992:10), and the observation that the average cost overrun is only 8 percent, the 12 

percent difference must be attributable to contract modifications resulting in contract 

baseline volatility. 

Although the SARs attempt to identify the source of reported cost growth 

attributable to six categories: Economic, Quantity, Schedule, Engineering, Estimating, 

and Other Changes, they lack resolution and detail when working with cost data.  Hough 

found that the practices employed in preparing the SAR could mask, delay, or exclude 
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significant areas of cost growth.  Because the SAR is an estimation report rather than a 

measurement tool, it is subject to manipulation by the program managers preparing it 

(Hough, 1992).  In contrast, the Defense Acquisition Executive Summary (DAES) reports 

performance measurement data as well as cost, schedule and technical estimates.  This 

increased awareness of the details allows the analyst to gauge validity of the estimates 

(Gordon, 1996:11).   

Drezner found that estimates are biased lower than final cost (Gordon, 1996:12).  

Using the SAR database, correcting for quantity and inflation effects, Drezner showed 

that planning and development estimates are on average 20 percent below the final cost, 

including the cost of changes as well as cost overruns.  Furthermore, he showed that these 

results were sensitive to program size, maturity, modification programs versus new starts, 

and program duration.  Interestingly, prototyping was also influential but inversely 

related.  Programs that used prototypes actually had poorer estimates and therefore, 

greater cost growth.   

Gordon pointed out in his review of Terry and Vanderburgh (1993) that a 

combined measure of cost and schedule performance, the Schedule Cost Index (SCI), is 

the best predictor of final cost at completion.  Of importance is the fact that this study 

addressed cost at completion rather than cost growth.  By doing so, it was one of the first 

studies to divorce contract performance (i.e. overruns) from program baseline changes or 

contract modifications (Gordon, 1996:42). 

Gordon continued his review with three 1994 theses.  Buchfeller and Kehl (1994) 

found no significant differences between cost variances between contracts categorized by 

military service, program phase, contract type, or stage of completion.  Their sensitivity 
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analysis also failed to address possible differences between stable and unstable contracts.  

Elkinton and Gondeck (1994) attempted to quantify cost growth using a “Budget at 

Completion Adjustment Factor” derived from historical data and found that this measure 

of instability did not improve cost estimates over techniques based solely on unadjusted 

program performance.  Finally, Pletcher and Young (1994) discovered that baseline 

stability was a predictor of contracts that improve cost performance over time. 

Even though there was significant anecdotal evidence that baseline instability 

should cause cost growth, statistical analysis failed to show that the hypothesized 

relationship existed (Gordon, 1996:44).  These findings run counter to the cited research.  

Earlier researchers (Hough, 1992; Pletcher and Young, 1994; Terry and Vanderburgh, 

1993) were concerned with the instability of contracts and speculated that contract 

performance is sensitive to baseline changes.  Gordon’s findings indicate that this 

sensitivity cannot be demonstrated, leaving the vast majority of the variance in contract 

performance to be attributable to other variables (Gordon, 1996:50). 

Romasz, 1999 

Romasz focused on base support function contracts.  While these contracts are 

most often of less magnitude than major weapon systems, they may provide valuable 

insight into what factors cause cost growth.  Indeed, these smaller programs have many 

of the same issues as their larger counterparts.  The GAO found that “inadequately 

crafted statements of work have necessitated changes to contracts, which have often 

resulted in cost increases” and that “increases in federally established wage rates . . . are a 

source of increased contract costs” (GAO, 1997:5).  Romasz could not determine if cost 

growth was occurring during the period from 1986 through 1994 (1999:64).  
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Complicating factors cited were a lack of data and limited usability, leading to a loss of 

statistical degrees of freedom (Romasz, 1999:66). 

Sipple, 2002 

Sipple’s major contribution was a two-step statistical analysis.  He determined 

that much of the data was centered in a point mass, effectively watering down the 

potential impact of other, more indicative variables.  The solution was to first use logistic 

regression to determine if cost growth would occur and then use multiple regression to 

determine the magnitude.  Using a SAR database covering the 1990 to 2000 timeframe, 

78 variables were extracted for analysis of engineering cost growth during the EMD 

phase.   

Up to this time, most work had concentrated on cost in terms of dollars.  Sipple 

quotes the need of visibility on “cost of delay” as well (Westgate, 2000:16).  By example, 

he states that making quantity or schedule changes is often the largest cost driver (Sipple, 

2002:10).  However, sacrificing schedule is usually easier than sacrificing cost.  The idea 

of optimizing program schedules instead of subjecting them to budget constraints faces 

great resistance by program managers under the current politics of the acquisition-

funding environment (Westgate, 2000:17).  When reviewing past research, Sipple stated 

that “it was more descriptive than inferential” and that “more realistic estimates” were 

needed (2002:9). 

The Office of the Secretary of Defense (OSD) Cost Analysis Improvement Group 

(CAIG) gives guidelines for documenting cost and estimating uncertainty for DoD 

system acquisition programs.  First, they mandate that “areas of cost estimating 

uncertainty will be identified and quantified”.  Second, the CAIG prescribes “the use of 

 12



 

probability distributions or ranges of cost” to quantify uncertainty.  Third, they ask that 

the uncertainty be “attributable to estimating errors” (Department of Defense, 1992:22). 

Similar to the ASD Research and Cost Division parameters referred to by 

Singleton, Sipple cited the Air Force Materiel Command (AFMC) Financial Management 

Handbook that recognizes three risk parameters: technical, schedule, and cost risk 

(AFMC, 2001:11-12).  Cost growth occurs due to urgency of the program, technical 

difficulties, amount of concurrency, and the degree of testing (Tyson, 1994:S-5). 

Sipple also pointed out a difference between program categories.  Missile 

programs tend to experience more variability than aircraft programs.  Closer management 

scrutiny and “protection from schedule stretch” were possible reasons for the more 

consistent cost growth in aircraft programs (Tyson, 1994:S-2).   

Like Gordon, Sipple was concerned with Drezner’s conclusion that prototyping 

seemed to have an inverse effect on cost growth.  “We compared the cost outcomes of 

prototyping and non-prototyping programs, expecting to find that a prototype 

development strategy contributes to cost control through reduction of uncertainty…it may 

also be true that prototyping was [only] conducted for programs with higher degrees of 

technical uncertainty” (Drezner, 1993:51).  Interestingly, programs that included 

prototyping had a relatively higher cost growth.  This result may be due in part to the 

timing of the prototype phase within the context of the overall program schedule, since 

earlier prototyping makes data available earlier, thus potentially affecting the baseline 

cost estimate at the time of EMD start (Sipple, 2002:35). 
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Sipple follow-ons 

Bielecki (2003), Moore (2003), Genest (2004), Lucas (2004), McDaniel (2004), 

and Rossetti (2004) furthered Sipple’s work by looking at different portions of the SAR 

database through the two-step regression approach.  In general, they all found positive 

results but predictor variables were seldom the same, pointing to a possible underlying 

inconsistency or fallacy in using SAR data.  In addition, these studies limited themselves 

to only the most recent SAR for each program. 

Bielecki presented a worthwhile look at the acquisition environment.  Since the 

fall of the Berlin Wall, the DoD budget has been under ever increasing downward 

pressure.  Doing more with less is the daily mantra, particularly within a major weapons 

system program office.  Moreover, weapons programs with exorbitant cost growth during 

this period of reduced funding, garnered harsh congressional and Presidential attention 

(Bielecki, 2003:10).  Bielecki offered us a key turning point in history with mention of 

the A-12 program’s cancellation in 1991.  Then Secretary of Defense Cheney cancelled 

the program after costs inexplicably skyrocketed and “no one could tell him the 

program’s final cost” (Christensen, 2004:105).  

Like Gordon’s rubber baseline, Bielecki used Hough’s discussion to describe the 

problem of inconsistency.  The analyst must recognize that the “selected” baseline may 

not be consistent over time.  This inconsistency stems from two types of events: 

rebaselining and evolutionary changes.  Rebaselining occurs when the program office 

develops a new baseline estimate in the middle of an acquisition phase.  The new 

program estimate replaces the old estimate; yet, it retains the original estimate’s 

 14



 

designation (PE, DE, or PdE1).  Evolutionary model changes occur when modifications 

are made to a program such that the “current model only remotely resemble what was 

originally estimated” (Hough, 1992:12-14).  Detecting either a rebaselined or 

evolutionary changed program from a non-changed program is difficult at best and 

extremely hard to normalize out of SAR data (Hough, 1992:12-14; as referenced by 

Bielecki, 2003:29). 

Moore contributed his insight with discussions of buffering and new variables.  

Buffering occurs when a program manager overstates the budget so that as cost growth 

occurs, it can be absorbed (Moore, 2003:2).  This number padding is very tempting since 

it relieves the program manager from having to lobby for increased funding as growth 

occurs.  The perception is that limiting cost overruns lessens the chance of program 

cancellation.  Moore also identified the First Unit Equipped (FUE)2 variable.  He found it 

to be significant but cited a scarcity of data points as a potential problem (2003:26).  

FUE-based variables were not available for a majority of programs, limiting the results 

(2003:54). 

Genest addressed the political aspects of acquisition by reviewing legislation 

intended to curtail cost overruns.  One such law is the Nunn-McCurdy Act, which brings 

more visibility and scrutiny to programs that incur large cost increases (2004:1).  Genest 

also compared the results and similarities between Sipple, Bielecki, and Genest models.  

Each model was reasonably predictive but it is difficult to find common predictor 

variables; maturity and prototyping being the only two that occur in three out of the four 

                                                 
1 Depending on the phase of the acquisition cycle, the baseline values are represented by the Planning 
Estimate (PE), the Development Estimate (DE), or the Production Estimate (PdE). 
 
2 “First unit equipped” is discussed in more detail in Chapter 3. 
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logistic regression models and maturity alone in three of the multiple regression models.  

Genest put it this way: “we do not find any common variables between the four models 

nor do we expose any trend to shed light on future cost growth research…comparison of 

these models, predictor variables, and validation results reveals no considerable 

advantage realized from one model to the next” (2004:52). 

Monaco, 2005 

Monaco also applied the two-step logistic and multiple regression approach but he 

added the aspect of predicting schedule.  Monaco referenced a 1990 RAND study stating 

that the average schedule slip of a major weapons system program is 33% (Drezner and 

Smith, 1990:44).  RAND also reports that most programs choose an extended schedule to 

avoid [cost] overruns (Drezner and Smith, 1990:iii).  Monaco’s research uncovered a 

comprehensive list of potential schedule drivers that served as a useful addition to our 

work.  Going further, and adding to Singleton (1991) and Sipple (2002), Monaco quoted 

Drezner and Smith’s factors of unstable funding, technical difficulty, external guidance, 

and external events (Drezner and Smith, 1990:33).   

One reason for continued schedule slippage in the procurement of major weapons 

systems is the low level of technical maturity of the system when it enters the EMD 

phase.  Once the development phase begins, the government incurs a large fixed 

investment in the form of human capital, facilities, and materials.  Any significant 

changes will have a large rippling effect on schedule and cost (Rodrigues, 2000:2).  

Furthermore, once in the development environment, external pressure to keep the 

program moving becomes dominant.  Preserving cost and schedule estimates becomes 

paramount to securing budget approval.  If a program manager decides that an additional 
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year is needed to reach the desired level of technical maturity, they run the risk of 

reduced funding, which could lead to program cancellation (Rodrigues, 2000:6).  

Managers are more likely to accept a lower level of technology than risk losing the 

program.  Unfortunately, low levels of maturity lead to increased risk, which in turn leads 

to the likelihood of schedule delays, increased costs, and quantity reduction (Monaco, 

2005:11). 

Monaco took the path set by Nelson and Trageser (1987:2-17) of separating 

programs by mission type: cargo, tanker, attack, and fighter aircraft.  Separating 

programs in this way allowed comparison by technical difficulties and perceived urgency 

of warfighter need.  A positive correlation existed between the mission type and schedule 

duration as indicated by larger increases for longer duration fighter aircraft compared to 

shorter duration cargo aircraft (Nelson and Trageser, 1987:2-17).   

Via his results, Monaco showed that yet another set of predictor variables 

indicated likelihood of a schedule slip.  He also pointed out that while the Milestone III 

(MSIII) occurring before Initial Operational Capability (IOC) is predictive, it is most 

likely acting as a proxy for total quantity planned (Monaco, 2005:109).  Other research 

did not specifically bring out this concern of imposter or proxy variables but this could be 

a reason for inconsistency among what are otherwise equivalent models. 

Table 2 shows the magnitude of the missing data problem mentioned by several 

researchers.  The impact is that any programs missing a data point that is being used for 

regression analysis will not be considered, effectively reducing the entire dataset.  For 

example, if FUE was to assessed, at best, only 19.4 percent of the data could be used.  

This creates a problem for drawing robust conclusions from an already limited database.   
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Table 2 - Data availability, percentage of programs with recorded dates (Monaco, 
2005:110) 

 

Schedule Date % of Programs with Recorded 
Schedule Date 

First Unit Equipped 19.4% 
Preliminary Design Review 23.9% 
Production Contract Award 29.9% 

Critical Design Review 37.3% 
EMD Contract Award 59.7% 

Initial Operational Capability 77.6% 
 

Finally, Monaco emphasized usability.  In line with our stated objective, for a 

predictor variable to be of value it is important for the independent variables to be both 

understandable and available when the program office accomplishes the development 

estimate (Monaco, 2005:33).  A confusing or hard-to-derive variable would be of little 

use.  A model that uses prominent data has utility and is easily defendable. 

Cross, 2006 

Cross took Monaco’s analysis one step farther by adding a variable to capture the 

effect of rebaselining.3  Several researchers expressed a concern with the potential 

volatility driven by rebaselining a program but stopped short of trying to determine its 

true effect.  Cross used the number of times a program has been rebaselined to predict 

both schedule and cost growth and in the process, determined that such a longitudinal 

variable does not work well with logistic regression.  Sipple’s two-step process would not 

work in this case.   

Cross’s major contribution was in discovering the importance of a longitudinal 

approach, looking at changes over time such as the number of rebaselines.  Previous 

research all but exhausted the two-step method and although predictors were found, 
                                                 
3 For further discussion of what constitutes a baseline and how it may change over time, see the SAR 
baseline discussion in Appendix B. 
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inconsistency from one model to the next revealed a weakness.  Future research will need 

to uncover new ground to make significant progress.  This is another reason why future 

research should focus longitudinally since we cannot find or recreate missing variables 

like FUE (Cross, 2006:100).  Additionally, Cross pointed out that we would be remiss not 

to address 2005 GAO recommendations (2006:99).  These recommendations included 

looking at cost estimates over the life of a program by comparing the first full estimate 

(usually at MS B) with the current Approved Program Baseline (APB). 

