
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

9-6-2007 

Optimal Control Strategies for Constrained Relative Orbits Optimal Control Strategies for Constrained Relative Orbits 

David J. Irvin Jr. 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Aerospace Engineering Commons 

Recommended Citation Recommended Citation 
Irvin, David J. Jr., "Optimal Control Strategies for Constrained Relative Orbits" (2007). Theses and 
Dissertations. 2903. 
https://scholar.afit.edu/etd/2903 

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=scholar.afit.edu%2Fetd%2F2903&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2903?utm_source=scholar.afit.edu%2Fetd%2F2903&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


Optimal Control Strategies for

Constrained Relative Orbits

DISSERTATION

David Jonathan Irvin Jr., Major, USAF

AFIT/DS/ENY/07-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this dissertation are those of the author and do not reflect
the official policy of the United States Air Force, Department of Defense, or the U.S.
Government.



AFIT/DS/ENY/07-03

Optimal Control Strategies for
Constrained Relative Orbits

DISSERTATION

Presented to the Faculty

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

David Jonathan Irvin Jr., BS, MS

Major, USAF

September 2007

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/DS/ENY/07-03

Optimal Control Strategies for

Constrained Relative Orbits
David Jonathan Irvin Jr., BS, MS

Major, USAF



AFIT/DS/ENY/07-03

Abstract

The US Air Force’s ability to protect space assets is enhanced by a proficiency

in satellite proximity operations and Space Situational Awareness (SSA). In pursuit

of that proficiency, this research develops a key capability of interest to mission plan-

ners; the ability of a deputy satellite to “hover” within a defined volume fixed in

the vicinity of a chief satellite for an extended period of time. Previous research has

developed initial methodologies for maintaining restricted teardrop hover orbits that

exist in a plane fixed within the chief’s local reference frame. These methods use

the natural drift of the deputy satellite in the relative frame and impulsive thrust

to keep the deputy in a bounded volume relative to the chief, but do not address

fuel-optimality. This research extends and enhances that work by finding optimal

trajectories, produced with discrete-thrusts, that minimize fuel spent per unit time

and stay within the user-defined volume, thus providing a practical hover capability in

the vicinity of the chief. The work assumes the Clohessy-Wiltshire closeness assump-

tion between the deputy and chief is valid, however, elliptical chief orbits are allowed.

Using the new methodology developed in this work, feasible closed and non-closed

relative orbits are found and evaluated based on a fuel criterion and compared to

an easily calculated continuous-thrust baseline. It is shown that in certain scenarios

the discrete-thrust solution provides the lowest overall fuel cost. These scenarios are

generally constrained to a smaller total time-of-flight. A simple check is proposed

that enables the mission planner to make the correct strategy choice.
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kz Number of legs in the Ẑ direction . . . . . . . . . . . . . . . . 54

∆V̆Z Specific ∆V required in the X̂ direction . . . . . . . . . . . . . 54

τ Radius of a circular lobe . . . . . . . . . . . . . . . . . . . . . . 114

p Semi-latus rectum . . . . . . . . . . . . . . . . . . . . . . . . . 123

φ Geocentric latitude of the satellite . . . . . . . . . . . . . . . . 187

λ Geographical longitude . . . . . . . . . . . . . . . . . . . . . . 187

ωe Rotation rate of the Earth . . . . . . . . . . . . . . . . . . . . 187

xvii



Symbol Page

te Epoch time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Jn Zonal harmonic coefficients of order 0 . . . . . . . . . . . . . . 187

Pn Legendre polynomial of degree n and order 0 . . . . . . . . . . 187

Pnm Legendre polynomial of degree n and order m . . . . . . . . . . 187

Cnm Tesseral harmonic coefficients for n 6= m . . . . . . . . . . . . . 187

Snm Sectorial harmonic coefficients for n = m . . . . . . . . . . . . 187

CD Coefficient of drag (unitless) . . . . . . . . . . . . . . . . . . . 189

A Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

ρd Atmospheric density . . . . . . . . . . . . . . . . . . . . . . . . 189

xviii



List of Abbreviations
Abbreviation Page

USAF United States Air Force . . . . . . . . . . . . . . . . . . . 1

OCS Offensive Counterspace . . . . . . . . . . . . . . . . . . . . 1

DCS Defensive Counterspace . . . . . . . . . . . . . . . . . . . 1

CW Clohessy-Wiltshire . . . . . . . . . . . . . . . . . . . . . . 4

DARPA Defense Advanced Research Projects Agency . . . . . . . 4

AFRL Air Force Research Laboratory . . . . . . . . . . . . . . . 4

NASA National Aeronautics and Space Administration . . . . . . 5

LVLH Local-Vertical/Local-Horizon . . . . . . . . . . . . . . . . 11

EOM Equations of Motion . . . . . . . . . . . . . . . . . . . . . 14

DEnC Defined Entry Condition . . . . . . . . . . . . . . . . . . . 55

OEnC Open Entry Condition . . . . . . . . . . . . . . . . . . . . 56

EnCRO Entry from a Closed-Relative Orbit . . . . . . . . . . . . . 56

DExC Defined Exit Condition . . . . . . . . . . . . . . . . . . . 57

OExC Open Exit Condition . . . . . . . . . . . . . . . . . . . . . 58

ExCRO Exit to a Closed-Relative Orbit . . . . . . . . . . . . . . . 58

PHO Persistent Hover Orbit . . . . . . . . . . . . . . . . . . . . 67

xix



Optimal Control Strategies for

Constrained Relative Orbits

I. Introduction

The dawn of the 20th century saw humanity’s first hesitant steps from the

surface of Earth, setting off a technological and engineering explosion that put a

manmade object into space a mere 54 years after that first flight. The US Military

has made enormous strides in utilizing the space environment to provide capability

and multiply overall military effectiveness in combat operations. As the world’s tech-

nological base has grown, our allies and enemies are also taking advantage of the

opportunities gained with their own assets in space. Although doctrine is changing,

space has historically been viewed mostly as a medium of non-interference due in large

part to an inability to affect assets on orbit. This could be viewed as a modification

of the “Big Sky” theory of early powered flight in which opposing forces merely waved

at each other as they passed by on their way to the fight. In today’s military envi-

ronment this simple philosophy is no longer viable. Recent events have proven that

our space assets are not beyond our enemy’s reach and therefore must be protected.

This new mission for the USAF is called Counterspace and is defined in Air Force

Doctrine Document 1 [10] as

those kinetic and nonkinetic operations conducted to attain and maintain
a desired degree of space superiority by the destruction, degradation, or
disruptions of enemy space capability

Counterspace is separated into two pieces: Offensive Counterspace (OCS) and

Defensive Counterspace (DCS). DCS preserves space capabilities from enemy threats

while OCS operations seek to affect non-US space assets negatively. On the DCS

side, there are a number of scenarios in which it would be advantageous for a friendly

micro-satellite to stay within the local area of a larger friendly satellite in a protection

or inspection role. The feasibility of this type of mission using closed orbits with the
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target satellite in the center was investigated by Thomas et al [54]. The protective

“sentinel” mission may require the microsat to remain in an orbit near the target

satellite but transition to a defined relative location for defensive mode upon indication

of attack.

In addition to DCS measures, there are a host of capabilities that will be essential

for maintaining critical space systems in the future. These include repairing, refueling,

upgrading, augmenting, and otherwise servicing on-orbit space assets. The linchpin

for all of these capabilities is the ability to perform close-proximity operations. A

specific type of close-proximity operation, as mentioned briefly above, is the ability

to “hover” in a specific zone relative to the target satellite. Hover capability has been

demonstrated for a few constrained cases (i.e., in specific places relative to the target

satellite) or missions about smaller planetary bodies such as asteroids. The goal of

this dissertation research is to extend hover capability to anywhere within the target

satellite’s local area and for a target satellite on any closed Keplerian orbit. Note that,

since hovering will typically not be on a natural, drift-free relative orbit, thrusting

will be required. Thus the research will focus on maximizing the time of hover for

a given amount of fuel and, in doing so, will address the feasibility of a variety of

potential scenarios under consideration by military planners. For the purposes of this

research, the target satellite of interest, which is located at the center of the relative

frame, will be called the “chief” satellite and the satellite operating in proximity to

the chief is the “deputy”. The problem statement addressed in this dissertation is to

develop a control strategy to place a deputy satellite inside a specific lobe
defined in the chief body-fixed frame and keep it there in a fuel-optimal
manner.

Solving this problem will allow us to answer two questions:

1. Can a discrete-thrust trajectory be found that outperforms a benchmark continuous-

thrust solution for a fuel criterion of optimality?

2. Can we quickly and robustly estimate, with reasonable accuracy, the amount of

∆V required to stay within a specific lobe?
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The following chapters detail a solution method and analyze results in order

to answer those questions. Chapter II presents an overview of proximity operation

and relative motion research currently in the literature. Chapter III introduces the

elements needed to solve the problem including the equations of motion, development

of cost and constraint functions, and analysis of symmetries in the problem that

reduce the number of cases needed to confirm the conclusions. Chapter IV describes

how the optimal trajectory is found, along with definitions of the initial and final

conditions. This chapter ends with an overview of the research cases found in the

results. Chapter V presents and discusses optimal trajectories for four different lobes.

Finally, conclusions and suggestions for future research are found in Chapter VI.

The appendices are ordered such that they build from mathematical preliminaries to

derivation of the foundation equations to application of those equations. Therefore,

they will not be referenced in alphabetical order in the main document.
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II. Literature Review

2.1 Background

It was G.W. Hill who developed the restricted three-body problem of the Sun-

Earth-Moon system in terms of a relative rotating reference frame [16]. The advent

of artificial satellites and the potential for constructing larger structures in space

and/or docking with those structures necessitated a method of rendezvous. This

need led to W.H. Clohessy and R.S. Wiltshire’s adoption of Hill’s methodology and

the production of their famed Clohessy-Wiltshire relative equations of motion in the

early 1960’s [8]. These equations allow for not only docking and rendezvous but also

close-proximity operations in which a deputy satellite is placed in a closed relative

orbit about the chief. Although the Clohessy-Wiltshire equations (abbreviated CW

henceforth) are valid only for chief satellites in a circular orbit, they have proven

quite useful in solving a wide variety of satellite dynamics problems. In addition,

by assuming the chief and deputy are close in comparison to the orbital radius of

the chief, the CW equations very nicely linearize to a form that is suitable for linear

analysis and control techniques. These restrictions can be removed with more complex

sets of equations and have been studied extensively in recent years [5, 20,25].

Research into relative orbit dynamics (see references in Section 2.2 to Sec-

tion 2.6) has exploded over the last two decades as the potential payoff for coor-

dinated satellite formations has been brought into sharp focus. Government interest,

specifically from the USAF and DARPA, is clear by the numerous programs dedi-

cated to formation flying and its associated technology development. The TechSat

21 program [31], although now defunct, investigated technologies critical to satel-

lite formations such as micro-satellite bus and micro-propulsion. TechSat 21 had

planned to be a proof of concept for distributed mission architecture, sparse aperture

sensing, and collaborative behavior [6,49]. In an effort to demonstrate proximity op-

erations, the AFRL Space Vehicles directorate has executed the XSS-10 and XSS-11

missions [52]. The XSS-11, launched in April 2005, successfully performed a variety

of rendezvous and proximity missions of several US-owned, dead, or inactive space
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objects. DARPA’s Orbital Express Space Operations Architecture similarly sought

to validate a host of proximity operations, including autonomous on-orbit refueling

and reconfiguration of satellites [40]. It successfully launched on 8 March 2007 and

completed its technology demonstration mission on 29 June 2007. Finally, NASA’s

Demonstration of Autonomous Rendezvous Technology (DART) program launched

in April 2005 and successfully completed the location and rendezvous phases of its

operations but was unable to complete all of its close-proximity and circumnavigation

operations due to lack of fuel [1, 39].

The technical papers have been collected in five categories:

1. Dynamic Analysis

2. Formation Establishment, Maintenance, and Reconfiguration

3. Effect of Perturbations

4. Extension to Elliptical Chief Orbits

5. Constrained Formation Geometries

2.2 Dynamic Analysis

The first group consists of papers that investigated either alternate means of

expressing the relative equations of motion or higher order expansions of the CW

equations. Many researchers have abandoned the relative Cartesian coordinates of

the CW equations for those based on classical orbital elements of the chief or differ-

ences between the chief and deputy elements [45, 46]. This has been used to derive

minimum, maximum, and mean distance between the two spacecraft [15]. An approx-

imate second-order solution to the relative orbit equations was derived by Karlgaard

and Lutze [22] that shows a two-orders-of-magnitude improvement over the linear

solution over one period of the reference orbit. A third-order analytical solution was

developed by Richardson and Mitchell [43]. In an effort to compare the various rel-

ative orbit models head to head, Alfriend and Yan [2] have created a useful tool for
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evaluating and comparing the accuracy of different models through the use of a mod-

eling error index. Finally, Amico and Montenbruck [9] have adapted the concept of

eccentricity/inclination-vector separation (originally used for geostationary satellites)

to low Earth orbit formations and show its utility for proximity analysis as well as

orbit control.

2.3 Formation Establishment, Maintenance, and Reconfiguration

Armed with the right set of equations, researchers have looked at numerous

techniques for placing satellites in specific formations and keeping them there. Of

course, one of the main advantages of a satellite formation is its ability to adapt to

new missions, upgrade with new satellites, and gracefully handle the loss of a dam-

aged or dead member, resulting in investigation of methods of time- and fuel-optimal

formation reconfigurations. Vaddi et al. [58] derived an analytical, two-impulse solu-

tion using orbital element differences to establish and reconfigure a circular satellite

formation. Yeh et al. [68] used sliding mode control with the nonlinear Hill’s equa-

tions to maintain the formation in the presence of drag, third-body effects, and an

oblate Earth. A similar approach was used by Massey and Shtessel [32]. Lovell and

Tragesser [30] proposed a multiple-impulsive maneuver for reconfiguration based on

an alternative parameterization of the CW equations which allowed mission planners

to search for optimal solutions. Paiewonsky and Woodrow [41] tackled the problem

of finding time-optimal solutions to rendezvous with constraints on the thrust magni-

tude and fuel availability. Guibout and Scheeres [14] used a Hamiltonian approach to

solve the two-point boundary value problem of formation reconfiguration. Palmer [42]

found analytic solutions for minimum-fuel transfer paths between two relative orbits

with a fixed time of flight and boundary conditions. Although much of the recent

literature has focused on nonlinear control techniques, the original work and some

current authors utilize linear control methods [21, 60]. Other similar works on this

topic are found in [11,34].
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2.4 Effect of Perturbations

The majority of the research community has focused on oblate Earth and at-

mospheric drag perturbations as the primary influences on relative satellite orbits.

Humi and Carter [19] investigated relative motion in the presence of linear drag. This

work is later expanded to allow for quadratic drag [7]. Schweighart and Sedwick [47]

developed a set of linearized constant coefficient differential equations that describe

satellite relative motion in the presence of the J2 potential. They later updated and

simplified the cross-track equations in reference [48]. Wiesel [64] employs Floquet the-

ory to include all zonal harmonics of the Earth’s gravitational field, which produces

accuracies over two orders of magnitude better than CW, and then finds an optimal

impulsive control law for stationkeeping [65]. Leonard et al. [27] found methods of us-

ing differential drag to control relative positions. Vadali et al. [55] determined initial

conditions to match mean J2-induced drift rates, thereby requiring less fuel to main-

tain the formation. A second method imposed periodic boundary conditions on the

relative position and velocity in a rotating coordinate system. Finally, Williams and

Wang [66] looked at the effects of solar radiation pressure on formations in highly el-

liptical orbits. Other similar works on dealing with perturbations are found in [35,56].

2.5 Extension to Elliptical Chief Orbits

More recent research has investigated control of the nonlinear equations of mo-

tion either through higher order approximations or attempts to handle the full nonlin-

ear equations. This is motivated by the rather restrictive assumption of the original

CW equations that the chief exists on a circular inertial orbit. Inalhan et al [20]

reintroduced the community to previous extensions of the CW equations to eccentric

chief orbits. They also developed an algorithm to find initial conditions that pro-

duced stable periodic solutions. Yamanaka and Ankersen [67] found a set of linear

differential equations with time-dependent coefficients that describe relative motion

of satellites in elliptical orbits. Alfriend et al. [3] found a second-order theory for

relative motion that allows for any eccentricity and contains first-order J2 effects that
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can be easily modified for higher order geopotential terms. Gim and Alfriend [13]

continue this exploration by finding a closed-form state transition matrix using both

osculating and mean elements that allows for elliptical orbits and J2. Mitchell and

Richardson [36] have developed a method to control a deputy satellite using a first-

order approximation of the nonlinear CW equations by forcing the nonlinear system

onto an invariant manifold of the linear system. Along-track position drift was re-

duced by a factor of 12 with only a slight control increase in the radial and cross-track

drift. Gurfil and Kasdin [23] present a method to obtain higher-order approximations

of the relative motion in which the coefficients of the time series are functions of the

orbital elements. Broucke [5] is the first to present results with time as the indepen-

dent variable, leading to a set of linearized equations for deputy motion close to a

target in an elliptic orbit. Lane and Axelrad [25] have developed a set of geometric

relationships that approximate relative motion for satellites in eccentric orbits. Vaddi

et al. [57] established corrections to the initial conditions of the linearized equations

of motion that produce periodic solutions for the nonlinear CW equations.

2.6 Constrained Formation Geometries

The final area of research reviewed is an emerging class of problems and is the

basis of this dissertation. The work discussed above was almost exclusively concerned

with relative orbits that followed closed elliptical paths about the chief satellite and

how to maintain or reconfigure those orbits. As discussed in the introduction, there

may be cases in which we desire the deputy not to orbit around the chief but to stay

in a specific constrained volume relative to the chief. Since the natural dynamics of

the system indicate zero-energy closed-path relative orbits exist only in a restricted

case, staying within an arbitrary constrained volume will require additional energy

(i.e., thrusting). The first foray into finding “hovering” orbits considered finding

closed orbits in the inertial plane of the chief satellite. Hope and Trask [17] found

that utilizing the natural drift of the relative orbit led to a trajectory in the inertial

plane that intersected itself, providing a point at which to perform a single impulsive
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thrust to keep the deputy in a constrained area. This work was expanded by Lovell

and Tollefson [29] who developed a simpler closed-form solution for designing the size

and shape of the hovering orbit. Finally, there has been work in optimal control of

hovering satellites within weak gravitational fields such as missions near an asteroid

[4,12,18,44]. While interesting, the low gravity field assumption has little applicability

to this research.

2.7 Summary

The literature is replete with relative satellite motion research but is mostly

concerned with higher fidelity modeling of the equations of motion or creating and

maintaining fixed geometry formations. Initial research has been done on constrained

relative orbits but has approached the problem by analyzing trajectory geometry to

find feasible orbits without addressing the fuel-optimality of those orbits. This hereto-

fore unexplored area of relative satellite motion research provides ample opportunity

to contribute to the community.
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III. Methodology

This chapter provides the mathematical underpinnings of the problem and pro-

posed solution. Starting with the equations of motion, suitable cost and constraint

functions are derived. Also provided is a lengthy discussion on symmetries within the

problem that greatly reduce the number of examples needed to confirm the results

and make conclusions.

Previous work on “hovering” orbits has considered closed orbits in the inertial

plane of the chief satellite [17]. The teardrop orbit is designed by finding a drifting

relative orbit in the inertial plane that intersects itself, providing a point at which

to perform a single impulsive thrust to keep the deputy in a constrained area. This

research adds fuel-optimality as a condition while finding constrained relative orbits

and extends the problem to three dimensions. In short, the problem statement, as

introduced in Chapter I, is to

develop a control strategy to place a deputy satellite inside a specific lobe
defined in the chief body-fixed frame and keep it there in a fuel-optimal
manner.

The control strategy proposed is to execute impulsive thrusts such that the location,

magnitude, and direction of thrust are results of an optimization algorithm developed

herein. The simplest realizable case is the one in which two satellites share the same

circular orbit but have different angular positions in their inertial orbits about the

Earth. In the absence of perturbations, the two would stay in a fixed relative position

with each other. We desire more flexibility in the relative placement, however, and

seek to define a general closed lobe (region) of arbitrary size, location, and orientation

near the chief satellite and fixed in the relative frame that bounds the relative motion

of the deputy (see Figure 1). This is the essence of “hovering” and is formally defined

as

Hovering: Remaining inside a specified volume defined in a chief-centered
reference frame.

We especially want hovering trajectories that are fuel-optimal which we define as

10



Fuel-Optimal Hovering Trajectory: A trajectory that minimizes the
total amount of fuel spent per unit time of hovering.

We also want to evaluate closed and non-closed trajectories where

Closed Trajectory: A trajectory in which the final relative position and
velocity are equal to the initial, thus allowing a repeatable relative orbit.

Figure 1 illustrates a general lobe with a center that is defined by the angles α and

β and a distance γ from the chief satellite. The reference frame centered on the chief

satellite is defined as follows. The X̂ is oriented along a line from the center of the

Earth to the chief, Ẑ is perpendicular to the orbit plane of the chief and Ŷ completes

the frame as the cross product Ẑ × X̂. The in-track direction is aligned with the

velocity vector of the chief when in a circular orbit. This frame is commonly referred

to as the Local-Vertical/Local-Horizon (LVLH) frame.

Chief

Deputy

Figure 1: General Problem Formulation

3.1 Notation

The following notation is used in this research. The positions, xi, yi, and zi

are the coordinates of the ith point defined in the LVLH frame and indicate where

an impulsive thrust may occur. An ellipse (see Figure 2(a)) is used to define the

lobe boundary in the chief’s orbit plane (X̂Ŷ ). This provides significant flexibility for

designing hover regions without overly complicating the mathematics. As we will see

11



in later sections, motion in the Ẑ direction is decoupled from motion in the X̂Ŷ plane,

thus an elliptical cylinder (see Figure 2(b)) is selected in order to prevent recoupling

of those equations. The lobe center is located at

xL = γ
XY

cos α = γ cos α sin β

yL = γ
XY

sin α = γ sin α sin β

zL = γ cos β

where α is the angular position of the lobe center in the X̂Ŷ plane measured counter-

clockwise from the X̂ axis, β is the angular position of the lobe center measured from

the Ẑ axis, γ is the distance from the chief to the lobe center, γ
XY

is the projection

of γ in the X̂Ŷ plane, η is the angular orientation of the ellipse measured counter-

clockwise from the X̂ axis, and τx and τy are the ellipse axes. For lobes that exist in

three dimensions we must also define h, the half height of the elliptical cylinder.

Chief

Deputy

(a) 2D Case

Chief

Deputy

(b) 3D Case

Figure 2: Lobe Parameters

Polar coordinates prove useful for defining impulsive thrust locations on the

ellipse, thus the angle and radius of the ith point are designated by ψi and ri where

(derivation in Appendix B)

ψi = tan−1

[
yi − γ sin α sin β

xi − γ cos α sin β

]

ri =

√
(xi − γ cos α sin β)2 + (yi − γ sin α cos β)2

12



Conversion back to cartesian coordinates yields

xi = γ cos α sin β +
τxτy cos ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

yi = γ sin α sin β +
τxτy sin ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

The time-of-flight between the ith and [i + 1]th points is denoted by

Ti,i+1

Note that, unless otherwise specified, the deputy starts at the initial position at t = 0.

Time-of-flight is easily scaled by converting it to fractions of the chief’s orbital period

(P ) defined as [62]

P = 2π

√
a3

SMA

µ
=

2π

n
(1)

where aSMA is the semi-major axis of the chief orbit, µ is the gravitational parameter

(constant for a specific two-body system), and n is the mean motion of the chief

µ = G(m1 + m2)

n =

√
µ

a3
SMA

where G is the fundamental gravitational constant and equal to 6.6695 × 10−11 N·m2

kg2

and m is mass. Time-of-flight as a fraction of chief orbit period (T̃ ) is

T̃i,i+1 =
Ti,i+1

P
=

nTi,i+1

2π
(2)

Two velocities are associated with each impulsive thrust point, an arriving velocity

which is a function of the previous position, the current position, and the time-of-flight

between them:

ẋ−i = f1(ψi−1, ri−1, ψi, ri, Ti−1,i)

ẏ−i = f2(ψi−1, ri−1, ψi, ri, Ti−1,i)
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ż−i = f3(zi−1, zi, Ti−1,i)

and a departing velocity which is a function of current position, next position, and

the time-of-flight between them

ẋ+
i = f4(ψi, ri, ψi+1, ri+1, Ti,i+1)

ẏ+
i = f5(ψi, ri, ψi+1, ri+1, Ti,i+1)

ż+
i = f6(zi, zi+1, Ti,i+1)

The particular form of these equations and method of evaluation will depend on

whether the chief is in a circular or elliptical orbit.

3.2 The Equations of Motion

The relative equations of motion (EOM) form the basis of the optimization

algorithm presented in later sections. Specifically, calculation of relative velocity will

be crucial to evaluating the cost, which will be a function of ∆V (since fuel-optimality

is of great concern). Relative velocity will also be key in evaluating our trajectory

constraint (i.e., staying within the lobe) since its initial value along with a given

initial relative position will completely define a trajectory. We start with the general

equations of relative motion.

Assume the chief satellite is in a closed Keplerian orbit and gravity of the central

body is the only force of significance. The equations of relative motion between a chief

and deputy satellite are (derivation in Appendix E)

ẍ− 2ν̇ẏ − ν̈y − ν̇2

[
x +

ro

1 + e cos ν
− r3

o(ro + x)

(1 + e cos ν) [(ro + x)2 + y2 + z2]
3
2

]
= 0 (3a)

ÿ + 2ν̇ẋ + ν̈x− ν̇2y

[
1− r3

o

(1 + e cos ν) [(ro + x)2 + y2 + z2]
3
2

]
= 0 (3b)

z̈ + ν̇2z

[
r3
o

(1 + e cos ν) [(ro + x)2 + y2 + z2]
3
2

]
= 0 (3c)
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where e is the eccentricity of the chief orbit and ro is the instantaneous orbital radius,

a function of time (or true anomaly):

ro =
aSMA(1− e2)

1 + e cos ν
(4)

The derivatives of true anomaly (ν) are (derivations in Appendix D)

ν̇ =
n(1 + e cos ν)2

(1− e2)
3
2

ν̈ =
−2eν̇2 sin ν

1 + e cos ν

If we assume that the deputy is close to the chief satellite in comparison to the chief’s

instantaneous orbital radius

√
x2 + y2 + z2 ¿ ro

then the relative equations reduce to (derivation in Appendix E)

ẍ− 2ν̇ẏ − ν̈y − ν̇2x

[
3 + e cos ν

1 + e cos ν

]
= 0 (5a)

ÿ + 2ν̇ẋ + ν̈x− ν̇2y

[
e cos ν

1 + e cos ν

]
= 0 (5b)

z̈ + ν̇2z

[
1

1 + e cos ν

]
= 0 (5c)

It is possible, and highly desirable for this application, to express time as a fraction

of the chief orbit period as opposed to an absolute time. This allows us to separate

the relative equations from a particular semi-major axis and µ. Referencing Equation

(2)

t =
2π

n
t̃
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where t̃ is time expressed in fractions of a chief orbit. The following conversions are

made between the positions, velocities, and accelerations (see Appendix F):

(̃·) = (·) ˙̃
(·) = ˙(·)2π

n
¨̃
(·) = (̈·)4π

2

n2

where (·) represents x, y, and z and tilde over x̃, ỹ, and z̃ indicate that they are

functions of chief orbit period. It is important to emphasize that position does not

scale, thus the trajectories produced by these equations are exactly the same regardless

of the chief’s semi-major axis or the value of µ. The relative equations of motion are

now (note that ν̃ = ν)

¨̃x− 2 ˙̃ν ˙̃y − ¨̃νỹ − ˙̃ν2x̃

[
3 + e cos ν̃

1 + e cos ν̃

]
= 0 (6a)

¨̃y + 2 ˙̃ν ˙̃x + ¨̃νx̃− ˙̃ν2ỹ

[
e cos ν̃

1 + e cos ν̃

]
= 0 (6b)

¨̃z + ˙̃ν2z̃

[
1

1 + e cos ν̃

]
= 0 (6c)

where the derivatives of the now scaled true anomaly are defined as

˙̃ν =
2π

n
ν̇ =

2π(1 + e cos ν)2

(1− e2)
3
2

¨̃ν =
4π2

n2
ν̈ =

−8π2e(1 + e cos ν)3 sin ν

(1− e2)3

If the chief is in a circular orbit (e = 0), these equations simplify even further

˙̃ν = 2π

¨̃ν = 0
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thus

¨̃x− 4π ˙̃y − 12π2x̃ = 0 (7a)

¨̃y + 4π ˙̃x = 0 (7b)

¨̃z + 4π2z̃ = 0 (7c)

These linear time-invariant, constant coefficient, differential equations are the classical

CW equations [8], albeit in a less conventional form. In this special case, the Ŷ axis

of the LVLH frame is parallel to the inertial velocity vector of the chief. The CW

equations describe two types of relative orbits shown in Figure 3. The closed relative

orbit is constrained to be a 2x1 ellipse that is centered somewhere along the Ŷ axis.

The term “2x1” is a reference to the fixed ratio of the semi-major to semi-minor

axes of the closed relative orbit. The drifting relative orbit occurs when the X̂ offset

parameter, a, (Equation (10a) below) is nonzero, a result of a difference between the

deputy and chief’s semi-major axis leading to a difference in periods. The “teardrop”

feature size and shape as well as average distance from the chief can be specified [29].

These differential equations can be solved closed-form (derivation in Appendix G).

Towards the Earth

In the Direction 
of the Chief 
Satellite’s 
Velocity

Deputy

Chief

Relative Orbit 
Center

(a) Closed Relative Orbit

Towards the Earth

In the Direction 
of the Chief 
Satellite’s 
Velocity

Deputy

Chief

(b) Drifting Relative Orbit

Figure 3: Types of Relative Trajectories
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x̃(t̃) = ρ sin(2πt̃ + θ) + a (8a)

ỹ(t̃) = 2ρ cos(2πt̃ + θ)− 3πat̃ + b (8b)

z̃(t̃) = lρ sin(2πt̃ + θ) + 2qρ cos(2πt̃ + θ) (8c)

A useful variant of the Ẑ motion is (Equation (97) from Appendix G)

z̃(t̃) = z̃max cos(2πt̃ + φ) (9)

where the relative orbital elements (ρ, a, b, θ, l, q, z̃max, and φ) are all functions of both

the initial relative position and velocity. In this form, the relative orbit parameters

are given by

a =
1

π
˙̃yo + 4x̃o (10a)

b = ỹo − 1

π
˙̃xo (10b)

ρ =

√
(x̃o − a)2 +

(
1

2π
˙̃xo

)2

(10c)

l =
˙̃zo

˙̃xo − 4π2z̃o(a− x̃o)
˙̃x2
o + 4π2(a− x̃o)2

(10d)

q =
πz̃o

˙̃xo + π ˙̃zo(a− x̃o)
˙̃x2
o + 4π2(a− x̃o)2

(10e)

θ = tan−1

[
2π(x̃o − a)

˙̃xo

]
(10f)

z̃max =

√(
˙̃zo

2π

)2

+ z̃2
o (10g)

φ = tan−1

( − ˙̃zo

2πz̃o

)
(10h)
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For the approach presented, the derivatives of these equations will also be necessary,

and are

˙̃x(t̃) = 2πρ cos(2πt̃ + θ) (11a)

˙̃y(t̃) = −4πρ sin(2πt̃ + θ)− 3πa (11b)

˙̃z(t̃) = 2πlρ cos(2πt̃ + θ)− 4πqρ sin(2πt̃ + θ) (11c)

or

˙̃z(t̃) = −2πz̃max sin(2πt̃ + φ) (12)

The equations above form the basis of the controllers developed in later sections. Note

that a continuous-thrust controller that keeps the deputy in a fixed position relative

to the chief is easily synthesized (a linear quadratic regulator for example). The

research hypothesis, however, is that a discrete impulsive-thrust controller is more

fuel-optimal. To explore this, these equations will be used piecewise, with continuous

position but discontinuous velocities.

