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Abstract 

This thesis both evaluates, and presents improvements to, the current method of 

forecasting flying costs of Air Force aircraft.  It uses depot level repairable (DLR) and 

consumable (CONS) data for the Air Force’s bomber platforms: B-1B, B-2, and B-52H.  

The current forecasting method assumes a proportional relationship between costs and 

flying hours such that 1) when no hours are flown costs are zero, and 2) a 1% increase in 

flying hours will increase costs by 1%.  The findings of this research indicate that 

applying log-linear ordinary least squares regression techniques may be an improved fit 

of flying cost data over the current proportional model; the actual data indicate a non-zero 

intercept and a less than proportional relationship between costs and flying hours.  This 

research also found that models including factors other than flying hours as independent 

variables, such as sorties, lagged costs, and fiscal trends, may be more useful than models 

based solely on flying hours.  Finally, this research found that estimating quarterly costs 

at the base-level may yield more accurate estimates than estimating at the monthly level, 

or mission design series level. 
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FORECASTING FLYING HOUR COSTS OF THE B-1, B-2, AND B-52 BOMBER 

AIRCRAFT 

 

I. Introduction 

Background 

“The Air Force at one time stood head and shoulders above all the Services in 

their capabilities, organization, and processes for developing cost estimates for major 

weapon systems” (Kammerer, 2003:1).  Developing accurate cost estimates is important 

for every program within the Department of Defense (DOD); poor estimates can cause 

funds to be misallocated, which can lead to under-funded or over-funded programs. 

Programs which suffer from a lack of funding must request additional funds from 

Congress who, in turn, pulls funds from other programs.  Further, over-funding a 

program causes money to be tied up obligated within a program that does not need it, 

leaving other areas under-funded.  Generally, funds are taken from research and 

development programs, leading to a reduction in technology progression and weapon 

development (Kammerer, 2002:1).  Operations and Maintenance (O&M) costs, which 

represent about 40% of the overall DOD budget, have seen significant growth in recent 

years resulting in insufficient budgeting and leading to requests for additional funding. 

O&M costs are costs required to operate and maintain the nation’s military forces.  

The O&M budget includes a variety of costs, ranging from flying costs, to health care 

and environmental programs (Kiley, 2001:1).  From FY2000 to 2005 these costs grew 

from $133.4 billion (FY07$) to $209.5 billion (FY07$) (GAO, 2007:9-11).  This 
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significant growth in cost was funded primarily through supplemental funding, as 

depicted in Figure 1.  The GAO (2007) states that the significant increase in O&M costs 

are due not only to increased operations in support of the global war on terror, but also to 

aging military equipment (GAO, 2007:13-14).     
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Figure 1: Supplemental O&M Appropriations (GAO, 2007) 

 

The Air Force’s flying cost program, which represents about 20% of the O&M 

budget (Kiley, 2001), has seen significant change over the last several decades.  As 

shown in Figure 2, while O&M costs have grown nearly 600% (CY99$) over the last 

several decades, total flying hours have dropped nearly 75% (Defense, 2006).  Likewise, 

flying programs in particular have seen nearly 10% cost growth in recent years, 

specifically on reparable and consumable parts (Kammerer, 2002).   
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Figure 2: The Rising Cost of O&M per Flying Hour (Defense, 2006) 

 

The Congressional Budget Office (Congressional, 2007) suggests that a reason 

behind these trends is that new weapon systems are becoming increasingly complex, 

leading to larger O&M costs than the systems they replace.  Additionally, the existing 

weapon systems are reaching unprecedented ages, leading to increased parts consumption 

(Kammerer, 2002).  Many have suggested that costs will continue to grow as aircraft 

continue to age (Kiley, 2001; Hart, 2003; Hebert, 2003; Pyles, 2003).  In fact, Kiley 

(2001) suggested that continuing to fly these aging aircraft may cause O&M costs to rise 

much faster than the rates that have been realized to date.  Older equipment will “wear 

out faster” than new equipment due to problems associated with corrosion and fatigue 

(Hebert, 2003:4).   
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Flying Hour Program Costs 

Until FY2008, developing flying program cost estimates was the responsibility of 

each major command (MAJCOM).  However, in an effort to reduce cost overages and 

streamline financial processes, General T. Michael Moseley began implementation of a 

plan which will centralize all budgeting for the flying hour program in a single program 

office (Scaggs, 2006).  This program office, called the Centralized Asset Management 

(CAM) program office, was introduced in FY2006.  The Air Force is currently in the 

process of consolidating budgeting and spending processes within the CAM office.  

Centralization of budgeting for the flying hour programs is expected to be complete by 

the end of FY2008 (Rumple, 2007).  While Air Force senior leaders have acknowledged 

problems with the current flying cost forecasting process and attempted to mitigate these 

problems with the CAM program office, the new office has adopted the old flying cost 

forecasting methodology.    

The current process of forecasting flying costs involves calculating cost per flying 

hour (CPFH) factors based on historical data.  Each MAJCOM estimates the CPFH 

factors for each Mission Design Series (MDS), or aircraft type, based on wing-level cost 

and flying hour inputs.  Costs from a previous time period are divided by hours flown to 

determine the CPFH factor.  Forecasters then modify these factors for economic and 

other approved adjustments.  To forecast flying costs, forecasters multiply the adjusted 

CPFH factor by the projected number of flying hours.  Figure 3 diagrams this process.  
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Figure 3: The CPFH Budgeting Process 

 

Forecasters calculate CPFH factors for three different types of costs: depot level 

repairables (DLRs), consumables (CONS), and fuel.  DLRs are defined as those which 

are repaired rather than disposed of, such as avionics systems and engines.  In contrast, 

CONS are parts which are disposed of after their useful life, such as batteries and screws.  

The third type of flying cost, fuel, is defined simply as the fuel used during flight (GAO, 

1999).     

The CPFH process assumes the relationship between flying hours and operating 

costs is proportional.  We define a proportional relationship as one with two 

characteristics: 1) the relationship between costs and flying hours is linear, such that a 

one percent increase in flying hours leads to a one percent increase in flying costs, and 2) 

the intercept is equal to zero, indicating that if no flying hours were accumulated for a 

given time period, the costs would be zero.  In other words, the current proportional 

method assumes that operating costs are entirely variable.  However, there are costs 

associated with flying programs that are fixed, such as routine maintenance checks.  

Figure 4 shows the disagreement between forecasting costs using the proportional CPFH 

method and actual costs, which indicate fixed costs associated with the flying program.   
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The CPFH factor methodology is appropriate for fuel costs, as an increase in the 

amount of hours flown generally leads to a proportional increase in the amount of fuel 

burned.  Likewise, if no hours are flown, no fuel is used.  However, as Kammerer 

mentioned, forecasts for DLR and CONS parts have not been as accurate (Kammerer, 

2002).  As Figure 4 shows, the proportional method, which considers all flying costs to 

be variable, will under-predict these costs when a low number of hours are flown in a 

given time period.   
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Figure 4: The Relationship Between Costs and Flying Hours 

 

Likewise, the proportional method will over-predict costs when flying hours are high in a 

given time period.   

As the Air Force centralizes its budgeting processes and continues to develop 

increasingly complex aircraft, which are believed to be driving up flying costs 

(Congressional, 2007), this potential flaw in the forecasting process must be tested and 

changes need to be made, if necessary.  Estimators must seek more detailed knowledge of 
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each individual aircraft, as well as all potential cost predictors, in order to develop 

accurate cost estimating models.  This research effort will explore the relationships 

between cost and flying hours for three Air Force aircraft, the B-1B, B-2, ad B-52H.  

Specifically, the focus of this research is to forecast DLR and CONS costs for the bomber 

aircraft. 

Purpose 

 The purpose of this research is to explore the usefulness of the current CPFH 

methodology in estimating DLR and CONS flying costs of the bomber aircraft.  

Additionally, we will use simple ordinary least squares (OLS) regression of costs on 

flying hours to see if the proportional model adequately captures the relationship between 

costs and flying hours given real data of bomber aircraft.  Finally, we will identify and 

quantify other potential cost predictor variables.  The variables we evaluate are based on 

those highlighted in previous research and are discussed in the next chapter.   

 The following two research questions will guide this research: 

1. Does the current CPFH methodology, which assumes a proportional relationship, 

capture the true relationship between flying hours and costs? 

2. Are factors other than flying hours useful in estimating flying costs?  

Summary 

The rest of this paper is structured as follows: Chapter II presents a literature 

review which summarizes multiple studies that have explored both operating costs and 

the CPFH approach.  Multiple variables have been evaluated and several different 

estimating techniques have been employed.  Chapter III will discuss the data and 
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methodology used in this study and how it will be used to evaluate both the current CPFH 

methodology and the predictability of variables other than flying hours.  Chapter IV 

presents the results from the analyses and Chapter V will summarize the findings and 

answer each of the research questions.   
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II. Literature Review 

Overview 

This chapter provides a discussion of completed research concerning operations 

and maintenance (O&M) costs.  We will summarize several studies and explain how the 

findings of those studies shaped the context of our research.  In this chapter, we also 

discuss the decision to evaluate the effects of cannibalization rates – a variable which has 

not been evaluated in previous research – on consumables and reparable costs.  

Previous Research 

Several researchers have conducted studies attempting to better understand flying 

hour costs.  These researchers have all aimed to improve the current budgeting process 

through a better understanding of the behavior of costs.  Each presents different 

approaches to estimating the costs of flying through analysis of different variables and 

evaluation of the operating costs for different groups of aircraft.  As a whole, this body of 

research has examined over 20 different variables.  Eight of the flying hour cost studies, 

as well as the variables examined, are chronologically listed in Table 1, beginning with 

Hildebrandt (1990) and ending with the current study of bomber aircraft.  The dependent 

variables range from overall Operations and Support (O&S) costs, to CPFH factors for 

individual aircraft.  The independent variables represent a variety of different factors, 

from aircraft characteristics, to operations tempo, to environmental characteristics.  This 

chart shows that aircraft age has been evaluated in several studies.  Additionally, one can 

see that location characteristics, such as temperature and dew point, and operational 
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factors, such as utilization rate and mission capable rate, are new to the list of potential 

cost predictors.   

 

Table 1: Explanatory Variables Used in CPFH Research 
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Dependent Variables
Operations/Support Costs X X
Number of Parts Replacements X
Maintenance Work Hours X
Net Flying Costs X X
CPFH Factor X X X

Independent Variables X X X X X X
Flying Hours X X X X X X
Lagged Costs X X X
Aircraft Age X X X X X X X
Average Total Operating Hours X X
Flyaway Cost X X X
IOC Year X
Aircraft Type (categorical) X X
MAJCOM X X
Percent Engine Type X
Percent Block X
Sorties X X
Average Sortie Duration X X X X
Utilization Rate X X X
Mission Capable Rate X X
Cannibalization Rate X
Deployments X X X
Ground Days X
Total Aircraft Inventory X
Program Change X X
Base Location X
Petroleum Proxy X X X
Temperature X X X
Dew Point X
Month/Seasonality X X X  
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The following pages will both describe the research summarized in the table above and 

explain how the findings will be applied to the present models for Air Force bombers. 

RAND Finds Flying Hours and Age Affect Flying Hour Costs. 

Gregory Hildebrandt and Man-bing Sze of RAND conducted a study concerning 

Air Force O&S costs nearly 18 years ago (Hildebrandt, 1990).  This research, entitled 

“An Estimation of US Air Force Aircraft Operating and Support Cost Relations,” seeks to 

link available O&S cost data to aircraft in order to provide a method of approximating 

O&S costs for acquisition programs (Hildebrandt, 1990:v).  Hildebrandt and Sze’s found 

their data in the Visibility and Management of Operating and Support Costs (VAMOSC) 

database.  Their data consisted of 400 observations ranging from 1981 to 1986.  The 

VAMOSC data are supplemented with information on aircraft flyaway cost, average 

mission design (MD) age, and the MDS year (defined as the year the MDS entered 

service) (Hildebrandt, 1990:16). 

 The authors use log-linear regression models to examine the relationship between 

O&S costs and several explanatory variables.  Transforming linear relationships into a 

logarithmic relationship has a number of advantages, such as stabilizing the variance of 

the data and simplifying the interpretation of the regression coefficients.  Logarithmic 

transformations will be discussed in greater detail in Chapter III.  The authors found 

flying hours and flyaway costs to be statistically significant with relatively large 

coefficients.  Specifically, a one percent increase in flying hours increases O&S costs by 

more than 0.6%, while a one percent increase in flyaway cost increases costs by more 

than 0.4%, all else being equal.  The flyaway cost variable performs very well as a proxy 

for aircraft type and MDS year.  While this research clearly supports including the 
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flyaway cost as a variable in regression models evaluating multiple airframes, it is not 

applicable to our research of bomber aircraft since only one platform will be evaluated in 

each model, and each platform only consists of one variant (i.e. the B-1B and B-52H).  

The total number of aircraft within each MDS fleet, or total aircraft inventory (TAI), is 

also statistically significant and negatively correlated in each model.  However, a one 

percent increase in the number of aircraft only results in about a 0.05% decrease in O&S 

costs.  Additionally, TAI is highly correlated with flying hours.  We will not include TAI 

as a variable in this study of bomber aircraft; our research used the number of aircraft in 

the derivation of other variables.  These variables will be discussed in detail in the 

following chapter. 

