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Abstract

Ultrashort pulse laser technology is receiving increased focus around the world,

and as the size and expense are reduced, their applications will receive more atten-

tion. This thesis discusses the work to make ultrashort pulsed lasers smaller and more

economical. Possibilities of these pulses include creation of terahertz radiation, char-

acterization of materials through ablation, enhanced ring laser gyroscopes, ultrastable

atomic clocks and fast ignition fusion. While sharing many of the basic properties of

normal beam optics there are some specific properties in both creating and exploiting

those pulses that must be understood. The discussion will focus on mode locking

as the primary way of producing ultrashort pulses. Particular attention will be paid

to intracavity group velocity dispersion and how to correct it inside the cavity. The

discussion then turns to the basis of our work including initial cavity design and com-

ponent selection with a focus on the specific crystals used in the solid state laser. The

primary focus for the rest of the experiment setup is based on the evolution of the

designs in order to get the systems lasing and then mode locked. Results from the

work on the small cavity systems are then compared to data taken from a commercial

titanium-sapphire laser with an emphasis on current measurement techniques. Over-

all conclusions include the impact of both equipment and the crystals used in the solid

state cavity to generate ultrashort pulses. While not fully successful, the groundwork

has been laid for future research on portable, diode pumped femtosecond lasers.
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PORTABLE

DIODE PUMPED

FEMTOSECOND LASERS

I. Introduction

In just over forty years, the laser has gone from crude laboratory experimen-

tation to an essential technology in the health, communication, and military arenas.

The cutting edge of the continued advances in laser optics are ultrashort pulsed lasers.

Dubbed “extreme light” by Scientific American in May 2002, pulsed lasers have gar-

nered interest because of their unique properties and their effect on matter. [28] How-

ever, there are challenges in producing these ultrashort and ultrafast pulse rates.

Some technologies, such as the mode locked titanium-sapphire (Ti:sapphire) laser,

are relatively mature but other ways to produce the pulses are being explored. This

thesis focuses on several of these new sources, emphasizing the size and results when

used in a cavity design.

1.1 Extreme Applications

As a leading edge optical technology, useful applications are continually being

proposed. The biggest advantage of this technology is its promise of adaptability.

It is possible to design a system to have a faster repetition rate while another can

be designed for more intensity by shortening the pulse width. Even better, current

research is leading towards the ability to do both of those things with the same system.

This is being done by reducing the size of the cavity and using the higher power diode

lasers now becoming available at the proper wavelengths. Ben Agate et al. has done

a large amount of work on reducing cavity size and motivated much of this thesis. [1]

The goal of systems having both of the qualities noted above has an immense

impact on current efforts at system development and design. For example, a significant
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effort within the homeland security arena is the development of detection systems.

A specific example of current research, which is also being studied at AFIT, is on

producing terahertz radiation by impacting these ultrashort pulses on a nonlinear

crystal or photoelectric switch. [28] This terahertz radiation has some unique detection

capabilities in both solid materials and the human body. Another detection oriented

example is proton-radiography in which ultra-intense pulses are directed on to a thin

metallic surface, causing the release of protons that can be then directed to a detector.

[28] This technology is promising because protons are good at looking through complex

systems without having to physically dismantle the items being scanned.

Another interesting development is looking at the particles being ablated from a

material with a spectrometer. This is done by laser-induced breakdown spectroscopy

(LIBS), which uses a laser pulse to ablate and ionize a target. [32] However, the in-

tensity on target decreases dramatically with distance from the target due to diffrac-

tion. [32] This results in problems when observing targets where it is dangerous or

inconvenient to be in close proximity. There is promise that ultrashort pulses can

solve some of these problems. Because ultrashort pulses are subject to a limited Kerr

effect in air (see Chapter II), self-focusing of the beam can occur resulting in filaments

being created in the air. These filaments can then be used to ionize a target, which

is known as remote filament-induced breakdown spectroscopy (R-FIBS). [27,32] Fig-

ure 1.1 shows a typical setup and pattern created on the target. While a short distance

was used for the experiment, it is believed that ultimately the effect can be created

at distances of up to several kilometers, a clear advantage for a sensor system. [32]

Another advantage, though of less importance, is that enough power is put on target

to cause ablation but due to the changes in the atmosphere over time the filaments

move causing no obvious markings. [27] This can be advantageous is many situations

when discretion is necessary.

Of specific interest to the USAF is the possible development of enhanced laser

gyroscopes. There are still a number of mechanical inertial navigation units being

used in aircraft systems. Ring laser gyroscopes are becoming more popular due to the
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Figure 1.1: Experimental R-FIBS setup with sample signal showing approximately
30 filaments across the overall beam. [41]

lack of moving parts. They work similar to a Sagnac interferometer like that shown in

Figure 1.2. [40,41] As the ring is moved, the beams in the two directions end up with

different path lengths and as a result the interference pattern changes. The problem

with ring laser gyroscope is that they have difficulty registering changes when angular

velocities are very slow. [40] Low angular velocity aerial systems such as unmanned

aerial reconnaissance vehicles could benefit from inertial systems built around smaller

and faster pulse rates, providing back-up navigation capabilities if global positioning

system (GPS) guidance is unavailable due to jamming or systems failures. It can also

further advance GPS systems by using this type of gyroscope in satellites to increase

accuracy of placement in orbit and reduce deviations.

Along the same lines as the laser ring gyroscopes is the possibility of ultra-stable

atomic clocks. This can be an advantage in the continual tug of war to reduce the size,

while making more accurate and more economical clocks. Ultrashort pulses enable a

relatively simple and cheap method to link optical spectra with the current microwave

spectra standard. [37] The key is that at these optical frequencies are calibrated down

to the radio frequency standard. [37] The Air Force interest for this is primarily

GPS related. More accurate clocks in the GPS receivers and satellites increase the

precision that the signal times are calculated. Current commercial systems have
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Figure 1.2: Example of a Sagnac ring interferometer. As the beam enters the
interferometer it is split into two opposite paths and the pattern of interference can
be analyzed. [41]

precision around 20 meters without local digital correction. [20] The possibility of

getting precision from space below a meter is becoming a reality.

Another leading edge technology research is “Fast Ignition” fusion technology.

Michael Perry et al. at the Lawrence Livermore National Laboratory have had success

working on this aspect of research. Essentially, this consists of using an ultraintense

pulse beam, dividing it into separate parts, and then focusing them from multiple

angles onto a compressed fusion fuel. [13, 28] Specifically, they were using the aptly

named Petawatt laser, which was able to provide 680 joules of energy in 440 femtosec-

onds resulting in a power over 1.5 peta or 1015 W. While they were not able to create

fusion, their work provided enough information to show that there is a future for this

research. [21] The most current research is looking at effects on plasmas which are

leading into the compressed fuels. The implications of success would have an effect

on everything from energy production to space travel. [28] As always, however, new

ideas and new research must continue to be followed.

1.2 Current System Limitations

1.2.1 Size, Support and Price. One of the biggest limitations on current

extreme light sources is the size of the system. Most mature systems have large

laboratory footprints. This is due to a combination of the lasers and the tremendous
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amount of support equipment needed. The primary reason for the large size is the need

to correct for dispersion or pulse broadening. In mature systems, this is accomplished

by multiple prisms which most often have to be separated over 50 cm with the proper

angles corresponding to the Brewster’s angle for the peak wavelength. [14, p.105-117]

An example of the support equipment needed is that most Ti:sapphire lasers are

pumped with a high power argon-ion laser. [14, p.361] This then requires both a high

current driver and a cooling system for the laser cavity. Due to the high pump power

portions of the solid state section of the system, namely the crystal, need to be cooled,

adding many more pieces to an already complex system.

Behind all of this is the cost of the laser system. Most industrial and commercial

lasers are very expensive due to the precision that must be used in manufacturing these

systems. This, combined with necessary peripherals such as nitrogen purging, special

humidity considerations, and required ventilation, adds upkeep and construction costs

to the system and often pushes the overall costs for these systems into the millions of

dollars. The increased availability of diode lasers and new crystals is rapidly bringing

the price down. The availability of these less expensive technologies made the research

in solid state lasers possible for this thesis.

1.2.2 Capability. It is in the aspect of capability that the biggest deviation

is present in mature systems compared to the research systems. Specifically, com-

mercial systems, while relatively inefficient, have very high output powers due to the

availability of high power pump lasers. When working with smaller systems, specifi-

cally those pumped with diode lasers, the pump powers are a major limitation. While

output power goals are not specifically addressed the general goal is efficiency for the

system due to the portability goal expressed below. As the continued growth in the

semiconductor laser industry booms this problem should be overcome.

Recently, and where the research systems outclass the commercial systems, is

the push to create faster pulse repetition rates for various applications. The biggest

factor is that the repetition rate is directly related to the length of the laser cavity.
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[31, p.1042] [14, p.279] Due to design limitations and necessary corrections for group

velocity, most mature systems require cavities over 150 cm. The result is that it

takes longer for a pulse to travel through the cavity and make it out through the

output coupler. Specific discussions of how it is possible to shorten the cavity will be

discussed more in Chapter III.

1.2.3 Portability. This, by far, is the biggest limit to the use of ultrashort

pulsed lasers outside of the laboratory and is an important focus of this thesis. As

previously discussed, size is the primary reason that portability is almost impossible.

Many applications require that the size of the system be small in order to fit into

a required space or be able to move freely. The second reason is that these types

of laser systems usually need to be powered by large current sources, which can be

a problem even for modern batteries. Such a current draw would require frequent

battery changes or a large capacity system both of which are detrimental to use in

external, and in the case of military hardware, extreme environments.

1.3 Goals

This research has three primary goals. The first goal is an introduction into the

study of ultrashort pulsed lasers and the related lab techniques. Work in this field is

a new level of optics and while the basics of electrodynamics and beam propagation

are the same there are some very specific properties that have to be used in order to

achieve proper pulsing. This bleeds over into lab techniques because there are a large

number of specialty components used in the laser and very specialized measurement

equipment that must be used in order to analyze the pulses being produced. This

basic experience is important and needs to be passed on to the future researcher using

this system.

The second goal is to analyze the components of the system and their role in

producing ultrashort pulses. The purpose is to provide a baseline understanding of

the advances that are allowing the reduction is size of the system. This includes a
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discussion of the different types of solid state crystals being used, the equipment to

induce mode locking, and group velocity dispersion correction components. Closely

related to this discussion is an examination of system portability. Critical to research-

ing this goal is the reduction in laser cavity size and though not completely explored,

there are suggestions for more detailed future research.

Along the lines of future research, the last goal for this thesis is to provide a

baseline capability for AFIT and AFRL/SN for future research. Neither institution

has much experience with small cavity ultrashort pulsed lasers and as more of the

possibilities of this type of laser are formulated that experience needs to grow. The

key was providing a system and system design that is robust and easily duplicated

for researchers anywhere to use as a basis.
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II. Background

The overall story of the laser and optics are well beyond the scope of this thesis. What

is important is the physics behind pulsed lasers, and its application to the current

research in short-pulsed solid state lasers.

2.1 Why Pulse?

The science of pulsing lasers has moved quickly along with continuous wave (cw)

lasing techniques. In fact, the first ruby laser was a pulsed laser due to the properties

of the flashlamps being used and the ruby itself. [31, p.60-61] The overriding reason for

pulsing a laser is to create a very short and very intense burst of laser power which is

often much higher than normal cw lasing. [31, p.1004] It must be noted, however, that

in order to extract the energy stored in the laser crystal, the pulse mechanism must

be placed inside the cavity. As shown in Figure 2.1, if the system is pulsed outside the

cavity, the maximum power that is going to be achieved is the cw power. [30, p.522]

When pulsing from inside the cavity, the difference is that the time of the pulses needs

to be taken into account. This is shown by the differences between Equations (2.1)

and (2.2) where 〈I〉 is the cw intensity, ∆t is the time between pulses, τp is the pulse

width and Ip is the intensity of each pulse assuming a square pulse. [34, p.285]

Figure 2.1: The difference between pulsing systems (a) outside and (b) inside of
the cavity. [30, p.522]

〈I〉 =
Power

Area
. (2.1)
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Ip =
〈I〉 ×∆t

τp

. (2.2)

For example, using numbers close to those expected from the designed system,

assume a 0.1 watt average power cw laser with a beam diameter of 0.2 cm. The cw

intensity is 〈I〉 = 0.1 W/(π× 0.1 cm2/2) = 6.366 W/cm2. A cavity with a length, L,

of 1 meter using Equation (2.3) will allow a pulse frequency of 149.9 MHz, which is

the amount of time it takes for a pulse round trip inside the cavity, or a pulse every

6.671 ns. [31, p.1042] [14, p.279]

ν =
c

2× L
(2.3)

T =
2× L

c
.

