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AFIT/GE/ENG /DSG-06S

Abstract

This dissertation documents three new contributions to simulation and modeling
of optical turbulence. The first contribution is the formalization, optimization, and
validation of a modeling technique called successively conditioned rendering (SCR).
The SCR technique is empirically validated by comparing the statistical error of
random phase screens generated with the technique. The second contribution is the
derivation of the covariance delineation theorem, which provides theoretical bounds
on the error associated with SCR. It is shown empirically that the theoretical bound
may be used to predict relative algorithm performance. Therefore, the covariance
delineation theorem is a powerful tool for optimizing SCR algorithms. For the third
contribution, we introduce a new method for passively estimating optical turbulence
parameters, and demonstrate the method using experimental data. The technique
was demonstrated experimentally, using a 100 m horizontal path at 1.25 m above
sun-heated tarmac on a clear afternoon. For this experiment, we estimated C? ~

6.01-107° 111'§, lo ~ 17.9 mm, and Ly =~ 15.5 m.

iv



Acknowledgements

Thanks to Dr. Stephen C. Cain for facilitating my development as an independent
researcher, scientist, and engineer, as well as for inciting an inner yearning to seek
truth from God. Thanks to my parents for sharing in my excitement as each milestone
was reached along the way. Thanks to my loving wife for all the sacrifices she made,
and for caring so deeply about her husband’s struggles. Thanks to God without whom

there would be no inspiration to fuel this research.

Byron Paul Formwalt



Table of Contents

1.4 Summary of Prior Contributions and Theory . . . . . . .

141 Comtiibibion 1 - ¢ : wov v v vsnm =500 .
14.2 Contribution 2 . . . ... ... ... ... ...
1.43 Contribution 3 . . .. .. ... ... .. ... .

2. Optimized Phase Screen Modeling for Optical Turbulence
21 Roadmap . . ........... ... .. ........
2.2 Successively Conditioned Rendering . . . . . . . .. ...

2.3 Statistical Interpolation . . . . ... ... ... ... ..
2.4 Covariance Delineation Theorem . . ... ... ... ..
2.5 Proof of the Covariance Delineation Theorem . . . . . .
2.5.1 ngitive Semi-Definiteness of All Covariance Ma-

BHOEB: 0 6 5 % 5 B S5 E R b m e e mom e me o

2.5.2  Continuity of Eigenvalues in Perturbations of a

Real Symmetric Matrix . . . .. ... ... ...

2.5.3 Existence of an Upper Bound on the Range of
Positive Semi-Definiteness . . . . . . .. .. ..

2.5.4 Least Upper Bound on Range of Positive Semi-
Definiteness . . . .. ... .. ... .. .....

2.5.5 Existence of the Least Upper Bound . . . . . .

2.5.6 Upper Bound on the Second-Order Statistical Er-
ror of pagjwe (wolw®) . . ...

2.6 Experimental Validation of the Covariance Delineation The-
OTCIL . . . . vttt e e e e e

vi

Page

v

viii

.

= LW kD B =

19

19

23
26

30

30



Page

20 BBSUME . o covs mssae s e RS e e e e s 33
2.7.1 Experiment 1: Single-Level, Single-Generation In-
terpolation . . . . . ... ... ... ... ... 33
2.7.2  Experiment 2: Multilevel Interpolation . . . . . 34
28 Conclusions . . .. .. ... ... .. ... 34
3. A New Approach to Estimating Optical Turbulence Statistics . . 37
Sl Rosdigp o < cscmwvunampenmime g5 a0 5E 5 &S 37
52 Backeround - = v v s consmoenaimen s a0 85 &5 38
33 TDEEWBHION. . wo o v v v om oo B a2 e B e S E S R % 40
3.3.1 Tilt Covariance . .. ... ... ......... 40
3.3.2 Step Interpolation. . .. ............. 43
3.3.3 Spectral Decomposition of Refractive Index Co-
VarTanes Banetion - s cr s s s e e B 3 50
3.3.4 3-Parameter von Karman Model for B, . . . . . 54
34 Experiment . . ... . ... 55
341 Description - . .2 : v v ivisae e 55
342 Observables . . . ... i vi v, 56
3.4.3 Tabulation and Estimation . . . . ... .. ... 62
3.4.4 Experimental Conditions . . . . .. ... ... . 63
b REBEHE & wam e v v e 5 B T E 8 G e e e e e 63
3.6 Conclusions . . . . .. ... ... ... ... .. ... 67
4. SUIBTHATY = c o v v 5 v 2 2 % 6 4 5 5% % E £ 55 5 5 5k e . 70
4.1 Value to the Air Force . . .. .. .. ... ... ...... 70
42 Future Work . .. ... ... L. 71
Appendix A. Approximating Waves in Random Media . . . . . .. .. 73
A.1 Violation of Helmholtz Equation . . . . ... ... ... 73
A.2 Turbulence-Modified Diffraction Formula . . . . . . . . . 75
Bibliography . . ... .. .. ... 77
IdER i v v 5 % o BB SR T B S T e e m e e B 80

vii



List of Figures

Figure Page
2.1 4-Nearest-Neighbors Statistical Interpolator . . . . . . .. .. . 31
2.2. 2-Nearest-Neighbors Statistical Interpolator . . . . . . .. .. . 32
2.3. Statistical Error Estimates for Level 1, Generation A . . . . . . 34
24. Statistical Error Attributed to Each Level . . . . . . .. .. .. 35
2.5. Histogram of Multilevel Statistical Error . . . . . .. .. .. .. 35
2.6. Multilevel Phase Covariance Estimates . . . . . .. ... .. .. 36
3:1. Geometry for Tilt Covariance . . . . . . . . .. ... . ... .. 42
3.2. Imaging Apparatus . . . .. .. ... . ... ... .. ..... 56
3.3. Passive Source Array . . . . ... ... 5T
3.4. Distribution of Source Separations . . . .. ... .. ... ... 58
3.5. Geometric Tilt . . . . ... ... ... ... ... ... ... 61
3.6. Tk Disteibulion « » « v v s mwvssmavssm o s % m e s s o 64
3.7 Windowed Estimates of Turbulence Parameters . . . . . . . . . 66
3.8. Optimal von Karman Covariance Function . . ... ... ... 67
3.9. Tilt Covariance . . . . .. . ... ... ... ... ........ 68
3.10. Relogorow SEEHEUTE & - s v v v s s s v v R 4 5 5% 0 & 5 5 69
Al Rayleigh-Sommerfeld vacuum propagation. . .. .. .. ... . 75

viii



Table

3.1.

List of Tables

Relative Source Positions



Symbol

S

cov(z, y]

¥

= =

&

List of Symbols

Page
Order of computational complexity . . . .. .. ... ... 2
Mathematical definition . . . . ... ... ... ...... 12
Equality . . . . ... ... .. ... .. 12
Expected value operator . . . ... ... .......... 12
Arbitrary unit vector; estimate of vector or position . . . . 17
Eigenvalue; optical wavelength . . . .. ... ... .. .. 19
Outer scale of the atmosphere . . . . . . . ... ... ... 32
Wave number; propagation constant . . . . ... .. ... 33
Refractive index structure constant . . . . . .. . ... .. 33
Inner scale of the atmosphere . . . . . . ... ... .... 38
Point in 3-space. . . . ... ... . ... .. ........ 40
Refractive index spatial covariance function . . . .. . .. 40
Scalar distance . . . . ... ... L 40
Refractiveindex i vssiamavnn o iiing onmo 40
Covariance operator . . . « . v v v v v 50 o w5 5 0w s 40
Unscaled Zernike tilt . . . . .. ... ... ......... 40
Optical phasedelay . . . . . s« v vvuw s owin s an 40
Pointin 2-space . . . . ... ... .. ... ......... 40
Spatial variable corresponding to the optical axis . . . . . 40
Vector notation; position notation. . . . . . . ... .. .. 41
Tilt covariance function . . ... ... ... ... ..... 42
Approximate equality . . . ... ... ... . ....... 43
Imaginary number . . . <« v s v v ws s s s e e s s 51
Real; Real part . . . . . . s nn s e n cee 53
Imaginary; Imaginary part . . . . . . . .o i o . 53



Symbol Page

w Angular frequency (radians) . . . ... ... ... ..... 53
il Covariance spectrum . . . . . . . ... ... ... ... 53
K Spatial frequency . . . .. . ... L. 54
B, Observation of tilt covariance . . . . . . ... .. .. ... 56
gy Geometric tilt . . . . . .. . ... ... ... .. 60
f Angle . . . ... 60
D Aperture diameter . . . . .. ... ... ... ... ..., 62
f Focal lehghh. o cvvwensnmnrsdtmossn s a4 62
D, Refractive index structure . . . . . ... ... ... .... 69
€ o PORENVALE: < o s v s wness w e a sy m o s B E D W 73
€ Permittivity of free space . . . . . . ... ... ... ... 73
V2 Liaplatian OBerator - - » « v v v wm v v v o v v m @ e s d A 73
¢ Speed of light inavacuum . . . . ... ... .. .. ... . 3
u Complex scalar-valued optical field . . . . . ... ... .. 73
v Optical frequency . . . . . . ... .. ... ... ... ... 73
\% Gradient operator . . . . ... ... ... ... ..... 74
ko Vacuum wave number . . . . ... . ... ... ... ... 75
Ao Vacuum wavelength -~ . - . ... o u . ih s 75
%74 Window function . . . . . ... ..., 75

xi



List of Abbreviations

Abbreviation Page
SERE Statistical Error of Random Estimate . . . . . . . . . ... 17
SDI Statistical Degree of Information . . . .. ... ... ... 17
SCIDAR Scintillation Detection and Ranging . . . . . . .. .. ... 38
AA Angleof Arrival . . . ... ... .. ... ... 39
DFT Discrete Fourier Transform . . . . . . ... . ... ..., 51
OPL Optical Path Length . . . . ... .. ............ 55
EM Electromagnetic . . .. .. .. ... ... 57
SNR Signal-to-Noise Ratio . . . . . ... ............. 59
R-S Rayleigh-Sommerfeld . . . . . ... .. ... ... ..... 73

xii



MODELING, SIMULATION, AND ESTIMATION OF OPTICAL

TURBULENCE

1. Introduction

G pplications dealing with optical turbulence are numerous in industry and the

Department of Defense. This research introduces three new contributions to

help advance the state of the art. The following sections provide a roadmap for this

document, as well as justification for research it represents in context of Air Force

needs.

1:d

Organization

The following is a list of chapter descriptions:

Chapter 1: Serves as a roadmap for the document, and provides justification

for this research.

Chapter 2: Presents a modeling technique called SCR and derives a theorem to
support the technique. Empirical data are used to validate the findings. The

contents of this chapter have been published in a peer-reviewed journal. [9]

Chapter 3: Presents a method for estimating optical turbulence parameters
from imaging data. The method is demonstrated using physical data from field
experiments. The contents of this chapter have been submitted to the journal,

Applied Optics, and are currently undergoing peer review.

Chapter 4: Provides a final overview of this research by reviewing results and
conclusions from Chapters 2 and 3. Outlines the direction of future work by

this author.
Appendix A: Justifies use of rectlinear phase integration through turbulent
media for geometries where scintillation (receiver irradiance fluctuation) effects

are negligible.



1.2  Contributions

There are three contributions presented in Chapters 2 and 3:

e Contribution 1: Formalization, optimization, and validation of SCR as a tech-
nique for modeling spatially homogenous and isotropic random fields in n-dimensions.
SCR is shown to be a statistical filter process with O(n) computational com-
plexity, where n represents the number of spatial points at which the field is to

be simulated. (Found in Chapter 2).

e Contribution 2: Proof of the covariance delineation theorem, which makes pro-
visions for computing a least upper bound on the error incurred from the first
level of SCR. Its use precludes any need for costly empirical evaluation while

optimizing a particular SCR algorithm. (Found in Chapter 2).

e Contribution 3: Derivation and implementation of an estimation technique for
obtaining optical turbulence model parameters. Finite outer scale and non-zero
inner scale are estimated simultaneous to the refractive index structure constant.
The estimation technique is demonstrated using physical data collected from a

field experiment. (Found in Chapter 3).

1.3 Value to the Air Force

Contributions 1 and 2 are good for rapidly simulating extensible phase screens
to an arbitrary level of detail. Immediate Air Force applications include characteriz-
ing performance of optical sensors and algorithms. Contribution 3 is an economical
solution for characterizing optical turbulence in support of field tests of Air Force
optical systems. Key advantages are support of a wider range of propagation path
lengths at a fraction of the cost for scintillometer-based alternatives. Because the

sensing technique is passive, it is inherently eye-safe.



1.4 Summary of Prior Contributions and Theory

Before delving into the details for the new contributions presented in this work,
the reader may wish to skim this section as a primer on theory related to previous
works published. Each subsection discusses material as it relating to a single con-
tribution. Use of SI units is implied everywhere in this document, unless specified

otherwise.

1.4.1 Contribution 1.  This contribution consists of a technique for simulat-
ing phase screens by successively conditioned rendering. Some early works published
on phase screen simulation relied upon Cholesky decomposition. The recipe for this
technique, based on is available in References [24] and [25]. While the results are statis-
tically error free, the Cholesky-based approach becomes computationally intractable

for applications requiring phase screens with a large number of samples.

