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Abstract

Fuel-air mixing analysis of scramjet aircraft is often performed through ex-

perimental research or Computational Fluid Dynamics (cfd) algorithms. Design

optimization with these approaches is often impossible under a limited budget due

to their high cost per run. This investigation uses jetpen, a known inexpensive

analysis tool, to build upon a previous case study of scramjet design optimization.

Mixed Variable Pattern Search (mvps) is compared to evolutionary algorithms in

the optimization of two scramjet designs. The first revisits the previously stud-

ied approach and compares the quality of mvps to prior results. The second applies

mvps to a new scramjet design in support of the Hypersonic International Flight Re-

search Experimentation (hifire). The results demonstrate the superiority of mvps

over evolutionary algorithms and paves the way for design optimization with more

expensive approaches.
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SCRAMJET FUEL INJECTION ARRAY OPTIMIZATION

UTILIZING MIXED VARIABLE PATTERN SEARCH WITH

KRIGING SURROGATES

1. Introduction

1.1 Background

For over five decades hypersonic air-breathing propulsion has been the focus

of much research in the aerospace engineering community. The goal of this research

is to develop hypersonic air-breathing vehicles capable of flight in the range of Mach

6–12, and beyond. Advanced versions of these aircraft are envisioned to takeoff from

conventional runways, accelerate to hypersonic speeds, and enter low-earth orbit.

Prior to 2002 the only means of hypersonic flight, let alone low-earth orbit, was by

rocket propulsion.

Rocket propulsion systems must carry their own oxidizer, which comprises

most of the total vehicle weight. This large weight penalty results in higher pay-

load delivery costs and reduced efficiency. Since rocket-based systems must travel

through the atmosphere, this situation has been likened to bringing a canteen full of

water to a fish [36]. The promise of hypersonic air-breathing propulsion lies in the

ability to burn fuel utilizing oxygen from the atmosphere, thus avoiding the weight

penalty incurred by rocket systems. The typical takeoff weight fraction (twf) of

air-breathing aircraft and rocket systems are compared in Table 1.1 [36]. The elim-

ination of the oxidizer weight penalty allows hypersonic air-breathing aircraft to

devote larger weight fractions to payload and support systems. In turn this should

translate into efficiency and durability not achievable by rocket systems.
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Table 1.1 Typical takeoff weight fraction breakdowns of current systems

TWF Rocket Aircraft

Oxygen 65% 0%
Fuel 24% 30%

Empty 7% 55%
Payload 4% 15%

Despite decades of research, only recently have the most basic flight character-

istics of these exotic aircraft come to fruition. Engineers at Australia’s University

of Queensland are credited with the first successful flight test of an air-breathing

hypersonic vehicle in July of 2002. In March and November of 2004, nasa success-

fully tested the X-43A flight test vehicle as part of their Hyper-X program, shown in

Figure 1.1 [52]. The X-43A demonstrated sustained speeds of Mach 6.8 and Mach

9.6. These vehicles were the culmination of years of research by both organizations.

Figure 1.1 Dimensions of the NASA X-43A

1.1.1 Hypersonic International Flight Research Experimentation

The Hypersonic International Flight Research Experimentation program, or

hifire, is a collaborative effort between the U.S. Air Force, the Australian De-

fense Force, and nasa. While not a direct follow-on from the Hyper-X program,
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the purpose of hifire is to develop and demonstrate critical hypersonic technolo-

gies. Research objectives of the hifire program include “boundary layer transition

(blt), turbulent separated shock boundary layer interaction (sbli), and optical mea-

surement of mass capture (omc) in a duct” [38]. These experiments are intended to

improve the overall knowledge of poorly understood hypersonic phenomena. Flight

tests of the hifire program are scheduled to begin in 2008.

The X-51A flight test vehicle is another hypersonic aircraft that is currently

under development and is conceptually shown in Figure 1.2. The X-51A could poten-

tially evolve into an air-launched expendable hypersonic cruise missile for potential

use against time-sensitive and hardened targets. Unlike the X-41A, the X-51A uses

jp-7 as fuel. The jp-7 is “cracked” into smaller, lighter fuels by the high operat-

ing temperatures of the engine. This unique approach allows the X-51A to use its

fuel to both cool and power its engine, while avoiding exotic cryogenic fuels such as

hydrogen [43].

Figure 1.2 AFRL X-51 Concept Vehicle
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1.1.2 Scramjet Engines

Hypersonic flight cannot be achieved by conventional turbojet or ramjet en-

gines. These engines operate by compressing and reducing the speed of a subsonic or

supersonic airflow prior to combustion. This deceleration and compression translates

into an increase in the overall pressure, temperature, and density of the airstream.

At speeds of Mach 6 and greater the temperatures and heat transfer rates generated

are high enough to incinerate most known materials [36]. These temperatures also

result in dissociation of the combustion materials, resulting in large chemical energy

losses [36].

The solution to this problem is to only partially compress the airstream, thus

keeping the internal flow of the engine at supersonic speeds. This type of engine is

known as a supersonic combustion ramjet, or scramjet. Scramjet engines, similar

to ramjets, have no moving parts and use the forward movement of the vehicle and

shape of the engine and vehicle to achieve compression [36]. A major drawback is

that scramjet engines cannot produce thrust at a standstill, required some other

mode (usually a rocket) to accelerate up to the “takeover speed”.

Fuel injection within a scramjet engine is a difficult task to accomplish. The

major challenges are “accomplishing stable, efficient mixing and combustion in a

supersonic flow within a burner of reasonable size” [36]. The subsonic flows within

turbojets and ramjets allow sufficient time for fuel to mix in appropriate ratios.

However, at supersonic speeds encountered within scramjets the residence time of

any fluid particle inside the engine is on order of 10−3 seconds [56]. This requires

appropriate penetration and mixing of fuel to occur in extremely short time spans

[67].

Sustaining combustion is another difficulty encountered in scramjet engines.

The high speed airflow through the engine requires the flame within the combustor

to move extremely fast. Fuel auto-ignition and internal cavities have been methods

used to solve the problems with flame suffocation and sustainment [22]. Combustors
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designed to have an internal temperature high enough to auto-ignite the fuel/air

mixture are sensitive to flight conditions and must be restricted to narrow altitude

and speed ranges. Low-pressure zones created by ramps and cavities internal to the

combustor have been effective at flame holding, but they also may inhibit the flow

and contribute to pressure losses.

Compounding these difficulties is the fact that airflow at hypersonic speeds

has inviscid fluid properties [15]. These properties manifest themselves as a series

of normal and oblique shock waves emanating from the vehicle surfaces [37]. These

shock waves dominate the flow properties at the high Reynolds numbers present in

hypersonic flows and may interact with each other and the boundary layer to create

effects non-existent at lower speeds [37].

A schematic of a theorized scramjet engine is shown in Figure 1.3 [19]. In

this graphic, the oncoming air is compressed and deflected by a series of shockwaves

emanating from ramps on the forwards section of the aircraft. Upon entering the

engine, the air is further compressed, fuel is injected, and the mixture of air and fuel

is burned in the combustor. The expanding air exits the engine as the aft section of

the aircraft is used as an additional expansion surface for the exhaust.

Figure 1.3 Scramjet Engine
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1.1.3 Numerical Models

To approximate the complex flowfield associated with scramjet engines, re-

searchers have traditionally turned to discretization of the Navier-Stokes and Euler

equations, as well as their derivatives [37]. The Navier-Stokes and Euler equations

form the foundation of the numerical modeling approach called Computational Fluid

Dynamics (cfd). The Navier-Stokes equations describe the fluid motion of gases and

liquids, taking into account fluid momentum, viscosity, and other important factors

[31]. Removing the viscous portions of these equations yields the Euler equations,

which are more applicable to hypersonic flight. These equations and their deriva-

tives are applied within a numerical model along with appropriate assumptions.

Discretization of the solutions at a finite number of points is necessary, since solu-

tions to these systems of differential equations do not exist in closed form and can

only be approximated [31].

The simplest cfd models are 1-D versions that can be quickly solved to suf-

ficient accuracy with a stiff ordinary differential equation solver using backward or

central finite differences. Higher order 2-D and 3-D models are far more computa-

tionally expensive, requiring supercomputers, until only recently. Recent advances

in computing have shown efficient performance with 3-D cfd models using massively

parallel hardware platforms of 128–512 processors [70].

The scope of this investigation is restricted to 1-D numerical models. Access to

high fidelity cfd algorithms, supercomputers, or massively parallel hardware plat-

forms was not available, due to time and funding constraints. Furthermore, the

results must be directly comparable to previous work with 1-D models. This pre-

vious work by Payne [56] used the code jetpen, developed by Schetz and Billig at

the Johns Hopkins University Applied Physics Lab [59]. jetpen is a 1-D numerical

model of the complex flow field resulting from the transverse injection of a gas jet

from a wall into a supersonic or hypersonic cross flow [17]. This model effectively
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simulates the gross features of the transverse method of fuel injection into a scramjet

combustor for analysis with reliable accuracy at a reasonable computational cost.

The level of reliability and low computational cost of jetpen allowed it to

be one of the first computational models studied for optimization [56]. The highly

interactive and discontinuous nature of hypersonic flows makes identification of op-

timal engineering designs difficult. Payne [56] successfully incorporated jetpen into

several optimization methodologies in an attempt to identify an optimal design for

the Air Force Research Lab (afrl), Propulsion Directorate. His study showed that

improved designs could be returned by both Evolutionary Algorithms (evas) and

Response Surface Methodology (rsm) with a relatively small number of function

evaluations, when compared to other methods, such as sequential quadratic pro-

gramming [56].

1.1.4 Optimization

Since Payne’s work [56], advances in computing have allowed optimization

techniques to be applied to higher dimensional 2-D and 3-D numerical scramjet

models. The use of evas and rsm is found throughout the literature. Both have

consistently returned improved designs when applied to scramjet injection array,

inlet, combustor, and vehicle designs. However, to date no provably convergent

algorithms have been applied to scramjet optimization problems.

Evolutionary algorithms are local search algorithms that fall into the category

of global search heuristics. They are used with the purpose of identifying globally op-

timal solutions to difficult problems. These algorithms utilize user-defined functions

that are based on the genetic principles of inheritance, mutation, and selection. De-

sign variables are modeled as genes, and the initial population consists of randomly

generated points within the design space. After fitness evaluation of these points,

the best solutions are selected and “crossed” via a defined routine, producing a new

generation of solutions. This new generation of solutions is then evaluated for fit-
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ness and the process repeats. Within this cyclic process are random components

that simulate genetic mutation.

The difficulty with evolutionary algorithms is in their lack of convergence the-

ory and computational efficiency. While popular in the literature and generally

accepted as convergent to the global optimal, there is no mathematical proof to date

that proves this assumption. Further compounding this is that they are generally

computationally inefficient, requiring many generations of solutions to converge, if

they converge at all. In order to compensate for this, several studies have investi-

gated gas with a population size of 25 or fewer with good results [56]. Several search

augmentations, such as gradient-based methods, have also been blended with gas.

Within the context of multi-dimensional cfd models, gas would likely come at a

computationally prohibitive cost for many studies, due to the excessive number of

cfd design evaluations required for convergence.

Another method of scramjet design optimization found in the literature is

Response Surface Methodology (rsm). Several optimization studies have used rsm

as the foundation for analysis. rsm attempts to iteratively fit a local statistical model

to an orthogonal set of sample points within the feasible design space. Typically,

the fitted statistical models are first or second-order, which lend themselves well

to optimization. However, for the optimal solutions of these models to lie close to

the global optimizer, the original orthogonal sampling of points must be within the

neighborhood of the global optimum. If not, added computational cost of sequential

experiments is necessary to identify the correct neighborhood. Payne [56] showed

that rsm techniques returned near-optimal solutions with an order of magnitude

fewer function evaluations when compared to other techniques. The drawback to

this is that it took hundreds of function evaluations to identify the neighborhood of

the optimal region on which to center the rsm design.

The derivative-free class of Generalized Pattern Search (gps) algorithms has

been shown to be stationary point-convergent under a set of mild assumptions [68].
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gps has been extended into the domain of mixed variables, or the domain containing

both categorical and continuous variables, without sacrificing convergence proper-

ties. Sriver [61] applied a modification of the Mixed Variable Pattern Search (mvps)

algorithm to stochastic response models using Ranking-and-Selection. Dunlap [28]

investigated different forms of surrogate fitting within Sriver’s algorithm such as

Kriging and Nadaraya-Watson kernel regression. Currently, mvps is the only prov-

ably convergent algorithm for the class of optimization problems that involves mixed

variables.