 Hildebrandt and Sze (1990) discuss the “Bathtub Effect,” which is the belief that 

costs initially experience a decline due to learning curves and the elimination of initial 

reliability and maintainability problems.  Costs then experience a steady-state, followed 

by an increase in costs due to increased repair and maintenance requirements associated 

with age (Hildebrandt, 1990:20-21).  Figure 5 depicts this trend in operating costs. 
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Figure 5: The Bathtub Effect 

 

The B-1B and B-52H are mature aircraft at the point of our research and, 

therefore may be experiencing age related increases in costs, as depicted in Figure 5.  

This study of bomber aircraft will evaluate aircraft age to determine if age is significant 

in forecasting CONS and DLR costs of bombers.  The following study supports 

Hildebrandt and Sze’s findings that age drives cost.  It also evaluates factors related to 

sorties as predictors of cost.  

Wallace Evaluates Usage as a Predictor of Costs. 

In the study “A Physics-Based Alternative to Cost-Per-Flying-Hour Models of 

Aircraft Consumption Costs,” Wallace, Hauser, and Lee (2000) sought a model which 

would more accurately forecast flying hour costs during times of varying usage than the 

proportional CPFH model.  The current CPFH model, they argued, is adequate during 

times when aircraft usage is relatively constant but insufficient during a usage “surge,” 

which tends to correspond with military conflicts.  These researchers forecasted costs by 

using explanatory variables that measure these surges, such as the number of take-offs 
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and landings, the total flying hours, and the total number of hours an aircraft spends on 

the ground (Wallace, 2000:2-1).  The authors chose to use data for the C-5B, the C-17, 

the KC-10, and the F-15C because they represent different types of aircraft.  

Additionally, these aircraft flew during major conflicts, which allowed the authors to 

compare the effectiveness of their model with the proportional model for both steady 

state usage and a usage surge.  

  To test the effects of their independent variables on the number of removals of 

parts (a proxy for costs) the authors split their data into four calibration sets.  The model 

that performed the best used about 1/3 of the data, representing the months prior to a 

surge and the first few months of a surge.  The researchers used the remaining 2/3 of the 

data as validation data (Wallace, 2000:4-1).  Comparing the models developed in this 

research with the proportional model revealed that the physics-based model was much 

more efficient in forecasting costs during periods of a usage surge.  In the example of the 

C-5B model, the physics-based method underestimated costs by 15%, while the 

proportional model overestimated costs by as much as 236% (Wallace, 2000:4-5, 4-10).    

 The findings of this study indicate that both flying hours, and variables associated 

with sorties (landings and flying hours) are effective in forecasting costs.  Intuitively, 

sorties are a significant predictor of costs for a number of reasons.  First, a sortie is 

associated with starting up and shutting down an aircraft’s engine and other flight 

systems, which put stress on the aircraft.  Second, a sortie is also associated with one or 

more take-offs and landings, which cause significant wear on an aircraft’s parts.  We will 

include sorties as a control variable in this study of Air Force bomber aircraft.  While our 
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study will omit ground hours as an explanatory variable, it will include temperature, 

which  describes the environment in which the aircraft are stored. 

The physics-based study (Wallace, 2000), like the Hildebrandt (1990) report, 

discussed findings of a “Bathtub Effect,” implying a relationship between the age of an 

aircraft and flying hour costs (Wallace, 2000:2-5).  The researchers explained that as 

parts age, they experience fatigue and corrosion (Wallace, 2000: 3-1).  This supports the 

decision to include aircraft age as an explanatory variable.  

Finally, this physics-based study mentions that cannibalizations increase during 

times of conflict (Wallace, 2000: 4-12).  Our research will evaluate the effect of parts 

removal in bomber aircraft during the global war on terror, as well as the years leading up 

to it.  This will be done to quantify the effect that cannibalization rates have on costs.  We 

discuss cannibalization rates in more detail later in the chapter.  The next two studies 

further highlight problems associated with aircraft age.  While Wallace (2000) focused 

his research on exploring the relationship between costs and flying hours, the 

Congressional Budget Office (CBO) focused on determining the effect aircraft age has on 

costs (Kiley, 2001).   

CBO Supports Previous Findings. 

In the paper “The Effects of Aging on the Costs of Operating and Maintaining 

Military Equipment,” the CBO used regression analysis to measure the relationship 

between aircraft O&M costs and the following explanatory variables: average fleet age, 

flying hours, and average aircraft purchase price.  The CBO models also include dummy 

variables for each year (Kiley, 2001:34).   

 15



The CBO report investigated the relationship between O&M costs and the 

independent variables with three models.  The first model focused on Air Force aircraft 

and revealed aircraft age to be positively correlated but statistically insignificant in 

forecasting O&M costs.  However, the second and third models, the first focusing on 

Navy aircraft and the second aggregating both Air Force and Navy aircraft data, found 

aircraft age to be a statistically significant predictor of aircraft O&M costs.  Specifically, 

“an additional year of average age is associated with an increase in O&M costs of 1 

percent to 3 percent per year” (Kiley, 2001:36).  These findings support the findings of 

Hildebrandt (1990) and Wallace (2000).  Additionally, the CBO found average purchase 

price and flying hours to be positively correlated and statistically significant in 

forecasting aircraft O&M costs.   

The yearly dummy variables were insignificant (Kiley, 2001:36).  This could be 

due to the fact that these variables may be capturing the same effect as the age variable.  

Unless new aircraft are added to the fleet, both of these variables will increase in equal 

intervals.  Our research of bomber aircraft will account for time, when necessary, by 

including a lagged cost term as an independent variable.  To further capture the effects of 

time, such as fatigue and corrosion, aircraft age will also be included as an explanatory 

variable.  The next study focuses on how aging equipment affects the number of hours 

required for maintenance and modifications.  Hildebrandt (1990), Wallace (2000), and 

Kiley (2001) all found aircraft age to be significant in forecasting CPFH.  In his study 

“Aging Aircraft,” Pyles (2003) explored this relationship in more detail. 
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Focusing on Aging Aircraft. 

Pyles (2003) examined aircraft fleets’ workloads and material consumption 

patterns for growth associated with age.  Using ordinary least squares multiple regression, 

Pyles (2003) built regression equations for each of 13 maintenance and modification 

categories (such as flightline maintenance, DLR repair, etc.) (Pyles, 2003:50).  Pyles 

(2003) then used a method of backwards stepwise regression to eliminate statistically 

insignificant variables in order to arrive at a predictive model.  Finally, in order to test for 

late-life acceleration in maintenance and modification hours, Pyles (2003) incorporated a 

second-order variable which captures the effect of aircraft age beyond the age of 20.   If 

this variable was significant, he concluded that age was a driver of costs (Pyles, 2003:51).   

Pyles (2003) incorporated variables such as flyaway cost, MAJCOM, and aircraft 

mission (bomber, tanker, cargo, among others).  Using this methodology, Pyles (2003) 

discovered that flyaway cost is highly significant in forecasting maintenance and 

modification hours (Pyles, 2003:90).  After controlling for this factor, Pyles (2003) finds 

that 11 of the 13 maintenance and modification categories show signs of late-life growth 

in maintenance and modification hours. 

The findings of Hildebrandt (1990), Wallace (2000), Kiley (2001), and Pyles 

(2003) all support the inclusion of aircraft age as an explanatory variable in CPFH 

models.  However, each of these researchers evaluated models based on data representing 

multiple platforms.  Meanwhile, MAJCOMs create the flying hour budgets based on 

estimates for each individual MDS-level.  The CBO report highlights the fact that studies 

focusing on individual airframes are more credible and are better able to distinguish 

between the effects of age from other factors (Kiley, 2001:26).  If flying costs are truly 
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correlated with aircraft age, accurately measuring and controlling for these effects will be 

increasingly important as bomber aircraft continue to age.  The next four researchers 

evaluate individual aircraft and attempt to determine the variables affecting flying costs 

and to quantify their affects. 

Laubacher Explores Cost Trends. 

The following study attempted to build a forecasting model by evaluating trends 

in recent cost data.  In his study, “Analysis and Forecasting of Air Force Operating and 

Support Cost for Rotary Aircraft,” Laubacher (2004) focuses on evaluating annual cost 

data for three helicopters across MAJCOMs.  This analysis begins by evaluating the 

difference between actual costs and the predicted costs in recent years.  Laubacher (2004) 

proceeds to evaluate the actual cost data and attempts to fit a predictive model using three 

forecasting methods: three-year moving average, single exponential smoothing (SES), 

and Holt’s linear method (Laubacher, 2004:62-64).    

Laubacher (2004) develops eight models in his study, one for each of the eight 

MAJCOMs supporting one of the following three helicopters: the MH-53J, the UH-1N, 

and the HH-60G.  Six of his eight models found Holt’s method to be the most predictive.  

The remaining two models found the SES method to be the best.  Additionally, six of his 

eight models (five using Holt’s method and one using the SES method) outperformed the 

budgets set by the Air Force in the years evaluated.   

While Laubacher’s (2004) research involved a small data set, his findings suggest 

that accounting for cost trends in the forecasting process may improve forecasting 

accuracy.  These findings appear to be inconsistent with the results from the pooled CBO 

models mentioned earlier, which found dummy variables representing years to be 
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insignificant (Kiley, 2001).  However, as mentioned, the CBO report also included age as 

an explanatory variable, which may have acted as a proxy for the effects of time.  As 

previously mentioned, we include both average age and lagged costs as independent 

variables in this study. 

Exploring CPFH for Individual Aircraft. 

Three recent AFIT thesis efforts have addressed CPFH for specific aircraft.  

Hawkes (2005) attempted to find a relationship between the depot-level reparable (DLR) 

CPFH rate and programmatic and operational explanatory variables for the F-16C/D.  He 

evaluated annual base-level data from FY1998 through 2004.  Through OLS regression, 

Hawkes (2005) concluded that aircraft age, utilization rate (the average number of sorties 

per aircraft), and location are significantly significant predictors of the DLR CPFH factor 

for the F-16.  Additionally, Hawkes (2005) found average sortie duration (ASD) and 

controlling for deployments to be insignificant in forecasting CPFH.   

The following year, Armstrong (2006) researched the causes of CONS and DLR 

CPFH factors for the F-15 aircraft.  The purpose of this research was to find a marginal 

CPFH rate based on the number of hours flown in a given time period.  Armstrong (2006) 

used a panel model to evaluate base-level monthly data for the F-15 from FY2001 

through 2005.  He found ASD and temperature to be significant factors affecting CPFH.  

Additionally, Armstrong (2006) found a seasonality trend in his data, suggesting that 

costs increase toward the end of the fiscal year (Armstrong, 2006). 

Bryant (2007) also conducted a study based on panel models where he developed 

forecasting tools for CONS and DLR CPFH factors of the KC-135.  Bryant (2007) 

developed separate models for the ANG, active duty, and reserve units to determine if 
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there were any differences between the three branches.  He found mission capable rate 

(MCR), utilization rate, and total airframe hours (which was evaluated in place of 

average age) to be significant in forecasting CPFH.  He also found a seasonality trend, 

similar to Armstrong’s (2006) findings, in his CONS models; he also found costs to 

increase toward the end of the fiscal year.  Additionally, Bryant (2007) evaluated dew 

point as a potential predictor of CPFH; however, his research revealed mixed results in 

the significance of dew point.   

Both Hawkes (2005) and Bryant (2007) found utilization rate to be a significant 

predictor of CPFH, therefore, our research will include utilization rate as a predictor of 

bomber costs.  Research has revealed mixed results for the inclusion of ASD as a 

predictive variable; however, we will include it in our research of bomber aircraft in an 

attempt to capture the effects of deployments.  The three AFIT theses highlighted above 

attempted to account for deployments in various ways and none were found to be 

significant.  Armstrong (2006) found temperature to be significant, while Bryant (2007) 

was unable to draw conclusions on the effects of dew point.  This research will attempt to 

evaluate temperature as a predictor of bomber flying costs.  Finally, seasonality will also 

be evaluated in this research as it was found significant by both Armstrong (2006) and 

Bryant (2005).  The final section in this chapter focuses on cannibalizations. 

Cannibalizations Adversely Affect Maintenance. 

The Government Accountability Office (GAO) has expressed concern with the 

military’s reliance on cannibalization to keep aircraft in the air.  DOD defines 

cannibalization as “removing serviceable parts from one piece of equipment and 

installing them into another” (GAO, 2001:1).  Units cannibalize aircraft in order to 
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maintain readiness and operational needs.  Cannibalizing an aircraft is generally faster 

than ordering the desired part from the supply system.  However, there are several 

adverse affects to this process, such as increased maintenance costs through increased 

mechanics’ workloads as well as mechanical problems (GAO, 2001:2).  This process also 

leads to grounding aircraft that are missing parts due to cannibalizations (GAO, 2001:17).  

Additionally, cannibalizations increase the risk of collateral damage of other parts, since 

removing a specific part usually requires moving nearby parts (GAO, 2001:19).   