In 1992, Lane, et al, used a midpoint displacement algorithm from the computer
graphics community and applied it to Kolmogorov phase screen generation [16]. Lane
showed that the algorithm was significantly faster than Fourier-based techniques, but
less accurate. The midpoint displacement algorithm is a form of statistical interpola-
tion, whereby each new interpolate is obtained by adding a zero-mean random variable
to the corresponding interpolate obtained using linear interpolation. In this paper,
Lane also introduced a more efficient Fourier technique that uses a non-uniform sam-
pling grid to incorporate subharmonic frequencies. Fewer samples are used overall,
resulting in a faster simulation than the one presented in [25], [24], yet similar accuracy
is obtained by adding more samples at lower spatial frequencies. The downside is that
the fast Fourier transform (FFT) algorithm cannot be used with nonuniform sampling
grids—a fact which cuts down on the overall computational efficiency of the method.
As a followup study, in 1999, Harding, et al [13] provided a more in-depth theoretical
explanation of the midpoint displacement algorithm as it was applied to the problem
of phase screen generation. Harding also examined slight variations of the original

algorithm, and characterized the computational efficiency of the algorithm. In 2003,



Peterson and Mozurkewich [23] introduced an algorithm that applied Lane’s midpoint
displacement technique to selectively interpolate a large-scale phase screen for mul-
tiple regions of interest. They also added the concept of extending the phase screen
arbitrarily in any direction. By contrast to prior contributions, the work presented
in this document offers a purely covariance-based Bayesian probability approach to
statistical interpolation. Furthermore, a variant of Lane's algorithm is introduced,

which improves both the efficiency and accuracy for this class of algorithm.

1.4.2  Contribution 2.  The covariance delineation theorem is a completely
original contribution unrelated to prior works. Prior to introducing the theorem,
we provide as reference a few definitions specific to this text. These definitions are

formally introduced in Section 2.4:

e Correlated Random Set: A countable set of correlated random variables.

e Conditional Independence: Statistical independence of two or more random vari-

ables under a specific set of conditions.

e Random Estimate: A random variable whose statistics approzimate the statistics

of another random variable.

Readers without a strong background in linear algebra or probability and statistics
may find it helpful to obtain copies of References [22] and [27] to facilitate understand-
ing of the proof for this theorem. Both texts are excellent pedagogical references and

use similar notation as this document.

1.4.3 Contribution 3. This contribution is a new approach to estimating
optical turbulence parameters. We begin by defining what these parameters are and
discuss their historical importance in optical turbulence modeling. After that, we
provide a synopsis of other practical methods for estimating optical turbulence pa-

rameters found in the literature.



1.4.3.1 Optical Turbulence Parameters.  The material for this section
comes directly from Chapter 3 of Laser Beam Propagation Through Random Media
by Andrews and Phillips [2|. Optical turbulence refers to spatial fluctuations in the
refractive index throughout a volume of atmosphere. These fluctuations are thought
to be caused primarily by temperature fluctuations, but are also dependent on optical
wavelength, atmospheric pressure, and relative humidity [4]. Such fluctuations occur
at random and with some amount of spatial correlation. We refer to the random
gpatial variations in the refractive index collectively as a correlated random field. A
common practice in modeling optical turbulence is to assume local homogeneity and
isotropy in two or more spatial dimensions. The resultant field is called a spatially cor-
related homogenous and isotropic random field. The statistics relating points within
such a field are functions only of the distance between points, and implicitly do not

depend on relative orientation or absolute position of points within the field.

In 1941, Kolmogorov developed a statistical model for turbulence, in which
he related the statistical structure in wind velocity measured at two points to the
distance between them. The turbulence parameter, Lo, was used to denote the largest
sized eddy with homogenous and isotropic statistical structure. Lg is known as the
outer scale of turbulence. Another parameter, ly, was defined as the scale for which
turbulent eddies lose all their energy to viscous forces. [y is called the inner scale of
turbulence. Kolmogorov defined the following 2/3 power law valid for distances of

separation less than Ly and greater than [y:

Dy(R) £E [(V(Py) - E[V(R))) - (V(P1) - E[V(P1)])*]
=B [(V(P) - V(P))] (L1)
=C2ZR3,

where

R%|PZ_P]|) (1‘2)



for two points, P; and P, in Euclidean three-space. Dy (R) is the structure function
for a statistically homogenous and isotropic random velocity field, E[-] denotes the
ensemble average of a random quantity, V' represents velocity, and C% is the velocity

structure constant.

The inertial range is defined as a subinterval of the range of distances between

the inner and outer scales of turbulence:
lp € R < Ly. (1.3)

Since this relationship is rather ambiguous, in practice, we use an alternate definition

for the inertial range based on a comparison of the Kolmogorov model to more recent

R: {logw{%} <—1}ﬂ{loglu{%} > 1.5}. (1.4)

The Kolmogorov model for turbulence is only considered valid for the inertial range.

theory:

In 1962, Obukhov applied Kolmogorov’s model to describe the statistical structure
of temperature fluctuations. He hypothesized that velocity and thermal structure
would have proportionate statistical structures, because the energy represented by
the turbulent flow of air results almost entirely from fluctuations in temperature.
External fluctuations in pressure can also induce turbulent air flow. For purposes of
this research, we assume an environment that supplies nearly constant atmospheric
pressure and relative humidity, such that the corresponding effects on refractive index
fluctuations are negligible. Obukhov published the following statistical model for

temperature fluctuations on the inertial subrange:
Dr(R) = C}RS, (1.5)

where Dy(R) is the structure function for temperature (7') and C%. is the thermal

structure constant. Andrews and Phillips use the following simplified model to relate



temperature fluctuations to refractive index fluctuations:

P(P)

n(P)=1+1T79 x 10—"T(P)

(1.6)

where P(P) and T(P) represent pressure and temperature, respectively, at some
point, P in Euclidean three-space. A wavelength of A = 500 nm is assumed. Relative
humidity is not specified by the text cited. Units of pressure for this expression are
millibars. To extend Kolmogorov’s 2/3 power law to refractive index fluctuations,
one has to make additional assumptions and approximations. First, we express the
structure function for the refractive index:
D,.(R) £E[(n - n(P))?]
(1.7)
mCﬁRﬁ,
where C? is the refractive index structure constant. Next, we apply (1.7) to (1.6).

Setting K = 79 x 107%P, we have

(o)~ Cort) |
_K'E [(T(Pz ) ] (18)

sy | IGE (Pl)—T(Pz ))?
- E[ (T (PT(P)) ]

DTI(R) =F

Define

where Ty = E[T] is the mean spatial temperature for the turbulent volume of interest.

Next, we assume that 7" obeys a normal distribution with E2[T| > var|T|, and express



approximate

S B((T(P) — T(P))]
D) =K T @)
Dr(R)
E[(T(P)T(P))?
i Dr(R) )
E[((To + T1(P1))(To + T1(P2)))?]
_K? Dr(R)
E[T§ + Tg(Ti(Py) + Th(P))? + (T(P)Th (P))?]

—K?

Since the thermal fluctuations are expected to be small compared to the mean envi-

ronmental temperature given in units of Kelvin, we can write |Ty| > |T;(F1)|, and

then further approximate

Dr(R)
E[T5]

Dn(R) ~K*

T (1.11)

Therefore, it is implied that

1.12
_(79x10°°P 202 Wldy
T3 r

The covariance spectrum, ®,(x), for the refractive index in a statistically ho-

mogenous and isotropic random field is related to the statistical field structure, D, (R),
by

D,(R) =8n fnzfi)n(n‘) (1 — w) ; (1.13)

0



where x denotes scalar spatial frequency. The associated spectrum for the Kolmogorov

model within the inertial range is given by
&, (k) = 0.033C2K"7 . (1.14)

Several years later, a more accurate model for the spectrum of refractive index fluc-

tuations emerged, called the von Karméan spectrum:

11

-2]2 1
D, (k) :U.U33Gﬁe;q;{—%} (k*+ (2m)2Lg?) ", (1.15)

which is valid for 0 < R,k < oo and incorporates parameters Iy and Ly in addition
to C2. In this contribution, we use derive an covariance-based optical technique to

estimate all three parameters of this model simultaneously.

1.4.3.2  Alternative Estimation Methods.  The majority of pre-existing
turbulence parameter estimation techniques rely on measurements of scintillation.
Scintillation is often defined as the fluctuation in received irradiance due to atmo-
spheric turbulence. Scintillation is affected by all three parameters (lp, Lo, and
C?) [30]. The scintillation index is defined as [1]

aa EIP
e

(1.16)

where [ represents irradiance. For an unbounded plane wave propagating through

weak turbulence conditions (67 < 1), we have [1]

11

02 ~1.23C2kiAZY, (1.17)

which is also known as the Rytov variance. In this expression, Az is the propagation

distance, and k = 27“ For Rytov variances much greater than unity, a?wmk overesti-

mates o7, and turbulence fluctuations are said to be saturated [1]. Typical methods



for determining C} and Lo use this 07 to describe irradiance fluctuations received

from a collimated laser propagating through weak turbulence.

As turbulence conditions become stronger (O—-?u:euk > 3), the inner scale has an
increasing effect on the scintillation index. The most recent contribution published
uses a model for the scintillation index that is valid for all turbulence conditions for

large-aperture receivers. The model takes the form [30]
U?(ZU;\ LG!CE! D) = exp {gf?n{fim.gﬂ}(zﬂi Lﬂr Crzn D) + o‘l?n{fs,,m“}(zﬂs C'rzn D)} - 11 (118)

where ofn{ large} 18 the variance in the log of the irradiance due to large-scale fluctu-
ations, and olzn Usmatt} describes the same quantity, except for small-scale irradiance
fluctuations. D is the diameter of the aperture. By using three different sized aper-
tures, Vetelino, et al, were able to conduct an experiment, in which they obtained
the first simultaneous measurements of Iy, Lo, and C? [30]. In order to obtain enough
optical scintillation to measure all three parameters, a 1.5 ki path was used. Three
separate receiving apertures, and 150 mw of 1.55 pm collimated laser radiation were
required for this active experiment. Until now, there has been no other attempt to

estimate all three parameters simultaneously.

By contrast, this document introduces a method of simultaneously estimating
the same parameters passively, using a single receiving aperture, requiring an optical
path length of only 100 m through turbulence. Instead of using scintillation phe-
nomenology, as does the majority of prior literature, this technique relies on theory
derived from the tilt covariance expressions relating a one-dimensional nonlinearly-

distributed array of point sources.

10



2. Optimized Phase Screen Modeling for Optical Turbulence

Atmospheric turbulence is a fundamental factor contributing to the imaging qual-
ity obtainable by ground-based astronomy. Imaging through atmospheric tur-
bulence is a process commonly modeled by inserting a random phase screen directly
over the aperture of the imaging system, with zero or more additional phase screens
distributed along the optical path. Therefore, a key component to modeling astro-
nomical observations is the means to quickly and accurately simulate random phase
screens. In their recent text, Roggemann and Welsh outline a method for simulating
random phase screens directly by using a phase covariance function [24]. This direct
covariance method suffers practical memory limitations scaling with O(n?), where
n refers to the number of samples per axis. In 1992, Lane et al introduced a fast
and practical method for statistically interpolating existing phase screens to a finer
resolution [16]. His algorithm is based on the midpoint displacement technique which
is borrowed from the computer graphics community. Six years later, in collabora-
tion with Lane and in association with the University of Canterbury in New Zealand,
Harding et al optimized the algorithm for speed and accuracy with respect to the size
of the interpolator [13]. Harding et al also presented a more detailed derivation of the
algorithm. Both efforts focused on applying the midpoint displacement algorithm to

Kolmogorov phase screens.

2.1 Roadmap

This chapter builds on prior works by presenting an alternative statistical in-
terpolation algorithm which is useful for modeling phase with a finite outer scale.
More importantly, this chapter introduces a theorem which gives a theoretical basis
for the statistical interpolator, and simultaneously generates a criterion for optimizing
interpolators by non-empirical means. While this chapter applies the theorem only to
random phase screens, the theorem is also valid for any other simulation that imple-

ments SCR. First, we provide a mathematical introduction to SCR. After the theorem
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is stated, it is proven, and later empirically validated by comparing two alternative

statistical interpolators.