1.2 Purpose of Research

The purpose of this research is to apply a rigorous optimization algorithm to

the engineering design problem of scramjet injection array design. The 1-D scramjet

analysis model used in this investigation has not previously been studied in this

context. Other studies involving rsm and local search heuristics will provide a

basis of comparison for the performance of mvps. Ideally, the preliminary design

identified by the optimization will be further analyzed using higher order cfd models.

Unfortunately, time and monetary restrictions preclude this as an option in this

investigation. Subsequent high order cfd analysis is proposed as follow-on work.

This investigation applies mvps and an updated version of jetpen to Payne’s

previous scramjet design and a new design from the hifire program. Payne’s scram-

jet design is used to compare the performance of mvps to previously applied opti-

mization techniques. The best performing optimization techniques on Payne’s design

are carried forward for use in optimization of the hifire design. Recommendations

are made for future designs and research based upon the results. The injection ar-

ray design, decision variables, constraints, and supporting materials are provided by

afrl/rzas.
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The rest of this document is divided into five different chapters. Chapter 2

focuses on the underlying physics of scramjet fuel injection and discusses jetpen

estimation techniques for transverse fuel injection. Additionally, several optimization

techniques, with emphasis on mvps, are covered in Chapter 2. Chapter 3 details the

design variables for the two scramjet as well as the measures of performance by which

they will be judged. Chapter 4 outlines the specifics of each optimization technique

and details how the performance of each technique is assessed. Chapter 5 contains

the results of this research, with conclusions and future recommendations discussed

in Chapter 6.
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2. Relevant Literature

2.1 Overview

The intent of this chapter is not to develop a comprehensive review of the topics

at hand, but to develop a basic working knowledge. First, the various methods of fuel

injection are discussed with emphasis on transverse injection techniques. Particular

attention is paid to developing a basic understanding of the underlying physics.

Second, a well-known numerical simulation used in prior studies for scramjet analysis

is presented and discussed. Finally, an overview of relevant optimization techniques

and their use in literature is presented, followed with a more detailed description of

the mvps optimization algorithm, which is a main focus of this study.

2.2 Transverse Fuel Injection

Efficient fuel injection is a difficult problem in scramjet engine design. The

primary purpose and challenge of any scramjet fuel injection system is to achieve

proper penetration and mixing of fuel and air within a reasonably sized combustion

or mixing chamber. At supersonic speeds common within scramjet engines, the

residence time of any air and fuel particle within the engine is extremely short. Thus

mixing must take place in an equally short timespan. Proper mixing is generally

considered to be that mass ratio of air to fuel in which the mixture is chemically

balanced, called the stoichiometric ratio. Plainly put, the stoichiometric ratio is the

mass ratio of air to fuel where there is just enough available oxygen to completely

burn all of the available fuel. This section focuses on this study’s primary fuel

injection technique: transverse fuel injection. Many other techniques are investigated

throughout the literature; however, since they are not considered in this study, they

are only briefly discussed.

2-1



Figure 2.1 Transverse Fuel Injection

Transverse fuel injection involves fuel injected from a flush wall port into a

crossflow. A visual representation and the associated complex flowfield is shown in

Figure 2.1 [32] [14]. The sonic or supersonic fuel jet acts as an obstruction to the

crossflow and a system of strong shocks develops. The fuel jet exits the injection

port and begins to be turned by the crossflow. Often the fuel jet is underexpanded

and begins to increase in diameter as it enters the freestream. The jet remains

mostly intact until a normal shock, called the Mach disk, forms in the jet and

turbulent mixing begins. As mixing begins two counter-rotating vortices form and

the plume takes on a horseshoe shape. The shockwaves induce significant freestream

dynamic pressure losses in the combustor [55]. Freestream higher freestream dynamic

pressures are essential to scramjet engine efficiency and freestream dynamic pressure

losses adversely affect the resulting performance of the scramjet engine.

Several studies of sonic liquid and gas jets transversely injected into a high-

speed cross-flow from ports of various shapes and configurations are found in the

literature. The most basic case is that of a single port centrally located along the

combustor that injects a sonic gaseous fuel normal to the crossflow. Several studies,

such as those by McClinton et al. [48], and Srinivasan [60], investigate the effects of

different modifications to this basic design as a means for improving mixing. These

modifications involved varying the injection angle, number and shape of the injection
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array, and injectant dynamic pressure, to name a few. In essence, the need to balance

mixing and pressure losses clearly exists for any transverse injection array.

2.2.1 Injection Angle

The angle of injection can greatly impact fuel mixing and engine performance.

Normal injection of fuel into the crossflow as shown in Figure 2.1 can produce reason-

able mixing [54]. However, this jet acts as a significant obstruction to the crossflow

and the path of the fuel jet must be turned 90o to the crossflow. Again, these

combined effects contribute to significant pressure losses. Ortwerth [54] references

research done at the nasa Langley Research Center in developing the working for-

mula for determining mixing efficiency (ηm):

ηm = 1.01 + 0.176 ln
X

Xϕ

(2.1)

S = 60W (2.2)

ϕ =
H

W
. (2.3)

Efficiency, ηm, defined at values of ϕ are:

ηm =





ϕmix

ϕ
, if ϕ ≤ 1

ϕmix, if ϕ > 1
(2.4)

Xϕ =





0.179e1.72, if ϕ ≤ 1

3.333e−1.204, if ϕ > 1.
(2.5)

These working equations apply for normal injection techniques in a rectangular com-

bustor of length X, height H, and width W , using injector spacing S and aspect

ratio ϕ [54].

In contrast to normal injection, wall injection introduces fuel parallel to the

crossflow behind a step in the combustor, as in Figure 2.2. This type of injection

minimizes dynamic pressure losses while providing film cooling to the combustion
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walls [55]. Wall injection relies completely on turbulent effects for mixing, a compar-

atively slow process that typically results in prohibitively long combustion chambers

[36]. The working mixing equation for parallel injection techniques cited by Ortwerth

[54] is,

ηm =
X

Xϕ

(2.6)

where all the assumptions and variables are as defined previously.

Figure 2.2 Wall Fuel Injection

Injection angles other than 90o have been investigated by McClinton [48] who

concluded that decreasing the injection angle increased penetration of the fuel plume

into the freestream. Low injection angles were studied by Mays, Thomas, and Schetz

[47] and found to be highly influenced by injectant dynamic pressure. In particular,

they demonstrated injection at 15o with equivalent penetration and mixing as that

of normal injection. Ortwerth recommends linear interpolation between the two

mixing rules defined in (2.6) and (2.1) for injection angles between 0o and 90o [54].

In general, the rule of thumb has been that penetration and mixing of fuel into the

crossflow is fairly indifferent to injection angles greater than 15o [55].

2.2.2 Array Design

Several studies have been performed on the effect of utilizing multiple laterally-

spaced injectors instead of a single centrally located injector. Morgan [49] compared

the efficiencies of a single central injector to four laterally spaced injectors. Two sets

of two injectors were placed across from each other on parallel walls of the combustor
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and the injector diameters were chosen so that the mass flow rate of fuel through

the four would be comparable to that of the single injector. This multiple-injector

design showed significantly improved mixing properties.

In contrast, some studies involving a large number of small-diameter injectors

showed a significant lack of mixing. When the diameter of the holes increased and

the number of holes decreased, improved mixing resulted [55]. This finding is in

agreement with multiple sources cited by Kutschenreuter [40], where penetration and

mixing was found to improve as injector diameter increased, the result of increased

flow per injector. A rule of thumb proposed by Anderson [10] suggests that the

injection ports should be separated by twice the required penetration distance.

2.2.3 Injectant Dynamic Pressure

Experiments by Schetz and Billig [59] determined that the ratio of injectant

to freestream dynamic pressures (q̄) greatly influences mixing and penetration. This

ratio is given by

q̄ =
ρfuelV

2
fuel

ρairV 2
air

,

where ρair and ρfuel are the densities of fuel and air, respectively, and Vfuel and

Vair are the respective velocities of fuel and air [40]. They found that penetration

of the fuel plume into the freestream increased with q̄ by forcing the Mach disk

farther into the freestream. Experimental data referenced by Kutschenreuter [40]

demonstrates that penetration from normal injection of a lateral array of circular

injectors correlates well with the expression,

(
Y

d∗

)2

= 16Nq̄,

where Y is the Schlieren-determined penetration height, d∗ is the injector diameter,

and N is the total number of injectors [40].
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This suggests that penetration may be increased by increasing either the ve-

locity or density of the fuel stream. An increase in velocity has the negative effect of

allowing less time for mixing with the freestream, as well as requiring sharper turning

of the jet by the freestream. An additional negative effect is higher induced pressure

losses in the freestream [59]. Increases in fuel density have the negative effect of

increased resistance to mixing with the freestream. Thus, it is can be concluded

that the mixing rate is inversely proportional to q̄ [72].

2.3 Other Injection Techniques

Several other fuel injection strategies other than transverse injection have been

studied in the literature. It is important to note that the jetpen software is cur-

rently incapable of predicting the resulting flowfield of these types of injection. Two

common techniques are briefly presented here for the purpose of completeness.

2.3.1 Ramp Injection

Injection of fuel at the base of a low degree ramp, as shown in Figure 2.3,

is another extensively researched technique. The fuel is injected axially, or with

the direction of the freestream air, and is dependent on “vortex shedding from the

corners, step-type recirculation behind the after surfaces, and impingement of the

reflected ramp shock just after the injector” for mixing [40]. Experimental data has

shown that the swept-ramp type injection when combined with downstream normal

transverse injection, as shown in Figure 2.3, has mixing efficiency roughly equivalent

to that of normal transverse injection [40]. The presence of wide in-stream structures

provides improved flame holding characteristics not seen in pure transverse injection.

Consequently, these in-stream ramps contribute to pressure and momentum losses

in the combustor.
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Figure 2.3 Ramp Fuel Injection

2.3.2 Pylon Injection

Though referred to by many names in the literature, pylon injection is essen-

tially injection behind a tall, narrow in-stream body, such as shown in Figure 2.4.

Injection may be axial, normal, or at some other angle relative to the freestream.

Many shapes and angles of injection have been investigated. Vinogradov et. al. [71]

experimented with gaseous fuel injection far upstream behind a swept, thin pylon

with a various cross sectional pylon shapes. The results showed much improved

mixing and penetration, improved flame holding, and a lack of pressure losses and

pronounced edge shocks. These results are not typical of earlier work referenced

by Paull and Stalker [55], where an advantageous system of shocks from the pylon

helped improve mixing but at the sacrifice of pressure losses.

Figure 2.4 Central Pylon Fuel Injection
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2.4 JETPEN Numerical Simulation

Originally developed at Johns Hopkins University, jetpen is an analysis tool

for the injection of gaseous jets into a supersonic crossflow. It assumes injection is

from evenly spaced flush circular wall ports into a high-speed crossflow. The purpose

of jetpen is to analyze the general characteristics of the resulting complex flowfield

at a minimal computational cost with reasonable accuracy. jetpen estimates the

trajectory of the plume, location and size of the Mach disk, and the downstream

average characteristics of the flowfield. At the time of jetpen’s development alter-

native cfd based codes could estimate the same measures but were computationally

and monetarily expensive [17].

jetpen is limited to only these estimates of the flow properties. It cannot

estimate the pressure losses or complex plume behavior resulting from such flows.

As a result, it is limited to use as a preliminary design tool. Detailed analysis using

higher fidelity cfd codes is necessary to estimate the overall design performance.

However, the accuracy and low computational cost of jetpen makes it an attractive

tool to investigate large design regions or compare a large number of competing

designs.

2.4.1 Mach Disk Estimation

Mach disk location and size estimation are important parameters in determin-

ing the penetration of the jet into the freestream. jetpen makes several assumptions

in determining the Mach disk. The jet is assumed to be intact and up to the Mach

disk flow is assumed to be isentropic, meaning no energy is added to the jet from the

freestream and no energy is lost in the jet due to friction or dissipation. No mixing

of the fuel and air is allowed to occur downstream until after the Mach disk, which

is justified by the extremely short axial distance from injection to the Mach disk.