3.2.1 Initial & Final Relative Velocities. Perhaps the most important infor-

mation to extract from the above equations of motion are the initial and final relative

velocities. They are key to calculating ∆V as well as initializing trajectory propaga-

tion to check for breaches of the lobe boundary. The initial relative velocity under

the circular chief orbit assumption is (derivation in Appendix I.1)




˙̃xo

˙̃yo

˙̃zo


 = 2π




−4S̃+6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

0

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

−S̃
8−6πT̃ S̃−8C̃

0 2−2C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃

0

0 0 − C̃
S̃

0 0 1
S̃




︸ ︷︷ ︸
M̃o




x̃o

ỹo

z̃o

x̃f

ỹf

z̃f




(13)
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where

T̃ =
T

P
S̃ = sin(2πT̃ ) C̃ = cos(2πT̃ )

and M̃o is the transformation matrix that maps the initial and final positions into

initial relative velocity. The final relative velocity is (derivation in Appendix I.2)




˙̃xf

˙̃yf

˙̃zf


 = 2π




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

0

2−2C̃
8−6πT̃ S̃−8C̃

−S̃
8−6πT̃ S̃−8C̃

0 −14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃

0

0 0 − 1
S̃

0 0 C̃
S̃




︸ ︷︷ ︸
M̃f




x̃o

ỹo

z̃o

x̃f

ỹf

z̃f




(14)

where M̃f maps initial and final positions into final relative velocity. Note that there

are two singularities in M̃o and M̃f at

sin(2πT̃ ) = 0

8− 6πT̃ sin(2πT̃ )− 8 cos(2πT̃ ) = 0

The first, sin(2πT̃ ), is easily solved for time-of-flight: T̃ = 0, 1
2
, 1, 3

2
, · · · , i

2
and is only

active if there is Ẑ motion. Physically the deputy is passing through the relative

orbit’s axis of rotation. This is the intersection of an infinite number of orbits and

thus the linear system is indeterminate.

The second singularity (see Figure 4) is not as easy to find except for the first two

zeros: T̃ = 0 and T̃ = 1. If not for the secular term, a closed-form expression could be

found. Unfortunately we must find further zeros numerically. Figure 5 illustrates the

change in the interval between zero crossings, an interval that is clearly converging to

0.5 chief orbits. Note that the zero crossing number is an integer value, however, the

graph points are connected for clarity. There appears to be two exponential decay

patterns: one for even and one for odd crossings. It may not be difficult to express
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these decays closed-form, however, we are normally only interested in times-of-flight

between 0 and 1, therefore finding the zero crossing pattern is not germane to this

research.
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Figure 4: Plot of f(T̃ ) = 8− 6πT̃ S̃ − 8C̃
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Figure 5: Time Between the Zeros of f(T̃ ) = 8− 6πT̃ S̃ − 8C̃

3.2.2 Equilibrium Points of the EOM. It is always prudent to find the

equilibrium points of any set of differential equations. This is especially important

for this analysis since equilibrium represents zero-fuel solutions and may be the ideal

place to put the deputy satellite. While in equilibrium, fuel is used only to reject

disturbances and linearization errors in order to stay at the equilibrium point. Starting
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with the CW equations of motion (Equation (7)), let

¨̃x = ¨̃y = ¨̃z = ˙̃x = ˙̃y = ˙̃z = 0

then

¨̃x− 4π ˙̃y − 12π2x̃ → (0)− 4π(0)− 12π2x̃ = −12π2x̃ = 0

¨̃y + 4π ˙̃x → (0) + 4π(0) = 0

¨̃z + 4π2z̃ → (0) + 4π2z̃ = 0

Thus x̃ = 0 and z̃ = 0 without any restriction on ỹ, meaning the entire Ŷ axis is an

equilibrium point (under linear assumptions). Similarly, the equilibrium condition for

the non-linearized equations of motion can also be found. Applying the zero derivative

conditions to Equation (74), Appendix E.

(0)− (0)− n2(ro + x)

[
1− r3

o

[(ro+x)2+y2+z2]
3
2

]
= 0

(0) + (0)− n2y

[
1− r3

o

[(ro+x)2+y2+z2]
3
2

]
= 0

(0) + n2z

[
r3
o

[(ro+x)2+y2+z2]
3
2

]
= 0

Note there is no longer any advantage to using the scaled tilde versions of the relative

position and velocity since ro appears in these equations. Since ro and n are always

positive and (ro + x)2 + y2 + z2 non-zero, it is clear that z = 0. In the other two

directions, the term

1− r3
o

[(ro + x)2 + y2 + z2]
3
2
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going to zero will satisfy the equilibrium conditions (so will x = y = 0, the trivial

solution). Solving yields

[ro + x)2 + y2 + z2]
3
2 − r3

o = 0

[(ro + x)2 + y2 + z2]
3
2 = r3

o

[(ro + x)2 + y2 + z2] = r2
o

Note that the left hand side is the square of the magnitude of the deputy’s inertial

position ( ~M) written in relative coordinates. Thus

‖ ~M‖2
2 = r2

o ⇒ ‖ ~M‖2 = ro

Therefore the deputy must be in same size circular orbit as the chief. Also, since

z = 0, the deputy’s orbit must be co-planar with the chief satellite. All together, this

means the chief and deputy share the same orbit but may have different arguments

of latitude.

3.2.3 Symmetries of the Circular Chief Relative EOM. The circular chief

equations of motion contain symmetries that allow us to generalize results from lobes

in one quadrant of the relative frame to results in any of the other four quadrants,

thereby significantly reducing the number of results we need to produce and examine.

First recall that a function is odd if [24]

f(−x) = −f(x)

23



The equation for initial velocity and final velocity are obviously odd since they are

linear in the states:




− ˙̃xo

− ˙̃yo

− ˙̃zo


 = 2πM̃o(T̃ )




−x̃o

−ỹo

−z̃o

−x̃f

−ỹf

−z̃f







− ˙̃xf

− ˙̃yf

− ˙̃zf


 = 2πM̃f (T̃ )




−x̃o

−ỹo

−z̃o

−x̃f

−ỹf

−z̃f




Converting Equation (108), Appendix I to time units of chief orbit period:




x̃(t̃)

ỹ(t̃)

z̃(t̃)


 =

1

2π




S 2 [1− C] 0

2 [−1 + C]
[
4S − 6πt̃

]
0

0 0 S







˙̃xo

˙̃yo

˙̃zo


 +




[4− 3C] x̃o

[
6S − 12πt̃

]
x̃o + ỹo

Cz̃o




where S = sin(2πt̃) and C = cos(2πt̃). As a function solely of starting and ending

relative positions and time-of-flight:




x̃(t̃)

ỹ(t̃)

z̃(t̃)


 =




S 2 [1− C] 0

2 [−1 + C]
[
4S − 6πt̃

]
0

0 0 S


 M̃o(T̃ )




x̃o

ỹo

z̃o

x̃f

ỹf

z̃f




+




[4− 3C] 0 0 0 0 0
[
6S − 12πt̃

]
1 0 0 0 0

0 0 C 0 0 0







x̃o

ỹo

z̃o

x̃f

ỹf

z̃f




=







S 2 [1− C] 0

2 [−1 + C]
[
4S − 6πt̃

]
0

0 0 S


 M̃o(T̃ ) +




[4− 3C] 0 0 0 0 0
[
6S − 12πt̃

]
1 0 0 0 0

0 0 C 0 0 0










x̃o

ỹo

z̃o

x̃f

ỹf

z̃f



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Once again we have a function that is linear in the states and thus an odd function.

An example is provided in Figure 6; the deputy starts at (2 km, 1 km) and (-2 km,

-1 km) and ends at (1 km, 0.25 km) and (-1 km, -0.25 km) both with a time-of-flight

of 0.35 chief orbits. Each point on one trajectory can be rotated about the origin π

radians while maintaining equidistance from the origin to get the corresponding point

on the other trajectory. These two points occur at the same t̃ in their respective

trajectories.
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Figure 6: Symmetry of the Circular Chief Equations of Motion

3.2.4 Error Analysis. Several different forms of the equations of motion have

been presented. Some have linearizing assumptions and all do not model perturbations

and other error sources. Before posing and solving the optimization method, the

validity and accuracy of these equations must be verified.

As with most engineering problems, the optimization algorithm is based on a

reduced-order model for which mathematically tractable solutions are available. As

we will see, the short total time-of-flight associated with this problem keep total errors

within a reasonable range. There are four main sources of error:

1. Integration errors
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2. Numerical errors during the conversion between inertial and relative reference

frames

3. Linearization error from the closeness approximation

4. Unmodeled perturbations

Integration errors during trajectory propagation are a standard problem with orbital

research and can be mitigated with the proper choice of a maximum propagation

timestep. Figure 7 displays the final position error for trajectories produced with

Equation (7) (CW solutions as functions of chief orbit period) for various maximum

timesteps. The error is calculated by comparing the final position of each integration

run over one chief period versus an extremely small timestep run (1× 10−4). In order

to achieve integration errors less than 1× 10−8 meters, 0.003 has been chosen as the

largest acceptable timestep.
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Figure 7: Trajectory Integration Errors Over One Chief Period

Additional numerical errors are encountered when using the inertially propa-

gated truth model which requires the rotation of inertial relative position and velocity

vectors into the LVLH frame (Appendix H). These results are differenced from trajec-

tory propagations of Equation (3) with e = 0 (which yields ν̇ = n and ν̈ = 0). Since

there are no linearization assumptions, errors between the trajectories are numeri-
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cal in nature caused by an additional mathematical operation within the algorithm

during which roundoff and truncation errors occur. There is little that can be done

to mitigate this error besides proper maximum time step choice as discussed above.

Figure 8 shows the magnitude and trends of the transformation errors. Although it
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Figure 8: Numerical Error Due to Inertial to Relative Frame Rotations

is clear that the numerical imprecision builds with time, at least in the Ŷ direction,

the errors are well within acceptable limits even after one chief orbit. Although errors

are not scaled to a ρ to ro ratio, Figure 8 shows the results of four separate runs

with different values of ρ. To summarize, the first two error sources are standard

assumptions for orbital mechanics problems. Most missions to which this technique

will be applied are of short duration and close proximity, both of which work in our

favor to reduce errors.

The third source of error occurs when we make the following linearization as-

sumption for model simplification (see Appendix E):

x2

r2
o

≈ y2

r2
o

≈ z2

r2
o

≈ 0 and ro + 3x ≈ ro

where ro is the instantaneous orbital radius of the chief. We naturally expect to see

errors increase as average chief to deputy distance increases and/or as the orbital

radius decreases. The relative orbit element ρ is a good parameter with which to
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measure average distance from the chief. Figure 9 shows errors for a deputy in a

closed relative orbit about the chief (i.e. the X̂ offset, a, is zero). Errors for closed
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Figure 9: Linearization Error in a Closed Relative Orbit (a = 0 km)

relative orbits are nearly periodic in the X̂ axis but have a strong secular drift in the

Ŷ axis. Although setting a = 0 cancels the first-order secular term, it leaves higher-

order secular terms that build in error with time. Eventually, the deputy will drift

far enough away from the chief to invalidate the linearized equations of motion. This

happens even more quickly in the drifting relative orbit case (Figure 10) in which

the substantial first-order drift term adds to the growth in distance between chief

and deputy. It is clear that a short time-of-flight for each trajectory leg is key to

the validity of the reduced-order model upon which the optimization routine is built.

Figure 11 shows the maximum error of the deputy after one period of the chief orbit

due to linearization errors.

The final source of error is due to unmodeled perturbations. The two largest

perturbations are due to the oblate Earth (J2) and atmospheric drag [59]. Both

are inversely proportional to semi-major axis and are thus stronger at lower alti-

tudes. At these lower altitudes, the Earth is better modeled as non-spherical and

with non-uniform density, leading to a infinite series of correction terms to the two

body problem. The first and most significant of these terms is J2 (derivation and
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Figure 10: Linearization Error in a Drifting Relative Orbit (a = 2 km)
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(b) Drifting Relative Orbit (a = 2 km)

Figure 11: Maximum Linearization Errors Over One Chief Period

discussion in Appendix O.2):

~aJ2 =
µJ2R

2
e

2




15Z2X

d7
− 3X

d5

15Z2Y

d7
− 3Y

d5

15Z3

d7
− 9Z

d5




(15)

where Re is the radius of the Earth, X, Y , and Z are the inertial coordinates the

satellite and

d =
√

X2 + Y 2 + Z2
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Measurements of the zonal, tesseral, and sectorial coefficients reveal that J2 is at least

400 times larger than the next most significant term and is thus the only harmonic

considered here. Figure 12 shows the error between the full nonlinear CW model and

a truth model including J2 effects at an orbital altitude of 250 km.
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Figure 12: Perturbations Due to J2 (Orbital Altitude = 250 km)

The second source of error considered is atmospheric drag, modeled as a force

opposing the relative wind of the satellite and based on an exponential model of

atmospheric density (derivation and discussion in Appendix O.3).

~adrag = − Vrel

2BC

ρoe
ho−hd

H ~Vrel (16)

where Vrel is the satellite’s velocity relative to the atmosphere, BC is the ballistic

coefficient, ρo is the nominal density, ho is the reference altitude, hd is the satellite’s

altitude, and H is the scale height. The error charts presented in Figure 13 are a worse

case scenario of low altitude (250 km) and disparate ballistic coefficients between chief

and deputy. Representative values of the ballistic coefficient are chosen from historical

satellites, a micro satellite for the deputy and a larger scientific class satellite for the

chief.

Chief BC = 25
kg

m2
Deputy BC = 128

kg

m2

30



0 0.5 1 1.5 2

−10

−5

0

5

10

15

Time (Chief Orbit Fractions)

X
 A

xi
s 

E
rr

or
 (

m
)

Chief’s Semi−Major Axis = 6628.14 km

ρ = 1 km
ρ = 3 km
ρ = 4 km
ρ = 5 km

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−60

−50

−40

−30

−20

−10

0

10

Time (Chief Orbit Fractions)

Y
 A

xi
s 

E
rr

or
 (

m
)

Chief’s Semi−Major Axis = 6628.14 km

ρ = 1 km
ρ = 3 km
ρ = 4 km
ρ = 5 km

Figure 13: Perturbations Due to Atmospheric Drag (Orbital Altitude = 250 km)

Assuming proper choice of time step, the largest sources of error by far are

linearization and J2. All of the results presented in this research are for lobes that

are less than 3 km from the chief; therefore, over one chief orbit period the total

error should be less than 100 meters. Of course, most hovering trajectories will have

a time-of-flight well under a chief orbit period, therefore only minor changes to the

path will be noticeable.

3.3 The Cost Function

The problem statement motivates an optimization problem that requires the

formulation of a cost function. Ideally, we want to maximize the time spent inside

the lobe per unit of fuel expended, or equivalently we can minimize the cost function

J :

J =
Fuel Spent

Time-of-Flight
=

∆VF +
k∑

i=1

∆Vi

TF +
k∑

i=1

Ti,i+1

where ∆Vi is the instantaneous change of velocity required at the ith point of impulsive

thrust, k is the number of legs (a leg being defined as the trajectory between two

impulsive thrusts), and the subscript F (for final) represents a possible exit burn

and time-of-flight. ∆V is calculated by taking the Euclidean norm of the difference
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between pre- and post-thrust relative velocities (derivation in Appendix K).

∆Vi = ‖∆~vi‖2 = ‖~v+

i − ~v
−
i ‖2 =

√
(ẋ+

i − ẋ−i )2 + (ẏ+
i − ẏ−i )2

Using ∆V 2 yields a more mathematically compact solution for impulsive thrust and

allows for closed-form solutions of the cost functions’s gradient. This gradient yielded

only minimal performance gains during calculation of the optimal trajectory and

therefore was not implemented in the final results; however, the derivation of the

gradient is provided to future researchers in Appendix P. Since ∆V is always positive,

minimizing the square will minimize the value itself, thus our cost function is

J =
∆V 2

1 + ∆V 2
2 + ∆V 2

3 + ... + ∆V 2
k + ∆V 2

F

T1,2 + T2,3 + T3,4 + ... + Tk,k+1 + TF

Impulsive maneuvers and the time-of-flight can be expressed in a wide range of

units. Initial investigations into the problem found unacceptably flat cost functions,

thus encouraging the proper use of scaling. Experimentation with this cost function

showed that it was generally desirable to keep both the sum of the ∆V ’s and the total

time-of-flight somewhere in the range of 0 to 1. For the numerator, an appropriate

scaling term is the continuous ∆V (∆VC) required to keep the deputy at the xmin

position, which is the optimal place to stay for a continuous thrust scenario. As will

be shown in Section 4.6, the minimum continuous thrust ∆V is

∆VC = 6xminnπT̃T

where T̃T is the total time-of-flight. Likewise, time-of-flight is conveniently scaled by

the chief’s orbit period (P ):

1

P
[T1,2 + T2,3 + T3,4 + ... + Tk,k+1 + TF ] = T̃1,2 + T̃2,3 + T̃3,4 + ... + T̃k,k+1 + T̃F
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Combining the scaling of ∆V and time-of-flight, the cost function is now

J =

1

∆V 2
C

[∆V 2
1 + ∆V 2

2 + ∆V 2
3 + ... + ∆V 2

k + ∆V 2
F ]

T̃1,2 + T̃2,3 + T̃3,4 + ... + T̃k,k+1 + T̃F

As discussed in Section 3.2, it is desirable to have equations that are not a function

of the chief’s semi-major axis or µ. To that end, define specific delta V, ∆V̆ as (see

Appendix K.2)

∆V̆ =
∆V

n
=

∆Ṽ

2π
(17)

where ∆Ṽ is the Euclidean norm of the difference of the relative velocities expressed

with time in units of chief orbit period. The equation for the square of ∆V̆ is (deriva-

tion in Appendix K)

∆V̆ 2
i =

[
x̃i−1 ỹi−1 x̃i ỹi x̃i+1 ỹi+1

]
R̃R̃′




x̃i−1

ỹi−1

x̃i

ỹi

x̃i+1

ỹi+1




(18)

with R̃ defined as

R̃ =




4S̃−−6πT̃−
8−6πT̃−S̃−−8C̃−

−2+2C̃−
8−6πT̃−S̃−−8C̃−

2−2C̃−
8−6πT̃−S̃−−8C̃−

S̃−
8−6πT̃−S̃−−8C̃−

−4S̃++6πT̃+C̃+

8−6πT̃+S̃+−8C̃+ − 4S̃−−6πT̃−C̃−
8−6πT̃−S̃−−8C̃−

−14+12πT̃+S̃++14C̃+

8−6πT̃+S̃+−8C̃+ − −14+12πT̃−S̃−+14C̃−
8−6πT̃−S̃−−8C̃−

2−2C̃+

8−6πT̃+S̃+−8C̃+ − 2−2C̃−
8−6πT̃−S̃−−8C̃−

−S̃+

8−6πT̃+S̃+−8C̃+ − S̃−
8−6πT̃−S̃−−8C̃−

4S̃+−6πT̃+

8−6πT̃+S̃+−8C̃+

2−2C̃+

8−6πT̃+S̃+−8C̃+

−2+2C̃+

8−6πT̃+S̃+−8C̃+

S̃+

8−6πT̃+S̃+−8C̃+




(19)

where

33



T̃− = T̃i−1,i

S̃− = sin(2πT̃i−1,i)

C̃− = cos(2πT̃i−1,i)

T̃+ = T̃i,i+1

S̃+ = sin(2πT̃i,i+1)

C̃+ = cos(2πT̃i,i+1)

and the positions are (derivation in Appendix B)

xi = γ cos α sin β +
τxτy cos ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

yi = γ sin α sin β +
τxτy sin ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

Noting that the continuous thrust scaling term as a specific ∆V is

∆V̆ 2
C =

∆V 2
C

n2
= 36x2

minπ
2T̃ 2

T

This results in a cost function for the problem posed herein of

J =

1

36x2
minπ

2T̃ 2
T

[
∆V̆ 2

1 + ∆V̆ 2
2 + ∆V̆ 2

3 + ... + ∆V̆ 2
k + ∆V̆ 2

F

]

T̃1,2 + T̃2,3 + T̃3,4 + ... + T̃k,k+1 + T̃F

(20)

3.4 Interior Thrust Points

As a simplifying assumption, all thrusting is required to occur on the lobe

boundary. This removes a degree of freedom from the problem and thus only a

single coordinate (ψ) is required to specify a thrust point. In addition to being a

natural assumption to start with, it turns out that the cost function is ill-posed to

handle interior points. Let’s assume a minimum-cost single leg trajectory is found.

Without additional constraints on the lower bound of the time-of-flight for each leg

or a minimum ∆V̆ magnitude, there is nothing to prevent the algorithm from simply

parsing that single leg solution into as many “legs” as are requested. Application

of those additional constraints or a reposed cost function that is more favorable to

interior points is left to future researchers.
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3.5 Units

The non-dimensional time, T̃ , is of course unitless and more importantly, not

tied to a particular orbital radius. A similar disentanglement between ∆V and orbital

radius is made possible with specific ∆V and has the following units

∆V̆ =
∆V

n
=

length
time

1
time

= length

Likewise the units of relative velocity when time is expressed in units of chief orbital

period are

˙̃
(·) =

2π

n
˙(·) =

length
time

1
time

= length

and the relative accelerations

¨̃
(·) =

4π2

n2
(̈·) =

length
time2

1
time2

= length

Since
∑

∆V̆ 2 are scaled by ∆V̆ 2
C , the numerator of J is unitless. Dividing by the

unitless total time-of-flight we note that

J = unitless

as desired.

3.6 The Constraint

From a mission planner’s standpoint, the only constraint on the deputy satel-

lite’s motion is that it stay within the prescribed lobe. While there are several methods

to pose this constraint, one relatively simple way is to force the time-of-flight to be

smaller than or equal to some maximum time-of-flight. This maximum time-of-flight

is naturally defined as as the largest time-of-flight for which the deputy’s entire tra-

jectory remains inside the lobe. If two positions are chosen in the relative frame along
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Figure 14: Notional Time-of-Flight Comparisons

with a time-of-flight between them, the relative velocities can be found via Equations

(13) and (14). An appropriately small time-of-flight produces a trajectory that closely

approximates a straight line between the two points and has a large magnitude rel-

ative velocity. As the time-of-flight is increased, the trajectory exhibits larger and

larger loops that may or may not cross back over themselves (teardrop maneuvers).

As demonstrated in Figure 14, there is a maximum time-of-flight after which any

larger time-of-flight creates a trajectory that partially leaves the constraint lobe. Any

time-of-flight smaller than this maximum will satisfy the mission planner’s constraint.

Thus the constraint is formulated as

T̃i,i+1 ≤ T̃maxi,i+1
(ψ1, ψ2) (21)

The maximum time-of-flight between any two points is precomputable, and a surface

is easily generated for a specific lobe size and shape (example Figure 15). Interpolating

between points is a very effective way to calculate the constraint during optimization

searches. Note that unless otherwise stated, all constraint surfaces in this document

use the same normalized colorbar. Thus green in one figure is the same value of T̃max

as green in another figure.

All constraint surfaces have a valley of T̃max = 0, the set of ψ’s from which

the deputy cannot start and end without leaving the lobe no matter how small the
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Figure 15: Maximum Time-of-Flight (α = 45◦, γ = 2 km, τx = 1 km, τy = 0.5 km)

time-of-flight. These points are located on the side of the lobe closest to the Ŷ axis

(see Figure 16). Since our lobe is a closed concave shape, we can always draw a

straight line between any two points that stays completely within the lobe (and as

noted previously, as T̃max → 0 the trajectory becomes a straight line), therefore this

valley will always be along the line ψ1 = ψ2. Lobes that do not intersect the Ŷ axis

will also have a peak formation. Note that this surface repeats in both the ψ1 and ψ2

directions since the angle is modulo 2π and thus the four peaks in Figure 15 are in

fact a single peak.

3.6.1 Calculation of T̃max. Unfortunately, no closed-form solution for T̃max is

available, prompting a numerical solution. Two methods of calculation were explored

for this research. The most robust and most computationally expensive method is to

increment time-of-flight and check the resulting trajectory, converging on a solution

when the time-of-flight produces a trajectory that leaves the lobe. In practice, the

midpoint of an upper and lower bound is used for the trajectory check. If the trajec-

tory stays within the lobe, the midpoint is now the new lower bound while it becomes
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Figure 16: Points of Zero Maximum Time-of-Flight

the new upper bound if it violates the boundary. The flowchart of this process is

found in Figure 17.

The second numerical technique involves identifying two conditions of a trajec-

tory which has a single point of tangency with the lobe. The first is that the point of

tangency (ψT ) occurs on the lobe boundary:

r(ψT )− τxτy√
τ 2
y cos2 (ψT − η) + τ 2

x sin2 (ψT − η)
= 0

and the second that the relative velocity of trajectory at ψT is tangent to the lobe:

ẋT cos ψT + ẏT sin ψT = 0

These two nonlinear equations must be solved numerically, but algorithms such as

FSOLVE in Matlabr do the job quickly and efficiently. This method was found to

be less robust, however, when the point of tangency occurred at or near the beginning

or end point of the trajectory. Because accuracy was valued over speed for this

particular application, the first method was chosen to produce the constraint surface.
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START
TOF Lower Bound = 0.00001

TOF Upper Bound = 1

From User
- Lobe Parameters
- Starting 
- Ending

Does Trajectory 
Stay Inside Lobe?

Propagate Trajectory

YES
END

YES
Add           to LB

Add           to UB
NO

NO

LB = Vector of Lower Bounds
UB = Vector of Upper Bounds

Figure 17: Flowchart for Finding T̃max

Definition and calculation method in hand, we turn next to several properties

of the constraint surface that will narrow the relevant lobe parameter space and yield

more efficient calculations of the constraint surface.

3.6.2 Invariance of the Constraint Surface to yL. Under the CW assump-

tions, it can be shown that the constraint surface is invariant to the y coordinate of

the lobe center (yL). The first indication of this is found in the original differential

equations (Equation (7)), none of which are functions of the y coordinate. However,

clearer proof is found by examining the initial and final relative velocity equations
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(Equations (13) and (14)). Let D = 8− 6πT̃ sin(2πT̃ )− 8 cos(2πT̃ ), then:

˙̃xo = fo(x̃o, x̃f ) +
2− 2 cos(2πT̃ )

D
ỹo +

−2 + 2 cos(2πT̃ )

D
ỹf

= fo(x̃o, x̃f )− 2− 2 cos(2πT̃ )

D
(ỹf − ỹo)

˙̃yo = go(x̃o, x̃f )− sin(2πT̃ )

D
ỹo +

sin(2πT̃ )

D
ỹf

= go(x̃o, x̃f )− − sin(2πT̃ )

D
(ỹf − ỹo)

Likewise,

˙̃xf = ff (x̃o, x̃f )− 2 cos(2πT̃ )

D
(ỹf − ỹo)

˙̃yf = gf (x̃o, x̃f ) +
sin(2πT̃ )

D
(ỹf − ỹo)

We see that the relative velocities are functions of ∆ỹ only and not the absolute

positions causing the constraint surface to remain unchanged as it slides up or down

a line parallel to the Ŷ axis (see Figure 18). This is convenient for users desiring to

precompute the constraint.

Figure 18: Invariance of the Constraint Surface to yL

3.6.3 Symmetries Between Constraint Surfaces in the Right and Left Hand

Planes. In Section 3.2.3, the equations of motion were shown to be odd functions
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meaning that every trajectory has a twin trajectory in the opposite quadrant that

is rotated by π (as, for example, Figure 19). Taking this concept a step further, if

we project our lobe into the opposite quadrant as well, we find that the maximum

time-of-flight (T̃max) of a trajectory between ψ1 and ψ2 in the 1st quadrant is also the

maximum time-of-flight between ψ1 + π and ψ2 + π in the 3rd quadrant.

T̃max(ψ1, ψ2)︸ ︷︷ ︸
Lobe 1

= T̃max(ψ1 + π, ψ2 + π)︸ ︷︷ ︸
Lobe 2

It is the symmetry of the lobe that allows this transformation to occur (i.e., our
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Figure 19: Symmetric Lobes and Reflective Trajectories

mirror ellipse orientation is η− = η + π). The two trajectories are negatives of each

other:

x̃(t̃)− = −x̃(t̃)

ỹ(t̃)− = −ỹ(t̃)

for 0 < t̃ < T̃max
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To prove this, observe that the second lobe is located at α− = α + π. Then

x̃− = γ cos(α + π) sin β +
τxτy cos(ψi + π)√

τ 2
y cos2 (ψi − [η + π]) + τ 2

x sin2 (ψi − [η + π])

ỹ− = γ sin(α + π) sin β +
τxτy sin(ψi + π)√

τ 2
y cos2 (ψi − [η + π]) + τ 2

x sin2 (ψi − [η + π])

Noting that

sin(ψi + π) = − sin ψi

cos(ψi + π) = − cos ψi

sin2(ψi − [η + π]) = sin2(ψi − η)

cos2(ψi − [η + π]) = cos2(ψi − η)

then

x̃− = −γ cos α sin β − τxτy cos ψi√
τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
= −x̃

ỹ− = −γ sin α sin β − τxτy sin ψi√
τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
= −ỹ

Thus we see that transforming the constraint surface from the 1st to the 3rd quadrant

involves a shift of the starting and ending ψ by π radians. Applying the invariance

to the yL discussed in Section 3.6.2, we can translate the negative lobe into the 2nd

quadrant (illustrated in Figure 20). So, for the computational price of one lobe we

get a family of lobes along lines parallel to the Ŷ axis in both the right and left hand

planes (Figure 21). Lobes are therefore functions only of the x coordinate of their

centers (xL), size (τx, τy), and orientation (η). The ∆V calculations are also functions

of ∆y as they are derived directly from the relative velocity equations. Thus, with

the constraint surfaces and ∆V calculations being invariant to being placed in either

the right or left hand planes (same distance from the Ŷ axis) and identical in the
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Figure 20: Equivalent Constraint Surfaces (α = 135◦, γ = 2 km, τx = 1 km, τy =
0.5 km)

upper and lower half planes, we can conclude that optimal trajectories found in lobes

in the 1st quadrant are indicative of lobes in any other quadrant. We will therefore

concentrate solely on 1st quadrant lobes in the results chapter, as these results can

easily be mapped to any quadrant.

3.6.4 Lobes Symmetric About Their Horizontal Axis. Lobes that are sym-

metric about their horizontal axes have an additional symmetry in their constraint

surface that can halve the needed computation time. For these lobes,

T̃max(ψ1, 2π − ψ2) = T̃max(ψ2, 2π − ψ1)

An example is provided in Figure 22.