2.2 Successively Conditioned Rendering

Let W be an ordered set of correlated scalar random variables, and let V be a
corresponding ordered set of scalar realizations. In particular, if we are given a set
of realizations, V £ {vy,v5,v3, ..., vp}, for M corresponding correlated random vari-
ables, W £ {wy, wa, w3, ..., war}, we wish to simulate one realization of the random
variable, wy ¢ W, by rendering a corresponding value vy ¢ V. After vy has been
assigned, we would set wpryy « Wy, Upr41 — Yo, and M «— M + 1. That is to say,
we would union {wy} with W, before considering a new random variable wy. This
process is referred to as successively conditioned rendering (SCR). In this chapter we
are concerned with random phase as it relates to imaging applications. Imaging pro-
cesses are inherently insensitive to piston and residual spatial phase is predominately
modeled by the multivariate normal distribution [24]. Therefore, we will restrict our
SCR analysis to the zero-mean multivariate normal distribution. Let v be a column
vector containing all of the elements of the set V and let w be a corresponding vector
containing all the elements of W. The joint probability density for the set of random

variables, W, defined for a particular set of realizations, V, is given by
s M)~ 3 T -1
Pu(v) £ [2m)Y|C]] 2 exp {-3v"C 0}, (2.1)

where C represents the covariance matrix describing W, and is defined by C £

El(w — Ew])(w — E[w])T] = Elww?’]. We define wy and vy to be the column
vectors wy = [wn,wT]T and vy = [vo,v"] T Similarly, we define the joint pdf

describing wo | JW as

1
2

Pun (v0) 2 [(2m)MH|Col] 2 exp { - 1ol Ci v} (2.2)



T

where Cy = E|wyw]]. Through Bayes’ rule, the conditional pdf of wy, given w is

defined as

Pusluw(v0) = p—;j:)’)

[(2m)™*2|Co|] 2 exp {~3v5 C 'vo} (2.3)
[(2m)M|C[]"% exp { —LvTC- 1w}

= Ki(v)exp {—3v] C5'v,},

where we have conveniently defined

K\(v) & [Qi%ol} ’ exp {2v'C v} (2.4)

to encapsulate all the coefficients that do not depend on wy. Next, we define Sy £
C;' = {si;}, where i, j € {0,1,2,..., M}. Then, the quantity v Cy v, taken from

the argument of the exponential from (2.3) expands to

M M

T

vy Cy vy = E v; E Uj5i5
i=0  j=0

M M
=D ) sy (25)
i=0 =0
M M
—_"'Uﬁ?sl},l] + Z‘U{UDS,;,Q + Z VotjSp,; K, (‘U),
=1 =1

where we have isolated the terms containing vy and relegated the remaining terms

into K»(v). By definition, Cy is symmetric [27]. Therefore, its inverse, Sy, is also

symmetric. This property allows us to combine cross terms, resulting in the expression
M

vy Cy 'vg = viso0 + 2 z vivoSip + Ka(v). (2.6)

i=1
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Completing the square would require a conversion of the form

b \? b2
) +C—E’ (37)

T
2az

az® +bx +c¢= (a%zr +

substituting  « vg. Consolidating the remaining terms into a new function, Ksz(v),

which does not depend on vy, enables us to compactly express the completed square

as
; M ¥
t:gC(;lvg = 83,0?}(} = -‘50‘3 Z ViSi0 + Kg('v)
i=1
- , (2.8)
zsg‘ﬁ (‘Uo + S(;.[Ii Z‘Uiﬁi,o) + K3(v).
i=1
The resulting form for the conditional pdf from (2.3) is
M L
Puolw(Vo) = Ka(v)exp § —3500 ('b‘u +5o8 D Uisi,['l) ; (2.9)
i=1

which we immediately recognize as a univariate normal density with the following

parameters for the mean and standard deviation:

M
=1
Ho = — Soo E UiSin
i=1

o =S5,

(2.10)

(=X

From this form, it is apparent that the conditional mean is simply a weighted sum
of the conditional data, and that the conditional standard deviation is related to the
first diagonal element of the inverse of the covariance matrix. For applications where
C is reused many times, it will suffice to pretabulate the first row of C~', allowing
these cached values to be reused as linear filter taps for obtaining the parameters

defined in (2.10). Under such conditions, this problem reduces to complexity O(M).
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2.3 Statistical Interpolation

References [13,16] both describe the resolution enhancement as a two-step recur-
sive process, where the first step is linear interpolation, and the second step is random
midpoint displacement. This chapter introduces a new perspective on achieving the
same result. The two steps are combined into a single step, called statistical inter-
polation, and is based on SCR. We begin with a set of M phase samples uniformly
distributed over a coarse-resolution 2-D rectangular grid. It is presumed that phase is
statistically homogenous and isotropic over the local area defined by the phase screen.
This assumption allows us to express phase covariance as a function of separation
between two points in the aperture without regard to absolute position or relative
orientation. We define By (R ) to be the phase covariance between two points in the
aperture separated by the distance, R;. The task of statistical interpolation is to
use our knowledge of existing phase samples to simulate additional phase values at
locations between the coarse-resolution grid points. A mathematically pure solution
is to apply SCR to render each additional point in succession, with an increasingly
large set of prior data. Unfortunately, this is as computationally complex as applying

the direct method to generate a fine-resolution phase screen.

The mathematically tractable approximation originally proposed by Lane is to
limit the pool of prior data to a subset of V, based on our knowledge of the covariance
function. The phase covariance functions for all published turbulence spectra are
positive and monotonically decreasing with respect to R;. This property implies
that the nearest neighbors of a point are most highly correlated in phase. This is
why Lane’s method relies on the subset of prior data represented by the m nearest
neighbors when rendering a new point on a finer resolution grid. Whereas Lane
and Harding, el al, pursued this idea with midpoint displacement, in this chapter,

information limited SCR is applied instead. Otherwise, the algorithms are similar.
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2.4 Covariance Delineation Theorem

What has been lacking up until now is theoretical proof of why these algorithms
produce such accurate phase simulations using incomplete information. Furthermore,
it is desirable to quantify how well one interpolation scheme is expected to perform
as compared to another. If such quantification can be achieved by a simple formu-
lation, rather than by mass simulation, one would be able to quickly optimize such
an interpolator. The following theorem embodies the vital link between theory and

practice.

Definition 2.1 (Correlated Random Set). A countable set of correlated random

variables.

Definition 2.2 (Conditional Independence). Statistical independence of two or

more random variebles under a specific set of conditions.

Definition 2.3 (Random Estimate). A random variable whose statistics approzi-

mate the statistics of another random variable.

Theorem 2.1 (Covariance Delineation Theorem). Consider a real-valued cor-
related random set, W £ {wy,wy, ws, ...wn}, for which all statistical moments are
known. Consider also, a particular corresponding realization, V £ {v1,v2,v3,..urp},
of the correlated random set, W. Then, consider a particular correlated random

subset, W' = {w}, wi,wh, ..., w,_1} C W, with corresponding realization, V*

4
{vt,v4,v4, ..., 051} C 'V, which is collectively referred to as information source .
We wish to examine an additional real-valued random variable, wi = wo ¢ W, for
which all statistical moments are known, but for which no known realization exists
corresponding to the members of V. The statistically correct way to simulate wy is
by random selection according to the conditional probability density function (pdf),
Puolw(Wo|w), where w is a vector containing all the elements of W. In certain ap-

plications where computational efficiency is at a premium, it may be more desirable

to introduce an acceptable level of error by restricting the amount prior data used to
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condition the pdf of wy. Consider the case where wy is approzimately simulated ac-
cording to the conditional pdf, pﬁ,mw(wglw*), where w" is a vector containing all the
elements of W'. The random variable, wy, described by this pdf is a random estimate
of wy. We define the second-order statistical error of this random estimate (SERE)
as the normalized Toot mean squared error between the second-order statistics of wy

and the second-order statistics of w with respect to W :

£ 4 [E[(wg = Bluwo])*) 3 Bl(w; - E[w,,])z]]
< |3 | (Blhuow] ~ Bluo] Bfu)) ~ (Bl - Ehig) ) ]
= 1 (2.11)
M ~3
- [E[(wu - Bluo))") Y Bl — Bui))
X lz | Elwow;| + EQw;|(E[dg) — Elwo)) — E[bfw;] 2} ;
Define the C to be the covariance matriz, C £ {c;;}, where ¢;; = Elwiwj] —

E[wi|Elw}], for all combinations of integers {i,j} € [0,m —1] x [0,m —1]. Then, the
least upper bound on SERE that is computable only from knowledge of C is gwen by

3=

£ <21-71)3, (2.12)

b

where T, is the mazimum value for which

2
-1
. (ZT};; 1‘;-'00';5)
L

< — (2.13)
ety Do BiCIHTS

is true gwen any set of real values, {x;}. Y, is called the statistical degree of infor-

mation (SDI), and is always on the range, [0,1], weth T, = 1 corresponding to the

case of perfect prior information.
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2.5 Proof of the Covariance Delineation Theorem

We shall extend C to include an mth row and column which represent the
covariances between w; and wy U W". Let the extended covariance matrix be denoted
by C'. Since each w; except wq was jointly simulated according to pw(W), and wy was
approximately simulated according to py,w.(|W*), the only undetermined elements
of C" are ¢y, and ¢}, ;. Since C'is a covariance matrix, it is necessarily symmetric.
Therefore, ¢ ,,, = ¢}, - Thus, we really only have one undetermined quantity within

C'.

2.5.1 Positive Semi-Definiteness of All Covariance Matrices.  Next, we will
show that every covariance matrix is positive semi-definite. This proof comes from a
simple extension of the work found in [22] and [27]. Consider the arbitrary covariance

matrix C, as defined above. By definition, C is positive semi-definite if and only if
z"Cx > 0,V (2.14)

Expanding this product into a sum of scalar multiplications, we have that

e = z mz; iB(w! — Blul])(w; — B[]
B mz "i; i(w} — Eluwf]) (w! — E[w;nxj]
— 5|3 it — Blut) 3 2y - Elwﬁ-l)] 248
i (mz i (w} — Elw:-l))z
>0 —

Therefore, every covariance matrix is positive semi-definite.
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2.5.2 Continuity of Eigenvalues in Perturbations of a Real Symmetric Matriz.

It is necessary to establish the property of continuity of the eigenvalues from C” with
respect to symmetric perturbations in elements ¢, and ¢, ;. Define the perturbed
covariance matrix, Q@ = C'+ A, where Ag,n = Ao are the only non-zero elements of
A. We wish to show that the eigenvalues of @ are continuous in Ag,. Since C’ and A
are symmetric and real, then @Q is also symmetric and real. Therefore, the eigenvalues
of Q are all real. The eigenvalues are defined as the roots of the polynomial |Q — AI.
This polynomial expands to the form |Q — M| = ap + @A + agh® + - - - + A A"
Expanding the explicit formula for the determinant found in [27], will reveal that each
of the polynomial coefficients can each be expressed as a quadratic polynomial of the
variable Ag . Therefore, the coefficients {a;} are continuous in Ayy,. The roots of
a polynomial are continuous in the coefficients of that polynomial [5]. Therefore, the
eigenvalues, {\;}, are necessarily continuous in the coefficients, {a;}. Since each a;
is continuous in Ag,, and each ); is continuous in every a;, then by the fransitive

property of continuity, each A; is also continuous in Ag .

2.5.8 FEmistence of an Upper Bound on the Range of Positive Semi-Definiteness.
There are two cases to consider when determining the allowable range on Ay, for
which @ will be positive semi-definite. In the first case, we restrict C to be positive
definite. For this case we wish to prove that there exists some interval, [Af  AG ],
containing zero for which Ay, results in Q being positive semi-definite. In the second
case, we restrict C so that it is positive semi-definite, but not positive definite. For

this case we wish to prove that Ay, = 0 is a necessary condition for @ to be positive

semi-definite.

First, we consider the case where C' is positive definite. We define the com-
ponents of some non-zero length vector, &', according to ' 2 [zo, Ty, Ty s Tra] s

We also define @ £ [2q,71,23,...,2Zn_1]7 to be a subvector containing the first m
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components of #'. Based these definitions, we can write the following:
27Qx' =xT(C' + A)x'
=2TC's' + T Az

—m’TC’a':’—f—E E Tl Z5

=0 5=

(2.16)

- .'.]‘Jr'rcﬂi.l'.‘,Ir -+ QIEgImAD_m.

We can eliminate the trivial case where z,,2q = 0, since it corresponds to AE,{ m— A&m — 00
which implies that the error is unbounded-—a physical impossibility. Setting 2’7 Qx' = 0

and solving (2.16) for A, vields

zTC'zx'
o = —
22pTm
m m
Y ad
= — I;C; :T;
QTG Ly £ ty™d
1=0 j=0
m—1m—1 m—1 2
— ™ 1 -’E.Ci .fr — x.cf J‘ — M
2 N ; D Tl 2307 (2.17)
ToLm =0 j3=0 ToTm =0 LoLm
m—1
B z’Cx 1 ! ZCorm
= — e — iC;
2I(]1’m i) =0 wm 2330

where we have implicitly defined A\ = ¥ Cx for an arbitrary choice of z, subject to
the previously established constraint that ||z|| > 0. Before proceeding any further,
we will divide this first case into two distinct subcases.

Consider the special subcase where C’ is positive definite. For this subcase, we

know that |Ag| = ‘ 2 Ca

2:';):*

> 0, which precludes the range of A ,,, from containing
values within some finite interval about Ag,, = 0. Therefore, a finite upper bound
exists on the range of perturbation, Ag,, for which @ is positive semi-definite, given

that C’ is positive definite.
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For the other subcase C" is not positive definite, but it is still positive semi-
definite. For this subcase, we will examine the function Ag,,(z,,) under constant
@. This function is continuous everywhere except at z,, = 0, due to the previously

established physical requirement that x,,2¢ # 0. The first derivative of Ag () is

given by )
3(;0; - 2:5;-3“ - ;T? (2.18)
which has exactly two real roots defined by
1
T = [ﬁ] E (2.19)

corresponding to the critical points of Agy(zy). Since C is positive definite, we
have that A > 0. ¢, ,, is also positive, since it represents the variance of a random
variable. Consider the trivial situation where ¢;, ,, = 0. This deterministic constraint
would require the last row and column of C”’ to be all zeros to maintain positive semi-
definiteness. Therefore we would also have to constrain Ag,, = 0 in (2.16) for Q to
be positive semi-definite. For all remaining situations, we must have ¢}, , > 0, since

in general, c;, . represents a nonnegative quantity. Then, for A > 0 and Crm > 0,

of
"'m.m

1
the function Ay, (2,) has two real-valued critical points, 22, = — [ 2 ]2 < 0 and
1!

i = [ 2 ]2 > (), on opposite sides of the origin. Next, we examine the second

derivative of Ag (),
azAD,m(Im) . -

) - 3!
dr2, Toxd,

(2.20)

which tells us that when zy > 0, 2% corresponds to a local minimum, while :.L"f,’i,1
corresponds to a local maximum. The reverse is true for zy < 0. This information

and the first line of (2.17) tell us that for 2y > 0, we have

Aﬂ,m(:{:m) > A{)‘m(m;ln) > U,Vfﬂm <0
(2.21)

Agmlzm) < Dom(zl) < 0Nz, >0,
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while for x5 < (0, we have

AG,TH(Im) S Aﬂ,rn(a:.?n) < U,V.T:-m < 0
(2.22)
Agin(Tm) = Aoim (L) > OV, > 0.