This is especially true for the common underexpanded case, where the pressure of
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the jet exceeds that of the surrounding freestream, and the jet expands outward as

it enters the freestream. An “effective back-pressure” of the freestream on the jet

is modeled with an average of the freestream static pressure and predictions for the

pressure on inclined bodies based on Newtonian impact theory [17]. The Mach disk

center location, empirically calculated in [16], is given by

y1

d∗j
= M

1
4
j

(
p∗j
peb

) 1
2

(2.7)

x1

y1

= 1.25

[
1− exp

(
−Ma

Mj

)]
. (2.8)

Here x1 and y1 represent the Mach disk center coordinates. Mj and Ma are the

Mach numbers of the fuel jet and freestream respectively, and pj and peb are the

jet total pressure and effective back-pressure, respectively. The Mach disk area, or

equivalently the area of the fuel plume, also empirically modeled in [17], is

(
A1

Aj

) 1
2

= 1 + 1.45 ln

(
pj

peb

)[
1− exp

(−0.322y1

d∗j

)]
(2.9)

where A1 is the plume cross-sectional area just before the Mach disk, and Aj is

the jet area as it exits the injector. Mach number just after the Mach disk can be

modeled [17] when coupled with the mass continuity principle, as

M2

√
1 +

γ − 1

2
M2

2 = Mj

√
1 +

γ − 1

2
M2

j

(
pj

peb

)(
d2

d∗j

)−2

, (2.10)

where M2 is the Mach number of the fuel plume just after the Mach disk. γ is the

ratio of specific heats, d2 is the diameter of the plume just after the Mach disk,

and d∗j is the injector diameter. The angle of plume trajectory δ1 is also empirically

estimated by

δ1 = δj −
(

qa

qj

) 1
4
(

180

π

)
sin (δj), (2.11)
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where δj is the fuel injection angle, and qa and qj are the respective dynamic pressures

of the main flow and of the fuel jet. These relationships are sufficient to empirically

estimate the size and location of the Mach disk, as well as the plume speed and

direction immediately after the Mach disk.

2.4.2 Governing Behavior

The fluid dynamics principles of mass continuity, momentum conservation,

and energy conservation model the jet plume behavior within the primary stream.

Momentum conservation is broken into both the normal and streamwise components.

Species conservation of the interacting gasses is also modeled, which neglects any

effects of dissociation or combustion of the gases. Additionally, an entrainment

relation derived for high-speed flow is added [17]. The explicit relationships modeled

in jetpen are as follows:

Mass Continuity:

d(ṁ)
ṁj

d
(

s
d∗j

) =

(
d
d∗j

)

π

(
pa

p∗j

)(
U

U∗
j

− Ua

U∗
j

)
E∗ (2.12)

Normal Momentum Conservation:

dδ

d
(

s
d∗j

) = −
2
π
CD

(
qa

q∗j

)(
d
d∗j

)
sin2 (δ)

(
p
p∗j

)(
U
U∗j

)2 (
d
d∗j

)2 −

(
Ua

U∗j

)
sin (δ)

[
d

(
ṁ
ṁj

)

d

(
s

d∗
j

)

]

(
p
p∗j

)(
U
U∗j

)2 (
d
d∗j

)2 , (2.13)

CD =





1.06 + 1.14
[Ma sin (δ)]3

, if Ma sin (δ) ≥ 1.0

1.20 + [Ma sin (δ)]3.5 , if Ma sin (δ) < 1.0
(2.14)
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Streamwise Momentum Conservation:

d
(

U
U∗j

)

d
(

s
d∗j

) =

[(
Ua

U∗j

)
cos (δ)−

(
U
U∗j

)] [
d

(
ṁ
ṁj

)

d

(
s

d∗
j

)

]

(
ṁ
ṁj

) −

(
d
d∗j

)2 (
qa

q∗j

) [
dpavg

d

(
s

d∗
j

)

]

(
ṁ
ṁ∗

j

) (2.15)

Species Conservation:

α =
ṁj

ṁ
(2.16)

Energy Conservation:

TT =
αcpjTTj

+ (1− α) cpaTTa

cp

(2.17)

Entrainment:

E∗ =
0.4(

U2

Ua

)0.6

(
s

d∗j

)1.37

. (2.18)

Table 2.1 defines the parameters used in (2.12)–(2.18). The restriction s/d∗j ≤ 10 is

placed on the entrainment model due to the lack of experimental data beyond this

point [17]. The model itself is an extension of an empirically developed low-speed

model to high-speed flow [17]. As shown in Figure 2.5, each plume is modeled as

having an expanding circular cross-section and entrainment is allowed to occur only

at the exposed area. When adjacent plumes begin to touch, this area is reduced

and jetpen only allows for entrainment to occur at the plume area in contact with

the freestream and not at the area where adjacent plumes merge. This area is now

essentially a series of curved circular arcs, as shown in Figure 2.5.

At the heart of jetpen is a stiff Ordinary Differential Equation (ode) solver.

This solver marches downstream estimating solutions to the system of stiff equations

in (2.12)–(2.18). The ode solver uses a backward difference formula, also known as

Gear’s method, to approximate a full Jacobian matrix and can choose a variable
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Table 2.1 Parameter Descriptions

Parameter Description

ṁj Fuel mass flow rate
pa Main flow pressure
pj Fuel jet exit pressure
Ua Main flow velocity
Uj Fuel jet exit velocity
s Arc length along the trajectory

E∗ Entrainment model response
δ Angle of the plume trajectory

CD Drag coefficient
pavg Plume average pressure
α Mass fraction of injected species

TTa Main flow static temperature
TTj

Fuel jet exit static temperature
cpa Main flow specific heat capacity @ const. press.
cpj Fuel specific heat capacity @ const. press.

stepsize to control error. Error tolerances are set at 10−4, initial stepsize at 0.5, and

a limit of 4000 steps is enforced.

2.4.3 Validation

Billig and Schetz [17] compared jetpen’s results to available experimental data

to verify its computations. Analysis is based on the decay α of fuel concentration

in the plume across several key parameters. The values for key parameters of the

experimental data are summarized in Table 2.2. Much of the experimental data is

sparse in coverage of the experimental space and only reports the maximum con-

centration αmax, while jetpen estimates the average concentration αavg. In light of

these limitations, jetpen estimates the available data quite well. Figure 2.6 shows

the jetpen estimates compared to the experimental data at Ma = 3.0. The pre-

dicted values for αavg lie approximately 40% below the experimental data for αmax

[17]. Figure 2.7 shows the comparison of the predicted and measured plume cross-

2-12



Figure 2.5 Merged Adjacent Plumes

section at x/d∗j = 80, Ma = 6.0, δj = 15o, and w/d∗j = 9.0 [17]. In general, jetpen

is accepted as sufficiently accurate in its predictions.

Table 2.2 Parameter Values for Experimental Data Comparisons

Parameter Lower Value Upper Value

Ma 1.4 6.0
Mj 1.0 1.7

w/d∗j 6.25 ∞
δj 15 90
q̄ 1.0 Large Values

2.5 Simulation Optimization

The optimization problem considered in this research is

min
x∈Ω

f(x) (2.19)

where f : Rn ∪ Z → R ∪ {∞} is considered computationally expensive to evaluate,

Ω = {x ∈ Rn ∪ Z : ` ≤ x ≤ u} and `, u ∈ Rn with ` < u. The objective function

f will be treated as a “black box”, meaning only the response of the function is of

interest and information on the inner workings of the function, such as derivative

information, is either un-used or unavailable. The response of this function f may
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Figure 2.6 Comparison of Predicted vs. Experimental Data

Figure 2.7 Predicted vs. Measured Plume Cross-section

exhibit properties to include nonsmoothness, discontinuity, and may fail to return a

value for x ∈ Ω.

In this research the simulation, namely jetpen, is used to return function eval-

uations for f . jetpen is the main analysis tool for the engineering design problem

of scramjet fuel injection array design. The solution to this problem cannot be found

empirically or through traditional nonlinear math programming techniques. Several

familiar and new optimization techniques are applied to the problem (2.19).
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2.5.1 Evolutionary Algorithms

Evolutionary algorithms are one of the most common optimization techniques

applied to solve difficult engineering design optimization problems. Evolutionary

algorithms are based on heredity and the Darwinian principle of “survival of the

fittest.” The basic evolutionary strategy for continuous parameter optimization de-

veloped by Rechengberg and Schwefel [50] is outlined in Figure 2.8.

Evolutionary Strategy

1. Create an initial population of size λ.
2. Compute the fitness f (xi) , i = 1, ..., λ.
3. Select the µ ≤ λ best individuals.
4. Create λ/µ offspring of each of the µ individuals by small variation.
5. If not finished, return to Step 2.

Figure 2.8 Evolutionary Strategy

A subclass of the evolutionary algorithms are genetic algorithms (ga). Genetic

algorithms attempt to emulate reproduction through processes based on fitness, se-

lection, recombination, genetic representation, and mutation [50]. A Simple Genetic

Algorithm (sga) first developed by Holland, is shown in Figure 2.9 [50]. Genetic

representation is typically done through bitstring representation of a chromosome,

where the positions on the bitstring represent the loci of the chromosome [50]. The

value (allele) of a particular variable (gene) is held in its locus [50]. All the chromo-

somes make up the genotype, which in turn defines the phenotype [50].

Recombination, also called cross-over, combines two parent strings into a subse-

quent child or children that make up part of the next generation. Mutation randomly

operates on any bit of the bitstring with a given probability [50]. In essence, genetic

algorithms are parallel random searches with central control through the selection

schedule, based on the average fitness of each generation [50].

Examples of genetic algorithm applications in scramjet research exist through-

out the literature. Markell [46] applied a commercially available evolutionary algo-

rithm in the optimization of a total vehicle design. He concluded that the optimizer

2-15



Simple Genetic Algorithm

1. Define a genetic representation of the problem, commonly a bitstring.

2. Create an initial population P (0) = {x0
1, . . . , x

0
N}. Set t = 0.

3. Compute the average fitness f̄(t) =
∑N

i f(xi)/N . Assign each individual its
normalized fitness value f(xi)/f̄(t).

4. Assign each xi a probability p(xi, t) proportional to its normalized fitness.
Using this distribution, select an even number of N vectors from P (t). This
gives the set of selected parents.

5. Pair all parents at random forming N/2 pairs. Apply crossover with a certain
probability to each pair and other genetic operators, such as mutation,
forming a new population P (t + 1).

6. Set t = t + 1 and return to Step 3.

Figure 2.9 Simple Genetic Algorithm

successfully converged to the local area of the optimum, but gradient-based augmen-

tation of the search strategy would have helped reduce the 40,000 required function

evaluations [46].

Foster et al. [29] used a hybrid genetic algorithm with a gradient-based search

to optimize several aerodynamic shapes in hypersonic flow based on Newtonian

flow theory. They reported improved convergence over strictly evolutionary and

empirical-based optimization methods. While not directly used in their optimiza-

tion, cfd was used to verify the characteristics of the finalized designs [29].

Chernyavsky et al. [21] also applied gradient-based augmentation to a genetic

algorithm in their optimization of a three-dimensional scramjet inlet. They used an

algorithm developed by Rasheed [21] that only applies gradient-based augmentation

in the final stages of optimization. This algorithm also includes several modifica-

tions for faster convergence in engineering design problems in continuous space [21].

Optimization was applied to a one-dimensional flow solver and converged after ap-

proximately 16,000 function evaluations with minimal improvement after roughly

1500 function evaluations [21]. This suggests that the gradient-based augmentation

may not have been as effective as they originally hoped.
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2.5.2 Micro-Genetic Algorithms

Krishnakumar [39] developed a genetic algorithm based around a small popula-

tion size and the basic principles of evolutionary algorithms, called the Micro-Genetic

Algorithm (µga). This approach showed superior convergence to the optimum lo-

cal area over sgas. It also proved superior in the presence of multi-modality and

non-stationary function optimization, or functions that change over time [39].

His µga is outlined in Figure 2.10. Several key differences, aside from its

small population size, exist that differentiate it from sgas. Mutation is excluded

from the algorithm under the assumption that enough diversity is introduced into

the population through the random selection of strings at every new generation [39].

Cross-over is done deterministically instead of stochastically, as is typical in the sga.

Micro-Genetic Algorithm

1. Select a population of size 5 either randomly or 4 randomly and 1 good string
from any previous search.

2. Evaluate fitness and determine the best string. Label it as string 5 and carry
it to the next generation (elitist strategy).

3. Choose the remaining four strings for reproduction (the best string also
competes in the reproduction) based on a deterministic tournament selection
strategy.