Abate, 2004; Phillips, 2004 

Abate and Phillips conducted similar research but from a more formal cost 

analysis background.  Their major effort was in developing a hybrid Adjusted Cost 

Growth (ACG) model, which looked at cost growth throughout the life cycle of an 

acquisition program.  Abate limited his research to missile systems, from 1991 – 2001, 

while Phillips conducted the same analysis for aircraft.  Since they went in to the research 

looking for changes over the long term, they theorized that 1996’s major acquisition 

reform might change the amount of cost growth.  Abate presented a good review of 

acquisition reform (2004:3).  For missile systems, this hypothesis held but for aircraft, it 

did not.  Surprisingly, annual cost growth of the post-reform period (i.e. after 1996) was 

significantly higher (Abate, 2004:iv). 

Like Cross, Abate and Phillips considered rebaselining in their analysis.  Abate, 

however, took steps to neutralize its effects rather than use it as a predictor.  His cost 

normalization process attempted to remove external effects and focus on purely 

programmatic issues.  The result was an Adjusted Cost Growth Factor (ACGF) for each 

SAR year (Abate, 2004:10).  An ACGF greater than 1.0 represents a program that 
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incurred cost growth, while an ACGF less than 1.0 identifies favorable cost performance 

within a program (Abate, 2004:50).  A plot of ACGF by SAR year could reveal cost 

growth trends. 

Abate again reported the weaknesses of using SARs.  The analysis revealed 

several complicating factors involved in performing cost growth calculations.  Initially, 

the data included in cost growth calculations are somewhat subjective, as one must 

carefully interpret the SAR’s qualitative and quantitative sections.  Proper data extraction 

from the SAR is perhaps best classified as an art rather than a science, as numerous 

organizations have developed different cost data from the same source documents (Abate, 

2004:72).   

Phillips brought out the idea of the learning curve presented by McCrillis (see 

Figure 2).  In short, lower quantities create a non-linear increase in per-unit cost since 

there are fewer units over which to spread fixed costs such as facilities and tooling.  

Normalizing using the learning curve slope affects the data by either increasing or 

decreasing the amount of a program’s cost variance.  A weapon system’s baseline cost “is 

established assuming a specific quantity of units.  As the number of units increases, the 

unit cost will go down even though the program cumulative total cost increases.  As the 

number of units decreases, the unit cost increases even though the program cumulative 

total decreases” (McCrillis, 2003).  
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Figure 2 - Learning curve slope (McCrillis, 2003; as referenced by Phillips, 2004:44) 
 

DoD Acquisition Performance Research 

Many RAND studies and GAO reports document acquisition program 

performance and provide a source of lessons learned.  The often-cited 1993 Drezner 

study attempted to identify the extent of a historical cost growth problem in DoD 

acquisition by focusing on two primary research objectives: quantifying the magnitude of 

cost growth in weapon systems and identifying factors affecting cost growth.  Utilizing 

SARs dated through December 1990, Drezner compiled a database of 197 major weapon 

systems for cost growth analysis.  Two significant findings resulted from this study.  

First, there has been “no substantial improvement in average cost growth (approximately 

20 percent) over the last 30 years, despite the implementation of several initiatives 

intended to mitigate the effects of cost risk and the associated cost growth (Drezner et al., 

1993:xiv).  Second, researchers could not definitively account for observed cost growth 

patterns.  Thus, no ‘silver bullet’ policy option is available for mitigating cost growth 
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(Drezner et al., 1993:xi).  Two factors, program size and maturity, did stand out among 

the rest as having the greatest effect on total program cost (Drezner et al., 1993:xii).  

A 1996 study in which Drezner worked with Jarvaise and Norton analyzed data in 

the Defense Systems Cost Performance Database (DSCPD) constructed and maintained 

by RAND.  Their general conclusion was that “though the issue has been studied 

extensively over the last several decades, the results of these studies appear not to have 

translated into policy changes that have had a measurable impact on cost growth” 

(Jarvaise, et al., 1996:xi).  The authors pointed out the weaknesses in their database so 

that decision-makers might understand its limitations as well as its usefulness.  One key 

issue to remember is that SARs are generated only for the largest acquisition programs, 

representing only 45 to 55 percent of total procurement (Jarvaise, et al., 1996:6).  If 

smaller programs have differing growth patterns, conclusions made with sole reference to 

the SARs may be misleading.   

A 2006 RAND study conducted by Arena et al. looked at historical data to find 

cost growth of completed weapon system programs.  They observed the following: 

• Average adjusted total cost growth for the completed program is 46 
percent from MS II and 16 percent from MS III. 

• This analysis shows about a 20 percent higher growth than the previous 
RAND SAR study.  We attribute this increase to using only completed 
programs in the current analysis.  As we demonstrate, cost growth 
continues for both development and production well past MS III—likely 
due to requirements changes and system upgrades.  Another contributing 
factor may be the sample selection (e.g., excluding ship programs). 

• Cost growth bias does not disappear until three-quarters of the way 
through system design, development, and production.  At this point, the 
system is well understood and a solid estimating basis is available.  (Arena 
et al. 2006:39). 
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As with prior research, Arena et al. observed very few correlations with cost growth but 

in general, programs with longer duration had greater cost growth.  As an aside, they 

found that electronics programs tended to have lower cost growth.  They also considered 

possible differences between the services but found none.   

In the same vein as Abate and Phillips, Arena et al. explored the possibility of 

cost growth improvements over time.  They found it difficult to pinpoint any specific 

period of improvement or significant change due to reform initiatives.  Addressing trends 

that did appear, they stated: “…the data do show an improving trend with time.  

However, our data for recent programs are biased toward ones with shorter duration, and 

programs that take less time to complete tend to have lower cost growth.  Therefore, we 

cannot say whether the trend is due to improvement or sample selection” (Arena et al., 

2006:39).  They also noted a trend toward reducing quantities and that quantity growth 

seems to be less of an issue. 

In a 1999 study, Christensen added further support for the 20 percent average 

annual cost growth identified in the 1993 Drezner report, finding similar results with the 

DAES database as Drezner found with the SAR database (Christensen et al., 1999:251).  

More specifically, this study analyzed an eight-year window around the implementation 

of the Packard Commission’s recommendations to determine if cost growth improved 

because of these reform efforts.  Christensen’s research identified that the Packard 

Commission’s recommendations “did not reduce the average overrun percent 

experienced on 269 completed defense acquisition contracts over an eight year period 

(1988 through 1995).  In fact, the cost performance experienced on development 

contracts and on contracts managed by the Air Force worsened significantly (Christensen 
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et al., 1999:251).  Failure of the Packard Commission’s recommendations to control cost 

growth as designed reveals the need for continued monitoring of newly implemented 

acquisition reform efforts.  (Abate, 2004:32) 

Christensen advocated in a 2004 article that the 1991 cancellation of the Navy’s 

A-12 program was a powerful catalyst for acquisition change.  He cited numerous studies 

that confirm that program managers chronically understate the final projected cost of 

their programs – the Estimated Acquisition Cost (EAC).  In its generic form, EAC is 

calculated as: 

EAC = Cumulative Actual Cost + (BAC – Earned Value ) / Performance 
Index 

where BAC is the Budget at Completion and the performance index is a factor used to 

adjust the budget upward to account for typical understatement (Christensen, 2004:3).  

When calculated at different stages, the EAC gives what is essentially a lower bound to 

the final cost range (Christensen, 2004:6).  The utility being that at any particular stage, a 

program manager could forecast how much similar programs have overrun their best 

estimates.  Table 3 shows the generic results and how far below final cost the estimates 

were at different points of contract completion.   

 
Table 3 - EAC percent completion / percent below final cost 

 

Percent contract completion EAC percent below final cost 

20 18.1 

50 8.2 

70 2.1 

 
 

 24



 

For the last five years, the GAO has reviewed the status of several major weapon 

systems acquisitions.  The latest report, GAO-06-391, presents their assessment of 52 

systems chosen for their high dollar value, stage in acquisition, and congressional interest 

(GAO-06-391, 2006:2).  They found that the DoD often exceeds cost estimates by 30 to 

40 percent and that programs experience cuts in planned quantities, missed deadlines, and 

performance shortfalls.  They proposed managing programs based on levels of 

knowledge versus traditional milestones.  One such area of knowledge is technical 

maturity.  They stated that programs that start with immature technologies average 

research and development cost growth of 34.9 percent while those that begin with mature 

technologies experience only 4.8 percent (GAO-06-391, 2006:2).   

The report also pointed out that a significant portion of the recognized total 

development cost increases took place after programs were approximately half way into 

their product development cycle.  This suggests that cost growth due to immature 

technology occurs even after design approval.  The GAO stated that programs 

experienced a cumulative increase in development costs of 28.3 percent throughout their 

product development and that approximately 8.5 percent of the total development cost 

growth occurred up until the time of the average critical design review.  The remaining 

19.7 percent occurred after the average critical design review.  “If past is prologue, the 

decisions to continue to move programs through development without the requisite 

knowledge will continue to result in programs that are not delivered on time nor with the 

quantities and capabilities promised” (GAO-06-391, 2006:13). 
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Summary 

The defense acquisition system has suffered many improvement attempts over the 

last 50 years but cost growth and schedule slippage continue.  Efforts to determine what 

might predict growth have turned up would-be indicators but the variety of contributing 

factors coupled with inconsistency from model to model indicates that there are causal 

factors still hidden.  However, several researchers have developed novel ways of 

analyzing the available data, and present us with a platform from which to start our 

analysis. 

First, we pursued longitudinal variables to uncover time-based effects.  

Considering the exhaustive research into internal factors and program parameters, a 

comparison against external factors such as political climate, adversary positioning, and 

the economy was deemed an appropriate addition.  Next, cost and schedule factors were 

normalized to level the playing field when comparing multiple programs and time 

periods.  Third, while the SAR database is arguably the most consistent data source, we 

assessed any valid database that might have yielded a key piece of information.  Finally, 

since cost, schedule, and requirements are intertwined, we compared them in unison.  

Chapter III pulls these concepts together into a plan for building our database and 

conducting our analysis.  Chapters IV and V present our analysis, discussion, and 

conclusions. 
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III.  Methodology 
 

Introduction 

This chapter outlines the data collection process and describes analysis techniques 

employed in Chapter IV.  Since the primary goal was to track program changes over 

time, the principle effort of this research was in producing a longitudinal database from 

which we could extract a pool of predictor variables.  In building the database, we 

determined from where to collect the data, what programs to include, what data to collect, 

and how to address missing or dissimilar data.  Included is a discussion of assumptions as 

well as strengths and weaknesses we uncovered.  Finally, we review the statistical 

techniques used to cull variables and build regression models during the analysis phase. 

Data Collection and Assessment 

Building the database started with determining appropriate sources.  Previous 

research pointed almost exclusively to the SARs but in addition, some researchers used 

the DAES database to source more specific cost information, the advantage being a 

higher reporting resolution.  SARs are submitted on an annual basis with the requirement 

for additional reports if a significant event occurs such as moving from a development 

baseline to a production baseline.  Disadvantages include the cumbersome size of the 

database and lack of information from early programs.  Since our work focused on 

program changes over time, we needed consistent reporting across all programs, from at 

least MSII and through MSIII.   
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The SAR database4 has many advantages including: strict reporting format which 

improves consistency of the data, annual SAR training for those submitting SAR reports 

which also improves consistency of the data, and increased scrutiny of data since SARs 

are presented to Congress (Bielecki, 2003: 31).  As a result, we determined that 

availability and consistency of the SARs presented the best source for both schedule and 

cost data.  In addition, readily available information about defense spending, inflation 

rates, and Consumer Price Index (CPI) was pulled from the Office of Management and 

Budget (OMB) and the U.S. Department of Labor (DoL). 

Next, we established criteria for what programs to include (see Figure 3).  First, 

since SARs are required only for MDAPs, all programs had to fall into that category.  

Considering the fact that conditions change over time, and the older the data becomes the 

less indicative it is of current conditions, we chose to limit programs to those that had not 

yet achieved MSIII at the end of 1996.  

With acquisition reforms and change 

initiatives in the early nineties, this 

presented a logical place to start.  Next, 

in order to maintain consistency across 

programs, and to provide a stable basis 

for comparison, we needed hard dates 

at the beginning and end of the 

comparison timeframe.   

1.  The program is an MDAP (ACAT 1C 
or 1D). 

2.  The program had not reached MSIII 
by the end of 1996. 

3.  The program has reached Milestone 
III (or C). 

4.  The program has a Milestone II. 
5.  Milestones II and III are not the same. 
6.  Development estimates are available. 
7.  The program has subjective 

relevance. 

Figure 3 - Program Selection Criteria 

                                                 
4 SARs are maintained by the Under Secretary of Defense, Acquisitions, Training, and Logistics, in the 
Defense Acquisition Management Information Retrieval (DAMIR) database. 
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The easiest delineation became the development phase, typically defined by the 

time between MSII and MSIII.  Therefore, we required that all programs considered be at 

or past MSIII.  After an initial look at some of the possible programs, we discovered that 

not all became MDAP programs before MSII was established or, as in the case with 

commercial derivatives, a program may have started at MSIII (e.g. the C-130J).  

Furthermore, programs initiated under an acquisition streamlining effort may not have 

traditional milestones.  The Stryker, for example, started production before it officially 

met MSIII.  These programs were necessarily excluded by the requirements that a 

program must have a SAR when MSII occurred, and that MSII and MSIII were not the 

same.  Finally, we performed an initial quality cut by subjectively eliminating programs 

based on their relevance to this research.  For example, we excluded a nuclear aircraft 

carrier program because of its excessive procurement cycle and large single-unit cost. 

The SARs provide several kinds of information: schedule, cost, quantity, 

performance, and narrative.  Critical to this research was the change in cost and schedule 

so we considered any data reflecting these two factors.  For schedule, we recorded MSI, 

MSII, MSIII, Low-rate Initial Production (LRIP), and Initial Operational Capability 

(IOC) for each SAR, paying close attention to SAR date, APB, and whether the value 

was a planning, development, production, or current estimate (CE). 

Under the cost category, we recorded only changes in the Program Acquisition 

Unit Cost (PAUC).  This simplification allowed us to focus on overall program cost and 

avoid inconsistencies among programs and over time.  PAUC proved to be an accurate 

and meaningful variable throughout the research but in the future, more effort could be 

spent breaking out costs for individual areas such as research and development, or 
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account categories such as military construction.  To calculate total cost, we multiplied 

PAUC by the estimated quantity, so we also recorded quantity changes for each SAR. 

The SARs proved problematic for performance data.  First, performance 

characteristics were often classified, making tracking their changes cumbersome.  More 

importantly, there was very little commonality among programs and therefore no solid 

basis for comparison.  Without a common quantitative measure for requirements, we 

relied upon manually rating the SAR narratives for this type of information. 