3.6.5 Lobes that Intersect the Ŷ Axis. Section 3.2.2 demonstrated that the

Ŷ axis is the set of equilibrium points for the linearized equations of motion (chief

in a circular orbit). We expect that lobes containing the Ŷ axis will have unique

properties. An infinite number of 2x1 closed relative orbit ellipses can be placed within

lobes that have two points of intersection with the Ŷ , and certain combinations of η

and xL allow a single closed relative orbit to be tangent to both points of intersection.

This provides an opportunity to start and end at either the upper or lower Ŷ axis
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Figure 21: Equivalent Lobes

intersection point and come back to the same point in one full chief orbit. It also

provides a trajectory that in the absence of perturbations and ignoring linearization

error can be maintained with zero fuel. Note that the relative velocity (Equations

(13) and (14)) is undefined at T̃ = 1, a singularity of which we must be cognizant

when evaluating these orbits. If the upper lobe intersection point is ψU and the lower

intersection ψL, then there are four regions about which there is an opportunity for a

trajectory that is or nearly is one full chief orbit; they are:

(1) ψU , ψU (22a)

(2) ψU , ψL (22b)

(3) ψL, ψU (22c)

(4) ψL, ψL (22d)

44



0 500 1000 1500 2000 2500

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

X Axis (m) − Radial Direction

Y
 A

xi
s 

(m
) 

− 
V

el
oc

ity
 D

ire
ct

io
n

Lobe
Trajectory
Chief Satellite
Entry Point
Exit Point

Figure 22: Lobe Symmetric About Horizontal Axis (α = 0◦, γ = 1.414 km, τx =
1 km, τy = 0.5 km, η = 0◦)

Pairs (1) and (4) yield 2x1 closed relative orbit ellipses (Figure 23(a)) that have a

maximum possible semi-major axis of (derivation in Appendix M.1)

ρ <
r(ψU) sin ψU − r(ψL) sin ψL

4
(23)

Pairs (2) and (3) represent drifting relative orbits with small ρ and a values that

are nearly contained within the lobe over one chief orbit period (see Figure 23(b)).

The constraint surface for lobes that do not intersect the Ŷ axis have a single peak

−1500 −1000 −500 0 500 1000 1500

500

1000

1500

2000

2500

X Axis (m) − Radial Direction

Y
 A

xi
s 

(m
) 

− 
V

el
oc

ity
 D

ire
ct

io
n

 

Lobe
Trajectory
Chief Satellite
Entry Point
Exit Point

(a) ψU ,ψU and ψL,ψL

−1500 −1000 −500 0 500 1000 1500

500

1000

1500

2000

2500

X Axis (m) − Radial Direction

Y
 A

xi
s 

(m
) 

− 
V

el
oc

ity
 D

ire
ct

io
n

 

Lobe
Trajectory
Chief Satellite
Entry Point
Exit Point

(b) ψU ,ψL and ψL,ψU

Figure 23: Trajectories of Nearly One Chief Orbit Period

formation. As the lobe passes through the Ŷ axis, this single peak splits into four
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peaks attached to the four conditions in Equation (22). Peaks surrounding angle

pairs (1) and (4) will slide along the line ψ1 = ψ2 while (2) and (3) will slide along

2π − ψ1 = ψ2, all corresponding to the ψ’s of lobe’s intersection with the Ŷ axis.

To illustrate this, Figure 24 displays the constraint surface and peak location for the

following lobe:

α = 90◦ γ
XY

= 2 km τx = 1 km τy = 0.5 km η = 20◦ (24)

thus the center is located at xL = 0 and the intersection points are in the neighborhood

of

ψU ≈ π

2
ψL ≈ 3π

2

Figure 24: Lobe Intersection of the Ŷ Axis (α = 90◦, γ = 2 km, τx = 1 km, τy =
0.5 km, η = 20◦)

3.6.6 Sensitivity of the Constraint Surface to Lobe Size. Larger lobes provide

more drifting room for deputy satellite trajectories and not surprisingly result in valid

trajectories that have a larger time-of-flight. The overall shape of the lobe changes

little while the peak rises rather substantially with larger τx and τy (Figure 25). Note

that the peak time-of-flight does not increase linearly with lobe size. In our example

we see a 50% increase by doubling τx, τy and a 200% increase by tripling them. Since
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the lobe shapes do not change appreciably, we expect that the optimal trajectories

will be similar albeit with a larger total time-of-flight. This is shown in Section 5.6.

Figure 25: Constraint Surfaces for Varying Size Lobes (α = 45◦, γ = 2 km, η = 45◦)

3.6.7 Sensitivity of the Constraint Surface to xL. Increasing the X̂ coordi-

nate of the lobe center (xL) also has an effect on the constraint surface. Recall that

a nonzero a value represents a difference in the chief and deputy’s semi-major axis,

resulting in drifting orbits. The larger this difference, the greater the difference in

orbital period and the bigger the relative velocities. Thus, even though trajectories

themselves appear similar, the relative velocities are larger in lobes further from the

Ŷ axis, causing a decrease in the maximum time-of-flight peak (Figure 26). Of partic-

ular note, it appears that doubling xL has the same reducing effect on the constraint
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Figure 26: Constraint Surfaces for Varying Distances from the Ŷ Axis (τx =
1 km, τy = 0.5 km, η = 45◦)

surface as halving the size of the lobe. Further study is warranted and will be left to

future researchers.

3.6.8 The Constraint Surface for Elliptical Chief Orbits. Precomputing the

constraint surface for elliptical chief orbits is similar to the circular case with two

notable exceptions. First, the elliptical relative equations of motion (Equation (6))

are functions of true anomaly (ν) and thus constraint surfaces are only valid for a

specific initial νo. This means that, at the end of a leg, a new constraint surface

with a new νo must be used to find T̃max for the next leg. For a given lobe and

eccentricity, the chief’s orbit must be discretized with appropriate resolution and a

library of constraint surfaces stored in order to find multiple leg trajectories. If only

a single leg is needed, a single constraint surface can be used.
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Second, unlike the circular chief case, there is no closed-form solution for the

relative velocities. Several researchers (see Section 2.5 of the literature review) have

proposed high fidelity models for finding relative velocities for elliptical chiefs, how-

ever, a very simple and robust method was used to calculate relative velocities in this

research. Using final position error as the cost function, Matlab’sr FSOLVE algo-

rithm can find the relative velocity given an initial/final position and a time-of-flight

with acceptable accuracy and speed.
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Figure 27: Elliptical Chief Constraint Surface e = 0.7, νo = 0 rad
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Figure 28: Elliptical Chief Constraint Surface e = 0.7, νo = π rad

Notice the striking difference between the constraint surface magnitudes at

perigee (Figure 27) and apogee (Figure 28). This is due to the corresponding dif-

ference in relative velocity magnitudes at apogee and perigee. At apogee, the inertial

and relative velocities have a smaller magnitude than at perigee and therefore pass
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between any two points considerably more slowly, resulting in a larger T̃max. This phe-

nomena must factor into the overall hovering strategy since more burns with higher

∆V ’s will be required for hovering at perigee as opposed to apogee.

3.6.9 Other Constraints. Certainly there are other attractive constraints

that could be applied to the cost function in order to coax even more desirable tra-

jectories. Perhaps the first that comes to mind is an equality constraint or minimum

constraint on total time-of-flight in order to satisfy a mission objective, such addi-

tions should be avoided. Any constraint added to an optimal control problem risks

obscuring a candidate extremal point. Mission planners can specify the number of

legs and can control if the trajectory closes back on itself (repeating hover orbit con-

dition), both of which have the potential to increase time-of-flight without imposing

additional constraints. The repeating hover orbit in particular has the potential to

satisfy any desired hover time by traversing the same trajectory over and over again

until the minimum time-of-flight is met.

3.6.10 Summary. Examination of the constraint surface provides key insight

into the behavior of the solution as lobe parameters change. Some are intuitive such

as larger lobes yield larger maximum time-of-flight and thus have the potential to

lower the cost function. Others are less intuitive such as how changes in orientation

angle which shift the peak location will affect the solution. These will be explored

in Chapter V. Now that we have derived the equations of motion, developed a cost

function, and bounded the problem with a constraint, we can start formulating a

trajectory planner to meet our stated objectives. The ultimate goal is to produce

an algorithm that outputs a set of impulsive thrust locations and the time-of-flight

between them. This is done in the next chapter.
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IV. The Optimal Trajectory

The optimal trajectory will be the output of a nonlinear programming algo-

rithm that searches for the lowest value of the cost function while staying within

the maximum time-of-flight constraint. We seek a method in which the user pro-

vides the number of legs (k), entry/exit conditions, and lobe position, orientation,

and shape, after which the algorithm provides the angular positions of the impulsive

thrust locations and the time-of-flight between them:

Given Output

k (Number of legs) ψ1, ψ2, ..., ψk+1

Entry Condition T̃1,2, T̃2,3, ..., T̃k,k+1

Exit Condition

α, β, γ

τx, τy, η, h

These outputs can easily be transformed into impulsive thrust vectors and thrust

times. The propagated trajectories shown in the results chapter are calculated by

taking the final velocity of the previous leg (or the entry conditions for the first leg),

adding the impulsive thrust vector and then propagating until the next thrust time.

In this manner, we can ascertain the error incurred by using a reduced order model

for the optimization and then applying it to a higher fidelity truth model.

Since motion in the X̂Ŷ plane and Ẑ direction decouple, the optimal trajectories

for both will be found separately. Optimization in the X̂Ŷ plane produces a trajectory

and total time-of-flight (T̃T ). This total time-of-flight is then used to find a closed-

form optimal trajectory for motion in the Ẑ direction. The two motions can then be

combined for a final trajectory. We start with optimization in the X̂Ŷ plane.
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4.1 The Optimal Trajectory in the X̂Ŷ Plane

The cost function is Equation (20) from Section 3.3:

J =

1

36x2
minπ

2T̃ 2
T

[
∆V̆ 2

1 + ∆V̆ 2
2 + ∆V̆ 2

3 + ... + ∆V̆ 2
k + ∆V̆ 2

F

]

T̃1,2 + T̃2,3 + T̃3,4 + ... + T̃k,k+1 + T̃F

where ∆V̆ is specific ∆V and has no dependence on the chief’s semi-major axis or µ.

In an effort to keep the numerator close to unity, the ∆V̆ ’s are scaled by the amount

of specific ∆V required to remain at the minimum x coordinate of the lobe boundary

(xmin). If the lobe intersects the Ŷ axis (xmin = 0), an alternative optimal trajectory

is employed and is discussed in Section 5.1. The constraint on each time-of-flight is

(from Section 3.6)

T̃i,i+1 ≤ T̃maxi,i+1
(ψ1, ψ2)

where T̃max is the maximum time-of-flight that keeps the entire trajectory within the

lobe. There are no constraints on the angular positions (ψ) unless specified by the

entry/exit conditions which are discussed later in this chapter. The cost function is

minimized via the FMINCON nonlinear programming routine in Matlabr which

is specifically designed for nonlinear cost functions that have nonlinear constraints.

The pseudocode for this routine is found in Appendix Q.

4.2 The Optimal Trajectory in the Ẑ Direction

Recall that motion in the Ẑ direction is a harmonic oscillator with a closed-form

solution of (Equation (9), Section 3.2)

z̃(t̃) = z̃max cos
(
2πt̃ + φ

)
(25)

where

z̃max =

√( ˙̃zo

2π

)2

+ z̃2
o φ = tan−1

(
−

˙̃zo

2πz̃o

)
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It can be shown (derivation in Appendix J) that the maximum time-of-flight in which

the deputy stays between a minimum (z̃min) and maximum (z̃max) Ẑ coordinate is

T̃max =
1

π
cos−1

(
z̃min

z̃max

)
(26)

The cos−1 function has a domain of 0 < z̃min

z̃max
< 1 and this fits well with our definition

of the elliptical cylinder. Motion in the Ẑ direction is caused by differences in the

chief and deputy’s inclinations and/or longitude of the ascending node. As intuition

and Equation (25) show us, the period of the Ẑ oscillation is 2π and is centered about

the chief’s orbit plane. Half of the chief’s period is spent above the orbit plane and

half below. Thus, any Ẑ period greater than 0.5 would indicate that the deputy has

passed through the chief’s orbit plane. Lobes that include the chief’s orbit plane will

have z̃min/z̃max ratios that are less than zero (change in sign between z̃min and z̃max)

and ill-defined lobes are greater than 1 (|z̃min| is larger than |z̃max|). Therefore, either

the lobe intersects the orbit plane, in which case the optimal solution is to stay in the

orbit plane with no Ẑ motion, or the lobe is improperly defined. We can expect only

ratios between 0 and 1 and T̃max’s between 0 and 0.5 chief orbits.

A harmonic oscillator affords a single degree-of-freedom to optimize the problem.

The period of the Ẑ oscillation (P̃z) is chosen as the optimization parameter based

on the following argument. Assume the X̂Ŷ plane optimization has yielded a total

time-of-flight (T̃T ). We desire the deputy to stay between z̃min and z̃max for the same

amount of time. The minimum number of burns required is

# Burns =

⌊
T̃T

P̃z

⌋

where b c represents the floor function. It can be shown that the ∆V required for

each of these burns is (derivation in Appendix K.3)

∆V̆i =
∆Vi

n
= 2z̃min tan

(
πP̃z

)
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Thus the total ∆V required is

∆V̆Z = 2

⌊
T̃T

P̃z

⌋
z̃min tan

(
πP̃z

)

= 2z̃min (kz − 1) tan

(
πT̃T

kz

)
(27)

where kz is the number of legs in the Ẑ direction. Note that ∆V̆Z is inversely propor-

tional to P̃z; thus we desire the largest possible period (or fewest number of bounces,

kz) without exceeding the maximum period defined by Equation (26). An example

problem is found in Figure 29. Assume that the X̂Ŷ optimization has yielded a total

time-of-flight of T̃T = 0.45, that z̃min = 1, and z̃max = 1.25. The period of the Ẑ

motion is therefore constrained to be less than

T̃max =
1

π
cos−1 (0.8) ≈ 0.2

Referencing Figure 29, the smallest possible total ∆V̆Z occurs at

P̃z =
T̃T

3
= 0.15

The green line is the ∆V̆ required for a continuous thrust hover at z̃min and is equal

to (Equation (137) in Appendix L)

∆V̆C = 2z̃minπT̃T

Note how the discrete solution converges to the continuous-thrust line as P̃z → 0,

that is, as the number of bounces (kz) goes to infinity (see Appendix K.3 for the full

proof).
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Figure 29: Notional ∆V̆ vs Z Period

4.3 Entry Condition Definitions

In addition to lobe size and orientation, the mission planner has flexibility in

choosing entry and exit conditions to and from the lobe. Combinations of these

conditions are used to define the cases presented later. There are three types of lobe

entry conditions used in this research. They are:

1. Defined Entry Condition

2. Open Entry Condition

3. Entry from a Closed Relative Orbit

and are explained in the following subsections.

4.3.1 Defined Entry Condition. The first entry condition, Defined Entry

Condition (DEnC), enables the user to specify the deputy’s relative entry position

and velocity. Thus, in addition to the standard inputs listed at the beginning of this

chapter, the user must specify:

ψ1, ( ˙̃x−1 , ˙̃y−1 )
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This will affect the calculation of ∆V̆ 2
1 (Equation (124) in Appendix K):

∆V̆ 2
1 =

[
˙̃x+
1 − ˙̃x−1 ˙̃y+

1 − ˙̃y−1

]

 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1




where


 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1


 =




−4S̃++6πT̃1,2C̃+

8−6πT̃1,2S̃+−8C̃+

4S̃+−6πT̃1,2

8−6πT̃1,2S̃+−8C̃+

−2+2C̃+

8−6πT̃1,2S̃+−8C̃+

−14+12πT̃1,2S̃++14C̃+

8−6πT̃1,2S̃+−8C̃+

2−2C̃+

8−6πT̃1,2S̃+−8C̃+

S̃+

8−6πT̃1,2S̃+−8C̃+







x̃1

x̃2

∆ỹ


−


 ˙̃x−1

˙̃y−1




∆ỹ = ỹ2 − ỹ1

4.3.2 Open Entry Condition. The second variant, Open Entry Condition

(OEnC), puts no restrictions on the relative start position and velocity; thus the

algorithm is free to choose these in whatever manner is most optimal. Since the

deputy is entering the lobe at the desired position and velocity, there is no thrust at

the first point:

∆V̆ 2
1 = 0

4.3.3 Entry from a Closed-Relative Orbit. The Entry from a Closed-Relative

Orbit (EnCRO), enables the algorithm to search for an optimal start position but

constrains the velocity at that point to match a closed-relative orbit that is centered

on the chief and intersects the lobe at that point. While closed-relative orbits can

be centered about any point along the Ŷ axis, the choice was made to center on the

chief. Setting the relative orbit parameters a and b (Equations (10a) and (10b) in

Section 3.2) to zero,

˙̃x−1 = πỹ1

˙̃y−1 = −4πx̃1
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This will effect the calculation of ∆V̆ 2
1 :

∆V̆ 2
1 =

[
˙̃x+
1 − ˙̃x−1 ˙̃y+

1 − ˙̃y−1

]

 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1




where


 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1


 =




−4S̃++6πT̃1,2C̃+

8−6πT̃1,2S̃+−8C̃+

4S̃+−6πT̃1,2

8−6πT̃1,2S̃+−8C̃+

−2+2C̃+

8−6πT̃1,2S̃+−8C̃+

−14+12πT̃1,2S̃++14C̃+

8−6πT̃1,2S̃+−8C̃+

2−2C̃+

8−6πT̃1,2S̃+−8C̃+

S̃+

8−6πT̃1,2S̃+−8C̃+







x̃1

x̃2

∆ỹ


−


 πỹ1

−4πx̃1




∆ỹ = ỹ2 − ỹ1

4.4 Exit Condition Definitions

The lobe exit conditions used in this research are

1. Defined Exit Condition

2. Open Exit Condition

3. Exit to a Closed Relative Orbit

4. Repeating Hover Orbit

and are explained in the following subsections.

4.4.1 Defined Exit Condition. The first exit condition, Defined Exit Con-

dition (DExC), enables the user to specify the deputy’s relative exit position and

velocity. Thus, in addition to the standard inputs listed at the beginning of this

chapter, the user must specify:

ψk+1, ( ˙̃x+
k+1,

˙̃y+
k+1)
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This will effect the calculation of ∆V̆ 2
F (Equation (124) in Appendix K):

∆V̆ 2
F =

[
˙̃x+
1 − ˙̃x−1 ˙̃y+

1 − ˙̃y−1

]

 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1




where


 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1


 =


 ˙̃x+

1

˙̃y+
1


−




−4S̃++6πT̃1,2C̃+

8−6πT̃1,2S̃+−8C̃+

4S̃+−6πT̃1,2

8−6πT̃1,2S̃+−8C̃+

−2+2C̃+

8−6πT̃1,2S̃+−8C̃+

−14+12πT̃1,2S̃++14C̃+

8−6πT̃1,2S̃+−8C̃+

2−2C̃+

8−6πT̃1,2S̃+−8C̃+

S̃+

8−6πT̃1,2S̃+−8C̃+







x̃1

x̃2

∆ỹ




∆ỹ = ỹ2 − ỹ1

4.4.2 Open Exit Condition. The second variant, Open Exit Condition

(OExC), puts no restrictions on the relative exit position and velocity. Thus the

deputy will leave the lobe on the trajectory resulting from the ∆V̆k burn. There is no

burn at the final point:

∆V̆ 2
F = 0

4.4.3 Exit to a Closed-Relative Orbit. The Exit to a Closed-Relative Orbit

(ExCRO), enables the algorithm to search for an optimal exit position but constrains

the velocity at that point to match a closed-relative orbit that is centered on the chief

and intersects the lobe at that point. While closed-relative orbits can be centered

about any point along the Ŷ axis, the choice was made to center on the chief. Setting

the relative orbit parameters a and b (Equations (10a) and (10b) in Section 3.2) to

zero,

˙̃x+
k+1 = πỹk+1

˙̃y+
k+1 = −4πx̃k+1
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∆V̆ 2
F is:

∆V̆ 2
F =

[
˙̃x+
k+1 − ˙̃x−k+1

˙̃y+
k+1 − ˙̃y−k+1

]

 ˙̃x+

k+1 − ˙̃x−k+1

˙̃y+
k+1 − ˙̃y−k+1




where


 ˙̃x+

k+1 − ˙̃x−k+1

˙̃y+
k+1 − ˙̃y−k+1


 =


 πỹk+1

−4πx̃k+1


−




−4S̃−+6πT̃
8−6πT̃ S̃−−8C̃−

4S̃−−6πT̃ C̃−
8−6πT̃ S̃−−8C̃−

2−2C̃−
8−6πT̃ S̃−−8C̃−

2−2C̃−
8−6πT̃ S̃−−8C̃−

−14+12πT̃ S̃−+14C̃
8−6πT̃ S̃−−8C̃−

S̃−
8−6πT̃ S̃−−8C̃−







x̃k

x̃k+1

∆ỹ




∆ỹ = ỹk+1 − ỹk

4.4.4 Repeating Hover Orbit. The repeating hover orbit is not an exit

condition per se. Instead, we seek a closed relative orbit contained within the lobe in

which the starting relative position and velocity are identical to the ending conditions.

This produces a trajectory that can be traversed for as many periods as desired or as

long as fuel is available. In order to enforce a closed orbit, the following constraints

are applied to the cost function:

x̃k+1 = x̃1

ỹk+1 = ỹ1

T̃k+1,k = 0

T̃F = T̃k,1

∆V̆ 2
F =

[
x̃k ỹk x̃1 ỹ1 x̃2 ỹ2

]
R̃(T̃F , T̃1,2)R̃

′(T̃F , T̃1,2)




x̃k

ỹk

x̃1

ỹ1

x̃2

ỹ2



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4.5 Research Cases

The availability of three entry and four exit conditions provides us with twelve

possible entry/exit combinations. In the interest of brevity and given that only a

handful of combinations are of true interest to mission planners, only three cases are

presented herein. They are:

1. Defined Entry Condition/Open Exit Condition

2. Entry From a Closed Relative Orbit/Exit to a Closed Relative Orbit

3. Open Entry Condition/Repeating Hover Orbit

4.6 The Continuous-Thrust Solution

As a benchmark to which to compare our discrete-thrust trajectories, a continuous-

thrust solution is derived. We can quickly find the closed-form solution for a continuous-

thrust controller that keeps the deputy at a specified point in the relative frame. A

shortened version of the derivation in Appendix L is provided below. The velocities

at this hover point must be zero:

˙̃x = 0 ˙̃y = 0 ˙̃z = 0

which reduces Equation (7) to:

¨̃x = 4π(0) + 12π2x̃ = 12π2x̃

¨̃y = −4π(0) = 0

¨̃z = −4π2z̃

Since the ¨̃y equation is now zero, we need only worry about the accelerations along

the X̂ and Ẑ axes. Integrating from zero to the total time-of-flight (T̃T ) yields the

∆V as a function of chief orbit period (∆ṼC) required to keep the deputy hovering at
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a given (x̃o, ỹo, z̃o):

∆ṼC =

∫ T̃T

0

|¨̃x|dt̃ +

∫ T̃T

0

|¨̃z|dt̃ =

∫ T̃T

0

12π2|x̃o|dt̃ +

∫ T̃T

0

4π2|z̃o|dt̃

= π2 (12|x̃o|+ 4|z̃o|)
∫ T̃T

0

dt̃ = π2 (12|x̃o|+ 4|z̃o|) T̃T

where the C subscript indicates “continuous”. The location of x̃o and z̃o is arbitrary

but the smallest continuous ∆Ṽ is attained when x̃o and z̃o are at their minimum,

thus x̃min and z̃min represent the absolute value of the coordinate on the lobe that is

closest to the Ŷ axis and X̂Ŷ plane respectively, and

∆ṼC = (12x̃min + 4z̃min) π2T̃T (28)

If the lobe happens to intersect the Ŷ axis, then the optimal solution (for the linear

CW case) is to stay on that Ŷ axis (the loci of equilibrium points) or on a closed 2x1

ellipse about it (see Section 5.1). We can also express the continuous ∆V as a specific

∆V by applying the conversion in Equation (17), Appendix 3.3

∆V̆C =
∆ṼC

2π
=

[
1

2π

]
(12x̃min + 4z̃min) π2T̃T = (6x̃min + 2z̃min) πT̃T (29)

The above equation works well if we assume the deputy starts at the minimum x and

z values, however, in order to use this as a fair comparison, the ∆V needed to get into

and out of that position must also be included. This motivates finding minimum-fuel

entry and exit legs as shown in Figure 30.

4.6.1 Entry Leg. Assume that the continuous burn solution starts at the

same entry position (x̃1, ỹ1) and velocity ( ˙̃x−1 , ˙̃y−1 ) as the discrete-thrust solution. The

∆V required to get to the x̃min position is (from Equation (124) in Appendix K):

∆V̆ 2
1 =

1

4π2

[
˙̃x+
1 − ˙̃x−1 ˙̃y+

1 − ˙̃y−1

]

 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1



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Figure 30: The Continuous-Thrust Trajectory

where


 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1


 =




−4S̃+6πT̃ C̃
8−6πT̃ S̃−8C̃

4S̃−6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃







x̃1

x̃min

∆ỹLeg 1


−


 ˙̃x−1

˙̃y−1




∆ỹLeg 1 = ỹ2 − ỹ1 S̃ = sin(2πT̃1,2) C̃ = cos(2πT̃1,2)

Once at the x̃min position, the deputy must make a burn to cancel its relative velocity

that is equal in magnitude but opposite in direction to the final velocity of the previous

leg

∆V̆2 =
1

2π
‖ ˙̃x−2 X̂ + ˙̃y−2 Ŷ ‖2

where

 ˙̃x−2

˙̃y−2


 =




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃







x̃1

x̃min

∆ỹLeg 1



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We can use either a minimization routine or a global search over the range of time-

of-flight:

0 < T̃1,2 < T̃max1,2

to find the smallest total ∆V required to arrive and stop at x̃min:

∆V̆Entry = min
[
∆V̆1 + ∆V̆2

]

4.6.2 Exit Leg. The exit leg will depend on the user-specified exit condition.

If the exit condition is open, the deputy is allowed to drift out of the lobe and requires

no additional ∆V :

∆V̆Exit = 0

If a repeating hover orbit is requested, the deputy never leaves the x̃min position and

∆V̆Exit is again zero. If the exit condition is an exit to a closed-relative orbit or if the

exit position and relative velocity are specified, then the deputy will need to perform

two burns to leave x̃min to arrive at the exit position and then to leave the lobe at ψ3.

The ∆V required to get from the x̃min position to the exit point is (from Equation

(124) in Appendix K)

∆V̆3 =
1

2π
‖ ˙̃x+

2 X̂ + ˙̃y+
2 Ŷ ‖2

where

 ˙̃x+

2

˙̃y+
2


 = 2π




−4S̃+6πT̃ C̃
8−6πT̃ S̃−8C̃

4S̃−6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃







x̃min

x̃3

∆ỹLeg 2




The ∆V required to exit the lobe,

∆V̆ 2
4 =

1

4π2

[
˙̃x+
3 − ˙̃x−3 ˙̃y+

3 − ˙̃y−3

]

 ˙̃x+

3 − ˙̃x−3
˙̃y+
3 − ˙̃y−3



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where for the defined exit condition


 ˙̃x+

3 − ˙̃x−3
˙̃y+
3 − ˙̃y−3


 =


 ˙̃x+

3

˙̃y+
3


− 2π




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃







x̃min

x̃3

∆ỹLeg 2




For the exit to a closed-relative orbit, the relative velocity at ψ3 must be the same as

a closed-relative orbit centered on the chief that passes through ψ3. Setting a = b = 0

(Equations (10a) and (10b)),

˙̃y+
3 = −4πx̃3

˙̃x+
3 = πỹ3

and


 ˙̃x+

3 − ˙̃x−3
˙̃y+
3 − ˙̃y−3


 =


 πỹ3

−4πx̃3


− 2π




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃







x̃min

x̃3

∆ỹLeg 2




We can use either a minimization routine or a global search over the range of time-

of-flight:

0 < T̃2,3 < T̃max2,3

to find the smallest total ∆V required to leave xmin and exit the lobe:

∆V̆Exit = min
[
∆V̆3 + ∆V̆4

]

4.6.3 Hover Time. The time-of-flight for each leg is obviously independent

of the total time-of-flight produced by the discrete-thrust algorithm. Whatever time

remains after getting to x̃min and exiting the lobe will be spent hovering at x̃min with

continuous-thrust; thus:

T̃Hover = T̃T − T̃1,2 − T̃2,3
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There are cases in which the discrete-thrust solution total time-of-flight is less than

the sum of the two continuous-thrust legs, this must be taken account when comparing

the two results.

4.6.4 Summary. This chapter has derived all the necessary components to

generate fuel-optimal discrete-thrust trajectories as well as a benchmark continuous

method with which to compare those results. We are finally ready to present and

analyze those final results.
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V. Results and Analysis

With an understanding of the dynamics and solution method in hand, we turn

next to analyzing the results and drawing conclusions. The symmetries of the con-

straint and cost function assure us that optimal trajectories for lobes in the upper

right quadrant are representative of lobes in any other quadrant (see Section 3.6).

This is very convenient, as it allows us to use a small number of results to make

general conclusions about optimal trajectories. Further, these results are applicable

to any sized circular chief orbit and about any celestial body, assuming two body

dynamics are the dominant force.

First, results are presented for the a special class of hovering orbits that take

advantage of the equilibrium condition of the equations of motion. Next are optimal

trajectories for each of the three cases defined in Section 4.5 as applied to lobes 2,

3, and 4 (shown in Figure 31 with parameters in Table 1). Lobe 1 is a special case

in which the lobe intersects the Ŷ axis and will only be examined in the persistent

hover orbit section (Section 5.1). Trajectories are propagated with the unperturbed,

linearized equations of motion.
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Figure 31: Lobes of the Results Section

66



Table 1: Lobe Parameters
Lobe α β γ τx τy η
# (degs) (degs) (km) (km) (km) (degs)
1 90 90 2 1 0.5 20
2 45 90 2 1 0.5 45
3 45 90 2 0.5 1 45
4 0 90 1.414 1 0.5 0

5.1 The Persistent Hover Orbit

As mentioned earlier and discussed in detail in Section 3.2.2 and Appendix M,

the Ŷ axis is the locus of equilibrium points for the linearized equations of motion

about a chief in a circular orbit (Equation (7)). Lobes that contain some portion

of the Ŷ axis deserve special consideration. First, let us examine the output of the

optimization algorithm when given a lobe that intersects the Ŷ axis. Figure 32 is the

result of an optimization run for a defined entry (ψ1 = π
2
) and open exit on Lobe 1.

The entry relative velocity is chosen such that the deputy enters from a closed relative

orbit centered on the chief at ψ1. The result is, not surprisingly, to place the deputy on
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Figure 32: Optimization Algorithm Results for Lobe 1

a 2x1 ellipse. This special case relative orbit is called a persistent hover orbit (PHO),

defined as any natural closed orbit that fits entirely within the lobe (see Figure 33).

The PHO is a type of repeating hover orbit that does not require any impulsive

thrusting to maintain, other than what is required to correct for perturbations and
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Figure 33: The Persistent Hover Orbit

linearization errors, making it ideal for long-term proximity operations. The PHO is

specified by two parameters: the semi-minor axis (ρ) and the center coordinate along

the Ŷ axis (b). In the limit as ρ → 0, the PHO becomes a point on the Ŷ axis. Finding

acceptable PHOs for a given lobe is the subject of Appendix M. The PHO problem is

as follows. Assume the deputy’s trajectory intersects the lobe at some entry position

with a given relative velocity. Positioning the deputy onto the PHO requires two

impulsive thrusts, the first at lobe entry to place the deputy on a trajectory towards

the PHO and another to enter it. This greatly simplifies our optimization routine

since we can globally search for the minimum-fuel solution of these two burns. The

only remaining question, is what are the best values of the PHO semi-minor axis (ρ)

and center position (b).