- . : : g L U
Then, regardless of the sign on zo, there exists some interval, (Ag,,, Ay,

), for which
no combination of &’ and Ay, can be found to satisfy 7 Qx’ = 0, given the subcase
of positive definite C' and positive semi-definite C’. Therefore, @ is positive semi-

A ; i L AU o AL U
definite on some interval, [Ag,,, Ag,.], where A§, < A .

For the second case, we have restricted C' to be positive semi-definite, but
not positive definite. This means that the least eigenvalue of C is zero [27]. This
corresponds fo the limiting case where the minimum value of A — 0. The sign of A is
invariant to the scale of . To see this, we substitute z = a@ and express the sign of

A as

A #*Ce

A |7 Ca|
_ (az)"C(ak)
~|(az)TC(az)|
 @*TC
~#aTCa|
e
=[&7Ca|

(2.23)

which is clearly unaffected by the sign or magnitude of a (a > 0, since we require
[z]| > 0). Therefore, we can analyze the sign of X by restricting @ to the set of unit
vectors without loss of generality. If we define & = &, where & = [ég, €1, €a, . .., ém_1]T
is the unit eigenvector corresponding to Ag, the least eigenvalue of C, then A = Aq.

For A > 0, the width of the interval of Ay, for which @ will be positive semi-definite
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is given by

AT =[Agm(zh,) — Dom(zs)]
Pochml? 13, , [ Poduml? 1 ”‘Z"l s 5
€y €g 4 G éy €q “ ©Gim (2:24)

2[/\(1{'."

1
’m.,m.] 2
|éo

The limit on this expression as \g — 0 is A" = (. It has already been established
that this interval must contain zero. Therefore, as \y — 0, C will no longer be
positive definite and the only value of Ag, for which @ will be positive semi-definite

is Ag,, = 0, which proves the second case.

2.5.4 Least Upper Bound on Range of Positive Semi-Definiteness.  In Sub-
section 2.5.3, we derived an expression for A*, an upper bound on the width of the
interval for which Ag,, will result in a positive semi-definite Q. In this subsection,
we will minimize A" with respect to @’ to produce the least upper bound. From this
point forward, we will only consider the case of positive definite C', since we have
shown that there is zero tolerance for error when C' is not positive definite. (2.19)
provided us with two optimal choices for x,, which were shown to produce the small-
est possible AT for any given choice of &. Then, the remaining task is to minimize

AT with respect to .
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We start by expanding the expression for A* from (2.24) and collecting on zy,

writing

2[aT Cadl, |7

|0l

AT =

2 m—1m—1 'l‘
:._ mm§ :§ ::I'I.TC“in.}’
|o]

L i=0 j=0

=1 j=1

m—1

2
:m C;n,m ()\ + 23}0 Z .’L‘jC{)‘j + J:ECQ'Q)]

j=1

[ ol

L]

2 m—1m-1
2 [a (Z 3T +2yuz%%+%m

|

where we have reverted back to using = in place of &, and we have redefined \ £

1 . .
Yoai Em L Zixjcij. Next, we examine the function,

f(mo) =

=
A +220 3370 T560,5 + Thcop

which is defined such that
1
A" = 2[emmf(20)]?

and f(xzo) > 0 for positive semi-definite C. The first derivative of f(xq),

af 2)\ g 2
E ;rn 2 Z ZjC0,j)

has only one root, given by
=\

= —
0 m—1 *
D ie1 TiCoj

The second derivative of f(xy) is given by

i 6 =
= f Z.T;ng.

(}‘TU TO
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(2.26)

(2.27)

(2.28)

(2.29)

(2.30)



When evaluated at the critical point given by (2.29), this expression becomes

&r
o

zg=ty

4
ZIJQJJ] >0, (2.31)

which says that zf corresponds fo a global minimum whenever lz 58 Jc03| > (.
A quick analysis of (2.26) tells us that for E;‘:_l zco; = 0, then f(zp) = A + ¢op.

Either way, zy = z§ minimizes f(2¢). Performing this substitution yields the following

expressions:
A 2 ;chg j
f(IU)|zu=z:; = 7 J —1.\ 0
2 | T
[Zm:_l «"-‘j"{l,j} j=1 it
j (2.32)
1 [l 2
— CO,D — -X lz .'L"jCorj]
j=1
and .
1 m—1 : 2
A"‘ =9 Crn,mCo,0 1-— rﬂo Z IjCQ’j:I . (233)
¥ j=1

From (2.33), it is apparent that the maximum allowable range of perturbation, A™,

will be minimized by maximizing expression,

m=—1 2
(&) = ! [ijcu,j] , (2.34)

where we have defined the Z to be a subvector of z, such that & = [z, 72, 73, . . ., Tpm_1]".

T, is taken to mean the maximum value of (&), and is called the statistical degree

of information (SDI). Recall that A = $_77" ;”:'11 ;¢4 4, so that T(&) expands to
2
) (E;n_ll %'Cﬂ,j)
&) = (2.35)

conz:m Izm ]}.m J‘jC;j



Then, maximizing the T(Z), will simultaneously produce the least upper bound on

the range of positive semi-definiteness of Q.

2.5.5 Euistence of the Least Upper Bound.  Next, we will show that a single
global maximum exists for Y(Z) with respect to each z in . Rewriting T as a

function of a particular xy, gives us the form

-1

m—1 m—1m-—1
T(:Ck) :Ca‘[l] |:LL'§IC;¢J;-, + 2.'3;,-, Z(l - 53-';;)1"‘}(!“ + Z Z(l — Jj‘;ﬁ)(l - 5,;};,,).’1,}-1?_1;6{“-‘;
j=1 i=1 j=1

2
X [lsco gt Z 1“300,3]

:( Co )yl(l"k)
Co,0Ck,k Qz(ﬁk)’

(2.36)
where
1 m—1 2
gi(zx) = |z +— > (1 = §ix)zjc0,
Co,k j_l
m—-1m-1
Jg(rh —’L‘k—i—Q— Z(l J;L)£JCJL+——ZZ(1 j‘L) 1— 1L)$113('13
Kok =1 j=1
(2.37)
For brevity, we can rewrite ¢, and g, as
g1(zk) = (2 — by)?
(2.38)

g2(zx) = (T — 52)3 +d*,
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where by, by, and d? are given by

1 m—1
by = o (1 = djk)zic0,
0,k j=1
1 m—1
bg = —z (1 — Jj‘k)mjcj,k (239)
1 m—1m—1
=Bt — 3 S (1)1~ Giplriaseis

™=l g=1

From these forms, we recognize g; and g, to be concave up parabolas, each having
a single positive global minimum. We wish to characterize Y(z;), which is directly
proportional to the ratio of g; and g, with a positive constant of proportionality. We

will consider two cases in analyzing this T (zy).

For the first case, we consider b, = by. According to (2.39), the condition
by = by would require the trivial solution, £ = 0, or else é‘ﬁ; = fi—: for all integers
J € [I,m — 1]. The trivial solution is excluded as it presents as a singularity in Y.
The other solution can be interpreted as forcing all columns of, c , the lower-right
principal submatrix of C, to be linearly dependent. The implication is that every
element in column k of C would need to be defined as Cjk = Ckx. Furthermore,
since C is a covariance matrix, it must be symmetric, forcing ¢;; = ¢ x. This would
make every element of C identical. Because of the dependency between {¢;0} and
the columns of é, every element of C would also be identical. Therefore C would
be positive semi-definite, but not positive definite. From (2.35), we see that this case
corresponds to T = 1, or perfect information. Therefore, T is maximized for any

choice & whenever b; = b,.

For the second case, we consider the imperfect information case, b, # by. Since
A > 0 and ¢y > 0, we must also have that d* > 0. Therefore, Y(z}) is strictly
nonnegative with no singularities or other discontinuities. Furthermore, an upper

2
0.k

bound on the range of YT (z;) is oo and from (2.36) and (2.38), we see that as
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zx — Foo, T(zx) — W— The first derivative of x) is given by

ar _( o i )92J1 9195
‘?z

Orr  \CooChi
( Cﬂk ) (( Ty — bz )* +d*)(2)(zk — by) _ (s — b1)*(2) (y — bz)) (2.40)
C0,0Ck k (2 — ba)? + d?)? ((xg — ba)? + d?)?
(2%L Tgmﬂ5g+zuy—ﬁrhﬂ) B2by — bibE — byd?
C0,0Ck k) ( ((zr — b2)? + d?)? ((zx — b2)* + d-z)z)

which has the two real roots,

m=mmawrﬂﬁ—@—fiuﬁ—@—fﬁ—qm—@@%—m@—mfﬁ]
:pwl—my*p?—@—dﬁuﬁ+b$+m+6ﬁ@—4@%y+m@+bﬁﬂﬁ
+ﬂﬁ@+@f+@fﬁ]

bW -0 - E[(h - b))’ + &
B 2(by — by)

=:{bhbg-gf§5}.

(2.41)

Because Y (z;) is continuous and bounded on (—0o0, 00) and asymptotically approaches
unity at either extreme, one of these roots corresponds to a global maximum, while the
other corresponds to a global minimum. To determine which critical point corresponds
to the maximum, we consider two subcases. In the first subcase, we let b; > b,. Then,

we have b; > by — %. We will examine the sign of the slope for regions outside of
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the interval, [bg - ﬁ b;]. For zy = by + €, for any positive €, we have

Y 2¢3 ) -3 ‘
= - ; b — b))% + %77 x [(2bye + €2)(by — by) + €(b2 — b2 + d®
0.’17].‘. Tp=h1 € (CU‘UC]\:.R‘ [( : 2) ] {( . )( ! ;2) ( é ! )]

22 ;
_ ( Gk ) (b1 — Ba)? + ] x [(B2 = 2baby + B2 + P)e + (by — ba)e’]

Co,0Ck k

2
= ( 2%'? ) [(Br = B2)? + ] 7 x [((Br — bo)? + d®)e + (by — bo)é?]

(2.42)

d?
T hi—ba
dZ
bi—by?

which tells us that ), = b; will minimize T (z;.), and consequently, that x; = b,

will maximize T for b; > by. Conversely, when by < b,, we have that b, < by —

S0 we examine g—T for o < by. With similarity to (2.43), for zx = b; — ¢, given any

Tk

small positive €, we have

oY 26%}; ) i ‘
Oy a , by = b1)® + d?] " [=((b2 = b1)* + d*)e — (by — by)€?
Oy wr=by—e (Cﬂ,()ck,k [( 2~ b) } [ (b =) Je= 1) }
<0,
(2.43)
- which tells us that z; = b; will minimize Y (z}), and consequently, that z; = by — blﬂ%n

will maximize T for by < b,. Therefore, regardless of which is the greater of b; and
by, Tk = by — f_z—b-z- will maximize T(zx). Since a single computable maximum value
exists for YT(xy), given any set of elements {z;} from &, subject to 7 # k, then, a
global maximum value also exists for T(x) for the set of non-zero length sub vectors,
&. Substituting this global maximum for Y(&) into (2.34) and then into (2.33) is

therefore gnaranteed to produce the least upper bound, AT < A*:

min

A= Q[Cﬁ,ﬂcmgm(l - T-‘.)]% (244)

min
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Proof of convergence for an iterative algorithm to find T is beyond the scope of this

document,

[

2.5.6  Upper Bound on the Second-Order Statistical Error of pugjur (wo|w").

Without explicitly using our knowledge of {¢}, o, €}y 1, Cgs -+ -+ 1 }» it I8 impossi-
ble to determine the location of the center for the allowable range of Ay ,,. Therefore,
we must assume the worst case scenario where C” is not positive definite, and conse-
quently, Ag, must be either strictly nonnegative or strictly nonpositive. In this case,
the maximum absolute error in covariance for element ¢, will be Af. . Rewrit-
ing the maximum absolute error in covariance between wy and a particular variable,

w; ¢ W', in terms of expected values yields

A in = 2E[(wo — Elwo)?)El(wi — E[w)?)(1 — T.)]2. (2.45)

Using this error bound, the normalized mean squared statistical error of the

random estimate (SERE), is given by

&

IA

Tico |A, inl® ] p
_E[('wu — Elwq))?] Z:iﬂ E[(w; — E[wi])?]

[ 4B[(wo — Ew])?) S, Bl(wi — E[w])?](1 m] ' (246)

E(wo — Elwo])?] ¥y E[(w: — Efw))?]
22[1 - Ta]%:

which is sufficient to prove the covariance delineation theorem.