Using this calculation and a pulse width of 150 femtoseconds, and plugging this into

Equation (2.2) gives a pulse intensity of Ip = 6.6366 W/cm2×6.671 ns/0.0001 ns =

442.7 kW/cm2. This major jump in target power allows the use of lower power (and

cheaper) lasers to investigate pulsed phenomena with the possibility of extrapolating

results to higher power systems, thus, enabling some of the fascinating technologies

mentioned in Chapter I

2.2 Solid State Lasers for Pulse Production

Solid state lasers are becoming the standard type of laser for ultrashort pulse

production. Early work in this field was primarily done with dye lasers. [14, p.371] The

problem with those types of lasers is that they can be very messy and the support

equipment for flow and concentration control is rather bulky along with very low

average powers. Solid state lasers have allowed the size of the systems to decrease to

the point that an entire system, including power supply, was put onto a 22 cm×28 cm

optical breadboard. [2] This is a big step toward making these systems more portable,
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and thus, useful. The focus here is on overall properties of solid state lasers and the

impact of the Ti:sapphire laser with the specific choices made in Chapter III.

2.2.1 Gain Media. Generally, the solid state gain media used for ultrashort

pulse generation are rare-earth ions doped into glass or crystal, normally from 0.5%

to 5%. [31, p.61] The dopant usually needs to have a carrier lifetime longer than

typical cavity round trip lifetimes. [14, p.358] Most often, the dopant is chosen for the

wavelength produced and specific qualities that allow useful interaction with other

parts of the system. An example of this is having a low quantum defect, such as

ytterbium doped crystals, which lends itself to high efficiency with properly tuned

pump lasers. [14, p.358] The choice of the crystal or glass is a little more arbitrary.

Most often, they are chosen for either their thermal properties or their emission cross

section size both of which result from the lattice properties. [35] Appendix A contains

a short list from Viana et al. of common dopants and the different types suspension

materials that are used. It is important to note that the gain for these crystals is low

compared to most dye lasers due to a smaller gain cross section so the crystals are

usually several mm long compared to several hundred µm for dye lasers. [14, p.359]

This has a large effect on the width of the pulse and will be discussed more with group

velocity dispersion.

2.2.2 Pump Lasers. The rapid progress in the evolution of pump lasers is

the main reason that advancement in this field has been so exponential. The dopant in

the glass or crystal is often very pump wavelength restricted due to the proper energy

levels for stimulated emission. The primary result is that the researcher is limited to

a dopant that has a matching pump laser wavelength. There normally is some form

of pump available but it is often severely restricted in power. This changed however

with advances in optical storage and optical communications laser technologies. [5,24]

This push has encouraged semiconductor laser design in many different wavelengths.

The first result has been that more dopants have become usable and second it creates

a relatively low cost pump system that does not require a large footprint. The specific
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type of semiconductor laser has little effect on performance of the systems. The main

problem with some of these diodes, however, is that the output beam is not circular

but a line so focusing down to the small spot sizes necessary can be troublesome.

Despite this flaw, it looks like almost all ultrashort pulse lasers in the future are going

to be pumped by a semiconductor laser.

2.2.3 Titanium Sapphire Laser. The titanium doped Sapphire (Ti3+:Al2O3)

laser is the bedrock and most popular solid state system for creating ultrashort pulses,

and as such, needs to be discussed as background. [14, p.360] This type of system is

very mature because there is an immediate high power pump available in the form of

the argon-ion laser which has an output wavelength of 514.5 nm. [5, 10, 43] Using a

gas laser as a pump versus a semiconductor laser results in a decrease of efficiency but

a solution is being formed for Ti:sapphire by using a frequency doubled neodymium-

vanadate laser (Nd:vanadate)(Nd:YVO4) which has the benefit of improved efficiency.

[14, p.361] A typical Ti:sapphire laser is shown in Figure 2.2. [14, p.361] These lasers

are popular because of their controllability (as illustrated in Figure 2.2). Critical is the

ability to adjust the output wavelength. Most Ti:sapphire systems have a tunability

from 650-1200 nanometers allowing for considerable effects testing. [5, 10] [30, p.480]

This is accomplished using the wavelength dispersion from the second prism and

an aperture. [14, p.362] The other controllers allow adjustment of the dispersion, and

resulting group velocity dispersion and mode selection. [14, p.362] Work will no doubt

continue into the immediate future on the Ti:sapphire laser.

2.3 Common Pulsing Schemes

Overall, there are four primary ways to pulse a system inside the cavity. Each

has their own advantages and disadvantages and can be used actively, passively, or

both. We will assume a solid state laser being pumped by an outside source of

flashlamps or another laser.
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Figure 2.2: Typical Ti:sapphire laser cavity with possible controls indicated. [14,
p.361]

2.3.1 Gain Switching. Gain switching is essentially turning the pump on

and off. [30, p.521] [31, p.966] This is the simplest way to pulse a system and is

completely actively accomplished. The goal when doing this is to rapidly overcome

the threshold of the system by creating a high population inversion and gain resulting

in more inversion than photons. [34, p.240] [31, p.967] A graphical example from is

shown in Figure 2.3. [30, p.523] The major disadvantage of this technique is that it

is limited by the speed that the pump can be turned on and off with the required

intensity. The most logical use of this technique is in pulsing semiconductor lasers

and it is not much use for this research.

Figure 2.3: Profile of the effects of gain switching. [30, p.523]
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2.3.2 Cavity Dumping. Cavity dumping is essentially the opposite of gain

switching in that instead of releasing the stored inversion it releases stored photons.

[30, p.524] This is done by either removing one of the mirrors of the cavity or using

another system to rapidly open the cavity. The reaction of the system in shown in

Figure 2.4. [30, p.524] An example of a system that does not physically remove the

mirror is shown in Figure 2.5 which works by using a Pockels cell to induce a rapid

quarter-wave plate reaction dumping the photons out of the system. [31, p.976] The

advantage of this type of setup is that unlike a normal output coupled system it has

the ability to release almost all of the built up intensity at one time. The disadvantage

is that this technique is completely active and not very useful for this research.

Figure 2.4: Cavity dumping described as removing the mirror at one end of the
cavity dumping the stored photons. [30, p.523]

2.3.3 Q-switching. This type of pulsing relates more to gain switching in

that it stores the energy of the system in the population inversion of the system.

This is done by causing a large loss until a desired time and then lowering the loss

in order to allow a brief oscillation in the cavity. [30, p.527] This type of pulsing has

the advantage in that it can be accomplished both actively and passively. An overall

example is shown in Figure 2.6 and several specific ways to accomplish this are shown

in Figure 2.7. [30, p.523] [31, p.1006] What is relevant to this research is the saturable

absorber technique since this leads to the same ideas as a saturable absorbing mirror

which will be described in more detail in the next section. The primary disadvantage
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Figure 2.5: Example of an electroptic cavity dumping system. [31, p.976]

of Q-switching is that the pulse train is not necessarily constant and that pulses can

be different temporal distances apart. Despite this problem Q-switching can produce

ultrashort pulses and steps into the next form of pulsing.

Figure 2.6: General Q-switching setup. [30, p.523]

2.3.4 Mode Locking. Mode locking is the standard method of creating

pulses in modern ultrafast and ultrashort pulse research and as such needs to be fully

explained. The usefulness of this technique is that, while it has less energy per pulse

than Q-switching, its pulse rate is faster and the pulse widths are shorter. [34, p.311]

The basis of mode locking is, “to establish a phase relationship between longitudinal

modes,” per Diels and Rudolph. [14, p.277] Essentially, this means that the goal is to

get most of the phases of the modes of the cavity to be equal at the same time and

form a large pulse of energy. As a side note, the radial modes generally contribute
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Figure 2.7: Common laser Q-switching systems. [31, p.976]

to amplitude noise. [14, p.325] Accomplishing this task is more complex than that

statement implies so a better description is required.

The general description of the fields of N modes within an oscillating system is

shown in Equation (2.4) where the taking the real part is assumed. [31, p.1044] [34,

p.298]

E(t) =
N∑

n=1

Ene
i(ωnt+φn) (2.4)

The overall goal is to get most, since for a “real” laser it is impossible to get all, of the

phases φn aligned together at the same time to create an overall greater field. The

modes then become complimentary and create an intense short pulse with an overall

field intensity of |E(t)|2. [31, p.1054] The adding of these modes remains true no matter

what their amplitudes. Two examples are shown in Figure 2.8 and Figure 2.9. [31,

p.1047-1049] It is important to note that the intensity is the square of the field, so
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the addition of different modes can cause the pulse to quickly out grow noise. For

example, if two modes are added the intensity would be four times the single mode,

but if five modes are added, it would be 25 times stronger than the single mode. For

a typical 100-femtosecond pulsed laser, there are over 100,000 modes contributing

resulting in an intensity 1010 greater than a single mode. [14, p.291]

Figure 2.8: Superposition of 3 equally spaced frequency components in phase at
t = 0 and t = T . [31, p.1047]

2.3.4.1 Time and Frequency Domain Analysis. Primary analysis for

the cavity effects, pulse train, and pulse properties can be completely characterized in

either the time or frequency domain. The one that seems most intuitive is looking at
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Figure 2.9: Various intensity examples for different modes, amplitudes and phases.
[31, p.1051]

this information in the time domain with the real field E(t), having pretty much any

shape. [31, p.1043] With a Fourier transform, this can be taken into the frequency

domain as shown in Equation (2.5) where Ω is the frequency, |Ẽ(Ω)| is the spectral

amplitude, and the important factor Φ(Ω) is the spectral phase. [14, p.2]

Ẽ(Ω) = F{E(t)} =

∫ ∞

−∞
E(t)e−iΩtdt = |Ẽ(Ω)|eiΦ(Ω) (2.5)

Analysis often jumps between the two interchangeably and care needs to be taken

that the proper data form is being looked at in order to make the proper conclusions.

Importantly, if you have the frequency data, you can interpolate back to the field via

Equation (2.6) since E(t) is real and Ẽ(Ω) = Ẽ∗(−Ω) is true. [14, p.2]

17



E(t) = F−1{Ẽ(Ω)} =
1

2π

∫ ∞

−∞
Ẽ(Ω)eiΩtdΩ (2.6)

Time domain analysis is based on looking at the signal passing a specific refer-

ence point and how that signal changes over successive round trips, noting that the

reference point can be inside or outside the cavity. [31, p.1043] An example of this is

shown in Figure 2.10 with the periodic signal on the left and its power spectrum on

the right. [31, p.1044] The advantages of time domain analysis are in looking at how

different parts of the cavity affect the pulse shape. [14, p.291] Parts that have extra

effects are the mirrors and any type of absorbers in the cavity. This will become more

evident in Chapter III and Chapter IV when discussing the component properties.

The frequency domain analysis is most effective when talking about the overall

cavity and the pulse train, but not the pulses themselves. Usually, this is due to

the desire to know more about the longitudinal modes of the system than the exact

shape of the field. Most of the time this is an approximation because the number and

magnitude of the modes is constantly changing. [14, p.291] An excellent example of

the transition between the time and frequency domains is shown in Figure 2.11 from

Verdeyen. [34, p.297] The example shows how it is possible to characterize the signal

in either time or frequency and have good characterization which becomes better with

help from phasor analysis described in the next section.

2.3.4.2 Phasor Analysis. Another popular analysis technique is the

phasor analysis technique. Essentially, this is an extended version of the frequency

domain analysis. The basic premise is that each mode of the cavity has a phase

amplitude and phase angle, φn, in Equation 2.4. Normally, the phase amplitude and

angle are represented as a vector in mode space. An assignment is then made that

the centermost mode component is stationary in time with the other modes rotating

at the beat frequency of the center mode. [31, p.1047] Modes then rotate in different

directions depending if they are higher or lower in frequency. The modes further away

from the central frequency rotate at a higher rate than the ones closer. [31, p.1048] The
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Figure 2.10: Time signal E(t) and power spectrum for a periodic signal. [31, p.1044]

overall amplitude is then the added magnitude of these phaser vectors. Two examples

are shown in Figure 2.12 and Figure 2.13. [31, p.1048] [34, p.299] Figure 2.12 shows

an example where all of the modes have equal amplitudes and Figure 2.13 have more

realistic differing amplitudes. Overall, this is kind of a crude method of analysis but

provides a good visual example of how all of these modes need to align.