Since cannibalizing parts involves replacing broken parts with used ones, rather 

than new ones, and can result in collateral damage (GAO, 2001:19), the level of 

cannibalizations can affect the performance of aircraft components, potentially resulting 

in increased flying hour costs.   The GAO report (2001) included a list of the 

cannibalization rates (defined as the number of cannibalizations per 100 sorties) of 91 Air 

Force, Navy, and Marine Corps aircraft.  In FY2000, the B-1B was found to have the 

highest cannibalization rate at 85.4, while the B-52H was fifth on the list with a 

cannibalization rate of 30.2; the average cannibalization rate is 9.4 (GAO, 2001:34).  

While the B-2 was not included on the list, cannibalizations are a significant event for B-

1B and the B-52H aircraft.  Cannibalization rates appear to have an impact of 

maintenance levels which may lead to increased costs; therefore, we will include 

cannibalization rates in the flying cost models for the B-1B and the B-52H. 

Summary 

Recent studies suggest that basing flying cost estimates on more than simply the 

number of hours flown will result in more accurate cost forecasts.  These additional 

variables include aircraft age and total operating hours, variables quantifying operations 
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tempo, lagged costs, and environmental characteristics at the bases supporting the 

aircraft.  While each of these studies reveals significant insight into flying costs, none 

evaluated bomber aircraft specifically.  Evaluating the CONS and DLR costs for each of 

these aircraft may reveal variables which are significant in developing more predictive 

flying cost models.   

Research has also been conducted concerning cannibalizations.  Cannibalizations 

can lead to increased mechanical failures and the grounding of aircraft which have lost 

parts due to cannibalizations.  This research will evaluate the affects of cannibalizations 

on CPFH for the first time. 

 Chapter III will discuss the data and methodology used in this study to develop 

predictive models for CONS and DLR costs for each of the B-1B, B-2, and B-52H.  It 

will also describe how we created the database used in this research. 
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III. Data and Methodology 

Overview 

 The purpose of this chapter is to describe the data and methodology used to 

answer the two research questions defined in Chapter I.  The methodology discussion will 

start with a description of the sources which provided the data for this study, as well as 

how we aggregated these data into a common spreadsheet.  In the next step, we will 

perform regressions of costs on flying hours and compare the results to the current 

methodology.  This will allow us to determine how effective the current cost per flying 

hour (CPFH) process is in estimating costs.  Next we will build new forecasting models 

through the examination of several other potential predictor variables, in addition to 

flying hours.  Lastly, this chapter will also discuss the diagnostic tests used throughout 

the model building process.  

Data Sources 

 Four sources provided the data used in this study: the Air Force Total Ownership 

Cost (AFTOC) database, the Air Force Reliability and Maintainability Information 

System (REMIS), the Multi-Echelon Resource and Logistics Information Network 

(MERLIN), and the Air Force Combat Climatology Center (AFCCC).  We aggregated 

the information from these four sources into a single database used for developing the 

models.  The following sections summarize these four data sources.  Additionally, 

Appendix A includes samples from each database.  After each of the four data sources are 

explained, this chapter will discuss the database used in this research, and will define 

each variable. 
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AFTOC 

The AFTOC database provides a single source of information for Air Force O&M 

costs, as well as personnel, infrastructure, and research and development costs.  AFTOC 

receives information on transactions affecting wing-level O&M budgets from a series of 

data feeds that provide daily transaction information.  The Air Force Cost Analysis 

Agency (AFCAA) provided the AFTOC data used in this study.  The data included 

information on monthly base-level costs for both of the dependent variables in question – 

depot level repairables (DLRs) and consumables (CONS) costs associated with each of 

the three bomber platforms.  The data provided was for nine years: from FY1998 through 

2006.  AFTOC provided the data in CY2007 dollars.  

REMIS 

The Air Force REMIS database stores information on maintenance and logistics 

data for each of the Air Force’s weapons systems.  AFCAA also provided the REMIS 

data, which included information on the operational factors that will be evaluated as 

predictor variables of the costs described above.  REMIS provided tail-level monthly data 

on age, sorties, hours flown, and utilization rate for each of the three bomber platforms.  

These individual aircraft data were aggregated to the monthly base-level for use in this 

analysis.   

MERLIN 

 MERLIN provided data for two of the operational factors considered in this 

research.  REMIS supplies the MERLIN data.  However, while REMIS provides tail-
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level information, MERLIN provides base-level data.  This research obtained data for 

mission capable rates and cannibalization rates from the MERLIN database. 

AFCCC 

 The AFCCC database includes historical daily weather observations from over 

10,000 locations worldwide.  The Air Force uses this data as a planning tool for 

executing military operations.  This database provided the monthly temperature data for 

each base evaluated in this research.  The mean temperature (in degrees Fahrenheit) for 

each month will be included to capture the effect that temperature has on flying hour 

costs.   

 The next section details the variables this research collected from the above 

sources.  The discussion of the dataset will define both the dependent variables and the 

potential predictor variables.   

Dataset 

 This research built three databases, one for each of the three aircraft analyzed.  

Each database contains monthly, base-level information on the two dependent variables, 

and 12 control variables, including flying hours.  Each of the variables contained in the 

three databases are summarized below. 

Dependent Variables 

 We will develop models to forecast two types of cost for three different types of 

aircraft.  These costs include the costs of reparable parts (DLR) for each of the three 

bombers, as well as the costs of consumable (CONS) parts for each of the three types of 

bombers.   
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In our datasets of net costs for the B-1B, we discovered several negative values of 

net costs for both the DLR and CONS costs.  This is due to the system the Air Force uses 

to manage aircraft parts.  If maintenance units are able to repair broken parts that have 

been removed from aircraft, the units are able to return those parts for credits.  

Additionally, we found that certain units spent significantly less money than others.  This 

is due to the repairing systems available at different bases; certain bases are equipped to 

repair certain parts.  Therefore, if one of these parts breaks down at Base A, but Base B 

has the repairing capabilities, Base A may send that part to Base B for repair.  This 

results in Base B receiving the credit for the repaired part, while Base A has to spend 

money on a new part with no opportunity for a credit. 

To correct for this issue of negative costs associated with the credit system, we 

added a constant term to each observation in the monthly base-level B-1B DLR and 

CONS datasets.  Specifically, we added $12,070,261 to each observation’s net DLR cost 

and $5,383 to each observation’s net CONS cost.  This increased all of the net costs by 

the same amount, making each of the observations positive, while preserving the 

relationship between net costs and each of the independent variables.  This methodology 

allows us to take the log of the data without losing any data.   

A second method we used to correct for negative costs, in addition to adding a 

constant term to the net costs, was to group the data at different levels of aggregation.  

The first level of aggregation involves grouping the base-level data at mission design 

series (MDS) level.  This means that costs incurred at each individual base are summed 

together for each time period resulting in a single net cost for the entire MDS level.  Most 

of the negative net costs were omitted when the data was aggregated at the MDS level.  
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The second level of aggregation involved aggregating the monthly data at the quarterly 

level.  We did this for both the base and MDS-level data.  This resulted in four datasets 

for each of the six types of cost: base-level monthly, MDS-level monthly, base-level 

quarterly, and MDS-level quarterly.  Since there is just one B-2 operational base, there is 

no difference between the base-level and MDS-level data for this airframe.  Therefore, 

this research will result in a total of 20 models.  Table 2 presents of list of each of the 20 

dependent variables we evaluated.  In addition to eliminating negative net costs, 

aggregating the data provides analysts with the flexibility to use different types of 

models.  

 

Table 2: List of Dependent Variables 

B-1B DLR monthly by base B-1B CONS monthly by base
B-1B DLR monthly by MDS B-1B CONS monthly by MDS
B-1B DLR quarterly by base B-1B CONS quarterly by base
B-1B DLR quarterly by MDS B-1B CONS quarterly by MDS

B-2 DLR monthly by base/MDS* B-2 CONS monthly by base/MDS*
B-2 DLR quarterly by base/MDS* B-2 CONS quarterly by base/MDS*

B-52H DLR monthly by base B-52H CONS monthly by base
B-52H DLR monthly by MDS B-52H CONS monthly by MDS
B-52H DLR quarterly by base B-52H CONS quarterly by base
B-52H DLR quarterly by MDS B-52H CONS quarterly by MDS

* Since there is only one B-2 base, base-level is equivalent to MDS-level

Dependent Variables

 

 

DLR.  AFTOC provided the monthly net DLR costs for each of the three 

platforms in CY2008 dollars.  These costs are defined as the total charges for DLR parts 

less the total credits reimbursed to a unit for unused or repaired parts, per the system 

described previously.  AFTOC provided these monthly costs for each base supporting the 

aircraft evaluated.   
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CONS.  Like DLR costs, AFTOC provided the monthly net CONS costs for each 

of the three platforms this research evaluated.  The net CONS costs are defined similar to 

net DLR costs; net CONS costs are total charges less total credits.  AFTOC provided the 

information for this variable at the base-level in CY2008 dollars. 

Independent Variables 

 This research will evaluate several control variables as it develops the forecasting 

models described above.  The motivation for choosing these variables was detailed in the 

previous chapter.  The following sections will define each of the independent variables.   

Flying Hours.  As outlined in the previous chapter, the Air Force builds its flying 

program budgets based on projected flying hours.  Additionally, several studies have 

identified flying hours as a significant predictor of flying costs, as discussed in Chapter 

II.   Therefore, we will include flying hours as an independent variable.  REMIS provided 

monthly, tail-level flying hour data.  In order to use these data in our research, we had to 

aggregate the data at the base-level.   

Average Aircraft Age.  The average aircraft age for each base will also be 

included as an independent variable, as it was found to be significant in forecasting 

operations related costs.  This variable will also act as a proxy for fiscal year fixed effects 

when aircraft fleets maintain a stable composition of aircraft; that is, no new planes enter 

the fleet and no existing planes are removed.  We calculate this variable as the average 

age of all the aircraft at a specific location in a specific month.  The REMIS database 

provided the information on aircraft age by tail-number.  Therefore, we had to aggregate 

the information to the base-level in order to calculate average age.   
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Average Airframe Operating Hours.  Average airframe operating hours is defined 

as the average total hours flown for each aircraft within a fleet.  This variable has only 

been evaluated once and it was found to be significant.  Therefore, we will include it in 

this study in order to further examine its effectiveness.  REMIS provided the information 

on this aircraft characteristic and we will calculate it similar to average aircraft age.  Total 

flying hours for a specific bomber platform will be calculated for a specific base.  This 

number is then divided by the number of aircraft at the location to arrive at average 

airframe operating hours.  

Sorties.  A sortie is defined as a flying mission associated with one or more take-

offs and landings.  Research suggests that flying costs and sorties are positively 

correlated; that is, as sorties increase costs will increase.  Therefore, sorties will also be 

examined as a predictor of DLR and CONS costs for each aircraft.  REMIS also provided 

data for this variable at the tail-level, se we had to aggregate the tail-level sorties to arrive 

at total base-level sorties. 

 Average Sortie Duration.  Average sortie duration (ASD) measures the average 

sortie length for a particular aircraft.  We include this variable in our study in order to 

measure the effect deployments has on costs; a sortie in support of a contingency will be 

longer than training missions.  Using REMIS data, we first calculate ASD for each 

individual aircraft.  Wing-level ASD, or average ASD, is calculated by summing the tail-

level ASD data and dividing by the number of aircraft.   

Mission Capable Rate.  Mission capable rate (MCR) is defined as the percentage 

of wing possessed aircraft capable of flying at least one specified mission in a given time 

period.  A high MCR for a base means that fewer aircraft are grounded due to 
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maintenance or modification problems.  This variable is included in order to determine 

how readiness affects costs.  MERLIN provided this information at the monthly base-

level for each of the three aircraft.  

Utilization Rate.   Utilization rate represents the amount each aircraft is flown in a 

given time period at a given location.  It is defined as the number of sorties flown, on 

average, per aircraft.  That is, the higher the utilization rate for a base, the more sorties 

flown, per aircraft, at that base.  This variable was found to be significant in recent 

studies.  We calculate this variable from the provided REMIS data as the number of 

sorties flown at a given installation divided by the number of aircraft at that installation. 

Average Crude Oil.  Recent studies included jet fuel prices as an independent 

variable in order to capture how flying hour costs are affected by changes in costs in the 

petroleum industry, and thus the cost of moving parts from one place to another.  Studies 

did not find this variable to be significant.  However, this research will analyze average 

monthly crude oil prices as a proxy for the petroleum industry.  The Energy Information 

Administration provided the data for this variable in cents per gallon.  

Month.  Previous research found that flying costs may exhibit a seasonality trend 

associated with the fiscal year; specifically, Armstrong (2006) and Bryant (2007) found 

costs to increase toward the end of the fiscal year.  Therefore, this research will include 

dummy variables representing the months as independent variables.  A dummy variable 

represents whether or not a variable is present for a specific observation.  For example, a 

dummy variable representing the month of October would have a value of one if the 

observation took place in the month of October, or zero if the observation took place in 

any other month.   
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Temperature.  Previous studies have found temperature, and other location 

characteristics, to be significant predictors of cost. Therefore, this research will examine 

the effect temperature has on flying costs.  AFCCC provided the information on average 

monthly temperature in degrees Fahrenheit for each base evaluated. 

Cannibalization Rate.  Cannibalization rate is calculated at the base level.  It is 

defined as the number of times a cannibalization occurs per 100 sorties for a given base.  