Although an exhaustive proof will not be made here, indications are that the

minimum-fuel answer is to choose ρ and b such that ρ is as large as possible. Figures

34 and 35 present the result of evaluating all values of ρ and b that yield PHOs that

are completely contained inside Lobe 1. The left-hand side figures are the ∆V̆

surface over ρ and b while the right-hand figure shows the resultant minimum-fuel

trajectory. Note that only combinations of ρ and b that fit completely inside the

lobe are evaluated and the stairstep feature is due to discretization of the search
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Figure 34: Persistent Hover Orbit Test: ψ1 = π
4
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Figure 35: Persistent Hover Orbit Test: ψ1 = 3π
4

space. In both cases, the minimum ∆V̆ occurred when the largest possible ρ value

was chosen. Note that if mission requirements dictate a fairly small time-of-flight,

then optimizing the cost function over one or two legs may still yield the lowest total

fuel solution; however, if a longer total time-of-flight is required, searching for the

minimum two-thrust solution to place the deputy onto a PHO is optimal.
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5.2 Case 1: Defined Entry Condition/Open Exit Condition

Case 1 investigates trajectories for which the entry condition is defined and the

exit condition is left open. Recall that the defined entry condition requires the user to

provide an incoming relative velocity at a specified lobe entry point. For convenience,

and because choice of this initial condition is arbitrary, the following results will use

the relative velocity of the closed relative orbit that intersects the lobe at the specified

point and is assumed to be centered on the chief. Setting the relative orbit parameters

a and b (Equations (10a) and (10b), Section 3.2) to zero yields

˙̃y−1 = −4πx̃1
˙̃x−1 = πỹ1

Case 1 is of particular interest because, for the single-leg case, there are only two

optimization parameters (ψ2 and T̃1,2); thus we can plot the cost surface and watch

the iteration path of the nonlinear programming algorithm. Let

ψ1 =
π

4

The results of the optimization algorithm for each of the three lobes under the con-

ditions specified above are shown in Figures 36, 37, and 38 where the red line on the

cost contour plot is the line of maximum time-of-flight.

In all three examples, we can visually confirm that the optimization routine has

converged on a minimum solution. We can also confirm that these are not in fact

the global minima for this particular entry/exit condition. In each lobe, the closed

relative orbit on which the deputy arrives can pass through the lobe and intersect a

second point on the lobe. Since the exit condition is open, the zero-fuel solution is to

stay on the original closed relative orbit and exit the lobe at the second intersection

point. This is most clearly demonstrated in Lobe 3 (Figure 37) for which the true

global minimum is ψ2 = 5.31 rad, T̃1,2 = 0.048. Figure 39 is a repeated run of the

optimization algorithm with different initial conditions that converges to the global

70



ψ
2
 (rads)

T
im

e 
o

f 
F

lig
h

t 
 (

F
ra

ct
io

n
s 

o
f 

C
h

ie
f 

O
rb

it
)

0 1 2 3 4 5 6

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(a) Cost Function and Optimization Itera-
tions

−2000 −1000 0 1000 2000 3000 4000
−1000

0

1000

2000

3000

4000

X Axis (m) − Radial Direction

Y
 A

xi
s 

(m
) 

− 
V

el
oc

ity
 D

ire
ct

io
n

Lobe
Trajectory
Cont Thrust Trajectory
Chief Satellite
Entry Point
Exit Point

(b) Optimal Discrete Trajectory

Figure 36: Case 1, Lobe 2, Single Leg
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Figure 37: Case 1, Lobe 3, Single Leg

minimum above. This is the trivial solution and is not, in general, the solution of

interest for the mission planner.

The example above highlights the sensitivity of the optimization algorithm to

initial condition choice. As with most nonlinear optimization problems, we must

be cognizant of the possibility of multiple local minima. Two are apparent in our

simple example above and more should be expected as the dimensionality increases

(by increasing the number of legs, k). Unfortunately, we do not have the luxury of

visually verifying convergence to the correct solution when going to higher dimensional

search spaces. In order to increase confidence in finding the desired minimum point,
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Figure 38: Case 1, Lobe 4, Single Leg
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Figure 39: Case 1, Lobe 3, The Trivial Solution

all simulations were executed with multiple initial guesses with the lowest cost result

presented. Currently the initial choice of ψ is accomplished by the user; however,

there is no reason the process could not be automated in order to look over a wide

range of initial conditions.

The next set of graphs show the evolution of trajectories for each of the three

lobes as the number of legs increases. The left-hand plots show the lowest cost discrete

trajectory found after multiple initial condition choices. The right-hand plots are the

time history of the discrete- and continuous-thrust trajectories. The continuous-

thrust solution is described in Section 4.6 and is a function only of the lobe shape,
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position, orientation, and entry position and velocity. In general, it consists of an

entry leg to the x̃min coordinate, possible hovering at x̃min, and exiting the lobe either

at a designated point, drifting out of the lobe, exiting onto another closed relative

orbit, or remaining at x̃min. These thrusts are based on minimum ∆V solutions. The

continuous solution entry and exit legs will both have a fixed time-of-flight, again

based on the minimum ∆V solution. The difference between the sum of these two legs

and the total time-of-flight of the discrete thrust solution is made up by hovering with

continuous-thrust at x̃min. Since there is no minimum total time-of-flight constraint

applied to the cost function, it is possible that the sum of the entry and exit legs

is greater than the time-of-flight found in the optimization routine. In this case, no

hovering is required and the continuous thrust time-of-flight will be longer than the

discrete solution. Care must be taken when comparing the discrete and continuous

solutions in these cases.

Figures 40-44 show the evolution of trajectories for Lobe 2 as the number of legs

increases from one to five. There are minor changes in the trajectory and performance

as additional legs are requested, but there is a definite pattern of convergence towards

a final trajectory. In all but the single-leg case, the continuous solution outperforms

the discrete case. Also, all but the five-leg simulation runs into the problem discussed

above with the time-of-flight of the entry and exit legs of the continuous solution

being larger than the entire discrete time-of-flight. It is clear that, for Lobe 1, a

continuous-thrust strategy is more efficient.

Figures 45-49 are trajectories within Lobe 3. Again there is clear convergence

to a final trajectory, but unlike in the previous case, there are slight fuel savings by

using discrete solution in all but the final (k = 5) simulation. This set of runs is also a

good example of how additional legs are accommodated by clustering several smaller

thrusts to take the place of one larger thrust. In most cases, this is significantly less

efficient, a fact notably displayed in Figure 49. In the k ≤ 4 trajectories, the first leg

from the entry point to near the top of the lobe is the result of a single thrust. When

k = 5, this single thrust is split into three thrusts. Although the time-of-flight and
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Figure 40: Case 1, Lobe 2, Legs = 1
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Figure 41: Case 1, Lobe 2, Legs = 2

trajectory of this leg remain nearly identical, the fuel spent is nearly 70% greater in

the latter case. This splitting phenomena is due to the unrestricted bounds on each

leg’s time-of-flight and ∆V̆ . With no minimum time-of-flight, optimal trajectories

are split into smaller pieces in order to satisfy the requirement for more legs. This

is a shortcoming of the cost function as posed and should be addressed in future

work. The splitting effect makes it clear that, although there are some increases to

time-of-flight, there is a distinct k after which there is no improvement.

The final set of plots is for Lobe 4. The results are similar to those above,

with the single leg requiring no hover from the continuous solution and some gains in
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Figure 42: Case 1, Lobe 2, Legs = 3
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Figure 43: Case 1, Lobe 2, Legs = 4

time-of-flight for higher numbers of legs. This scenario seems to split the difference

between the first two as far as performance comparisons between the continuous and

discrete solutions. Whereas the continuous solution provided lower fuel costs in Lobe

2 and the discrete solution marginally lower fuel costs in Lobe 3, there are examples

of both in Lobe 4. For k ≤ 3, the discrete thrust solution requires slightly less fuel

while anything larger should use a continuous solution. The results of Case 1 over the

three lobe shapes indicate that the orientation angle (η) strongly influences correct

method choice (discrete or continuous).

75



−2000 −1000 0 1000 2000 3000 4000 5000

−1000

0

1000

2000

3000

4000

X Axis (m) − Radial Direction

Y
 A

xi
s 

(m
) 

− 
V

el
oc

ity
 D

ire
ct

io
n

Lobe
Trajectory
Cont Thrust Trajectory
Chief Satellite
Entry Point
Exit Point
XY Burn
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Figure 44: Case 1, Lobe 2, Legs = 5
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Figure 45: Case 1, Lobe 3, Legs = 1
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Figure 46: Case 1, Lobe 3, Legs = 2
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Figure 47: Case 1, Lobe 3, Legs = 3
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Figure 48: Case 1, Lobe 3, Legs = 4
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Figure 49: Case 1, Lobe 3, Legs = 5
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Figure 50: Case 1, Lobe 4, Legs = 1
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Figure 51: Case 1, Lobe 4, Legs = 2
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Figure 52: Case 1, Lobe 4, Legs = 3
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Figure 53: Case 1, Lobe 4, Legs = 4
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Figure 54: Case 1, Lobe 4, Legs = 5
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5.3 Case 2: Entry From a Closed-Relative Orbit/Exit to a Closed-

Relative Orbit

The entry from and exit to a closed-relative orbit add additional constraints

to the relative velocities at the entry and exit points, even though the entry/exit

ψ are free parameters. The mission scenario might be for an observation or sentry

satellite that is already in a near orbit with its period matched to the chief but needs

to “pause” in a certain quadrant of the chief in order to perform a task and then

continue on in a non-drifting closed-relative orbit that may or may not be the same

as the one at entry. Like Case 1, convergence to a final trajectory happens after about

two or three legs, therefore, in the interest of brevity, only k ≤ 3 results are shown.

This particular exit condition presents a harsher scenario for the continuous-

thrust solution. At the start of the exit leg, the deputy is at the x̃min position with

zero relative velocity. The algorithm searches for a minimum-fuel ψ from which to

leave the lobe under the condition that at that point, the deputy must thrust in order

to match the relative velocity of a closed relative orbit. In other words, the deputy

has to accelerate from zero to a fairly large relative velocity that may occur in one or

two separate burns (one to leave x̃min and one to exit the lobe). On the other hand,

the discrete solution does not slow to a zero relative velocity during its trajectory and

therefore the final exiting ∆V is smaller. This results in discrete-thrust solutions that

have significant fuel savings over the continuous solution for all three lobes.

There is one other feature of note. In the single leg of Lobe 2 and all three

examples in Lobe 3, the trajectory seems to have an extra leg. This is a result of

the algorithm finding an exiting closed relative orbit on which to leave that continues

to pass through the lobe after the burn. The algorithm detects that the exit leg

remains inside the lobe and adds the additional time-of-flight to the discrete thrust

solution. For example in Figure 55, we have requested a single leg trajectory. The

algorithm finds ψ2 = 115◦ as the optimal exit point that corresponds to a closed

relative orbit originating on the upper side of the lobe and finally exiting on the lower
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side. The calculated time-of-flight is 0.127 fractions of a chief period; however, the

algorithm determines that the final leg remains in the lobe resulting in 0.06 fractions

of additional hover time.

−1500 −1000 −500 0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

2500

3000

3500

4000

X Axis (m) − Radial Direction

Y
 A

xi
s 

(m
) 

− 
V

el
oc

ity
 D

ire
ct

io
n

Lobe
Trajectory
Cont Thrust Trajectory
Chief Satellite
Entry Point
Exit Point
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Figure 55: Case 2, Lobe 2, Legs = 1
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Figure 56: Case 2, Lobe 2, Legs = 2
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Figure 57: Case 2, Lobe 2, Legs = 3
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Figure 58: Case 2, Lobe 3, Legs = 1
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Figure 59: Case 2, Lobe 3, Legs = 2
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Figure 60: Case 2, Lobe 3, Legs = 3
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Figure 61: Case 2, Lobe 4, Legs = 1
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Figure 62: Case 2, Lobe 4, Legs = 2
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Figure 63: Case 2, Lobe 4, Legs = 3
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5.4 Case 3: Open Entry Condition/Repeating Hover Orbit

By specifying open entry/repeating hover, we seek to find closed trajectories

that can be sustained for as long as the mission planner desires and the deputy’s

fuel stores last. This is done by constraining the relative position and velocity at the

final point (post thrust) to be the same as the initial relative position and velocity.

These closed trajectories are recommended when simply increasing the number of legs

does not yield the needed total time-of-flight. Two types of closed-relative orbits are

obtained by the algorithm. The first is the classic teardrop in which the trajectory

intersects itself at a single point, providing an opportunity to perform an impulsive

thrust and repeat the teardrop. The second is called the bounce trajectory (Figure 65)

and occurs when the deputy bounces back and forth between two points. The teardrop

trajectory outperforms the bounce and is the focus of further discussion.
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Figure 64: Case 3, Lobe 2, Legs = 3, Teardrop
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Figure 65: Case 3, Lobe 2, Legs = 2, Bounce
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Figure 66: Case 3, Lobe 3, Legs = 3, Teardrop
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Figure 67: Case 3, Lobe 4, Legs = 3, Teardrop
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Figure 68: Case 3, Lobe 4, Legs = 4, Teardrop
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Just as the PHO analysis in Section 5.1 provided insight into a more efficient

and accurate calculation of orbits about the equilibrium condition, so too does ex-

amination of the Case 3 trajectories (Figures 64-68). In all simulations, the lowest

cost solution is a teardrop with expected numerical imprecisions producing orbits

that are not perfect teardrops returning to a single point but close approximations.

This encourages analysis of all possible teardrops and their cycle cost (∆V per cycle).

Figures 69-71 present the results of that analysis. In each example, only ψ’s that

have T̃max(ψ1, ψ1) > 0 are evaluated (see Figure 16, Section 3.6 and accompanying

discussion) and only for T̃ < T̃max(ψ1, ψ1), thus producing regions of no data in the

cost surface. That cost surface, as seen in sub-figures (a), show that although there

is a single global minimum, a family of nearly identical cost teardrops are available

to a mission planner. Thus, if cycle period is an important mission parameter, a wide

range of values can be selected with only small changes to cycle cost. Sub-figures (b)

display a representative of this family of choices chosen for its larger time-of-flight.

Sub-figures (c) demonstrate the repeating pattern of the relative specific velocities.

It can be shown (Appendix N) that thrusting at the apex of a teardrop in

order to remain on that relative orbit is equivalent to thrusting continuously at the

time-averaged x coordinate (centroid) of the teardrop (Equation (144)).

x̄TD =
1

T̃TD

∫ T̃TD

0

x̃(t̃)dt̃ =
2(1− C̃)x̃o

8− 6πT̃TDS̃ − 8C̃
(30)

The total ∆V̆ per cycle can be found closed form (Equation (145)):

∆V̆TD =
12πT̃TD(1− C̃)x̃o

8− 6πT̃TDS̃ − 8C̃
(31)

This is plotted in sub-figures (d) and track exactly with the stairstep of the discrete-

thrust solution. Sub-figures (d) can be used to make decisions between the discrete

and continuous solutions. Note that these solutions assume that the deputy started in

the desired position (start of the teardrop for discrete and at x̃min for the continuous)
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Figure 69: Lobe 2 Teardrop Analysis

with the desired relative velocity. Fuel usage to get to those initial conditions, however,

must be taken into account. That minimum-fuel solution is treated here as a simple

constant added to a linear function that will shift the ∆V̆ growth profiles up. They

will not, in general, be the same for the continuous and discrete solutions. The total

fuel used in the discrete solution will be

∆V̆Discrete = ∆V̆D

⌊
T̃T

PD

⌋
+ ∆V̆DIC

where ∆V̆D is the specific ∆V required at each teardrop burn, T̃T is the total time-

of-flight required, PD is the period of the teardrop, and ∆V̆DIC
is the ∆V required to
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Figure 70: Lobe 3 Teardrop Analysis

get into position for the first teardrop. The continuous solution is

∆V̆C = 6x̃minπT̃T + ∆V̆CIC

In order for the discrete-thrust solution to be the fuel-optimal choice we need

∆V̆Discrete < ∆V̆C

∆V̆D

⌊
T̃T

PD

⌋
+ ∆V̆DIC

< 6x̃minπT̃T + ∆V̆CIC

⌊
T̃T

PD

⌋
<

6x̃minπT̃T + ∆V̆CIC
−∆V̆DIC

∆V̆D
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Figure 71: Lobe 4 Teardrop Analysis

This is our criterion for choosing between a discrete and continuous solution. In

all cases, the continuous solution will eventually outperform the discrete, but for a

shorter total time-of-flight, it makes sense to use a discrete strategy.
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5.5 Trajectory Changes Due to Increased xL

As noted in Section 3.6.7, the maximum time-of-flight between any two ψ’s de-

creases as the lobe is pushed farther from the Ŷ axis (increase in the lobe center x

coordinate, xL). This is due to larger relative velocities that are a result of larger dif-

ferences in the inertial orbit period between the chief and deputy. Figure 72 shows a

series of lobes with increasing xL. In effort to compare like entry and exit conditions,

this is a defined entry/defined exit, both of which have relative velocities of (0,0,0).

Had the entry velocity been chosen based on a closed relative orbit (as in earlier

examples), the velocity would have changed dramatically as xL increased. Defining

the entry velocity as (0,0,0) provides a more consistent comparison of the three sim-

ulations. Two legs were specified, but in each simulation, the second burn occurs

nearly simultaneously with the exit burn. There are slight changes to the trajectory

(both discrete and continuous) with increasing xL, however, more importantly is the

significant change in time-of-flight. Again, this is to be expected after examining the

effect of xL on the constraint surface and is verified here.
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(a) xL = 1.41 km, TOF = 0.225 fractions
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(b) xL = 2.82 km, TOF = 0.139 fractions
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(c) xL = 4.25 km, TOF = 0.109 fractions

Figure 72: Defined Entry/Defined Exit, Legs = 2
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5.6 Trajectory Changes Due to Increased Lobe Size

Changing the size of the lobe also has an effect on trajectory and time-of-flight.

Again, from our discussion in Section 3.6.6, we know that increasing the overall size of

the lobe increases the maximum time-of-flight. Figure 73 illustrates the sensitivity to

lobe size. The changes in trajectory are more pronounced than they are in Section 5.5

and as expectded a larger time-of-flight is produced with larger lobe size.
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fractions

Figure 73: Defined Entry/Defined Exit, Legs = 2
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5.7 Trajectory Check in Other Quadrants

As an illustration of our claim that lobes in the first quadrant are representative

of lobes in each of the other quadrants (see Section 3.6), the optimization for Case 1

(Defined Entry/Open Exit) with two legs is found for the mirror of Lobe 2 (that is,

α = 225◦). Figure 74 compares the two trajectories and we can see that they are, as

expected, identical once the rotations discussed in Section 3.2.3 are applied.
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(a) Lobe 2 (α = 45◦)
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Figure 74: Comparison of Lobe 2 Results to its Mirror Lobe

5.8 Addition of Ẑ Axis Motion

As discussed in Section 4.2, motion in the Ẑ direction is completely decoupled

from the X̂Ŷ plane and can be calculated and appended to the X̂Ŷ solution inde-

pendently. A few examples of this, based on previous results, are provided below.
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0

1000

2000

3000

−4000

−2000

0

2000

4000
−500

0

500

1000

1500

2000

2500

X Axis (m)
Radial Direction

Y Axis (m)
Velocity Direction

Z
 A

xi
s 

(m
)

O
ut

 o
f P

la
ne

 D
ire

ct
io

n

Lobe
Trajectory
Chief Satellite
Entry Point
Exit Point
XY Burn
Z Burn
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Figure 75: Case 1, Lobe 3, Legs = 3, β = 45◦, h = 0.5 km
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Figure 76: Case 2, Lobe 2, Legs = 2, β = 45◦, h = 0.5 km
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Figure 77: Case 3, Lobe 2, Legs = 4, β = 45◦, h = 0.5 km
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5.9 Results from Elliptical Chief Orbit

The elliptical chief results are not much different from what has been pre-

sented in the circular case. Recall that, unlike the circular case that can use a

single constraint surface, the elliptical maximum time-of-flight is a function of ini-

tial true anomaly. This means that practical calculation of an optimal trajectory

using precomputed constraint surfaces requires a library of those surfaces discretized

over true anomaly. The following result is for a single leg on Lobe 2, with defined

entry (ψ1 = 45◦) and open exit with an entry velocity of (0,0,0). It demonstrates that

results from the elliptical case can be found with no change to the cost function and

are similar to the circular case (compare to Figure 40).
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Figure 78: Case 1, Lobe 2, Legs = 1, Elliptical Chief Orbit

5.10 Summary

The results produced above show that there are a wide variety of practical

lobes available to mission planners. There are also simple tests to indicate the most

fuel-optimal method (continuous or discrete) to use for a specified lobe, entry/exit

conditions, and required total time-of-flight. It is also important to note that there

are mission scenarios for which a discrete-thrust method is preferable even if it is less

fuel-optimal than the continuous. Issues such as stealth, plume impingement on the

chief, and sensor vibrations may lead a mission planner to the discrete strategy.
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VI. Conclusions and Recommendations

The goal of this research was to answer two questions. The first, “Can a discrete

trajectory be found that outperforms the benchmark continuous-thrust solution for a

fuel criterion of optimality?” The second is, “Can we quickly and robustly estimate,

with reasonable accuracy, the amount of ∆V required to stay in a specific lobe?”

The answer to the first question is a qualified yes. The qualification is that it

can be accomplished only in certain combinations of entry/exit conditions and then

only for a relatively short total time-of-flight. In fact, entry/exit conditions appear

to have the greatest effect on which strategy is fuel-optimal. For a mission planner

attempting to decide between a discrete- and continuous-thrust solution for a given

lobe and entry/exit conditions, he or she should start with a single leg and find

optimal trajectories for about k < 5. If any of these meet the total time-of-flight

required, then a simple check of the ∆V growth charts will indicate the fuel-optimal

method. If the total time-of-flight cannot be satisfied by increasing the number of

legs, an evaluation of repeating hover orbits is needed, as discussed in Section 5.4, in

which a simple test can determine the best choice of longer-term hovering orbits. As

mentioned in Section 5.10, there may be other concerns besides fuel-optimality that

may lead a mission planner to the discrete solution.

The answer to the second question is a definite yes. The continuous-thrust so-

lution is robustly and rapidly calculated without any pre-computing of the constraint

surface. It is also a very reasonable estimate of the total ∆V required to hover in a

specific lobe. That estimate can be scaled by the inverse of the chief’s mean motion

(n) to get the actual ∆V cost for a given sized orbit. The ability to compare all

possible size chief orbits is a very important aspect of this research.

A first step was made towards applying this technique to relative motion about

chiefs in elliptical orbits. Although it is much more computationally expensive to

calculate the relative velocities and to pre-compute a family of constraint surfaces

with different true anomalies, the core method of using a minimum-fuel per time-of-

flight cost function and a maximum time-of-flight constraint surface is sound.
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Proximity operations and hovering specifically are fuel-expensive operations to

perform and will only be undertaken when mission needs are great. These tasks are

not however out of the ∆V capability range of current micro-satellites.

6.1 Contributions

Although work in the realm of relative satellite motion and proximity operations

has been extensive, this research has added several contributions to the field. Most

significantly, this research enables mission planners to search for and compare con-

tinuous and discrete fuel-optimal trajectories that are constrained to remain within

a lobe of the user’s choosing and are not tied to a particular chief semi-major axis or

µ. In completing that task, several minor contributions were also made:

1. Created a set of mission-realistic lobe entry and lobe exit conditions for use in

initializing trajectories

2. Provided an analysis of maximum time-of-flight surfaces and their sensitivity to

various factors

3. Developed a simplified optimization routine for finding persistent hover orbits

that intersect the Ŷ axis

4. Derived a closed-form solution for optimal hovering along the Ẑ axis that is

independent of the trajectory in the X̂Ŷ plane

5. Applied this method to an elliptical chief orbit scenario

6. Provided a full derivation of the partial derivatives of the cost function

Mission Impact: This research enhances USAF proficiency in satellite prox-

imity operations and space situational awareness be enabling a practical method of

finding relative motion trajectories that allow hovering near a chief satellite.
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6.2 Topics for Future Research

This research provides only the first step into hovering orbits. A wide array of

topics are available to future researchers

1. Expand the work on hovering about chiefs in elliptical orbits to include newer

research on more efficient relative velocity calculations.

2. Re-pose the cost function or add constraints to allow the possibility of thrust

points interior to the lobe. Compare those results to those trajectories produced

when thrusting is allowed only on the lobe boundary.

3. Apply additional constraints such as total time-of-flight or minimum ∆V per

burn to the cost function. This may prevent the thrust splitting phenomena

documented in Chapter V and would allow inclusion of hardware related con-

straints.

4. Include attitude control in addition to trajectory planning for completeness of

the total mission requirements. What if we wanted the deputy pointing towards

the chief while it is hovering?

5. Develop a strategy to include additional thrusts that correct the trajectory for

perturbations and equations of motion linearization errors. This is especially

important for repeating hover orbits that may drift out of the lobe over time.

101



Appendix A. Math Preliminaries

This appendix contains mathematical theorems and proofs that are used in

subsequent derivations. None of these derivations are original to this work nor partic-

ularly hard to find in mathematical or engineering texts. They are, however, key to

later derivations and included here for completeness and to put them into dissertation

notation.

A.1 Theorem: Radius of an Ellipse

The radius of an ellipse measured from the origin is

r =
ab√

a2 sin θ + b2 cos2 θ

with all variables as defined in Figure 79.

Proof:

Referencing Figure 79, choose an arbitrary point (x, y) on an ellipse that is centered

Figure 79: Ellipse Centered on the Origin

at the origin. In polar form:

x = r cos θ

y = r sin θ
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Substituting these equations into the standard form of an ellipse,

x2

a2
+

y2

b2
= 1

r2 cos2 θ

a2
+

r2 sin2 θ

b2
= 1

solving for r,

r2

[
cos2 θ

a2
+

sin2 θ

b2

]
= 1

r2
[
b2 cos2 θ + a2 sin2 θ

]
= a2b2

r2 =
a2b2

b2 cos2 θ + a2 sin2 θ

we find that,

r =
ab√

b2 cos2 θ + a2 sin2 θ
(32)

A.2 Theorem: The Inertial Derivative

The derivative of a vector defined in a rotating reference frame is

ÎĴK̂d(~V )

dt
= X̂Ŷ Ẑd(~V )

dt
+ ω × ~V

where ω is the angular velocity of the X̂Ŷ Ẑ frame with respect to the Î ĴK̂ frame

and the notation ÎĴK̂d(~V )
dt

indicates a derivative taken in the Î ĴK̂ frame.

Proof:

The following is a modification of the derivation given in Wiesel [63]. Let Î ĴK̂ be

the inertial frame and X̂Ŷ Ẑ a rotating local reference frame and let the vector ~V be

defined in the X̂Ŷ Ẑ frame, then

~V = VxX̂ + VyŶ + VzẐ
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Taking the derivative using the chain rule

ÎĴK̂d~V

dt
= Vx

ÎĴK̂dX̂

dt
+ V̇xX̂ + Vy

ÎĴK̂dŶ

dt
+ V̇yŶ + Vz

ÎĴK̂dẐ

dt
+ V̇zẐ (33)

Noting that

X̂Ŷ Ẑd~V

dt
= V̇xX̂ + V̇yŶ + V̇zẐ

The changes in the X̂Ŷ Ẑ frame unit vectors can be found by referencing Figure 80.

Assume the local frame has rotated during the period ∆t. This rotation is formed by

inspection of Figure 80.

X̂ ′ = cos (ω∆t) X̂ + sin (ω∆t) Ŷ

Ŷ ′ = − sin (ω∆t) X̂ + cos (ω∆t) Ŷ

Ẑ ′ = Ẑ

Thus

∆X̂ = X̂ ′ − X̂ = cos (ω∆t) X̂ + sin (ω∆t) Ŷ − X̂ = [cos (ω∆t)− 1] X̂ + sin (ω∆t) Ŷ

∆Ŷ = Ŷ ′ − Ŷ = − sin (ω∆t) X̂ + cos (ω∆t) Ŷ − Ŷ = − sin (ω∆t) X̂ + [cos (ω∆t)− 1] Ŷ

∆Ẑ = Ẑ ′ − Ẑ = 0

As ∆t goes to 0

ω∆t → ωdt

∆X̂ → dX̂

∆Ŷ → dŶ

cos (ω∆t) → 1

sin (ω∆t) → ωdt
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Figure 80: Derivatives of the X̂Ŷ Ẑ Frame Unit Vectors

then

dX̂ = ∆X̂ = ωdtŶ

dŶ = ∆Ŷ = −ωdtX̂

Dividing through by dt

ÎĴK̂dX̂

dt
= ωŶ

ÎĴK̂dŶ

dt
= −ωX̂

ÎĴK̂dẐ

dt
= 0

Equation (33) becomes

ÎĴK̂d~V

dt
= X̂Ŷ Ẑd~V

dt
+ VxωŶ − VyωX̂ + 0Ẑ

= X̂Ŷ Ẑd~V

dt
+

∣∣∣∣∣∣∣∣∣

X̂ Ŷ Ẑ

0 0 ω

Vx Vy Vz

∣∣∣∣∣∣∣∣∣
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Therefore the inertial derivative is

ÎĴK̂d~V

dt
= X̂Ŷ Ẑd~V

dt
+ ω × ~V (34)

A.3 Theorem: The Harmonic Addition Theorem

The following derivation is taken from Reference [61]. The sum of two sinusoids

is equal to:

a cos θ + b sin θ =
√

a2 + b2 cos

[
θ − tan−1

(
b

a

)]

a cos θ + b sin θ =
√

a2 + b2 sin
[
θ + tan−1

(a

b

)]

Proof:

Let

f(θ) = a cos θ + b sin θ

Assume we want to express this as a function of a single sinusoid

f(θ) = c cos(θ + ω)

Expanding the above equation [53]

f(θ) = c cos θ cos ω − c sin θ sin ω

which means

a = c cos ω

b = −c sin ω

Finding c

a2 + b2 = c2 cos2 ω + c2 sin2 ω = c2
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and ω
b

a
=
−c sin ω

c cos ω
= − tan ω

thus

c =
√

a2 + b2

ω = tan−1

(
− b

a

)
= −tan−1

(
b

a

)

Therefore

a cos θ + b sin θ =
√

a2 + b2 cos

[
θ − tan−1

(
b

a

)]
(35)

We can also express this in terms of a sine function. Let

f(θ) = c sin(θ + ω)

Expanding [53]

f(θ) = c sin θ cos ω + c cos θ sin ω

which means

a = c sin ω

b = c cos ω

Finding c

a2 + b2 = c2 sin2 ω + c2 cos2 ω = c2

and ω
a

b
=

c sin ω

c cos ω
= tan ω

thus

c =
√

a2 + b2

ω = tan−1
(a

b

)
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Therefore

a cos θ + b sin θ =
√

a2 + b2 sin
[
θ + tan−1

(a

b

)]
(36)

A.4 Theorem: Partial Derivative of u′RR′u with Respect to a Scalar

(u is a Function of the Scalar)

The following derivation is introduced in [33]. Let R be an i× j matrix and let

the components of u be functions of the scalar υ; then

∂ (u′RR′u)

∂υ
= 2u′RR′∂u

∂υ

Proof:

Let

A = u′RR′u =
[
u1 u2 . . . ui

]




r11 r12 . . . r1j

r21 r22 . . . r2j

...
...