2.3.5 Methods of Mode Locking. There are many ways to induce mode

locking in a cw laser, including both active and passive means. Active examples

include the use of amplitude modulators operating at the round trip frequency of the

cavity or phase modulators which act as frequency modulators. An example of an

amplitude modulator setup is shown in Figure 2.14. [31, p.1056] More useful, especially

for small cavity systems, is the use of passive techniques. There are several ways to do

this, but I am going to concentrate on Kerr-lens mode locking and saturable absorber

mode locking. These are currently the most popular types used, are the ones that are
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Figure 2.11: Time (a) and frequency (b) domain representation of a modelocked
laser. [34, p.297]

used in this research, and have the unique advantage in that they allow the shortest

pulses seen. [31, p.1058]

2.3.5.1 Kerr-lens Mode Locking. The basis for KLM is use of the

optical Kerr effect. This is a property of a third-order nonlinear reaction in a medium.

[30, p.752] In order for the effects to become appreciable, however, the light impacting

on this medium needs to be strong enough to induce an effect by this reaction. [31,

p.379] Once that limit has been surpassed, the result is a nonlinear polarization effect,

shown in Equation (2.7), effecting the original frequency of light by the intensity. [30,

p.752]

PNL(ω) = 3χ(3)|E(ω)|2E(ω) (2.7)

This results in a change in susceptibility, ∆χ, at the original frequency which causes a

change in the index of refraction as noted in Equation (2.8), where η is the impedance
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Figure 2.12: Rotation phasor example for three equal amplitude phases. [31, p.1047-
1048]

of the dielectric medium and ε is the electric permittivity. [30, p.752]

∆n =
3η

εon
χ(3)I = n2I (2.8)

The overall result is that the index of refraction becomes a function of intensity,

n(I) = n + n2I. [30, p.752]

What then occurs, and what is most important, is that there is a self-phase

modulation that begins to have an effect. [30, p.753] This effect is dependent on the

power of the beam, the area that it fills, and the length of the medium. The change
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Figure 2.13: Rotation phasor example of a mode locked laser with different mode
amplitudes. [34, p.299]

Figure 2.14: Active amplitude mode locking in a standing wave or ring laser cavities
with description in time and frequency domain. [31, p.1056]

in phase of the high power location is given by Equation (2.9) where n2 is the index

defined before, L is the length of the medium, A is the area of the spot size, λo is the
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carrier wavelength, and P is the power of the beam. [30, p.753]

δϕ = 2πn2
L

λoA
P (2.9)

Maximizing this change incurs maximizing L and P while minimizing A. This effect

is most useful when light is controlling light in terms of intensity. [30, p.753]

The effect that is most useful for mode locking is directly related to the phase

modulation. If n2 is positive and finite, the higher the intensity ,the higher the index

of refraction. [31, p.380] The result, if the center of the beam has the most intensity, is

that there is an amount of self-focusing since the edges of the beam will see a smaller

index of refraction. A visual example is shown in Figure 2.15. [39] An aperture is then

put into place to cause the cw lasing modes to see more loss than the phase locked

modes. Due to the higher gain the phase-locked modes see, more of the unlocked

modes align themselves to achieve this gain. Again, it is impossible to get all of the

modes in phase but those that are easily overshadow the random modes. Over time,

the repeating field inside the cavity builds up and creates a pulse that travels the

cavity when these modes are in alignment. At the output coupler, a little bit of the

pulse is let out while the rest repeats its trip in the cavity. As a result, the pulse rate

is very consistent, and if other factors such as pump power and temperature remain

constant, the pulse energy is consistent. Due to these properties, this is the most

common way to mode lock mature systems such as the Ti:sapphire laser.

2.3.5.2 Saturable Absorber Mode Locking. The saturable absorber

is becoming the standard and easiest way to accomplish mode locking. Saturable

absorbers work essentially the same way as KLM in that the cw modes see more loss

than the phase locked modes. This begins with a small increase in noise which is able

to partially saturate the absorber. [31, p.1118] This then allows the energy to increase

for that noise turning it into a pulse that then begins to align more modes to it. There

are two reasons why it is the standard. The first is that it is completely passive. There

is no worry about parts moving properly and how the rest of the system is affected.

23



Figure 2.15: Example of Kerr-lens mode locking using a Kerr material and a hard
aperture. [39]

The second is because the advancement in saturable absorber technology has been

very rapid.

Saturable absorbers can be any type of gas, liquid, or crystal of which the key

is that it absorbs constantly at low intensities, but as the intensity rises, the absorber

becomes “saturated” and transparent to the light. [31, p.1057] Equation (2.10) is how

the saturation intensity is calculated with hν as the photon energy, σA is the material

absorption cross section, and TA is the absorber recovery time. [15]

Isat =
hν

σATA

(2.10)

It is important to remember that the saturation is a nonlinear process and, as such,

has unique qualities as the initial saturation is building. [15] [14, p.316] Figure 2.16

shows an example for an absorber on a mirror which will be described more later. [15]

Originally, these absorbers were usually dyes that were injected across the beam

using the ability to control the density of the absorbing particles in the dye. [31,

p.1118] [14, p.315] The push more recently has been into the use of semiconductor

absorbers primarily due to the ability to tailor the absorption to specific wavelengths

and intensities. [15] For this research the designed systems use this type of absorber.

The main disadvantage of semiconductor absorbers, however, is that they can be
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Figure 2.16: Nonlinear buildup of reflection from an absorber mounted on a mirror.
As the absorber is saturated more light gets to and is reflected by the mirror. [15]

damaged by too much intensity. Care needs to be taken to provide a balance between

the needed intensity and maximum intensity on the material.

There are two general types of semiconductor absorbers. The primary constraint

on both types is that the recovery time be less than the round trip time for a pulse

in the cavity. [14, p.315] The first is a fast absorber which relaxes much faster than

the width of the pulse. [31, p.1105] An example of this type of absorber is a Kerr lens

material in which the effect is almost instantaneous and acts like a soft aperture. [14,

p.315] The other types are slow absorbers in which the relaxation time is more than

the width of the pulse. This is useful in that it not only provides the mode locking

capability but also can work on the shape of the pulse due to the attenuation at the

leading edge of the pulse before saturation is obtained with little effect on the trailing

edge. [14, p.317]

Of recent advent is the semiconductor saturable absorbing mirror or SESAM.

Essentially, a SESAM is a saturable absorber over a high efficiency Bragg reflector.

[12,15] The absorber on the top performs the function of inducing the system to pulse

with the full mode locking done by KLM within the gain medium itself. The Bragg

reflector beneath acts as a high quality reflector to those pulses that get through. A

time line of designs is shown in Figure 2.17 by Keller et al. [15] Like the nonlinearity

shown in Figure 2.16, there is an analogous action for pulsing except the term looked

at is the incident pulse energy, Ep. Figure 2.18 shows the buildup past the saturation
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fluence given in Equation (2.11). [15]

Esat =
hν

σA

(2.11)

Figure 2.17: Evolution of the initial designs for saturable absorbing mirrors. [15]

The SESAM has two major advantages over other saturable designs. The first

is size. A SESAM essentially just takes the place of one of the four mirrors needed

in a solid state cavity. This makes it simple to place into an established cw lasing

setup. A comparison can be shown between Figure 2.19 from Siegman [31, 1118] and

Figure 2.20 from Agate. [2] Aligning the system from Agate would be much easier

since the angle of the absorber would be critical. The second and probably most

Figure 2.18: Nonlinear energy density buildup of reflection from an absorber
mounted on a mirror. [15]
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Figure 2.19: Layout for a cw passively mode locked Argon-ion pumped dye laser.
[31, 1118]

Figure 2.20: Example of a diode pumped compact femtosecond laser cavity. [2]

important advantage of a SESAM is that it can be tailored to the specific wavelength

and relaxation times desired by the researcher. [15]

As noted, there are several different designs of SESAMs which have different

usable properties. Most common are the antireflection (AR) coating as shown in

Figure 2.21 using multi quantum wells (MQW). [15] This type has the advantage in

that the AR coating provides some protection for the components underneath. A

subset of this design is also important to note. This is termed by Keller et al the

dispersion-compensating saturable absorbing mirror or (D-SAM) shown as the far

right type in Figure 2.17. [15] What this type of SESAM does is provide a small

amount of negative group velocity dispersion which will be discussed more later.
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Figure 2.21: General design of an AR coated SESAM. [15]

2.4 Group Velocity Dispersion

Once mode locked, the key behind performance of systems is the pulses them-

selves. The biggest thing that effects these pulses is dispersion. Dispersion occurs

due to an index of refraction that is frequency, and therefore wavelength, dependent,

resulting in effects on the difference between the higher and lower frequencies of a

pulse. [30, p.176] This analysis is going to stay in the frequency domain but the same

description could be applied to wavelength analysis. Most optical components have a

positive dispersion coefficient, which means that a pulse will spread temporally due

to the velocity difference between the “blue” and “red” portions of the pulse. There

are cases, however, where it is possible to create a negative dispersion. To understand

this, a deeper understanding of dispersion and specifically group velocity dispersion

(GVD) needs to be made.

The initial setup comes in the form of Equation (2.12) which is the reduced wave

equation in the frequency domain with its general solution, Equation (2.13). [14, p.22]

[ ∂2

∂z2
+ Ω2ε(Ω)µ0

]
Ẽ(z, Ω) = 0 (2.12)

Ẽ(z, Ω) = Ẽ(0, Ω)e−ik(Ω)z (2.13)
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What is important to note here is the k(Ω) which is the dispersion relation, k(Ω) =

Ωn(Ω)/c, which can then be expanded into Equation (2.14) where ωl is the carrier

frequency. [14, p.22] [11, p.298]

k(Ω) = k(ωl) + δk (2.14)

Now there is a need to step back and look at the big picture. What this is really

showing is that the dispersion relation is, obviously, frequency dependent since the

index of refraction is frequency dependent. It is then possible to split the information

present into the carrier or center frequency and the portion away from that point

which is affected by the different index. This can be expanded as shown in Equation

(2.14). This expanded relation can then be further expanded by the derivative of δk

in terms of Ω expanded around ωl via a Taylor’s series expansion due to the need for

Equation (2.12) to obey the conventional transmission line relation shown in Equation

(2.15). [34, p.110]
∂Ẽ(Ω, z)

∂z
= −ik(Ω)Ẽ(Ω, z) (2.15)

The result is shown in Equation (2.16) with the understanding that the first term has

already been pulled out in Equation (2.14) and has been truncated to two terms under

the assumption that the overall envelope of k is small compared to the k(ωl). [14, p.23]

δk =
dk

dΩ

∣∣∣
ωl

(Ω− ωl) +
1

2

d2k

dΩ2

∣∣∣
ωl

(Ω− ωl)
2 + ... (2.16)

Taking the derivatives described keeps things moving forward. The k(ωl) is just

the phase constant of the system at the carrier frequency. The derivatives begin to

specify the difference. Recalling k(Ω) = Ωn(Ω)/c and using this in the first term

gives Equation (2.17) where ng is the group index of refraction and vg is the group

velocity. [34, p.111]
∂k

∂Ω
=

n

c
+ Ω

dn

dΩ
=

ng

c
=

1

vg

(2.17)
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The second part of Equation (2.16) is what becomes important for what we are

concerned. The result is shown in Equation 2.18 introducing the shorthand notation

k”l. [34, p.111] [14, p.25,32]

∂2k

∂Ω2
=

2

c

∂n

∂Ω
+ Ω

d2n

dΩ2
= − 1

v2
g

dvg

dΩ
= k”l (2.18)

Overall this leads to a generalized form of Equation (2.13) shown in Equation (2.19).