4. Apply crossover with probability 1.

5. Check for nominal convergence. If converged go to Step 1.

6. Go to Step 2.

Figure 2.10 Micro-Genetic Algorithm

Krishnakumar [39] applied the µga to several test functions and found it sig-

nificantly reduced the required function evaluations for convergence when compared

against the sga. Payne [56] reported nearly a four-fold reduction in required func-

tion evaluations, needing only 159 evaluations as compared to the sga’s 580. While

Payne’s work clearly proved its potential, it is the only known application of a µga

to hypersonic design optimization. Applications of µga exist in other disciplines,

and several variants have been introduced as a result.
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2.5.3 Response Surface Methods

Another technique common in hypersonic design optimization is Response Sur-

face Methodology (rsm). rsm “is a collection of statistical and mathematical tech-

niques useful for developing, improving, and optimizing processes” [51]. These meth-

ods were first introduced by Box and and Wilson [18] in the 1950s and commonly

involve the estimation of complex processes through the fitting of first and second-

order regression polynomials. These fitted models use the response points from

carefully constructed experimental designs which then can be optimized through

basic techniques such as stationary point or ridge analysis.

The polynomial model

ŷ = β0 + β1x1 + ... + βnxn + β12x1x2 + ... + β11x
2
1 + ... + βnnx

2
n + ε (2.20)

~b = (β0, β1, ..., βn, β12, ..., β11, ..., βnn) (2.21)

estimates the expected response ŷ from the experimental design points of the n

experimental variables x1, ..., xn. The vector ~b is the vector of estimated model

coefficients, X is the matrix of experimental design points, and ε is the error term.

In general, coefficients of response surface models are estimated by the method of

least squares, yielding

~b = (XT X)−1XT y, (2.22)

where y is the vector of actual experimental responses. The method of least squares

has the advantage of providing unbiased estimates for ~b, assuming model adequacy.

A common yet simple experimental design is the 2-level factorial design. Each

of the k experimental variables is assigned two levels and run at each for a total

of 2k experimental design points. This design has the special property of orthogo-

nality between the estimated effects. Thus, removal of one experimental factor has

no impact on the ability to estimate the others. Two-level factorial experiments

and their derivative, the 2-level fractional factorial, are very efficient for screening
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experimental variables. A drawback of the 2-level factorial design is that it cannot

estimate quadratic or higher order model terms. Three levels for each experimental

variable are necessary for this estimation, which causes the necessary experimental

runs to increase very quickly. For example, assigning 3 levels to a five-factor exper-

iment requires N = 35 = 243 runs, compared to N = 32 runs for a 2-level 5-factor

experiment.

A Central Composite Design (ccd) is a more efficient alternative to a 3-level

factorial experiment. A ccd is a spherical, 5-level design that combines a 2-level

factorial with center runs and axial runs for a total of N = 2n +2n+1 experimental

design points. The ccd has been proven to be a robust experimental technique

especially when designed with rotatability [51]. A rotatable ccd is one where the

prediction variance only depends on the distance, not the direction, from the design

center. Here, the scaled prediction variance, N V ar[ŷ(x)]/σ2, is the same throughout

the design region at a given distance from the design center, with σ2 the process pure

error estimate. Rotatability in the ccd requires [51]:

1. All odd moments through order 4 are zero.

2. The ratio of moments [iiii]/[iijj] = 3 for (i 6= j)

The first condition on rotatability is satisfied as long as the factorial portion of the

ccd is a properly chosen full or fractional 2k factorial design. The second condition

on rotatability can be satisfied by:

α = 4
√

NF (2.23)

where α is the distance from design center of the axial points and NF is the number

of factorial points. The ccd is an efficient design involving a reasonable number of

design points for the information returned, which is particularly useful in sequential

experimentation [51].

2-19



Another alternative to both the 3-level factorial and ccd is the Box-Behnken

design (bbd). The bbd is a 3-level spherical design that has experimental points

centered on the “edges” of the associated 2-level factorial design. The result is a

rotatable, or nearly-rotatable, spherical design that requires fewer runs than a ccd.

For example for k = 3 experimental variables, the ccd requires N = 14 + nC runs,

while the bbd requires N = 12 + nC runs [51].

These designs can be built and modified to achieve specific modeling objectives.

The most common objective is the minimization of V ar(bi), i = 1, . . . , k, or variance-

optimality. Variance-optimality is achieved if (XT X)−1 = N−1In for a given design

X, where In is the identity matrix. Another common m odeling objective is D-

optimiality, which maximizes the determinant of the moment matrix over all possible

designs. Box and Draper [51] developed several methods for minimum design bias

in the case of an underspecified model. These methods are beyond the scope of this

investigation but have been successfully applied in the context of hypersonic design

optimization [56].

The backbone of rsm optimization is the method of steepest descent. The

method of steepest descent applies gradient-based process improvement to the in-

formation returned from experimental designs [51], and is outlined in Figure 2.11.

Movement along the chosen path, ∆, is proportional to the largest regression coeffi-

cient, bi,

∆xj =
bj

bi/∆xi

, where typically: ∆xi = 1. (2.24)

At every subsequent first-order experiment, it is important to test for lack-of-fit

to determine if any significant curvature exists in the experimental region. A ccd,

bbd, or other spherical design is justified in the existence of significant lack-of-fit and

minimal improvement along the selected path. This final experiment will identify

the optimal point within the design region by stationary point or ridge analysis. The
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stationary point, xS, can be easily found by

xS = −1

2
B̂−1b (2.25)

where B̂ is the symmetric k × k matrix of second-order terms, and b is the vector

of first-order terms.

Gradient-Based RSM

1. Fit a first-order model using an orthogonal design.

2. Compute a path of steepest descent.

3. Conduct experimental runs along the path.

4. Run a second experiment at the point of approximate maximum (or minimum)
response along the path. This design should again be a first-order model.

5. Another direction of steepest descent is computed and more experiments are
run. Eventually, the improvement will be diminished enough to warrant a
higher-order experimental design, which is the final basis for optimality.

Figure 2.11 Gradient-Based RSM

Several examples of rsm application in hypersonic design optimization exist

in the literature. Steffen [64] applied a design called the face-centered ccd, or three-

level ccd, in the fuel injection array optimization of nasa’s gtx multi-mode propul-

sion system. Computationally expensive cfd analysis was used as the response with

four experimental variables being considered. This computational expense justified

the use of rsm instead of more expensive evolutionary techniques. Despite the vari-

ance instability inherent in his design, Steffen reported good prediction capability

with the second-order response model [64].

2.6 Pattern Search Methods

This section covers the methods, theoretical results, and application of Mixed

Variable Pattern Search (mvps). It is a derivative-free optimization technique that

evaluates points on a conceptualized mesh. At each iteration, the search is done

such that a descent direction will be found, if one exists, while ensuring that the
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stepsize is not too small. Under the assumptions of continuous differentiability of the

objective function and that all iterates of the algorithm lie in a compact set, certain

limit points of the algorithm are shown to satisfy first-order optimality conditions

[12], and a pseudo-second-order necessary condition [3]. Methods covered in this

investigation are restricted to bound constrained optimization and application is

performed through the nomadm software graphical user interface. The nomadm

software package developed by Abramson [4] is a framework for the application of

pattern search methods within matlabr.

2.6.1 Generalized Pattern Search

Generalized pattern search was introduced and studied by Torczon [68] for

unconstrained optimization on continuously differentiable objective functions. For

the purpose of this discussion, the bound constrained optimization problem is defined

as in (2.19) where there is no noise, or discrete variables and the values for ` and u

are permitted to take on values of −∞ and ∞, respectively, to allow variables to be

constrained in only one direction. A “barrier” function, identical to those of Audet

and Dennis [13] and Lewis and Torczon [41], fΩ = f + ψΩ, is applied for each point

to be evaluated, where Ω = {x ∈ Rn : ` ≤ x ≤ u}. If a candidate point lies outside

the bounded region, then ψΩ(x) = ∞ and a function value of fΩ(x) = ∞ is returned.

Otherwise, ψ(x) = 0 and fΩ(x) = f(x).

The gps algorithm generates a set of iterates of non-increasing function values.

Each iteration has two main steps, an optional search and a local poll. The intent

is to find a point with a lower objective function value by evaluating the “barrier”

function fΩ at a finite number of points on a mesh defined around the current

solution. The size of the mesh is then adjusted depending on whether or not an

improved mesh point is found. This improved mesh point must be strictly lower in

objective function value.
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The mesh is conceptually constructed via a set of nD positive spanning di-

rections ; i.e., a set of directions such that any vector in Rn can be expressed as a

nonnegative linear combination of directions in the set [25]. A positive basis is a pos-

itive spanning set such that removing any vector in the set would make it no longer

a positive spanning set, having between n+1 and 2n directions. For this discussion,

the n × nD matrix D, whose columns are the nD positive spanning directions, is

required to be constructed as

D = GZ, (2.26)

where G is a real nonsingular n× n generating matrix (often chosen as the identity

matrix), and Z is an n × nD full-rank integer matrix. Thus, each direction dj ∈ D

can be represented by dj = Gzj with integer vector zj ∈ Zn, for j = 1, 2, . . . , nD.

The mesh Mk at iteration k [13] is given by

Mk =
⋃

x∈Sk

{x + ∆kDz : z ∈ ZnD}, (2.27)

where Sk is the set of points at which fΩ has previously been evaluated prior to

iteration k, and the mesh size parameter ∆k > 0 controls the mesh fineness. This

definition ensures all previous iterates lie on the current mesh, and is consistent with

that of Audet and Dennis [13].

The optional search step evaluates fΩ at a finite number of points (including

none), in an attempt to find an improved mesh point. It may employ any technique

such as a few iterations of a heuristic, fitting and optimizing a surrogate function,

random sampling, or any other finite technique. The search step contributes noth-

ing to the convergence theory (see Section 2.6.3) but is completely flexible in its

employment by the user. Each of the evaluated points in the search step are

required to lie on the current mesh.

If the search step fails to find an improved point, then the poll step is in-

voked. This step is deliberate in its construction and is necessary for the convergence
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theory. In the poll step, fΩ is evaluated at mesh points adjacent to the incumbent

solution xk. This set of points, called the poll set, is given by:

Pk(xk) = {xk + ∆kd : d ∈ Dk ⊆ D} ∈ Mk, (2.28)

where Dk is itself a positive spanning set whose columns are taken from D. The

mesh is controlled via the parameter wk. If the search or poll steps return an

improved mesh point, then the current iterate is immediately terminated and a new

iteration centered around the new incumbent, xk+1, is started. The mesh is then

either retained or coarsened. If no improved mesh point is found at either step,

then the incumbent is declared a local mesh optimizer, and the mesh is then refined

and a new iterate begun. The term wk determines the fineness of the mesh at each

iteration with w− ≤ wk ≤ w+ for fixed integers w+ ≥ 0 and w− ≤ −1. If the mesh

is coarsened, then wk ∈ {0, 1, ..., w+}, otherwise wk ∈ {w−, w− + 1, ..., − 1}. The

mesh size ∆k is then determined by

∆k+1 = τwk∆k. (2.29)

An example of three consecutive poll steps is shown in Figure 2.12. In this case,

xk ∈ R2, Dk = D = {e1, e2,−e1,−e2}, τ = 2, and wk = −1. The search step is

omitted for simplicity. At iteration k, the incumbent xk and poll set is marked

by the dots. Notice that each of the poll points lies in the 4 standard coordinate

directions. Assume that no improved mesh point is found. The incumbent is declared

a mesh local optimizer and is updated, xk+1 = xk. The mesh is now refined with

wk+1 = −1, giving ∆k+1 = τwk∆k = 2−1(1) = 0.5. The next iteration, k + 1, builds

a finer mesh around the incumbent. Again, the poll points are in the standard

coordinate directions but are now half the original distance from the incumbent.

Assume that each of the poll set points are not improved mesh points. Again, the

incumbent is declared a mesh local optimizer and is updated xk+2 = xk+1. The mesh
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is refined as ∆k+2 = τwk∆k+1 = 2−1(0.5) = 0.25. A new, finer mesh is constructed

around the incumbent and polling takes place again.

Figure 2.12 GPS Poll Step and Mesh Update

In this fashion the algorithm iterates until the stopping criteria ∆k < ε is

reached, where ε is a user defined mesh-size tolerance. A basic algorithm for gps is

outlined in Figure 2.13.

Generalized Pattern Search (GPS)

Initialization : Evaluate the set of initial points S0. Define x0 ∈ S0 such that
fΩ(x0) ≤ fΩ(y) ≤ ∞, ∀ y ∈ S0. Define ∆0 > 0, Mk as in (2.12), and D as a
positive spanning set of nD directions.