. . .
...

ri1 ri2 . . . rij







r11 r21 . . . ri1

r12 r22 . . . ri2

...
...

. . .
...

r1j r2j . . . rij







u1

u2

...

ui




=
[
(u1r11 + . . . + uiri1) (u1r12 + . . . + uiri2) . . . (u1r1j + . . . + uirij)

]




(u1r11 + . . . + uiri1)

(u1r12 + . . . + uiri2)
...

(u1r1j + . . . + uirij)




= (u1r11 + . . . + uiri1)
2 + (u1r12 + . . . + uiri2)

2 + . . . + (u1r1j + . . . + uirij)
2
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Taking the partial derivative:

∂A

∂υ
= 2 (u1r11 + u2r21 + . . . + uiri1)

(
r11

∂u1

∂υ
+ r21

∂u2

∂υ
+ . . . + ri1

∂ui

∂υ

)

+ 2 (u1r12 + u2r22 + . . . + uiri2)

(
r12

∂u1

∂υ
+ r22

∂u2

∂υ
+ . . . + ri2

∂ui

∂υ

)

...

+ 2 (u1r1j + u2r2j + . . . + uirij)

(
r1j

∂u1

∂υ
+ r2j

∂u2

∂υ
+ . . . + rij

∂ui

∂υ

)

Separating into matrix form:

= 2
[
(u1r11 + . . . + uiri1) (u1r12 + . . . + uiri2) . . . (u1r1j + . . . + uirij)

]
∗




(
r11

∂u1

∂υ
+ . . . + ri1

∂ui

∂υ

)
(
r12

∂u1

∂υ
+ . . . + ri2

∂ui

∂υ

)
...

(
r1j

∂u1

∂υ
+ . . . + rij

∂ui

∂υ

)




and separating again

= 2
[
u1 u2 . . . ui

]




r11 r12 . . . r1j

r21 r22 . . . r2j

...
...

. . .
...

ri1 ri2 . . . rij







r11 r21 . . . ri1

r12 r22 . . . ri2

...
...

. . .
...

r1j r2j . . . rij







∂u1

∂υ

∂u2

∂υ
...

∂ui

∂υ




thus
∂ (u′RR′u)

∂υ
=

∂A

∂υ
= 2u′RR′∂u

∂υ
(37)
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A.5 Theorem: Partial Derivative of u′RR′u with Respect to a Scalar

(R is a Function of the Scalar)

The following derivation is introduced in [33]. Let R be an i× j matrix and its

components be functions of the scalar υ, then

∂ (u′RR′u)

∂υ
= 2u′R

∂R′

∂υ
u

Proof:

Let

A = u′RR′u =
[
u1 u2 . . . ui

]




r11 r12 . . . r1j

r21 r22 . . . r2j

...
...

. . .
...

ri1 ri2 . . . rij







r11 r21 . . . ri1

r12 r22 . . . ri2

...
...

. . .
...

r1j r2j . . . rij







u1

u2

...

ui




=
[
(u1r11 + . . . + uiri1) (u1r12 + . . . + uiri2) . . . (u1r1j + . . . + uirij)

]




(u1r11 + . . . + uiri1)

(u1r12 + . . . + uiri2)
...

(u1r1j + . . . + uirij)




= (u1r11 + . . . + uiri1)
2 + (u1r12 + . . . + uiri2)

2 + . . . + (u1r1j + . . . + uirij)
2

Taking the partial derivative:

∂A

∂υ
= 2 (u1r11 + u2r21 + . . . + uiri1)

(
u1

∂r11

∂υ
+ u2

∂r21

∂υ
+ . . . + ui

∂ri1

∂υ

)

+ 2 (u1r12 + u2r22 + . . . + uiri2)

(
u1

∂r12

∂υ
+ u2

∂r22

∂υ
+ . . . + ui

∂ri2

∂υ

)

...

+ 2 (u1r1j + u2r2j + . . . + uirij)

(
u1

∂r1j

∂υ
+ u2

∂r2j

∂υ
+ . . . + ui

∂rij

∂υ

)
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Separating into matrix form:

= 2
[
(u1r11 + . . . + uiri1) (u1r12 + . . . + uiri2) . . . (u1r1j + . . . + uirij)

]
∗




(
u1

∂r11

∂υ
+ . . . + ui

∂ri1

∂υ

)
(
u1

∂r12

∂υ
+ . . . + ui

∂ri2

∂υ

)
...(

u1
∂r1j

∂υ
+ . . . + ui

∂rij

∂υ

)




and separating again

= 2
[
u1 u2 . . . ui

]




r11 r12 . . . r1j

r21 r22 . . . r2j

...
...

. . .
...

ri1 ri2 . . . rij







∂r11

∂υ
∂r21

∂υ
. . . ∂ri1

∂υ

∂r12

∂υ
∂r22

∂υ
. . . ∂ri2

∂υ
...

...
. . .

...

∂r1j

∂υ

∂r2j

∂υ
. . .

∂rij

∂υ







u1

u2

...

ui




thus
∂ (u′RR′u)

∂υ
=

∂A

∂υ
= 2u′R

∂R′

∂υ
u (38)
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Appendix B. The User-Defined Lobe

Ideally the user should have maximum flexibility in specifying the lobe in which

the deputy will hover. For chiefs in circular orbits, the out-of-plane and in-plane

motion decouple, therefore the lobe shapes will be independently constructed.

B.1 In the Orbit Plane

In the orbit plane of the chief, an ellipse is a convenient closed shape that pro-

vides the utility we seek without overly complicating the mathematics. The following

is a derivation of the polar coordinates for an arbitrarily placed and oriented ellipse.

Reference Figure 81 for variable definitions. The Cartesian coordinates of the deputy

Chief

Figure 81: The Lobe in Two Dimensions

in the X̂ ′Ŷ ′ frame are

x′ = r cos ψ′

y′ = r sin ψ′

where, from the proof in Appendix A.1,

r =
τxτy√

τ 2
y cos2 ψ′ + τ 2

x sin2 ψ′
(39)
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We can rotate these coordinates into the chief centered frame via


X̂

Ŷ


 =


cos η − sin η

sin η cos η





X̂ ′

Ŷ ′




thus


xi

yi


 =


cos η − sin η

sin η cos η





ri cos ψ′i

ri sin ψ′i


 =


ri cos η cos ψ′i − ri sin η sin ψ′i

ri sin η cos ψ′i + ri cos η sin ψ′i




Simplifying,

xi = ri cos (η + ψ′i)

yi = ri sin (η + ψ′i)

Let the angular position (ψi) be measured with respect to a line parallel to the X̂

axis

ψi = η + ψ′i (40)

Substituting

r(ψi) =
τxτy√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
(41)

xi =
τxτy cos ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

yi =
τxτy sin ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

Translating the ellipse so that it is centered at (xL, yL), where

xL = γ
XY

cos α = γ cos α sin β

yL = γ
XY

sin α = γ sin α sin β
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yields

xi = γ cos α sin β +
τxτy cos ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
(42)

yi = γ sin α sin β +
τxτy sin ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
(43)

if τx = τy, the ellipse becomes a circle with radius τ and the equations above reduce

to

xi = γ cos α sin β + τ cos ψi (44)

yi = γ sin α sin β + τ sin ψi (45)

Next we need the partial derivatives of Equations (42) and (43) with respect to ψi.

First the partial derivative of the denominator

∂ denom

∂ψi

=
1
2

[−2τ 2
y cos(ψi − η) sin(ψi − η) + 2τ 2

x sin(ψi − η) cos(ψi − η)
]

√
τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

=

(
τ 2
x − τ 2

y

)
cos(ψi − η) sin(ψi − η)√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
=

ri

(
τ 2
x − τ 2

y

)
cos(ψi − η) sin(ψi − η)

τxτy

(46)

Then

∂xi

∂ψi

=

√
τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)τxτy(− sin ψi)− τxτy cos ψi
∂ denom

∂ψi

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

∂yi

∂ψi

=

√
τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)τxτy(cos ψi)− τxτy sin ψi
∂ denom

∂ψi

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
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Substituting Equation (41)

∂xi

∂ψi

=
−τ 2

xτ 2
y

ri

sin ψi − ri

(
τ 2
x − τ 2

y

)
cos(ψi − η) sin(ψi − η) cos ψi

τ 2
xτ 2

y

r2
i

= −ri sin ψi − r3
i

τ 2
x − τ 2

y

2τ 2
xτ 2

y

sin(2ψi − 2η) cos ψi (47)

∂yi

∂ψi

=

τ 2
xτ 2

y

ri

cos ψi − ri

(
τ 2
x − τ 2

y

)
cos(ψi − η) sin(ψi − η) sin ψi

τ 2
xτ 2

y

r2
i

= ri cos ψi − r3
i

τ 2
x − τ 2

y

2τ 2
xτ 2

y

sin(2ψi − 2η) sin ψi (48)

and, for a circular lobe (ri = τx = τy = τ),

∂xi

∂ψi

= −τ sin ψi

∂yi

∂ψi

= τ cos ψi

Conversion back to polar coordinates from Cartesian is setup in Figure 82. Note that,

Figure 82: Conversion from Cartesian to Polar Coordinates
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γ
XY

= γ sin β

The relationship of x′ and y′ to ψ is

tan ψi =
y′i
x′i

Thus

ψi = tan−1

[
y′i
x′i

]
= tan−1

[
yi − γ sin α sin β

xi − γ cos α sin β

]
(49)

and the radius (ri) is given by

ri =
√

(x′i)2 + (y′i)2 =

√
(xi − γ cos α sin β)2 + (yi − γ sin α cos β)2 (50)

B.2 Out of the Orbit Plane

In three dimensions, the lobe is constrained to be an elliptical cylinder. Em-

ploying a one dimensional lobe shape in the out-of-plane direction, allows us to take

advantage of the decoupling of the equations of motion. Thus a single parameter, (h)

the half height of the lobe, is required to define the lobe in three dimensions.

Chief

Deputy

Figure 83: The Lobe in Three Dimensions
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Appendix C. The Two Body Problem

The classical two body orbit problem is derived below for completeness. To find

the acceleration of a satellite about a much larger primary body due to the force of

gravity, consider Figure 84, in which ~d are position vectors in inertial space:

Figure 84: Two Body Problem

By Newton’s second law [38],

∑
~F = Mass ∗ Acceleration = ma (51)

In the presence of perturbations

~Fg + ~fc + ~fp = ma (52)

where ~Fg is the force due to gravity, ~fc is a vector of control forces, and ~fp is a vector

of perturbative forces. Gravity obeys an inverse square law

|~Fg| ∝ m1m2

‖~d‖2
2
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where ‖~d‖2 is the Euclidean norm of the relative position. To make this proportionality

equation an equality, the gravitational constant is used

(
G = 6.672× 10−11 N ·m2

kg2

)

|~Fg| = Gm1m2

‖~d‖2
2

In order to apply Newton’s law, we need to move the inertial reference frame so that

it is centered on the larger mass (m1). This means we are assuming the larger mass is

not accelerating in the true inertial frame and thus is an inertial frame itself. As long

as the masses are sufficiently disparate and there are no other forces of consequence

operating on m1, this is a reasonable approximation. Substituting into Equation (52)

for both masses

[
Gm1m2

‖~d‖2
2

]
Û + ~fc1 + ~fp1 = m1

~̈d1

[
Gm1m2

‖~d‖2
2

]
(−Û) + ~fc2 + ~fp2 = m2

~̈d2

where Û is a unit vector parallel to ~d and gives the scalar force of gravity a direction.

Making the following substitution

Û =
~d

‖~d‖2

yields

[
Gm1m2

‖~d‖2
2

]
~d

‖~d‖2

+ ~fc1 + ~fp1 = m1
~̈d1

−
[

Gm1m2

‖~d‖2
2

]
~d

‖~d‖2

+ ~fc2 + ~fp2 = m2
~̈d2
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Combining terms and dividing through by the masses to isolate the acceleration,

~̈d1 =

[
Gm2

‖~d‖3
2

]
~d +

~fc1

m1

+
~fp1

m1

(53)

~̈d2 =

[
−Gm1

‖~d‖3
2

]
~d +

~fc2

m2

+
~fp2

m2

(54)

~d = ~d2 − ~d1; taking the derivative twice yields

~̈d = ~̈d2 − ~̈d1

Substituting Equations (53) and (54) into the above equation

~̈d =

[
−Gm1

‖~d‖3
2

]
~d +

~fc2

m2

+
~fp2

m2

−
[

Gm2

‖~d‖3
2

]
~d−

~fc1

m1

−
~fp1

m1

Combining terms

~̈d =
−G(m1 + m2)~d

‖~d‖3
2

−
~fc1

m1

−
~fp1

m1

+
~fc2

m2

+
~fp2

m2

If the first body is the Earth and the second body a satellite orbiting the Earth, then

m1 = mearth, m2 = msat, fc1 = fearth-control, fc2 = fsat-control, fp1 = fearth-pert, and

fp2 = fsat-pert

~̈d =
−G(mearth + msat)~d

‖~d‖3
2

−
~fearth-control

mearth

−
~fearth-pert

mearth

+
~fsat-control

msat

+
~fsat-pert

msat

Since mearth À msat we can assume that mearth + msat ≈ mearth, further, if the

Earth is being used as the inertial reference frame for the satellite then ~fearth-control =

~fearth-pert = 0:

~̈d =
−Gmearth

~d

‖~d‖3
2

+
~fsat-control

msat

+
~fsat-pert

msat
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Defining the constant µ such that

µ = Gmearth = 6.672× 10−11 N · m2

km2 × 5.974236× 1024 kg

= 3.98601× 1014 m3

s2
= 398601

km3

s2

and defining the specific forces (accelerations)

~ac =
~fsat-control

msat

~ap =
~fsat-pert

msat

Then the equation of motion for a satellite about the Earth with control input of ~ac

and a perturbative acceleration of ~ap is

~̈d =
−µ~d

‖~d‖3
2

+ ~ac + ~ap (55)
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Appendix D. Orbital Mechanics

Several orbital mechanics quantities are needed in subsequent derivations. This

entire appendix originates from equations and discussion found in [63].

Satellite

Figure 85: The General Elliptical Orbit

D.1 True Anomaly (ν)

Referencing Figure 85, the P̂ Q̂Ŵ is an inertial frame oriented such that P̂ points

towards perigee, Q̂ is along the semi-latus rectum, and Ŵ is P̂ × Q̂ along the angular

momentum vector. The position vector by inspection is

~r = r cos νP̂ + r sin νQ̂

Taking the derivative

~v = [ṙ cos ν − rν̇ sin ν] P̂ + [ṙ sin ν + rν̇ cos ν] Q̂

121



The angular momentum vector is

~H = ~r × ~v =

∣∣∣∣∣∣∣∣∣

P̂ Q̂ Ŵ

r cos ν r sin ν 0

ṙ cos ν − rν̇ sin ν ṙ sin ν + rν̇ cos ν 0

∣∣∣∣∣∣∣∣∣

=




0P̂

0Q̂

(rṙ cos ν sin ν + r2ν̇ cos2 ν)

−(rṙ cos ν sin ν − r2ν̇ sin2 ν)Ŵ




= r2ν̇Ŵ

The angular momentum is also equal to [63]

H =
√

µp

Substituting r from the next section (Equation (64))

rν̇ =

√
µp

r
=
√

µp
1 + e cos ν

p
=

√
µ

p
(1 + e cos ν) (56)

Note that [63]

√
µ

p
=

rν̇

1 + e cos ν
(57)

p = aSMA(1− e2) (58)

n =

√
µ

a3
SMA

(59)

Solving for ν̇ with another substitution of r,

ν̇ =

√
µ

p
(1 + e cos ν)

1 + e cos ν

p
=

√
µ

p3
(1 + e cos ν)2

=

√
µ

a3
SMA

(1 + e cos ν)2

(1− e2)
3
2

=
n(1 + e cos ν)2

(1− e2)
3
2

(60)
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The angular rate can also be expressed as

r2ν̇ =
√

µp

ν̇2 =
µp

r4
=

µr(1 + e cos ν)

r4
=

µ(1 + e cos ν)

r3
(61)

Taking the derivative of Equation (60)

ν̈ =
n

(1− e2)
3
2

2(1 + e cos ν)e(− sin ν)ν̇

=
−2neν̇(1 + e cos ν) sin ν

(1− e2)
3
2

=
−2eν̇2 sin ν

1 + e cos ν
(62)

or, in terms of only ν,

ν̈ =
−2e sin ν

1 + e cos ν

[
n(1 + e cos ν)2

(1− e2)
3
2

]2

=
−2n2e(1 + e cos ν)3 sin ν

(1− e2)3
(63)

D.2 Ellipse Radius (r)

The radius of an orbit is a function of true anomaly (ν) and comes from the

equation of a conic section [63]

r =
aSMA(1− e2)

1 + e cos ν
=

p

1 + e cos ν
(64)

where p is the semi-latus rectum. The derivative is

ṙ = p
[−(1 + e cos ν)−2(−ν̇e sin ν)

]
=

peν̇ sin ν

(1 + e cos ν)2
= rν̇

e sin ν

1 + e cos ν
(65)

Substituting Equation (56)

ṙ =

√
µ

p
e sin ν (66)
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and finally the second derivative of r

r̈ =

√
µ

p
eν̇ cos ν

and substituting Equation (57)

r̈ =

(
rν̇

1 + e cos ν

)
eν̇ cos ν =

reν̇2 cos ν

1 + e cos ν
(67)
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Appendix E. General Relative Motion Derivation

Assume the chief satellite is in a closed Keplerian orbit and define the following

chief centered reference frame: the X̂ is oriented along a line from the center of the

Earth to the chief, Ẑ is perpendicular to the orbit plane of the chief and Ŷ completes

the frame as the cross product Ẑ × X̂. The in-track direction is aligned with the

velocity vector of the chief when in a circular orbit. This frame is commonly referred

to as the Local-Vertical/Local-Horizon (LVLH) frame. By inspection of Figure 86,

the position vectors in the LVLH frame are:

~L = roX̂ + 0Ŷ + 0Ẑ

~P = xX̂ + yŶ + zẐ

~M = ~L + ~P = (ro + x)X̂ + yŶ + zẐ (68)

where ro is the instantaneous orbit radius of the chief satellite and is a function of

time.

Chief

Deputy

(a) Inertial Vector Relationships

Chief

Deputy

is out of 
plane up

(b) The Chief Centered Relative Frame

Figure 86: General Relative Motion Setup

The inertial derivative of a vector written in a rotating frame is derived in

Appendix A.2 as

~̇V = X̂Ŷ Ẑd(~V )

dt
+ ω × ~V
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where ω is the angular velocity of the X̂Ŷ Ẑ frame with respect to the inertial frame.

For the orbit problem, ω = 0X̂ + 0Ŷ + ν̇Ẑ where ν̇ is the time rate of change of

the chief’s true anomaly. Taking the inertial derivative of Equation (68) yields the

relative velocity:

~̇M = X̂Ŷ Ẑ ~̇M + (ν̇Ẑ)× ~M

where X̂Ŷ Ẑ ~̇M is the derivative of ~M in the X̂Ŷ Ẑ frame.

X̂Ŷ Ẑ ~̇M = (ṙo + ẋ) X̂ + ẏŶ + żẐ

(ν̇Ẑ)× ~M =

∣∣∣∣∣∣∣∣∣

X̂ Ŷ Ẑ

0 0 ν̇

ro + x y z

∣∣∣∣∣∣∣∣∣
=




−ν̇yX̂

ν̇(ro + x)Ŷ

0Ẑ




Adding these together yields:

~̇M = (ṙo + ẋ− ν̇y)X̂ + [ẏ + ν̇(ro + x)]Ŷ + żẐ (69)

Taking the inertial derivative of Equation (69) yields the acceleration:

~̈M = X̂Ŷ Ẑ ~̈M + (ν̇Ẑ)× ~̇M

where X̂Ŷ Ẑ ~̈M is the derivative of ~̇M in the X̂Ŷ Ẑ frame.

X̂Ŷ Ẑ ~̈M = [r̈o + ẍ− (ν̈y + ν̇ẏ)] X̂ + [ÿ + ν̈(ro + x) + ν̇(ṙo + ẋ)] Ŷ + z̈Ẑ

(ν̇Ẑ)× ~̇M =

∣∣∣∣∣∣∣∣∣

X̂ Ŷ Ẑ

0 0 ν̇

ṙo + ẋ− ν̇y ẏ + ν̇(ro + x) ż

∣∣∣∣∣∣∣∣∣
=




− [ν̇ẏ + ν̇2(ro + x)] X̂

[ν̇ṙo + ν̇ẋ− ν̇2y] Ŷ

0Ẑ




Adding these together yields:

~̈M =
[
r̈o + ẍ− 2ν̇ẏ − ν̈y − ν̇2(ro + x)

]
X̂ +

[
ÿ + 2ν̇(ṙo + ẋ)− ν̇2y + ν̈(ro + x)

]
Ŷ + z̈Ẑ
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Note that (via substitution of Equations (62) and (65))

2ν̇ṙo + ν̈ro = 2ν̇

[
roν̇e sin ν

1 + e cos ν

]
− 2eν̇2 sin ν

1 + e cos ν
ro = 0

and also (via substitution of Equations (61) and (67))

r̈o − ν̇2ro =
roeν̇

2 cos ν

1 + e cos ν
− ν̇2ro = ν̇2ro

[
e cos ν

1 + e cos ν
− 1

]
=

−ν̇2ro

1 + e cos ν

= −
[
µ(1 + e cos ν)

r3
o

]
ro

1 + e cos ν
=
−µ

r2
o

Thus

~̈M =

[
ẍ− 2ν̇ẏ − ν̈y − ν̇2x− µ

r2
o

]
X̂ + [ÿ + 2ν̇ẋ− ν̇2y + ν̈x] Ŷ + z̈Ẑ (70)

We know from Appendix C that acceleration due to gravity and control forces is:

~̈M =
−µ ~M

‖ ~M‖3
2

+ ~ac + ~ap

where µ is the gravitational constant, ~ac is the control acceleration, and ~ap is the

perturbative acceleration. Expanding the magnitude of the position vector yields

‖ ~M‖3
2 =

[√
(ro + x)2 + y2 + z2

]3

=
[
(ro + x)2 + y2 + z2

] 3
2

Thus

~̈M =
−µ[(ro + x)X̂ + yŶ + zẐ]

[(ro + x)2 + y2 + z2]
3
2

+ ~ac + ~ap (71)

Setting Equations (70) and (71) equal to each other,




[
ẍ− 2ν̇ẏ − ν̈y − ν̇2x− µ

r2
o

]
X̂

[ÿ + 2ν̇ẋ− ν̇2y + ν̈x] Ŷ

z̈Ẑ




=
−µ

[(ro + x)2 + y2 + z2]
3
2




(ro + x)X̂

yŶ

zẐ


+




(acx + apx)X̂

(acy + apy)Ŷ

(acz + apz)Ẑ



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In scalar form and simplifying

ẍ− 2ν̇ẏ − ν̈y − ν̇2x− µ

[
1

r2
o

− ro + x

[(ro + x)2 + y2 + z2]
3
2

]
− acx − apx = 0

ÿ + 2ν̇ẋ + ν̈x− ν̇2y +
µy

[(ro + x)2 + y2 + z2]
3
2

− acy − apy = 0

z̈ +
µz

[(ro + x)2 + y2 + z2]
3
2

− acz − apz = 0

From Equation (61) we can set µ equal to

µ =
r3
o ν̇

2

1 + e cos ν

Substituting

ẍ− 2ν̇ẏ − ν̈y − ν̇2x−
(

r3
o ν̇

2

1 + e cos ν

) [
1

r2
o

− ro + x

[(ro + x)2 + y2 + z2]
3
2

]
− acx − apx = 0

ÿ + 2ν̇ẋ + ν̈x− ν̇2y +

(
r3
o ν̇

2

1 + e cos ν

)
y

[(ro + x)2 + y2 + z2]
3
2

− acy − apy = 0

z̈ +

(
r3
o ν̇

2

1 + e cos ν

)
z

[(ro + x)2 + y2 + z2]
3
2

− acz − apz = 0

Factoring out a ν̇2 yields the general relative equations of motion

ẍ− 2ν̇ẏ − ν̈y − ν̇2

[
x +

ro

1 + e cos ν
− r3

o(ro + x)

(1 + e cos ν) [(ro + x)2 + y2 + z2]
3
2

]
− acx − apx = 0

(72a)

ÿ + 2ν̇ẋ + ν̈x− ν̇2y

[
1− r3

o

(1 + e cos ν) [(ro + x)2 + y2 + z2]
3
2

]
− acy − apy = 0 (72b)

z̈ + ν̇2z

[
r3
o

(1 + e cos ν) [(ro + x)2 + y2 + z2]
3
2

]
− acz − apz = 0 (72c)

We can further simplify these equations by assuming that the deputy is close to the

chief compared to the instantaneous orbit radius (ro). Define the nonlinear term (NL)
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as

NL =
[
(ro + x)2 + y2 + z2

] 3
2

Expanding and factoring out an r2
o

NL =

[
r2
o

(
1 +

2x

ro

+
x2

r2
o

+
y2

r2
o

+
z2

r2
o

)] 3
2

= r3
o

(
1 +

2x

ro

+
x2

r2
o

+
y2

r2
o

+
z2

r2
o

) 3
2

Using the binomial series expansion [24], this becomes

NL = r3
o

[
1 +

3

2

(
2x

ro

+
x2

r2
o

+
y2

r2
o

+
z2

r2
o

)
+O(x, y, z)

]

Neglecting terms of order larger than two, O(x, y, z), and assuming that x, y, and z

are appropriately small compared to the instantaneous radius of the chief’s orbit (our

underlying assumption for linearization) such that

x2

r2
o

≈ y2

r2
o

≈ z2

r2
o

≈ 0

the nonlinear term is now

NL = r3
o

(
1 +

3x

ro

)
= r3

o

(
ro + 3x

ro

)

and the general relative equations of motion are

ẍ− 2ν̇ẏ − ν̈y − ν̇2


x +

ro

1 + e cos ν
− r3

o(ro + x)

(1 + e cos ν) r3
o

(
ro+3x

ro

)

− acx − apx = 0

ÿ + 2ν̇ẋ + ν̈x− ν̇2y


1− r3

o

(1 + e cos ν) r3
o

(
ro+3x

ro

)

− acy − apy = 0

z̈ + ν̇2z


 r3

o

(1 + e cos ν) r3
o

(
ro+3x

ro

)

− acz − apz = 0
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Canceling r3
o

ẍ− 2ν̇ẏ − ν̈y − ν̇2

[
x +

ro

1 + e cos ν
− ro(ro + x)

(1 + e cos ν) (ro + 3x)

]
− acx − apx = 0

ÿ + 2ν̇ẋ + ν̈x− ν̇2y

[
1− ro

(1 + e cos ν) (ro + 3x)

]
− acy − apy = 0

z̈ + ν̇2z

[
ro

(1 + e cos ν) (ro + 3x)

]
− acz − apz = 0

Combining terms

ẍ− 2ν̇ẏ − ν̈y − ν̇2

[
x +

2xro

(1 + e cos ν) (ro + 3x)

]
− acx − apx = 0

ÿ + 2ν̇ẋ + ν̈x− ν̇2y

[
1− ro

(1 + e cos ν) (ro + 3x)

]
− acy − apy = 0

z̈ + ν̇2z

[
ro

(1 + e cos ν) (ro + 3x)

]
− acz − apz = 0

Assume that ro is appropriately large compared to x such that

ro + 3x ≈ ro

Then

ẍ− 2ν̇ẏ − ν̈y − ν̇2

[
x +

2x

1 + e cos ν

]
− acx − apx = 0

ÿ + 2ν̇ẋ + ν̈x− ν̇2y

[
1− 1

1 + e cos ν

]
− acy − apy = 0

z̈ + ν̇2z

[
1

1 + e cos ν

]
− acz − apz = 0
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and finally, combining terms, the simplified general relative equations of motion are

ẍ− 2ν̇ẏ − ν̈y − ν̇2x

[
3 + e cos ν

1 + e cos ν

]
− acx − apx = 0 (73a)

ÿ + 2ν̇ẋ + ν̈x− ν̇2y

[
e cos ν

1 + e cos ν

]
− acy − apy = 0 (73b)

z̈ + ν̇2z

[
1

1 + e cos ν

]
− acz − apz = 0 (73c)

where

ν̇ =
n(1 + e cos ν)2

(1− e2)
3
2

ν̈ =
−2eν̇2 sin ν

1 + e cos ν
=
−2n2e(1 + e cos ν)3 sin ν

(1− e2)3

If the chief satellite is in a circular orbit, then

e = 0

ν̇ = n

ν̈ = 0

and the general relative equations of motion (Equation (72)) reduce to

ẍ− 2nẏ − n2(x + ro)

[
1− r3

o

[(ro + x)2 + y2 + z2]
3
2

]
− acx − apx = 0 (74a)

ÿ + 2nẋ− n2y

[
1− r3

o

[(ro + x)2 + y2 + z2]
3
2

]
− acy − apy = 0 (74b)

z̈ + n2z

[
r3
o

[(ro + x)2 + y2 + z2]
3
2

]
− acz − apz = 0 (74c)
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The linear form of Equation (73) reduce to the familiar Clohessy-Wiltshire equations

ẍ− 2nẏ − 3n2x− acx − apx = 0 (75a)

ÿ + 2nẋ− acy − apy = 0 (75b)

z̈ + n2z − acz − apz = 0 (75c)
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Appendix F. Chief Orbit Fractions as the Independent Variable

There are advantages to using chief orbit fractions as the independent variable

as opposed to absolute time, primarily the disentanglement of the relative trajectory

to semi-major axis (or orbital radius for e = 0). The relationship between absolute

time (t) and time as a fraction of orbit period (t̃) is

t̃ =
t

P

where the chief orbit period (P ) is [63]

P = 2π

√
a3

SMA

µ
=

2π

n

therefore

t =
2π

n
t̃

and the derivative of t with respect to t̃ is

dt

dt̃
=

2π

n
(76)

The relative positions remained unchanged in this conversion

x̃ = x (77a)

ỹ = y (77b)

z̃ = z (77c)

The relative velocities as functions of chief orbit fractions are

˙̃x =
dx̃

dt̃
=

dx

dt̃
=

dx

dt

dt

dt̃
= ẋ

2π

n
(78a)

˙̃y =
dỹ

dt̃
=

dy

dt̃
=

dy

dt

dt

dt̃
= ẏ

2π

n
(78b)

˙̃z =
dz̃

dt̃
=

dz

dt̃
=

dz

dt

dt

dt̃
= ż

2π

n
(78c)
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and the accelerations

¨̃x =
d ˙̃x

dt̃
=

2π

n

dẋ

dt̃
=

2π

n

dẋ

dt

dt

dt̃
= ẍ

4π2

n2
(79a)

¨̃y =
d ˙̃y

dt̃
=

2π

n

dẏ

dt̃
=

2π

n

dẏ

dt

dt

dt̃
= ÿ

4π2

n2
(79b)