Ẽ(Ω, z) = Ẽ(Ω, 0) exp
(
− ı

(
k(ωl) +

1

vg

− 1

v2
g

dvg

dΩ

))
(2.19)

This is important because it gives the rate of change of the group velocity in terms of

the frequency. This is the term described as the group velocity dispersion parameter

which mathematically shows the reaction of a pulse in a dispersive medium. Of note

it is possible to move this to the wavelength description of the system by the relation

in Equation (2.20) of which a similar relation will be used later. [14, p.25]

d2k

dΩ2
=

2πc

dΩ2

dvg

dλ
(2.20)

With k”l present, an initially small bandwidth pulse will develop a spectral

phase with a quadratic frequency dependence. [14, p.31] The overall result of which

is that an element of chirp is introduced and since, as noted in Equation (2.19), the

intensity, |Ẽ(Ω, z)|2, is unchanged, the pulse has to broaden. [14, p.31] The overall

conclusion is that if k”l is positive when multiplied by a certain distance traveled, the

pulse will broaden. [14, p.32] In almost all cases, k”l is defined with units of fs2 per

distance, since when multiplied by the propagation distance, it gives the frequency

dependence of group delay. [14, p.32]

Every medium that a pulse traverses through, with the exception of a perfect

vacuum, will have an effect of the spread of a pulse. A general visual example is

shown in Figure 2.22 showing how over time the pulse spreads. [30, p.178] This figure

also notes the index of refraction based on wavelength which better shows the pull
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Figure 2.22: General visual example of a pulse traveling in a dispersive medium.
Note the index of refraction as a function of wavelength is included. [30, p.178]

on the different frequencies present. For many types of glasses, the general pattern

shown in the bottom of Figure 2.22 with a high index of refraction in the visual

and near infrared, which then continues to decrease in the mid infrared and beyond,

is prevalent. [7] In most known materials, dispersion is positive and are normally

described using a set of empirically determined equations. Most often, a form of

the Sellmeier equation shown in Equation (2.21) is used, however if the substance is

biaxial, such as crystalline quartz, a Laurent series like Equation (2.22) is used. [14,

p.63] Equation (2.21) is the definition used by Schott Glass but many other forms

exist. [42]

n2(λl) = 1 +
B1λ

2
l

λ2
l − C1

+
B2λ

2
l

λ2
l − C2

+
B3λ

2
l

λ2
l − C3

(2.21)

n2(λl) = A + Bλ2
l +

C

λ2
l

+
D

λ4
l

+
E

λ6
l

+
F

λ8
l

(2.22)

2.4.1 Positive GVD in the Laser Cavity. Overall in the cavity there are three

primary sources of GVD. The first is the dispersion from the air traveled through

in the cavity. This, while small, does have enough of an effect to be of relevance

and becomes important when introducing negative GVD. The second major source

of dispersion is the mirrors within the cavity due to the properties of the mirrors

themselves. The reason for this effect is because of the phase shift upon reflection

of the mirror. [14, p.70] A good visual example in terms of wavelength is shown in

Figure 2.23 with the dashed line representing a high reflector and the solid line a
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Figure 2.23: Phase change due to reflection off of a layered dielectric high reflector
mirror (dashed line) and weak output coupler (solid line). [14, p.71]

weak output coupler. [14, p.71] The relation to the designed wavelength is what is

important, and further away from λ0, the effect can be drastic. Recent advancements

have produced improvement and will be explained in the next section.

By far, the highest contributor to dispersion in a solid state cavity is the gain

medium itself. There are several reasons for this but the most important is that the

crystal or glass usually has a high index of refraction which, when combined with its

frequency dependence, has an increased effect. Specific properties of the crystals used

in this research will be described in Chapter III. Another factor is the amount of

glass that the pulse has to travel through when output coupled.

As a short example, look at borosilicate crown glass (BK7), also known as

Pyrex, which is by far the most popular optical glass and makes up most of our

glass components. [14, p.63] [38] The coefficients, B1, C1, B2, C2, B3, C3 are shown in

Table 2.4.1 which, when input, result in Equation (2.23). [14, p.63] [6]

n(λ) =

√
1 +

1.01046945× λ2

λ2 − 103.560652999
+

0.231792344× λ2

λ2 − 0.0200179144
+

1.03961212× λ2

λ2 − 0.00600069867
(2.23)

The index of refraction as a function of wavelength is shown in Figure 2.24 with the

wavelength determined in µm. [6] It is very obvious that parts of the pulse with a

shorter wavelength, and higher frequency, will progress through the glass much more

slowly.
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Table 2.1: Sellmeier coefficients for BK7, which is the most commonly used optical
glass. [6, 42]

Coefficient Value
B1 1.03961212
B2 2.31792344×10-1
B3 1.01046945
C1 6.00069867×10-3 µm2

C2 2.00179144×10-2 µm2

C3 1.03560653×102 µm2

Figure 2.24: Index of refraction of BK7 as a function of wavelength λ in µm. [6]
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Figure 2.25: GVD as a function of wavelength λ in fs2

µm
.

Lurking behind the implications of having a different velocity in the glass for

different wavelengths is the amount of change in the pulse width over a certain distance

traveled in a medium. The first part of accomplishing this is to use the Sellmeier

equation noted above to find a function for the GVD in terms of a wavelength. The

general equation that provides this information is Equation (2.24) ,of which, the

wavelength dependent portion will be used. [14, p.32]

d2k

dΩ2
=

2

c

dn

dΩ
+

Ω

c

d2n

dΩ2
=

( λ

2πc

)1

c

(
λ2d2n

dλ2

)
(2.24)

Applying this to Equation (2.23) results in a plot like that in Figure 2.25 again in

terms of wavelength in µm. The result is a term in fs2/µm of the GVD at each specific

wavelength. From the example, the GVD for BK7 glass at 850 nm is 40.0 fs2/mm,

whereas it is 25.7 fs2/mm at 1023 nm. Overall, these are relatively low compared to

other portions of the cavity, but they still have an effect.

The next step is to determine the characteristic length. This is essentially the

pulse equivalent of the Rayleigh range common to lasers, of which a general visual

representation is shown in Figure 2.26. [30, p.187] The same general idea applies in

that the useful range is
√

2 × τG0 where τG0 is the input pulse width. The result is
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Equation (2.25) where Ld is the characteristic length. [14, p.34]

Ld =
τ 2
G0

2|k”l|
(2.25)

For the example, assuming a 100 fs pulse at 1032 nm, the resulting characteristic

length is 194.9 mm noting again that the GVD is small for BK7. Once this value is

obtained, further determination can be made about how the pulse reacts traveling in

the medium. If the distance traveled is going to be close to the characteristic length,

it is necessary to use Equation (2.26) to determine the pulse width after traveling a

distance, z. [14, p.34]

τG(z) = τG0

√
1 + (

z

Ld

)2 (2.26)

If, however, z >> Ld, it is possible to use Equation (2.27). [14, p.34]

τG(z)

τG0

≈ z

Ld

=
2|k”l|
τ 2
G0

z (2.27)

In the example, assuming 1 cm of BK7, it is possible to use the first equation, resulting

in a pulse width change to 100.13 fs. So, as expected in a general purpose glass there

is low dispersion, especially at the longer wavelength.

It is important to note that these equations tell nothing about the pulse before

entering the medium. In order to use this properly an initial pulse width must be

provided. This causes the need for a certain amount of guessing as far as the amount

of GVD that is occurring in the system without directly measuring the pulse width

in the cavity because it would destroy the oscillation. What then becomes important

is how much to correct in terms of the GVD in order to either correct the pulse width

or adjust it as desired.

2.4.2 GVD Dispersion Correction. The first method of correction is actually

the newest. Recent advances allow using mirrors with layered substrates to induce

chirping of the input pulse. Essentially, the layers of the substrates reflect different
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Figure 2.26: General representation of a pulse width in a dispersive medium com-
parable to the Rayleigh range in laser optics. [30, p.187]

Figure 2.27: General view of a chirped dielectric mirror and how it works. [14, p.82]

frequencies at different places resulting, at least, in phase correction noted above but

also can compress the pulse. [7] A simple visual example is shown in Figure 2.27. [14,

p.82] Normally, the GVD correction is relatively weak, around 100 fs2 per bounce off

of the mirror, until wavelengths get into mid-infrared range. [7] As a result, multiple

bounces have to be accomplished to achieve the desired correction. An example of

this type of cavity using only negative GVD mirrors is shown in Figure 2.28. [7]

The most popular and more mature dispersion correction process is based off of

the ability to get negative GVD through angular dispersion. [14, p.100] The basis of
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Figure 2.28: An example of a cavity that uses only negative GVD mirrors. [7]

this technique is the optical path lengths (OPL) that different frequencies of the pulse

travel. A general description is shown in Figure 2.29 which shows a beam impacting

an optical element that causes angular dispersion. [14, p.101] The solid line is the

carrier frequency and the dashed line is an arbitrary frequency. The response of a

linear medium has the form of Equation (2.28) and that the phase delay, Ψ, between

the two frequencies is related to the path length, POL, by Equation (2.29). [14, p.100]

R(Ω)e−iΨ(Ω) (2.28)

Ψ(Ω) =
Ω

c
POL(Ω) (2.29)

Using the figure, it is possible to determine the difference in path lengths. The

arbitrary frequency travels a distance of Lcos(α) compared to the carrier frequency,

resulting in the phase delay given by Equation (2.30). [14, p.101]

Ω

c
Lcos(α) (2.30)

From there, the second derivative of Ψ(Ω) with respect to Ω is used to determine the

effect on the pulse envelope. The result is Equation (2.31). [14, p.101]

d2Ψ

dΩ2
= −L

c

{
sin(α)

[
2
dα

dΩ
+ Ω

d2α

dΩ2

]
+ Ωcos(α)

(dα

dΩ

)2
}
≈ −Lωl

c

(dα

dΩ

)2

(2.31)
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Figure 2.29: Angular dispersion causing GVD. The solid line is the carrier frequency
and the dashed line is an arbitrary frequency dispersed differently. [14, p.101]

The approximation is made by assuming that α is very small, resulting in sin(α) = 0

and cos(α) = 1. A couple of things that should be noted are that the dispersion is

negative no matter what side of the carrier frequency the arbitrary frequency is on,

and that it gets more negative the more distance, L, you get from the diffraction

point. [14, p.102] The goal now is to harness the capability to compress the pulses in

the cavity by using a multi-arm cavity and correcting along one of these arms.

The most common setup for using angular dispersion correction is using a dual

prism setup inside the cavity. A cavity example is shown in Figure 2.30 and a general

setup of the prisms is shown in Figure 2.31. [17] [14, p.107] The key behind this

type of correction is geometry. The pulse is compressed because the path lengths of

the different frequencies work out to get closer together. One of the most important

aspects to using this technique is working with matched isosceles prisms. This is

because the faces of the prisms need to be parallel in order to get proper realignment

after the second prism. [14, p.106]

The path of the frequencies can be split into four major areas. The first is the

OPL in the first prism. The second is the OPL traveled through the air between

the prisms. The third is the path through the second crystal, and the last is the air

after the second prism. The overall correction can be described better by looking
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Figure 2.30: Laser cavity of a Yb:YVO4 solid state laser showing the prisms for
dispersion correction. [17]

Figure 2.31: Typical two prism setup used in ultrashort systems. [14, p.107]
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Figure 2.32: Enhanced view of the beam passage through 2 prisms. [14, p.109]

at Figures 2.32 and 2.33. [14, p.109] The OPL differences are easy to notice. The

first is the difference between AA′′ and AA′, as shown in Figure 2.32, and the second

is the shorter OPL via B′′′A′′′ due to the further dispersion by air of the distance,

T, after the first prism, as shown in Figure 2.33. Several different sources work

through the same type of analysis shown above and it is not worthwhile to reiterate

their analysis. [14, p.105-117] What is important is the general solution derived for

negative GVD as shown in Equation (2.32) which is then transferred to wavelength

in Equation (2.33). [14, p.115]

d2Ψ

dΩ2
=

Lg

c

[
2
dn

dΩ
+ ωl

d2n

dΩ2

]
− ωl

c

(
4L +

LG

n3

)( dn

dΩ

)2

(2.32)

d2Ψ

dΩ2
=

λ3
l

2πc2

[
Lg

d2n

dλ2
−

(
4L +

Lg

n3

)(dn

dλ

)2]
(2.33)
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Figure 2.33: Details of a beam through the second prism of the pair. [14, p.109]

One of the best ways to show this is through an example. A common glass used

in prisms is N-SF18, of which Equation (2.34) is the resulting Sellmeier equation.

n(λ) =

√
2.85778 +

0.0000120785

λ8
− 0.0000740644

λ6
+

0.00171433

λ4
+

0.0330238

λ2
− 0.00948893λ2

(2.34)

Using this equation with Equation 2.33 and several assumptions allows a thorough

example. The general assumptions are a lasing wavelength of 1023 nm, 1 cm total of

path length through the prisms, the angle of the sides of the prisms are at Brewster’s

angle for the wavelength, and the angle of deflection is the minimum angle of incidence.