Narratives include any textual explanation of what happened during the SAR 

period.  We placed emphasis on the executive summary but we also gleaned important 

information from cost and schedule change explanations.  Each SAR’s narratives were 

rated in three categories: technical problems, funding problems, and political changes.  

We recorded both presence (1 if the condition was present, 0 if not) and magnitude (1 to 

5, see Figure 4) for each.   

For each program, we 

calculated a number of occurrences, 

an average number of occurrences per 

SAR, and an average magnitude per 

SAR.  The narratives turned out to be a rich source of data but comments in early SARs 

were very brief and seldom exhibited attributable characteristics such as technological or 

political challenges.  However, we noticed a subtle change in the quality of narrative 

reporting after approximately 1990 when more detailed change explanations became 

common.  

1 – no program delay or impact 
2 – created a delay 
3 – created a delay or challenge 
      significant enough to cause a rebaseline 
4 – caused a work stoppage 
5 – resulted in program cancellation 

Figure 4 - Magnitude ratings 
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We addressed missing and dissimilar data by bracketing the missing value with 

known good data or looking for common ground upon which to make a comparison.  For 

example, if a SAR did not report LRIP or if it was to-be-determined for a given year, but 

the years before and after (the bracket) presented the same date, we made the assumption 

that no substantive change had taken place and used the bracket value.  When a value was 

missing altogether, we searched for a logical equivalent.  For example, some programs 

reported a date for Required Assets Available (RAA) instead of IOC.  One program 

manager even argued for the exclusion of IOC since it was determined by the major 

command employing the system and that RAA was a more accurate acquisition-based 

term.  In this case, we used RAA in the place of IOC, assuming that it would behave in 

the same manner statistically. 

Another instance of missing variables surfaced when programs were not initially 

at the MDAP level and therefore began submitting SARs at MSII.  Planning estimates, 

and in some cases MSI, were not reported under these circumstances.  We handled these 

variables in two different ways, depending upon the analysis technique.  First, if the 

analysis considered only the presence of a value, zero was entered for the missing 

variables because without any value assigned, the analysis software would ignore all data 

for the program in question, reducing the already small dataset.  Second, if we considered 

the variable in isolation, we removed the zero and left the field empty so as not to bias the 

field to an arbitrary zero value, the result being that programs missing data were not used 

in the analysis.   
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Complications 

Some older programs went through a transitional period wherein milestone titles 

and meanings changed.  For example, the Longbow Apache listed two MSII decision 

points in the December 1989 SAR.  The first was for an internal Army board, the Army 

Systems Acquisition Review Council, and the second was for the Defense Acquisition 

Board (DAB).  All programs began reporting DAB baselines with the 1988 annual SAR 

but some carried duplicate baselines for a while.  As the transition become complete, later 

programs listed principally the DAB baseline and milestones. 

Milestone III presents another challenge to continuity across SARs and programs.  

Initially, MSIII marked the transition from development to production but by the late 

1980s, common practice was to list Milestone IIIa as the LRIP decision point and 

Milestone IIIb as the Full-rate Production (FRP) decision point.  In 1992, DoD 

Instruction 5000.2, “Operation of the Defense Acquisition System,” officially changed 

Milestone IIIa to LRIP and IIIb to FRP.  The Joint Surveillance and Target Attack Radar 

System (JSTARS) SARs submitted in June of 1991 shows this by making a clear 

transition from IIIa to LRIP and IIIb to FRP but even up to 1997, the Longbow Hellfire 

program listed “Milestone III (LRIP)” and “Milestone III (FRP),” carrying over the older 

terminology.  We held these terms as logical equivalents during data collection. 

Likewise, terminology changed again in 2000 when Milestones I, II, and III 

became Milestones A, B, and C.  While MSC and MSIII are virtually equivalent, this is 

not the case with MSI and MSA.  However, the impact to this research was minimal since 

we focused primarily on MSII and III.  Rarely, a SAR reported Milestone C but no LRIP.  

In this case, we assumed them to be equivalent. 
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Cross pointed out confusion over the predominantly Army-used term FUE (2006: 

46).  We also noticed the term’s use along with the pseudo-equivalents IOC and RAA.  

Consider the Joint Air-to-Surface Standoff Missile program that was developed 

simultaneously for both the F-16 and B-52.  Each aircraft had its own definition of IOC, 

based upon user requirements, not on the physical system development or the acquisition 

program.  They also reported RAA for the weapon itself which was different from and 

independent of the multiple IOCs.   

The IOC requirements can also fluctuate throughout a program’s life cycle.  For 

example, the CH-47F program reported in its 2001 annual SAR that the IOC definition 

changed from 16 aircraft to 14.  Adding to the confusion, the Abrams Upgrade program 

made a clear distinction between IOC and FUE, indicating that IOC was linked to 

operational capability at a training location while FUE indicates that the first combat-

ready unit is fully equipped.  As a general rule, FUE was preferred over IOC for 

programs with both so that a reasonable comparison could be made to programs listing 

only IOC but having a definition more in line with the “ready for combat” concept than 

simply “ready for training.”  For programs with both an RAA and either an IOC or FUE, 

the RAA date was used.   

We made other assumptions and notes during collection to allow inclusion of as 

many programs as possible.  The following list presents the balance: 

1.   All of a month’s activities were reflected on the 1st.  We assumed that on a 
scale of years, plus or minus 30 days was inconsequential but the simplification 
allowed program events to be seen as simultaneous or equivalent.  This more 
accurately represents the fact that activities surrounding a December 20th decision 
were also present for the December 31st SAR reporting date. 
 
2.  Upgrade programs have the advantage of starting with a proven weapon 
system and their development time is generally shorter so it was important to 
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differentiate whether a program was an upgrade or not.  When determining if the 
program was an upgrade, we asked the question “can the product stand alone?”  
The F-18E/F program was an upgrade to the C/D program – the modifications 
could not stand as a weapon system in themselves. 
 
3.  Unavailability of test aircraft or DoD test personnel was counted as a policy 
issue as opposed to a contractor delay. 
 
4.  To make the best use of IOC dates, we used the estimated IOC date for five 
programs (219, 278, 330, 341, and 354).5  Actual dates were not yet available but 
since these IOC dates were to occur in the near future, we assumed that they 
would not change substantially. 
 
5.  During analysis, we arbitrarily set MSIII as 90 percent program completion, 
calculated by time.  The measure allowed comparison of programs by percent 
completion but very short programs, those with only two or three SARs between 
MSII and MSIII, were easily skewed. 
 
6.  It was not clear in some programs what constitutes a prototype; so we assumed 
that if the program did not specifically mention a prototyping effort as part of the 
development phase, then it did not have one.  This presented a weakness in this 
variable. 
 
7.  Programs combine and split during their lifecycle.  The B-1B Conventional 
Mission Upgrade Program, for example, included three components, two of which 
were eventually recombined, and two separate timelines.  The Longbow Apache 
split milestone tracking between the fire control radar and rockets.  In this case we 
assumed that the milestones between the two components were consistent but we 
assessed each situation individually, looking for a consistent measure. 
 
8.  Baseline amendments for older (pre-1987) SARs were attributed as rebaselines 
(e.g. C-17 December 1987 SAR).   
 
9.  When multiple contracts were listed or awarded for the same milestone, the 
earliest was recorded in the database (e.g. MH-60 December 2001 SAR). 
 
10.  Cross (2006) did not include 12 programs (200, 219, 240, 260, 278, 294, 330, 
341, 354, 367, 537, 551) used in this research so their variables were either 
brought up to date, substituted for, or removed. 
 
11.  Annual SAR submissions were cancelled for 2000.  This did not have a direct 
impact on our analysis but could have skewed data an unknown amount. 
 

                                                 
5 Program numbers and their equivalent titles can be found in Appendix C. 
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12.  Programs can be specified as an MDAP but have vastly different 
characteristics.  A high quantity, low cost program (rocket) behaves quite 
differently than a low quantity, high cost program (ship). 
 
13.  Adjusting baselines was often used as a management tool to “resynchronize” 
a program but also had the possibility of hiding cost and schedule problems from 
the casual observer.  For 2006, Nunn-McCurdy breech reporting changed, 
removing the ability to hide overages by rebaselining and therefore, there may be 
fewer rebaselines in the future. 
 
14.  We recorded PAUC in base year dollars, which removed the complication of 
escalation.  However, the base year changes as major transitions (e.g. from 
development to production) occur so particular attention was paid to costs 
reported in the same SAR as MSII or MSIII achievement to ensure uniformity. 
 

Prior work in this research stream addressed differing issues and vulnerabilities 

when making predictions based on uncontrolled historical data (Gordon, 1996:38).  This 

research was conducted ex-post facto, with no attempt to predetermine design.  

Therefore, we were limited to the data available as extracted from historical records so no 

effort to control for extraneous variables was possible.  Interaction with a dynamic and 

often unpredictable environment was anticipated to be a major intervening variable 

(Gordon, 1996: 38).   

While we attempted to account for confounding variables, several threats to 

internal validity made the establishment of a causal relationship problematic.  First, the 

art of program management has changed over time, the body of knowledge growing from 

experience.  Second, as demonstrated by the changes in terminology, an instrumentation 

effect was also possible.  Third, program selection may have systematically biased the 

dataset.  It is possible that the sample was the most or least likely grouping available to 

demonstrate cost and schedule changes.  To our advantage, the possibility of data 

manipulation by program managers was controlled through the use of a certification 
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procedure for performance data management, an audit function, and independent 

reporting (Gordon, 1996: 38).  Therefore, we expect the data reported to be free of 

excessive manipulation.   

In addition to internal validity, threats to external validity limit this study’s 

generalizability.  Along with other selection criteria, we limited the study to MDAPs and 

therefore, the results cannot be reliably applied to smaller programs.  Generalizability 

rests then on the assumption that current and future programs will not differ substantially 

from historical ones.  

Analysis Process and Statistical Techniques 

We endeavored to find new and different ways to approach the problems of cost 

and schedule growth by looking to new data sources and assessing changes to unique 

variables over time.  The foundation of this analysis was laid in statistical tests and linear 

regression modeling.  In practice, the approach was to collect as much data as possible 

and push it through statistical analysis until only the significant variables remained, 

satisfying the necessary assumptions along the way.  We assumed a significance level of 

α = 0.05 throughout. 

 The goal of regression is to develop a formula comprised of fixed amounts of the 

input variables that will accurately predict the response variable.  However, data rarely 

behaves well enough to be fit perfectly, leaving an amount of error – the residuals.  

Furthermore, if the formula, or model, adequately explains the data and there are no 

missing input variables, or pieces of the puzzle, the residuals will show no pattern; they 

will simply be noise.  Statistically, this means that they will be independent, normally 

distributed around the residual mean, and will have constant variance.  If a pattern is 
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present, there is an unexplained but significant piece missing from the model such as the 

presence of mixed data types.  Throughout the discussion of the regression models, we 

addressed normality and constant variance, along with outliers and other significant 

points of interest but independence presented a challenge.   

Since we worked ex-post facto, there was no opportunity to address independence 

while collecting data and there was no way to guarantee independence actually exists.  

However, we assumed that all programs were executed in sufficient isolation to not 

violate the assumption that independence exists.  One could argue that a program (e.g. 

new aircraft) could not proceed until another program (e.g. new radar system for multiple 

aircraft) met a certain milestone, but after reviewing the dataset, this interaction appeared 

to be minimal.  Statistical tests that demonstrate independence could not be performed 

without specific ordering in the data, which we did not have. 

Model validation was the final consideration.  Once we built the regression 

models, we validated them using Tukey’s jackknife approach (1987: 30).  Jackknifing 

determines how a model is influenced by subsets of observations and by using this 

technique, we could determine presence of weakness due to data variability.  More 

discussion on the mechanics of this procedure is offered in the analysis chapter. 

Chapter Summary 

This chapter addressed data sources, program selection, variable selection, and 

missing data.  Next, we reviewed assumptions and notes we made during data collection.  

Finally, we previewed the statistical regression techniques and associated assumptions.  

Chapter IV presents the detailed analysis we conducted and Chapter V provides 

conclusions and recommendations. 
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IV.  Analysis 
 
 

This chapter outlines the analysis conducted from determining the appropriate 

response variables to building the regression models.  First, we chose response variables 

that reasonably answered the questions of cost growth and schedule slippage, keeping in 

mind the goals of usefulness and equivalence among programs.  Next, we classified each 

variable into one of seven categories: absolute dates, program characteristics, number of 

occurrences, qualitative variables, year-referenced era variables, percent completion-

referenced variables, and dummy variables that isolated significant program groupings.  

Finally, we culled the variables, constructed regression models for cost growth and 

schedule slippage, and discussed possible application and usefulness. 

Response variables 

The stated goal of this research was to quantify internal and external change 

effects on cost growth and schedule slippage.  However, we first needed to define what 

these terms meant to the potential user and what variables would best fit the desired 

model output.  A key component to comparing the wide range of dissimilar programs was 

finding a common ground.  The SARs became that ground but reporting procedures have 

changed several times in the last 30 years and it was often difficult to extract the same 

type of data from different SARs in the same program, or across programs.  The only 

consistently accurate timeframe over which we could collect data was from MSII to 

MSIII so these terms bounded our response variables. 

Since programs change over time, adopting new baselines due to quantity or 

schedule changes, for example, we could not simply use the most recent estimate 

compared to the final cost as a response variable.  The true difference lay between the 
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initial estimate of the total acquisition cost and the most recent or final estimate, adjusted 

for inflation and quantity changes (Jarvaise, et al., 1996:1).  Similarly, Hough defined 

cost growth as “the difference between the most recent or final estimate of the total 

acquisition cost for a program and the initial estimate” (Hough, 1992:10).  With the 

Development Estimate (DE) set at MSII and the end of our target phase at MSIII, the 

most logical cost response variable became: 

 
“Cost_delta_MSII_MSIII_2005_percent_of_MSIII_cost” 

 
 

This variable is a construction of the change in PAUC from the SAR reporting MSII 

achievement to the SAR reporting MSIII achievement, converted to 2005 dollars through 

the standard DoL Consumer Price Index (CPI) method, and expressed as a percentage of 

PAUC at MSIII.  Using PAUC instead of total cost allowed us to separate the effect of 

quantity and control for it separately.  Converting to 2005 dollars allowed comparison 

across time periods and mitigated inflation and other escalation effects.  Finally, 

percentage growth provided the means to compare the programs side-by-side by 

mitigating PAUC differences (i.e. a ten percent change might mean $10B for one 

program and $100M for another.) 