¨̃z =
d ˙̃z

dt̃
=

2π

n

dż

dt̃
=

2π

n

dż

dt

dt

dt̃
= z̈

4π2

n2
(79c)

Also let

ν̃ = ν

˙̃ν = ν̇
2π

n
=

2π(1 + e cos ν)2

(1− e2)
3
2

¨̃ν = ν̈
4π2

n2
=
−8π2e(1 + e cos ν)3 sin ν

(1− e2)3

We are now ready to formulate the general relative equations of motion as functions

of chief orbit fractions. Starting with the homogeneous form of Equation (73) from

Appendix E and dividing through by n2

ẍ

n2
− 2

ν̇ẏ

n2
− ν̈

n2
y − ν̇2

n2
x

[
3 + e cos ν

1 + e cos ν

]
= 0

ÿ

n2
+ 2

ν̇ẋ

n2
+

ν̈

n2
x− ν̇2

n2
y

[
e cos ν

1 + e cos ν

]
= 0

z̈

n2
+

ν̇2

n2
z

[
1

1 + e cos ν

]
= 0

Substituting the new acceleration, velocities, positions, and derivatives of true anomaly

1

n2
¨̃x

n2

4π2
− 2

n2
˙̃ν

n

2π
˙̃y

n

2π
− 1

n2
¨̃ν

n2

4π2
ỹ − 1

n2

(
˙̃ν

n

2π

)2

x̃

[
3 + e cos ν

1 + e cos ν

]
= 0

1

n2
¨̃y

n2

4π2
+

2

n2
˙̃ν

n

2π
˙̃x

n

2π
+

1

n2
¨̃ν

n2

4π2
x̃− 1

n2

(
˙̃ν

n

2π

)2

ỹ

[
e cos ν

1 + e cos ν

]
= 0

1

n2
¨̃z

n2

4π2
+

1

n2

(
˙̃ν

n

2π

)2

z̃

[
1

1 + e cos ν

]
= 0
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Simplifying and multiplying through by 4π2

¨̃x− 2 ˙̃ν ˙̃y − ¨̃νỹ − ˙̃ν2x̃

[
3 + e cos ν̃

1 + e cos ν̃

]
= 0 (80a)

¨̃y + 2 ˙̃ν ˙̃x + ¨̃νx̃− ˙̃ν2ỹ

[
e cos ν̃

1 + e cos ν̃

]
= 0 (80b)

¨̃z + ˙̃ν2z̃

[
1

1 + e cos ν̃

]
= 0 (80c)

When the chief is in a circular orbit

e = 0

˙̃ν = 2π

¨̃ν = 0

thus the Clohessy-Wiltshire equations a functions of chief orbit fractions are

¨̃x− 4π ˙̃y − 12π2x̃ = 0 (81a)

¨̃y + 4π ˙̃x = 0 (81b)

¨̃z + 4π2z̃ = 0 (81c)
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Appendix G. A Closed-Form Solution of the Linear

Clohessy-Wiltshire Equations

Start with the homogeneous linear Clohessy-Wiltshire equations (Equation (75)

from Appendix E)

ẍ− 2nẏ − 3n2x = 0

ÿ + 2nẋ = 0

z̈ + n2z = 0

Taking the Laplace transform

[s2X(s)− sxo − ẋo]− 2n[sY (s)− yo]− 3n2X(s) = 0

[s2Y (s)− syo − ẏo] + 2n[sX(s)− xo] = 0

[s2Z(s)− szo − żo] + n2Z(s) = 0

where xo and ẋo are initial conditions of the relative position and velocity in the X̂

(radial) direction, yo and ẏo are in the Ŷ (velocity) direction, and zo and żo are in

the Ẑ (out-of-plane) direction. Collecting terms and placing the equations in matrix

form 


s2 − 3n2 −2ns 0

2ns s2 0

0 0 s2 + n2







X(s)

Y (s)

Z(s)


 =




sxo + ẋo − 2nyo

syo + ẏo − 2nxo

szo + żo




Finding the inverse and solving for X(s), Y (s), and Z(s)




X(s)

Y (s)

Z(s)


 =




1

s2 + n2

2n

s(s2 + n2)
0

−2n

s(s2 + n2)

s2 − 3n2

s2(s2 + n2)
0

0 0
1

s2 + n2







sxo + ẋo − 2nyo

syo + ẏo − 2nxo

szo + żo



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Multiplying this out




X(s)

Y (s)

Z(s)


 =




sxo + ẋo − 2nyo

s2 + n2
+

2n(syo + ẏo + 2nxo)

s(s2 + n2)
−2n(sxo + ẋo − 2nyo)

s(s2 + n2)
+

(s2 − 3n2)(syo + ẏo + 2nxo)

s2(s2 + n2)
szo + żo

s2 + n2




Performing partial fraction expansion




X(s)

Y (s)

Z(s)


 =




sxo + ẋo − 2nyo

s2 + n2
+

2n2yo − 2sẏo − 4snxo

n(s2 + n2)
+

2ẏo + 4nxo

n

1

s
4syo + 4ẏo + 8nxo

s2 + n2
+
−2n2xo + 2sẋo − 4syon

n(s2 + n2)
+
−3ẏo − 6nxo

s2
+

nyo − 2ẋo

n

1

s
szo + żo

s2 + n2




Collecting terms




X(s)

Y (s)

Z(s)


 =




(
xo − 2ẏo+4nxo

n

)
s

s2 + n2
+

(
ẋo

n

)
n

s2 + n2
+

2ẏo + 4nxo

n

1

s
2( ẋo

n
)s

s2 + n2
+

2
(

2ẏo+4nxo

n
− xo

)
n

s2 + n2
− 3n

2

2ẏo + 4nxo

n

1

s2
+

nyo − 2ẋo

n

1

s
szo

s2 + n2
+

(
żo

n

)
n

s2 + n2




Taking the inverse Laplace transform




x(t)

y(t)

z(t)


 =




[
xo − 2ẏo + 4nxo

n

]
cos(nt) +

ẋo

n
sin(nt) +

2ẏo + 4nxo

n

2

(
ẋo

n

)
cos(nt) + 2

[
2ẏo + 4nxo

n
− xo

]
sin(nt)− 3nt

2

(
2ẏo + 4nxo

n

)
+

nyo − 2ẋo

n

zo cos(nt) +
żo

n
sin(nt)




(82)

Since the ICs and n do not vary with time, two constants can be defined

a =
2ẏo + 4nxo

n
(83)

b =
nyo − 2ẋo

n
(84)
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which simplifies Equation (82) to

x(t) = (xo − a) cos(nt) +
ẋo

n
sin(nt) + a (85a)

y(t) =
2ẋo

n
cos(nt) + 2(a− xo) sin(nt)− 3na

2
t + b (85b)

z(t) = zo cos(nt) +
żo

n
sin(nt) (85c)

For simplicity, x = x(t), y = y(t), z = z(t). Isolating the sinusodal terms.

x− a = (xo − a) cos(nt) +
ẋo

n
sin(nt)

y + 3na
2

t− b

2
=

ẋo

n
cos(nt) + (a− xo) sin(nt)

Squaring both sides yields:

[x− a]2 = (xo − a)2 cos2(nt) +

(
ẋo

n

)2

sin2(nt)

+ 2(xo − a)
ẋo

n
cos(nt) sin(nt)

[y + 3na
2

t− b]2

4
=

(
ẋo

n

)2

cos2(nt) + (a− xo)
2 sin2(nt)

− 2(xo − a)
ẋo

n
cos(nt) sin(nt)

Adding these equations together

[x− a]2 +
[y + 3na

2
t− b]2

4
=

[
(xo − a)2 +

(
ẋo

n

)2
]

cos2(nt)

+

[(
ẋo

n

)2

+ (−1)2(xo − a)2

]
sin2(nt)
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Pulling out the common coefficient and using the identity cos2(α) + sin2(α) = 1

[x− a]2 +
[y + 3na

2
t− b]2

4
= (xo − a)2 +

(
ẋo

n

)2

The right side of this equation has no time varying terms, thus define the constant ρ

ρ2 = (xo − a)2 +

(
ẋo

n

)2

(86)

Substituting and dividing by ρ2 yields

[x− a]2

ρ2
+

[y + 3na
2

t− b]2

4ρ2
= 1 (87)

This is the standard equation for an ellipse, thus the deputy satellite will follow an

elliptical path about the chief satellite in the X̂Ŷ plane (Figure 87). Note that for

a stable orbit (i.e. one that does not drift over time) about a chief satellite a must

equal zero.

Towards the Earth

In the Direction 
of the Chief 
Satellite’s 
Velocity

Deputy

Chief

Relative Orbit 
Center

(a) Closed Relative Orbit

Towards the Earth

In the Direction 
of the Chief 
Satellite’s 
Velocity

Deputy

Chief

(b) Drifting Relative Orbit

Figure 87: Relative Orbit Types
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We can further simplify Equation (85) using harmonic addition theorem derived

in Appendix A.3.

x(t) =

√
(xo − a)2 +

(
ẋo

n

)2

sin

[
nt + tan−1

(
n(xo − a)

ẋo

)]
+ a

y(t) =

√
(2)2

(
ẋo

n

)2

+ (−2)2 (xo − a)2 cos

[
nt + tan−1

(−2n(a− xo)

2ẋo

)]
− 3na

2
t + b

Substituting Equation (86) and defining a new constant θ

x(t) = ρ sin (nt + θ) + a (88)

y(t) = 2ρ cos (nt + θ)− 3na

2
t + b (89)

where

θ = tan−1

[
n(xo − a)

ẋo

]
(90)

If we visualize the elliptical orbit from Figure 87(a) rotating about the major or minor

axes, it is easy to see it will trace a line in X̂Ẑ plane, if rotated about the major axis,

and the Ŷ Ẑ plane, if rotated about the minor axis. Using the equation of a line and

adding the effects of a rotation about both major and minor axes

z(t) = l[x(t)− a] + q

[
y(t) +

3na

2
t− b

]

where l and q are the slopes of the lines formed by the rotation about the minor

and major axes, respectively. Substituting Equations (88) and (89) into the above

equation yields:

z(t) = lρ sin(nt + θ) + 2qρ cos(nt + θ) (91)

This is the correct form expected from the inverse Laplace transform found in Equa-

tion (85c), an oscillatory function with a constant amplitude and a period of 2π
n

or

2π
√

r3
o

µ
, which is the same as the orbital period of the chief satellite. To find expres-
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sions of l and q in terms of initial conditions, we start with Equation (88) and its

derivative (both at t = 0)

xo − a = ρ sin(θ)

ẋo = ρn cos(θ) ⇔ ẋo

n
= ρ cos(θ)

and inserting them into Equation (95) and its derivative (also at t = 0)

zo = lρ sin(θ) + 2qρ cos(θ) = l(xo − a) + q

(
2
ẋo

n

)
(92)

żo = lρn cos(θ)− 2qρn sin(θ) = lẋo − q [2n(xo − a)] (93)

In matrix form 
zo

żo


 =


xo − a 2

ẋo

n

ẋo −2n(xo − a)





l

q




Solving for l and q by multiplying both sides by the matrix inverse


l

q


 =




−n2(a−xo)
n2x2

o−2xon2a+n2a2+ẋ2
o

ẋo

n2x2
o−2rn2a+n2a2+ẋ2

o
1
2
ẋon

n2x2
o−2xon2a+n2a2+ẋ2

o

1
2
(a−xo)n

n2x2
o−2xon2a+n2a2+ẋ2

o





zo

żo




Multiplying through and simplifying

l =
żoẋo − zon

2(a− xo)

ẋ2
o + n2(a− xo)2

q =
zoẋon + żon(a− xo)

2[ẋ2
o + n2(a− xo)2]

The Ẑ motion can also be formulated in the alternative way. Starting with Equation

(85c)

z(t) = zo cos(nt) +
żo

n
sin(nt)
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the sinusoidal terms can be combined via the harmonic addition theorem (Appendix A.3)

z(t) =

√(
żo

n

)2

+ z2
o cos

[
nt + tan−1

(−żo

nzo

)]
(94)

Define two new constants

zmax =

√(
żo

n

)2

+ z2
o

φ = tan−1

(−żo

nzo

)

Thus

z(t) = zmax cos(nt + φ) (95)

Using the conversions formulated in Appendix F, we can express these closed-form

solutions as functions of chief orbit fractions as opposed to absolute time. Noting that

nt = 2πt̃ (Equation (2) in Section 3.1)

x̃(t̃) = x(t̃) = ρ sin(2πt̃ + θ) + a

ỹ(t̃) = y(t̃) = 2ρ cos(2πt̃ + θ)− 3πat̃ + b

z̃(t̃) = z(t̃) = lρ sin(2πt̃ + θ) + 2qρ cos(2πt̃ + θ)

or

z̃(t̃) = z̃max cos(2πt̃ + φ) (97)
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where the values of the relative orbit elements do not change when calculated with

the scaled versions of relative position and velocity

a =
2ẏo + 4nxo

n
=

1

π
˙̃yo + 4x̃o (98a)

b =
nyo − 2ẋo

n
= ỹo − 1

π
˙̃xo (98b)

ρ =

√
(xo − a)2 +

(
ẋo

n

)2

=

√
(x̃o − a)2 +

(
1

2π
˙̃xo

)2

(98c)

l =
żoẋo − zon

2(a− xo)

ẋ2
o + n2(a− xo)2

=
˙̃zo

˙̃xo − 4π2z̃o(a− x̃o)
˙̃x2
o + 4π2(a− x̃o)2

(98d)

q =
zoẋon + żon(a− xo)

2[ẋ2
o + n2(a− xo)2]

=
πz̃o

˙̃xo + π ˙̃zo(a− x̃o)
˙̃x2
o + 4π2(a− x̃o)2

(98e)

θ = tan−1

[
n(xo − a)

ẋo

]
= tan−1

[
2π(x̃o − a)

˙̃xo

]
(98f)

z̃max =

√(
żo

n

)2

+ z2
o =

√( ˙̃zo

2π

)2

+ z̃2
o (98g)

φ = tan−1

(−żo

nzo

)
= tan−1

( − ˙̃zo

2πz̃o

)
(98h)

and the relative velocities

˙̃x(t̃) =
2π

n
ẋ(t) = 2πρ cos(2πt̃ + θ)

˙̃y(t̃) =
2π

n
ẏ(t) = −4πρ sin(2πt̃ + θ)− 3πa

˙̃z(t̃) =
2π

n
ż(t) = 2πlρ cos(2πt̃ + θ)− 4πqρ sin(2πt̃ + θ)

or

˙̃z(t̃) =
2π

n
ż(t) = −2πzmax sin(2πt̃ + φ)

G.1 Units Analysis

The variables x, y, and z are positions and defined in terms of a length. Like-

wise, ẋ, ẏ, and ż are velocities and are expressed as length
time

. Finally, n is the angular

frequency of the orbit and is expressed in units of 1
time

. These units will not change
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if calculated using relative position and velocities as functions of chief orbit fractions.

a =
length
time

+ 1
time

length
1

time

=
length
time

1
time

= length

b =
1

time
length + length

time
1

time

=
length
time

1
time

= length

ρ =

√√√√(length− length)2 +

(
length
time

1
time

)2

=

√
length2 + length2 = length

l =
length
time

length
time

− length
(

1
time

)2
(length− length)

(
length
time

)2
+

(
1

time

)2
(length− length)2

=

(
length
time

)2 − length2

time2(
length
time

)2
+ length2

time2

= unitless

q =
length length

time
1

time
+ length

time
1

time
(length− length)

(
length
time

)2
+

(
1

time

)2
(length− length)2

=
length2

time2 + length2

time2(
length
time

)2
+ length2

time2

= unitless

θ = tan−1

(
1

time
(length− length)

length
time

)
= tan−1

(
length
time

length
time

)
= radians
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Appendix H. Transformations between the Inertial and Relative

Reference Frames

In order to use an inertially propagated truth model, we need to be able to

transform position and velocity vectors from the relative to inertial frames and vice

versa.

Figure 88: Relationship Between the X̂Ŷ Ẑ and Î ĴK̂ Frames

Referencing Figure 88, the position vector is

ÎĴK̂ ~M = X̂Ŷ Ẑ~P + ÎĴK̂~L

The velocity is calculated via the inertial derivative (see Appendix A.2)

Î ĴK̂ ~̇M = X̂Ŷ Ẑ ~̇P +




0

0

n


×

X̂Ŷ Ẑ~P + ÎĴK̂~̇L

The vectors expressed in the relative frame need to be transformed to the inertial

frame. If inertial position and velocity vectors of the chief satellite are available, the

rotation matrices can be calculated as

CR2I =
[
X̂

∣∣∣Ŷ
∣∣∣ Ẑ

]
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where X̂, Ŷ , and Ẑ are unit vectors for each direction expressed in the Î ĴK̂ frame.

The superscript R2I indicates the rotation matrix from the relative to inertial frame

and I2R indicates the rotation matrix from the inertial to relative frame. The radial

direction is simply the unit vector of the chief’s position

X̂ =
ÎĴK̂~L

‖ Î ĴK̂~L‖2

If the chief is in a circular orbit, then its velocity vector will always be perpendicular

to the position vector

Ŷ =
ÎĴK̂~̇L

‖ ÎĴK̂~̇L‖2

and the out-of-plane direction completes the right-handed coordinate system

Ẑ = X̂ × Ŷ =
ÎĴK̂~L

‖ Î ĴK̂~L‖2

×
ÎĴK̂~̇L

‖ ÎĴK̂~̇L‖2

Thus, the position vector can be expressed as

ÎĴK̂ ~M = CR2I




x

y

z


 + ÎĴK̂~L (100)

and the velocity vector as

Î ĴK̂ ~̇M = CR2I







ẋ

ẏ

ż


 +




0

0

n


×




x

y

z





 + ÎĴK̂~̇L

= CR2I




ẋ− ny

ẏ + nx

ż


 + ÎĴK̂~̇L (101)
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Equations (100) and (101) can be solved for the relative vectors if we desire to go

from the inertial to the relative frame.

CR2I




x

y

z


 = ÎĴK̂ ~M − Î ĴK̂~L (102)

CR2I




ẋ

ẏ

ż


 =

(
Î ĴK̂ ~̇M − ÎĴK̂~̇L

)
− CR2I




−ny

nx

0




Noting that for orthonormal rotation matrices [24]

CI2R ∗ CR2I = CI2R ∗ (
CI2R

)′
= CI2R ∗ (

CI2R
)−1

= I

we get

X̂Ŷ Ẑ~P =




x

y

z


 = CI2R

(
ÎĴK̂ ~M − Î ĴK̂~L

)
(103)

X̂Ŷ Ẑ ~̇P =




ẋ

ẏ

ż


 = CI2R

(
ÎĴK̂ ~̇M − ÎĴK̂~̇L

)
+




ny

−nx

0


 (104)

An alternative formulation of the rotation matrix is derived henceforth. By

inspection, the rotation matrices are




X̂

Ŷ

Ẑ


 =




cos ` sin ` 0

− sin ` cos ` 0

0 0 1




︸ ︷︷ ︸
CR2I




Î

Ĵ

K̂


 (105)
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


Î

Ĵ

K̂


 =




cos ` − sin ` 0

sin ` cos ` 0

0 0 1




︸ ︷︷ ︸
CI2R




X̂

Ŷ

Ẑ


 (106)

where ` for the circular orbit is

` = nto

and to is the time since passage over Î. Equations (103) and (104) can be combined

into a more compact form. Let

ÎĴK̂~L =




XC

YC

ZC




ÎĴK̂ ~M =




XD

YD

ZD




ÎĴK̂~̇L =




ẊC

ẎC

ŻC




Î ĴK̂ ~̇M =




ẊD

ẎD

ŻD




noting that 


ny

−nx

0


 = n




0 1 0

−1 0 0

0 0 0







x

y

z




then



x

y

z

ẋ

ẏ

ż




=




CI2R




XD −XC

YD − YC

ZD − ZC




. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CI2R




ẊD − ẊC

ẎD − ẎC

ŻD − ŻC


 + n




0 1 0

−1 0 0

0 0 0


 CI2R




XD −XC

YD − YC

ZD − ZC







148



and substituting the rotation matrices, Equation (106), we get




x

y

z

ẋ

ẏ

ż




=




cos ` − sin ` 0 0 0 0

sin ` cos ` 0 0 0 0

0 0 1 0 0 0

n sin ` n cos ` 0 cos ` − sin ` 0

−n cos ` n sin ` 0 sin ` cos ` 0

0 0 0 0 0 1







XD −XC

YD − YC

ZD − ZC

ẊD − ẊC

ẎD − ẎC

ŻD − ŻC




(107)
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Appendix I. Circular Chief Relative Velocities

Assuming we have found points of interest on or within the lobe between which

we want the deputy to travel, a solution for the initial and final velocities is required.

I.1 Initial Relative Velocity

The following is a modification of the derivation presented by Mullins [37].

Assume that the deputy is at the initial point at to = 0 and at the final point at

tf = T . Let x(T ) = xf , y(T ) = yf , and z(T ) = zf . Start with a slightly modified

form of Equation (82) from Appendix G

xf = x(T ) =
ẋo

n
sin(nT )−

[
2ẏo

n
+ 3xo

]
cos(nT ) +

2ẏo

n
+ 4xo

yf = y(T ) = 2

[
2ẏo

n
+ 3xo

]
sin(nT ) +

2ẋo

n
cos(nT )− 3

2
n

[
2ẏo

n
+ 4xo

]
T + yo − 2ẋo

n

zf = z(T ) =
żo

n
sin(nT ) + zo cos(nT )

Combining terms and preparing for matrix form

xf =
1

n
sin(nT )ẋo +

2

n
[1− cos(nT )] ẏo + [4− 3 cos(nT )] xo

yf =
2

n
[−1 + cos(nT )] ẋo +

1

n
[4 sin(nT )− 3nT ] ẏo + [6 sin(nT )− 6nT ] xo + yo

zf =
1

n
sin(nT )żo + cos(nT )zo

yielding (S = sin(nT ), C = cos(nT ))




xf

yf

zf


 =




1
n
S 2

n
[1− C] 0

2
n

[−1 + C] 1
n

[4S − 3nT ] 0

0 0 1
n
S







ẋo

ẏo

żo


 +




[4− 3C] xo

[6S − 6nT ] xo + yo

Czo


 (108)

Note that there is a sine term in the 3-by-3 element of the first matrix. When this

sine function goes to zero, the matrix is singular. Physically the deputy satellite is

passing through the Ŷ axis (or a line parallel to it), the intersect point for an infinite

150



number of relative orbits. Therefore the initial/final conditions and time-of-flight do

not uniquely define an orbit-thus an indeterminate matrix. This restriction should

not be a problem. Multiplying each side by n and rearranging terms:




nxf − n [4− 3C] xo

nyf − n [6S − 6nT ] xo − nyo

nzf − nCzo


 =




S 2− 2C 0

−2 + 2C 4S − 3nT 0

0 0 S







ẋo

ẏo

żo




Finding the inverse via co-factors

A11 = (4S − 3nT )S − 0 = 4S2 − 3nTS

A12 = −[(−2 + 2C)S − 0] = 2S − 2SC

A13 = 0− 0 = 0

A21 = −[(2− 2C)S − 0] = −2S + 2SC

A22 = S ∗ S − 0 = S2

A23 = −[0− 0] = 0

A31 = 0− 0 = 0

A32 = −[0− 0] = 0

A33 = S(4S − 3nT )− (−2 + 2C)(2− 2C) = 4S2 − 3nTS + 4− 8C + 4C2

= 8− 3nTS − 8C

The determinant can be found from the first row

‖A‖ = a11A11 + a12A12 + a13A13

= S(4S2 − 3nTS) + (2− 2C)(2S − 2SC) + 0 ∗ 0

= S(8− 3nTS − 8C)

and finally the inverse [53]

A−1 =
adj A

det A
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where the adjoint of A is the transpose of the co-factor matrix

A−1 =
1

S(8− 3nTS − 8C)




4S2 − 3nTS 2S − 2SC 0

−2S + 2SC S2 0

0 0 8− 3nTS − 8C




′

=




4S2−3nTS
S(8−3nTS−8C)

−2S+2SC
S(8−3nTS−8C)

0

2S−2SC
S(8−3nTS−8C)

S2

S(8−3nTS−8C)
0

0 0 8−3nTS−8C
S(8−3nTS−8C)




A−1 =




4 sin(nT )−3nT
8−3nT sin(nT )−8 cos(nT )

−2+2 cos(nT )
8−3nT sin(nT )−8 cos(nT )

0

2−2 cos(nT )
8−3nT sin(nT )−8 cos(nT )

sin(nT )
8−3nT sin(nT )−8 cos(nT )

0

0 0 1
sin(nT )




Therefore the solution to the initial relative velocities is




ẋo

ẏo

żo


 =




4 sin(nT )−3nT
8−3nT sin(nT )−8 cos(nT )

−2+2 cos(nT )
8−3nT sin(nT )−8 cos(nT )

0

2−2 cos(nT )
8−3nT sin(nT )−8 cos(nT )

sin(nT )
8−3nT sin(nT )−8 cos(nT )

0

0 0 1
sin(nT )







nxf − n [4− 3 cos(nT )] xo

nyf − n [6 sin(nT )− 6nT ] xo − nyo

nzf − n cos(nT )zo




We can further break down the second matrix into

n




−4 + 3 cos(nT ) 0 0 1 0 0

−6 sin(nT ) + 6nT −1 0 0 1 0

0 0 − cos(nT ) 0 0 1







xo

yo

zo

xf

yf

zf



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Multiplying this out, the transformation matrix becomes

n




[4S−3nT ][−4+3C]+[−2+2C][−6S+6nT ]
8−3nTS−8C

−[−2+2C]
8−3nTS−8C

0 4S−3nT
8−3nTS−8C

−2+2C
8−3nTS−8C

0

[2−2C][−4+3C]+S[−6S+6nT ]
8−3nTS−8C

−S
8−3nTS−8C

0 2−2C
8−3nTS−8C

S
8−3nTS−8C

0

0 0 −C
S

0 0 1
S




Simplifying

n




−4S+3nTC
8−3nTS−8C

2−2C
8−3nTS−8C

0 4S−3nT
8−3nTS−8C

−2+2C
8−3nTS−8C

0

−14+6nTS+14C
8−3nTS−8C

−S
8−3nTS−8C

0 2−2C
8−3nTS−8C

S
8−3nTS−8C

0

0 0 −C
S

0 0 1
S




Thus the transformation is




ẋo

ẏo

żo


 = n




−4S+3nTC
8−3nTS−8C

2−2C
8−3nTS−8C

0 4S−3nT
8−3nTS−8C

−2+2C
8−3nTS−8C

0

−14+6nTS+14C
8−3nTS−8C

−S
8−3nTS−8C

0 2−2C
8−3nTS−8C

S
8−3nTS−8C

0

0 0 −C
S

0 0 1
S







xo

yo

zo

xf

yf

zf




(109)

We can also express this in terms of fractions of a chief orbit period by substituting

nT = 2πT̃ (Equation (2) in Section 3.1)




ẋo

ẏo

żo


 = n




−4S̃+6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

0

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

−S̃
8−6πT̃ S̃−8C̃

0 2−2C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃

0

0 0 − C̃
S̃

0 0 1
S̃







xo

yo

zo

xf

yf

zf




(110)

where T̃ = T/P S̃ = sin(2πT̃ ) C̃ = cos(2πT̃ )
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If we choose units of relative velocity that are functions of time as a fraction

of chief orbit radius as opposed to absolute time, we can use the transformation in

Equation (78), Appendix F




˙̃xo

˙̃yo

˙̃zo


 =

2π

n




ẋo

ẏo

żo


 = 2π




−4S̃+6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

0

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

−S̃
8−6πT̃ S̃−8C̃

0 2−2C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃

0

0 0 − C̃
S̃

0 0 1
S̃







xo

yo

zo

xf

yf

zf




(111)

Finally, it is interesting to note that the yo and yf terms in the time-of-flight matrix

are the negative of the other, thus we can substitute a ∆y.