A graphical example of the result is shown in Figure 2.34. Obviously, it is possible

to adjust the desired correction by prism separation and this is where a little of the

guessing portion comes in on how much correction is needed. This type of setup has

overall advantage of chirping up or down as desired comparable to having a certain

number of bounces off of a chirped mirror. The disadvantage of this setup is that

the separation has to be large. For this example a separation of 21.2 cm is needed

even before the correction becomes negative. For useful corrections the separations

are often over 40 cm which provides a distinct disadvantage over chirped mirrors.
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Figure 2.34: GVD as a function of separation, in µm, of two N-SF18 Brewster angle
prisms at a wavelength of 1023 nm.

2.5 Summary

The unique aspects of pulsing lasers can seem quite complex but the basics have

been presented. Even with general assumptions noted they are usually quite accurate.

This background sets the stage for experimental setup described in Chapter III.
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III. Design, Construction, and Initial Setup

Most of the experimental setup for this research concerned cavity design. Each design

had to be tailored to a specific crystal in order to produce proper nonlinear effects

and pulsing phenomena. This resulted in individual designs, reflecting each crystal’s

unique properties. The designs changed over time due to the purchase of improper

parts and manufacturer errors.

3.1 Gain Crystals

As discussed in Chapter II, there is a large number of gain media that can

be used in these types of solid state systems. Using desired system properties and

well-documented successes by other researchers in the field the gain media types were

narrowed down to three crystals. The focus was on creating a baseline system for

future research, but also the desire to improve on existing designs by using better

materials.

3.1.1 Cr:LiSAF. Of the three chosen crystals, the Cr3+:LiSrAlF6 (Cr:LiSAF)

research is the most mature. The availability of chromium doped materials and the

early availability of diode lasers at the required pump wavelength (corresponding

directly to the GaInP/AlGaInP band gap) encouraged early experimentation. [1, 24]

The principal reason for choosing this crystal is the continuing research reducing both

the size and power requirements, developments that will contribute to portable sys-

tems. [2] A thin Cr:LiSAF crystal has been shown to lase with just 2 mW of pump

power, extremely low for a solid state system be it pulsed or not. [14, p.366] When

combined with the mass production of efficient diode lasers operating around the peak

absorption wavelength, this allows the economic selection of the optimum diode for

a specific application. The combination of low pump power and diode selection has

resulted in a small cavity Cr:LiSAF laser being pulsed for over 12 hours using just

six AA batteries averaging 130 fs per pulse and 14 mW. [2] This easily shows that a

truly portable system is achievable in the short term.
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Figure 3.1: Absorption and emission spectra of a Cr:LiSAF laser crystal. [24]et al

In order to provide a good measure of the cavity design, an understanding of the

crystal’s basic properties is necessary. This crystal has a colquiriite structure, with

lasing occurring from the normally 1-5% doped Cr3+ atoms. [19, 24] The primary

absorption of Cr:LiSAF is between 630-680 nm with an emission peak around 850

nm [1, 19, 24] It has been shown, however, that tuning of the output wavelength is

possible between 780-990 nm as emphasized in Figure 3.1. [1, 24] Due to this output

wavelength and tunability, there are a large number of applications available. The

major advantage of this material is the very broad absorption spectrum, allowing

for the use of a wide range of pump lasers. Other advantages include a balance

between the cross section, 4.8×10−20cm2, fluorescence lifetime, 67µs, and the emission

bandwidth as noted above. [24, 35] These advantages, combined with little or no

availability of a diode laser at the direct wavelength necessary for the Ti:sapphire

crystal, provide a distinct advantage over the more mature commercial system.

A 3mm long circular crystal with Brewster-angle-cut windows doped at 5%

was chosen for this work. A schematic of the crystal is shown in Figure 3.2. The

index of refraction at the peak wavelength of 850 nm is shown with the Brewster’s

angle of 54.6◦ for an index of refraction of n=1.41. [36] The index of refraction as a

function of wavelength is shown in Figure 3.3. It is obvious that the index of refraction
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Figure 3.2: Design of Cr:LiSAF crystal showing Brewster angle of 54.6◦.

is low as comparable to many other glasses and crystals. For instance, the index of

refraction for LiSAF at 850 nm is 1.41, as noted above, whereas the index of refraction

of BK7 at the same wavelength is 1.51. This figure also emphasizes how little the

index of refraction changes across the wavelengths for both pumping and emission.

This has a noticeable result on the GVD which is shown in Figure 3.4. This crystal

shows a similar result as BK7 in that, as the wavelength increases, the GVD can

become negative. The specific GVD at the peak emission wavelength was calculated

to be 11.0 fs2/mm which actually turns out to be less than the BK7. This number

is a little misleading, however. While not directly stated the GVD of Cr:LiSAF is

dopant dependent, a property that is suspected for all of the crystals used in these

experiments. The dependence is shown in Figure 3.5. [33] This property is the only

thing that keeps a linear cavity from being possible for this crystal.

However, there are a several limitations when using Cr:LiSAF. The first is low

thermal conductivity. As a reference point, Cr:LiSAF has a thermal conductivity

of 3.1 W m−1 K−1 versus 25 W m−1 K−1 in a Ti:sapphire crystal. At 69◦ C, the

fluorescence lifetime of Cr:LiSAF is reduced by half. [14, p.366] [2] The result is

that optimal use of this crystal occurs below 100 mW of pump power, below which,

it is not necessary to cool the crystal. [2] The second problem is that when using

a Brewster-angle-cut crystal, there has to be a high astigmatism correction in the

cavity. [2] [14, p.366] This becomes necessary to get a small spot size within the

crystal for proper gain since the gain cross section is relatively low compared to other
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Figure 3.3: Index of refraction of LiSAF (blue) and BK7 (red) as a function of
wavelength.

Figure 3.4: GVD of LiSAF (blue) and BK7 (red) as a function of wavelength.
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Figure 3.5: GVD of LiSAF as calculated, for 0.8% doping, and 2.0% doping. [33]

lasers, like dye lasers, used for pulsing. [14, p.365] Another factor is that, while diodes

for the pump wavelength have existed for an extended period, these diodes have

remained at low powers. The last disadvantage is that it has a unique but not well

understood property, a negative thermal expansion coefficient in one direction. [19]

As a result, more care must be used in designing a mount to keep the crystal from

cracking. These, however, are minor issues, and for properly designed systems, the

effects are negligible.

3.1.2 Yb:KGW. While research with Yb:KGd(WO4)2 or Yb:KGW is not as

mature as Cr:LiSAF, it is rapidly gaining a following. Many of the general properties

of Yb:KGW are similar to that of the Cr:LiSAF crystal. The main reason for using

this crystal is for high power applications due to the availability of high power diodes

at the pump wavelength. The crystal’s use for high power applications, however, is

not due to its thermal conductivity, which is on par with Cr:LiSAF at 3.8 W m−1

K−1, but is instead due to a low quantum defect which causes less heat buildup in the

crystal. [35] Lastly, it is used for high powers due to the simple energy level scheme

which limits parasitic processes including up-conversion, exited state absorption and

concentration quenching. [23]
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Figure 3.6: Index of refraction of KGW (blue) and BK7 (red) as a function of
wavelength.

Basic properties begin with a primary gain region of 1023 nm when pumped

at 981 nm with a ytterbium doping normally between 0.5-5.0%. It is possible to

dope at higher levels, but a certain amount of loss at the lasing wavelength becomes

evident resulting in reduced efficiency. [9] The overall gain bandwidth is around 25nm

with an absorption bandwidth of ±3.5 nm from the peak pump noted above. [8]

The crystal has a monoclinic structure with a stimulated emission cross section of

2.8 × 10−20 cm2 and a fluorescence lifetime of 600 µs. [25, 35] These provide a good

baseline of comparison between all of the crystals. The index of refraction based off

of the Sellmeier equation for this crystal is shown in Figure 3.6, noting that it is much

higher than Cr:LiSAF. [26] The resulting GVD in the system is shown in Figure 3.7.

Overall, at the peak wavelength of 1023 nm, the GVD is 167.4 fs2/mm.

Two different sizes for this crystal were chosen. The first size crystal chosen

is used for higher power applications, and was a 5mm height×5mm width×3mm

thick Brewster angle cut crystal doped at 5% ytterbium. The second is a 4mm

height×10mm width×1mm thick crystal also doped at 5%. It is important to note

that KGW crystals are very birefringent, causing a very polarized gain in the medium.
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Figure 3.7: Group velocity dispersion of KGW (blue) and BK7 (red) as a function
of wavelength.

[23] The Brewster angle cut helps with this effect and has the advantage in that it

reduces intracavity losses. The first crystal is for pumping from 1 W to 4 W and the

second crystal is for pumping below 500 mW.

As always, there are several disadvantages to this crystal. The most significant

disadvantage is the quasi-three-level structure of the laser. This structure leads to

a high re-absorption of the emitted photons due to the short wavelength separation

of the pump and gain. [23, 35] Figure 3.8 gives a visual explanation of their overlap.

[23] The other disadvantage is the long fluorescence lifetime which causes trouble

in generating mode-locking due to energy storage and the favoring of a Q-switched

regime. [35] These disadvantages are relatively minor and are further minimized by

the availability of high power semiconductor lasers at the pump wavelength.

3.1.3 Yb:vanadate. Ytterbium orthovanadate (Yb3+:YVO4) or Yb:vanadate

is essentially an extension of Yb:KGW and one of the most recent advances in small

cavity solid state lasers. The basic absorption and emission spectra are the same

as Yb:KGW due to the same doping material. The difference is with the thermal
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Figure 3.8: Absorption and emission spectra of a Yb:KGW crystal. [23]

conductivity and the ability to shorten the pulse duration. [17] While the thermal

conductivity is 3.8 W m−1 K−1 for Yb:KGW, it is 5.23 W m−1 K−1 for Yb:vanadate

which, combined with the low quantum defect, results in much more thermal transfer

efficiency that Yb:KGW or Cr:LiSAF. [17] The other attractive part of Yb:vanadate

is its pump-versus-lasing efficiency. It has been shown that it is possible to KLM

Yb:vanadate with only 190 mW of absorbed pump power resulting in 130 fs pulses

and 8 mW average output power. The index of refraction for vanadate is shown in

Figure 3.9 with a corresponding GVD shown in Figure 3.10. As with Yb:KGW the

index of refraction is high and the GVD at 1023 nm is 203.1 fs2/mm. Thus it is obvious

that the crystal itself is the main portion of the cavity causing dispersion. For this

experiment a 10mm height×10mm width×2mm thickness Brewster-cut crystal doped

at 2.6% Yb was chosen. This choice was based off of current documented research

specifically noting efficiency. [22]

3.2 Initial Designs

Femtosecond pulsed lasers are maturing rapidly and the bridge is beginning to

be built between research and application. The need for smaller and more robust

sources is one area that is lacking, so the primary goal of the initial design was to

reduce the overall footprint of the system. The robustness was partially taken care
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Figure 3.9: Index of refraction of vanadate (blue) and BK7 (red) as a function of
wavelength.

Figure 3.10: GVD of vanadate (blue) and BK7 (red) as a function of wavelength.
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of by using diode pumped solid state laser systems and enhanced by the stability of

a small optical breadboard. This, combined with the ability to run the diode lasers

being used for the Cr:LiSAF system off of batteries, provides a portability which can

be exploited. That leaves the cavity design to allow forward progress necessary to

future refinement.

Even though three crystals were used, there really only needed to be two systems

designed since the Yb:vanadate and Yb:KGW are so similar. The initial designs of

both systems are essentially the same with the major exception of the different ways

of providing GVD correction. The design of the Cr:LiSAF system is based on being

able to use chirped mirrors for correction, while the Yb-based system is designed

around the prism correction described in Chapter II. Other differences were in the

base components of the system and that will be summed up later.

The first primary design decision concerned the type of cavity to use. To meet

the requirements of a small footprint size and multiple passes of the laser light through

the crystal, a z-type, ring, or bow tie cavity were determined to be the best solution.

All three have been used by many other researchers, but a bow tie cavity design, as

shown in Figure 3.11, was determined to be the best starting point for both systems.

[7, 17] The reason that the bow tie cavity was determined to be the best was due to

the reduction in footprint size over a z cavity and the astigmatism control unable to

be reached in a ring cavity.