2.6 Ezperimental Validation of the Covariance Delineation Theorem

The covariance delineation theorem provides the least upper bound on the statis-
tical error associated with a particular interpolator at any level of recursion. However,
since the theorem assumes we have perfect knowledge of the covariance statistics for

all random variables under consideration, for the time being, our analysis must be
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restricted to the first level of recursion. Successive levels would rely on imperfect
realizations of random variables, for which the exact covariances are unknown. We
shall now consider two possible statistical interpolators. The first is Lane's 4-nearest-

neighbors interpolator, which is depicted in Figure 2.1. The second interpolator is

Figure 2.1:  4-Nearest-Neighbors Statistical Interpolator. This figure illustrates the
three generations rendered during each level of recursion by the 4-nearest neighbors recur-
sive interpolator. Curved arrows indicate the cycle of generations, while the black arrows
indicate which prior data (tails) is used to render additional data (arrowheads). Step 0
represents the initial coarse grid of phase samples.

called the 2-nearest-neighbors interpolator, and is depicted in Figure 2.2. Both inter-
polators render the first two generations without corrupting the input data that gets
used for each new sample that is rendered. Both interpolators rely on statistically
imperfect data from prior generation(s) to render the third generation. The key differ-
ence between these two interpolators is the first generation. The 4-nearest-neighbors
method uses four neighbors each at a relative distance of 1.41 units from the sample
being rendered; by contrast, the 2-nearest-neighbors method uses two neighbors each
located 1 unit away from the sample being rendered. In the second generation, both
interpolators use two neighbors at 1 unit separation, while for the third generation,

both interpolators use four neighbors at 1 unit separation. The obvious question con-
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Figure 2.2:  2-Nearest-Neighbors Statistical Interpolator. This figure illustrates the

three generations rendered during each level of recursion by the 2-nearest neighbors recur-

sive interpolator, using the same graphical conventions as Figure 2.1
cerning the first generation is whether it is better to use two neighbors within close
proximity, or four neighbors that are 40% more distant. (We are also given that both
interpolators in this scenario use circularly symmetric inputs.) To answer this ques-
tion, the first experiment was simulated at various magnitudes of scale with respect

to Ly, the outer scale of the atmosphere.

While it is a worthwhile exercise to validate the theorem with the first exper-
iment using only first-level first generation statistics, it is of more practical value to
consider an experiment involving phase screens constructed from multiple levels of
interpolation. While the stated theorem does not directly apply to such a case, one
would intuitively expect that an interpolator with greater accuracy in the first gener-
ation of the first level of recursion implies greater statistical accuracy across all levels

and generations. This is the focus of the second experiment.

Both experiments were based on the von Karmén spectrum of optical fluctu-
ations. The inner scale was set to zero, and the Rytov approximation for a plane

wave in turbulence was applied to obtain the following phase covariance function for
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a single layer of turbulence, published in [24]:
K;Jn (HRJ_)

By(Ry) = 0.033(27)%k*C2Az / dxk, (2.47)
0 (.'62 + %3::) .

where k is the wave number, C? is the mean refractive index structure constant for
the path of turbulence, and Az is the total path length within turbulence. It is
further assumed that C?? varies slowly in the direction of the optical axis. The results
published in this chapter have been normalized with respect to Lo, C2, Az, and

wavelength, A.

2.7 Resulls

2.7.1 Experiment 1: Single-Level, Single-Generation Interpolation.  For the
first experiment, 7.5 million 2x2 phase screens were simulated and statistically in-
terpolated to level 1, generation A for each algorithm. For the 4-nearest-neighbors
method, this means using four points to simulate a fourth point at some distance,
b, from each of the priors, as depicted in Figure 2.1. For the case of the 2-nearest
neighbors method, it means using the leftmost two points of a 2x2 phase screen to
simulate a fourth point at a distance of % from the two priors used. See Figure
2.2 for the depiction. SCR is used for both algorithms; the midpoint displacement

algorithm is not used in this work.

A maximum likelihood estimator was derived for estimating the covariances
between the first interpolated point and the four original points. Figure 2.3 represents
the results from this experiment. The figure clearly indicates that the 2-nearest-
neighbors interpolator performs considerably better than the 4-point interpolator for
the first level and generation. This was predic.ted by the ordering of the least upper
bounds for the statistical error of each interpolator. The 2-point interpolator had a
slightly lower upperbound, so we would expect it to perform better than the 4-point

interpolator.
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SERE Estimates for 7.5 Million Simulations
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F | I Estimated SERE for 4-Point Interpolator
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wE Upper Bound for 2-Paint |

Statistical Errar in Random Estimate (SERE)

P |
107

Sample Spacing (AL )
Figure 2.3:  Statistical Error Estimates for Level 1, Generation A. 7.5 Million simula-
tions were performed for each interpolator to obtain maximum-likelihood estimates. Solid
regions indicate 99.9% confidence intervals.

2.7.2  FEzperiment 2: Multilevel Interpolation.  The focus of the second ex-
periment was to test whether the theorem has predictive value in determining which
interpolator will perform better across multiple levels of recursion, in the presence of
accumulative statistical error. For this experiment, 4.6 million 33x33 phase screens
were interpolated from 2x2 phase screens. Figures 2.4-2.6 indicate the same trend
that was predicted by the covariance delineation theorem. This initial experiment
indicates that the theorem may be extended as a tool for optimizing interpolators

across multiple levels of recursion.

2.8 Conclusions

In this chapter, a new approach to statistical interpolation was introduced, based
on limited-information successively conditioned rendering (SCR) theory. The result-
ing algorithm combines the previously published two-step algorithm into a single step
algorithm. A new theorem, called the covariance delineation theorem, was introduced
as a means for optimizing the statistical accuracy of SCR-based applications, such as

statistical interpolation. The theorem was rigorously proven to work for the first-
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Figure 2.4:  Statistical Error Attributed to Each Level. This plot indicates the degree
of statistical error per level of statistical interpolation. The data represent 4.6 million
phase screen simulations per interpolator. The original phase screens were 2x2, resulting
in 33x33 phase screens after 5 levels of recursion. Dotted lines indicate 99.9% confidence
intervals.

Histogram Comparison of Statistical Error for Multilevel Interpolation
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Figure 2.5: Histogram of Multilevel Statistical Error. This histogram compares the
distribution of statistical error for each interpolator, without regard to any particular level
or generation. The 99.9% confidence interval has a mean width of +£1.56% of the estimated
SERE values shown. This histogram reflects the same data shown in Figure 2.4.

02 0.8 1 1.2 14 16 1.8

SERE 10

level, first generation stage of statistical interpolation. Two different interpolators

were fested empirically against the theorem, and the results were consistent with the
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Figure 2.6:  Multilevel Phase Covariance Estimates. This plot compares the ideal the-
oretical phase covariance function to the actual covariance resulting from each interpolator.
This plot reflects the same data shown in Figures 2.4 and 2.5.

theory. A second experiment was performed to test the plausible use of the theorem

for optimizing statistical interpolation across multiple levels of recursion. The results

promising enough to warrant further theoretical study of this problem.
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3. A New Approach to Estimating Optical Turbulence
Statistics

he effects of optical turbulence have been studied since the early 1960’s. [1]
TAndIews and Phillips, et al have published a brief treatise [1] on the matter
as it relates to the phenomenon of scintillation, which is complemented by a more
complete pedagogical discussion in their classic text, Laser Beam Propagation Through
Random Media [2]. Nearly all published works on the topic of characterizing optical
turbulence rely on three particular underlying assumptions which are all absent from
the derivation presented in this chapter. The first assumption is that either strong or
weak turbulence conditions apply, requiring two separate analyses of the problem with
regard to scattering phenomenology, and hence, scintillation. The second assumption
is that the Rytov approximation will lead to sufficiently accurate results. Finally,
and perhaps most importantly, the published solutions for Rytov-based scintillation
theory all employ the paraxial approximation to optical wave propagation. [2] While
there are many other assumptions common to prior works, this work addresses and

circumvents each of the aforementioned.

3.1 Roadmap

This chapter begins with a review of prior contributions found in the literature.
Next, we provide a mathematical derivation which begins with a model for refrac-
tive index fluctuations and ends with a computationally tractable expression for tilt
covariance. Section 3.4 gives a description of how the experiment was conducted,
what observable data were used and how the data were processed. The section also
provides a description of the environmental conditions at the time of the experiment.
Results-oriented readers may wish to skip to Sections 3.5 and 3.6 which present and

discuss the results from the experiment.
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3.2 Background

Several prior works have boasted capability to measure optical turbulence statis-
tics, but all are limited to the three previously stated assumptions. Three statisti-
cal parameters traditionally used to characterize turbulence are the refractive index
structure constant (C?), the outer scale of turbulence (L), and the inner scale of
turbulence (Iy). In 1973, Dunphy and Kerr published temporal statistics of C? for
a low-altitude 6 km path, using Kolmogorov-Rytov scintillation theory. [6] In 1979,
Valley working in conjunction with the US Air Force published his work on the effects
of a non-zero ly and finite Ly on short-term and long-term Strehl ratios. [29] In 1985,
Ochs and Hill [21] published early measurements of I, using a dual-scintillometer
aparatus originally proposed by Livingston. That work was also partially sponsored
by the US Air Force. Two years later, Frehlich published the conclusion that a single
(paraxial) phase screen does not adequately model inner scale effects on scintillation
observations. [10] In 1988, Coulman, et al published a method for estimating L using
C? profiles “obtained from spatio-angular correlation measurements of stellar scintil-
lation.” [7] The aparatus used is for making those observations is called scintillation
detection and ranging (SCIDAR). Hill published another work in 1988 comparing
two different scintillation methods for estimating lo, where the dependence of C? is
cancelled out by taking the ratio of two quantities that are proportionate to C? and
dependent on ly. [14] Particular advantages were identified for each method. In 1989,
Martin and Flatté used a multi-phase screen technique to simulate the scintillation of
a spherical wave emanating from within the turbulence, as a means to validate exper-
imentally observed phenomena. [17] The paraxial approximation and Rytov method
were employed between each phase screen, and deterministic spatial filters were ap-
plied at each screen to allow phase screens of finite extent. In 1992, Hill and Ochs
published a work in which micrometerological measurements of [y were in agreement
with theory, and scintillation-based estimates of Iy also agreed fairly well. This work
was sponsored in part by the US Army. Hill and Frehlich later published on related _
work under sponsorship of NASA, NSF, and the US Army, in which they used a
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spherical-coordinate scintillation simulation to characterize the relationship between
lo and irradiance variance under strong turbulence conditions. [15] In the following
year, Masciadri and Vernin proposed an angle of arrival technique for estimating
lo which essentially uses tilt variance estimates made from simultaneous observa-
tions through multiple apertures of varying diameters. [18] In 2000, Flatté and Ger-
ber applied multi-phase screen spherical-wave and plane-wave simulations to the Hill
spectrum of turbulence and concluded that under strong turbulence conditions their
results did not match first order analytical predictions of scintillation. That work was
supported in part by the US Navy. [8] In 2002, Whiteley presented an analytical tech-
nique for using a multi-aperture or multi-source system to estimate a C? profile. [32]
While the technique is not scintillation-based, the derivation still applies the paraxial
assumption and uses the Kolmogorov spectrum. That work was sponsored by the US
Air Force. In 2004, Ziad and Schock, et al, compared three astronomical techniques
for measuring Lo, including two methods based on the Shack-Hartmann wavefront
sensor, and a third interferometric technique. [34] Also in 2004, Cain published a
technique under Air Force sponsorship for C? profile estimation using a wavefront
sensing array and a single laser guide star. Most recently, in 2006, Vetelino et al
published results from a 2005 experiment in which simultaneous estimatés of C2, Iy,
and Ly were computed from scintillation observations collected using three separate
receiving apertures of different sizes. [30] That work was also partly supported by the

US Navy.

In this work, we present an alternative approach to the problem of estimating
statistical turbulence parameters. Rytov theory will not be applied, and neither will
the paraxial (a.k.a. phase screen) approximation. The technique being explored is
unaffected by scintillation, and consequently the effects of atmospheric scattering can
be ignored. The technique is similar to the angle of arrival (AA) methods described
by Masciadri [18] and Ziad [34], and to the differential tilt-based technique proposed
by Whiteley [32], but it is perhaps most closely related to the method proposed by

Cain [3], and is in actuality an extension of the same idea. Instead of extracting
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a C? profile from tilt variances estimated over multiple apertures, we are using a
single aperture to estimate tilt covariance for multiple pairs incoherent point sources.
The estimated tilt covariances which are subsequently applied to estimate the spatial
covariance of refractive index fluctuations. Since the resulting system of equations
is underdetermined, we constrain the problem by applying a three-parameter von
Kérmén model with finite outer scale and non-zero inner scale. For this work, we chose
a one-dimensional model for the spectrum of refractive index fluctuations, defined

under the typical assumptions of homogeneity and isotropy [2].

3.3 Deriwation

We define B,(R) as the refractive index spatial covariance function where we
assume that the random refractive index field, n(P), is statistically homogenous and
isotropic within a plane that is parallel to the tangential plane at the surface of a
spherically-modeled earth for the optical path of interest. R refers to the Euclidean
distance between two points, while P refers to a point in three-space. We wish to
search for some function, B, (R), which provides the best statistical description of a

particular set of Zernike tilt [24] observations.

3.3.1 Tt Covariance.  First, we define the covariance operator as
cov(z,y] £ Elzy] — Ez] Ely], (3.1)
and we define unscaled Zernike tilt as the quantity,

a2 [[o(P)Py dap., (3.2)
A

where P, represents a point in two-space, transverse to the optical (z) axis, and ¢

represents the optical phase delay between two points in space, separated by distance
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Az along the optical axis and by a transverse distance of [Py (Az) — Py (0)):
Az
p(Py) & klELz)-PO) / n(P(z))d:z. (3.3)
0

It is implied by using rectilinearly integrated phase delays that spatially irradiance
fluctuations over the aperture are negligible for the optical system under consideration.
For a more detailed analysis of this assumption, see Appendix A. This does not
preclude its application to conditions of strong turbulence as defined under the Rytov
variance criterion, if the aperture is sufficiently large. Let A represent the aperture,
and let the plane of the aperture plane be defined as z = 0, while the object plane
is defined as 2 = Az. We define P(z) to be a 3D position along some line P as a

function of position along the optical axis:
P(z) 2 (E (P, — Pyy) + Py, % (Py, — By) + P2} (3.4)
and therefore P, is related to P by
Py £ (P, P,) = (P(0) - &, P(0) - §)) . (3.5)
Explicitly providing an argument, implies the following:
Pu(z) = (P(:) - & P(2)- ). (3.6)

It is inferred in the context of this chapter that angle brackets, ( and ), are used to

enclose coordinates for a point, rather than to denote a statistical operation.