A cannibalization is the removal of a working part from one aircraft in order to install it 

on another aircraft so that the receiving aircraft can fly a mission.  This research will not 

include this variable in the development of either of the two B-2 forecasting models 

because the B-2 has not experienced cannibalization.  MERLIN provided the monthly, 

base-level cannibalization rates for each platform. 

Summary of Data Collection 

 This research uses monthly data from FY1998 through FY2006 in estimating the 

CPFH models built in this analysis.  Two types of costs are modeled for each of three 

bomber platforms, DLR costs and CONS costs.  The database provides as many as 108 

monthly data points for each of the operational bases supporting bomber aircraft.  A 

sample of the database of monthly B-52H costs is shown in Table 3.  Similar databases 

were built for the monthly costs of the B-1B and B-2, as well as the quarterly costs for 

the B-1B, B-2, and B-52H.  In addition to the variables shown in the table below, dummy 

variables were created to represent each month and quarter.   
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Table 3: Sample from Database Developed in This Research 

Base FY FM CONS (CY08) DLR (CY08) FH Age TOH Sorties ASD MCR U Rate Oil $ Temp C Rate
Barksdale 1998 1 1344645.06 9598034.05 1341.90 430.63 14210.88 202.00 6.92 0.77 9.05 21.33 49.12 0.77
Barksdale 1998 2 411421.78 2096488.62 1496.10 431.40 14251.33 196.00 8.58 0.78 10.97 20.19 49.37 0.39
Barksdale 1998 3 748906.02 11005049.03 1151.70 432.45 14214.26 185.00 6.72 0.79 8.46 18.33 52.97 0.26
Barksdale 1998 4 785176.60 7418413.73 1188.70 433.53 14177.39 210.00 6.69 0.77 8.73 16.72 61.48 0.19
Barksdale 1998 5 718688.30 6674792.86 1473.40 434.96 14285.39 195.00 9.34 0.83 11.30 16.06 73.10 0.17
Barksdale 1998 6 1407521.02 7193840.88 1437.80 435.57 14421.20 217.00 7.51 0.77 9.76 15.12 80.63 0.13  

 

 Table 3 lists the number of observations collected for each base.  As shown in the 

table, only one base has fewer than 108 observations.  Due to reallocation of aircraft, 

Mountain Home AFB ceased supporting the B-1B by 2002. 

 

Table 4: Observations per Base (FY1998 – FY2006) 

Aircraft Base Number of Observations 
  B-1   Dyess  108 
    Ellsworth  108 
    Mountain Home  44 
  B-2   Whiteman   108 
  B-52   Barksdale   108 
      Minot    108 
*  FY1998 – FY2001 

 

After building the datasets, we evaluated simple regressions of cost on flying 

hours to determine how useful a proportional model is in forecasting costs. 

Evaluating the Proportional Relationship 

 Once we have collected the data and constructed a useful database, we examine 

the strength of a proportional relationship between costs and flying hours.  As described 

in the previous chapters, the Air Force currently employs a flying cost forecasting 

technique which involves multiplying the anticipated number of flying hours by a cost 

per flying hour (CPFH) factor for each type of flying cost.  This method is simple and 
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straightforward; however, it assumes that, for a given time period, 1) costs will be zero if 

no flying occurs, and 2) that costs and flying hours are linearly related, that is, increasing 

flying hours by one percent will increase costs by one percent.   

 To test this theory, we will examine regressions of quarterly MDS-level costs for 

each type of aircraft, DLR and CONS, on flying hours and assess the results.  The 

findings from this step of the analysis will initiate the examination of a new, potentially 

more predictive, forecasting model. 

Building the New Models 

We applied ordinary least squares (OLS) regression to the datasets described 

previously in order to develop the cost forecasting models.  An OLS regression model is 

one which maximizes the amount of explained variation in the dependent variable by 

minimizing the squared distances between the model’s predicted values, based on the 

explanatory variables, and the actual values given in the dataset.   

The general form of OLS regression is shown in the equation below: 

yi = α + β1x1i + β2x2i + … + βpxpi + εi 

In this equation, yi represents the response, or dependent, variable for a specific 

observation, i.  The control, or independent, variables are represented by x1i, x2i, …, xpi, 

for each observation, i, while the coefficients for each of the p parameters are given by β1, 

β2, …, βp.  The intercept, or constant term, is given by α, and εi represents the error term, or 

residual, in each observation. 

Additionally, this research will examine the relationship between both DLR and 

CONS costs and each of the independent variables using a log-linear model.  Taking the 

log of the dependent variable and certain independent variables means we are now 
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capturing the elasticity of cost on the independent variables (Wooldridge, 2006).  

Therefore, we are able to describe the variations in the dependent variable as a percentage 

change given a percentage change in the independent variable; the units are unimportant.  

Another advantage of using a log-linear model is its ability to reduce heteroskedasticity 

problems associated with the residuals of the model.  Heteroskedasticity, as well as other 

post-estimation problems, will be discussed in the next section. 

While performing a log transformation on certain variables presents several 

advantages, it also has some major limitations.  First, log transforms cannot be used if a 

variable is zero or negative.  As discussed previously, we discovered several B-1B 

observations with negative net costs due to the credit system employed by the Air Force.  

These negative costs led us to both aggregate the data at the four levels of aggregation, 

defined earlier, and to add a constant term to the net costs of the B-1B datasets.  

A second limitation of log transformations is that the coefficients on the 

independent variables represent instantaneous elasticities.  Therefore, when we interpret 

the coefficient as an elasticity, describing how a change in an independent variable relates 

to a change in the dependent variable, the relationship is an approximation.  Further, the 

interpretation of the coefficients as approximations is only valid for small changes in the 

independent variable; the larger the change in the dependent variable, the less accurate 

the approximation.  To illustrate this, suppose x0 = 40 and x1 = 41.  The percentage 

change from x0 to x1, given by (x1 – x0)/x0, is 2.5%.  However, ln(41) – ln(40) = 0.0247, 

or 2.47%.  If x1 = 60, then the change is much larger; the change in x is now 50%.  

However, ln(60) – ln(40) = 0.4055, or 40.55%.  The approximation is much less accurate 

when the change is large.  Therefore, the equation only yields an approximation for small 
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changes in x.  However, for the purposes of this analysis, the log-linear models developed 

in this paper represent constant elasticity models (Wooldridge, 2006). 

Model Diagnostics 

 To determine if a linear model is appropriate for describing the relationship 

between costs and flying hours, we perform a series of analyses.  We must test for both 

highly influential data points, and the residual assumptions of a classical linear model: 

normality, independence, and homoskedasticity. 

Influential Data Points 

An influential data point is an observation which has a large affect on any part of 

the regression analysis, such as the estimated coefficients or p-values of the independent 

variables present in the model.  This implies that including the point in the modeling 

process may distort the accuracy of the regression, as the estimated coefficients and the 

statistical significance of the independent variables are in question.  This analysis will test 

for influential data points using Cook’s Distance.  Any data point with a Cook’s Distance 

value greater than 0.5 indicates that the point is a potentially overly influential data point.  

This point is evaluated and removed if it significantly affects the parameters of the 

model.  If any points are omitted due to large Cook’s Distance values, it will be noted in 

the results tables presented in Chapter IV.   

In addition to examining the Cook’s Distance, we perform three diagnostic tests 

to test three assumptions of OLS regression, independence, normality, and constant 

variance of the residuals.  
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Independence 

 The first assumption is that the error terms are independent.  This means that the 

error term has the same variance given any values of the explanatory variables, or that the 

error term from one period is unrelated to the error term in the following period.  To test 

this assumption of independence, we use the Durbin-Watson statistic to test for the 

presence of autocorrelation in the residuals; that is, to test for first order serial correlation.  

With this test, a p-value less than 0.05 means we reject the null hypothesis that the 

residuals are independent.  To control for this, we will graph the autocorrelations of the 

residuals.  This graph will allow us to visually determine if there is a first order serial 

correlation in the data and will identify that a lag term to include in the model as an 

independent variable.    

Normality and Constant Variance 

 The remaining two diagnostic tests are the Shapiro Wilk test for normality of the 

studentized residuals, and the Breusch Pagan test for constant variance of the residuals.  

In the Shapiro Wilk test, similar to the Durbin Watson test, a p-value greater than 0.05 

fails to reject the null hypothesis that the residuals are normally distributed.  Likewise, in 

the Breusch Pagan test, a p-value greater than 0.05 means we fail to reject the null 

hypothesis that the residuals exhibit constant variance.   

In some cases, we found a model to fail one or both of these tests.  However, OLS 

regression is robust to deviations from normality and constant variance.  This means that 

even if a model fails one or both of these tests, the estimated coefficients are unbiased.  

Therefore, if a visual inspection of the histogram of residuals appears similar to a bell 

curve, with a peak in the center and is symmetric on both sides, we meet the assumption 
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of normality.  Additionally, if a model fails the Breusch Pagan test but a visual inspection 

reveals that the residuals have a common variance and are spread evenly about the mean, 

we meet the assumption of constant variance.  If a model fails to satisfy one or both of 

these tests, but a visual inspection reveals that the deviation is a robust deviation from 

normality or constant variance, it will be noted in the results tables in Chapter IV.   

The Shapiro Wilk and Breusch Pagan tests are also very sensitive to outliers.  

Therefore, some models may fail these tests when all points are included, but pass the 

tests when an outlier is omitted.  In this case, we say that the deviation was verified to be 

a robust deviation from normality or constant variance.  These deviations will also be 

notes in the results tables in Chapter IV.  

Model Utility 

To assess the usefulness and predictability of the model, we evaluated both the p-

values of the independent variables and the R2 and adjusted R2 of the model.   In this step 

of the methodology, we ran models using both a forward regression methodology and a 

backward regression methodology.  In forward regression, we begin with a model 

consisting of just one independent variable and continue adding variables that are 

statistically significant at the 95% confidence level, one at a time, until each variable has 

been evaluated.  Backward regression begins with a model consisting of all of the 

independent variable evaluated.  Independent variables which are insignificant at the 95% 

confidence level are omitted, one at a time, until we achieve a model consisting of only 

statistically significant variables.  Therefore, several models reported in Chapter IV 

involve a single independent variable, while the model with the most independent 

variables has just four statistically significant variables.   
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To measure the explanatory power of the models, we evaluate the R2 and adjusted 

R2.  The R2 tells us what percentage of the variability in the dependent variable is 

explained by the model.  The adjusted R2 accounts for both the sample size and the 

number of independent variables included in the model.  If the adjusted R2 is 

significantly smaller than the R2, then some of the independent variables are not adding 

predictive value to the model (McClave, 2005).  Of each of the final models reported in 

Chapter IV, the greatest distance between the R2 and the adjusted R2 is 0.037 indicating 

that all of the predictor variables included in each model are useful in explaining the net 

costs.     

Multicollinearity 

 The independent variables of each model were tested for multicollinearity, which 

is linear redundancy in the model.  This means that some of the independent variables are 

correlated with each other and have the same effect on the dependent variable, which 

biases the beta coefficients (Wooldridge, 2006).  To determine if any of the models 

suffered from multicollinearity, we evaluated the variance inflation factor (VIF) of each 

independent variable.  The VIF is a scaled factor which measures how much the variance 

of an independent variable’s beta coefficient is increased due to collinearity with another 

independent variable.  A VIF larger than 5 indicates that the model suffers from 

multicollinearity.  Of each of the final models reported in Chapter IV, the largest VIF for 

each of the included independent variables is 4.57. 
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The Final Models 

 The final models we report in the Chapter IV are built using the methodology 

outlined in this chapter and satisfy each of the diagnostics just described.  The four 

models for each of the six types of cost are presented in a table.  These tables will 

identify:  

• the independent variables included in each model; 

• the estimated coefficients for each independent variable, along with the 

standard errors and p-values (a p-value less than or equal to 0.05 indicates that 

the variable is statistically significant); 

• the R2 and adjusted R2 for the model, which reveals how much variation in the 

response variance is explained by the model; and 

• the results of the Shapiro Wilk, Breusch Pagan, and Durbin Watson tests. 

Summary 

This chapter outlines the methodology used in building the predictive models of 

DLR and CONS costs for each of the three Air Force bomber platforms, the B-1B, the B-

2, and the B-52H.  The first step is to collect and normalize the data used in building the 

forecasting models.  Next, we test the current CPFH methodology used by the Air Force 

by regressing costs on flying hours.  Then, we will use OLS regression to determine if 

accounting for other potential predictor variables may be useful in forecasting flying 

costs.  

Chapter IV summarizes the results of the models we built using the methodology 

just described.  In Chapter V we will highlight the conclusions that were drawn based on 

the results obtained in Chapter IV.   
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IV. Results and Analysis 

Overview 

 This chapter presents the results of each of the predictive models discussed in 

Chapter III.  First, we present the results of using the current proportional model, based 

on flying hours, to forecast costs.  Next, we present the final models for each type of cost, 

developed using the methodology outlined in Chapter III.  We developed and examined 

four models for each of the following six costs: B-1B depot level reparable (DLR) costs, 

B-1B consumables (CONS) costs, B-2 DLR costs, B-2 CONS costs, B-52H DLR costs, 

and B-52H CONS costs.   

Proportional Models 

 As discussed in Chapter II, the Air Force currently uses a cost per flying hour 

(CPFH) factor to determine flying program budgets.  As described in Figure 4, this 

methodology is based on two assumptions.  First, it assumes zero costs when zero hours 

are flown.  Second, it assumes a linear, proportional relationship between costs and flying 

hours.  That is, when flying hours increases by one percent, costs will increase by one 

percent.   