3.2.1 Astigmatism Correction. The primary reason for picking the bow tie

cavity is the need for astigmatism correction (with a minimal coma impact) which is

necessary in order to create the smallest waist possible. This traditionally has been a

problem for off-axis reflective optics being used in our design. [14, p.328] The general

premise is shown in Figure 3.12. [14, p.328] The basic problem is that, in order to

get the smallest focus size, the beam hitting the concave mirror has to be large, and

therefore, a large off-axis angle is needed to keep the focus outside of the incoming
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Figure 3.11: General bow tie cavity layout pumped from both sides of the cavity.

Figure 3.12: Off-axis focusing of a gaussian beam causing astigmatism. [14, p.328]

beam. This is then further complicated by the gain crystal itself which is where

correction analysis begins.

When entering a crystal at Brewster’s angle, the waists in the x and y axes begin

to diverge. The primary difference, as represented in Figure 3.13, is that the waist

in the y direction is effected by the index of refraction of the medium, whereas the x

axis is not effected by the angle. The resulting waists are calculated with Equations

53



(3.1) and (3.2). [14, p329-330]
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The crystal can then be analyzed in terms of free space travel of the different portions

of the beam as determined by Equations (3.3) and (3.4). [14, p.330]

dx = d
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√
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Then by taking into account the focus of the mirror, the angle that would cause those

waists to be equal at the focus can be determined via Equation 3.5 where R is the

radius of curvature of the mirror, n is the index of refraction of the crystal, and d is

half the distance through the crystal. [14, p.331]

2d

R

√
n4 − 1

n4
=

sin2θ

cosθ
(3.5)

The result is an accurate, but surprisingly small, angle that is very component de-

pendent. For example, for the 1-mm thick Yb:vanadate crystal, the angle turns out

to be 11.5◦ using a mirror with a ROC of 50 mm.

3.2.2 System Components. Each system has the same basic components as

illustrated in Figure 3.11. The multiple pump lasers, two concave mirrors, a SESAM

or high reflector, and an output coupler are common to both systems. Choices on

their properties are crystal specific, however, and need to be taken separately. Specific

component manufacturers and model numbers are noted in Appendix B.
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Figure 3.13: Analysis of differing path lengths in the x and y directions to allow
correction. [14, p.330]

3.2.2.1 Cr:LiSAF Specific Components. The overall design for the

Cr:LiSAF system is shown in Figure 3.14. The pump lasers chosen have an output

power of 100 mW at a peak wavelength of 658 nm, close to the peak absorption of 670

nm. While optimum pumping is below 100 mW due to heat considerations, the ability

to provide extra power on target along with the affordability of the diodes encouraged

this design. The polarizing beam splitters are a general design with optimum wave-

length transmission between 500 and 1200 nm. Focusing lenses with a 50-mm focal

length were chosen to optimize the smallest spot size in the crystal. Other lenses,

however, with different focal lengths were purchased in order to provide flexibility as

design changes occurred.

The mirrors in the cavity had to be chosen by the two different wavelengths in

the cavity. This specifically includes the concave mirrors which needed to transmit

the 658-nm light but be a high reflector for the 850-nm laser light. What is important

about all of these mirrors is that each is chirped for GVD correction at the lasing

wavelength. This is unique, specifically for the concave mirrors, and is designed

to reduce the size of the cavity. It is also important because, as of this writing, the
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Figure 3.14: Design used as a basis for selecting components for the Cr:LiSAF
system.

properties of a system with the concave mirrors being chirped has not been published.

Mirrors with loss from 1-5% were chosen as output couplers. The SESAM was one of

the latest designs as described in Chapter II with an unsaturated absorption of 4%.

The last major individual piece of equipment for the Cr:LiSAF system was the

crystal mount itself. In order to ensure good thermal management, the mount was

made with a copper alloy and contact with the crystal was maintained with indium

foil. This is of increased importance due to the previously mentioned negative thermal

expansion coefficient. Two designs were completed. The first is a clamp design shown

in Figure 3.15 which is free standing, and the second design is shown in Figure 3.16

which was designed to fit into a standard 1 inch mount. The first mount was used for

all research in this thesis.

3.2.2.2 Yb Specific Components. The design of the Yb based systems

is shown in Figure 3.17. The lasers chosen were two fiber coupled diode lasers produc-

ing 450 mW of power at 976 nm. As a backup, two 4-W diode lasers were purchased if

it became necessary to provide higher pumping power. The only portions of this laser

system different from the Cr:LiSAF system are the prisms being used for GVD cor-

rection and the concave mirrors. The prisms chosen were 60◦ isosceles prisms which,

while not at Brewster’s angle, are within 0.5◦. Due to the small separation between
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Figure 3.15: Primary crystal mount design for the Cr:LiSAF system.
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Figure 3.16: Secondary crystal mount design for the Cr:LiSAF system.

pump and lasing wavelengths, these mirrors were more specialized and, while allowing

a lot of transmission, still only allowed approximately 85% of the pump light through.

The SESAM is an excellent off-the-shelf system. The absorption is 1% and is designed

to have a zero GVD for the 1064 nm as shown in Figure 3.18. [4] The mount for the Yb

systems was very simplistic. The 1-mm-thick Yb:KGW and 2-mm-thick Yb:vanadate

crystals were mounted in a piece of copper with a line milled in it for placement. The

design for the 3-mm crystal is just a small 3-mm notch cut in a piece of aluminum.

3.3 Cavity Design

An example of the overall goal for the Cr:LiSAF system and Yb systems is

shown in Figure 3.19. Several designs with a cavity length of less than 15 cm have

shown to be successful at creating ultrafast pulse repetition rates. [16] This capability,

combined with the small footprint, fits well with the previously stated design goals

and prompted use of this design as a basis. The biggest limitation with accomplishing

this design goal for both systems for this thesis was expense for the Yb systems. The
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Figure 3.17: Design used as a basis for selecting components for the Yb systems.

Figure 3.18: GVD and reflectance of a BATOP SAM-1064-1 saturable absorbing
mirror.
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Figure 3.19: Overall goal for the Cr:LiSAF system and Yb system designs depending
on expense.

initial designs were well proven and should have required little adjustment to properly

function. This, however, did not occur due to improper components and crystal cut.

This resulted in a continual evolution in the design and added unwanted complexity to

both systems. The prime factor then became learning from mistakes with balancing

the goals set. Overall, this prevented accomplishing all of our goals, but this can be

easily overcome with component replacement.

Before moving on to the individual system evolutions, it is important to discuss

the common elements in the systems used for setup and alignment. The first is place-

ment of the focusing lenses on XYZ translation stages. This allows very fine beam

steering outside of adjusting pump laser placement and is much more convenient. The

next major commonality is that the two concave mirrors were put on X-translation

stages, allowing movement towards and away from each other. The reason for this is

that these two mirrors work together to get the proper focus inside the cavity and, as

such, need to be at the proper separation to maintain this focus. The last major sim-

ilarity is that the flat mirrors and SESAMs were mounted in tilt, translation, and tilt

without translation mounts with as fine adjustment as possible. The obvious reason

for this is that these mirrors have primary control over the angles in the cavity since

the concave mirror angle is usually adjusted to the calculated astigmatism correction
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Figure 3.20: First working design of the Cr:LiSAF system.

and then left alone except for translation. These common elements contributed to

the easy application of learned techniques to both systems.

3.3.1 Cr:LiSAF Evolution. Initial work with the Cr:LiSAF system used

only one diode instead of the four planned. This decision was based off of previous

published work and the limited availability of diode current drivers. [1, 2] A visual

example is shown in Figure 3.20. This system, and a basis for the rest of the evolutions,

uses 50-mm radius of curvature (ROC) concave mirrors resulting in a calculated angle

of 9.2◦ for astigmatism correction. A 50 mm focal length lens, 99% output coupler,

and a high reflector complete the component setup. One of the important things to

note is the length of the arms of the cavity. Extending the arms is done to ensure

a smaller spot size in the crystal and has the bonuses of easier angle placement and

better feedback control when adjusting to get it to lase.

Primary alignment considerations focused on three aspects. First was space.

In order to get a smaller cavity, and smaller spot sizes, the focal lengths of the

components are small. The toughest aspect of interference was placing the mount in

the cavity. This required an awkward setup with a kinematic stage and influenced the

second mount design even though it was not used. The second alignment consideration

was the placement of the concave mirrors. This is due to the fact that they are not
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directly across from each other. Because the pump light is being put through at the

crystal’s Brewster angle, there is deviation from placement on one face of the crystal

to the other face. If done correctly, the light should proceed down the center of the

cylinder to the opposite face. The overall result is that there is a slight offset to these

mirrors as can be seen in all of the cavity design figures. The last consideration is

specific to the Cr:LiSAF system. Since the pump light and lasing wavelength are so

far apart, they will bounce at different angles through the cavity. The result is that

general alignment without the crystal in place is relatively inaccurate.

Work with this cavity progressed but the inability to get active lasing forced a

change to the initial design. The primary basis for this decision was the belief that

either the spot size on the crystal was too large or there was not enough power on

target. The simplest solution was a four-diode design and adjusting the system as

necessary. Important to note here is that the adjustments were complex. Getting

the proper alignment of beams in the polarizing beam splitter and then keeping them

overlapping past the crystal to the mirror on the same side as the pump diodes is

difficult. Accomplishing this requires a general alignment in the crystal by looking at

the beams immediately after combining in the beam splitter. With that accomplished,

the next best place to look is at the concave mirror on the opposite side of the pump.

Adjustments at this stage are best done by adjusting the beam splitter instead of the

diodes. Once overlapping at this mirror, the next place to look is at the flat mirror

that will be the next bounce. Normally, this should be close to desired overlap and

very minute changes should be needed. Due to too high of losses on the concave

mirrors, even with these changes, the tests proved unsuccessful.

The last design for the Cr:LiSAF system is that shown in Figure 3.21. The basis

for this system was to remove a bounce of the laser light off a mirror in the system.

By doing this, less loss is achieved in the cavity due to the removal of a mirror since

the mirrors in this system proved to have a higher loss than expected. The only

major component changes were a substitution of the right-hand-side concave mirror

to one with a smaller ROC, and then moving it out to twice the focal length from the
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Figure 3.21: Asymmetric z cavity used as last cavity design for the Cr:LiSAF
system.

crystal instead of at the focal length, setting up an optimum focus in the crystal. The

other component that was changed was the output coupler which was replaced by a

high reflector with 0.4% loss. This proved to be the most successful of the Cr:LiSAF

systems and specific results will be discussed in Chapter IV.

3.3.2 Yb Evolution. The initial design for the Yb systems was very similar

to the initial design for the Cr:LiSAF and is shown in Figure 3.22. Specifically, due to

arrival time, the 3-mm thick Yb:KGW was used initially and provided some success.

Two 50-mm ROC concave mirrors were used with a biconvex focusing lens with a

focal length at 50 mm. With this setup, the angle for astigmatism correction was

determined to be 13.6◦. With this success, it was determined that it would be best

to use a dual laser design pumping from both sides of the cavity to provide more

power. Alignment procedures are somewhat similar to that of the Cr:LiSAF system

without having to worry about overlap through a polarizing beam splitter. With the

Yb systems, it is not possible to pump from the same side using a polarized combining

process since the polarization dependence of the crystal is high. This system did lase

well. Specific dimensions will be mentioned in Chapter IV.
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Figure 3.22: Initial working design for the Yb systems.

The next two evolutions of the system are tied together. The first was to change

out the high reflector for the SESAM. Along with this, the right-hand concave mirror

was changed to a 75-mm ROC and the left-hand concave mirror was changed to a

40-mm ROC mirror and moved to twice the focal length from the crystal. The arm

containing the SESAM was shortened to twice the focal length of the 40-mm concave

mirror in order to provide as small a beam size as possible to provide saturation. With

this, the angle for astigmatism reduced to 11.5◦. A schematic of the changes made is

shown in Figure 3.23. One of the biggest problems at this point was interference from

different components of the system. Because the correction angles are so small, the

mount for the SESAM began interfering with the beam to the output coupler. The

overall fix for this was moving the SESAM a little further away than twice the focus

desired. This produced problems later but it was able to lase. There is one primary

disadvantage in this movement. As a result of the shorted arm length, the spot size

in the crystal becomes larger, meaning that some adjustment of the pump lasers is

needed because the pump modes and the cavity modes need to be the same.

In order to provide further clearance from the beam, both concave mirrors were

changed to 100-mm ROC mirrors. The left mirror was repositioned such that it was

focused on the crystal and the SESAM was placed close to twice the focal length.