1. search step: Search for an improved mesh point via a finite strategy; i.e.,
` ≤ xk+1 ≤ u such that fΩ(xk+1) < fΩ(xk).

2. poll step: If search step is unsuccessful, evaluate fΩ at points in the poll
set Pk(xk) defined in (2.28) until an improved xk+1 is found or until all points
in Pk(xk) are evaluated.

3. Update: If the search or poll steps find an improved mesh point, then
update xk+1 and set ∆k+1 ≥ ∆k as in (2.29). Otherwise, set xk+1 = xk and set
∆k+1 < ∆k as in (2.29).

Figure 2.13 Basic GPS Algorithm
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2.6.2 Mixed Variable Pattern Search

Often in engineering design problems a variable cannot take on a continuous

value, but may be represented by a finite set of numbers. These discrete variables

must be handled differently than their continuous counterparts. Branch and bound

techniques may be applicable for variables that take on discrete integer values which

have some inherent meaning. Often the variables are categorical, such as material

type, color, or shape, where the assigned numerical value may hold no inherent

meaning. Problems involving both continuous and categorical variables are called

mixed variable optimization problems.

Audet and Dennis extended gps to the domain of mixed variables [12]. Mixed

variable pattern search is similar to gps but requires additional function evaluations

to account for the discrete variables. The mvps poll step evaluates fΩ at the set of

points defined in gps, but also evaluates fΩ at a user-defined list of discrete neighbors

of the current iterate. Additionally, an extended poll step is performed around

each discrete neighbor whose objective function value falls within a user-specified

amount from that of the current incumbent. Much of the following discussion and

definitions that follow come from Abramson [2].

To define the set of discrete neighbors, let x be partitioned into its continuous

and discrete components; i.e., x = (xc, xd), where xc ∈ Ωc and xd ∈ Ωd, with

Ω = Ωc × Ωd. The sets Ωc and Ωd represent the continuous and discrete domains,

respectively. The set of discrete neighbors is constructed from a set-valued function,

N : Ω −→ 2Ω where Ω represents the entire feasible region and 2Ω is the power set,

containing all possible subsets of Ω. The finite set of discrete neighbors of a point

xk is denoted by N (xk) [12]. Thus, a point y is a discrete neighbor of point xk

if y ∈ N (xk), where N (xk) is defined by the user. A common choice of discrete

neighbors for integer variables is

N (xk) = {(xc
k, y

d) : yd ∈ Ωd, ‖ yd − xd
k ‖1≤ 1}. (2.30)
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While this definition is applicable to this research, it is more restrictive than that of

the general case, where the continuous variables, as well as the bounds ` and u, may

change depending on the combination of discrete variables. All discrete neighbors

are required to lie on the mesh defined by the current iterate; thus, N (xk) ⊆ Mk

with N (xk) finite.

To define the current mesh Mk, the matrix Di is constructed like D in (2.26)

and has the same properties as in the gps algorithm, with the exception that Di

denotes the positive spanning directions for the ith combination of discrete variable

values, i = 1, 2, . . . , imax, where imax is the total number of different discrete variable

settings. The mesh is the direct product of Ωd with the union of meshes for each

possible combination of categorical variable settings; namely,

Mk = Ωd ×
imax⋃
i=1

{xc
k + ∆kD

iz ∈ Ωc : z ∈ Z|Di|}, (2.31)

where |Di| is the cardinality of Di. The mesh size parameter ∆k retains the same

restrictions as in gps. The poll set for the continuous variables is then defined

Pk(xk) = {(xc
k + ∆kd, xd

k) ∈ Ω : d ∈ Di
k ⊆ Di} (2.32)

where Di
k ⊆ Di is the set of positive spanning directions for iterate k at the ith

discrete variable combination. It is important to note that the values of the discrete

variables do not change from those of the current incumbent, xk, during this portion

of the poll step. If no improvement is found in Pk(xk), then the discrete neighbors

of xk, i.e. y ∈ N (xk), are evaluated.

If the poll step fails to find a new incumbent, then the extended poll

step is executed. The extended poll step initiates a poll step in the continuous

variables for all neighbors in N (xk) whose function value was sufficiently close to

the incumbent function value, i.e. the extended poll is initiated for each discrete
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neighbor that satisfies fΩ(xk) ≤ fΩ(y) ≤ fΩ(xk)+ξk. The parameter ξk ≥ ξ, for some

fixed ξ > 0, is called the extended poll trigger, and is typically set to a percentage of

the objective function value, such as ξk = max{0.05f(xk), ξ}. This subset of discrete

neighbors N ξk

k is defined by

N ξk

k = {y ∈ N (xk) : fΩ(xk) ≤ fΩ(y) ≤ fΩ(y) + ξk}. (2.33)

The set of extended poll centers forms the sequence {yj
k}Jk

j=1, which begins with

y0
k = yk ∈ N (xk) and ends with zk = yJk

k , where Jk is finite under some mild as-

sumptions. The extended poll endpoint zk occurs when either fΩ(zc
k+∆m

k d, zd
k) <

fΩ(xk), or when fΩ(xk) < fΩ(zc
k + ∆m

k d, zd
k) for all d ∈ Dk(zk). Thus the entire set of

extended poll points is given by

χk(ξk) =
⋃

y∈N ξk
k

Jk⋃
j=1

Pk(y
j
k). (2.34)

The mesh updating in mvps is the same as in gps. The set of trial points at each

iteration of mvps is Tk = Sk ∪Pk(xk)∪N (xk)∪χk(ξk), where Sk is the set of points

evaluated in the search step. A point xk is considered to be a mesh local optimizer

if fΩ(xk) ≤ fΩ(y) ∀ y ∈ Tk.

The mvps algorithm is shown in Figure 2.14, and an example of one iteration

is shown in Figure 2.15. The problem shown in Figure 2.15 has one discrete and

two continuous variables. The incumbent is xk and Pk(xk) = {a, b, c}. No improved

mesh point is found in Pk(xk) and the discrete neighbors of xk, N (xk) = {y1, y2},
are evaluated with fΩ(xk) < fΩ(y1) < fΩ(xk) + ξk < fΩ(y2). Since N ξk

k (xk) = {y1},
the algorithm next evaluates Pk(y1) = {d, e, f} with no improved mesh point and

the mesh is refined.
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Mixed Variable Pattern Search (MVPS)

Initialization : Evaluate the set of initial points S0. Define x0 ∈ S0 such that
fΩ(x0) ≤ fΩ(y) ≤ ∞, ∀ y ∈ S0. Define ∆0 > 0, Mk as in (2.31), and Di as a
positive spanning set of nDi directions.

1. search step: Search for an improved mesh point via a finite strategy; i.e.,
xk+1 ∈ Ω such that fΩ(xk+1) < fΩ(xk).

2. poll step: If search step is unsuccessful evaluate fΩ at points in
Pk(xk) ∪N (xk) until an improved mesh point is found or all points are
exhausted.

3. extended poll step: Perform a poll at each xk ∈ χk(ξk) until an improved
mesh point is found or until the set is exhausted.

4. Update: If the search, poll, or extended poll steps find an improved
mesh point, then update xk+1 and set ∆k+1 ≥ ∆k as in (2.29). Otherwise, set
xk+1 = xk and set ∆k+1 < ∆k as in (2.29).

Figure 2.14 MVPS Algorithm

2.6.3 Convergence Results

Torczon [68] proved that a subsequence of gps iterates converge to a point

x̂ satisfying ∇f(x̂) = 0 if the objective function is continuously differentiable in

the neighborhood of the level set {x ∈ Rn : f(x) ≤ f(x0)}, with x0 ∈ Rn the

initial iterate. Lewis and Torczon expanded this result to bound [41] and linear

constrained [42] problems and showed that a subsequence of iterates converges to

a point satisfying the first-order KKT optimality conditions. Audet and Dennis

[12] extended these results to problems with less well-behaved objective functions

using Clarke nonsmooth calculus [23]. Abramson [3] proved some limited second-

order results, which eliminate strict local maximizers and an entire class of saddle

points from convergence consideration. Audet and Dennis [12] developed mvps for

bound constrained problems, which was extended to problems with general linear

constraints by Abramson [2]. MVPS has also been extended to mixed variable

problems with nonlinear constraints [2, 5].
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Figure 2.15 MVPS Full Iteration

2.6.4 Kriging Surrogates

While many options are available for use at the search step, in practice many

engineering optimization problems employ surrogates. Surrogates fit a model to the

set of previously evaluated points that is fairly easy to optimize. This optimum is

then evaluated as a means for finding improvement prior to the poll and extended

poll steps. A surrogate may be something as simple as a regression model similar

to that of rsm. Often, more complex, but still easily optimized, surrogates are used.

Kriging surrogates are one such type of these more complex surrogates. Kriging

attempts to interpolate the response f(x) by fitting a regression model, F , and a

random function, z, to the objective function response at each evaluated point. The

predicted response is modeled as

ŷ = F(β, x) + z(x). (2.35)

Each response is deterministic in the sense that repeated evaluations of the same

design return exactly the same value. The regression model consists of a linear com-

bination of p functions, chosen by the user, with corresponding regression coefficients
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β

F = β1f1(x) + . . . + βpfp(x)

= [f1(x) . . . fp(x)]β

= f(x)T β. (2.36)

The random function is assumed to have mean zero and variance σ2 which

models the process variance of the response. “An interpretation of the model is that

deviations from the regression model, though the response is deterministic, may

resemble a suitably chosen stochastic process z” [44]. Covariance between different

design sites (x and w, where x 6= w) is assumed to be a function of the designs and

a parameter Θ,

E[z(x)z(w)] = σ2R(Θ, x, w). (2.37)

The matrix R = [Rij] is the matrix of correlations between the set S of m previously

visited design sites, S = [s1 . . . sm], with each element Rij = R(Θ, si, sj). A new

design site, x, has a correlation vector r(x)

r(x) = [R(Θ, x, s1), . . . ,R(Θ, x, sm)]. (2.38)

While not shown for the sake of brevity [44], the derivation for the unbiased

least squares solution for β with respect to R is

β∗ = (F T R−1F )−1F T Y, (2.39)

where Y = [y(s1) . . . y(sm)] is the vector of responses at the m design sites. The m×p

matrix F is the matrix where Fij = fj(si), or equivalently F = [f(s1) . . . f(sm)]T .

Actual computation of β is performed by QR factorization on F instead of computing

an inverse. This is particularly helpful in the case where F is over-determined and/or
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near-singular. The result is that the predicted value at a visited design site equals

the response at that design site, ŷ(x) = y(x).

Regression polynomials of order 0, 1, and 2 are typically used for f1, . . . , fp,

and are studied in this investigation. The corresponding values of p are 1, n+1, and

1
2
(n + 1)(n + 2), respectively. The explicit models are

Constant (Order 0):

f1(x) = 1,

Linear (Order 1):

f1(x) = 1, f2(x) = x1, . . . , fn+1(x) = xn,

Quadratic (Order 2):

f1(x) = 1,

f2(x) = x1, . . . , fn+1(x) = xn,

fn+2(x) = x2
1, fn+3(x) = x1x2, . . . , f2n+1(x) = x1xn,

f2n+2(x) = x2
2, f2n+3(x) = x2x3, . . . , f3n(x) = x2xn,

. . . , f 1
2
(n+1)(n+2)(x) = x2

n (2.40)

While several options exist for correlation models [44], this investigation re-

stricts the model to only the Gaussian correlation model; namely

R =
m∏

j=1

R(Θ, dj), dj = x− wj (2.41)

where:

R = exp Θjd
2
j , j = 1, . . . , m. (2.42)

The Gaussian correlation model is most often used in practice and is considered to

mimic the underlying function behavior better than other correlation models as the

number of design sites increases [44]. In reality, the appropriate choice of correlation
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model is problem-specific. Many problems may exhibit anisotropic behavior, where

different correlations exist in different directions of the model space [44].

2.7 Summary

This chapter covered the physics, modeling, and optimization approaches rel-

evant to scramjet injection array design optimization. The challenging flow envi-

ronment, heat transfer, flame propagation, and mixing characteristics combine to

make hypersonic design optimization a true challenge. cfd and jetpen provide

the vehicle that allows for accurate approximation and modeling of this environ-

ment. Familiar optimization techniques provide a back-drop for the first application

of provably convergent algorithms.
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3. Problem Approach

This chapter outlines the process by which the scramjet injection arrays are

designed and evaluated. The evaluation process exclusively uses the jetpen simula-

tion software, as well as a series of other short programs written by the author and

Payne [56]. Care is taken to ensure the results of this investigation are comparable

to the previous results found by Payne [56]. The design variables and evaluation

methods are nearly the same as those used by Payne [56]. It is important to note

that the version of jetpen used in this study is different than that used by Payne.