The first step of this analysis is to test the hypothesis that flying hours and costs 

are related proportionally.  To do this, we performed simple regressions of cost on flying 

hours to see if 1) the intercept was zero, and 2) the coefficient on flying hours was equal 

to the CPFH factor used in the proportional methodology.  The equations below define 

the proportional relationships the Air Force uses to forecast DLR and CONS costs. 

DLRt = CPFH factorDLR * Projected Flying Hourst 
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CONSt = CPFH factorCONS * Projected Flying Hourst 

To test this relationship, we perform simple regressions of net DLR and net CONS costs 

on flying hours.   

Net DLR Costs 

Table 4 shows the results of regressing quarterly mission design series (MDS) 

level DLR costs on flying hours.  The table shows both the estimated intercept and the 

estimated coefficient for flying hours.  Examining the B-1B quarterly model, for 

example, tells us that when zero hours are flown, we can anticipate DLR costs of 

$66,936,060 (CY08$).  Additionally, each flying hour will increase costs by an additional 

$3,754 (CY08$).  The rightmost column of the table shows the FY2008 CPFH factor, 

provided by the Air Force Total Ownership Cost (AFTOC) database, used to project 

active duty net DLR costs.   

The table reveals significant disagreement between the data and the current 

forecasting method used to project flying costs.  First, Table 5 shows that our regressions 

reveal a multi-million dollar intercept for both the B-1B and the B-52H; this is consistent 

with substantial fixed costs associated with flying programs that are now accounted for in 

the proportional model.  This contradicts the first assumption underlying the proportional 

model used by the Air Force; flying zero hours does not imply zero DLR costs.  

Additionally, the estimated coefficient for flying hours for each of the three aircraft is 

less than the current CPFH factor used by the Air Force.   

The B-2 model also yields a multi-million dollar intercept; however, the intercept 

is not statistically different from zero, as indicated by the high p-value.  Additionally, the 

B-2 model revealed a coefficient less than the CPFH factor; however, this coefficient is 
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not statistically different from the CPFH factor at the 95% confidence interval.  The 

results of the B-2 model indicate that the current proportional CPFH methodology may 

be useful in forecasting B-2 DLR costs.   

 We ran an F test to test the null hypothesis that the regression and proportional 

models are statistically equivalent.  Our findings indicate that we fail to reject the null 

hypothesis that the models are statistically equivalent.  Therefore, the intercept is not 

statistically different from zero and the proportional method is appropriate in modeling 

the B-2 DLR data. 

 

Table 5: Regressing DLR Costs on Flying Hours 

Dependent Variable: MDS-Level Deport Level Repairables Costs (FY08$) 
    

Intercept Flying Hours Adj R2 
FY2008 AD 

CPFH Factor Model  

B-1B Quarterly 
Coefficient 66,936,060 3,754 

0.101 $18,664  Standard Error 7,691,020 1,688 

p-Value <0.001 0.033 

B-2 Quarterly 
Coefficient 2,372,281 11,850 

0.391 $12,990  Standard Error 3,693,852 2,448 

p-Value 0.525 <0.001 

B-52H Quarterly 
Coefficient 17,524,921 3,935 

0.433 $5,633  Standard Error 4,100,060 747 

p-Value <0.001 <0.001 
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Figure 6: Proportional Forecasts versus Non-Proportional Forecasts for DLR Costs 
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The charts in Figure 6 show the relationship between the proportional models 

used by the Air Force and the non-proportional models created by regressing DLR costs 

on flying hours.  The B-1B model closely resembles Figure 4 from Chapter I.  Given the 

different slopes between the regression line and the proportional relationship, the 

intersection between the two lines represents the point where the proportional model 

shifts from underestimating flying costs to overestimating flying costs.  The B-2 data 

reveals that the proportional model and our model yield similar forecasts.  That is, given 

historical levels of flying hours, ranging from 596 to 1,976 per quarter, the intercept 

calculated in Table 5 is insignificant at the 95% confidence level.  Evaluating the chart of 

B-52H DLR costs reveals that the proportional forecasting method consistently 

underestimates costs, given the range of historical flying hours. 

Net CONS Costs 

 Table 6 shows the results of regressing MDS-level CONS costs on flying hours.  

Similarly to the results of the models representing net DLR costs for the B-1B and B-52H 

discussed previously, we find that the data indicate an intercept, while the coefficient on 

flying hours is considerably less than the CY2008 CPFH factor used in the proportional 

model.  Surprisingly, CONS costs for the B-2 reveal a negative estimated coefficient for 

flying hours.  This indicates that increasing flying hours will reduce overall CONS costs 

for the B-2.  However, the p-value for this coefficient is 0.749, indicating that it is not 

statistically different than zero.  Therefore, we can conclude that flying hours is not a 

predictor of B-2 CONS costs. 

 We make a visual comparison between the proportional CPFH models and the 

regressions developed in this research in Figure 7.  All three charts reveal that the 
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proportional method underestimates CONS costs at low levels of flying hours and 

overestimates costs at high levels of flying hours.  

 

Table 6: Regressing CONS Costs on Flying Hours 

Dependent Variable: MDS-Level Consumables Costs (FY08$) 
    

Intercept Flying Hours Adj R2 
FY 2008 AD 
CPFH Factor Model  

B-1B Quarterly 
Coefficient 7,418,918 623 

0.053 $1,933  Standard Error 1,652,172 363 

p-Value <0.001 0.095 

B-2 Quarterly 
Coefficient 1,803,612 -86 

-0.026 $969  Standard Error 403,864 268 
p-Value <0.001 0.749 

B-52H Quarterly 
Coefficient 1,710,543 575 

0.235 $932  Standard Error 920,520 168 

p-Value 0.072 0.002 
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Figure 7: Proportional Forecasts versus Non-Proportional Forecasts for CONS Costs 
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The findings discussed previously indicate that the current proportional method of 

forecasting flying costs may not be appropriate for these three aircraft.  The next step of 

this analysis, as described in Chapter III, is to apply OLS regression techniques to several 

variables flagged as potential cost drivers in previous research.  Our goal is to determine 

if controlling for factors other than flying hours is useful in forecasting flying costs.  

First, we examine B-1B DLR costs. 

B-1B DLR Model 

 This section will summarize the models of DLR costs for the B-1B.  We 

developed five models associated with B-1B DLR costs.  Table 7 shows the results for 

each regression.  The first two models developed for the B-1B represent monthly base-

level data.  The remaining three models represent monthly MDS-level costs, quarterly 

base-level costs, and quarterly MDS-level costs.  

Our analysis revealed that the factors that drive costs at Dyess AFB are different 

that the factors that drive costs at Ellsworth AFB and Mountain Home AFB.  As we 

developed the model for Dyess AFB, we found that the model’s residuals failed the 

Durbin-Watson test of independence at a 95% confidence level (an alpha level of 0.05).  

Therefore, the log of the previous month’s DLR cost was included as an independent 

variable to correct for the lack of independence.  The final model for Dyess AFB relates 

the log of monthly DLR costs to the log of the previous month’s DLR costs.  Once again, 

we evaluated the log of net costs as the dependent variable to correct for non-constant 

variance. 

ln(Monthly DLR)(t) = 9.411 + 0.449 * ln(Monthly DLR)(t-1) 
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The estimated coefficient on the log of the previous month’s DLR costs for Dyess AFB is 

0.449, indicating that a one percent increase in last month’s net DLR costs will increase 

the current month’s costs by 0.449%.  Therefore, to forecast net DLR costs for Dyess 

AFB, we must know the previous month’s net DLR costs.  Surprisingly, flying hours was 

not found to be a statistically significant predictor of DLR costs for Dyess AFB.  The R2 

for the model of monthly DLR costs at Dyess AFB is 0.201, indicating that our model 

explains 20.1% of the variation in monthly DLR costs at Dyess AFB.  Table 7 also 

provides the p-values of each of the three diagnostic tests performed on the model to test 

three assumptions of OLS regression: independence, normality, and constant variance of 

the model residuals.  As defined in Chapter III, a p-value of 0.05 or larger satisfies each 

of the three tests.  For the Dyess AFB model, the p-value for the Durbin Watson test is 

0.593.  Therefore, our model satisfies the assumption of independence. 

Before explaining the results of the Shapiro Wilk test for normality and the 

Breusch Pagan test for constant variance, we must first explain a few terms.  First, as 

discussed in Chapter III, OLS regression is robust to deviations from normality and 

constant variance (McClave, 2005:572).  This means that even if a model fails one or 

both of the tests, the estimated coefficients are unbiased.   

In this research, if we find that a model fails to satisfy the Shapiro Wilk test, we 

inspect a histogram of the studentized residuals.  If we find that removing one or two 

points results in satisfying the Shapiro Wilk test, we say that the deviation was verified to 

be a robust deviation from normality.  If we find that the model fails the Shapiro Wilk 

test, but the studentized residuals appear to be approximately normal, we say that the 

deviation was visually determined to be a robust deviation from normality.   



Table 7: B-1B DLR Cost Models 
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We conduct a similar process if a model fails the Breusch Pagan test for constant 

variance.  We begin by inspecting the residuals versus fitted plot.  If we find that 

removing one or two points results in satisfying the Breusch Pagan test, we say that the 

deviation was verified to be a robust deviation from constant variance.  If we find that a 

model fails the Breusch Pagan test, but the residuals appear to exhibit constant variance, 

then we say that the deviation was visually determined to be a robust deviation from 

constant variance.  

The model of monthly DLR costs for Dyess AFB fails the Shapiro Wilk test with 

a p-value of 0.009.  The histogram of studentized residuals, along with a normal quantile 

plot, is shown in Figure 8.  These graphs reveal that a single point may be causing the 

deviation from normality. 

 

 

Figure 8: Histogram and Normal Quantile Plot of the Studentized Residuals 
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The data point of interest represents an observation where DLR costs are much 

lower than the rest of the dataset.  Therefore, the model significantly overestimates DLR 

costs for this time period, resulting in a very low studentized residual.   

Figure 9 shows the histogram and normal quantile plot when this data point is 

excluded.  The p-value of the Shapiro Wilk test is 0.035 when this point is excluded.  

However, the studentized residuals appear to be approximately normal.  Therefore, we 

visually determined that this deviation is a robust deviation from normality.   
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Figure 9: Histogram and Normal Quantile Plot of Studentized Residuals for Model 1  

(Excluding Outlier) 

 

 The third diagnostic test shown in Table 7 is the Breusch Pagan test.  The model 

of monthly DLR costs for Dyess AFB satisfies the Breusch Pagan test with a p-value of 

0.225.   
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The second model in Table 7 relates the log of monthly DLR costs for Ellsworth 

AFB and Mountain Home AFB to the log of flying hours and the log of average sortie 

duration (ASD).   

ln(Monthly DLR) = 15.992 + 0.189 * ln(Flying Hours) – 0.325* ln(ASD) 

The estimated coefficient on the log of flying hours is 0.189, indicating that a one percent 

increase in flying hours leads to a 0.189% increase in net CONS costs.  This finding 

indicates that an increase in flying hours has about one-fifth the effect on cost as is 

assumed in the proportional model.  The log of ASD is negatively correlated with 

monthly DLR costs and has an estimated coefficient of -0.325.  This indicates that 

increasing the average sortie duration for a fleet of B-1Bs at Ellsworth AFB or Mountain 

Home AFB by one percent will lead to a reduction in DLR costs of 0.325%.  The R2 for 

this model is 0.288, indicating that 28.8% of the variance in DLR costs at Ellsworth AFB 

and Mountain Home AFB is explained by our model.  Additionally, this model yields 

satisfactory results for all three diagnostic tests.  

The third model in Table 7 relates the log of MDS-level monthly costs to the log 

of flying hours.   

ln(Monthly DLR) =14.715 + 0.328 * ln(Flying Hours) 

This model indicates that a one percent increase in flying hours will increase costs 

by 0.328%.  The R2 for this model is 0.087, indicating that only 8.7% of the variation in 

the dependent variable is explained by this model.  The p-value of the Shapiro Wilk test 

for this model is 0.001 indicating that we reject the null hypothesis of normality.  

However, we verified the deviation to be robust deviation from normality.  Additionally, 
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the model failed to satisfy the Breusch Pagan test.  The residual versus fitted plot is 

shown in Figure 10. 

 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

ln
(D

LR
) R

es
id

ua
l

15.0 15.5 16.0 16.5 17.0 17.5
ln(DLR) Predicted

 
Figure 10: Residuals Versus Fitted Plot for Model 3 

 

  We determined that the three circled points were causing the model to fail the 

test for constant variance.  Therefore, omitting these three points resulted in the residuals 

versus fitted plot shown in Figure 11.  
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Figure 11: Residuals Versus Fitted Plot for Model 3 (Excluding Anomalies) 
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The p-value for the Breusch Pagan test is now 0.204.  We fail to reject the null 

hypothesis that residuals exhibit constant variance.  Therefore, we have verified that the 

deviation from constant variance is a robust deviation. 