˙̃xo

˙̃yo

˙̃zo


 = 2π




−4S̃+6πT̃ C̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃
8−6πT̃ S̃−8C̃

0 −2+2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

0 2−2C̃
8−6πT̃ S̃−8C̃

0 S̃
8−6πT̃ S̃−8C̃

0 − C̃
S̃

0 1
S̃

0







xo

zo

xf

zf

∆y




(112)

where ∆y = yf − yo

I.2 Final Relative Velocity

To calculate the velocities at the end of an arc, we start with the derivative of

Equation (82) from Appendix G

ẋf = ẋ(T ) =
ẋo

n
n cos(nT )−

[
2ẏo

n
+ 3xo

]
(−n) sin(nT )

ẏf = ẏ(T ) = 2

[
2ẏo

n
+ 3xo

]
n cos(nT ) +

2ẋo

n
(−n) sin(nT )− 3

2
n

[
2ẏo

n
+ 4xo

]

żf = ż(T ) =
żo

n
n cos(nT ) + zo(−n) sin(nT )
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Preparing for matrix form

ẋf = cos(nT )ẋo + 2 sin(nT )ẏo + 3n sin(nT )xo

ẏf = −2 sin(nT )ẋo + [−3 + 4 cos(nT )] ẏo + [−6n + 6n cos(nT )] xo

żf = cos(nT )żo − n sin(nT )zo

yields (S = sin(nT ), C = cos(nT ))




ẋf

ẏf

żf


 =




C 2S 0

−2S −3 + 4C 0

0 0 C







ẋo

ẏo

żo


 +




3nS 0 0

−6n + 6nC 0 0

0 0 −nS







xo

yo

zo




Substituting Equation (109), the first term is




C 2S 0

−2S −3 + 4C 0

0 0 C


 n




−4S+3nTC
8−3nTS−8C

2−2C
8−3nTS−8C

0 4S−3nT
8−3nTS−8C

−2+2C
8−3nTS−8C

0

−14+6nTS+14C
8−3nTS−8C

−S
8−3nTS−8C

0 2−2C
8−3nTS−8C

S
8−3nTS−8C

0

0 0 −C
S

0 0 1
S







xo

yo

zo

xf

yf

zf




and the second term

n




3S 0 0 0 0 0

−6 + 6C 0 0 0 0 0

0 0 −S 0 0 0







xo

yo

zo

xf

yf

zf



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Multiplying out the first term and adding it to the second

A11 =
C(−4S + 3nTC)

8− 3nTS − 8C
+

2S(−14 + 6nTS + 14C)

8− 3nTS − 8C
+

3S(8− 3nTS − 8C)

8− 3nTS − 8C

=
−4S + 3nT

8− 3nTS − 8C

A12 =
C(2− 2C)

8− 3nTS − 8C
+

2S(−S)

8− 3nTS − 8C
+ 0 =

−2 + 2C

8− 3nTS − 8C

A13 = 0 + 0 = 0

A14 =
C(4S − 3nT )

8− 3nTS − 8C
+

2S(2− 2C)

8− 3nTS − 8C
+ 0 =

4S − 3nTC

8− 3nTS − 8C

A15 =
C(−2 + 2C)

8− 3nTS − 8C
+

2S(S)

8− 3nTS − 8C
+ 0 =

2− 2C

8− 3nTS − 8C

A16 = 0 + 0 = 0

A21 =
−2S(−4S + 3nTC)

8− 3nTS − 8C
+

(−3 + 4C)(−14 + 6nTS + 14C)

8− 3nTS − 8C
+

(−6 + 6C)(8− 3nTS − 8C)

8− 3nTS − 8C

=
2− 2C

8− 3nTS − 8C

A22 =
−2S(2− 2C)

8− 3nTS − 8C
+

(−3 + 4C)(−S)

8− 3nTS − 8C
+ 0 =

−S

8− 3nTS − 8C

A23 = 0 + 0 = 0

A24 =
−2S(4S − 3nT )

8− 3nTS − 8C
+

(−3 + 4C)(2− 2C)

8− 3nTS − 8C
+ 0 =

−14 + 6nTS + 14C

8− 3nTS − 8C

A25 =
−2S(−2 + 2C)

8− 3nTS − 8C
+

(−3 + 4C)(S)

8− 3nTS − 8C
+ 0 =

S

8− 3nTS − 8C

A26 = 0 + 0 = 0

A31 = 0 + 0 = 0

A32 = 0 + 0 = 0

A33 = C
−C

S
+ (−S)

S

S
= − 1

S

A34 = 0 + 0 = 0

A35 = 0 + 0 = 0

A36 = C
1

S
+ 0 =

C

S
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Thus the relative velocity at the end of a trajectory can be expressed as




ẋf

ẏf

żf


 = n




−4S+3nT
8−3nTS−8C

−2+2C
8−3nTS−8C

0 4S−3nTC
8−3nTS−8C

2−2C
8−3nTS−8C

0

2−2C
8−3nTS−8C

−S
8−3nTS−8C

0 −14+6nTS+14C
8−3nTS−8C

S
8−3nTS−8C

0

0 0 − 1
S

0 0 C
S







xo

yo

zo

xf

yf

zf




(113)

We can also express this in terms of fractions of a chief orbit period by substituting

nT = 2πT̃ (Equation (2) in Section 3.1)




ẋf

ẏf

żf


 = n




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

0

2−2C̃
8−6πT̃ S̃−8C̃

−S̃
8−6πT̃ S̃−8C̃

0 −14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃

0

0 0 − 1
S̃

0 0 C̃
S̃







xo

yo

zo

xf

yf

zf




(114)

where T̃ = T/P S̃ = sin(2πT̃ ) C̃ = cos(2πT̃ )

If we choose units of relative velocity that are functions of time as a fraction

of chief orbit radius as opposed to absolute time, we can use the transformation in

Equation (78), Appendix F




˙̃xf

˙̃yf

˙̃zf


 =

2π

n




ẋf

ẏf

żf


 = 2π




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

0

2−2C̃
8−6πT̃ S̃−8C̃

−S̃
8−6πT̃ S̃−8C̃

0 −14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃

0

0 0 − 1
S̃

0 0 C̃
S̃







xo

yo

zo

xf

yf

zf




(115)
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Similar to the initial relative velocity, we can express this in terms of ∆y




˙̃xf

˙̃yf

˙̃zf


 = 2π




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

0 4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

0 2−2C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

0 −14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

0 S̃
8−6πT̃ S̃−8C̃

0 − 1
S̃

0 C̃
S̃

0







xo

zo

xf

zf

∆y




(116)

where ∆y = yf − yo
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Appendix J. Tmax of the Ẑ Motion for a Circular Chief

The Ẑ motion is decoupled from the X̂Ŷ motion and can thus be treated sepa-

rately. The linearized equation of motion is

z̈ + n2z = 0

which is a harmonic oscillator. The solution to this differential equation is (Equation

(94), Appendix G)

z(t) =

√(
żo

n

)2

+ z2
o cos

[
nt− tan−1

(
żo

nzo

)]

The maximum and minimum z values are defined as follows

zmax = furthermost allowable z coordinate from the chief

zmin = closest allowable z coordinate to the chief

Pulling the amplitude information from the above equation and setting it equal to

zmax

zmax =

√(
żo

n

)2

+ z2
o

żo = n
√

z2
max − z2

o = nzo

√(
zmax

zo

)2

− 1

or

żo

nzo

=

√(
zmax

zo

)2

− 1 (117)

Assume a cylinder is defined as shown in Figure 89 where h is half the height of the

cylinder (h > 0) and β is the angle between the Ẑ axis and the vector from the chief

to the center of the lobe. We wish to find the maximum time-of-flight (Tmax) between

a starting position zo and final position zf . Assume that the deputy starts and stops
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Chief

Deputy

(a) 0 ≤ β < π
2

Chief

Deputy

(b) π
2 ≤ β ≤ π

Figure 89: Cylindrical Lobe

at the same position, then

zf = zo =

√(
żo

n

)2

+ z2
o cos

[
nTmax − tan−1

(
żo

nzo

)]

Solving for Tmax

cos−1


 zo√(

żo

n

)2
+ z2

o


 = nTmax − tan−1

[
żo

nzo

]

cos−1




1√(
żo

nzo

)2

+ 1


 + tan−1

[
żo

nzo

]
= nTmax

cos−1




1√(
żo

nzo

)2

+ 1


 + cos−1




1√(
żo

nzo

)2

+ 1


 = nTmax
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Collecting terms and substituting Equation (117)

Tmax =
2

n
cos−1




1√(
żo

nzo

)2

+ 1


 =

2

n
cos−1




1√√√√
(√(

zmax

zo

)2

− 1

)2

+ 1




=
2

n
cos−1

(
zo

zmax

)

Assume that the deputy enters the lobe at zo = zmin and then, by Figure 89,

zo = zmin = γ cos β − εh (118)

zmax = γ cos β + εh (119)

where

ε =





1 if 0 ≤ β <
π

2

−1 if
π

2
≤ β ≤ π

(120)

Thus

Tmax =
2

n
cos−1

(
γ cos β − εh

γ cos β + εh

)
=

2

n
cos−1

(
zmin

zmax

)
(121)

where

0 ≤
∣∣∣∣
γ cos β − εh

γ cos β + εh

∣∣∣∣ ≤ 1

The lower bound occurs when the cylinder is tangent to the orbital plane while the

upper bound occurs when the cylinder has zero height. The range of the inverse

cosine on the domain [0, 1] is
[
0, π

2

]
, which means the domain of time-of-flight is

[
0, 1

2

]

(reference Figure 90).

These can also be written as functions of chief period in which the linearized

equation of motion is

¨̃z + 4π2z̃ = 0
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Figure 90: Tmax vs zmin/zmax

yielding a closed form solution of

z̃(t̃) =
˙̃zo

2π
sin(2πt̃) + z̃o cos(2πt̃)

Applying the harmonic addition theorem (Appendix A.3)

z̃(t̃) =

√( ˙̃zo

2π

)2

+ z̃2
o cos

[
2πt̃− tan−1

( ˙̃zo

2πzo

)]
(122)

thus

z̃max =

√( ˙̃zo

2π

)2

+ z̃2
o

˙̃zo = 2π
√

z̃2
max − z̃2

o = 2πz̃o

√(
z̃max

z̃o

)2

− 1

and the maximum time-of-flight is

T̃max =
Tmax

P
=

1

π
cos−1

(
γ cos β − εh

γ cos β + εh

)
=

1

π
cos−1

(
z̃min

z̃max

)
(123)
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Appendix K. The Derivation of ∆V

This research is founded on the assumption that the deputy satellite can perform

impulsive burns to keep itself inside the defined lobe. Calculating the magnitude of

those impulsive burns is therefore a key component of the cost function used in the

optimization process. The following derivation finds the magnitude of the impulsive

burn (∆V ).

K.1 The Derivation of ∆V 2

Chief

Deputy

Figure 91: ∆V Derivation Setup

∆~vi is defined as the difference between the velocity before and after an impulsive

thrust, that is, the instantaneous change in velocity required at the burn point [62]

and is shown vectorially in Figure 91.

∆~vi = ~v
+

i − ~v
−
i

The Ẑ component completely decouples from the X̂Ŷ thus each will be addressed

separately. In the orbit plane of the chief

~v
+

i = ẋ+
i X̂ + ẏ+

i Ŷ

~v
−
i = ẋ−i X̂ + ẏ−i Ŷ
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Let the magnitude of the ∆~v vector be

∆Vi = ‖∆~vi‖2 =
√

(ẋ+
i − ẋ−i )2 + (ẏ+

i − ẏ−i )2

The mathematics of the derivatives simplify somewhat if we remove the square root

and deal with ∆V 2. This will not adversely affect our ability to use ∆V in a cost

function. Since ∆V is always a positive value, minimizing the square is equivalent to

minimizing the square root.

∆V 2
i = (ẋ+

i − ẋ−i )2 + (ẏ+
i − ẏ−i )2 (124)

=
[
ẋ+

i − ẋ−i ẏ+
i − ẏ−i

]

ẋ+

i − ẋ−i

ẏ+
i − ẏ−i




where the velocity prior to the burn (Equation (113), Appendix I) is


ẋ−i

ẏ−i


 = n




−4S−+3nT−
8−3nT−S−−8C−

−2+2C−
8−3nT−S−−8C−

4S−−3nT−C−
8−3nT−S−−8C−

2−2C−
8−3nT−S−−8C− 0 0

2−2C−
8−3nT−S−−8C−

−S−
8−3nT−S−−8C−

−14+6nT−S−+14C−
8−3nT−S−−8C−

S−
8−3nT−S−−8C− 0 0







xi−1

yi−1

xi

yi

xi+1

yi+1



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where T− = Ti−1,i, S− = sin(nTi−1,i), C− = cos(nTi−1,i) and the velocity after the

burn (Equation (109), Appendix I)


ẋ+

i

ẏ+
i


 = n


0 0 −4S++3nT+C+

8−3nT+S+−8C+
2−2C+

8−3nT+S+−8C+
4S+−3nT+

8−3nT+S+−8C+
−2+2C+

8−3nT+S+−8C+

0 0 −14+6nT+S++14C+

8−3nT+S+−8C+
−S+

8−3nT+S+−8C+
2−2C+

8−3nT+S+−8C+
S+

8−3nT+S+−8C+







xi−1

yi−1

xi

yi

xi+1

yi+1




(125)

where T+ = Ti,i+1, S+ = sin(nTi,i+1), C+ = cos(nTi,i+1). Let

[
ẋ+

i − ẋ−i ẏ+
i − ẏ−i

]
= n

[
xi−1 yi−1 xi yi xi+1 yi+1

]
R

Then

R =




4S−−3nT−
8−3nT−S−−8C−

−2+2C−
8−3nT−S−−8C−

2−2C−
8−3nT−S−−8C−

S−
8−3nT−S−−8C−

−4S++3nT+C+

8−3nT+S+−8C+ − 4S−−3nT−C−
8−3nT−S−−8C−

−14+6nT+S++14C+

8−3nT+S+−8C+ − −14+6nT−S−+14C−
8−3nT−S−−8C−

2−2C+

8−3nT+S+−8C+ − 2−2C−
8−3nT−S−−8C−

−S+

8−3nT+S+−8C+ − S−
8−3nT−S−−8C−

4S+−3nT+

8−3nT+S+−8C+
2−2C+

8−3nT+S+−8C+

−2+2C+

8−3nT+S+−8C+
S+

8−3nT+S+−8C+




(126)
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We can also express this matrix in terms of fractions of a chief orbit period by sub-

stituting nT = 2πT̃ (Equation (2) in Section 3.1)

R̃ =




4S̃−−6πT̃−
8−6πT̃−S̃−−8C̃−

−2+2C̃−
8−6πT̃−S̃−−8C̃−

2−2C̃−
8−6πT̃−S̃−−8C̃−

S̃−
8−6πT̃−S̃−−8C̃−

−4S̃++6πT̃+C̃+

8−6πT̃+S̃+−8C̃+ − 4S̃−−6πT̃−C̃−
8−6πT̃−S̃−−8C̃−

−14+12πT̃+S̃++14C̃+

8−6πT̃+S̃+−8C̃+ − −14+12πT̃−S̃−+14C̃−
8−6πT̃−S̃−−8C̃−

2−2C̃+

8−6πT̃+S̃+−8C̃+ − 2−2C̃−
8−6πT̃−S̃−−8C̃−

−S̃+

8−6πT̃+S̃+−8C̃+ − S̃−
8−6πT̃−S̃−−8C̃−

4S̃+−6πT̃+

8−6πT̃+S̃+−8C̃+

2−2C̃+

8−6πT̃+S̃+−8C̃+

−2+2C̃+

8−6πT̃+S̃+−8C̃+

S̃+

8−6πT̃+S̃+−8C̃+




(127)

where

T̃− = T̃i−1,i

S̃− = sin(2πT̃i−1,i)

C̃− = cos(2πT̃i−1,i)

T̃+ = T̃i,i+1

S̃+ = sin(2πT̃i,i+1)

C̃+ = cos(2πT̃i,i+1)

Finally ∆V 2
i is

∆V 2
i = n2

[
xi−1 yi−1 xi yi xi+1 yi+1

]
RR′




xi−1

yi−1

xi

yi

xi+1

yi+1




(128)

where we can substitute R̃ for R as desired. ∆V can also be expressed in terms of

velocity as a function of fractions of a chief orbit period (see Appendix F). Starting
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with Equation (124),

∆V 2
i =

[ n

2π
˙̃x+
i −

n

2π
˙̃x−i

n

2π
˙̃y+
i −

n

2π
˙̃y−i

]



n

2π
˙̃x+
i −

n

2π
˙̃x−i

n

2π
˙̃y+
i −

n

2π
˙̃y−i




=
n2

4π2

[
˙̃x+
i − ˙̃x−i ˙̃y+

i − ˙̃y−i

]

 ˙̃x+

i − ˙̃x−i
˙̃y+
i − ˙̃y−i




This equation reduces to Equation (128) if we substitute Equations (111) and (115)

but is useful if the pre- and post-scaled relative velocities are known.

K.2 Specific ∆V

It is useful to find a form of ∆V that is not dependent upon the chief’s semi-

major axis (or orbital radius for circular orbits). Therefore, define specific delta V

(∆V̆ ) as

∆V̆ 2
i =

∆V 2
i

n2
=

[
xi−1 yi−1 xi yi xi+1 yi+1

]
RR′




xi−1

yi−1

xi

yi

xi+1

yi+1




(129)

=
1

4π2

[
˙̃x+
i − ˙̃x−i ˙̃y+

i − ˙̃y−i

]

 ˙̃x+

i − ˙̃x−i
˙̃y+
i − ˙̃y−i




and the conversions between different types of ∆V are

∆V̆i =
∆Vi

n
=

∆Ṽi

2π
(130)
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K.3 The Derivation of ∆V for Ẑ Motion

Since the Ẑ component of the deputy’s motion decouples from X̂Ŷ plane, it can

be treated separately. The instantaneous change in velocity at the burn points is [62]

∆Vi = ż+
i − ż−i

The relative velocity prior to the burn (ż−i ) is the final relative velocity from the prior

leg, and the relative velocity after the burn (ż+
i ) is the initial relative velocity of the

next leg. These are defined by Equations (109) and (113)

ż+
i = żo = −nzo

cos(nTi)

sin(nTi)
+ nzf

1

sin(nTi)

ż−i = żf = −nzo
1

sin(nTi)
+ nzf

cos(nTi)

sin(nTi)

Thus

∆Vi =

[
−nzo

cos(nTi)

sin(nTi)
+ nzf

1

sin(nTi)

]
−

[
−nzo

1

sin(nTi)
+ nzf

cos(nTi)

sin(nTi)

]

= nzo

[
1− cos(nTi)

sin(nTi)

]
+ nzf

[
1− cos(nTi)

sin(nTi)

]

= n(zo + zf ) tan

(
1

2
nTi

)

or in terms of chief orbit fractions by substituting Equation (2), Section 3.1

∆Vi = n(zo + zf ) tan
(
πT̃i

)

Note that ∆V is linear in zo and zf ; thus choosing

zo = zf = zmin
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will result in the minimum ∆V

∆Vi = 2nzmin tan
(
πT̃i

)
(131)

This substitution also allows the following reduction in the relative Ẑ direction veloc-

ities

żo = nzmin
1− cos(nTi)

sin(nTi)
= nzmin tan

(
1

2
nTi

)

żf = −nzmin
1− cos(nTi)

sin(nTi)
= −nzmin tan

(
1

2
nTi

)

or in terms of chief orbit period

˙̃zo = 2πz̃min tan
(
πT̃i

)

˙̃zf = −2πz̃min tan
(
πT̃i

)

Assume the total hover time (T̃T ) is given, the period of the Ẑ motion is constant

(P̃z), and that the entry conditions for the Ẑ motion is open, then the total number

of burns required to keep the the deputy inside the lobe is

# Burns =

⌊
T̃T

P̃z

⌋

and the ∆V required

∆VZ = 2n

⌊
T̃T

P̃z

⌋
zmin tan

(
πP̃z

)
(132)

or, in terms of specific ∆V , (see Appendix K.2)

∆V̆Z =
∆VZ

n
= 2

⌊
T̃T

P̃z

⌋
z̃min tan

(
πP̃z

)
(133)

where b c represents the floor function. Equation (132) converges to the continuous

∆V solution (Equation (137) in Appendix L) as P̃z goes to zero and is proven below.
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Let P̃z → 0. Using the small angle approximation,

tan
(
πP̃z

)
=

sin
(
πP̃z

)

cos
(
πP̃z

) ≈ πP̃z

1
= πP̃z

Further, let P̃z be an whole fraction of T̃T where kz is the number of Ẑ legs

1

kz

T̃T = P̃z

Then

∆VZ =

 T̃T

1

kz

T̃T

 ∗ 2nzmin

(
π

1

kz

T̃T

)
= 2nzminπ bkzc 1

kz

T̃T

Since kz is an integer

bkzc = kz

thus

∆VZ = 2nzminπT̃T

or in terms of specific ∆V

∆V̆Z =
∆VZ

n
= 2z̃minπT̃T

which is the same as the continuous burn solution (Equation (137) in Appendix L).

The constraint on choosing kz is

1

kz

T̃T = P̃z ≤ T̃max

Solving for kz

kz ≥ T̃T

T̃max
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since kz is an integer

kz =

⌈
T̃T

T̃max

⌉
(134)

where d e represents the ceiling function. The total ∆V expended performing these

optimal burns is therefore

∆VZ = (kz − 1) ∗ 2nzmin tan

(
π

1

kz

T̃T

)
= 2nzmin (kz − 1) tan

(
πT̃T

kz

)

in specific ∆V

∆V̆Z = 2z̃min (kz − 1) tan

(
πT̃T

kz

)

or expressed in terms of the initial or final velocities in the Ẑ direction

∆VZ = 2(kz − 1)żo = −2(kz − 1)żf

and in terms of velocities that are functions of the chief’s period and specific ∆V

∆VZ = 2(kz − 1) ˙̃zo
n

2π
= −2(kz − 1) ˙̃zf

n

2π

Thus

∆V̆Z =
1

π
(kz − 1) ˙̃zo = − 1

π
(kz − 1) ˙̃zf (135)

Figure 92 represents an example plot of Equation (133). Note the sawtooth feature

that is an artifact of the floor function and that the discrete solution converges to the

continuous solution as P̃z → 0.

K.4 ∆V Expressed in the Inertial Frame

∆V can also be expressed in inertial frame via

∆V = ÎĴK̂ ~̇M+ − ÎĴK̂ ~̇M−
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Substituting Equation (101)

∆V =


CR2I




ẋ+ − ny

ẏ+ + nx

ż+


 + ÎĴK̂~̇L


−


CR2I




ẋ− − ny

ẏ− + nx

ż−


 + ÎĴK̂~̇L




= CR2I







ẋ+ − ny

ẏ+ + nx

ż+


−




ẋ− − ny

ẏ− + nx

ż−







= CR2I




ẋ+ − ny − ẋ− + ny

ẏ+ + nx− ẏ− − nx

ż+ − ż−




= CR2I




ẋ+ − ẋ−

ẏ+ − ẏ−

ż+ − ż−



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Appendix L. The Continuous-Thrust Solution

As a benchmark with which to compare our optimal trajectories, the continuous-

thrust solution is derived. We can quickly find the closed-form solution for a continuous-

thrust controller attempting to keep the deputy at a specified point in the relative

frame. Again, we expect the impulsive burn to be fuel-optimal compared to the

continuous-thrust solution derived below. We want the velocities at this hover point

to be zero

˙̃x = 0 ˙̃y = 0 ˙̃z = 0

which reduces Equation (81), Appendix F to

¨̃x = 4π(0) + 12π2x̃ = 12π2x̃

¨̃y = −4π(0) = 0

¨̃z = −4π2z̃

Since the ¨̃y equation is now zero, we need only worry about the accelerations in the

X̂ and Ẑ directions. Integrating from zero to the total time-of-flight (T̃T ) yields the

∆V as a function of chief orbit period (∆ṼC) required to keep the deputy hovering at

a given x̃o, ỹo, z̃o:

∆ṼC =

∫ T̃T

0

|¨̃x|dt̃ +

∫ T̃T

0

|¨̃z|dt̃ =

∫ T̃T

0

12π2|x̃o|dt̃ +

∫ T̃T

0

4π2|z̃o|dt̃

= π2 (12|x̃o|+ 4|z̃o|)
∫ T̃T

0

dt̃ = π2 (12|x̃o|+ 4|z̃o|) T̃T

where the subscript C represents “continuous”. To use this formulation, we must be

careful not to pick lobe shapes that recouple the in-plane and out-of-plane compo-

nents. Note that no claim is made that this is the optimal continuous-thrust solution;

it will merely serve as a benchmark controller that is easily synthesized. The location

of x̃o and z̃o is arbitrary but the smallest continuous ∆Ṽ is attained when x̃o and

z̃o are at their minimum, thus x̃min and z̃min represent the point on the lobe that is
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closest to the Ŷ axis and X̂Ŷ plane respectively:

∆ṼC = (12x̃min + 4z̃min) π2T̃T (136)

If the lobe happens to intersect the Ŷ axis, then the optimal solution (for the linear

CW case) is to stay on that Ŷ axis which is in fact the loci of equilibrium points and

requires no expenditure of fuel. We can also express the continuous ∆V in terms of

specific ∆V by applying the conversions in Equation (130), Appendix K

∆V̆C =

[
1

2π

]
(12x̃min + 4z̃min) π2T̃T = (6x̃min + 2z̃min) πT̃T (137)

The above equation works well if we assume the deputy starts at the minimum x and

z values; however, in order to use this as a fair comparison, the ∆V needed to get

into that position should also be included. Assume that the continuous-thrust solution

starts at the same entry position and velocity as the discrete-thrust solution. The ∆V

required to get to the x̃min position is ∆V̆ 2
1 is (from Equation (124) in Appendix K)

∆V̆ 2
1 =

1

4π2

[
( ˙̃x+

1 − ˙̃x−1 )2 + ( ˙̃y+
1 − ˙̃y−1 )2

]
=

1

4π2

[
˙̃x+
1 − ˙̃x−1 ˙̃y+

1 − ˙̃y−1

]

 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1




Substituting Equation (110) in Appendix I


 ˙̃x+

1 − ˙̃x−1
˙̃y+
1 − ˙̃y−1


 =




−4S̃+6πT̃ C̃
8−6πT̃ S̃−8C̃

4S̃−6πT̃
8−6πT̃ S̃−8C̃

−2+2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃







x̃1

x̃2

∆ỹ


−


 ˙̃x−1

˙̃y−1




where

∆ỹ = ỹ2 − ỹ1

S̃ = sin(2πT̃1,2)

C̃ = cos(2πT̃1,2)
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Once at the x̃min position, the deputy must make a burn to cancel its relative velocity

that is equal in magnitude but opposite in direction to the final velocity of the previous

leg

∆V̆ 2
2 =

1

4π2
‖ ˙̃x−2 X̂ + ˙̃y−2 Ŷ ‖2

2

where

 ˙̃x−2

˙̃y−2


 =




−4S̃+6πT̃
8−6πT̃ S̃−8C̃

4S̃−6πT̃ C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

2−2C̃
8−6πT̃ S̃−8C̃

−14+12πT̃ S̃+14C̃
8−6πT̃ S̃−8C̃

S̃
8−6πT̃ S̃−8C̃







x̃1

x̃2

∆ỹ



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Appendix M. The Persistent Hover Orbit

The persistent hover orbit is a special type of repeating hover orbit that takes

advantage of the equilibrium condition of the linear Clohessy-Wiltshire equations of

motion. As presented in Section 3.2.2, let ¨̃x = ¨̃y = ¨̃z = ˙̃x = ˙̃y = ˙̃z = 0. Then the

Clohessy-Wiltshire equations reduce to

−12π2x̃ = 0

4π2z̃ = 0

Thus x̃ = 0 and z̃ = 0 without any restriction on ỹ, meaning the entire Ŷ axis is

an equilibrium solution. If the user-defined lobe is tangent to or contains within it

any part of the Ŷ axis, then this becomes an ideal place for the deputy satellite to

hover. In fact, finding a minimum-fuel solution to arrive and then remain on either

the Ŷ axis itself (single point hovering orbit) or any 2x1 ellipse dictated by Equation

(87), Appendix G, that is contained within the lobe. In the absence of linearization

error and perturbations, the deputy could stay in this relative orbit indefinitely. Even

with such nonlinearities present, it would take relatively little fuel to keep the deputy

in this persistent orbit. Calculating those correction burns is not addressed in this

research.

When investigating these unique persistently hovering orbits, two questions

must be answered: 1) How do we define such a persistent orbit, and 2) How do

we know a candidate persistent orbit fits within the lobe? The first question is rela-

tively easy. Since the eccentricity of the hover orbit is required to be
√

3
2

and it must

be centered along the Ŷ axis, only the center’s y coordinate (b) and relative orbit size

(ρ) are needed (reference Figure 93). The second question is answered via a numerical

solution. For a given persistent hover orbit, each point is checked (to whatever reso-

lution the user specifies) for breaches of the lobe boundary. This is accomplished by

comparing the hover orbit radius (rP ) to the lobe’s radius measured from the hover

orbit center (rL). If at any point, rP > rL, then the hover orbit is not acceptable.
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Persistent Hover Orbit
Lobe Boundary

Figure 93: Persistent Hover Orbit Setup

First, a relationship between ψ and ψ′ is needed. By inspection

tan ψ′ =
(yL − b) + r sin ψ

xL + r cos ψ

where xL, yL are the coordinates of the lobe center and r is the radius of the lobe

measured from its center. With ψ′ in hand, the other two radii are found with simple

trigonometry. Finding rP is accomplished via Equation (32), Appendix A,

rP =
(2ρ)(ρ)√

4ρ2 cos2 ψ′ + ρ2 sin2 ψ′
=

2ρ√
4 cos2 ψ′ + sin2 ψ′

and rL by the Pythagorean theorem

rL =
√

(xL + r cos ψ)2 + (yL − yP + r sin ψ)2

where r is defined by Equation (41), Appendix B:

r =
τxτy√

τ 2
y cos2 (ψ − η) + τ 2

x sin2 (ψ − η)
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Thus a numerical check can be done by sweeping ψ between 0 and 2π to the desired

resolution and checking for rP > rL. Note that there is a singularity when ψ′ passes

through π
2

and 3π
2

, at which points

xL = −r cos ψ

The lobe radius can be calculated

rL = yL − b + r sin ψ

but the persistent orbit radius is dependent on ψ′ which is ill defined. Fortunately,

these two points are co-linear with the semi-major axis

rP = 2ρ

M.1 Maximum ρ and b

In order to search numerically for candidate persistent hover orbits, we need to

bound both ρ and b. Referencing Figure 93, lobes potentially intersect the Ŷ axis at

two points

yUpper = γ
XY

sin α + r(ψU) sin ψU

yLower = γ
XY

sin α + r(ψL) sin ψL

The largest possible ρ value is

4ρ < yUpper − yLower

ρ <
r(ψU) sin ψU − r(ψL) sin ψL

4
(138)
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and the range of b by inspection is

bmax = yUpper = γ
XY

sin α + r(ψU) sin ψU

bmin = yLower = γ
XY

sin α + r(ψL) sin ψL
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Appendix N. The Teardrop Hover Orbit

This appendix develops a proof that the ∆V required to stay on a teardrop

orbit is equivalent to hovering continuously at the time-averaged x coordinate of

the teardrop. The results are equivalent to a similar derivation in [28]. A notional

teardrop orbit and centroid location is shown in Figure 94.
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Figure 94: Notional Teardrop Orbit

Let the subscripts o and f represent initial and final conditions respectively.

Noting the 1
2π

scaling to convert to specific ∆V (Appendix K), the ∆V̆ required for

each cycle of a teardrop orbit is

∆V̆ =
1

2π

√(
˙̃xo − ˙̃xf

)2
+

(
˙̃yo − ˙̃yf

)2
(139)

Neglecting motion in the Ẑ direction, the relative velocities are calculated via Equa-

tions (112) and (116) from Appendix I.