While the specific improvements are not known, the difference in estimations be-

tween the two versions has been found by the author to be fairly small, less than

2%. This should not have any significant impact on the ability to compare results.

3.1 Design Variables

Many potential variables exist for the problem of scramjet fuel injection array

design. For the purpose of this investigation the design variables must be limited to

only those which are direct inputs into jetpen. jetpen requires 15 input parameters

from the scramjet design and flow-field to perform its analysis. Many of the input

variables are fixed and are determined from the physical scramjet design and mission

parameters. The mission and physical design parameters are determined by designs

from afrl/rzas and outlined in Appendix A. The remaining inputs associated with

the injection array design are the only inputs directly considered for determining each

design, shown in Table 3.1. For the hifire design, the only inputs are δj and N ; PTj

and TTj
are determined from the mission parameters.

A cross section of the fuel injection array assumed by jetpen is shown in

Figure 3.1. jetpen is only capable of performing analysis on this design, which

contains a number N of evenly-spaced circular injectors of diameter d∗j . The injectors

are arranged laterally across the width (l) of a rectangular combustor of height h.
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Table 3.1 Design Variables

~xi Description Units

δj Injection Angle deg
N Number of Injectors
PTj

Jet Total Pressure psia
TTj

Jet Total Temperature oR

The parameter lnf takes into account any space that cannot contain injectors due

to manufacturing constraints. The non-dimensional spacing parameter w/d∗j is the

ratio of injector spacing (w) to injector diameter. While not explicitly handled by

jetpen, the number of injectors (N), as derived by Payne [56], can be found by

N =
2l2f

ArQ
(

w
d∗j

)2 , (3.1)

Ar =
lf
l
, (3.2)

where Q is derived from the flow conditions under an ideal gas behavior assumption.

In contrast to Payne’s work, N is handled directly as a design variable, instead of

being derived implicitly post-analysis from the value of w/d∗j .

Figure 3.1 Fuel Injection Array Cross-Section
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3.2 Dependent Variables

Several remaining jetpen inputs are dependent on the values for the design

parameters. For Payne’s design, injector diameter changes with the jet total pressure

(PTj
), jet total temperature (TTj

), and the number of injectors (N) to keep the fuel

mass flow rate constant. This value, as derived by Payne [56], can be computed as

d∗j =

[
1

2N
ArQ

] 1
2

. (3.3)

For the hifire design the injector diameter is fixed at 0.125 inch.

The jet specific heat at constant pressure (cpj
) and ratio of specific heats (γj)

are inputs to jetpen that are dependent on fuel molecular weight (wj) and Mach

number (Mj) of the injected fuel, as well as the design variables, jet total pressure

(PTj
) and total temperature (TTj

). Fuel molecular weight is that of ethylene, and

Mach number (Mj) is determined by the mission parameters. The inputs cpj
and γj

are determined by the method developed by Payne [56], utilizing a bisection routine

with interpolating polynomials. The author modified this routine slightly to extrap-

olate the polynomials in the case where, after conversion to static conditions, the jet

total pressure exceeded the bounds of the uppermost interpolating polynomial. This

modification has implications on Payne’s results that are discussed in Section 4.6.

Ideal gas laws are applied to calculate the dependent variables and these relationships

can be seen in Appendix B.

Interpolating polynomials are developed from tabular data for ethylene. For

the original design studied by Payne, the interpolating polynomials are developed

from tabular data provided by afrl/rzas. The second design problem requires a

different range of temperatures and pressures, and thus a different set of interpolating

polynomials are used. This second set of polynomials is derived from tabular data

readily available from the National Institute for Standards and Technology (nist)

website [53] for ethylene (ethene).

3-3



The hifire design requires several calculations for the specific heat capacity

(cpa) and ratio of specific heats of air (γa). The temperatures and pressures inside

the scramjet engine for this design fall into the range called “thermally perfect” by

[36]. The relationship between γa and TTa is essentially linear in this range, and their

values are determined according to this relationship via the same bisection routine.

3.3 Design Evaluation

Evaluation of a scramjet injection array design begins with writing design vari-

ables into a short text file, called dv.dat. A pre-processing routine uses this to cal-

culate the dependent variables, and two files, input.dat and cmbst.dat, are built.

The jetpen input file, input.dat, contains all the input parameters needed for

jetpen to perform its analysis. The cmbst.dat file contains the input parameters

needed by the post-processor. A flowchart of the design evaluation process is shown

in Figure 3.2.

Figure 3.2 Flowchart of Design Evaluation Process

Upon completion of the pre-processing routine, jetpen is run and several

output files are built containing the resulting flowfield data. The text-file file97

contains the flowfield axial data needed to asses the combustor performance. In

this investigation, the source code for jetpen is unavailable and the axial data

cannot be put separately into another file, as Payne did. As a result, a short routine
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is necessary to extract and format the appropriate data. A post-processing routine

uses the formatted data from the file output.dat and the input variables contained

in cmbst.dat to assess the design performance. The final output lies in the file

perf.dat and contains the design variables and the performance measures.

3.4 Performance Measures

A single performance measure, such as total thrust genterated or delivered spe-

cific impulse (Isp), is best for design assessment. jetpen in incapable of determining

the generated thrust or Isp, and thus the mixing properties estimated by jetpen

are the only performance measures available. It is important to note again that

jetpen is not capable of determining the dynamic pressure losses in the combustor

as a result of mixing, and they must be estimated by means outside the scope of this

investigation.

Keeping in line with Payne [56], the merit of a fuel injection array design is

measured by the downstream distance where sufficient mixing occurs for combus-

tion. The optimal array is the combination of δj, N , PTj
, and TTj

that yields the

shortest downstream distance where appropriate mixing occurs. Shorter distances

are preferable to longer distances, due to the extremely short residence time of the

crossflow. The intent is to create a laterally even, properly mixed, block of air and

fuel as soon as possible for combustion.

The output flowfield data from jetpen are given at axial distances expressed

as multiples of the jet diameter d∗j . To find the actual distance, the output axial

distances (x∗i ) must be multiplied by d∗j . Non-dimensional performance measures

are preferred, and the dimensional axial distances are normalized by the combustor

height. The resulting axial distances outlined in the following subsections are found

by

xi =
x∗i d

∗
j

h
, (3.4)
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where i = 1, 2, 3 represents the respective performance measures.

3.4.1 Jet Penetration

The combustor design in this investigation has two injection arrays arranged

across from each other on parallel walls. As a result, it is important for the fuel

plumes of the facing arrays to merge, or equivalently, to penetrate to the combustor

centerline. It is desirable for this to occur as quickly as possible to allow time for

proper mixing. Had only one injection array been considered, then the fuel jet would

need to penetrate the entire combustor height (h). Jet penetration height is defined

as the vertical height (y) achieved by the fuel plume at axial distance xi and is shown

in Figure 3.3 [56].

Figure 3.3 Jet Penetration

The jet penetration to the combustor centerline is considered satisfied at the

first axial station where the fuel plume height is greater than half the combustor

height. The performance measure y1 [56] is the axial station where

y(x∗i )
d∗j

≥ h/2

d∗j
. (3.5)

3.4.2 Plume Expansion

The jet plume expansion rate, particularly the axial distance where adjacent

plumes merge, shown in Figure 3.4, is another key indicator of mixing performance.
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Satisfaction of this criterion [56] occurs at the axial station where

D(x)

d∗j
≥ w

d∗j
. (3.6)

The performance measure y2 is this axial station where the plume diameters (D(x))

of adjacent jets meet.

Figure 3.4 Plume Expansion

3.4.3 Fuel Concentration Decay

The decay of the fuel concentration in the plume is another important measure

of mixing. Prior to the Mach disk the plume is completely comprised of fuel, and

only at the Mach disk does the fuel begin to mix with the freestream [59]. The

average concentration of fuel in the plume (αavg) must decay to the stoichiometric

ratio (fST ) to maximize combustion efficiency. The final performance measure, y3,

[56] is the axial distance where

αavg(x) ≤ fST . (3.7)

A typical plot of the fuel concentration decay versus the axial distance is shown in

Figure 3.5.
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Figure 3.5 Fuel Concentration Decay

3.4.4 Performance Measure Estimation

jetpen is incapable of direct evaluation of the performance measure criteria.

The value of a performance measure is declared equal to the first axial station where

its criterion is satisfied. This inherently over-estimates the performance measure

and may not be the most accurate estimation method available. The discrete and

relatively smooth nature of the output data may make model fitting and subsequent

criterion solving a promising alternative. For example, the output data shown in

Figure 3.6 resembles a square-root function. Fitting this model, or equivalently a

linear model to the square of the data, and then solving for the penetration criterion

may yield improved estimation. However, the output data from jetpen is itself an

estimate, and fitting an estimated model to estimated data is likely assuming fidelity

that does not exist and compounding error. Therefore the conservative methods

employed by Payne are applied throughout this study.
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Figure 3.6 Typical jetpen Plume Penetration Data

3.5 Constraints

3.5.1 Payne’s Design

The constraints on the design variables PTj
and TTj

of the Payne’s design are

enforced as before to ensure validity of the afrl interpolation polynomials, and to

ensure that the fuel is in a gaseous state at injection. The previous lower restriction

of 10o on δj is kept with the intent of avoiding the manufacturing difficulties of

producing high jet total pressures at the injection point. The upper restriction of

70o on δj is expanded to 90o to allow for the possibility of full normal injection. It

is known a priori from Payne’s results that the optimal design does not likely lie in

this added region and poses minimal risk in adversely influencing results.

The constraints on the number of injectors (N) is handled differently in this

investigation. Payne restricted his investigation to a minimum of 3 and a maximum

of 10 injectors. The upper restriction was based in part on the physical limitation

fitting the injectors inside the combustor width. However, Payne’s optimal design

using the maximum of 10 injectors took up less than 20% of the available space.

Secondly, Payne found that for large values of N , jetpen would abort and fail

to return data. This phenomena is further investigated in Section 4.6, but the end
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result is that this upper restriction is no longer applicable. This investigation handles

N differently in two applications. First, an attempt is made to reproduce Payne’s

results using an upper limit of 10, followed by an application where the upper limit

is 20. This increase should allow improved designs to be found, since the optimum

found by Payne is at the boundary of this constraint.

The design bounds used in Payne’s problem, applied again in this study, are:

10o ≤ δj ≤ 90o

20 psia ≤ PTj
≤ 650 psia

850 Ro ≤ TTj
≤ 1500 Ro

N ∈ {3, 4, . . . , Nmax}
Nmax ∈ {10, 20}.

3.5.2 HiFIRE Design

The hifire design problem only considers δj and N as design variables. The

constraint on δj is kept for the same reasons as the previous problem. Restrictions

on N are set at a lower limit of 3 and an upper limit of 31. This upper limit is

the largest feasible number of injectors that can physically be placed in the design.

Specifics of the design parameters can be found in Appendix A. The constraints

applied in the optimization of this problem are:

10o ≤ δj ≤ 90o

N ∈ {3, 4, . . . , 31}.

3.6 Summary

This chapter outlines the design variables, performance measures, and con-

straints necessary to optimize the scramjet fuel injection array. Optimization of the

design previously studied by Payne uses has four design variables δj, PTj
, TTj

, and

N , where N is now an explicit design variable. The hifire design considers only
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two design variables: δj and N . Three performance measures based on gross mixing

characteristics are used to assess each candidate design. A design evaluation rou-

tine using jetpen is developed to evaluate each design delivered by the optimizer.

Bound constraints are outlined for both scramjet designs.

3-11



4. Optimization

The intent of this chapter is to detail the optimization of the approach out-

lined in Chapter 3. Optimization is performed using the two primary methods

outlined in Chapter 2: mixed variable pattern search and genetic algorithms. In the

search step of mvps, several Kriging surrogates are investigated including a base-

case where no surrogates are used. Both classes of genetic algorithms from Section

2.5 are applied.