These changes were quickly adjusted and with a little work the system lased. With

this success, it was possible to move the prisms in for GVD correction as shown
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Figure 3.23: Adjustment made to Yb:KGW system in order to incorporate the
SESAM.

in Figure 3.24. It is important to note that the beams going into the first prism

and coming out of the second prism are parallel. This is a consequence of the GVD

correction and the geometry needed along with the desire to reduce loss. Introduction

of the prisms was accomplished by putting the first prism encountered on an X axis

translation stage so it could be slowly moved into the beam. The second prism and

second output coupler were then placed based off of the minimum deviation angle

of the first prism. Special care was taken to ensure that the total length from the

right concave mirror through the prisms to the second output coupler was the same

as from the right mirror to the original output coupler. This is done in order to ease

in realignment to get the system lasing. Lasing proved to be possible, but it was

determined that it was unable to mode lock since the spot size on the SESAM was

not small enough to saturate the semiconductor. Specific dimensions are included in

Chapter IV.

Armed with this knowledge and several published articles, the push was to

get the Yb:vanadate crystal into the system. [18, 22] The other reason for this was,

since the doping of this crystal was less and it was physically thinner, it would be

possible to get more power onto the SESAM. The first step behind this was resetting

the cavity to that in Figure 3.22 except with two pumping lasers. The reason for

this was essentially to step back to what was proven to work with the least amount of

components involved. This system was worked on for an extended period of time. Due
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Figure 3.24: Layout with introduction of prism GVD correction to the Yb:KGW
system.

to the inability to get lasing, it was determined, with contact from the manufacturer,

that the crystals were cut wrong and no amount of moving the crystal would allow

lasing. With this problem arising, the default was to move to the 1 mm thick Yb:KGW

crystal. This was severely limited by time, and no progress was made except for some

basic observations of the crystal.

3.3.3 General Techniques. The first step is alignment. The most important

alignment factor is to get the pump beams centered in the concave mirrors from both

sides. If this is not completed, added problems arise in that the beam angle changes

direction coming off the mirror as it is translated back and forth. This can cause

instability in the cavity and make accurate adjustments almost impossible. Another

very specific technique that is extremely useful for ensuring proper alignment consists

of putting an iris between a concave mirror and the flat mirror. This is part of the

reason for the long arms of the bow tie. By doing this, it is then possible to adjust

the iris down after aligning it to the beam from the concave mirror in order to see the

reflected beam location from the flat mirror. This has the bonuses in that it reduces

the intensity on the arm mirrors when it is important not to overload a detector and

if adjustment of a concave mirror is necessary, an established realignment capability

is present.
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As far as a procedure to adjust the components of the system there really is

nothing standard. The general goal is to make adjustments to get the maximum

power detected at the output coupler. It is recommended to use a bandpass filter in

front of the detector separating the pump and lasing wavelengths to ensure that the

lasing wavelength is seen. This is important since they bounce at different angles, so

it is possible to see an increase in power as the pump is focused better on the detector.

If the wavelengths of the laser and pump are close, a mode-lock-in amplifier with an

optical chopper is best to separate the pump and lasing wavelengths. The optimum

location for the chopper is in front of the high reflector or SESAM in the system since

only light making it from that mirror to the output coupler will be measured with

the lock-in amplifier.

The best recommendation for adjustments is to establish a list in the order

of component adjustment and stick to that procedure. This way, there is a logical

progression and, if there is an abnormality, the culprit should be readily identifiable.

Behind this is that several components are related and best adjusted together. The

most obvious of these are the two concave mirrors as mentioned before. Other ex-

amples are the output coupler and high reflector or SESAM, and if pumping from

both sides of the cavity, the focusing lenses. All of these can be very sensitive and

care needs to be taken not to over-adjust them. Progress can be made, however, if an

adjustment is made and then back tracked. The best way to work with this problem

is to purposely adjust a component off of the maximum and use its related component

to work it back up in power.

The last pre-lasing technique is based more on lab equipment and availability.

When a system is about to lase, there is a small amount of instability, and depending

on the detector, this might be seen as a minuscule jump with a return to normal due

to integration time. If it is possible, a detector or monitor would be best if it had

a manual setting that made a noise when overloaded. This ensures that, if it does

momentarily lase, you know about it and can adjust it as necessary. This seems a
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little innocuous but proved invaluable in getting systems up and running quickly after

a component change.

A simple technique that can be used after the system is cw lasing is to tap the

components. This provides a small amount of deflection which normally returns to the

previous power level. By watching the power level it is possible to tell if the component

is moving in the proper direction. This is most effective on the focusing lenses if using

multiple lasers but it will work on all components. Another useful technique after

lasing is accomplished is to let the system sit and run without adjustments for a little

while. This allows all parts of the system to even out thermally and can provide an

indication of whether or not heat is building up in components, most specifically the

crystal. The key is stability. The more stable the system is cw the better it will be

to mode lock.

These techniques may seem somewhat basic, but they are more specific to ul-

trashort pulsed lasers than other lab techniques. All of these techniques proved them-

selves and should help any other researchers when working on similar systems.
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IV. Experimental Results

Experimental results are divided into two sections. The first section contains results

gained from the work with small cavity lasers. The second section contains pulse data

from the AFIT commercial Ti:sapphire laser. This second section was planned to be

compared to the data received from the locally built small cavity lasers.

4.1 Small Cavity Results

4.1.1 Cr:LiSAF. As noted in Chapter III, the initial design of this system

was modified by removing a mirror due to the incurred loss by the concave mirrors

in the system. When the mirrors were purchased, the transmission percentage of the

pump beam was specified. This had the disadvantage in that it affected the reflectivity

of the lasing wavelength inside the cavity. Specifically this took the percentage of

reflectance for 850 nm from around 99.5% to 98%. This effect on sustained lasing

was drastic because of problems maintaining photons in the system. The key to this

problem is that these two mirrors are required to be used and not optional. The

reason for this purchase was to get the maximum pump efficiency but this came at

the cost of cavity efficiency which was unable to initially be overcome.

Removing the mirror and accompanying “bounces” contributed to improving

the system’s lasing ability. A general layout of the modified system with dimen-

sions is shown in Figure 4.1. In order to maximize power, it was determined that

a thermoelectric cooler (TEC) was needed to control the temperature effects noted

in Chapter III. The TEC was mounted underneath the copper mount and a power

source provided a constant current. The resulting temperature change, though small,

allowed more consistent and predictable lasing. With this configuration, the total

power reaching the crystal was 140 mW, even after one of the diodes failed. Using

a Rigrod analysis, an output power of 2.0 mW was achieved with a mirror providing

99.8% reflection. When a 99% output coupler was used the output power increased

to 17 mW. The resulting pump efficiency improved to 17.1% from around 10%, better
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Figure 4.1: Final configuration of the Cr:LiSAF system with dimensions.

than expected. Despite this efficiency it was determined that it would not be effective

to mode lock the laser.

The main problem with this system was the movement to the three mirror

configuration. This resulted in the inability to use the planned SESAM for mode

locking. The possibility of using KLM was discussed, but the availability of a medium

to provide the necessary third order properties was limited. This resulted in an

interesting, but unexplained effect. In order to reduce the overall footprint of the

system the length of the arm was shortened. But this modification resulted in the

system not lasing. This was puzzling and could be the result of several different

factors, including astigmatism correction angle and focusing by the concave mirrors

resulting in too large of a spot size in the crystal.

4.1.2 Yb:KGW. With the 3 mm thick crystal, this system was by far the

most successful. Dimensions of the final designs with and without the prisms are

shown in Figure 4.2 and Figure 4.3. Maximum cw power reached was 20.5 mW with

450 mW of pump power. This results in an efficiency of 4.3%. This was low but

expected due to the length of the crystal since a large amount of the laser light is
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Figure 4.2: Final design of the 3 mm Yb:KGW system without the GVD correction
prisms with dimensions.

reabsorbed and this is the crystal planned for higher power applications. Once the

SESAM was put in this power went down to 12.3 mW due to a 1% loss by the SESAM

under cw conditions.

While this was the most successful system tested, this is also where I made

the biggest mistake. Once the system had good lasing stability I shortened the right

hand arm in order to put in the SESAM. The main idea behind this was to reduce

the footprint of the cavity, it resulted in being unable to get the smallest waist at

the SESAM. The reason this is necessary is due to the amount of intensity needed to

saturate the semiconductor on the surface. This SESAM has a saturation intensity of

90 µJ/cm2. I used the basic assumptions of a cavity length of 90 cm, 350-mW power

inside the cavity, and a diameter of 100 µm to determine the energy of a pulse per

area would be 26.9 µJ/cm2. Obviously, this beam radius is too large. Due to spacing

issues it became obvious that the arm should have kept at its original length, put in

a concave mirror in place of the SESAM, and put the SESAM at the focal point a

little offset from the input beam as shown in Figure 4.4. If the beam radius had been

reduced to 54 µm, it would have saturated the SESAM and straight mode locking

should have been achieved.
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Figure 4.3: Final design of the 3 mm Yb:KGW system with the GVD correction
prisms with dimensions.

Figure 4.4: Design layout that should have been used in order to ensure mode
locking with the SESAM.
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Figure 4.5: Example of operating modes of a laser. [15]

While this mistake was serious, laser pulsing was achieved. The type of pulsing

that noted was Q-switched mode locking as illustrated in the lower left-hand corner

of Figure 4.5. [15] What is also important, is that as one of the concave mirrors was

moving, the system would mode lock. This is what also showed that the SESAM was

not saturating. No good plots of this information were taken since this was a transient

effect a digital oscilloscope was being used. This validated the design and the work

done on this research. While not sustained these were the results being looked for.

Movement to the 1-mm crystal was made after working with the Yb:vanadate, but

due to time considerations little, was accomplished.

4.1.3 Yb:vanadate. The results from the Yb:vanadate system were disap-

pointing as the system was unable to lase. This system is based off of the design

and dimensions of the 3 mm Yb:KGW crystal since it was a proven design. After

getting the system setup and fully aligned, there was no progress on increasing power.

After working on this for an extended time, the manufacturer was contacted and it

was determined that the crystal was cut incorrectly. No matter what orientation the
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crystal is in, it will not lase. As soon as a new crystal is delivered, the system will be

reset and retested.

4.2 Measurement Equipment

Important aspects of this study were the techniques for measuring pulsing while

it is occurring and the several pieces of equipment used to accomplish this. The first

are second harmonic generation (SHG) interferometric correlation devices. [14, p.466]

These use the intensity of a pulse in order to create a measurement of the pulse

based off of a reference signal. The second piece of equipment is a real-time spectral

analyzer (RF spectrum analyzer) which does a fast Fourier transform (FFT) to look

at the signal in the frequency domain.

4.2.1 Autocorrelator. There are several different types of autocorrelators.

Most common, and the one used for these experiments, is an intensity autocorrelator.

The basis of this analysis is that the system uses a reference pulse to base its analysis

of the incoming pulse. The temporal profile of a pulse can be determined using

Equation (4.1), where Ir(t− τ) is the reference pulse and Is(t) is the intensity profile

of the incoming pulse. [14, p.458]

Ac(τ) =

∫ ∞

−∞
Is(t)Ir(t− τ)dt (4.1)

Most often for pulses shorter than 1 ps, the reference pulse is the pulse itself. [14, p.459]

This is accomplished normally by a Michelson interferometer such as that shown in

Figure 4.6. [3] The pulse is split in two by the beam splitter and then reflected to

a detector by separate mirrors. One of those separate mirrors is mounted on an

adjustable mount, allowing for repositioning. By moving this mirror, the pulse can be

compared to itself through the SHG crystal. An example is shown in Figure 4.7 where

the reference pulse is the one denoted with the vertical dashed line. This reference

pulse is the portion separated and reflected on the non-moving mirror.
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Figure 4.6: Setup of a Michelson interferometer in an autocorrelator. [3]

Figure 4.7: Example of pulse comparison in an intensity autocorrelator. The pulse
is multiplied by the reference pulse shown with the dashed line which can be measured.
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Table 4.1: General properties of Gaussian and sech2 pulse shapes. [14, p.477]
E2(t) |E(Ω)|2 τp∆ν Ac(τ) τac/τp

e−t2 e−Ω2
0.441 e−t2/2 1.414

sech2(t) sech2
(

πΩ
2

)
0.315 3τ(chτ−shτ)

sh3τ
1.543

The intensity autocorrelator has two major disadvantages. The first is due to the

multiplication of the pulse and its reference as shown in Equation (4.1). As a result,

there is a distortion at the edges causing a broadening of the autocorrelation in the

time domain as presented. The solution for this is to assume a pulse shape and apply

those properties to the autocorrelation. Table 4.2.1 gives the properties of Gaussian

and sech2 pulse shapes, which are most often used. [14, p.477] The second disadvantage

is that there is no information on the frequency or modulation of the phase of the pulse.