We declare B, (R) to be the refractive index covariance function under homoge-
nous and isotropic turbulence conditions. Let P;(z;) represent a line passing through
some point in the aperture to another point on the object plane, and let P(2;) repre-
sent a second line passing through some other point on the aperture to a second point

of interest on the object plane. See Figure 3.1. Restrict the choice of P, and Py, so
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Figure 3.1: Geometry for Tilt Covariance.
This figure depicts the geometry for computing
tilt covariance for two separate point sources, mea-
sured at a common aperture.

that P;(Az) = (—4%,0,Az) while Py(Az) = (42,0, Az). Also, define the following:
Asy £ |Pi(Az) — P(0)], (3.7)

Asy £ |Py(Az) — Py(0)]. (3.8)

Using these definitions, we can express the tilt covariance between two points on the

object plane separated by Az along the z-axis:
B.(Az) =k? cov / / L9 / n(Pi(z1))dz x (Py, - &)dPy, | ,

// n(Py(z))dzs x (P, - &)dPy,
Az Az

[AJ /j/ AsiAsy x //cov[n(Pl( ) M(P3(22))] X dzrdz (3.9)

X (Pj_l ¥ :i?)(PJ_z ¥ :i:)dPJ_IdPJ_z
Az Az

[AJ f / / g X / / (1P, — Py|)dzdz,

X (P, -2)(Py, - &)dPy,dP,,,

where we have implied the dependency of B, on the aperture function, A; the optical

path length, Az; the free-space propagation constant, k; and any parameters which
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might pertain to the refractive index covariance function B,,. Let us also imply that
for a sufficiently long optical path, we may translate Pj(Az) and Py(Az) by any
amount in the z-direction without affecting B,(Axz), so long as the points are still
separated by Az. That is to say, we assume that tilt is wide-sense stationary in z.
Approximating (3.9) for any sizable path by using six nested Riemann sums quickly
becomes intractable. The order of difficulty grows proportionately to the square of
the propagation length, Az. In the next subsection we will analyze a more practical

numerical approach to the problem.

3.8.2  Step Interpolation. It turns out that a more palatable solution results
from substituting numerical integration with a combination of piecewise symbolic
integration and interpolation. We begin by defining a sequence of step interpolates,
{fi}, such that

fi £ B.(iAR), (3.10)

where 0 < ¢ < N — 2. Then, we approximate B, for positive real R, using

N—-2
R)~ )" firect (3£ — (2i+ 1)), (3.11)
=0
such that 0 < R < (N — 1)AR, and where

1AR <z < (i+1)AR
rect(z) £ - ( ) . (3.12)
0 elsewhere

After substituting the step-interpolated expression for B, from (3.11) into the expres-
sion for B, from (3.9), the innermost double integral has a symbolic solution which

depends on i, the index of the corresponding interpolate. We define the integral I; as

Az Nz

L (P, Py, Az) 2 / f rect ("‘R(“"’”P“Piz’“) (2?:+1)) dndz,  (3.13)
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so that the innermost double integral from (3.9) becomes
Az Az
I é Bﬂ (R (Zl,ZQ,P_;_l,PJ_z,A.’L'))d::."ld.?.'z
00 (3.14)

Since P, , P,,, and Az, may be held constant with respect to the integration defined
in (3.13), we discard them from our notation during this part of the derivation. Earlier,
we implicitly defined R(z;, z2) to be the Euclidean distance between points P;(z;) and
Ps(z). This quantity is formally defined here as

R(Zl, 32) é [(31 — 22)2

+ [mgy 21 +bgy — (Mgy2z0 4 b2,)) (3.15)

B3|

+ [myz1 + by, — (Myy22 + bm)]2]

(]

where my,, my,, my,, and my, are the respective z-z and y-z slopes for P; and
P,. Similarly, b,,, b,,, b,,, and b,, are the = and y intercepts at z = 0. Since
R is a real scalar function, continuously defined over the real z;-z» plane, there is
exactly one value from the range of R corresponding to any particular point from the
domain of R. Therefore, the locus of points satisfying R < iAR is a subset of the
locus of points satisfying R < (i + 1)AR. We define S; as the locus of points from
(21,22) € [0,Az] x [0, Az| satisfying R < ¢AR. Then, the area of this region, 4;, is

defined as
A; éffdz;dzg. (3.16)

2
5y

Consequently, we can form the equivalency;,

Ii= Aiy1 — As- (3.17)
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Next, we will solve for A; analytically. Define the following quantities for sub-

stitution:

Py
@ =1+ mil + mgl,

2

A 2
ay =1+ My + My

fay
a2 = 2(1 + mg,mg, +my,my, ),

(3.18)
a
=2 [?nm (bl?l - b-'n'z) +my, (b'yl - byz)] ;
;22 [y (bey — bsy) + My (b;n - bya)] )
d 2 (bm - bz“z )2 + (byl - b’yz)z 2
Then, rewrite R as
2 2 1
R(Zl, ZQ) =l|'.1121 + Z9Zy — (122122 + 121 — s + d]2 (319)

In order to compute A;, we must first determine the set of all possible points, (21, z5),

such that

0<2 <Az (3.20)
and

0< 2y <Az (3.21)
and

Mz} + 22 — apan + oz —an+d<v, (3.22)

where

v £ (iAR)%. (3.23)

(3.22) comes directly from the inequality, R < ¢AR. Since a; > 0, we can rewrite the
expression from (3.22) as a second-order polynomial in z; whose coefficients depend

on zg!
2+ (amtam) 5  BETaEtdY . (3.24)
1 al ay



To complete the square, we define b and h such that

— h+ (21 + b)*
855 (3.25)
— oht () 5y 4 o
This leads to the definitions
b A —zrqzzg
. : 2 . (3.26)
afa ag _ [ mze ea\ . 1 d—v
ne(G-a)d-(-g)ar(F-%).
Since z;, b, and h are real, (3.22) becomes simply
—b—h7 <z < —b+ h3. (3.27)

We introduce another set of substitutions that will allow us to cleanly bound z; in

terms of zy:

Jo = %é'lza
0 = 2_{;%)
2
R (3.28)

The resulting upper and lower bounds from (3.27) are

1 1

—b—h? =quzo — q1 — q;32 — Q323 + Q4 2,
1 19222 1 (3.29)

—b+h? =gz — @ + Q228 — @322 + qu]?,

which implies that

¢ — g2+ 1 > 0. (3.30)
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We label

p(22) = @225 — @322 + @ (3.31)

as the characteristic polynomial for 2,. From (3.18) and (3.28) it is clear that |g| < 1.
Therefore, the special case where g, = 0 must be tested prior to treating (3.31) as
quadratic. Next, we will show that ¢, < 0. Expanding ¢, in terms of its defining

slopes, yields

L (s
12 a1 \da; —az

1 |:(l+m11m32 +m,,1my2)

= 2 2
TlmE +my, T+mZ +mg - (1 +my, + mm)

: 2 3 (3.32)
— (mwl'myz_mmmq) +(m;1 ——mgz) -1-(-;1#‘1,.1 _muz)

I+mz, +mi

<0.

This result is important because it allows us to directly use the discriminant corre-
sponding to the characteristic polynomial of z, to confine our analysis to cases where

the following inequality holds true:
2 ;
q3 = 442q4. (3.33)

All other cases are not physically realizable.

The next step in computing A,;-is to identify the allowable interval for z5. Since
g2 < 0, the characteristic polynomial for 2, is concave down. For cases where (3.33)
is true, we can say that there is exactly one or zero such intervals on z, contributing
to A; satisfying both (3.30) and (3.21). We label the upper and lower bounds of this
interval, ¢; and (', respectively. If for the particular case of interest there are no
such intervals, then A; = 0. We continue our analysis, assuming that the interval

[C~,¢*] exists for the given choice of i.

It may be necessary to partition [¢; , (] into multiple mutually exclusive subin-

tervals for which the limits on z; satisfying (3.20) and (3.22) are fixed. In other words,
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the limits of integration for z; may change, depending on the value of z,. We rewrite

(3.16) to reflect the use of such partitions:

—b+vVh —b+vh

A =By f / dadiy 4 By / / dzdz, + B / j dzdz, + By f / i

Y3 v 4 —b—vh
=¢G1A21A3+ﬁgf( b—l‘hz)de'{‘ﬁsAa +ﬁ3](b+h Ydzs +2ﬂ4./.h3d42,

Yo Xa

(3.34)

where AY, £ fEl dz. A boolean (f3) coefficient is placed before each of the integrals
corresponding to the four possible partitions. Each J coefficient is restricted to have

a value of either 1 or 0. We will reduce (3.34) by defining the definite integrals:

&G
(G5, &) %/bdm

€
.
% (3.35)
:/[fh = Q’uzz]d?«z

P}
Z

oy
= [91 Z2 — q‘—'f]

2

and

o
(6,6 2 / hidz
G
G
Z/ (4223 — 322 +Q4]%d Z.
€

(3.36)
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If we presume that ¢, = 0, then (3.36) evaluates to [33]

&

Q= /[6322 T f}4|%d32
oy

(3.37)
376
_ 2(qs + q322)2

3q3 ~ )

2

Otherwise, for ¢, < 0, we have [33]

_5_41:;

=)

Qn = [[szg — G323 + ] (M ‘qi)

i

—a? 1 -3
- q“‘:;“i % In {2‘1;32 22— @30y * +2(0225 — g3z + ]
80

¢ (3.38)
A

Gz
Since the integrand is known to be real over the entire interval of integration, we

can safely analyze just the real part. This is computationally more efficient because

Qn(0,¢) and Q(0,¢;") are complex conjugates. The resulting expression is

Qn= l[q:azg — gs22+ qu)? (-2 - 33—)

2 dqgz

_ 4pu—g
85
reimtatarh 118 (339
3z -3
% apdban q2 : 2 + g3/ i
2a22 — szl ] |

Using these integral function definitions, we rewrite (3.34) as

A; =B1AE Az + B[ —Qp(2) + Qr(E2)]

+ Ba[Az + Qb(X3) + Qn(Xs)] (3.40)
+ 2084Qn(Z4)-

The mechanical details on how to solve for the exact boundaries of the z, partitions,

21—y, are beyond the scope of this document. Suffice it to say that each of the par-
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tition boundaries has an analytical solution whose resulting form may be determined

by evaluating a set of test conditions in a particular order.

At this point, we rewrite (3.9) as

L v N-2 A )
BQ(AI) — [E] /A././A AS]ASQ ZU: f,;(A,;.,.] = A,) (PJ_I L .'L‘) (.F’J_2 ¥ :B) fIPJ_IdPJ_z,
(3.41)

and observe that the two innermost integrals from (3.9) have been condensed into a
single sum rather than into two nested Riemann sums. Furthermore, the number of
elements in this sum can remain fixed with respect to the optical path length, Az,
without further loss of fidelity. Instead, the complexity of this summation depends
on the values of [y and Ly. To see why this is true, we observe from (3.11) that for
R > (N —1)AR, B, is approximated as zero. (N — 1)AR should be set to a value
greater than or equal to Ly. Additionally, the resolution of B, is limited to the sample
spacing, AR. The exact value used for AR should be chosen based on l;. Neither of
these quantities depends on path length or geometry. Once AR and N are fixed, it is
possible to tabulate B,(Az) for any given path and imaging system and for a desired

set of point separations, {Az;}.

3.3.3 Spectral Decomposition of Refractive Index Covariance Function.
While the previous expression for tilt covariance in (3.41) may have some utility in
determining the characteristic parameters of a particular refractive index covariance
function, the results may be limited to a particular set of atmospheric conditions,
and to a particular path of observation. In this section, we will derive an efficient
means of spectral tabulation that facilitates fast computation of tilt covariance for
infinitely many refractive index covariance functions. The traditional starting point
for statistical analysis of refractive index fluctuations is in the spectral domain. In
this derivation, we conversely start in the spatial domain, since our observable data

(tilt covariance) are most closely related to that domain.
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A complex-valued discrete signal, z, is related to its discrete spectrum, X, by

the following pair of relationships: [19]

N.“
Xip 23wy exp { =520k = 1)k — 1)} (3.42)
ki=1
and &
! - :
oh 2 Y Xigexp {2 — (ke — 1)} (3.43)
¥ ha=1

In order to take advantage of the discrete Fourier transform (DFT) relationship, we
must somehow sample our continuous representation of B,. One trivial approach is
to apply a uniform sampling grid with samples spaced at AR. However, this does not
bode well with cases where [y < Lg, and such cases are expected to be the norm. We
explore an alternative, where we can reduce the total number of samples, N,. This is
accomplished by transforming the R-axis prior to applying a uniform sampling grid
and executing the DFT. For that purpose, we define a function, g(-), and its inverse,

g7'(:), such that our original spatial variable, R, is transformed into R,:

Ry =g(R), (3.44)
R :g_] (RSJ')'J

We require that g(-) be monotonically increasing. Within the g-transformed space,
Ry, we define the uniform sampling distance to be AR,. For this particular problem,

we select g(-) using the following criteria:

9(0) =0, (3.45)
9(Lopne) = Lo
and
|Bu(97  (k1AR,)) — Bu(g™ (k1 — 1)AR,))| = K, (3.46)
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where Lg,,. is the maximum outer scale that can be modeled by the resulting spectral
decomposition. The third criterion ensures that each transformed sample interval
represents approximately equal change in the value of B,(R). This criterion allows us
to efficiently sample a refractive index covariance function with near-zero inner scale
without significant aliasing. In order to solve for g(-) we need to assume some initial
form for B,,. For this work, we have chosen to use B,, resulting from the von Kérmén
spectrum with /[ = 0. It can be empirically demonstrated that the von Karmén

refractive index covariance function can be closely approximated by
Bus, (R) ~ CALE™™ f, (&), (3.47)

for 0 < R < oo and Iy = 0, where

f-.'n(R) 2.8835 (3.48)