 The fourth model in Table 7 relates the log of base-level quarterly DLR costs to 

the log of sorties, age, the log of the previous quarter’s DLR costs, and a cohort.   

ln(Quarterly DLR)(t) = 4.458 + 0.849 * ln(Sorties) – 0.006 * Age  

– 1.027 * Cohort + 0.510 * ln(Quarterly DLR)(t-1) 

The cohort represents four observations – one from Mountain Home AFB (a base 

which no longer flies B-1B aircraft, as discussed in Chapter III) and three from Ellsworth 

AFB – which exhibit very low net DLR costs.  Specifically, the average net DLR cost in 

this dataset is approximately $27 million (CY08$), while all four of these points represent 

DLR costs less than $14 million (CY08$).  Without the cohort dummy variable, our 

model overestimates net DLR costs for these observations. 

This model indicates that an increase in last quarter’s DLR cost will lead to an 

increase in the current quarter’s DLR cost.  However, the observations in the cohort have 

costs that are very low relative to the previous quarter’s DLR costs; each point has a 

current DLR cost that is more than 60% less than the costs in the previous quarter.  

Additionally, our model indicates that an increase in sorties leads to an increase in 

net DLR costs.  The observations in the cohort represent observations with higher than 

average sorties.  Specifically, the Ellsworth AFB observations represent quarters where 

818 sorties or more were flown compared to an average of 371 sorties. 

As discussed previously, net DLR costs represent DLR charges less DLR credits.  

In examining the charges and credits for this dataset, we found that the cohort represents 
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observations where the units experience large credits relative to charges.  Specifically, the 

credits for these observations are greater than or equal to 74% of the total charges, while 

the credits for the rest of the dataset are an average of 58% of the total charges.  Further, 

the cohort represents observations where the DLR charges in the previous quarter are 

relatively high at Dyess AFB.  Specifically, Dyess AFB experiences an average of $60M 

(CY08) in charges, while the average for the cohort is $76M (CY08).  Ellsworth AFB 

provides repair capabilities that are not available at Dyess AFB.  Therefore, when certain 

parts break at Dyess AFB they are shipped to Ellsworth AFB for repair and Ellsworth 

AFB gets the credits for the repairs it does on parts from Dyess AFB.  The increase in 

quarterly charges at Dyess AFB combined with the increase in credits at Ellsworth AFB 

in the following quarter indicate that Ellsworth AFB may have repaired, and received 

credits for, parts removed from aircraft at Dyess AFB.   

When using this model to forecast costs, Air Force estimators can anticipate that a 

quarter will classify as an observation in this cohort if 1) the observation is for Ellsworth 

AFB (Mountain Home AFB no longer supports B-1B aircraft), and 2) they anticipate a 

number of sorties that is significantly over the average and a high level of credits in 

relation to charges for a given quarter. 

 The log of sorties has an estimated coefficient of 0.849, indicating that a one 

percent increase in the number of sorties flown in a quarter will cause DLR costs to 

increase by 0.849%, all else being equal.  Net DLR costs and age are negatively 

correlated, as shown by the estimated coefficient for age; -0.006.  This indicates that 

increasing the average age of a B-1B fleet by one month leads to a decrease in costs of 

0.6%.  The estimated coefficient on the log of the previous quarter’s DLR costs is 0.510, 
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indicating that a one percent increase in DLR costs last quarter will lead to a 0.51% 

increase in costs this quarter.  The estimated coefficient for the cohort is -1.027, 

indicating that these six points have DLR costs that are significantly less than the rest of 

the dataset, all else being equal.  The R2 for this model is 0.811.  Therefore, this model 

explains 81.1% of the variation in DLR costs.  Additionally, this model failed both the 

Shapiro Wilk and Breusch Pagan tests.  The deviation from normality was verified to be a 

robust deviation.  The deviation from constant variance was visually determined to be a 

robust deviation.    

 The fifth model of B-1B DLR costs, relates the log of MDS-level quarterly costs 

to the log of flying hours and utilization rate.    

ln(Quarterly DLR) = 14.714 + 0.308 * ln(Flying Hours) + 0.046 * Utilization Rate 

The estimated coefficient for the log of flying hours is 0.308, indicating that a one 

percent increase in the number of flying hours in a quarter with increase net DLR costs 

by 0.308%.  This model indicates that flying hours has a much smaller effect on cost than 

is assumed in the proportional model.  The estimated coefficient for utilization rate is 

0.046.  This indicates that increasing the utilization rate by one sortie per aircraft 

increases costs by 4.6%, all else being equal.  With an R2 of 0.403, 40.3% of the variation 

in DLR costs is explained by our model.  Additionally, this model failed both the Shapiro 

Wilk test and the Breusch Pagan test.  However, both failures were verified to be robust 

deviations. 

 Interestingly, of each of the four levels of aggregation evaluated, these findings 

indicated that the model representing base-level quarterly costs is the most explanatory.  

Additionally, this model does not include flying hours as an independent variable; the 
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model suggests that variables such as sorties and lagged costs may be more correlated 

with net DLR costs for the B-1B than flying hours.   

B-1B CONS Model 

 This section describes the results of the four models developed to model net 

CONS costs for the B-1B.  All of the B-1B CONS models are listed in Table 8.  The first 

two models represent base-level monthly costs and MDS-level monthly costs.  The third 

model, representing base-level quarterly costs, was split into two models, one 

representing Dyess AFB and Mountain Home AFB, and one for Ellsworth AFB.  We had 

to build two models because we found that costs at Ellsworth AFB are driven by different 

factors than those that drive costs at Dyass AFB and Mountain Home AFB.  The final 

model represents MDS-level quarterly CONS costs for the B-1B.   

 The first model relates monthly base-level B-1B CONS costs to the log of sorties 

and the log of the previous month’s CONS costs.   

ln(Monthly CONS)(t) = 0.922 + 0.363 * ln(Sorties) + 0.806 * ln(Monthly CONS)(t-1) 

The estimated coefficient on the log of sorties is 0.363, indicating that a one percent 

increase in the number of sorties flown in a given month will lead to a 0.363% increase in 

net CONS costs.  The log of the previous month’s CONS costs has a coefficient of 0.806, 

indicating that a one percent increase in the previous month’s costs will result in a 

0.806% increase in the current month’s CONS costs.  This model has an R2 of 0.832, 

indicating that the model explains 83.2% of the variation in the dependent variable.  

While this model failed to satisfy both the Shapiro Wilk and Breusch Pagan tests, we 

visually determined the deviations to be robust deviations from normality and constant 

variance. 
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Table 8: B-1B CONS Cost Models 
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 The second model relates the log of MDS-level monthly CONS costs to a dummy 

variable representing the costs occurring in November and the log of the previous 

month’s CONS costs.   

ln(Monthly CONS)(t) = 4.373 – 0.511 * November + 0.711 * ln(Monthly CONS)(t-1) 

The model indicates that costs occurring in the month of November are significantly less 

than costs in each of the other months.  We hypothesize that this is due to the variations 

in cost associated with the fiscal year.  Costs tend to be greater toward the end of the year 

as units attempt to deplete their budgets, and costs are less at the beginning of the year as 

units begin planning their spending patterns.  Additionally, the model suggests that a one 

percent increase in the previous month’s CONS costs leads to a 0.711% increase in the 

current month’s costs.  This model explains 61.9% of the variation in MDS-level monthly 

CONS costs for the B-1B.  The model fails the Breusch Pagan test; however, the 

deviation was visually determined to be a robust deviation from constant variance. 

The third model in Table 8 models the quarterly net CONS costs for B-1Bs at 

Dyess AFB and Mountain Home AFB.  As discussed, we found that the factors that drive 

B-1B CONS costs at Dyess AFB and Mountain Home AFB are different than the factors 

that drive costs at Ellsworth AFB.  This model finds the log of sorties and the log of the 

previous month’s CONS costs to be statistically significant in forecasting the log of costs.   

ln(Quarterly CONS)(t) = 1.330 + 0.998 * ln(Sorties) + 0.520 * ln(Quarterly CONS)(t-1) 

The model suggests that a one percent increase in sorties in a given quarter results in a 

99.8% increase in net CONS costs, a significantly larger impact than in the base-level 

monthly model.  Additionally, a one percent increase in the previous quarter’s CONS 

costs results in a 0.520% increase in the current quarter’s CONS costs.  This model 
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explains 78.7% of the variation in quarterly net CONS costs for Dyess AFB and 

Mountain Home AFB.  While the model failed both the Shapiro Wilk and Breusch Pagan 

tests, both deviations were determined to be robust deviations. 

The model of quarterly CONS costs for Ellsworth relates the log of costs to a year 

effect and the log of the second lag of CONS costs, that is, the CONS costs from two 

quarters prior.   

ln(Quarterly CONS)(t) = 13.322 – 2.979 * Year Effect + 0.108 * ln(Quarterly CONS)(t-2) 

The year effect in this model represents the data points from the first quarter of FY1998 

through the second quarter of FY1999.  Costs during this time period were significantly 

lower than the costs in the rest of the dataset.  We controlled for the differences in costs 

for this time period with a dummy variable.  The model also suggests that a one percent 

increase in net CONS costs from two quarters prior leads to a 0.108% increase in the 

current quarter’s CONS costs.  This model explains 96.1% of the variation in quarterly 

CONS costs for Ellsworth AFB.  This model satisfies all the diagnostic tests. 

This model of quarterly net CONS costs for Ellsworth also suffered from an 

overly influential data point.  The overlay plot of Cook’s Distance values is shown in 

Figure 12.  The plot reveals two data points that may be overly influential.  The circled 

point represents a quarter where CONS costs were very high compared to two quarters 

prior.  Therefore, the model significantly underestimates the CONS costs for this time 

period.  Figure 13 shows the overlay plot of the Cook’s Distance values after the anomaly 

is removed.  Removing this data point causes the coefficient on the year effect to 

decrease from -2.493 to -2.979.  Additionally, the coefficient on the lag variable 

decreased from 0.162 to 0.108.  Removing this single point caused each of the other 

 60



points to yield Cook’s Distance values which indicate that they are not overly influential.  

The model reported in Table 8 does not include the overly influential data point. 

 

 

0

0.5

1

1.5
C

oo
k'

s 
D

 In
flu

en
ce

ln
(c

on
s)

 6

-10 0 10 20 30 40 50 60 70 80 90
Row s

Figure 12: Overlay Plot of Cook’s Distance Values for Model 4 
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Figure 13: Overlay Plot for Cook’s Distance for Model 4 (Excluding the Anomaly) 

 

 The final model of B-1B net CONS costs relates the log of MDS-level quarterly 

costs to the log of the previous quarter’s costs.   

ln(Quarterly CONS)(t) = 9.605 + 0.405 * ln(Quarterly CONS)(t-2) 

This model indicates that a one percent increase in net CONS costs in the previous 

quarter will result in a 0.405% increase in CONS costs in the current quarter.  This model 
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explains 26.0% of the variance in MDS-level quarterly costs.  While this model failed the 

Shapiro Wilk test, it was verified to be a robust deviation from normality. 

 Of each of the models representing B-1B net CONS costs, we found that the three 

models representing base-level costs are more explanatory than the MDS-level models.  

Specifically, the base quarterly model for Ellsworth AFB yields the largest R2 value  

None of the base-level models include flying hours as an independent variable, rather, 

they indicate that sorties and lagged costs may be more correlated with CONS costs for 

the B-1B. 

B-2 DLR Model 

 This section summarizes the two models we developed to model B-2 DLR costs.  

As mentioned in the previous chapter, since there is only one base which supports B-2 

aircraft, base-level and MDS-level costs are equivalent.  The two models developed in 

the section, MDS-level monthly DLR costs and MDS-level quarterly DLR costs, are 

summarized in Table 9. 

 The first model relates the log of monthly B-2 DLR costs to the log of flying 

hours, average age, and the dummy variable representing the month of November.   

ln(Monthly DLR) =  

= 10.858 + 0.689 * ln(Flying Hours) + 0.006 * Age – 1.505 * November 

The model suggests that a one percent increase in flying hours will increase B-2 DLR 

costs by 0.689%.  Additionally, as a fleet ages by one month, costs will increase by 0.6%.  

Likewise, as a fleet ages by one year, costs will increase by 7.2%.  Finally, we found that 

costs incurred in the month of November are significantly less than costs incurred  
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Table 9: B-2 DLR Cost Models 
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throughout the rest of the year.  This supports the fiscal year hypothesis mentioned in the 

previous section.  This model has an R2 of 0.521, indicating that the model explains 

52.1% of the variation in monthly DLR costs for the B-2.  The results of the diagnostic 

tests for normality and constant variance were satisfactory.  

One data point was removed from this model.  It had both a high Cook’s Distance 

value, shown in Figure 14, and a very high studentized residual, shown in Figure 15.  The 

data point represents an observation taking place in the month of November.  DLR costs 

for this particular month are very high, especially relative to the other November data 

points.  Therefore, the model significantly underestimates the DLR costs for this 

observation. 
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Figure 15: Histogram and Normal Quantile Plot of Studentized Residuals for Model 1 

 

The second model relates the log of MDS-level quarterly DLR costs to the log of 

flying hours and average age.   

ln(Quarterly DLR) = 10.998 + 0.725 * ln(Flying Hours) + 0.005 * Age 

This model indicates that a one percent increase in flying hours in a given quarter results 

in a 0.689% increase in net DLR costs.  Additionally, increasing the average age of the 

B-2 fleet by one month, results in a 0.6% increase in DLR costs.  This is equivalent to a 

1.8% increase per quarter.  This model explains 59.2% of the variation in quarterly DLR 

costs for the B-2.  All diagnostics yielded satisfactory results. 