 ˙̃xo

˙̃yo


 = 2π




−4S̃+6πT̃TDC̃

8−6πT̃TDS̃−8C̃

4S̃−6πT̃TD

8−6πT̃TDS̃−8C̃
−2+2C̃

8−6πT̃TDS̃−8C̃

−14+12πT̃TDS̃+14C̃

8−6πT̃TDS̃−8C̃
2−2C̃

8−6πT̃TDS̃−8C̃
S̃

8−6πT̃TDS̃−8C̃







x̃o

x̃f

∆ỹ



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
 ˙̃xf

˙̃yf


 = 2π




−4S̃+6πT̃TD

8−6πT̃TDS̃−8C̃

4S̃−6πT̃TDC̃

8−6πT̃TDS̃−8C̃
2−2C̃

8−6πT̃TDS̃−8C̃

2−2C̃
8−6πT̃TDS̃−8C̃

−14+12πT̃TDS̃+14C̃

8−6πT̃TDS̃−8C̃
S̃

8−6πT̃TDS̃−8C̃







x̃o

x̃f

∆ỹ




where T̃TD is the time-of-flight of a cycle (i.e. period of the teardrop), S̃ = sin(2πT̃TD),

and C̃ = cos(2πT̃TD). Since the initial and final coordinates occur at the apex of the

teardrop,

x̃o = x̃f

∆ỹ = ỹo − ỹf = 0

Letting D = 8− 6πT̃TDS̃ − 8C̃,


 ˙̃xo

˙̃yo


 = 2π




−4S̃+6πT̃TDC̃

8−6πT̃TDS̃−8C̃

4S̃−6πT̃TD

8−6πT̃TDS̃−8C̃

−14+12πT̃TDS̃+14C̃

8−6πT̃TDS̃−8C̃
2−2C̃

8−6πT̃TDS̃−8C̃





x̃o

x̃o


 =

2πx̃o

D


 −6πT̃TD(1− C̃)

−12 + 12πT̃TDS̃ + 12C̃




(140)


 ˙̃xf

˙̃yf


 = 2π




−4S̃+6πT̃TD

8−6πT̃TDS̃−8C̃

4S̃−6πT̃TDC̃

8−6πT̃TDS̃−8C̃

2−2C̃
8−6πT̃TDS̃−8C̃

−14+12πT̃TDS̃+14C̃

8−6πT̃TDS̃−8C̃





x̃o

x̃o


 =

2πx̃o

D


 6πT̃TD(1− C̃)

−12 + 12πT̃TDS̃ + 12C̃




(141)

therefore

˙̃xo − ˙̃xf =
2πx̃o

D

[
−6πT̃TD(1− C̃)− 6πT̃TD(1− C̃)

]
=
−24π2T̃TDx̃o(1− C̃)

D

˙̃yo − ˙̃yf =
2πx̃o

D

[(
−12 + 12πT̃TDS̃ + 12C̃

)
−

(
−12 + 12πT̃TDS̃ + 12C̃

)]
= 0
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Substituting these into Equation (139) yields

∆V̆ =
1

2π

√√√√
(
−24π2T̃TDx̃o(1− C̃)

D

)2

+ (0)2 =
12πT̃TDx̃o(1− C̃)

8− 6πT̃TDS̃ − 8C̃

We can set this equal to the continuous hover solution (Equation (137), Appendix L)

and solve for the equivalent x coordinate (x̃eq). This is the x position at which

thrusting continuously would yield the same ∆V̆ as thursting at the apex of the

teardrop.
12πT̃TDx̃o(1− C̃)

8− 6πT̃TDS̃ − 8C̃
= 6x̃eqπT̃TD

Solving for x̃eq,

x̃eq =
2(1− C̃)x̃o

8− 6πT̃TDS̃ − 8C̃
(142)

This equivalent x coordinate has a physical meaning. It is the time-averaged X̂

position of the deputy; a proof is presented below. The time-averaged X̂ position can

be calculated via

x̄TD =
1

T̃TD

∫ T̃TD

0

x̃(t̃)dt̃ (143)

where the x position is given by Equation (85a) in Appendix G:

x(t) = (xo − a) cos(nt) +
ẋo

n
sin(nt) + a

x̃(t̃) = (x̃o − a) cos(2πt̃) +
˙̃xo

2π
sin(2πt̃) + a

and a is Equation (98a),

a =
1

π
˙̃yo + 4x̃o

therefore the integral is,

∫ T̃TD

0

x̃(t̃)dt̃ =

∫ T̃TD

0

(x̃o − a) cos(2πt̃)dt̃ +

∫ T̃TD

0

˙̃xo

2π
sin(2πt̃)dt̃ +

∫ T̃TD

0

adt̃
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The first term reduces to:

∫ T̃TD

0

(x̃o − a) cos(2πt̃)dt̃ =
x̃o − a

2π

[
sin(2πt̃)

]T̃TD

0

=
x̃o − a

2π
sin(2πT̃TD)

The second term reduces to:

∫ T̃TD

0

˙̃xo

2π
sin(2πt̃)dt̃ = −

˙̃xo

4π2

[
cos(2πt̃)

]T̃TD

0

= −
˙̃xo

4π2

(
cos(2πT̃TD)− 1

)

and the third term reduces to:

∫ T̃TD

0

adt̃ = a

[
t̃

]T̃TD

0

= aT̃TD

Putting it all together and substituting for a,

∫ T̃TD

0

x̃(t̃)dt̃ =
x̃o − a

2π
S̃ +

˙̃xo

4π2
(1− C̃) + aT̃TD

=

(
− 1

2π2
˙̃yo − 3

2π
x̃o

)
S̃ +

˙̃xo

4π2
(1− C̃) +

(
1

π
˙̃yo + 4x̃o

)
T̃TD

=

(
4T̃TD − 3

2π
S̃

)
x̃o +

1− C̃

4π2
˙̃xo +

(
1

π
T̃TD − 1

2π2
S̃

)
˙̃yo

=
8πT̃TD − 3S̃

2π
x̃o +

1− C̃

4π2
˙̃xo +

2πT̃TD − S̃

2π2
˙̃yo

Substituting Equation (140) for the initial relative velocities,

8πT̃TD−3S̃
2π

x̃o + 1−C̃
4π2

(−2πx̃o

D

)
6πT̃TD(1− C̃) + 2πT̃TD−S̃

2π2

(
2πx̃o

D

) (
−12 + 12πT̃TDS̃ + 12C̃

)

1
2πD

[(
8πT̃TD − 3S̃

)
D − 6πT̃TD(1− C̃)2 +

(
2πT̃TD − S̃

)(
−24 + 24πT̃TDS̃ + 24C̃

)]
x̃o

1
2πD

[
16πT̃TD − 16πT̃TDC̃ − 6πT̃TDS̃2 − 6πT̃TD(1− C̃)2

]
x̃o

1
2πD

[
16πT̃TD(1− C̃)− 6πT̃TD(S̃2 + (1− C̃)2)

]
x̃o

1
2πD

[
16πT̃TD(1− C̃)− 12πT̃TD(1− C̃)

]
x̃o

1
2πD

[
4πT̃TD(1− C̃)

]
x̃o
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thus ∫ T̃TD

0

x̃(t̃)dt̃ =
2T̃TD(1− C̃)x̃o

8− 6πT̃TDS̃ − 8C̃

The time-averaged x coordinate is therefore,

x̄TD =
1

T̃TD

∫ T̃TD

0

x̃(t̃)dt̃ =
2(1− C̃)x̃o

8− 6πT̃TDS̃ − 8C̃
(144)

Comparing this result to Equation (142), we find that x̃eq is in fact the time-averaged

x coordinate and confirming that thursting continuously at x̄TD requires the same

amount of fuel as discretely thursting at the teardrop apex to remain on the teardrop

orbit. The specific ∆V per cycle is

∆V̆TD =
12πT̃TD(1− C̃)x̃o

8− 6πT̃TDS̃ − 8C̃
(145)
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Appendix O. The Truth Model

O.1 Propagation of the Truth Model

The truth model is based on the nonlinear inertial orbit equation

~̈d = − µ

‖~d‖3
2

~d + ~ap

where

‖~d‖3
2 =

(
X2 + Y 2 + Z2

) 3
2

and ~vP represents the sum of the perturbation accelerations. Let the state (s) be

~si =




Xi

Yi

Zi

Ẋi

Ẏi

Żi




then

~̇si =




Ẋi

Ẏi

Żi

Ẍi

Ÿi

Z̈i




=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

− µ

‖~di‖32
0 0 0 0 0

0 − µ

‖~di‖32
0 0 0 0

0 0 − µ

‖~di‖32
0 0 0







Xi

Yi

Zi

Ẋi

Ẏi

Żi




+




0

0

0

apx

apy

apz




(146)

O.2 The J2 Perturbation

Because gravity is a conservative force, it can be derived from the gradient of a

scalar potential function [51]. Starting with Equation (55), Appendix C without any

control inputs

~̈d =
−µ~d

‖~d‖3
2

+ ~ap
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Expanding in the inertial reference frame shown in Figure 84, Appendix C, and noting

that |~d| = d =
√

X2 + Y 2 + Z2 where X, Y , and Z are the position of the satellite in

the inertial frame Î ĴK̂,

~̈d =

[
−µX

[X2 + Y 2 + Z2]
3
2

+ ~apI

]
Î +

[
−µY

[X2 + Y 2 + Z2]
3
2

+ ~apJ

]
Ĵ

+

[
−µZ

[X2 + Y 2 + Z2]
3
2

+ ~apK

]
K̂

Noting that

∂

∂X

(
µ

|~d|
+ B

)
=

[√
X2 + Y 2 + Z2 ∗ (0)− µ[1/2(

√
X2 + Y 2 + Z2)−1/2]2X

X2 + Y 2 + Z2

]
+ ~apI

=
−µX

[X2 + Y 2 + Z2]
3
2

+ ~apI

where B is a potential function such that

∇B = ~ap

Similarly

∂

∂Y

(µ

d
+ B

)
=

−µY

[X2 + Y 2 + Z2]
3
2

+ ~apJ

∂

∂Z

(µ

d
+ B

)
=

−µZ

[X2 + Y 2 + Z2]
3
2

+ ~apK

Therefore the inertial acceleration is the gradient of the potential function µ
d

+ B

~̈d = ∇
(µ

d
+ B

)

The B term comes about by modeling the Earth not as a point mass but as an

oblate body with nonhomogeneous mass distribution (Figure 95) and is the sum of
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Figure 95: Oblate Earth Coordinate Frame

the infinite series

B =
−µ

d

{ ∞∑
i=2

[(
Re

d

)i

JiPi(sin φ) +
n∑

j=1

(
Re

d

)i

(Cij cos ϕ + Sij sin ϕ)Pij(sin φ)

]}

(147)

ϕ = jλ + ωete

where Re is the mean equatorial radius of the Earth, φ is the geocentric latitude of the

satellite (measured from the equator), λ is the geographical longitude (measured from

the prime meridian), d is the satellite position vector magnitude, ωe is the rotation

rate of the Earth, te is the time since the Î direction lined up with the Greenwich

meridian, Jn is the zonal harmonic coefficients of order 0, Pn is a Legendre polynomial

of degree n and order 0, Pnm is a Legendre polynomial of degree n and order m, Cnm

is the tesseral harmonic coefficient for n 6= m, and Snm is the sectorical harmonic

coefficients for n = m.

Measurements of the zonal, tesseral and sectorial coefficients (Jn, Cnm, and Snm)

reveal that the J2 term is at least 400 times larger than the next most significant term.

Thus, for applications such as satellite reconfigurations which occur over relatively

short time periods, all higher terms can be ignored. Using this assumption, Equation
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(147) reduces to

B =
−µ

d

2∑
n=2

[(
Re

d

)n

JnPn(sin φ)

]
=
−µ

d

(
Re

d

)2

J2P2(sin φ) (148)

where J2 = 0.0010826 and the 2nd Legendre polynomial has the form [24]

P2(X) =
1

2
(3X2 − 1)

Using this Legendre polynomial in Equation (148)

B =
−µ

d

(
Re

d

)2

J2
1

2

[
3(sin φ)2 − 1

]

Defining the constant

AJ2 =
1

2
J2R

2
e

simplifies B to

B = AJ2

(−µ

d3

[
3(sin φ)2 − 1

])

By geometry in Figure 95

sin φ =
z

d

which means

B = AJ2

(−µ

d3

[
3
Z2

d2
− 1

])
= µAJ2

(−3Z2 + d2

d5

)

Now that B is in cartesian coordinates, ~aJ2 is found by taking the gradient of B

~aJ2 = ∇B =




∂
∂X

B

∂
∂Y

B

∂
∂Z

B


 = µAJ2




d5(2d X
d

)−(−3z2+d2)5d4 X
d

d10

d5(2d Y
d

)−(−3z2+d2)5d4 Y
d

d10

d5(−6Z+2d Z
d

)−(−3Z2+d2)5d4 Z
d

d10



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Simplifying

~aJ2 = µAJ2




15Z2X

d7
− 3X

d5

15Z2Y

d7
− 3Y

d5

15Z3

d7
− 9Z

d5




=
µJ2R

2
e

2




15Z2X

d7
− 3X

d5

15Z2Y

d7
− 3Y

d5

15Z3

d7
− 9Z

d5




(149)

O.3 Atmospheric Drag

Atmospheric drag is the second largest perturbation next to J2 for satellites in

near-Earth orbits [59]. Unfortunately, its effects are considerably harder to model

accurately. Unknowns in atmospheric density, spacecraft ballistic coefficient, and

relative velocity with respect to the atmosphere all contribute to errors in the model.

However, a simple model will be employed in order to give a sense of its effects

to hovering orbits. The standard equation for acceleration due to air drag is well

documented in the literature [26,50,59]

~adrag = −1

2

CDA

m
ρdV

2
~Vrel

‖~Vrel‖2

= −1

2

CDA

m
ρdVrel

~Vrel

where CD is the coefficient of drag (and unitless), A is the area, m is the mass, ρd is

the atmospheric density, and ~Vrel is the satellite’s velocity relative to the atmosphere

and equal to

~Vrel = ~v − ~vatmos

Due to the Earth’s rotation, the atmosphere has a mean velocity of [59]

~vatmos = ω⊕ × ~M

where ~M is the inertial position vector of the satellite and the rotation of the Earth

is ω⊕ = 7.729 ∗ 10−5 rad

s
. Higher order effects like local wind and density variations

will be ignored in this simplified model.
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The coefficient of drag, area, and mass are usually grouped into a single term

called the ballistic coefficient (BC)

BC =
m

CDA

and typically have a range of [26]

0.515
kg

m2
< BC < 437

kg

m2

The last piece of the puzzle is a model of atmospheric density. Although a number of

high fidelity stochastic models are available, we can get the accuracy we desire with

the following exponential model [59]

ρd = ρoe
ho−hd

H

where ρo is the nominal density, ho is the reference altitude, hd is the deputy’s altitude,

and H is the scale height. The ho and H values are determined by observations and are

listed in Table 2 (verbatim from [59]). This model uses the U.S. Standard Atmosphere

(1976) for 0 km, CIRA-72 for 25-500 km, and CIRA-72 with exospheric temperature,

T∞ = 1000 K for 500-1000 km. The atmospheric drag model as implemented in code

is

~adrag = − Vrel

2BC

ρoe
ho−hd

H ~Vrel (150)
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Table 2: Atmospheric Model

Altitude Reference Nominal Scale Altitude Reference Nominal Scale
hd Altitude Density Height hd Altitude Density Height

(km) ho (km) ρo (kg/m2) H (km) (km) ho (km) ρo (kg/m2) H (km)
0− 25 0 1.225 7.249 150− 180 150 2.070× 10−9 22.523
25− 30 25 3.899× 10−2 6.349 180− 200 180 5.464× 10−10 29.740
30− 40 30 1.774× 10−2 6.682 200− 250 200 2.789× 10−10 37.105
40− 50 40 3.972× 10−3 7.554 250− 300 250 7.248× 10−11 45.546
50− 60 50 1.057× 10−3 8.382 300− 350 300 2.418× 10−11 53.628
60− 70 60 3.206× 10−4 7.714 350− 400 350 9.518× 10−12 53.298
70− 80 70 8.770× 10−5 6.549 400− 450 400 3.725× 10−12 58.515
80− 90 80 1.905× 10−5 5.799 450− 500 450 1.585× 10−12 60.828
90− 100 90 3.396× 10−6 5.382 500− 600 500 6.967× 10−13 63.822
100− 110 100 5.297× 10−7 5.877 600− 700 600 1.454× 10−13 71.835
110− 120 110 9.661× 10−8 7.263 700− 800 700 3.614× 10−14 88.667
120− 130 120 2.438× 10−8 9.473 800− 900 800 1.170× 10−14 124.64
130− 140 130 8.484× 10−9 12.636 900− 1000 900 5.245× 10−15 181.05
140− 150 140 3.845× 10−9 16.149 > 1000 1000 3.019× 10−15 268.00
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Appendix P. The Gradient of the Cost Function

Starting with the cost function developed in Section 3.3, Equation (20)

J =

1

∆V̆ 2
C

[
∆V̆ 2

1 + ∆V̆ 2
2 + ∆V̆ 2

3 + ... + ∆V̆ 2
k + ∆V 2

F

]

T̃1,2 + T̃2,3 + T̃3,4 + ... + T̃k,k+1 + T̃F

we can calculate the gradient with respect to the optimization variables. Let the total

hover time be T̃T

T̃F +
k∑

i=1

T̃k,k+1 = T̃T

and recall that ∆V̆ 2 is a function of the previous, current, and next thrust locations

and the previous and next time-of-flight

∆V̆ 2
i (ψi−1, ψi, ψi+1, T̃i−1,i, T̃i,i+1)

then the partials of J with respect to ψ is

∂J

∂ψ1

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

1 )

∂ψ1
+

∂(∆V̆ 2
2 )

∂ψ1

]
− 0

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

1 )

∂ψ1

+
∂(∆V̆ 2

2 )

∂ψ1

]
(151)

∂J

∂ψ2

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

1 )

∂ψ2
+

∂(∆V̆ 2
2 )

∂ψ2
+

∂(∆V̆ 2
3 )

∂ψ2

]
− 0

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

1 )

∂ψ2

+
∂(∆V̆ 2

2 )

∂ψ2

+
∂(∆V̆ 2

3 )

∂ψ2

]

(152)
...

...
...

∂J

∂ψi

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

i−1)

∂ψi
+

∂(∆V̆ 2
i )

∂ψi
+

∂(∆V̆ 2
i+1)

∂ψi

]
− 0

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

i−1)

∂ψi

+
∂(∆V̆ 2

i )

∂ψi

+
∂(∆V̆ 2

i+1)

∂ψi

]

(153)
...

...
...

∂J

∂ψk

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

k−1)

∂ψk
+

∂(∆V̆ 2
k )

∂ψk

]
− 0

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

k−1)

∂ψk

+
∂(∆V̆ 2

k )

∂ψk

+
∂(∆V̆ 2

F )

∂ψk

]
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∂J

∂ψk+1

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

k )

∂ψk+1

]
− 0

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

k )

∂ψk+1

+
∂(∆V̆ 2

F )

∂ψk+1

]

Note that how ∆V̆ 2
1 and its partial are calculated depends on the entry condition.

Let
k∑

i=1

∆V̆ 2
i = ∆V̆T 2

the partials with respect to the times-of-flight are

∂J

∂T̃1,2

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

1 )

∂T̃1,2
+

∂(∆V̆ 2
2 )

∂T̃1,2

]
− 1

∆V̆ 2
C

∆V̆T 2(1)

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

1 )

∂T̃1,2

+
∂(∆V̆ 2

2 )

∂T̃1,2

− J

]

(154)

noting that JT̃T =
∆V̆T 2

∆V̆ 2
C

...

∂J

∂T̃i,i+1

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

i )

∂T̃i,i+1
+

∂(∆V̆ 2
i+1)

∂T̃i,i+1

]
− 1

∆V̆ 2
C

∆V̆T 2(1)

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

i )

∂T̃i,i+1

+
∂(∆V̆ 2

i+1)

∂T̃i,i+1

− J

]

(155)
...

...
...

∂J

∂T̃k,k+1

=
T̃T

1

∆V̆ 2
C

[
∂(∆V̆ 2

k )

∂T̃k,k+1

]
− 1

∆V̆ 2
C

∆VT 2(1)

T̃ 2
T

=
1

T̃T ∆V̆ 2
C

[
∂(∆V̆ 2

k )

∂T̃k,k+1

+
∂(∆V̆ 2

F )

∂T̃k,k+1

− J

]

The T̃F term is nonzero in only one exit condition where it is set equal to T̃1,2; therefore

we do not need a partial with respect to T̃F .

P.1 The Gradient of ∆V 2

A few preliminaries are required before taking the derivative of ∆V 2. Examining

the equation for R, (Equation (126), Appendix K) we see only a handful of repeated

forms, thus finding the gradient is not as complex as it first seems. Let

ξ = 8− 3nT sin(nT )− 8 cos(nT )
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and its partial derivative with respect to time-of-flight is then

∂ξ

∂T
= −3n2T cos(nT )− 3n sin(nT ) + 8n sin(nT ) = −3n2T cos(nT ) + 5n sin(nT )

Then the following partials are (C = cos(nT ) and S = sin(nT ))

∂
(

4S−3nT
ξ

)

∂T
=

(8− 3nTS − 8C)(4nC − 3n)− (4S − 3nT )(−3n2TC + 5nS)

(8− 3nTS − 8C)2

=
−44n + 56nC + 24n2TS − 9n3T 2C − 12nC2

(8− 3nTS − 8C)2

∂
(
−2+2C

ξ

)

∂T
=

(8− 3nTS − 8C)(−2nS)− (−2 + 2C)(−3n2TC + 5nS)

(8− 3nTS − 8C)2

=
6n2T − 6nS + 6nSC − 6n2TC

(8− 3nTS − 8C)2

∂
(

S
ξ

)

∂T
=

(8− 3nTS − 8C)nC − S(−3n2TC + 5nS)

(8− 3nTS − 8C)2

=
−5n + 8nC − 3nC2

(8− 3nTS − 8C)2

∂
(

4S−3nTC
ξ

)

∂T
=

(8− 3nTS − 8C)(nC + 3n2TS)− (4S − 3nTC)(−3n2TC + 5nS)

(8− 3nTS − 8C)2

=
−20n + 8nC + 24n2TS + 12nC2 − 9n3T 2

(8− 3nTS − 8C)2

∂
(
−14+6nTS+14C

ξ

)

∂T
=

(8− 3nTS − 8C)(6n2TC − 8nS)− (−14 + 6nTS + 14C)(−3n2TC + 5nS)

(8− 3nTS − 8C)2

=
6nS − 6nSC + 6n2TC − 6n2T

(8− 3nTS − 8C)2
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altogether

∂R

∂T− =




−44n+56nC−+24n2T−S−−9n3T 2−C−−12nC2−
(8−3nT−S−−8C−)2

6n2T−−6nS−+6nS−C−−6n2T−C−
(8−3nT−S−−8C−)2

−6n2T−+6nS−−6nS−C−+6n2T−C−
(8−3nT−S−−8C−)2

−5n+8nC−−3nC2−
(8−3nT−S−−8C−)2

20n−8nC−−24n2T−S−−12nC2−+9n3T 2−
(8−3nT−S−−8C−)2

−6nS−+6nS−C−−6n2T−C−+6n2T−
(8−3nT−S−−8C−)2

6n2T−−6nS−+6nS−C−−6n2T−C−
(8−3nT−S−−8C−)2

5n−8nC−+3nC2−
(8−3nT−S−−8C−)2

0 0

0 0




(156)

∂R

∂T+
=




0 0

0 0

20n−8nC+−24n2T+S+−12nC2++9n3T 2+

(8−3nT+S+−8C+)2
6nS+−6nS+C++6n2T+C+−6n2T+

(8−3nT+S+−8C+)2

−6n2T++6nS+−6nS+C++6n2T+C+

(8−3nT+S+−8C+)2
5n−8nC++3nC2+

(8−3nT+S+−8C+)2

−44n+56nC++24n2T+S+−9n3T 2+C+−12nC2+

(8−3nT+S+−8C+)2
−6n2T++6nS+−6nS+C++6n2T+C+

(8−3nT+S+−8C+)2

6n2T+−6nS++6nS+C+−6n2T+C+

(8−3nT+S+−8C+)2
−5n+8nC+−3nC2+

(8−3nT+S+−8C+)2




(157)

if we want to express these partials in terms of T̃ , we simply multiply both sides by

∂T

∂T̃
=

∂
(

2πT̃
n

)

∂T̃
=

2π

n

and substitute nT = 2πT̃ from Equation (2), yielding

∂R̃

∂T̃− =




−88π+112πC̃−+96π2T̃−S̃−−72π3T̃ 2−C̃−−24πC̃2−
(8−6πT̃−S̃−−8C̃−)2

24π2T̃−−12πS̃−+12πS̃−C̃−−24π2T̃−C̃−
(8−6πT̃−S̃−−8C̃−)2

−24π2T̃−+12πS̃−−12πS̃−C̃−+24π2T̃−C̃−
(8−6πT̃−S̃−−8C̃−)2

−10π+16πC̃−−6πC̃2−
(8−6πT̃−S̃−−8C̃−)2

40π−16πC̃−−96π2T̃−S̃−−24πC̃2−+72π3T̃ 2−
(8−6πT̃−S̃−−8C̃−)2

−12πS̃−+12πS̃−C̃−−24π2T̃−C̃−+24π2T̃−
(8−6πT̃−S̃−−8C̃−)2

24π2T̃−−12πS̃−+12πS̃−C̃−−24π2T̃−C̃−
(8−6πT̃−S̃−−8C̃−)2

10π−16πC̃−+6πC̃2−
(8−6πT̃−S̃−−8C̃−)2

0 0

0 0




(158)
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∂R̃

∂T̃+
=




0 0

0 0

40π−16πC̃+−96π2T̃+S̃+−24πC̃2++72π3T̃ 2+

(8−6πT̃+S̃+−8C̃+)2
12πS̃+−12πS̃+C̃++24π2T̃+C̃+−24π2T̃+

(8−6πT̃+S̃+−8C̃+)2

−24π2T̃++12πS̃+−12πS̃+C̃++24π2T̃+C̃+

(8−6πT̃+S̃+−8C̃+)2
10π−16πC̃++6πC̃2+

(8−6πT̃+S̃+−8C̃+)2

−88π+112πC̃++96π2T̃+S̃+−72π3T̃ 2+C̃+−24πC̃2+

(8−6πT̃+S̃+−8C̃+)2
−24π2T̃++12πS̃+−12πS̃+C̃++24π2T̃+C̃+

(8−6πT̃+S̃+−8C̃+)2

24π2T̃+−12πS̃++12πS̃+C̃+−24π2T̃+C̃+

(8−6πT̃+S̃+−8C̃+)2
−10π+16πC̃+−6πC̃2+

(8−6πT̃+S̃+−8C̃+)2




(159)

We are now prepared to take the derivative of ∆V 2 with respect to the optimization

variables. Applying the theorem found in Appendix A.4 and, taking the partial

derivative with respect to the previous point,

∂ (∆V 2
i )

∂ψi−1

= 2n2
[
xi−1 yi−1 xi yi xi+1 yi+1

]
RR′




∂xi−1

∂ψi−1

∂yi−1

∂ψi−1

0

0

0

0




(160)

where the partials of the positions are functions of the lobe shape. Equations (42)

and (43) from Appendix B

xi = γ cos α sin β +
τxτy cos ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

yi = γ sin α sin β +
τxτy sin ψi√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)
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The derivatives with respect to ψ are Equations (47) and (48) from Appendix B

∂xi

∂ψi

= −ri sin ψi − r3
i

τ 2
x − τ 2

y

2τ 2
xτ 2

y

sin(2ψi − 2η) cos ψi

∂yi

∂ψi

= ri cos ψi − r3
i

τ 2
x − τ 2

y

2τ 2
xτ 2

y

sin(2ψi − 2η) sin ψi

ri =
τxτy√

τ 2
y cos2 (ψi − η) + τ 2

x sin2 (ψi − η)

Similarly the partial derivative with respect to the current point is

∂ (∆V 2
i )

∂ψi

= 2n2
[
xi−1 yi−1 xi yi xi+1 yi+1

]
RR′




0

0

∂xi

∂ψi

∂yi

∂ψi

0

0




(161)

and with respect to the next point:

∂ (∆V 2
i )

∂ψi+1

= 2n2
[
xi−1 yi−1 xi yi xi+1 yi+1

]
RR′




0

0

0

0

∂xi+1

∂ψi+1

∂yi+1

∂ψi+1




(162)
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Applying the theorem found in Appendix A.5, the partial derivative with respect to

the previous time-of-flight is

∂ (∆V 2
i )

∂Ti−1,i

= 2n2
[
xi−1 yi−1 xi yi xi+1 yi+1

]
R

∂R′

∂T−




xi−1

yi−1

xi

yi

xi+1

yi+1




(163)

and the partial with respect to the next time-of-flight

∂ (∆V 2
i )

∂Ti,i+1

= 2n2
[
xi−1 yi−1 xi yi xi+1 yi+1

]
R

∂R′

∂T+




xi−1

yi−1

xi

yi

xi+1

yi+1




(164)

Recall that the partial derivatives of the cost function J requires the summation

of two or three partials of ∆V̆ with respect to ψ or T̃ . When implementing these in

an algorithm it becomes useful to construct the following matrices. The required

summations are then simply the row sums.
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∆V 2
1 ∆V 2

2 ∆V 2
3 ∆V 2

4 ∆V 2
5 . . . ∆V 2

k−2 ∆V 2
k−1 ∆V 2

k ∆V 2
F

ψ1
∂(∆V 2

1 )

∂ψ1

∂(∆V 2
2 )

∂ψ1
0 0 0 . . . 0 0

∂(∆V 2
k )

∂ψ1

∂(∆V 2
F )

∂ψ1

ψ2
∂(∆V 2

1 )

∂ψ2

∂(∆V 2
2 )

∂ψ2

∂(∆V 2
3 )

∂ψ2
0 0 . . . 0 0 0 0

ψ3 0
∂(∆V 2

2 )

∂ψ3

∂(∆V 2
3 )

∂ψ3

∂(∆V 2
4 )

∂ψ3
0 . . . 0 0 0 0

ψ4 0 0
∂(∆V 2

3 )

∂ψ4

∂(∆V 2
4 )

∂ψ4

∂(∆V 2
5 )

∂ψ4
. . . 0 0 0 0

ψ5 0 0 0
∂(∆V 2

4 )

∂ψ5

∂(∆V 2
5 )

∂ψ5
. . . 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...

ψk−2 0 0 0 0 0 . . .
∂(∆V 2

k−2)

∂ψk−2

∂(∆V 2
k−1)

∂ψk−2
0 0

ψk−1 0 0 0 0 0 . . .
∂(∆V 2

k−2)

∂ψk−1

∂(∆V 2
k−1)

∂ψk−1

∂(∆V 2
k )

∂ψk−1
0

ψk 0 0 0 0 0 . . . 0
∂(∆V 2

k−1)

∂ψk

∂(∆V 2
k )

∂ψk

∂(∆V 2
F )

∂ψk

ψk+1 0 0 0 0 0 . . . 0 0
∂(∆V 2

k )

∂ψk+1

∂(∆V 2
F )

∂ψk+1

The last two entries in the ψ1 row are nonzero only in the repeating hovering orbit

exit condition. The partials with respect to time-of-flight

∆V 2
1 ∆V 2

2 ∆V 2
3 ∆V 2

4 ∆V 2
5 . . . ∆V 2

k−2 ∆V 2
k−1 ∆V 2

k ∆V 2
F

T1,2
∂(∆V 2

1 )

∂T1,2

∂(∆V 2
2 )

∂T1,2
0 0 0 . . . 0 0 0

∂(∆V 2
k )

∂T1,2

T2,3 0
∂(∆V 2

2 )

∂T2,3

∂(∆V 2
3 )

∂T2,3
0 0 . . . 0 0 0 0

T3,4 0 0
∂(∆V 2

3 )

∂T3,4

∂(∆V 2
4 )

∂T3,4
0 . . . 0 0 0 0

T4,5 0 0 0
∂(∆V 2

4 )

∂T4,5

∂(∆V 2
5 )

∂T4,5
. . . 0 0 0 0

T5,6 0 0 0 0
∂(∆V 2

5 )

∂T5,6
. . . 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...

Tk−2,k−1 0 0 0 0 0 . . .
∂(∆V 2

k−2)

∂Tk−2,k−1

∂(∆V 2
k−1)

∂Tk−2,k−1
0 0

Tk−1,k 0 0 0 0 0 . . . 0
∂(∆V 2

k−1)

∂Tk−1,k

∂(∆V 2
k )

∂Tk−1,k
0

Tk,k+1 0 0 0 0 0 . . . 0 0
∂(∆V 2

k )

∂Tk,k+1

∂(∆V 2
F )

∂Tk,k+1
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Appendix Q. Matlabr Algorithm

The following appendix contains pseudocode for the Matlabr routine used to

produce the results presented.

1. Description: Finds and plots the solution for staying the defined lobe while

minimizing the total ∆V used per unit of time.

2. Inputs

(a) Entry/Exit Condition

(b) Lobe Parameters: α, β, γ, h, τx, τy, η

(c) Chief Orbit Parameters (for elliptical orbits only)

(d) ψ Initial Conditions (determines number of legs)

3. Algorithm

(a) Load constraint data if available

(b) Calculate mean motion and period of chief (for elliptical chiefs)

(c) Calculate Ẑ information

i. z̃min = γ‖ cos β‖ − h z̃max = γ‖ cos β‖+ h

ii. Max Ẑ period = T̃z = 1
π
cos−1(z̃min/z̃max)

(d) Calculate lobe parameters: x̃min, ψx̃min
, ỹx̃min

(e) Construct the initial condition for the nonlinear programming algo-

rithm (set T̃ = 0.01 chief orbit fractions for all)

[ψ1, ψ2, · · ·ψk, T̃1,2, T̃2,3, · · · T̃k,k+1]

(f) Run FMINCON

(g) Calculate number of legs (kz) in the Ẑ direction:
⌊

T̃T

T̃z

⌋

(h) Generate thrust locations and the time-of-flight between them

(i) Propagate the trajectory between thrust locations

(j) Plot data
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