= (ROT0Z3 5 140510357 1-1.2355)5.01 -

Once g(-) has been determined, we can construct the transformed spectral basis set.
We will use linear interpolation to define the spectral basis continuously in R, in
relation to the discrete representation in the transformed space, 'Rg. For a particular
value of i : 0 < R < Ly,,,, we define the nearest neighboring samples corresponding

to the transformed space as R, and Ry:

e (2200
e (] o)

(3.49)




Relating (3.49) and the complex exponentials of (3.43), we define the following angular

quantities of substitution:

Wy éi’_s(kl = l)(!"i,‘g = ].)
:2"'79(-&“) k_ _1
woas, (2 = 1) (3.50)
225 () (ky — 1)

:]\T‘Z(%l(kz T 1)1

where we have implied (k; —1)AR, = R, and kAR, = R, such that k, is dependant
on R by (3.49). These assignments provide for the following continuous definitions for
linearly interpolated real and imaginary spectral basis functions used to decompose
B, (R):

W, (R) =§—s [ﬂ“- (cos(wn) - cos(w;,)) + cas(wa)] ;

L. (3.51)

Ws,,(R) =— 5 [%‘_—%t (s'm(wﬂ) - sin(wb)) + sin(wﬂ)} )

The bases in (3.51) come directly from applying (3.50) to (3.43). Wy,, (R) is the
real component of the k4" spectral basis function, and Wag,, (R) is the corresponding
imaginary component. According to these definitions, the continuous function B, (R)

may be approximately reconstructed using the spectral decomposition,

N
B.(R) & F;ZI (SR {‘I’m€2 } Wg,,(R) + S {(p'”ka} Ws, (R)) (3.52)
~B,(R),

where the k% complex spectral component is defined from (3.42) as
N
@, £ Z 97 (k1 — 1)AR,)) exp {—ji—’;(ﬁcl —1)(k — 1)} : (3.53)

By applying (3.41) to each of the N, real and imaginary spectral basis functions

defined in (3.51), a table can be generated for B,(Axz) which can be used on any form
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of B,(R), in the following manner:

N

Bo(B2) =Y (Bmw(m)m {®ni, } + Baps(B2)S {(p% - (3.54)
ka=1
Bk, 2(Az) and By, g, 5(Az) are the tabulated tilt covariance values associated with

a source separation of Az and the k& real and imaginary spectral bases.

3.3.4 3-Parameter von Kdrmdn Model for B,.  Next, we introduce an effi-
cient method for tabulating the refractive index covariance function associated with
the von Karman spectrum. The von Karman spectrum for refractive index fluctua-
tions is given by [2]

11

2 [}
®,. . (k) = 0.033C; [rﬁ + (L,,) ] exp {—0.02853x%13 } (3.55)

where the x denotes one-dimensional spatial frequency. B,(R) and ®,(k) are related
by [2]

B.(R) = %/@n sin(kR)kdk. (3.56)
0

It can be empirically shown that the von Karméan model very nearly obeys the fol-
lowing compound scaling property:

B“uk (Cfu IU: LU! R) i CiLghsstnuk (1’ ;.«u 1y I‘f:) (357)

This property allows us to tabulate B, as a function of only R and ;. For our
purposes, we used a 1000-point log-spaced sampling grid in R and a 101-point uniform
grid for ]fﬂ; € [0,0.01]. Linear interpolation is used to obtain B, for other combinations
of R and ly. This approach is fast and convenient. (3.57) is a valid approximation for
values of Ly on the interval [1,100]. For this work, units of meters were applied to all

spatial quantities.
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3.4 Exzperiment

We designed a simple experiment to demonstrate how a simple low-cost ap-
paratus can be deployed to make field measurements of the refractive index spatial

covariance function, B,,.

3.4.1 Description.  The imaging system consisted of a Photometrics@512B
high-speed broadband CCD camera [26], coupled to a Meade@8-in LX200GPS Scmidt-
Cassegrain telescope [20]. The LX200GPS has a 2 m focal length, and was custom-
fitted with a 4 cm circular aperture stop. Camera specifications include a 512 x 512
detector array of 16 pm x 16 pum broadband pixels. Peak pixel quantum efficiency is
achieved at a wavelength of approximately 575 nm, with quantum efficiency ranging
0.90 < 5 < 0.93, for 500 nm < A < 675 nm. A 532 nm narrowband filter was placed
directly over the aperture stop to reduce the photon flux at the receiver. The camera
transmits uncompressed image data to a PC via a PCI card at a rate of 28 fps. A

photograph of this apparatus is shown in Figure 3.2.

The imaging apparatus was configured to view a passive array of extended
sources through a 100 m atmospheric path at 1.25 m above ground. The source array
was configured to be one dimensional, parallel to the ground, and perpendicular to
the optical axis. Figure 3.3 shows the pattern for the source array. The distribution
of sources was stochastically optimized to achieve the maximum number of distinct
separation distances between source pairs that are uniformly-distributed over 22.5 cm.
Table 3.1 gives the relative positions of each source, while Figure 3.4 shows thirty-three
corresponding usable distances that follow a nearly-uniform distribution. The reason
for favoring a uniform distribution of source-pair distances is that the distribution of
relevant information with respect fo Ax is unknown. Therefore, this is the distribution
which will most likely maximize the total information content in the data collected.
Likewise, the reason for maximizing the number of distinct source-pair distances is
also to maximize the total amount of useful information recorded. The span of 22.5 cm

is designed to nearly fill the field of view for an optical path length (OPL) of 100 m,

o
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Imaging Apparatus. This figure shows the setup for the imaging apparatus

Figure 3.2:

used in the experiment.

while still allowing some room for relative motion between the sources and the imaging

instrument.

3.4.2 Observables. In order to account for such relative platform motion,

the observed tilt covariance, Bj, is defined as

where,

ary = vy + (3.59)

~ A
Qg = g + oy



Figure 3.3:  Passive Source Array. This figure shows pattern used for the source array.
There are ten sources placed in a manner which gives thirty-three uniformly-distributed
distances of separation.

Table 3.1:  Relative Source Positions

Source | Position (cm)
1 0.0000
2 1.5000
3 3.0000
4 4.7539
] 8.6730
6 13.0252
7 18.0000
8 19.5000
9 20.1000
10 22.5000

Consequently,
Bav— B valis), (3.60)

where «, is the noise in tilt due to translational platform motion. The platform
motion is assumed to be statistically independent from atmospheric tilt. Pitch and
roll do not affect the observations, and yaw is assumed to be negligible. var|ay,] is a
fourth unwanted parameter that will be estimated along with the other turbulence
parameters. The random platform motion, «y, is constant with respect to source

position for simultaneous observations: a, = ay(z1) = ay(z2).

Next, we address spatial aliasing of the system. Using Nyquist theory, the
aliasing criterion for this system is Ay, < ;1’% We get this relationship from the fact
that the maximum spatial frequency of the electromagnetic (EM) field at the detector
is % [11]. The intensity pattern has twice the maximum spatial frequency as the EM
field, and Nyquist sampling requires the maximum sampling distance to be twice the

maximum frequency of the intensity pattern. For our particular imaging system, we
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Figure 3.4:  Distribution of Source Separations. This plot displays the distribution of distances
between pairs of sources. from Figure 3.3. The distances are stochastically optimized to be maximal
in number and nearly uniform in distribution.

would need a pixel pitch of Ay, < 6.65 um to eliminate all aliasing. Our design is
therefore subject to some aliasing. However, the spatial frequency power spectrum
tapers off linearly, since it is scaled by the autocorrelation of the pupil function.
Using this analysis, we can directly compute the maximum total power of aliasing, as
a fraction of the maximum total spatial power in the image. The maximum spatial
image power is proportionate to

I\Irma.x x (301 )

3A2

L
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where A, is the maximum pixel pitch allowed by the Nyquist criterion. This defini-
tion comes directly from using the formula for the volume of a right-circular cone [28].
The amount of non-aliased spatial image power for the image system we used is pro-

portionate to

- TAnyg Dy | 7
K i L= e, .62
K i O(3A§u+( By Afm (3.62)

which comes from computing the volume of the same cone, intersected with a right-
circular cylinder. The resulting ratio of aliased spatial power to total spatial image

power is given by

pri.:l:
Kmax

2
=1- (ﬂ) [3— 29%-] :
A;m':r Apim

For our particular instrument, the fraction of aliased power for the worst-case image

S41 -
(3.63)

scenario is § = 0.6254. Because this is quite poor, we selected rather large (1 cm)
diameter sources. The extended sources enable us to more accurately estimate tilt
because they produce images with lower overall spatial frequency content, while si-
multaneously improving the signal-to-noise ratio (SNR) of the system. We purposely
did not further reduce the aperture of the system to avoid all aliasing. Doing so would
have degraded the resolving power of the imaging system. This would have required
larger, and hence fewer sources, due to optical turbulence effects. As the aperture
becomes smaller, the potential for scintillation to oceur is greater. Using a larger,
slightly aliased aperture allows us to use less robust image processing techniques that
do not need to account for scintillation. Alternatively, we could have selected a differ-
ent camera with smaller pixels. However, this would require lengthening the exposure
time, in order to achieve sufficient photon flux. This is may not be desirable because
the atmosphere is continually changing. Short exposure times allow us to assume the
atmosphere is frozen during the integration period for each frame. While our system
is not parametrically optimized, it is a sufficient prototype for making measurements

of tilt.



The image processing algorithm to extract tilt observations from a sequence of
images is straightforward. First, the horizontal and vertical profiles are computed for
each frame, by summing all of the columns and then all of the rows. Then, peaks are
detected from the horizontal profile, detecting the horizontal location of each source
image. Next, the vertical location of the row of sources is detected from the horizontal
profile. At this point, a small square mask is used to extract an isolated image of each
source. The centroid is computed for each source, as a preliminary estimate for the
source’s location. Then, each source is extracted once more from the original image,
using a new square, centered at the centroid. Next, a horizontal profile is computed
for each source image. Each profile is interpolated by a factor of ten, before it is
correlated with a truncated normal probability density function (pdf). The peak
correlation is used as the subpixel estimate for the location of the image source. Now,
we will show that the resulting quantity is proportionate to tilt if momentarily neglect

the noise component.

Consider the diagram in Figure 3.5, which relates angle of arrival to diffraction-
less image displacement, as predicted by free-space geometric optics. We will assume
that the refractive index is constant with respect to wavelength, for all media under
consideration. Geometric tilt, ay, is closely related to the angle of arrival, 6. For our
application, we have the condition, |Az;| < |f|, which leads to the approximation,
sin(f) = A—le =~ 1. We formally define geometric tilt as the optical phase delay per
unit distance across the aperture in the @-direction:

By a 27;?}:&;

Ax;
. . 3.64
7 (3.64)

—k0),
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Figure 3.5:  Geometric Tilt. This diagram depicts the relationship between angle of arrival and
image displacement from the optical axis.

where k = "’T‘T is the propagation constant for free space. It follows from our definition

of geometric tilt, that the phase over the aperture due to «, is given by
p(z,y) = zay. (3.65)

From (3.2), the corresponding amount of unscaled Zernike tilt is

a= _/ [ e(z, y)rdrdy
A
=0y ][:r:zdmdy.
A

(3.66)

61



Transforming from rectangular to polar coordinates, by making the substitutions,

dxdy = rdrdf and x = rcos(f), yields

2

. /?'3 cos”(0)dOdr
0

a =

2

2n

R
u/
R
oy / r / Leold) i
0
R
o/

2

o

7 = 2
=ay [ *} [9 + 5—'"(223)] dr
0

(3.67)
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where w is a rational number representing the number of pixels by which the image is
displaced in the @-direction. This shows that instantaneous tilt observations can be
obtained by scaling corresponding observations of instantaneous image displacement

due to each source in the &-direction.

3.4.8 Tabulation and Estimation. We introduce the following maximum-
likelihood estimator for covariance of observed tilt, B, assuming that tilt is normally
distributed. Given m independent observations of tilt for two sources, located at
and x5, such that Az = |z; — 23|, we define the estimator for tilt observed covariance

m=1 m—1 m—1
-Bft (AT) é# Z (al,h - % Z dl,!z) (&2,51 - % Z 552,!2) (368)
Ia . {2

{1=0

’
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where ad, ; is the observed tilt due to source 1 from the [** image frame, and ay is the
corresponding observation of tilt due to source 2. For a particular set of estimated
turbulence parameters, we define the corresponding tilt covariance to be B,(Az),
which is computed using the pretabulated coefficients given by (3.54). We employ the
implementation of the Nelder-Mead simplex algorithm packaged with MATLAB® [19]
to search for the values of Iy and Ly which most closely describe the observed data. For
any given choice of [y and Ly, we solve for the unconstrained least squares estimates
of C2 and var|ey,|, treating them as gain and bias, respectively. The cost function

used for this process is normalized mean squared error in zero-mean tilt covariance:

1
A
ga ZM i ] Tl ’

(3.69)

Il
N
we ]}
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>
8

where 67 = var[a,| is the estimated motion variance, and Ba,, (Az;) is the tilt

covariance predicted by the von Karman model.