 Of the two models described in this section, we found that the base-level quarterly 

model yielded a slightly higher R2 than the monthly model.  This model suggests that 

age, in addition to flying hours, is correlated with B-2 net DLR costs. 
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B-2 CONS Model 

 This section discusses the predictive models for B-2 CONS costs.  For both the 

monthly and quarterly CONS models, none of the potential predictor variables considered 

in this research, to include flying hours, is statistically significant in forecasting B-2 

CONS costs.   

We include the results of the models of the log of CONS costs regressed on the 

log of flying hours.   These models reveal that flying hours is not a statistically significant 

predictor of B-2 CONS costs.  We hypothesize that these unusual results may be due to 

the small sample size of B-2 aircraft.  While the B-1B and B-52H each provide a sample 

size of over 60, there are only 20 B-2 aircraft.  Additionally, the B-2 is the youngest of 

the three bombers; therefore, perhaps consumable expenditure patterns have not yet 

stabilized for this aircraft. 
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Table 10: B-2 CONS Cost Models 
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B-52H DLR Model 

 This section discusses the four models we developed to forecast net DLR costs for 

the B-52H.  The four models are similar to those developed for the B-1B; the first two 

models evaluate base and MDS-level data at the monthly level, and the remaining two 

models evaluate base and MDS-level data at the quarterly level.  Table 11 summarizes 

the four B-52H DLR models. 

The first model relates the log of monthly base-level DLR costs for the B-52H to 

the log of flying hours, average base-level ASD, and the month of November.   

ln(Monthly DLR) =  

= 12.101 + 0.760 * ln(Flying Hours) – 0.268 * ASD – 0.976 * November 

The model indicates that a one percent increase in the number of flying hours in a month 

will increase DLR costs by 0.760%.  Additionally, increasing the ASD for a fleet of B-

52Hs by one hour will reduce DLR costs by 26.8%.  The model also indicates a 

seasonality trend associated with the fiscal year.  Costs incurred in the month of 

November are significantly less than costs incurred during other months of the year.  The 

R2 for this model is 0.702.  Therefore, this model explains 70.2% of the variance in 

monthly, base-level DLR costs for the B-52H.  Additionally, this model failed both the 

Shapiro Wilk and Breusch Pagan tests.  However, the deviation from normality was 

verified to be robust.  The deviation from constant variance was visually determined to be 

robust. 
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Table 11: B-52H DLR Cost Models 
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The second model listed in Table 11 relates the log of monthly B-52H DLR costs 

aggregated at the MDS-level to the log of flying hours, the month of November, and the 

log of DLR costs incurred in the same month one year prior.   

ln(Monthly DLR)(t) =  

= 10.465 + 0.280 * ln(Flying Hours) –  0.867 * November + 0.235 * ln(DLR)(t-12) 

A one percent increase in flying hours will increase monthly MDS-level DLR costs by 

0.280%, while costs incurred in the month of November are significantly less than DLR 

costs during the rest of the year.  Additionally, a one percent increase in costs incurred 

during the same month, one year prior, leads to a 0.235% increase in DLR costs for the 

current month.  This model explains 60.3% of the variance in monthly MDS-level DLR 

costs for the B-52H.  This model failed the Shapiro Wilk test; however, it was verified to 

be a robust deviation from normality.   

The third model aggregates B-52H DLR costs by quarter at the base-level.  This 

model relates the log of DLR costs to the log of sorties, base-level ASD, and the log of 

DLR costs from the previous quarter.   

ln(Quarterly DLR)(t) = 7.478 + 0.645 * ln(Sorties) – 0.115 * ASD + 0.367 * ln(DLR)(t-1) 

A one percent increase in the number of sorties flown in a quarter will increase DLR 

costs by 0.645%.  Increasing the base-level ASD by one hour will reduce costs by 11.5%.  

Additionally, a one percent increase in net DLR costs from the previous quarter will lead 

to an increase in this month’s DLR costs by 0.367%.  This model has an R2 of 0.901, 

indicating that it explains 90.1% of the variation in DLR costs.  Though this model failed 

the Shapiro Wilk test, the deviation was visually determined to be a robust deviation from 

normality.   

 70



Two overly influential points were omitted from the final model representing 

quarterly base-level costs, listed in Table 11.  Figure 16 highlights these two points in an 

overlay plot of the Cook’s Distance values.  Additionally, Figure 17 shows the 

studentized residuals of these two points.    
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Figure 16: Overlay Plot of Cook’s Distance Values for Model 3 
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Figure 17: Studentized Residuals for Model 3 
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One of these data points represents a quarter where DLR costs were unusually 

high.  Therefore, the model significantly underestimated costs for this period, causing the 

point to have a very high studentized residual.  The other omitted data point represents a 

quarter where costs were unusually low.  In this case, the model significantly 

overestimated DLR costs for this period.  Excluding these two data points resulted in a 

decrease in the estimated coefficient for the log of sorties, from 0.766 to 0.645.  

Additionally, the coefficient on ASD changed from -0.147 to -0.115.  Finally, the 

coefficient on log of the previous quarter’s DLR costs increased from 0.261 to 0.367.  

Figure 18 and Figure 19 depict the Cook’s Distance values and the studentized residuals 

after these points are excluded. 
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Figure 18: Overlay Plot of Cook’s Distance for Model 3 (Excluding Anomalies) 
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Figure 19: Studentized Residuals for Model 3 (Excluding Anomalies) 

 

The final model in Table 11 relates the log of quarterly MDS-level DLR costs to 

the log of sorties and the log of the previous quarter’s DLR costs.   

ln(Quarterly DLR)(t) = 7.478 + 0.712 * ln(Sorties) + 0.543 * ln(DLR)(t-1) 

This model indicates that a one percent increase in the number of sorties flown by the B-

52H fleet will lead to a 0.712% increase in DLR costs.  Additionally, if the previous 

quarter’s costs increase by one percent, we can anticipate a 0.543% increase in DLR costs 

for the current quarter.  This model explains 58.4% of the variance in quarterly MDS-

level DLR costs for the B-52H.  All diagnostic tests were satisfactory. 

 The models developed to forecast B-52H DLR costs reveal that the base-level 

quarterly level of aggregation yields the most predictive model.  Additionally, this model 

suggests that sorties, ASD, and lagged costs may be more useful in forecasting DLR costs 

than flying hours. 
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B-52H CONS Model 

 This section summarizes the final set of models developed in this study, those 

representing quarterly MDS-level CONS costs for the B-52H.  The first two models in 

this section represent monthly base-level CONS costs; one model represents Barksdale 

AFB and the other represents Minot AFB.  The final three models represent monthly 

costs aggregated at the MDS-level, quarterly costs aggregated at the base-level, and 

quarterly costs aggregated at the MDS-level. 

 The first model relates the log of monthly CONS costs for Barksdale AFB to the 

log of average base-level total operating hours (TOH), average base-level ASD, and the 

month of November.   

ln(Monthly DLR) = 0.594 + 1.431 * ln(TOH) – 0.089 * ASD – 0.379 * November 

The model indicates that a one percent increase in the average total operating hours for a 

fleet of aircraft will lead to a 1.431% increase in CONS costs.  Additionally, increasing 

the average ASD length by one hour will lead to an 8.9% decrease in CONS costs for 

Barksdale AFB.  Finally, costs in November are, once again, significantly less than costs 

incurred in other months.  This model explains 25.1% of the variance in the dependent 

variable, monthly CONS costs for Barksdale AFB.  All of the diagnostic tests were 

satisfactory for this model. 

 The next model relates the log of monthly CONS costs for Minot AFB to the 

base-level mission capable rate (MCR), the month of November, and a year effect.   

ln(Monthly DLR) = 0.594 + 1.431 * ln(TOH) – 0.089 * ASD – 0.379 * November 

The year effect in this model is a dummy variable representing CONS costs incurred 

from September 2002 through April 2005.  During these months, CONS costs at Minot  
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Table 12: B-52H CONS Cost Models 
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AFB were significantly larger than CONS costs in the rest of the dataset.  The points 

represented by the year effect are circled in the overlay plot in Figure 20. 
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Figure 20: Overlay Plot of CONS Costs for Minot 

 

  
 This model indicates that a one percent increase in MCR, or the percentage of 

aircraft at Minot AFB available to fly a mission, will lead to a 2.120% decrease in CONS 

costs.  As a lower MCR indicates a higher percentage of aircraft that are incapable of 

flying a mission, this finding makes logical sense.  Additionally, costs incurred in the 

month of November are statistically less than CONS costs incurred during the other 

months of the year.  Finally, CONS costs incurred from September 2002 through April 

2005 are, on average, 36.0% larger than costs incurred before September 2002 or after 

April 2005.  The Durbin Watson and Shapiro Wilk statistics were satisfactory for this 

model.  The model failed the Breusch Pagan test; however, the deviation was visually 

determined to be a robust deviation from constant variance. 
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 The third model listed in Table 12 relates the log of monthly MDS-level costs to 

the average age of the B-52H, the cannibalization rate, the month of November, and the 

log of the previous month’s CONS costs.   

ln(Monthly CONS)(t) = 9.544 + 0.002 * Age +  

0.008 * Cannibalization Rate – 0.502 * November + 0.238 * ln(DLR)(t-1) 

This model indicates that CONS costs will increase 0.2% as the average age of the B-52H 

increases by one month.  Likewise, costs will increase 2.4% for every year the B-52H 

ages.  This model was also the only model to find cannibalization rate to be a significant 

costs driver, though the impact is small.  When cannibalization rate, or the number of 

cannibalizations per 100 sorties, increases by one percent costs will increase by 0.008%.  

Costs incurred in the month of November are, once again, statistically less than costs 

incurred during the other months of the year.  Finally, a one percent increase in the 

previous month’s CONS costs will lead to a 0.240% increase in the current month’s 

costs.  This model explains 41.1% of the variation in the dependent variable.  

Additionally, all diagnostic tests were satisfactory. 

 The fourth model listed in Table 12 relates the log of quarterly base-level costs to 

the log of flying hours.  The model indicates that a one percent increase in flying hours 

will lead to a 0.736% increase in quarterly CONS costs.  This model explains 66.2% of 

the variation in quarterly base-level CONS costs for the B-52H.  All diagnostics are 

satisfactory. 

 The final model relates the log of quarterly MDS-level costs to the log of flying 

hours.  This model suggests that a one percent increase in flying hours will increase costs 
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by 0.660%.  28.4% of the variation in quarterly MDS-level CONS costs is explained by 

this model and all diagnostic tests are satisfactory. 

 Once again, we find that the most predictive level of aggregation is the one based 

on a base-level quarterly model.  This model suggests that forecasting quarterly costs at 

the base-level using flying hours as an independent variable is the most useful for B-52H 

CONS costs.  

Summary 

 This chapter both tested the current proportional cost forecasting model and 

explored the predictability of other variables associated with flying costs.  To test the 

current proportional CPFH methodology, we performed regressions of quarterly MDS-

level costs on flying hours.  The results of those regressions were presented in this 

chapter and revealed that using a proportional model based on CPFH factors may be an 

inappropriate method of forecasting DLR and CONS costs for the three Air Force 

bombers.  We then evaluated the effects of 12 potential predictor variables, chosen based 

on previous research, on DLR and CONS costs for each of the bombers.  The final 

models were presented in this chapter.  Chapter V discusses our conclusions based on 

these results. 
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V. Conclusions 

Overview 

 This chapter uses the results from Chapter IV to answer the research questions 

defined in Chapter I.  After evaluating these questions, this research will conclude by 

discussing the strengths and limitations of our study.  

Findings 

 We defined two research questions in the first chapter.  After conducting a 

literature review and defining the methodology, we gathered data on select variables and 

developed predictive cost models, discussed in Chapter IV.  This section will answer both 

of the research questions based on the results from the previous chapter.   

Q1: Does the current CPFH methodology, which assumes a proportional 

relationship, capture the true relationship between flying hours and costs? 

With the exception of B-2 depot level repairable (DLR) costs, the data do not 

support the hypothesis that DLR or consumables (CONS) costs are proportionally related 

to flying hours.  We define the proportional cost per flying hour (CPFH) relationship as 

one which 1) has a zero intercept, indicating that when zero hours are flown, costs will be 

zero, and 2) yields a linear relationship between flying hours and cost such that a one 

percent increase in flying hours leads to a one percent increase in costs.  As shown in 

Chapter IV, simple regressions of cost on flying hours revealed that each type of cost has 

a large, non-zero intercept.  Additionally, the slope of each regression was smaller in 

magnitude than the current FY2008 CPFH factor used by the Air Force.  Figure 21 shows 

the variation between the current proportional forecasting methodology and the actual 
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relationship between costs and flying hours based on actual data for the B-1B and B-52H, 

as shown in Chapter IV.   

 

 

Figure 21: The Relationship between Costs and Flying Hours 

 

The models we built in Chapter IV were based on quarterly data.  While cost 

estimators can apply these models to monthly forecasts, it must be done with caution.  

Monthly level data are much more variable than the aggregated quarterly level data.  