It is important to note up front that the intent of the author is not to provide a

fair comparison of the two primary methods. Instead, the author focuses on making

an overall useful comparison. The previous work done by Payne identifies several

parameters used in the genetic algorithms that greatly improve performance. To

“dumb-down” the algorithms in the spirit of providing a fair playing field would

certainly betray his previous work. Instead, the genetic algorithms are applied at

their tuned parameters and mvps uses default values. Hence, if mvps performs

comparatively well to the genetic algorithms, then one may reasonably conclude

that mvps performs well on this class of problems. However, if the converse is true,

then conclusions may be harder to draw. In either case, measures of algorithm

performance must be fair and balanced for any conclusion to be made.

4.1 Problem Statement

4.1.1 Design and Response Vectors

Each candidate design is represented by a vector of the design variables. For

Payne’s design this vector contains four variables and is expressed as

~x =
[
δj, N , PTj

, TTj

]T
.
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The hifire design only considers two variables and the design vector is expressed as

~x = [δj, N ]T .

These definitions are necessary for the statement of the optimization problem.

For Payne’s design, the three performance measures are assessed for each candi-

date design returned by the optimization algorithm. They are expressed as a vector of

performance measures normalized by combustor height, ~y = [y1(~x), y2(~x), y3(~x)],

as defined in Table 4.1. The notation y(~x) is used to denote a specific performance

measure y that corresponds to a specific design ~x.

Table 4.1 Payne’s Performance Measures

~yi Description

y1 Axial distance to combustor half-line penetration
y2 Axial distance to adjacent plume merge
y3 Axial distance to stoichiometric fuel concentration decay

The hifire design is evaluated at three flight speeds. The vector of perfor-

mance measures is assessed for each flight speed. The result is a 3 × 3 matrix of

performance measures to flight speeds, is

~Y =




~yM6

~yM7

~yM8


 =




y1,M6(~x) y2,M6(~x) y3,M6(~x)

y1,M7(~x) y2,M7(~x) y3,M7(~x)

y1,M8(~x) y2,M8(~x) y3,M8(~x)


 . (4.1)

Again, the notation y(~x) is used to denote a specific response resulting from a specific

design, but is also extended across the flight conditions. For example, y1,M6(~x)

represents the axial distance for the fuel plumes to penetrate to the combustor half-

line, resulting from design ~x at Mach 6 flight conditions.
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4.1.2 Original Design Problem Statement

Optimization of the injection array design problem studied by Payne and out-

lined in Chapter 3 is summarized as

minimize F = f(~y)

subject to:

10o ≤ δj ≤ 90o

20 psia ≤ PTj
≤ 650 psia

850 Ro ≤ TTj
≤ 1500 Ro

N ∈ {3, 4, . . . , Nmax}
Nmax ∈ {10, 20}.

The solution to this problem is the design vector, ~x =
[
δj, N , PTj

, TTj

]T
, that

optimizes some measure of fuel injection array performance, F = f(~y), as defined in

Section 3.4, within the prescribed limitations.

4.1.3 HiFIRE Problem Statement

The hifire design has several different mission objectives. The design is op-

timized across three different flight speeds of Mach 6, 7, and 8. The fuel mass flow

rate, ṁ, is adjusted to maintain a constant fuel/air ratio at each of these flight con-

ditions. The response ~Y for a candidate design is the 3 × 3 matrix of responses to

flight Mach numbers. The optimization problem takes the form:

minimize F = f(~Y)

subject to:

10o ≤ δj ≤ 90o

N ∈ {3, 4, . . . , 31}.
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4.2 Objective Function Form

Payne [56] investigated both single and multi-objective optimization of the

three performance measures and found that the former worked best. Several ob-

jective functions were investigated in the single objective context, while only one

multi-objective form was investigated. The single objective functions investigated

by Payne are

f(~y) = y1 (4.2)

f(~y) = y2 (4.3)

f(~y) = y3 (4.4)

f(~y) = ‖~y‖1 (4.5)

f(~y) = ‖~y‖2. (4.6)

As could be expected, he found that optimizing only one performance mea-

sure yielded poorer designs in the remaining two. The 1-norm and 2-norm of all

three measures consistently returned better designs, with the 2-norm only slightly

outperforming the 1-norm. These normed versions of f(~y) typically returned values

for y1, y2, and y3 that were near or better than points generated by their individual

optimization. Thus, the only objective function form applied in this study is (4.6).

The multi-objective approach investigated by Payne merely generated the ba-

sic Pareto-optimal points by sequential optimization of each performance measure.

These points required an excessive number of function evaluations and showed min-

imal to no improvement over the single objective techniques [56].

Three different objective function forms are applied for the new hifire design

problem. A logical extension of Payne’s work is to take the Frobenius norm of the
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response matrix. This can be expressed as

f1(~Y) = ‖~Y‖F=Frobenius =
3∑

i=1

3∑
j=1

~Y2
i,j. (4.7)

Another objective function form of interest is the maximum element of the response

matrix; i.e.

f2(~Y) = max
i,j

[
~Y

]
. (4.8)

One potential weakness of (4.7) is that the norm may be dominated by a single large

value. For example, if ~Y1 and ~Y2 are given by

~Y1 =




2.12 0.23 2.12

1.95 0.23 1.95

1.77 0.23 1.77


 , ~Y2 =




0 0 0

0 4.81 0

0 0 0


 ,

then

‖~Y1‖F = 4.81 = ‖~Y2‖F .

The design corresponding to response ~Y1 is superior to that of ~Y2 since the longest

mixing response occurs at less than half that of ~Y2, but (4.7) would show no prefer-

ence to either. Optimizing with respect to the largest response element ensures that

candidate designs avoid this potential situation.

The final objective function form attempts to minimize the overall fuel decay

distances (y3) subject to additional constraints on combustor half-line penetration

(y1) and adjacent plume merge distances (y2). The objective function is the 2-

norm of the fuel concentration decay distances across the flight Mach numbers. The

response from each candidate design is the vector of the normalized axial distances

required for the fuel plume to decay to the stoichiometric ratio at each flight number.

This response is denoted ~Y3,: = [y3,M6(~x) y3,M7(~x) y3,M8(~x)]. afrl desired the

combustor half-line penetration distance and adjacent plume merge distance to be
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less than 16 jet diameters downstream. The problem statement becomes:

minimize F = f3(~Y) = ‖~Y3,:‖2

subject to:

10o ≤ δj ≤ 90o

N ∈ {3, 4, . . . , 31}
y1,i ≤ 16d∗j
y2,i ≤ 16d∗j

for i = M6, M7, M8.

4.3 Algorithm Performance Assessment

Wolpert and Macready [73] suggest algorithm performance measures be based

on the path of points visited by the algorithm. Other measures, such as computa-

tion time, are more subjective and dependent on machine speed and programming

proficiency. The time ordered unique set of m visited points dm is the basis for the

comparisons made in this investigation, where the set dm is defined by

dm =
[(

d~x
1 , d

Y
1

)
, ...,

(
d~x

m, dY
m

)]
. (4.9)

The design vector ~x corresponds to d~x
i , and dY

i is the performance measure

value produced by the design [73]. Overall algorithm performance is assessed by the

best value achieved, γ, at the mth visited point. Average best value across several

samples, γavg, is necessary for the genetic algorithms due to their random elements.

This average best value is not applicable to mvps because it is deterministic. To

ensure comparable results to Payne’s work, the algorithms are also assessed on the

required function evaluations to where improvement failed to exceed 10−4.
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4.4 Mixed Variable General Pattern Search Application

The base case application of mvps is the foundation for the surrogate-based

optimizations. In this base case, the search step is not used and the nomadm

standard defaults are applied for the extended poll trigger, mesh refinement

factor wk, etc. All other surrogate-based applications build upon this. A ccd is

applied as the set of initial points for the several surrogate types.

The SEARCH step, when applied, is performed with the Design and Analysis

of Computer Experiments (dacer) software package developed by Lophaven et.

al. [44, 45] at the Technical University of Denmark. This software package fits a

Kriging approximation model to the responses at the design points visited by mvps.

This surrogate is then optimized by the matlabr fmincon toolbox and a single

optimum is returned. Zero, first, and second-order regression models are applied in

the Kriging surrogates.

At the first application of the Kriging surrogate, the values for Θ are optimized

in dacer within specified bounds to obtain a maximum likelihood estimate:

min
Θ

ψ(Θ) ≡| R | 1
m .

In this application this is the only time that Θ is optimized. The specified bounds

on Θ are determined in nomadm prior to the actual Θ optimization.

In the base case where no search is performed, the initial point is at the

center of the continuous variable space. The number of injectors is kept at 6 for all

initial points. The discrete neighbors used in the poll step of mvps are defined as

in (2.30). This can be thought of as a “one-up, one-down” scheme. If the current

incumbent has 6 injectors, then the discrete neighbors evaluated in the poll step

have the same continuous values as xk, but have 5 and 7 injectors respectively. If

xd
k = 3, then only one neighbor is evaluated with 4 injectors. If xd

k = Nmax, then it is

evaluated similarly. All mvps optimization methods are applied to Payne’s original
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design problem, with the best performing methods selected for use in subsequent

optimization problems.

4.5 Genetic Algorithm Application

Both the sga and the µga are used to optimize the engineering design problem

outlined in Chapter 3. The genetic algorithms are written for maximization; thus

it is necessary that the fitness function is taken as the negative of the objective

function.

Several “tuning” parameters identified by Payne [56] are used by the genetic

algorithms and listed in Table 4.2. Elitism, which carries the best individual into

the next generation, is invoked and uniform crossover performs the function with a

uniform distribution. Only one child is created per crossover in an attempt to reduce

function evaluations, and the mutation probability (only applicable in sga) is the

reciprocal of the population size. Again, improvement less than 10−4 is the threshold

considered for significant improvement, which is consistent with thresholds used by

Payne [56] and Markell [46]. Each algorithm’s final value is reported as the last value

achieved with improvement greater than this threshold.

Table 4.2 Tuning parameters for Genetic Algorithms

Parameter SGA µGA

Population Size 32 5
Max. Generations 25 50
Mutation Prob. 0.03125 NA

# Children 1 1
Elitism Yes Yes

Crossover Distribution Uniform Uniform

The sga and µga are employed in optimization of the original design prob-

lem investigated by Payne. Use in subsequent optimization problems is based on

performance.
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4.6 JETPEN Monte-Carlo Sampling

Payne reported that jetpen would abort at values of N À 10. Prior to the

modification discussed in Section 3.2, certain values for TTj
and PTj

would cause the

dependent variable calculation to fail for values of cpj
and γj outside the bounds of

the interpolation polynomials. This effectively prevented the pre-processing routine

from closing and is one potential source of jetpen’s undesirable behavior. The fix

in Section 3.2 eliminates this source, however, in practice jetpen crashes are now

seen more often than reported by Payne [56]. This investigation uses an updated

version of jetpen developed in 2005. Crashes of jetpen are seen at nearly every

value of N in this new version. It is known that jetpen will crash in the atypical

case where the sum of the injector diameters exceeds the combustor width, namely:

N∑
i=1

d∗j = Nd∗j > wcombustor. (4.10)

However, this never happens in practice. To characterize this behavior jetpen

was run at 10,000 Monte Carlo points. These points in the design region were

chosen at 1250 randomly generated points for each value of 3 ≤ N ≤ 10. The

results conclusively showed that increased values for N and δj increase the crash

probability. However, these values alone are not sufficient to determine jetpen

crashes with certainty. The number of failures at each level of N are shown in Table

4.3 and highlight its influence.

Table 4.3 Monte Carlo Results

N 3 4 5 6 7 8 9 10

Crashes 2 13 17 39 46 70 82 72
Successes 1248 1237 1233 1211 1204 1180 1168 1178

Figure 4.1 shows the distribution of jetpen crash points against TTj
, PTj

, and

δj at N = 10. The tight grouping of points at high values of δ clearly show its

influence. Values of TTj
and PTj

seem to have some influence but are much less
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pronounced. However, among the region of the crash points, there are many points

that do not cause jetpen to crash. To investigate further, jetpen was run at 500

Monte Carlo points sampled on a small scale, centered on a randomly selected crash

point. These runs are shown in Figure 4.2. The banded regions clearly identify

PTj
as the most influential factor, with TTj

having lesser influence. Thus, all design

variables have at least some influence on whether or not jetpen will crash.