3.4.4 Experimental Conditions. The experiment was performed on June 15,
2006, beginning at 1544 EDT and lasted for 20 minutes. The optical path measured
100 m, and the path was 1.25 m above ground. The surface was asphalt, subject to
direct solar radiation, at an equilibrium temperature of 47.22 C. The sky was clear,
providing for irradiance conditions that were approximately temporally invariant.
The prevailing cross-wind measured 2.0 m/s with gusts up to 2.5 m/s. The mean air
temperature was 28.6 C. Relative humidity was at 27%, and the atmospheric pressure

was stable at 1028 mbars. The operating wavelength was A = 532 nm.

3.5 Results

Atmospheric turbulence is a nonstationary process. However, we freat tilt as

locally stationary over short segments of time. Figure 3.6 shows a histogram of differ-
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ential tilt observations extracted from an arbitrary block of 240 s. Another important

Comparison of Differential Tilt Distribution to Normal Distribution
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Figure 3.6: Differential Tilt Distribution. This figure confirms that the subset of data chosen
for analysis is approximately normally distributed.

point to consider is that the data is temporally correlated. Ergodicity would imply
that discrete-time statistics are equivalent to ensemble statistics. For a discrete-
time signal that is ergodic, we could approximate ensemble statistics by computing
temporal statistics over a sufficiently long interval. Unfortunately, our signal is not
ergodic, because it is nonstationary. Instead, we loosely assume that first and second-
order ensemble statistics may be approximated by estimating the corresponding time
statistics from a sufficiently long interval. Clearly, any data segment may be randomly
reordered without affecting its ensemble statistics. The new permutation would result
in a temporally uncorrelated sequence, whose members can be treated as independent

observations. If the observation period were sufficiently long, then a histogram of the
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data would appear unimodal and symmetric. Since Figure 3.6 shows exactly that,
we have no evidence that our assumption is faulty. While, we have not validated our

initial assumption, lack of any disproof is sufficient reason to continue.

Because we did not know exactly what value to use for Lo, in generating
our table of spectral tilt coefficients, we produced several tables corresponding to
Lo, €{1.0m,2.5m,5m,10m,40m, 100 m}. Each table was produced, using a PC
equipped with dual 2.4 GHz Xeon@processors with hyper-threading enabled. All four
virtual processors cooperatively produce a single table in approximately 106 hours.
Once produced, the tables may be reused for the same experiment under different
turbulence conditions. One strategy for selecting the correct table is to start with
the table corresponding to the largest Ly, and to decrease Lg,, to the smallest

tabulated value which is greater than the estimated value of Ly.

Figure 3.7 shows the results from estimating B,,, using Ly = 40 m. The optimal
solution for B, achieved by the von Karman covariance model for the whole data set
is given in Figure 3.8. The parameters corresponding to the optimal solution for the

ensemble of data are as follows:

C2~6.01-10°m"3,
lg =~17.9 mm,

Ly =15.5m.

By contrast, the average parameters corresponding to the ensemble of all 240 s win-

dows shown in Figure 3.7 are

C2~6.10-10°m"5,

lp =13.6 mm,

Ly =14.8 m.

The two sets of results appear to be consistent. Figure 3.9 compares the estimated

tilt covariance for the entire data set to the actual observable data. The data includes

65



Temporal Variations in Turbulence Parameter Estimates
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Figure 3.7 Windowed Estimates of Turbulence Parameters. This figure displays the windowed
estimates of ly, Lg, and C,za corresponding to B, (R), optimized for Lg,, = 40 m.

the effects of platform motion. According to the figure, the von Karman models the
observed data very closely. Much prior literature has been dedicated to presenting
theory and results based upon the much simpler Kolmogorov model. It has been
unknown until now, how well the %—Power Law describes refractive index fluctuations

in strong turbulence conditions near the ground. Figure 3.10 provides some initial
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Figure 3.8: Optimal von Kdrmédn Covariance Function. This figure displays the von Kdrman
B,, that optimally describes the observed data.
evidence to debunk the use of Kolmogorov theory for terrestrial imaging applications,

especially where optical turbulence is likely to be strong.

3.6 Conclusions

This research could significantly impact the development of future applications
in terrestrial remote sensing. We have presented a low-cost method which allows
the refractive index covariance function to be passively measured, assuming a von
Karman model. The method does not rely on scintillation phenomenology and does
not require the traditional paraxial assumption to be used. While the current theory
depends on statistically homogenous and isotropic coplanar conditions, there may
be immediate applications where such conditions are guaranteed. Certainly, this
measurement technique offers a potential improvement over existing Kolmogorov-

based techniques for optical turbulence measurement and characterization. Future
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Comparison of Tilt Covariance Model to Observations
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Figure 3.9:  Tilt Covariance. This figure compares the tilt covariance estimated directly from

all observations to the tilt covariance that corresponds to B,, from Figure 3.8.

work will be directed toward establishing specific criteria for which scintillation effects
can be considered negligible. The work presented in this chapter was co-sponsored by
the Air Force Institute of Technology (AFIT) Department of Electrical Engineering
(ENG) and by the Air Force Research Laboratory (AFRL) Electro-Optical Combat
Identification Technology Branch (SNJM).
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Comparisen of van Karman and Kelmegaroy Struciure Functions
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Figure 3.10:  Kolmogorov Structure. This figure compares the Kolmogorov Z-Power Law re-
fractive index structure function, D, (R), to the von Kdrmédn model.
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4. Summary

his dissertation documented three new contributions to help advance the state
Tof the art in simulation, modeling, and estimation of optical turbulence. The
underlying theme in this research was to revisit historical assumptions applied to pre-
viously intractable computations related to this class of problems. In Chapter 2, we
presented the two contributions. The first contribution is the formalization, optimiza-
tion, and validation of a modeling technique called successively conditioned rendering
(SCR). The second contribution is the derivation of the covariance delineation the-
orem, which provides theoretical bounds on the error associated with successively
conditioned rendering. It was shown how the covariance delineation theorem can be
used as a computationally efficient tool for optimizing the performance of SCR al-
gorithms. In our particular example, we compared two different SCR algorithms for
simulating random phase screens. The theorem correctly predicted which algorithm

would perform more accurately.

Chapter 3 documented a third contribution, by introducing a new method for
estimating optical turbulence parameters, and demonstrating the method using exper-
imental data. For our particular experiment we passively imaged an array of sources
through a 100 m path at 1.25 m above the solar-heated tarmac at 28 fps. We used
10,000 samples of data assumed to be locally stationary for parameter estimation. As-
suming a von Karman turbulence model, we estimated the atmospheric parameters

2

for these conditions to be C2 ~ 6.10 - 107 m~3, [, ~ 13.6 mm, and L, ~ 14.8 m.

4.1 Value to the Air Force

Collectively, these three contributions are suitable for use in several Air Force
applications. Contributions 1 and 2 provide a methodology for optimizing SCR al-
gorithms. By applying SCR to phase screen simulation, Air Force systems engineers
can more efficiently and accurately characterize optical sensor performance. A few

examples are laser vibrometry, imaging systems, and deconvolution algorithms.
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Contribution 3 is a turnkey method for realtime estimation of optical turbulence
parameters. This method can be used to support field tests, and it can also be used to
characterize fade environments for operational laser communication systems. High-
energy laser weapons may use this method for estimating turbulence parameters by
projecting an array of low-energy laser illuminators onto a target. The imagery of the
spot array could also be used to solve for the range and orientation of the target, given
the target geometry. For scientific monitoring, daytime C2 profiles may be obtained
by placing a low-weight variant of the instrument on a weather balloon and by using a
second balloon to host a passive target array. Both balloons would operate in tandem
controlled ascent. Currently C? profiles are measured using thermal instrumentation.
Using thermal instrumentation restricts operations to nighttime, when solar loading

on the instruments is minimized.

The tilt-covariance method also has several advantages over the tri-scintillilation
method recently published by Vetelino, et al [30]. The scintillation-based approach is
range-limited, making long-range field tests cost-prohibitive and short-range field tests
impossible for lack of detectable scintillation. Because the tilt-covariance method uses
passive extended sources, high-cost sources are not needed. Optionally, light-emitting
diodes (LEDs) can be used for tests conducted after twilight. Secondly, the new
approach uses 34 nonlinear equations to solve for only 4 unknown parameters, while
the scintillation method uses only three equations to solve for three unknowns. The

redundancy helps stabilize turbulence parameter estimates in the presence of noise.

4.2  Future Work

As a natural extension to this work, the author plans to validate the estimates
presented in Chapter 3 by way of 3D SCR simulation of optical turbulence. Analysis
will include the effects of scintillation on the performance of turbulence parameter
estimation. Simulated data will be processed through two concurrent pipelines: one
which ignores scintillation, and one to include scintillation. Results will be compared

to those predicted by a widely accepted technique published by Whiteley in 2002 [32].
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Additional work may lead to predictive modeling of atmospheric seeing conditions as
a function of time, date, location, and weather parameters. Of particular interest to
astronomers is turbulence parameter profile estimation. Certain star imaging algo-
rithms which depend on crude profile estimates of non-zero inner scale and finite outer
scale may be able to use estimates of these parameters obtained from the boundary

layer. One such application is proposed in [3].
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Appendiz A. Approzimating Waves in Random Media

f we are to prescribe the use of Rayleigh-Sommerfeld (R-S) diffraction theory, we
Imust first validate the assumptions for the case of diffraction through a turbulent
medium!. R-S theory was developed specifically for propagation of a monochromatic
wave through a homogenous and isotropic medium. In the course of this development,
as presented by Goodman in [11], a scalar wave equation is derived from Maxwell’s
equations, under the assumption of homogenous permittivity, . By the relationship,
= \/g . we see that this assumption is immediately violated because n is not ho-
mogenous in turbulence. Fortunately, this violation is minor because is manifested in
a negligible depolarization term resulting from Earth’s mildly turbulent atmosphere.

Thus, the usual scalar wave equation can be made to approximate diffraction through

a turbulent medium [12]:

(@) &

2
Vv 'U.(p, t) 2 a2

u(p,t) =0 (A1)

A.1 Violation of Helmholtz Equation

The next step in Goodman’s development of the R-S diffraction theory necessi-
tates that a diverging spherical wave satisfy the following Helmholtz equation for all
time [11]:

(V2 + [k(@)]")g(p,t) =0 (A-2)

In this expression, the propagation constant, k, is a random field defined by the

2mm and g is the candidate Green'’s function describing a diverging

(i

relationship, k =
spherical wave. Since the Helmholtz equation is an entirely spatial relationship, we

define g(p, to) for some particular ¢ = ¢, to have a phase offset of y:

9(p,to) = |p — po| " exp{j[k(P)|p — Po| — w0l}- (A.3)

IThe medium is also assumed to be nonmagnetic, dielectric, nondispersive, and linear. [11]
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It is now a trivial matter to show that a diverging spherical wave does not satisfy
the Helmholtz equation in a turbulent medium represented by the random field, &(p).

We begin by defining the Laplacian operator, Vz, in spherical coordinates [31]:

vz%@_z+2 0 1 &#  cos(¢) & 1 &

Ry sin2(¢) 062 ' r2sin(¢) 9 i B (a4)

Next, we allow k to be spatially variant and use the definition from (A.4) in applying
(A.2) to (A.3). Expanding the left-hand side of (A.2) yields the following expression

for the error in the electromagnetic field, expressed in spherical coordinates:

ok ok 62 ok
Dpr =g —27'!;5 - (7 5) o) J@:f‘
ok 9%k ok Ik 9%k
~1 [ a2 _[or ok
+ T (blll (rb)[ (69) +‘?69 } +J(30t(¢}0¢ (Bqﬁ) +J8¢2) )
(A.5)

The spatial dependencies on g and k have been dropped for convenience, and the
chosen origin is pp so that r = |p — po|. Ignoring this electromagnetic field error is

equivalent to asserting that Vk = 0.

Arguably, no possible assignment of g may exist to satisfy (A.2), but such a proof
is beyond the scope of this work. Instead of meticulousiy analyzing the existence of
a perfect solution, we will simply assume any linear _combination of spherical waves
approzimately satisfies the Helmholtz equation in turbulence. This is nearly equivalent
to the approximation made by Goodman when by discarding the depolarization term

in arriving at (A.1) [11].
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A.2 Turbulence-Modified Diffraction Formula

The free-space R-S diffraction formula is given by [11]

upn) = - /7 W (p,) 2

where u is the scalar field, frozen in time. p = (z,y, 0) refers to a point in the plane of

exp{jkor}cos(—2,r)dp,, (A.6)

the aperture described by the binary window function, W (p, ), where p, = (p-&, p-y).
Po = (&0, Yo, 20) is second point in free space described by the vector r = py —p. Z is
the unit vector normal to the plane of the aperture pointing toward pg, and ky is
the free-space propagation constant. Figure A.1l illustrates the geometry for (A.6).

The derivation of the free-space R-S diffraction formula in (A.6) assumes that k is

y

e

Polo. 0,2

< . —» 7

A
L4

w(x,y)

[i
A

(a) (b)

Figure A.1:  Rayleigh-Sommerfeld vacuum propagation. This figure illustrates the
geometry for (A.6).

constant by setting the gradient of k to zero.

We can modify this formula to account for phase distortions- associated with

a turbulent dielectric. We do this by assuming that F[k] = ko and making the
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1
substitution kor = [ k(p + s(po — p))ds, which results in the following turbulence-
0

modified R-S diffraction formula;

5] 1
u(po) = ~—— ]] W (p)u(p) exp{ j / K(p+s(po—p))ds pdpy, (A7)

JAopo - 2

where we have also borrowed a portion of the Fresnel approximation by substituting
r~'cos(—2,7) = z;'. It should be noted that this approximation is only valid for

optical paths short enough where scintillation is negligible.
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