The solution for this is to use an instrument that uses interferometric correlation. This

uses higher order interferometry patterns which can show qualitative properties of the

phase and chirp. [14, p.462]

4.2.2 RF Spectrum Analyzer. An RF spectrum analyzer essentially takes

the data given and provides the ability to view data in several different domains.

For this experiment this was used to transfer the time domain information to the

frequency domain. The result is a comb effect showing the Fourier transform of the

time signal. An example of this type of data is shown in Figure 4.8. [14, p.284] The

advantage that this has is the ease of ability to look at the pulse rate and portions

of the phase. This can then be applied to the information from the autocorrelator to

give the characterizations of the pulses.

4.3 Ti:sapphire

As noted before, the Ti:sapphire laser is the bedrock of solid state ultrashort

pulsed laser systems. Pulses as short as 5.5 fs have been accomplished but most

commercial systems, like the Coherent MIRATM system being used here, have limits

76



Figure 4.8: Example of the Fourier transform from time to frequency producing a
comb pattern in the frequency domain. [14, p.284]

around 10 fs. [29] The purpose of this information initally was to compare to the results

from the small cavity lasers. Since these lasers were unsuccessful at mode locking,

actual pulse analysis defaulted to this comparison data. As a result no attempt was

made to adjust the pulses for width or rate for full range analysis.

The first part of the analysis was temporal. Width of the pulses was determined

by using an intensity autocorrelator as noted above. The resulting pulse view is shown

in Figure 4.9. Time reference is in terms of the delay produced by the moving mirror.

Measurements taken over a period of hours resulted in an average uncorrected width

of 182.5±6.5 fs. Assuming a sech2 pulse shape, the correction is 0.648 times the pulse

width, resulting in a pulse width of 118.3±4.1 fs. Pulses from this laser are very

consistent and that is expected from a commercial system. This can be seen by the

pulse train measured shown in Figure 4.10. Overall, this is a useful pulse width and

has been used to create terahertz radiation in the AFIT laboratory.

The more interesting and useful measurements were accomplished with the RF

spectrum analyzer looking at the frequency domain. The reason for this is that this

gives information about the cavity itself. The general frequency comb is shown in

Figure 4.11 which almost directly relates to Figure 4.8. What is important is the

difference between the different frequencies of the comb. A focused example is shown
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Figure 4.9: Autocorellator data from a commercial Ti:sapphire laser for a single
pulse.

Figure 4.10: Measured pulse train from a commercial Ti:sapphire laser.
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Figure 4.11: Plot of the frequency comb of the pulses from a commercial Ti:sapphire
laser.

in Figure 4.12 showing a difference of 75.8 MHz. This separation gives a round trip

time for a pulse to travel in the cavity using Equation 4.2.

ν =
c

2L
(4.2)

In this case it gives us a cavity length of 1.97 m. This is much longer than the small

cavities that were designed and help emphasize that point that current lasers have a

large footprint.

Another piece of information both domains give is an estimate in the number

of modes in the cavity. This is accomplished via Equation 4.3 where τp is the pulse

width and τRT is the round trip time. [14, p.279]

M ≈ 1

τpτRT

(4.3)
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Figure 4.12: Plot of two of the frequencies of the comb showing separation and the
resulting calculated cavity length.
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In this cavity, this estimate comes out to be 1.11×105 modes. This is a large number

of modes but provides a good example of how many modes in a cavity need to be

locked to allow good pulsing. This comes with a little caveat in that this estimate

assumes equally spaced modes.

Overall, this work on small-cavity fs pulsed lasers provides a great deal of data

and experience for comparative purposes with other small cavity systems. This is

provided as a short cut for future researchers.
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V. Conclusions

The limiter overall was time. With each obstacle overcome, overall time was lost

causing problems with the overall accomplishments. This does not mean, however,

that it was not important and purposeful. The problems that occurred were due to

physical components of the system and not the designs since the designs worked at a

basic level. Pulsing was occurring and that is the proof of usefulness. Behind that,

each system needs to be looked at for proper consideration.

5.1 Cr:LiSAF

The basis behind this system has a better track record as far as previous research

than the Yb systems. This design was the more ambitious of the two used because

there are newly available components, specifically chirped concave mirrors, that we

wanted to use to push the boundaries providing a precedent. Successful pulsing with

a completely chirped cavity is the next logical step for a Cr:LiSAF design. The system

was well designed and thought out, and thus, provides an excellent basis for the next

researcher to use. While the mirrors for this system keep the system from being overall

successful, these components are easily replaced, and when they are the system should

complete the desired goals laid out.

5.2 Yb Based Systems

These systems were the most successful in both design and components. The

biggest success was the 3-mm Yb:KGW system which showed pulsing via Q-switching

but was unable to mode lock due to inadequate saturation of the SESAM. This gave

credit to the design work and proved that the only limiter on that system was pump

power. The time working on the Yb:vanadate system was not wasted even though

the crystal had been cut incorrectly. The design of the system and its relation to

work with the 3-mm Yb:KGW system provides the most immediate possibilities once

the manufacturer provides the correct crystal. While that is not documented here,

it should be completed shortly. As noted, time was the enemy for work with the 1
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mm Yb:KGW crystal. While there was suspicion that there might be a problem with

the doping percentage of the Yb, further adjustment of the system should show that

success, even if inefficient, is possible. This system is the baseline required for AFIT

and can be used as a model for AFRL/SN.

5.3 Overall Conclusions

The only goal that was unsuccessful, even though it is major, was getting one

of these systems mode locked. The other goals of understanding, component use,

and providing a baseline system were completed. It has been shown that it was

economically feasible to create a pulsed system with off-the-shelf components. These

off-the-shelf components included two of the three crystals that were used since only

the Yb:vanadate is a recent advancement in crystal design. While these systems

are not yet portable, this should be corrected within the next six months with the

Cr:LiSAF system. The only support needed is a current source, be it an electrical

outlet or batteries. That is proof enough that there is a future of these systems

anywhere they are needed be it on the battlefield or in the home.

This work is important because the systems were accurately designed and and

then built two completely different laser systems for different purposes but with the

necessary undercurrent of “extreme light.” Each system has its advantages and de-

tractors, but the usefulness of both systems cannot be denied. The significance of this

research to AFIT and AFRL/SN is widespread and must be continued in the short

term to create a cadre of experienced researchers. Ultrashort and ultrafast systems

are a major path in the future of optics. The research here provides a couple of foot-

prints down that path. It is now up to other researchers using their imaginations to

clear that path of obstacles and make purposeful use of ultrashort and ultrafast small

cavity pulsed lasers.
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Appendix A. Common Solid State Crystals and Glasses

Table A.1: Properties of several laser materials involved in the development of
femtosecond lasers. [35]

Emission Minimum Central Absorption Emission Fluorescence Thermal
Materials band theoretical emission (usual cross lifetime conductivity

width duration peak pumping) section (undoped)

(10−20 cm2) W/m/K

Ti3+:Sapphire 180 nm 3.6 fs 790 nm 500 nm 41 3.2 µs 34

Cr4+:Mg2SiO4 150 nm 11 fs 1250 nm 1064 nm 20 3 µs 5

Cr4+:Y3Al5O12(YAG) 200 nm 11 fs 1450 nm 1064 nm 20 4 µs 11
Nd:glass 22 nm 53 fs 1053 nm 808 nm 4 360 µs 0.8

Cr3+:LiSrAlF6(LiSAF) 100 nm 7.6 fs 850 nm 670 nm 4.8 67 µs 3.1

Cr3+:LiCaAlF6(LiCAF) 100 nm 6 fs 760 nm 670 nm 1.3 175 µs 5

Yb3+:Y3Al5O12(YAG) 9 nm 124 fs 1031 nm 942 nm 2.1 951 µs 11

Yb3+:glass 35 nm 31 fs 1020 nm 975 nm 0.05 1300 µs 0.8

Yb3+:Y2O3 15 nm 75 fs 1031 nm 977 nm 0.9 850 µs 13.6

Yb3+:Sc2O3 12 nm 95 fs 1042 nm 975 nm 1.3 800 µs 16.5

Yb3+:Ca4GdB3O10(GdCOB) 44 nm 26 fs 1044 nm 976 nm 0.35 2600 µs 2.1

Yb3+:Sr3Y(BO3)3(BOYS) 60 nm 18 fs 1025 nm 975 nm 0.3 1100 µs 1.8

Yb3+:KGd(WO4)2(KGW) 25 nm 44 fs 1023 nm 981 nm 2.8 600 µs 3.3

Yb3+:KY(WO4)2(KYW) 24 nm 46 fs 1025 nm 981 nm 3 600 µs 3.3

Yb3+:SrY4(SiO4)3O (SYS) 73 nm 16 fs 1040 nm 979 nm 0.44 820 µs 2

Cr2+:ZnSe 600 nm 11 fs 2500 nm 1600 nm 90 7 µs 16

Cr2+:ZnS 500 nm 12 fs 2350 nm 1600 nm 140 4.5 µs 27.2

Ce3+:LiSrAlF6(LiSAF) 14 nm 6.2 fs 288 nm 270 nm 900 0.025 µs 3.1
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Appendix B. Component Specifics

Table B.1: Equipment list for the Cr:LiSAF system.

# Description Manufacturer Model #
2 5.5% doped Cr:LiSAF crystals VLOC 973707
4 Diode Lasers 658nm/100mW Blue Sky Research VPSL0658-100X5-G
2 SESAM A=4% λ= 850nm BATOP Optoelectronics SAM 262-111a.2
2 50mm ROC concave mirror AR for 658 nm CVI Laser TNMS-800-900-0537-0.05cc-AR658
2 100mm ROC concave mirror AR for 658 nm CVI Laser TNM2-800-900-0537-0.10cc-AR658
1 Output coupler 99% reflectance CVI Laser PR1-850-99-0525
1 High reflectance output coupler CVI Laser TNM2-800-900
1 Focusing lens f=50.0mm AR coated for 658nm Thorlabs Inc. LB1471-B
1 Focusing lens f=60.0mm AR coated for 658nm Thorlabs Inc. LB1596-B
4 Laser diode mounting kits Optima Precision Inc. LDM-1100
4 Laser diode lens kits Optima Precision Inc. ADP-9056
4 Constant power laser drivers Thorlabs, Inc. LD1100
1 Precision current driver ILX Lightwave 3207-B
1 Precision current driver ILX Lightwave LDC-3722
2 XYZ mounts New Focus, Inc. 9066
3 X mounts New Focus, Inc. 9042

Table B.2: Equipment list for the Yb systems.

# Description Manufacturer Model #
1 5x5x3mm 5% doped Yb:KGW crystal EKSPLA custom
1 10x4x1mm 5% doped Yb:KGW crystal EKSPLA custom
1 10x10x2mm 2.6% doped Yb:vanadate crystal EKSPLA custom
2 SESAM A=1% λ=1064nm Del Mar Photonics SAM 342-IVa.30
2 Fiber diode lasers 976nm/450mW JDS Uniphase 29-8000-500
2 Butterfly laser diode mounts Thorlabs, Inc. LM1452
2 Fiber mount with fiber holder Newport Corp. F-915T
1 Precision current driver ILX Lightwave 3545
1 Thermoelectric temperature controller Thorlabs, Inc. TED200
1 Precision current driver ILX Lightwave LDC-3722
3 40mm ROC concave mirror AR for 981 nm Rocky Mountain Inst. Co. custom
3 50mm ROC concave mirror AR for 981 nm Rocky Mountain Inst. Co. custom
3 75mm ROC concave mirror AR for 981 nm Rocky Mountain Inst. Co. custom
1 Output coupler 99% reflectance CVI Laser PR1-1047-99-0512
1 High reflectance output coupler CVI Laser TNM2-800-900
1 Focusing lens f=50.0mm AR coated for 981nm Thorlabs Inc. LB1471-B
1 Focusing lens f=60.0mm AR coated for 981nm Thorlabs Inc. LB1596-B
1 Focusing lens f=75.0mm AR coated for 981nm Thorlabs Inc. LB1901-B
1 XYZ mounts New Focus, Inc. 9066
1 X mounts New Focus, Inc. 9062
3 X mounts New Focus, Inc. 9044
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