Addressing schedule, we considered several variables that would indicate 

program delays and found that the most significant schedule effects occurred at the end of 

the target phase – MSIII.  Our schedule representative then was: 

 
“Perc_MSIII_growth” 
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Percent MSIII growth is the difference between the initial MSIII estimate (the 

DE) and the actual MSIII, expressed as a percentage.  As with cost, using a percentage 

minimized the effect of comparing very long and very short programs. 

Since cost and schedule are separate but logically dependent, we took a quick 

look at how these variables related to each other.  Figure 5 shows a multivariate 

scatterplot produced with JMP® 6 (SAS Institute, 2005).  Correlation between the two 

was small (r = 0.2106), indicating that there were probably different factors affecting 

their outcomes.  In addition, several programs presented themselves as potentially 

influential points.  Programs 2, 3, 9, 24, and 35 (in the green circles) stood out and proved 

to be contentious throughout the analysis.  While it was premature to exclude any 

programs at this point, we now had two specific groupings (3, 9 and 2, 24, 35) to watch.   
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Figure 5 - Cost and Schedule comparison scatterplot 
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Predictor variables 

From the literature review, we determined the importance of longitudinal 

variables and external factors, that cost and schedule factors should be normalized to 

level the playing field when comparing multiple programs and time periods, and that the 

SAR database is the most consistent data source but any valid database might yield a key 

piece of information.  We derived a list of 172 program characteristics and variables 

about which we could either collect or calculate data.  Of the variables extracted from the 

SARs, many were static, fixed program characteristics (e.g. the first SAR date).  We 

collected data for other SAR variables multiple times for each program (e.g. the latest 

MSIII estimate), and they were used to calculate longitudinal variables such as the 

number of MSIII estimates occurring between MSII and MSIII.  The remaining variables 

fell into the external data category and included things such as inflation rates, spending 

appropriations, calendar years elapsed, and controlling political party.   

The following discussion addresses variables that in and of themselves are 

significant at the 0.05 level in predicting either cost or schedule, and others worth 

mentioning.  We define each predictor variable and provide a linear fit for both cost and 

schedule responses in the following tables.  The diagrams indicate two aspects worth 

mentioning.  First, the dots represent the actual response of each program and show how 

scattered or different the responses were.  Second, the line shows the response that the 

variable predicted.  A perfect fit would have all the dots on the line so looking at how 

tightly the dots grouped together and their relationship to the line gives an indication of 

how powerful the predictor variable was.  The line’s slope, either negative (higher on the 

left) or positive (higher on the right) shows how the predictor impacts the response.  For 
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example, the first variable in Table 4, “APB_set” shows a negative slope for both cost 

and schedule.  One could interpret this as “programs that received program approval later 

in time had less cost and schedule growth.”  To demonstrate how a variable might 

influence one response but not the other, we placed both cost and schedule responses side 

by side for each.  Take care not to generalize based on these simple comparisons and 

keep in mind that each of these variables was considered here in isolation.  When 

combined, their cumulative effects might be quite different.   

Each plot shows the individual p-value and Adjusted r2.  Adjusted r2 estimates the 

proportion of the response attributable to the model (a single variable in this case) rather 

than error.  It gives us a convenient indication of how strongly the variable and the 

response were linearly related.  Since the correlation coefficient, r, ranges from -1 to 1, 

we used the square of r to remove the minus sign and convert the range to 0 to 1.  A value 

of zero would indicate that the model was no more able to predict the response than the 

sample mean and a one would indicate a perfect fit.  As a further measure, an algorithm 

adjusts r2 downward to diminish the benefit of adding more and more input variables, 

which reduces the degrees of freedom (JMP® 6, SAS Institute, 2005).  Therefore, it is 

possible to end up with a very low or even negative Adjusted r2, either of which indicates 

the variable had negligible predictive strength. 

Predictor variables – Absolute dates 

Absolute date variables were referenced to the Microsoft© Excel (2003) default 

day count index of January 1, 1900.  For example, February 12, 2005 is equivalent to 

39395.  This allowed comparison within and across programs referenced to an absolute 

baseline.   
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Table 4 - Predictor variables - Absolute dates 
 

Variable Cost response Schedule response 

APB_set – the date that 
the DE baseline was 
established. 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
os

t_
de

lta
_M

SI
I_

M
SI

II_
20

05
_p

er
ce

nt
_o

f_
M

SI
30000 32000 34000 36000 38000

APB_set  
Adj r2 = 0.08, p-value = 0.04 
 

-100

-50

0

50

100

150

200

250

300

350

P
er

c_
M

S
III

_g
ro

w
th

30000 32000 34000 36000 38000
APB_set

Adj r2 = 0.14, p-value = 0.01 

PE_Established – the 
date that the PE was 
established, if there 
was one.  If a program 
has a PE, it is more 
likely to have less cost 
growth if the PE is 
established later (i.e. 
newer programs). 
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DE_Established – the 
date that the DE was 
established. 
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MSII_Actual – the 
actual MSII date. 
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Variable Cost response Schedule response 

LRIP_Dec_Actual – 
the actual LRIP 
decision date.  This 
variable is fairly 
consistent across 
programs but as SARs 
changed over time, 
terminology and 
reporting requirements 
also changed.  In some 
instances, the LRIP 
decision date was 
inferred from other 
information. 
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IOC_Actual – the 
actual IOC date.  For 6 
programs that had 
reached MSIII but not 
IOC, the estimated 
IOC date was used.  
Since these dates were 
in the near future, we 
assumed that they 
would not have 
changed significantly. 
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MSIII_DE – first 
MSIII DE, set at the 
initial APB. 
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Variable Cost response Schedule response 

LRIP_Dec_DE – first 
LRIP decision DE, set 
at the initial APB. 
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IOC_DE – first IOC 
DE, set at the initial 
APB. 
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Initial_SAR_date – 
date the first SAR was 
submitted.  This date is 
the submission due 
date.  This variable 
provides a good 
indicator of how long 
ago a program started. 
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Predictor variables – Program characteristics 

Program characteristic variables describe observable features.   

 
Table 5 - Predictor variables - Program characteristics 

 

Variable Cost response Schedule response 

Quant_Change – 
percentage quantity 
change from the 
estimate at MSII to 
the estimate at MSIII.  
It is interesting to note 
that neither the initial 
or final quantity were 
predictive 
(Quant_Change * 100 
= percent). 
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LRIP_after_MSIII – 
value = 1 if LRIP 
occurred more than 
three months after 
MSIII. 
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Perc_IOC_growth – 
the difference 
between IOC DE and 
actual IOC, expressed 
as a percentage.  This 
variable naturally 
tracks with our chosen 
schedule variable, 
Percent MSIII growth. 
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Variable Cost response Schedule response 

Perc_LRIP_growth – 
the difference 
between LRIP 
decision DE and 
actual LRIP decision, 
expressed as a 
percentage.  Like 
IOC, this variable 
tracks with our chosen 
schedule variable.   
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Total Cost at MSIII in 
2005 dollars – 
quantity at MSIII * 
PAUC at MSIII, 
converted to 2005 
dollars by the CPI.  
There was significant 
predictive ability 
between total cost and 
cost growth but an 
insignificant effect on 
schedule. 
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Avg_inflation_MSII 
_MSIII – the average 
annual inflation that 
occurred between 
MSII and MSIII. 
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Adj r2 = 0.16, p-value = 0.007 
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Variable Cost response Schedule response 

Significant pre-EMD 
activity – a measure 
of how long the 
program was reported 
in the SARs before 
MSII.  Value = 1 if 
initial SAR date was 
less than the actual 
MSII date by more 
than 360 days.  Since 
most programs are not 
reported in the SARs 
until MSII, this 
effectively separates 
larger programs that 
were known to be 
MDAPs early.   
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Adj r2 = -0.007, p-value = 
0.39 
 
 
While this variable does not 
appear significant here, it is 
useful when combined with 
others in the final regression 
models. 
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Adj r2 = -0.002, p-value = 
0.71 
 

Len_MSII_MSIII – 
the length of time in 
days between MSII 
and MSIII.  When 
programs 3 and 9 
were excluded from 
the analysis, the cost 
p-value increase to 
0.46, losing all 
significance, while the 
schedule p-value 
decreases to 0.008, 
further demonstrating 
these programs as 
particularly 
influential.   
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Adj r2 = 0.18, p-value = 
0.005 
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Adj r2 = 0.14, p-value = 0.01 
 

Len_MSII_LRIP – the 
length of time in days 
between MSII and 
LRIP decision. 
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Adj r2 = 0.20, p-value = 
0.003 
 

-100

-50

0

50

100

150

200

250

300

350

P
er

c_
M

S
III

_g
ro

w
th

-1000 0 1000 2000 3000 4000 5000 6000
Len_MSII_LRIP

 
Adj r2 = -0.02, p-value = 0.67 
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Variable Cost response Schedule response 

Len_MSII_IOC – the 
length of time in days 
between MSII and 
IOC. 
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Adj r2 = 0.19, p-value = 
0.005 
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Adj r2 = -0.03, p-value = 0.95 
 

Len_LRIP_MSIII – 
the length of time in 
days between LRIP 
decision and MSIII. 
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Adj r2 = -0.03, p-value = 0.85 
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Adj r2 = 0.18, p-value = 0.005 
 

Len_MSIII_IOC – the 
length of time in days 
between MSIII and 
IOC. 
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Adj r2 = -0.02, p-value = 0.69 
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Adj r2 = 0.16, p-value = 0.009 
 

MSIII_slip – the 
difference in days 
between MSIII DE 
and MSIII actual.  
This variable is 
closely correlated 
with our chosen 
schedule variable. 
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Adj r2 = 0.20, p-value = 
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Adj r2 = 0.52, p-value = 
<0.0001 
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LRIP_slip – the 
difference in days 
between LRIP DE and 
LRIP actual.   
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Adj r2 = 0.38, p-value = 
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Adj r2 = 0.07, p-value = 0.06 
 

IOC_slip – the 
difference in days 
between IOC DE and 
IOC actual. 
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Adj r2 = 0.14, p-value = 0.01 
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Adj r2 = 0.17, p-value = 0.007 
 

9 Space – value = 1 
for space-based 
programs such as 
satellites. 
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Adj r2 = 0.06, p-value = 0.08 
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Adj r2 = -0.02, p-value = 0.68 
 

10 Sea – value = 1 for 
sea-based programs 
such as ships. 
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Adj r2 = 0.08, p-value = 0.05 
 

-100

-50

0

50

100

150

200

250

300

350

P
er

c_
M

S
III

_g
ro

w
th

-0.2 0 .2 .4 .6 .8 1 1.2
10  Sea

 
Adj r2 = -0.02, p-value = 0.70 
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14 Aircraft – value = 
1 for aircraft 
programs. 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
os

t_
de

lta
_M

S
II_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_M

S
I

-0.2 0 .2 .4 .6 .8 1 1.2
14  Aircraft

 
Adj r2 = 0.25, p-value = 
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Adj r2 = -0.02, p-value = 0.69 
 

Lead Svc = Navy – 
value = 1 for 
programs assigned to 
the Navy for 
management. 
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Adj r2 = 0.08, p-value = 0.05 
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Adj r2 = 0.006, p-value = 0.27 
 

Hughes – value = 1 if 
Hughes received the 
first contract award.  
The variable is 
suspect due to low 
number of Hughes 
contracts and their 
wide variance. 
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Adj r2 = -0.03, p-value = 0.96 
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Adj r2 = 0.14, p-value = 0.01 
 

Cost Plus Variants – 
value = 1 if the first 
contract awarded was 
a variant of a cost-
plus contract.  Each 
program may have 
many different type 
contracts issued over 
time but this analysis 
only considers the 
first contract. 
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Adj r2 = 0.07, p-value = 0.06 
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Fixed Price Variant – 
value = 1 if the first 
contract awarded was 
a variant of a fixed 
price contract; this 
analysis considers 
only the first contract. -1
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Adj r2 = -0.008, p-value = 
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Adj r2 = 0.07, p-value = 0.06 
 

Force Application? – 
value = 1 if the 
program falls under 
the force application 
Functional Capability 
Area (FCA). 
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Adj r2 = -0.02, p-value = 0.62 
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Adj r2 = 0.13, p-value = 0.02 
 

Focused Logistics? – 
value = 1 if the 
program falls under 
the focused logistics 
FCA. 
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Adj r2 = 0.13, p-value = 
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Adj r2 = 0.03, p-value = 0.14 
 

Battlespace 
Awareness? – value = 
1 if the program falls 
under the battlespace 
awareness FCA.  This 
variable is weak since 
only one program fell 
into this category. 
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Adj r2 = -0.02, p-value = 0.68 
 

-100

-50

0

50

100

150

200

250

300

350

P
er

c_
M

S
III

_g
ro

w
th

-0.2 0 .2 .4 .6 .8 1 1.2
Battlespace Awareness?

 
Adj r2 = 0.12, p-value = 0.02 
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Predictor variables – Number of occurrences 

These predictor variables count the number of times something occurred, as 

reported in the SARs. 

Table 6 - Predictor variables - Number of occurrences 
 

Variable Cost response Schedule response 

Num_MSII_CE – the 
number of times the 
MSII CE changed. 
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Adj r2 = -0.03, p-value = 0.88 
 

Num_MSIII_AP – the 
number of times an 
approved program 
change for MSIII 
occurred. 
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Adj r2 = 0.37, p-value = 
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Num_MSIII_CE – the 
number of different 
current estimates for 
MSIII. 
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0.0002 
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Num_LRIP_AP – the 
number of times an 
approved program 
change for LRIP 
occurred. 
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Adj r2 = 0.13, p-value = 
0.017 
 

Num_LRIP_CE – the 
number of different 
current estimates for 
LRIP. 
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Adj r2 = 0.17, p-value = 
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Num_IOC_AP – the 
number of times an 
approved program 
change for IOC 
occurred. 
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Adj r2 = 0.29, p-value = 
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Adj r2 = 0.30, p-value = 
0.0003 
 

Num_IOC_CE – the 
number of different 
current estimates for 
IOC. 
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Num_APB – the 
number of approved 
program baselines.  
More baselines tend to 
occur in longer, more 
complicated, and more 
volatile programs. -1
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Adj r2 = 0.36, p-value = 
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Adj r2 = 0.21, p-value = 
0.002 
 

Num_APB_MSII_MSIII 
– the number of 
approved program 
baselines reported from 
the actual MSII through 
the baseline reported at 
the same time as the 
actual MSIII. 
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Num_SAR – the number 
of SARs submitted 
through the latter of 
MSIII, IOC. 
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Num_Annual_SAR – 
the number of annual 
SARs (as opposed to 
quarterly exception 
SARs) submitted. 
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Adj r2 = 0.08, p-value = 0.05 
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Variable Cost response Schedule response 

Num_Quar_Excep_SAR 
– the number of 
quarterly exception 
SARs submitted.  This 
variable is weak 
because an exceptional 
event could occur in the 
quarter an annual report 
was due, masking its 
importance. 
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Num_SAR_MSII_MSIII 
- the number of SARs 
submitted from the 
actual MSII through the 
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Adj r2 = 0.27, p-value = 
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Num_Quant_Change – 
the number of times 
estimated quantity 
changed.  This includes 
small changes due to a 
buy-to-budget 
philosophy. -1
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Predictor variables – Qualitative variables 

The SAR narratives, including the executive summary and change explanations, 

provided a rich source of qualitative information.  During data collection, all programs 

received the same treatment and only one rater completed the assessment, removing the 

question of inter-rater reliability.  We also conducted a short dry run data collection to 
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mitigate warm up bias at the beginning.  However, there may still be undiscovered human 

error or system variances.  We call these “soft” variables as opposed to “hard” or 

quantitative variables.  