Therefore, actual costs may be much different than estimated costs in a specific month, 

though the costs should balance out over time.  

While we did not validate the usefulness of regression analysis over the current 

proportional model, our results suggest that Air Force analysts consider the use of simple 

regressions to forecast flying costs for the B-1B and B-52H, as these models indicate a 

nonzero intercept due to routine maintenance costs.  Additionally, as shown in Figure 21, 
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the current proportional model underestimates the actual costs at low levels of flying 

hours and overestimates costs at high levels of flying hours.  While B-2 DLR costs are 

forecasted relatively well by a proportional model, given the historical range of flying 

hours, flying hours does not appear to be useful in forecasting B-2 CONS costs.   

Q2: Are factors other than flying hours useful in estimating flying costs? 

Our results indicate that building models based on flying hours alone is 

insufficient.  In addition to evaluating the usefulness of the current forecasting 

methodology, we also evaluated several other factors as potential predictors of cost.  

Accounting for lagged costs, fiscal trends, and sorties, among other variables, results in 

much more predictive cost forecasting models.   

The frequency of occurrence of each of the independent variables is shown in 

Table 13.  Each of the columns represents of group of models, while each of the 

independent variables is listed down the left-hand side in order of most frequent to least 

frequent. 

 

Table 13: Frequency of Occurrence of Each Independent Variable 
(Expressed as a Fraction of the Total Models in Each Category) 

Lagged Costs 2/5 5/5 0/2 0/0 3/4 1/5 11/21 5/11 6/10
Flying Hours 3/5 0/5 2/2 0/0 2/4 2/5 9/21 7/11 2/10
Fiscal Trend 0/5 1/5 1/2 0/0 2/4 3/5 7/21 3/11 4/10

Sorties 1/5 2/5 0/2 0/0 2/4 0/5 5/21 3/11 2/10
ASD 1/5 0/5 0/2 0/0 2/4 1/5 4/21 3/11 1/10
Age 1/5 0/5 2/2 0/0 0/4 1/5 4/21 3/11 1/10

Utilization Rate 1/5 0/5 0/2 0/0 0/4 0/5 1/21 1/11 0/10
MCR 0/5 0/5 0/2 0/0 0/4 1/5 1/21 0/11 1/10

Cann Rate 0/5 0/5 0/2 0/0 0/4 1/5 1/21 0/11 1/10
TOH 0/5 0/5 0/2 0/0 0/4 1/5 1/21 0/11 1/10

Crude Oil Prices 0/5 0/5 0/2 0/0 0/4 0/5 0/21 0/11 0/10
Temperature 0/5 0/5 0/2 0/0 0/4 0/5 0/21 0/11 0/10

Total 
DLR

Total 
CONSTotal

Independent 
Variable

B-2 
DLR

B-2 
CONS

B-52H 
DLR

B-52H 
CONS

B-1B 
DLR

B-1B 
CONS
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Our findings indicate that it may be useful to model DLR and CONS costs 

differently.  In general, we found that flying hours was the most predictive variable in 

forecasting net DLR costs, while accounting for lagged costs was the most useful in 

forecasting net CONS costs.  As discussed, the Air Force currently uses estimating 

models based solely on flying hours to forecast both of these types of costs.  While flying 

hours was significant in seven of the eleven DLR cost models, it was only significant in 

two of the ten CONS models.  Our findings indicate that accounting for lagged costs is 

more useful in estimating CONS costs than flying hours.   

In addition to these two independent variables, fiscal trend (represented as the 

month of November in this study), sorties, ASD, and age were also found to be relatively 

significant, as supported by previous research.  Additionally, we found that crude oil 

prices and temperature were not very predictive variables.   

Interestingly, our models revealed costs in the month of November to be 

significantly less than costs throughout the rest of the year.  As discussed in Chapter II, 

both Armstrong (2006) and Bryant (2005) found costs to be significantly larger toward 

the end of the fiscal year.  Our findings, in conjunction with Armstrong (2006) and 

Bryant (2007) indicate a significant fiscal trend in the patterns of flying costs.   

As previously discussed, we evaluated cannibalization rate as a potential predictor 

variable of flying costs.  Cannibalization rate was not found to be statistically significant 

in any of the DLR models, while it was statistically significant in just one of the CONS 

models.  These findings do not support our hypothesis that flying costs will increase as 

the number of cannibalizations increases. 
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Several previous studies highlighted aircraft age as a significant predictor of 

operating costs.  Surprisingly, only four of the 21 models included age as a statistically 

significant independent variable.  Further, only two of those four models were for the 

older B-1B and B-52H aircraft.  These findings do not support the argument that aircraft 

operating costs experience a “bathtub effect,” as discussed in Chapter II. 

In addition to including variables other than flying hours, our research indicates 

that building models based on quarterly data for each base is the most predictive level of 

aggregation, given the four levels we evaluated.  For each of the six types of costs, we 

found this level of aggregation to be the most predictive. 

Finally, we found that log-linear regression analysis resulted in an improved 

model fit of bomber flying cost data over the proportional CPFH model. 

Strengths and Limitations 

As defined in Chapter I, we sought to explore the potential of developing more 

predictive flying cost forecasting models for the Air Force’s bomber aircraft, as 

compared to the current methodology of forecasting budgets employed by Air Force 

budgeters.  While we feel we were successful in identifying significant predictor 

variables that are not considered in the current budgeting process, these models are 

merely a starting point.   

Evaluating base-level monthly data provided a large dataset from which to build 

the forecasting models of this study.  However, it also resulted in data subject to a 

significant amount of noise.  Therefore, we decided to evaluate the cost data at MDS and 

quarterly levels of aggregation, as well.  This resulted in four forecasting models for each 
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type of cost, allowing us to compare the results across different levels of aggregation.  

This also provides budgeters with flexibility in using our results to forecast costs.    

One main reason for the large amount of variance in the monthly data may be due 

to the variation in monthly expenditures and credits experienced by different bases.  This 

research found that, in some instances, the credits were larger than the costs for a given 

month, resulting in a negative net cost.  This problem was significant for both DLR and 

CONS costs associated with the B-1B.  To control for these negative costs, we added a 

constant term to the dependent variable to make all costs positive, as discussed in Chapter 

III.  This allowed us to perform a log transformation without excluding data points and 

losing critical information.  Additionally, evaluating quarterly and MDS-level data 

eliminated the problems associated with negative costs.   

Finally, while the models we reported in Chapter IV satisfy the assumptions of 

OLS regression, we found that different models representing the same type of cost did 

not include the same statistically significant independent variables.  So while our models 

are statistically sound, this presents a level of difficulty in comparing models across 

levels of aggregation and cost types.  A possible explanation for the inconsistency of 

independent variables across models is the small datasets from which the models were 

built.  It may be the case that there was so much variability at low levels of aggregation 

that variables found to be significant at higher levels of aggregation were not significant 

at the lower levels.  Similarly, it may have been that there was so little variation 

associated with certain independent variables at higher levels of aggregation that 

variables found to be significant at lower levels were not significant at higher levels.  
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Perhaps models based on larger datasets would have resulted in more consistency across 

different levels of aggregation. 

Follow-On Suggestions 

As mentioned, the dependent variables evaluated in this research represent net 

costs; that is, charges less credits.  We suggest further evaluation of the expenditure and 

credit systems.  Evaluating expenditures and credits individually may reveal that building 

separate forecasts for each is more appropriate than forecasting the net costs, as is done in 

current practice. 

We also recommend focusing specifically on the B-2 flying costs.  We 

determined that the predictor variables evaluated in this study were insignificant in 

forecasting B-2 CONS costs, perhaps due to the small sample size or the young age of the 

aircraft.  More research should be conducted to determine what drives these costs.     

Summary 

 The results of this analysis indicate that regression analysis may outperform the 

current proportional model in forecasting flying costs when flying hours are above or 

below average.  For example, if an unusually low level of flying hours are flown in a 

given time period, the proportional model underestimates flying costs.  Our models 

capture the fixed costs associated with aircraft maintenance that occur regardless of 

flying hours.  Further, if hours are higher than average, the current proportional model 

overestimates costs; a regression model captures the lower costs reflected in the data 

evaluated.  Our research also reveals that other operational factors such as sorties, 

seasonality trends and lagged costs, may be useful predictors in forecasting flying costs. 
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Appendix A: Description of Aircraft 

B-1B Lancer 

The B-1B entered active service in 1985.  The key features of this airframe, 

developed in the 1960s, are its variable-geometry wings and its ability to carry the largest 

payload of guided and unguided weapons in the Air Force inventory (Fact Sheet: B-1B, 

2007).  Additionally, the B-1B is the fastest of the three Air Force bombers, with an 

ability to fly Mach 1.2 (900 miles per hour).   Each of these features has contributed to 

significant structural problems experienced by the aircraft. 

B-2 Spirit 

The unique frame of the B-2 was first publicly displayed in 1988.  Its most 

distinguishing characteristic is its flying wing design which contributes to its “stealth” 

capability.  The structural design of the B-2 is a relatively new aviation technology, and 

the aircraft is the only bomber which uses this technology.  While the rest of the world 

develops anti-aircraft weapons, the use of stealth aircraft will surely increase (Fact Sheet: 

B-2, 2007).  Additionally, as the aircraft continues to age, the potential for unknown and 

previously unseen problems increases. 

B-52H Stratofortress 

The B-52H was first delivered in 1962 and is expected to fly for another 35 years.  

The massive aircraft is known for its 185-foot wingspan and its ability to carry the widest 

array of weapons in the Air Force inventory (Fact sheet: B-52H, 2007).  These two 

features have led to significant structural problems.  Additionally, the aging aircraft are 
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suffering from fuel tank erosion (Hebert, 2003:7-8).  As the B-52H continues to creep 

closer to its 80-year expected retirement age, the Air Force will surely face new and 

unanticipated costs. 
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Appendix B: Samples from Each Database 

Table 14: Sample from AFTOC Database 

Data_Type Base MD_CAIG Demand_FY_Year Demand_FY_Month Net_Cost_CurrentYear 

GSD BARKSDALE AFB (LA) B-52H 2002 12 $2,227,017.73 
SD BARKSDALE AFB (LA) B-52H 2002 12 $3,124,016.30 
GSD DYESS AFB (TX) B-1B 1998 01 $77,969.38 
MSD DYESS AFB (TX) B-1B 1998 01 $15,029,106.86 
GSD DYESS AFB (TX) B-1B 1998 02 $87,907.03 

MSD DYESS AFB (TX) B-1B 1998 02 $12,114,202.00 

 

Table 15: Sample from REMIS Database 

MDS FY Fscl_Month Command Base Tail_Number FH Landings Sorties 

B-52H FY1998 1 AFRC BARKSDALE AFB (LA) 61000032 18.80 13 4 
B-52H FY1998 1 ACC BARKSDALE AFB (LA) 61000038 13.70 15 2 
B-52H FY1998 1 ACC BARKSDALE AFB (LA) 61000039 23.30 14 5 
B-52H FY1998 2 ACC BARKSDALE AFB (LA) 60000001 15.70 4 2 
B-52H FY1998 2 ACC BARKSDALE AFB (LA) 60000002 30.60 17 4 

B-52H FY1998 2 ACC BARKSDALE AFB (LA) 60000003 10.60 1 1 

 

Table 16: Sample from MERLIN Database 

WEAPON B-1B 

MAJCOM ACC ACC 

UNIT 0007BHVWG 0028BHVWG 

METRIC NMCM NMCS NMCB MCR NMCM NMCS NMCB MCR 

Oct-97 14.4 14.6 12.9 58.1 17.7 22 2.8 57.5 
Nov-97 17.2 11 12 59.8 14 24.8 6.2 55 
Dec-97 21.6 10.1 10.2 58.1 14.7 20.3 6.7 58.3 
Jan-98 17 9.4 8.9 64.7 12.3 25.8 10.1 51.8 
Feb-98 17.7 9.2 6.2 66.9 15.7 19.5 5.2 59.6 
Mar-98 17.1 15.7 11.2 56 17.6 17.6 3 61.8 

 

Table 17: Sample from AFCCC Database 

Locations Year Month Mean Temp C Mean Temp F Mean Dew C Mean Dew F 

WHITEMAN AFB 2006 10 11.9 53.4 6.2 43.2 
WHITEMAN AFB 2006 11 7.4 45.3 2.5 36.5 
WHITEMAN AFB 2006 12 2.7 36.9 -1.5 29.3 

MCCONNELL AFB 1998 1 1.5 34.7 -1.0 30.1 

MCCONNELL AFB 1998 2 5.3 41.6 1.0 33.7 

MCCONNELL AFB 1998 3 4.7 40.4 0.6 33.0 
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Appendix C: Charges versus Credits 

Figures 22 and 23 show the relationship between total charges and total credits for 

all six types of costs modeled.  While some charts reveal similarities between charges and 

credits over time, it also appears that there may be differences between the two. 

B-1B MDS-Level DLR Charges and Credits
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B-2 MDS-Level DLR Charges and Credits
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B-52H MDS-Level DLR Charges and Credits
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Figure 22: DLR Charges and Credits Over Time 

 89



B-1B MDS-Level CONS Charges and Credits 
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B-2 MDS-Level CONS Charges and Credits
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B-52H MDS-Level CONS Charges and Credits
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Figure 23: CONS Charges and Credits Over Time 
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