 
Table 7 - Predictor variables - Qualitative variables 

 

Variable Cost response Schedule response 

Num_Tech_Prob – the 
number of SARs 
reporting unexpected 
technical challenges. 
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Num_Fund_Prob – the 
number of SARs 
reporting funding 
problems. 
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Num_Pol_Change – 
the number of SARs 
reporting politically 
driven complications 
such as quantity 
changes due to new 
strategic direction or 
times of war. 
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Variable Cost response Schedule response 

Contractor_Cost 
_Growth – the number 
of SARs reporting 
contractor-specific 
issues that generated 
cost growth. 
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Avg_Tech_Mag – the 
average magnitude of 
reported technical 
challenges.  Magnitude 
ranges from 1 to 5 with 
1 being no impact and 
5 being program 
termination. 
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Avg_Fund_Mag – the 
average magnitude of 
reported funding 
problems. 
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Avg_Pol_Mag – the 
average magnitude of 
reported political 
changes. 
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Adj r2 = 0.09, p-value = 0.04 
 

 58



 

Predictor variables – Year-referenced era variables 

We assessed variables representing individual years between 1980 and 2005 along 

with year groupings or eras surrounding significant military and political activity.  Most 

of these variables proved ineffective. 

 
Table 8 - Predictor variables - Year-referenced era variables 

 

Variable Cost response Schedule response 

1990 – the time period 
between MSII and 
MSIII included the 
year 1990. 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
os

t_
de

lta
_M

S
II_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_M

S
I

-0.2 0 .2 .4 .6 .8 1 1.2
1990

 
Adj r2 = 0.10, p-value = 0.03 
 

-100

-50

0

50

100

150

200

250

300

350

P
er

c_
M

S
III

_g
ro

w
th

-0.2 0 .2 .4 .6 .8 1 1.2
1990

 
Adj r2 = 0.13, p-value = 0.02 
 

Persian_Gulf_+2 
_onoff – the time 
period between MSII 
and MSIII included at 
least one of the years 
1990 through 1991 
plus two years (i.e. 
1990 through 1993). 
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the time between MSII 
and MSIII included 
years when the House 
of Representatives was 
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Predictor variables – Percent completion-referenced variables 

We assessed two variables as they changed during the time between MSII and 

MSIII.  As a reference point, MSIII represented an arbitrary 90 percent program 

completion.  Calculations were made in 10 percent increments from 10 to 90 and the 

significance p-values (smaller is better, <0.05 is considered significant) were plotted in 

Figure 6.   

The first variable considered was percent cost growth calculated as the change in 

PAUC.  This variable converges on the cost response variable (maroon line) as expected 

but it is interesting to note that it is fairly predictive by 40 percent program completion.  

What this means is that given the change in PAUC at a point in the program, it will be 

more indicative of the final growth as you get further along.  In this case, once you pass 

40 percent of program completion, you can accurately predict your final cost growth just 

from the growth you have experienced so far.  However, knowing your cost growth was 

not predictive of your schedule slippage, as shown by the cyan line that does not 

converge to a low p-value. 

The second variable viewed in this way was the number of Approved Program 

Baselines (APBs).  The number of APBs became predictive for cost very early on, at 

around 20 percent program completion (orange line).  The number of APBs grew to be 

predictive for schedule at about 40 percent program completion (purple line).  While 

these variables alone did not accurately predict final cost or schedule growth at the 

beginning of the development phase, they did show that early change indicators could 

accurately predict final outcomes at partial program completion.  Future research could 

expand on this concept and help make better mid-program estimates. 
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Figure 6 - P-value change for cost growth and number of APBs by percent program 
completion 

 
 

Predictor variables – Dummy variables isolating significant program groupings 

When groups of programs stand out, they can be isolated using dummy variables 

to assess their impact as a single entity.  If the representative dummy variable proves to 

be predictive, the researcher can look for commonalities that might explain how the 

programs in this subset are similar.  For example, the dummy variable “F-22/C-17” 

(programs 3 and 9) was very predictive in our cost models.  When we assessed these 

programs, they stood out in program length and number of rebaselines so separating them 
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from the rest was a logical step.  The regression models contain a detailed discussion of 

dummy variables used.  

 
Table 9 - Predictor variables - Dummy variables 

 

Variable Cost response Schedule response 

F-22/C-17 – value = 1 
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Variable Cost response Schedule response 

MSIII<=1996 – MSIII 
occurred before or 
during the year 1996.   
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MSII_MSIII>10yr – 
value = 1 if the time 
between MSII and 
MSIII exceeded 3600 
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Total_cost>20_billion 
– value = 1 if MSIII 
PAUC * quantity was 
greater than $20 
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Regression models – Schedule 

We present two models that predict schedule, the first with only three variables 

and no soft, qualitative variables and the second with five variables, including soft 

variables.  There are two reasons for the distinction.  First, the relatively small sample 

size of 37 would normally require use of a small number of predictor variables to 

consider a model worthwhile.  Since this was an observational study of events that 

occurred in the past, we were not able to manipulate conditions, design how data was 

produced, or dictate quantity.  When designing an experiment, a researcher determines 

sample size based upon the power and accuracy desired, with an idea of how many 

predictor variables will be used.  This ratio of data points to explanatory variables often 

comes out to approximately 10 to 1 but to avoid overfitting the model at least a 5 to 1 

ratio should be used (Bartlett, Kotrlik, and Higgins, 2001:46).  In our case, the 10 to 1 

goal meant three variables.  However, during the analysis, we determined that there were 

often more than three unique and significant predictors.  Therefore, we also offer a five-

variable model that maintains a 7 to 1 ratio.   

In practice, adding more variables can have the affect of decreasing the  

Adjusted r2 and can artificially give credence to variables that could not otherwise stand 

alone.  In addition, adding more variables does not always produce a significant increase 

in predictive capability.  Variables interact with each other in a model and using more 

variables makes a model rigid; it becomes situation specific.  In other words, the model 

might predict the response very well but if a program is added or removed, the complex 

model is more likely to fall apart.  The final models are a balance between minimizing 
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the number of variables and maximizing model effectiveness as measured by Adjusted r2.  

A simple, easy to understand, and easy to use model was the goal. 

The second difference between the models is the use of soft variables and there 

are two reasons for this.  First, showing that models with and without soft variables have 

similar predictive capabilities provides a modicum of validation to the use of soft 

variables.  Second, offering a model without soft variables provides the opportunity for 

future research to add other soft variables to a clean, quantitative model. 

Schedule Model I 

Schedule Model I (SM-I) used 

three variables to predict schedule growth 

with an Adjusted r2 of 0.81 and a p-value 

of < 0.0001.6  Figure 7 shows the quality 

of fit this model represents (the figure 

shows the standard r2 as output by the 

analysis software but we used Adjusted r2 

to assess the models because it takes into 

account the number of explanatory variables).  The three variables used in this model 

were “Significant pre-EMD activity,” “Num_MSIII_CE,” and “2 24 35.”  The model 

response equation is given as: 

-100
-50

0
50

100
150
200
250
300
350

P
er

c_
M

S
III

_g
ro

w
th

A
ct

ua
l

-100 -50 0 50 100 150 200 250 300 350
Perc_MSIII_growth Predicted

P<.0001 RSq=0.83 RMSE=34.604

Figure 7 - SM-I Actual by predicted plot 

 
Percent MSIII growth = –7.7 – 50.5 * “Significant pre-EMD activity” 

 
+ 12.0 * “Num_MSIII_CE” + 193.9 * “2 24 35”. 

 

                                                 
6 Statistical analysis of each model is presented in Appendix E. 
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As a means of comparing relative impact, we present the standardized beta 

coefficients: 

“Significant pre-EMD activity”   –0.27 
“Num_MSIII_CE”     +0.52  
“2 24 35”      +0.67 
 

We used JMP® to calculate the standardized coefficients, but the process is 

straightforward.  To standardize, subtract the sample mean of a given variable then divide 

by its standard deviation.  This effectively puts the input variables on a common scale 

that shows their relative significance by direct comparison.  From the resulting 

coefficients, you could say that the dummy variable “2 24 35” had the most impact, being 

more than twice as strong as “Significant pre-EMD activity” (and in the opposite 

direction) but only slightly more than “Num_MSIII_CE”.  Implementing the model, 

however, requires use of the non-standardized coefficients as given in the response 

equation.   

 Looking at the parameter estimates, we found “Significant pre-EMD activity” 

had a negative influence, meaning that programs submitting SARs before MSII exhibit 

less schedule growth between MSII and MSIII.  The other two variables had a positive 

influence.  “Num_MSIII_CE” is a measure of how many times the MSIII estimate 

changed and indicates program volatility and development length.  The “2 24 35” dummy 

variable groups three programs together (green circle in Figure 7), selected by their affect 

on the model.  Once this variable was introduced, the residuals behaved more 

appropriately and the model fit, as represented by the Adjusted r2, increased by 

approximately 0.1.   
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To justify this grouping, we went back to the SARs and looked for commonalities 

that made these programs stand out from the others.  The three programs, numbers 2 – 

Advanced Medium Range Air-to-Air Missile (AMRAAM), 24 – National Airspace 

System (NAS), and 35 – Family of Medium Tactical Vehicles (FMTV) did not, on the 

surface, appear similar.  However, digging deeper, they demonstrated similar qualities.  

First, they were all complicated programs.  The AMRAAM had an extended development 

cycle with a seven-year MSIII slip.  Multiple changes and modernizing steps were added 

throughout the program.  The NAS SARs tracked four different timelines and included 

multiple duplicate milestones.  The FMTV actually represents a grouping of vehicles of 

different types: 2 ½ and 5 ton trucks, tractors, vans, wreckers, etc. and also experienced a 

seven-year MSIII slip.  All three programs also had extended procurement cycles (33, 19, 

and 32 years respectively).  Turning to our statistical analysis, these programs stood out 

as having a high number of IOC estimates, indicating program volatility, and they had a 

high number of SARs between MSII and MSIII, again indicating volatility as well as 

length of development.  A program manager supervising a complicated program with an 

anticipated long EMD, many product variants, and lengthy production, should consider 

using this dummy variable when predicting schedule slip. 

Implementing this model requires only three pieces of information about the 

program: 1) will significant pre-EMD activity occur (i.e. more than 360 days between the 

initial SAR report and MSII), 2) how many times will the MSIII estimate change as 

reported in the SARs, and 3) does this program look like the programs included in the 

dummy variable “2 24 35”?  To demonstrate, we will answer these questions with yes, 6, 

and no.   
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With these answers, the predicted response would be: 

 
Percent MSIII growth = –7.7 – 50.5 * 1 + 12.0 * 6 + 193.9 * 0 = 13.8%. 

 
 

Before we could place confidence in this result, we had to assess the model for 

trustworthiness.  From the 

model’s Adjusted r2 and p-

value, it appeared to be 

accurate so we searched for 

problems that might have 

made us question the 

results.  First, we checked 

for multicolinearity among 

the variables using the Variance Inflation Factor (VIF).  While some research indicates a 

VIF of less than 10.0 is acceptable, we targeted a VIF of less than 2.0 to avoid having too 

much overlap in explanatory power between the variables (Neter, et al., 1996: 387).  The 

highest VIF in this model was 1.7.   
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Figure 8 - SM-I Cook's Distance 

Next, we assessed influential data points via Cook’s Distances.  Cook’s Distance 

considers a single program’s influence on the model.  If the result was less than about 25 

percent, the individual program did not have a significant impact on the model.  If the 

value approached 50 percent, the program had a significant effect and the model could be 

substantially different without it (Neter, et al., 1996:381).  Figure 8 shows three programs 

of concern with scores >0.25.  To determine if these three programs made an 

unacceptable impact, we excluded them from the model and re-ran the analysis.  The new 

 68



 

p-value was still <0.0001, indicating that the programs did not unduly skew the results, 

and that their absence would not have changed our conclusions.  The programs were 

therefore included for the remainder of the analysis. 

Once the model passed these checks, we analyzed the statistical assumptions of 

independence, normality, and constant variance.  As discussed in Chapter III, we 

assumed independence 

based upon inherent 

differences and separation 

between programs.  

However, we were able to 

conduct statistical tests for 

normality and constant 

variance.  Using descriptive 

measures, we looked at the 

distribution of the studentized residuals (Figure 9).  The distribution appeared normal so 

we conducted a Shapiro-Wilk (S-W) goodness-of-fit test to confirm (Neter, et al., 

1996:111).  The test revealed a p-value of 0.69, indicating normality  

(<0.05 would indicate that the hypothesis of normality failed).  Next, we addressed 

constant variance with the Breusch-Pagan (B-P) test (Neter, et al., 1996:115).  This test 

resulted in a p-value of 0.27.  Like the S-W test, a p-value of <0.05 would have indicated 

failure.  Finally, we moved on to model validation. 
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Figure 9 - SM-I Assumption of Normality 

Due to the small sample size, we used the entire database to build the regression 

models, leaving us without the possibility of reserving a portion of the database against 
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which to validate.  Therefore, we adopted a variation of the jackknife technique 

pioneered by Tukey (1987:30).  This technique determines if a subset of the data might 

act differently than the whole sample, giving us an idea of validity in the same way that 

reserving a portion of the data for comparison would.   

Implementing the jackknife procedure, we used JMP® to calculate an individual 

Prediction Interval (PI) for each program.  A “1” was then assigned to each program if its 

response variable was within the 95 percent PI, “0” if not.  Next, we randomly ordered 

the programs and, using a portion size of eight (approximately 20 percent), computed an 

average of the number of “1’s” that occurred in that portion.  Then, the portion was 

incremented and a new average was calculated until all combinations were complete.  

Finally, a mean and standard deviation were calculated from the results of all possible 

portion averages and a Confidence Interval (CI) was established.   

For SM-I, the CI was from 0.95 to 0.99.  Therefore, we can say with 95 percent 

confidence that given any eight randomly selected programs, the model correctly predicts 

the amount schedule growth between 95 and 99 percent of the time.  However, this 

outcome must be tempered with the fact that the model results were also based on a 95 

percent PI, compounding the potential error.  Regardless, with a p-value of <0.0001, an 

Adjusted r2 of 0.81, and a 95+ percent confidence in the results, the model proved to be 

quite effective. 
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Schedule Model II 

Schedule Model II offers five 

variables to explain schedule slippage.  The 

result was a p-value of <0.0001 and 

Adjusted r2 of 0.85 (see Figure 10).  This 

model includes the same dummy variable 

“2 24 35” as SM-I (green circle) as well as 

“Significant pre-EMD activity.”  The 

remaining three variables were “MSIII 

before IOC?,” “Num_Fund_Prob,” and 

“Force Application?”  The resulting model formula is: 
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Figure 10 - SM-II Actual by predicted 
plot 

 
Percent MSIII growth = 74.1 – 50.5 * “MSIII before IOC?” 

 
– 36.4 * “Significant pre-EMD activity” + 14.3 * “Num_Fund_Prob”  

 
– 28.9 * “Force Application?” + 235.0 * “2 24 35”. 

 
 
The standardized beta coefficients are: 
 

“MSIII before IOC?”      –0.31 
“Significant pre-EMD activity”   –0.20  
“Num_Fund_Prob”     +0.33 
“Force Application?”     –0.18 
“2 24 35”     +0.81 

 
 
We assessed this model in the same manner as before (highest VIF score = 1.3, Cook’s 

Distances passed scrutiny, S-W p-value = 0.54, B-P p-value = 0.09) and validation was 

successful with a jackknife CI of 0.95 to 0.99.   
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In this grouping of predictors, “Num_MSIII_CE” proved to be less significant.  In 

its place, we found “Num_Fund_Prob” and two new hard variables, “MSIII before IOC?” 

and “Force Application?”  First, “Num_Fund_Prob” serves as a count of SARs reporting 

funding problems.  A funding problem could have been a simple comment in the 

executive summary that the President’s budget cut program spending or a direct reference 

to cuts that caused quantity decreases.  As a soft variable, however, we attempted to 

isolate its influence by creating quantitative variables that might embody the same 

information.  For example, we used defense appropriations to link political changes.  The 

second new variable we found significant was “MSIII before IOC?”  Similar variables 

have presented themselves in previous research, lending added credibility (Monaco 

2005:106).  Finally, we found the FCA category “Force Application?” to be predictive. 

All variables except for “Num_Fund_Prob” have a yes or no (1 or 0 in the model 

formula) response.  For example, if you answer yes to the question of whether MSIII 

occurs before IOC, then the model will predict less schedule growth.  The same is true if 

there is significant pre-EMD activity or if the FCA is Force Application.  On the other 

hand, if the new program exhibits characteristics like programs represented by the 

dummy variable “2 24 35,” there will be significant schedule slippage (subjectively ~200 

percent).  “Num_Fund_Prob” is not a simple yes or no variable but rather, it provides a 

range of impact; more funding problems indicate more schedule problems. 

Regression models – Cost 

We started our analysis of the cost regression models in the same manner as the 

schedule models.  The list of input variables and stated assumptions were the same but to 

tell the whole story, we have included three cost models.  As with schedule, there is a soft 
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variable model, Cost Model I (CM-I), and a hard variable model, CM-II, but this time 

each required four variables (a 9 to 1 ratio) to achieve similar predictive ability.  The 

third model, CM-III, adds “Significant pre-EMD activity” to CM-I and demonstrates a 

common tie to the schedule models. 

Cost Model I 

Cost Model I uses four variables; 

two soft: “Num_Pol_Change,” 

“Contractor_Cost_Growth,” one hard: 

“Quant_Change,” and one dummy: “F-

22/C-17.”  The model predicts cost growth 

with a p-value of <0.0001 and Adjusted r2 

of 0.80.  Assessment confirmed that the 

model was valid (highest VIF score = 1.6, 

Cook’s Distance passed, S-W p-value = 

0.21, B-P p-value = 0.44).  Validation yielded a CI of 0.95 to 0.99.  Figure 11 shows the 

model’s fit and the formula is given as: 
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Figure 11 - CM-I Actual by predicted 
plot 

 
Percentage cost growth = – 0.012 – 0.32 * “Quant_Change” + 0.08 * “Num_Pol_change” 

 
+ 0.26 * “Contractor_Cost_Growth” + 1.61 * “F-22/C-17”. 

 
  
The standardized beta coefficients are: 
 

“Quant_Change”    –0.39  
“Num_Pol_change”    +0.29 
“Contractor_Cost_Growth”   +0.27 
“F-22/C-17”      +0.56 
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“Num_Pol_Change” is a count of the SARs reporting a specific politically driven 

change to the program.  For example, policy changes that affect how we fight future wars 

might cut spending for out-of-date weapon systems that are still in development.  The 

model showed that a higher number of changes correlated to higher cost growth.  The 

variable “Contractor_Cost_Growth” counts how many SARs report cost growth directly 

attributable to the contractor.  This variable, more than the other soft variables, depends 

upon accurate reporting by the program manager and is therefore less trustworthy.  

However, this model demonstrates its strength when compared to CM-II. 

Quantity change did not play much of a role in schedule slippage between MSII 

and MSIII but it proved significant in predicting cost, showing up in all three models.  

Since our cost measure was per unit total cost, it was insulated from the changes in total 

program cost due simply to buying more items.  Therefore, the relationship between 

“Quant_Change” and cost growth per unit reflects the overhead and manufacturing losses 

incurred by reducing the number of units and losing the efficiency of long production 

runs. 

Finally, the dummy variable “F-22/C-17” groups these two programs similar to 

the “2 24 35” variable in the schedule models.  However, we needed not look beyond 

statistical measures to justify this grouping.  These two programs stood out, almost by 

themselves, in several areas including program age, length, cost, number of rebaselines, 

number of funding problems, number of political changes, quantity reductions, and total 

cost over $20B.  Program managers of these types of programs could expect close to  

250 percent cost growth by the time they reach MSIII.  The green circle in Figure 11 
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shows their position relative to the other programs and the standardized coefficients 

indicate that this variable was almost twice as influential as the others. 

Cost Model II 

This model employs all hard 

variables (plus the F-22/C-17 dummy 

variable) and draws a firm correlation 

between changes in schedule and cost.  The 

model was assessed for assumption 

compliance and validated (p-value 

<0.0001, Adjusted r2 = 0.80, highest VIF 

score = 1.3, Cook’s Distance passed, S-W 

p-value = 0.09, B-P p-value = 0.88).  

Validation yielded a CI of 0.92 to 0.97.  Figure 12 shows model fit and the location of the 

F-22 and C-17 programs (green circle).  The model formula is given as: 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
os

t_
de

lta
_M

S
II_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_M

A
ct

ua
l

-1.0 -0.5 .0 .5 1.0 1.5 2.0 2.5 3.0
Cost_delta_MSII_MSIII_2005_percent_of_
MSIII_cost
Predicted P<.0001 RSq=0.82
RMSE=0.2986

Figure 12 - CM-II Actual by predicted 
plot 

 
Percentage cost growth = – 0.035 – 0.22 * “Quant_Change” + 1.84 * “F-22/C-17” 

 
+ 0.00018 * “Len_MSIII_IOC” + 0.00029 * “MSIII_slip”. 

 
 
The standardized beta coefficients are: 
 

“Quant_Change”     –0.27 
“F-22/C-17”      +0.64  
“Len_MSIII_IOC”     +0.25 
“MSIII_slip”      +0.36 
 
 

As in CM-I, we used four variables: “F-22/C-17,” “Quant_Change,” 

“Len_MSIII_IOC,” and “MSIII_slip.”  We have already discussed the first two and their 
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affect was similar here.  Turning to the MSIII-related variables, “Len_MSIII_IOC” is a 

measure of time between the declared MSIII and IOC.  This variable showed a weak but 

positive effect on cost growth.  One could say that the longer a period of time between 

MSIII and IOC, the higher the chance of cost growth.  “MSIII_slip” also demonstrated a 

positive correlation, which makes logical sense: if you spend longer trying to figure out 

how to make something, the chances are good you estimated the costs incorrectly 

(probably too low) when you started.  These two variables imply that when schedule gets 

drawn out, program cost goes up and since the comparison is in base year dollars, growth 

over time is due to something other than escalation.  Both the hard and soft model 

developed approximately the same predictive capability and increasing the number of 

variables in either model yielded minimal gains.  However, combining hard and soft 

variables did improve the results. 

Cost Model III 

This model shows the advantage of 

combining hard and soft variables by 

adding “Significant pre-EMD activity” to 

model CM-I.  The model performed well, 

resulting in a p-value = <0.0001 and 

Adjusted r2 = 0.84 (see Figure 13, F-22 

and C-17 programs in green circle).  The 

assumptions passed with no complications 

(highest VIF score = 1.8, Cook’s Distance 

passed, S-W p-value = 0.17, B-P p-value = 0.49) and the resulting jackknife CI was 0.95 

-1

-0.5

0

0.5

1

1.5

2

2.5

3

C
os

t_
de

lta
_M

S
II_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_M

A
ct

ua
l

-1.0 -0.5 .0 .5 1.0 1.5 2.0 2.5 3.0
Cost_delta_MSII_MSIII_2005_percent_of_
MSIII_cost
Predicted P<.0001 RSq=0.86
RMSE=0.2678

Figure 13 - CM-III Actual by predicted 
plot 
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to 0.99.  Adjusted r2 improved, but this increase required the addition of a fifth variable, 

creating a 7 to 1 ratio.   

The model formula is: 

 
Percentage cost growth = – 0.0099 – 0.27 * “Quant_Change”  

 
- 0.36 * “Significant pre-EMD activity” + 0.11 * “Num_Pol_change” 

 
+ 0.26 * “Contractor_Cost_Growth” + 1.83 * “F-22/C-17”. 

 
  
The standardized beta coefficients are: 
 

“Quant_Change”      –0.33 
“Significant pre-EMD activity”   –0.24 
“Num_Pol_change”    +0.38 
“Contractor_Cost_Growth”   +0.27 
“F-22/C-17”      +0.63 
 
 

We have already discussed these variables in conjunction with the other models 

but it is important to note that “Significant pre-EMD activity” is now common to both 

schedule and cost models.  It seems that pre-MDAP programs that spend more time 

before MSII have less schedule slippage and less cost growth.  At the beginning of this 

chapter, we pointed out that there seemed to be different predictors for schedule and cost 

but this result shows at least some overlap. 

Chapter Summary 

This chapter addressed the detailed analysis of significant individual variables as 

well as regression models for both schedule and cost.  Next, Chapter V addresses our 

conclusions, recommendations for implementation, and ideas for future research. 
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V.  Conclusions and Recommendations 
 
 

This thesis recounts our efforts to expand this stream of cost analysis research 

with longitudinal variables, addressing schedule slippage and cost growth of major 

acquisition programs.  Prior research pointed the way to this longitudinal approach and 

methodology as demonstrated in the literature review.  Our analysis addressed individual 

variables, one at a time, to explore their impact on the chosen schedule and cost response 

variables.  Lastly, we used standard statistical techniques to derive regression models that 

correlated select input variables to our response variables and discussed model accuracy, 

validity, and meaning. 

It is difficult to single out one answer to the question of “how much schedule 

slippage or cost growth will I have?”  Statistical analysis can explain correlations but is 

less adept at showing causality.  However, starting with a clean slate as in this research, 

we looked to any source of valid data for input variables.  This was not an exhaustive 

effort but it was comprehensive and used both well-documented sources such as the 

SARs and other valid sources such as defense spending data and the consumer price 

index.  This research also looked at static variables, those that did not change over time, 

and dynamic or longitudinal variables that did change throughout a program’s execution.  

The result of this effort was a list of 172 variables for each of the 37 programs meeting 

entry criteria.   

All five resulting models were effective, demonstrated by an Adjusted r2 in excess 

of 0.80, and they all met the requisite assumptions and validation.  However, some use 

fewer variables, or different types of variables, and may be easier to implement.  Most 

input variables are easy to determine or estimate but all the models used a dummy 
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variable to isolate the effects of influential data points.  A subjective decision must be 

made as to whether or not to include any new program in that dummy category and 

therefore, a model’s efficacy hinges on that determination.  Table 10 compares the final 

models.   

 
Table 10 - Regression model comparison 

 

Model Variable 
type 

Number of 
Variables Ratio Adjusted r2 Jackknife CI 

SM-I Hard 3 10 to 1 0.81 0.95 – 0.99 

SM-II Mix 5 7 to 1 0.85 0.95 – 0.99 
CM-I Mix 4 9 to 1 0.80 0.95 – 0.99 
CM-II Hard 4 9 to 1 0.80 0.92 – 0.97 
CM-III Mix 5 7 to 1 0.84 0.95 – 0.99 

 

When choosing a model for use in estimating schedule and cost, the program 

manager must decide what types of information are available for input.  How well do you 

know the political and economic environment?  Can you predict the soft variables 

accurately?  Are you far enough along in the program to determine the expected EMD 

length?  These and many other questions need answers before any estimates will be 

reliable.  However, the models can easily aid decision-making through what-if analysis.  

Try different values of each of the variables in a model and you will get an idea of how 

programs have behaved in the past.  Table 11 shows percent estimated cost growth given 

different inputs to CM-III.  These are only a few examples but the types of information 

available are evident. 
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Table 11 - Example model implementation 
 

"Quant_Change" 
(%/100) 

"Significant 
pre-Emd 
activity" 

"Num_Pol_ 
Change" 

"Contractor_
Cost_Growth" “F-22/C-17” Estimated 

cost growth

-0.5 0 0 0 0 13% 

0.5 0 0 0 0 -14% 

0 0 1 0 0 10% 

0 1 1 0 0 -26% 

0 1 4 1 0 33% 

0 1 4 1 1 216% 

0 0 4 1 1 252% 

 

In addition to the formal analysis offered in Chapter IV, we noticed some trends 

worth reporting.  First, it became apparent that there is a relationship between funding, 

schedule, and cost.  The FA-18E/F 1995 SAR gives one example of how lack of funding 

caused a slip in test dates, which in turn delayed the development schedule.  In several 

cases, DoD test personnel were not available, again slipping the development timeline.  

National and political issues also played a role.  “Fact of life” changes such as the Global 

War on Terror created ripples throughout the acquisition system, reducing spending for 

some programs while increasing it for others.  Functional capabilities became more 

important and getting equipment to the warfighter in the field received a new urgency.  

While we attempted to capture specific changes due to specific time periods, looking at 

programs by what calendar years they covered showed only weak correlation.   

Our time period scrutiny revealed a potential weakness.  The majority of our data 

came from younger programs due to the entrance requirement that MSIII occur after 

1996.  Figure 14 shows the number of programs that were between MSII and MSIII for 

the years 1980 to 2005.  A noticeable mass of programs in the late 1990’s and early 
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2000’s accentuates any national or political impact during this period.  Future research 

could increase the resolution of these world events in the database and test for lag effects. 
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Figure 14 - Program location in history 
 

Our final regression models provide the grounds for other possible 

recommendations.  First, more research could highlight the effects of our chosen dummy 

variables.  We grouped certain programs to enhance our analysis and justified their 

grouping from a historical perspective but more effort might uncover commonalities that 

could serve as new input variables and remove the need for a dummy.  To review, we 

saw that complicated programs with many variants and long manufacturing runs had a 

significant impact on schedule response.  Requirements drift was not directly measured 

but it was implied through the SAR narratives.  When looking at cost response, the F-22 

and C-17 programs stood out because of political and funding problems, which drove 

longer development, a high number of rebaselines, and significant quantity reductions. 

Going beyond the dummy variables that isolated influential programs, we 

discovered more universal variables.  Perhaps the most powerful was  
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“Significant pre-EMD activity.”  This variable showed up in three of the five models, 

proving valid for predicting both schedule and cost.  The implication seems clear in that 

more pre-planning begets a smoother development phase.  The weakness in this variable 

lies in how programs were reported.  Only MDAPs were required to submit SARs so 

programs that did not reach that threshold until MSII, or programs that started at MSII 

(usually upgrades to existing systems), did not show “Significant pre-EMD activity.”  

However, the indication could be that upgrade programs or those that seem simple, and 

therefore go straight to MSII, experience more problems and growth.  We did not directly 

address technological maturity level but the willingness to begin programs at MSII 

indicates that some scrutiny of technological viability took place.  Our soft variable count 

of the number of technical challenges did not prove to be predictive but future research 

could go deeper.  The challenge will be finding consistent and reliable technical 

information from sources other than the SARs. 

The analysis covered many other variables but it is pertinent to mention quantity 

change again.  Since we were concerned primarily with development, quantity change did 

not significantly impact schedule because EMD quantities were mostly static –  

production quantities suffered the changes.  However, costs were estimated based upon 

total production runs and manufacturers can recoup more of their development costs and 

increase production efficiencies with longer runs.  The cost of reducing quantity becomes 

significant when the contractor can no longer absorb development costs and must 

increase unit cost to compensate, as predicted by the learning curve slope (Chapter II).  

This is not a new concept but this research confirms it once again.  We must do our best 
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to determine accurate quantity when the development baseline is set and resist the 

temptation to inflate the numbers to entice contractors or lower per-unit costs. 

A final suggestion for future research would be to take our cost growth at 

percentage of program completion variables and expand them to include schedule, then 

develop a model for determining final schedule slippage or cost growth given a 

program’s characteristics at a specific completion point. 
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Appendix A: Acronyms 
 
 
ACAT – Acquisition Category 
ACG – Adjusted Cost Growth 
AFIT – Air Force Institute of Technology 
AFMC – Air Force Materiel Command 
APB – Acquisition Program Baseline 
ASD – Aeronautical Systems Division 
BAC – Budget at Completion 
CAIG – Cost Analysis Improvement Group 
CE – Current Estimate 
CI – Confidence Interval 
CM – Cost Model 
CPI – Consumer Price Index 
DAES – Defense Acquisition Executive Summary 
DE – Development Estimate 
DAB – Defense Acquisition Board 
DoD – Department of Defense 
DoL – Department of Labor 
DSCPD - Defense Systems Cost Performance Database 
EAC – Estimated Acquisition Cost 
EMD – Engineering and Manufacturing Development 
FCA – Functional Capability Area 
FRP – Full-rate Production 
FUE – First Unit Equipped 
GAO – Government Accountability Office 
GPO – Government Printing Office 
IOC – Initial Operational Capability 
LRIP – Low Rate Initial Production 
MDAP – Major Defense Acquisition Program 
MS – Milestone 
OMB – Office of Management and Budget 
OSD – Office of the Secretary of Defense 
PAUC – Program Acquisition Unit Cost 
PdE – Production Estimate. 
PE – Planning Estimate 
PI – Prediction Interval 
PNO – Program Number 
R&D – Research and Development 
RAA – Required Assets Available 
RAND – Research and Development Corporation 
SAR – Selected Acquisition Report 
SCI – Schedule Cost Index 
SM – Schedule Model 
VIF – Variance Inflation Factor 
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Appendix B: Selected Acquisition Reports 
 
 

Selected Acquisition Reports (SARs) are submitted on an annual basis for MDAP 

programs.  SARs summarize the latest estimates of cost, schedule, and performance 

status.  These reports are prepared annually in conjunction with the President's budget.  

Subsequent quarterly exception reports are required only for those programs meeting the 

following criteria:  

15% or more increase in the procurement estimate of the Program 
Acquistion Unit Cost (PAUC) compared to the PAUC in the currently 
approved Acquisition Program Baseline (APBA), or  

15% or more increase in the current estimate of the Average Procurement 
Unit Cost (APUC) compared to the APUC in the currently approved APB, 
or  

Six-month of greater delay in the current estimate of any schedule 
milestone since the current estimated reported in the previous SAR, or  

Milestone B, Milestone C, or Full Rate Production Decision Review 
(Milestones II or III for grandfathered programs) and associated APB 
approval within 90 days prior to the quarter end date (DoD 5000.2-I).  

 

The National Defense Authorization Act (NDAA) for FY 2006 made changes to 

the Nunn-McCurdy unit cost reporting statute for DoD major defense acquisition 

programs (10 USC§2433).  The primary change was the addition of 30% and 50% unit 

cost thresholds against the original baseline estimate approved at System Development 

and Demonstration (Milestone B).  The existing 15% and 25% unit cost thresholds were 

retained against the current baseline estimate.   

Source: http://www.acq.osd.mil/ara/am/sar/2005-DEC-SARSUMTAB.pdf 
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SAR baseline discussion 

The following discussion was excerpted from a 1996 RAND study that 

documented their in-house SAR database (Jarvaise, et al., 1996:5). 

Baseline Problems 

There are three types of baseline estimates (planning, development, and 
production) that are measured and tracked, each roughly corresponding to 
a decision point in the acquisition process. As a general rule, once a 
baseline has been established, the first estimate presented as that baseline 
should be used in calculating cost growth. However, at times, SAR 
baselines can be unstable. For instance, occasionally a second, more 
accurate estimate is substituted for the original estimate, generally 
improving cost performance as measured from this new baseline.  

Alternatively, changes that reflect an entirely different work scope from 
the original baseline may falsely portray poor cost performance. This 
information is generally classified and so is difficult to use in an 
unclassified environment. While earlier versions of DSCPD have made 
limited use of performance data, current versions have dropped this 
information because of data quality, measurement, and interpretation 
problems. Programs may even be canceled, then brought back with 
updated baselines, resulting in an apparent improvement in cost estimating 
performance. An example of this is the Precision Location Strike System 
(PLSS, Air Force). This program was canceled in 1981, resurrected 
in1983, and canceled again in 1986. The original DE for total system cost 
was $678.2 million (base-year 1977) for a quantity of three. The updated 
DE in the December 1983 SAR reported a total system cost of $635.5 
million (base-year 1977) for a quantity of one. The new DE was 
significantly higher and would have resulted in a much lower cost growth 
factor had we used it as the baseline estimate. In some cases, using a new 
baseline may be justified if the program has significantly changed in 
scope, or the new system is different from the system for which the 
original DE was made. An example of this is the Bradley Fighting Vehicle 
System (Army), whose original DE was based on a predecessor vehicle, 
the Mechanized Infantry Combat Fighting Vehicle (MICV). The Bradley 
included a 25-mm gun and the tube-launched optically tracked wire-
guided (TOW) missile system (the TOW system is a separate SAR 
program), while the MICV had only a 20-mm gun. Clearly, the original 
DE, when compared with the cost estimates for the Bradley, its 25-mm 
gun, and ammunition, would result in excessive cost growth. In this case, 
the original DE was not a fair basis for measuring cost growth; the current 
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DE (made after the cancellation of the MICV) was closer to a production 
baseline. We, therefore, added costs identified in the SAR as being 
associated with the new configuration to the PE and DE baselines to bring 
the estimates in line with the final design configuration of the vehicle.  

Another baseline problem comes with combinations or separation of 
programs. Sometimes programs are reorganized and combined with other 
programs. Similarly, large programs consisting of several subsystems that 
were formerly contained in one program SAR are sometimes broken out 
into individual programs, each with its own SAR. These changes result in 
fairly severe distortions. Often, a large portion of the cost is lost or gained, 
while the baselines are unchanged, resulting in very large changes to the 
cost growth factors. The Submarine Combat System (SUBACS, Navy) is a 
good example of this. In December 1983, the SAR for SUBACS included 
a DE for two major subsystems, the AN-BSY 1 and the AN-BSY 2.  

Subsequently, ANBSY 2 was removed from the SAR in December 1985, 
reestablished as a separate SAR program in December 1986, and was 
incorporated into the SSN-21 SAR in December 1990. While we would 
have liked to maintain consistency with the original DE and combine the 
two subsystems and treat them as one, the lack of detail reported for the 
AN-BSY 2 in the SSN-21 SAR made it impossible without making too 
many blind assumptions. In the end, the AN-BSY 2 costs were stripped 
from the SUBACS program and included in the SSN-21 program, thereby, 
changing both the AN-BSY 1 and SSN-21 baselines. If we had left the 
baselines as they were, we would have seen understated cost growth in the 
SUBACS program and greatly overstated cost growth in the SSN-21 
program. Unfortunately, SARs do not provide enough information to 
separate models in a series. Thus, the costs of the F-15C/D or E versions 
cannot be separated from the original A/B version, even though the 
modifications were substantial. Thus, some observed development cost 
growth is due to development program costs for a major modification 
program added to the original development costs. Procurement costs may 
also increase because of the cost of performance enhancements not 
envisioned in the original SAR. In summary, changes to baselines have to 
be carefully scrutinized to preserve consistency over time within a 
program. If a large portion of the program has been dropped (or added), 
adjustments must be made to the baseline estimates to ensure that they 
reflect these changes. Failure to do so would result in large, unwarranted 
changes in cost growth factors. Often the SARs provide the necessary 
adjustment factors, but not always. 
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Appendix C – List of Programs 
 
 

Program PNO Name 
1 148  Patriot PAC-3  
2 185  AMRAAM  
3 200  C-17A  
4 217  LHD 1  
5 219  ATIRCMS/CMWS  
6 240  T-45TS  
7 248  Minuteman III PRP  
8 260  GMLRS  
9 265  F/A-22  

10 274  JSTARS  
11 278  CH-47F  
12 280  Javelin  
13 282  MH-60S  
14 288  B1-B CMUP  
15 289  Tactical Tomahawk  
16 294  FBCB2  
17 299  STRYKER (IAV)  
18 302  Minuteman III GRP  
19 330  AESA  
20 341  Black Hawk Upgrade (UH-60M)  
21 354  SDB  
22 367  HIMARS  
23 503  JDAM  
24 537  NAS  
25 541  Longbow Hellfire  
26 549  F/A-18 E/F  
27 551  NESP  
28 554  MIDS-LVT  
29 555  JASSM  
30 560  JPATS  
31 575  ABRAMS Upgrade  
32 581  AIM-9X  
33 582  CEC  
34 601  BRADLEY Upgrade  
35 746  FMTV  
36 766  JSOW  
37 831  LONGBOW Apache  
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Appendix D – List of Variables 
 

The following is a complete listing of the 172 program characteristics and 

variables used in this research.  The list is provided as a means for the reader to assess 

depth of study and uncover possible areas that could benefit from further research. 

 
PNO 
Cost_delta_MSII_MSIII_2005_percent_of_MSII

I_cost 
Perc_MSIII_growth 
Prog_name 
APB_set 
PE_Established 
PE_Established zero eliminator 
DE_Established 
MSI_Actual 
MSI_Actual zero eliminator 
MSII_Actual 
MSIII_Actual 
LRIP_Dec_Actual 
IOC_Actual 
MSIII_DE 
LRIP_Dec_DE 
IOC_DE 
Initial_SAR_date 
First_contract_award_date 
Prototype 
Upgrade? 
Initial_Quant 
Final_Quant 
Quant_Change 
MSIII before IOC? 
LRIP_before_MSIII 
MSIII_3mo_LRIP 
LRIP_after_MSIII 
Perc_IOC_growth 
Perc_LRIP_growth 
Total Cost at MSIII in 2005 dollars 
Avg_inflation_MSII_MSIII 
Average_approp_MSII_MSIII 
has_MSI 
has_MSI_or_upgrade 
has_MSI_or_upgrade_or_foreman_prototype 
Significant pre-EMD activity 
PE ? 
Len_MSII_MSIII 
Len_MSII_LRIP 
Len_MSII_IOC 
Len_LRIP_IOC 
Len_LRIP_MSIII 
Len_MSIII_IOC 

MSIII_slip 
LRIP_slip 
IOC_slip 
Num_MSII_AP 
Num_MSII_CE 
Num_MSIII_AP 
Num_MSIII_CE 
Num_LRIP_AP 
Num_LRIP_CE 
Num_IOC_AP 
Num_IOC_CE 
Num_APB 
Num_APB_MSII_MSIII 
Num_SAR 
Num_Annual_SAR 
Num_Quar_Excep_SAR 
Num_SAR_MSII_MSIII 
Num_Quant_Change 
Num_Tech_Prob 
Num_Fund_Prob 
Num_Pol_Change 
Contractor_Cost_Growth 
Avg_Tech_Mag 
Avg_Fund_Mag 
Avg_Pol_Mag 
Avg_num_APB_MSII_MSIII 
Avg_num_quant_change 
Avg_num_tech_prog 
Avg_num_polit_prob 
Avg_num_fund_prob 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
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Net Centric? 1998 
Joint Training? 1999 
Force Ap & Log 2000 
percent_cost_growth_10_percent_complete 2001 
percent_cost_growth_20_percent_complete 2002 
percent_cost_growth_30_percent_complete 2003 
percent_cost_growth_40_percent_complete 2004 
percent_cost_growth_50_percent_complete 2005 
percent_cost_growth_60_percent_complete Persian_Gulf_90_91_ordinal 
percent_cost_growth_70_percent_complete Persian_Gulf_90_91_onoff 
percent_cost_growth_80_percent_complete Persian_Gulf_+2_ordinal 
percent_cost_growth_90_percent_complete Persian_Gulf_+2_onoff 
Num_APB_by_10_percent_complete Bosnia_92_95_ordinal 
Num_APB_by_20_percent_complete Bosnia_92_95_onoff 
Num_APB_by_30_percent_complete Bosnia_+2_ordinal 
Num_APB_by_40_percent_complete Bosnia_+2_onoff 
Num_APB_by_50_percent_complete Afganistan_2002_ordinal 
Num_APB_by_60_percent_complete Afganistan_2002_onoff 
Num_APB_by_70_percent_complete Iraq_02_05_ordinal 
Num_APB_by_80_percent_complete Iraq_02_05_onoff 
Num_APB_by_90_percent_complete Dem_house_ordinal 
F-22/C-17 Dem_house_onoff 
2 3 9 24 35 Dem_senate_ordinal 
MSIII<=1996 Dem_senate_onoff 
DE_est<1990 Dem_president_ordinal 
MSII_MSIII>10yr Dem_president_onoff 
Total_cost>20_billion 7  Air 

8  Land 
9 Space 
10  Sea 
11  Electronic 
12  Helo 
13  Missile 
14  Aircraft 
15  Munition 
17  Space (RAND) 
18  Ship 
21  Svs>1 
Lead Svc = Navy 
Lead Svc = AF 
Lead Svc = Army 
37  Lockheed-Martin 
39  Boeing 
40  Raytheon 
41  General Dymics 
McDonnell Douglas 
Hughes 
77  Class - C 
76  Class - S 
78 Class - U 
Cost Plus Variants 
Force Application? 
Focused Logistics? 
Force Protection? 
Command and Control? 
Battlespace Awareness? 
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Appendix E – Regression Models 
 
 

This appendix provides the complete analysis for each regression model for those 

who might want more information about the statistical output and compliance with 

assumptions.  Some background in statistical analysis is required to understand fully this 

information but as a guide, we offer the following explanations: 

• Actual by predicted plot – visual representation of how well the model fits the 
actual data.  Points close to the line indicate a good fit and accurate model. 

• Summary of fit – source of the Adjusted r2 value discussed during analysis. 
• Analysis of variance – source of the model’s p-value (“Prob > F”). 
• Parameter estimate – source of each variable’s p-value and VIF. 
• Residual by predicted plot – visual representation of the residuals.  A well 

disbursed plot with no visual trends indicates probable constant variance. 
• Leverage plots – show each variable’s predictive capability. 
• Overlay plots showing Cook’s Distance – indicate potential outliers (>0.25).  

Numbers below the plot indicate programs that exceeded the desired value. 
• Overlay plot with studentized residuals – can reveal dependence or trends.  A 

random but somewhat even magnitude across is good. 
• Distributions with goodness of fit and S-W test – demonstrate normality in the 

residuals. 
• Breusch-Pagan – test results for constant variance 
• Jackknife confidence intervals – validation results 
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Schedule Model I 

 
Response Perc_MSIII_growth 
Whole Model 
Actual by Predicted Plot 
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P<.0001 RSq=0.83 RMSE=34.604
 

 
Summary of Fit 
  
RSquare 0.829653
RSquare Adj 0.814167
Root Mean Square Error 34.60438
Mean of Response 58.74412
Observations (or Sum Wgts) 37
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 3 192458.74 64152.9 53.5740
Error 33 39516.29 1197.5 Prob > F
C. Total 36 231975.03 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| VIF
Intercept  -7.702895 10.815 -0.71 0.4813 .
Significant pre-EMD activity  -50.51628 16.37356 -3.09 0.0041 1.5248348
Num_MSIII_CE  12.018426 2.185669 5.50 <.0001 1.7027158
2 24 35  193.8704 22.36128 8.67 <.0001 1.1511438
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Residual by Predicted Plot 

-100

-50

0

50
P

er
c_

M
S

III
_g

ro
w

th
R

es
id

ua
l

-100 -50 0 50 100 150 200 250 300 350
Perc_MSIII_growth Predicted

 
 
Significant pre-EMD activity 
Leverage Plot 

-100
-50

0
50

100
150
200
250
300
350

P
er

c_
M

S
III

_g
ro

w
th

Le
ve

ra
ge

 R
es

id
ua

ls

-0.5 .0 .5 1.0
Significant pre-EMD

activity Leverage, P=0.0041
 

 
Num_MSIII_CE 
Leverage Plot 
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2 24 35 
Leverage Plot 
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2 excluded, p-value = <.0001 
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Overlay Plot 
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Distributions 
Studentized Resid Perc_MSIII_growth 
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 Normal(-0.0002,1.05247) 
 
Goodness-of-Fit Test 
 Shapiro-Wilk W Test 
 

W   Prob<W 
0.978865   0.6921 

 
Note: Null Hypothesis = The data is from the Normal distribution.  Small p-values reject the null. 
 

Breusch-Pagan 
n 37 
df Model 3 
SSE 39516.29 
SSM-r 8826470 
    
TS 3.86908414 
    
α 0.05 
p-value 0.27595207 
 

Jackknife Confidence Intervals 
MS3103 Schedule Response 

    
std dev 0.052167724
mean 0.972972973
lower CI 0.953749984
upper CI 0.992195962
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Schedule Model II 

 
Response Perc_MSIII_growth 
Whole Model 
Actual by Predicted Plot 

-100
-50

0
50

100
150
200
250
300
350

P
er

c_
M

S
III

_g
ro

w
th

A
ct

ua
l

-100 -50 0 50 100 150 200 250 300 350
Perc_MSIII_growth Predicted

P<.0001 RSq=0.87 RMSE=31.319
 

 
Summary of Fit 
  
RSquare 0.868919
RSquare Adj 0.847777
Root Mean Square Error 31.31911
Mean of Response 58.74412
Observations (or Sum Wgts) 37
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 201567.54 40313.5 41.0990
Error 31 30407.49 980.9 Prob > F
C. Total 36 231975.03 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| VIF
Intercept  74.109499 11.19428 6.62 <.0001 .
MSIII before IOC?  -50.48311 11.84064 -4.26 0.0002 1.2748039
Significant pre-EMD activity  -36.40762 13.59431 -2.68 0.0117 1.2832006
Num_Fund_Prob  14.305909 3.069734 4.66 <.0001 1.1824257
Force Application?  -28.90747 11.2373 -2.57 0.0151 1.1203651
2 24 35  234.969 19.3236 12.16 <.0001 1.0494354
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Residual by Predicted Plot 
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MSIII before IOC? 
Leverage Plot 
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Significant pre-EMD activity 
Leverage Plot 
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Num_Fund_Prob 
Leverage Plot 
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Force Application? 
Leverage Plot 
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2 24 35 
Leverage Plot 
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Overlay Plot 
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Distributions 
Studentized Resid Perc_MSIII_growth 
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 Normal(-0.0119,1.07819) 
 
Goodness-of-Fit Test 
 Shapiro-Wilk W Test 
 

W   Prob<W 
0.974401   0.5400 

 
Note: Null Hypothesis = The data is from the Normal distribution.  Small p-values reject the null. 
 

Breusch-Pagan 
n 37 
df Model 5 
SSE 30407.49 
SSM-r 12719984 
    
TS 9.41670298 
    
α 0.05 
p-value 0.09355381 
 
 

Jackknife Confidence Intervals 
MS5101 Schedule Response 

    
std dev 0.052167724
mean 0.972972973
lower CI 0.953749984
upper CI 0.992195962
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Cost Model I 

 
Response Cost_delta_MSII_MSIII_2005_percent_of_MSIII_cost 
Whole Model 
Actual by Predicted Plot 
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Summary of Fit 
  
RSquare 0.82478
RSquare Adj 0.802877
Root Mean Square Error 0.293368
Mean of Response 0.353836
Observations (or Sum Wgts) 37
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 4 12.963690 3.24092 37.6568
Error 32 2.754072 0.08606 Prob > F
C. Total 36 15.717762 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| VIF
Intercept  -0.011822 0.087488 -0.14 0.8934 .
Quant_Change  -0.322547 0.068116 -4.74 <.0001 1.2431147
Num_Pol_Change  0.0824751 0.026103 3.16 0.0034 1.5653646
Contractor_Cost_Growth  0.2645406 0.071623 3.69 0.0008 1.027771
F-22/C-17  1.6121714 0.268548 6.00 <.0001 1.5853111
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Contractor_Cost_Growth 
Leverage Plot 
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Leverage Plot 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t_
de

lta
_M

S
II_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_M

Le
ve

ra
ge

 R
es

id
ua

ls

-0.50 -0.25 .00 .25 .50 .75 1.00
F-22/C-17 Leverage, P<.0001

 
 
Overlay Plot 

-0.1

0.1

0.3

0.5

0.7

0.9

C
oo

k'
s 

D
 In

flu
en

ce
M

C
os

t_
de

lta
_M

S
II_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_

0 10 20 30 40
Rows

 
28, 24, 12, 8 
 

 104



 

 
Overlay Plot 

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

C
oo

k'
s 

D
 In

flu
en

ce
os

t_
de

lta
_M

SI
I_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_M

0 10 20 30 40
Rows

 
 
28, 24, 12, 8 excluded, p-value = <0.0001 
 
Overlay Plot 

-3

-2

-1

0

1

2

3

4

S
tu

de
nt

iz
ed

 R
es

id
C

os
t_

de
lta

_M
SI

I_
M

S
III

_2
00

5_
pe

rc
en

t_
of

_M

0 10 20 30 40
Rows

 
 
Distributions 
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 Normal(-0.0127,1.03847) 
 
Goodness-of-Fit Test 
 Shapiro-Wilk W Test 
 

W   Prob<W 
0.960196   0.2050 

 
Note: Null Hypothesis = The data is from the Normal distribution.  Small p-values reject the null. 
 

Breusch-Pagan 
n 37 
df Model 4 
SSE 2.754072 
SSM-r 0.10737277 
    
TS 9.68984946 
    
α 0.05 
p-value 0.04598909 
 
11 chosen for exclusion based on residual plot 
 

Breusch-Pagan 
n 36 
df Model 4 
SSE 1.862237 
SSM-r 0.01973328 
    
TS 3.68726526 
    
α 0.05 
p-value 0.44998084 
11 excluded, p-value = <.0001 
 

Jackknife Confidence Intervals 
MC4102 Cost Response 

    
std dev 0.052167724
mean 0.972972973
lower CI 0.953749984
upper CI 0.992195962
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Cost Model II 

 
Response Cost_delta_MSII_MSIII_2005_percent_of_MSIII_cost 
Whole Model 
Actual by Predicted Plot 
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RMSE=0.2986

 
 
Summary of Fit 
  
RSquare 0.818508
RSquare Adj 0.795822
Root Mean Square Error 0.298572
Mean of Response 0.353836
Observations (or Sum Wgts) 37
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 4 12.865118 3.21628 36.0791
Error 32 2.852644 0.08915 Prob > F
C. Total 36 15.717762 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| VIF 
Intercept  0.035459 0.080197 0.44 0.6614 . 
Quant_Change  -0.220234 0.064105 -3.44 0.0017 1.0629955 
F-22/C-17  1.8430427 0.234318 7.87 <.0001 1.1652286 
Len_MSIII_IOC  0.0001831 6.181e-5 2.96 0.0057 1.2242032 
MSIII_slip  0.0002925 0.000071 4.12 0.0002 1.3411277 
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Leverage Plot 
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Len_MSIII_IOC 
Leverage Plot 
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Overlay Plot 
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 Normal(0.00106,1.02485) 
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Goodness-of-Fit Test 
 Shapiro-Wilk W Test 
 

W   Prob<W 
0.948833   0.0885 

 
Note: Null Hypothesis = The data is from the Normal distribution.  Small p-values reject the null. 
 

Breusch-Pagan 
n 37 
df Model 4 
SSE 2.852644 
SSM-r 0.01384519 
    
TS 1.16460116 
    
α 0.05 
p-value 0.88389171 
 

Jackknife Confidence Intervals 
MC4104 Cost Response 

    
std dev 0.0627809
mean 0.945945946
lower CI 0.922812167
upper CI 0.969079724
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Cost Model III 

 
Response Cost_delta_MSII_MSIII_2005_percent_of_MSIII_cost 
Whole Model 
Actual by Predicted Plot 
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Predicted P<.0001 RSq=0.86
RMSE=0.2678

 
 
Summary of Fit 
  
RSquare 0.858576
RSquare Adj 0.835765
Root Mean Square Error 0.267779
Mean of Response 0.353836
Observations (or Sum Wgts) 37
 
Analysis of Variance 
Source DF Sum of Squares Mean Square F Ratio
Model 5 13.494890 2.69898 37.6397
Error 31 2.222873 0.07171 Prob > F
C. Total 36 15.717762 <.0001
 
Parameter Estimates 
Term   Estimate Std Error t Ratio Prob>|t| VIF
Intercept  -0.009872 0.079861 -0.12 0.9024 .
Quant_Change  -0.268342 0.065286 -4.11 0.0003 1.3706602
Significant pre-EMD activity  -0.362155 0.133058 -2.72 0.0106 1.6816302
Num_Pol_Change  0.1063309 0.025387 4.19 0.0002 1.7772011
Contractor_Cost_Growth  0.2599832 0.065397 3.98 0.0004 1.0284452
F-22/C-17  1.8267906 0.257495 7.09 <.0001 1.7493609
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Residual by Predicted Plot 

-0.5

0.0

0.5

1.0
C

os
t_

de
lta

_M
S

II_
M

S
III

_2
00

5_
pe

rc
en

t_
of

_M
R

es
id

ua
l

-1.0 -0.5 .0 .5 1.0 1.5 2.0 2.5 3.0
Cost_delta_MSII_MSIII_2005_percent_of_
MSIII_cost

Predicted
 

 
Quant_Change 
Leverage Plot 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
os

t_
de

lta
_M

S
II_

M
S

III
_2

00
5_

pe
rc

en
t_

of
_M

Le
ve

ra
ge

 R
es

id
ua

ls

-1.0 -0.5 .0 .5 1.0 1.5 2.0 2.5 3.0 3.5
Quant_Change

Leverage, P=0.0003
 

 
Significant pre-EMD activity 
Leverage Plot 
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Num_Pol_Change 
Leverage Plot 
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Contractor_Cost_Growth 
Leverage Plot 
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Distributions 
Studentized Resid Cost_delta_MSII_MSIII_2005_percent_of_MSIII_cost 
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 Normal(-0.0099,1.03359) 
 
Goodness-of-Fit Test 
 Shapiro-Wilk W Test 
 

W   Prob<W 
0.957662   0.1702 

 
Note: Null Hypothesis = The data is from the Normal distribution.  Small p-values reject the null. 
 

Breusch-Pagan 
n 37 
df Model 5 
SSE 2.222873 
SSM-r 0.03194845 
    
TS 4.42582201 
    
α 0.05 
p-value 0.48986912 
 
 

Jackknife Confidence Intervals 
MC5103 Cost Response 

    
std dev 0.052167724
mean 0.972972973
lower CI 0.953749984
upper CI 0.992195962
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