Figure 4.1 jetpen crashes at N = 10

The genetic algorithms cannot inherently handle jetpen crashes and thus a

work-around is necessary. Utilizing the knowledge gleaned from the Monte Carlo

runs, a computationally inexpensive routine is used to return a function value to the

genetic algorithm in case of a crash. If jetpen crashes, the values of PTj
and TTj

are decreased by 0.25, and jetpen is re-run. The intent here is to get outside of the

bands seen in Figure 4.2 and return the function value of a similar design. If PTj

and TTj
are adjusted 10 times consecutively without success, then a comparatively

large function value of 10 is returned. This work-around is not necessary for the
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Figure 4.2 Local jetpen behavior (~x± 0.5)

mvps methods since they are designed to handle cases where a function value is

not returned. If jetpen crashes then a value of ∞ is returned to the optimizer,

nomadm. If jetpen crashes at one of the initial points, then the initial surrogate

is reduced to a zero-order Kriging polynomial.

4.7 Summary

This chapter outlined the application of each optimization technique and dis-

cussed the potentially problematic behavior of jetpen. The mvps techniques use

the default settings of the nomadm and Kriging surrogates use the dacer software.

The genetic algorithms are applied at the “tuned” parameters used by Payne [56].

The vectors of performance measures are defined and several forms of objective func-

tions are developed. Finally, an analysis using 10,500 runs of jetpen is performed

in an attempt to characterize the input parameters that cause it to crash.
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5. Results

The re-optimization of Payne’s problem closely matched his results and conclusively

demonstrated the superiority of mvps over genetic algorithms as applied in this con-

text. Repeated applications of the genetic algorithms on this problem highlighted

their inherent variability and an analysis of unique design sites showed a need for the

use of a cache. Results where the upper restriction on N was lifted showed no signif-

icant improvement and suggests that the problem is fairly indifferent to increases in

the number of injectors beyond 10. Optimization of the hifire design injection angle

supports recommendations by Ortwerth [54] and Mays et al. [47]. Optimal designs

had injection angles near 30o and showed approximately 1% improvement over 15o

injection. Optimization of the hifire design considering both injection angle and

number of injectors was inconclusive, which is attributed to a modeling deficiency in

jetpen.

5.1 Previous Design Re-Optimization Results

Table 5.1 details the results from the re-optimization of Payne’s original prob-

lem and Table 5.2 show the associated designs and mixing performance measures.

The designs found by all methods closely resemble those found by Payne [56]. The

only significant difference is that nearly all of Payne’s designs chose 10 injectors,

while typically fewer were favored in this investigation. A plausible explanation for

this is that the models in the current version of jetpen have likely been improved.

The sga returned the best 2-norm objective function value but required an

excessive 545 function evaluations. Comparatively, the µga returned a 2-norm ob-

jective function value within 0.6% of this value with only 119 function evaluations.

If design sites and their responses are stored in a cache, then previously evaluated

designs need not be re-evaluated and function evaluations are reduced. Use of a
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cache reduced the function evaluations of the sga by approximately 5%, but the

function evaluations for the µga were nearly cut in half.

The results of five runs of each genetic algorithm are shown in Table 5.3. Figure

5.1 shows the average best found solution and the average generational fitness across

the five runs. It it clear that the best performance of each algorithm is fairly atypical,

and significant run-to-run variability exists in the genetic algorithms. The average

performance across the five runs is significantly poorer than that of the best single

run. Most significantly, the µgas required about 75% fewer function evaluations to

obtain the same quality solution as the sgas.

Table 5.1 Payne’s Design Re-Optimization Results

Optimization Results

Simple Genetic Algorithm
Ftn Evals Ftn Evals
No Cache With Cache Cache Hits F

Best F 545 518 27 2.952
Avg of 5 503 409 24 3.012

Micro Genetic Algorithm
Ftn Evals Ftn Evals
No Cache With Cache Cache Hits F

Best F 119 64 55 2.969
Avg of 5 161 88 73 3.001

MVPS
Ftn Evals Ftn Evals

Surrogate No Cache With Cache Cache Hits F
None 129 104 25 3.014
Krig 0 104 92 12 2.958
Krig 1 154 121 33 2.974
Krig 2 76 53 23 2.964

The mvps algorithm, when used with surrogates, conclusively outperformed

the genetic algorithms. Convergence plots of all mvps methods are shown in Figure

5.2. These plots show that mvps found a better quality solution than the genetic

algorithms on average. The plots also show that the addition of surrogates to mvps
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Table 5.2 Best Designs and Associated Responses

Results Design Variables Perf. Measures
Method Best F δj N PTj

TTj
y1 y2 y3

SGA 2.952 24.166 9 637.00 850.56 2.243 0.369 1.884
µGA 2.969 12.759 9 608.49 851.47 2.260 0.344 1.893

MVPS 3.014 30.250 7 650 854.00 2.247 0.545 1.934
Krig 0 2.958 19.617 10 650 850 2.259 0.313 1.885
Krig 1 2.974 18.000 7 641.64 850 2.223 0.513 1.908
Krig 2 2.964 18.126 8 650 850 2.234 0.435 1.899

Table 5.3 Genetic Algorithm Comparisons

Simple Genetic Algorithm
Ftn Evals Ftn Evals

Run (No Cache) (With Cache) Cache hits F
1 778 736 42 3.024
2 194 183 11 3.020
3 545 518 27 2.952
4 399 375 24 2.990
5 244 231 13 3.073

Average 432 409 24 3.012

Micro-Genetic Algorithm
Ftn Evals Ftn Evals

Run (No Cache) (With Cache) Cache hits F
1 119 64 55 2.969
2 215 126 89 3.080
3 167 86 81 3.028
4 242 146 96 3.057
5 116 59 57 2.982

Average 172 96 72 3.023

significantly sped up convergence and reduced the number of function evaluations.

Both zero-order and second-order Kriging surrogates performed well, requiring 92

and 53 function evaluations, respectively, to come within 0.5% of the sga’s best

objective function value.

An analysis of surrogate performance is shown in Table 5.4. These results are

based on improvement that occurred after evaluation of the 15 initial ccd points.
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Figure 5.1 Genetic Algorithm Average Performance Across 5 samples

Figure 5.2 Mixed Variable Pattern Search Performance

For the base case where no initial ccd was performed, the improvement is based on

the objective function value returned by the initial point at the center of the design
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region. All initial points had a discrete value corresponding to 6 injectors. These

results show that when surrogates are added they comprise the majority of incum-

bent improvement. Most of this improvement came on the first few applications

of the surrogates. The computational cost in terms of function evaluations is also

significantly reduced. It is interesting to note that, as the order of the regression

polynomial increases, so does the improvement percentage attributed to the model.

Figure 5.3 shows that mvps with the best surrogates dominate the expected perfor-

mance of the genetic algorithms. In other words, at nearly every function evaluation,

mvps with surrogates had found a better solution than the genetic algorithms. In

conclusion, the mvps methods converge faster to quality solutions than the genetic

algorithms on average.

Table 5.4 Incumbent Improvement Breakdown by Algorithm Step

Improvement by Step
Method MVPS Krig 0 Krig 1 Krig 2
Search NA 52.05% 64.23% 78.19%
Poll 94.77% 23.86% 10.08% 3.08%

N Poll 5.23% 24.09% 12.47% 18.73%
Ext Poll 0.00% 0.00% 13.21% 0.00%

The designs and performance measures returned by all methods line up well

with most of Payne’s previous results. He reported that µgas required the fewest

function evaluations compared to other methods he studied. He concluded that low

injection angles, maximum injectant pressure, minimum injectant temperature, and

a maximum number of fuel injectors returned overall superior mixing characteristics

[56]. All of these are similar to the designs in Table 5.2, with the exception of number

of fuel injectors. Smaller numbers of fuel injectors were preferred in this study, with

the maximum number of 10 only having been chosen by one optimization method.

This discrepancy can be explained through the improved modeling in the updated

version of jetpen used in this study.
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Figure 5.3 MVPS and GA comparisons

5.2 Relaxation of Injector Restriction

The optimization results showed that the µga and mvps with zero and second-

order polynomial Kriging performed the best in their respective classes. These meth-

ods were selected for the next optimization problem where the upper limit on N is

expanded. The restriction 3 ≤ N ≤ 10 is changed to 3 ≤ N ≤ 20 to investigate ar-

eas not possible with the older version of jetpen. The results showed only minimal

improvement in this expanded area, but again demonstrated the superiority of the

pattern search methods.

The performance of the three selected methods are shown in Table 5.5 and in

Figure 5.4. Designs corresponding to Table 5.5 are shown in Table 5.6. The best of

two µga runs took more function evaluations and returned an inferior solution as

compared to mvps. mvps with zero and second-order Kriging polynomials required

61.9% and 13.6% fewer function evaluations, respectively, than the µga. mvps inde-

pendently converged to the same solution, which closely resembled the design from

the previous optimization. The µga returned a significantly different design than
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the prior optimization. The best designs of this phase showed an improvement of

only 0.2% over the previous best objective function value. By performance measure,

y1 increased by 1.7%, y2 decreased by 4.8%, and y3 decreased by 0.8% over the best

values attained in Section 5.1. It can be inferred that responses are fairly insensitive

to injector additions beyond 10.

Table 5.5 AFRL Design Re-Optimization Results

Optimization Results

Micro Genetic Algorithm
Ftn Evals Ftn Evals

(No Cache) (With Cache) Cache Hits F
Best Run 237 118 119 2.9644

MVPS
Ftn Evals Ftn Evals

Surrogate (No Cache) (With Cache) Cache Hits F
Krig 0 52 45 7 2.9472
Krig 2 102 85 17 2.9472

Table 5.6 Optimization Results

Results Design Variables Perf. Measures
Method Best F δj N PTj

TTj
y1 y2 y3

µGA 2.964 18.299 16 624.97 858.39 2.279 0.192 1.886
Krig 0 2.947 20.749 11 650 850 2.260 0.298 1.868
Krig 2 2.947 20.263 11 650 850 2.260 0.298 1.868

Surrogate performance is shown in Table 5.7. The extended poll was never

triggered in either mvps run. The second-order Kriging surrogate did not account

for as much improvement as it did in the previous run. This is attributed to a crash

of jetpen in the initial points. The first surrogate was run as a zero-order model

since the second-order model requires 15 valid design sites and only 14 were avail-

able. Overall, the surrogates were still the most significant source of improvement

by the algorithm, and again this improvement came during the first few surrogate

applications.
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Figure 5.4 Algorithm Convergence Comparisons

Table 5.7 Incumbent Improvement Breakdown by Algorithm Step

Improvement by Step
Method Krig 0 Krig 2

Search 65.71% 68.38%
Poll 22.40% 25.63%

N Poll 11.89% 6.00%
Ext Poll 0.00% 0.00%

5.3 HiFIRE Optimization: 1 Variable

The first optimization attempt for the hifire design problem considered only

a single variable, δj. The original design specified two parallel arrays of four injectors

each; thus, N was fixed at four. Sources from the literature suggest that 15o injection

is likely to be near optimal. The responses at 15o injection are shown in Table 5.8.

mvps with zero and second-order Kriging polynomials are applied to each of the three

objective functions outlined in Section 4.2. A ccd in one variable is not possible so

three initial points of 15o, 45o, and 75o are evaluated for use in the initial zero-order

Kriging surrogate. Six initial points, 10o, 15o, 30o, 50o, 70o, and 90o, are used for the
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initial second-order Kriging surrogate. In two of the three function forms, the first

incumbent solution was the same for both models. In the optimization of F2(~Y),

an initial point (30o) essentially landed on the optimum. This led to unsuccessful

surrogates at every search.

Table 5.8 AFRL Design: Baseline 15o Results

15o Injection Results

Obj Ftn f1(~Y) f2(~Y) f1(~Y)
F 6.211 2.605 4.037

15o Injection Response ~Y
OBJ y1 y2 y3

Mach 6 2.09 2.09 2.61
Mach 7 1.92 1.92 2.27
Mach 8 1.75 1.75 2.09

Results from this single variable case follow the observation from the literature.

Results for the individual objective function forms can be found in Tables 5.9–5.14.

Optimal values for δj were found between 25o and 31o. Overall improvement was on

the order of 1% over the baseline 15o injection.

Only the Frobenius norm objective function, f1(~Y), found improvement over

15o injection in all nine responses. However, this function form proved to be the most

computationally expensive, with 43 and 49 function evaluations required by zero

and second-order Kriging surrogates, respectively. The second objective function,

f2(~Y), was uninteresting because y3,M6 - the axial distance for stoichiometric fuel

concentration decay in the plume at Mach 6 - was the maximum element at every

iteration for which the injection angle was below 70o. In other words, the problem

could have been equivalently expressed as

min
x∈Ω

f2(~Y) = min
x∈Ω

[
max

i,j

~Y

]
= min

x∈Ω
[y3,M6]. (5.1)

As could be expected with this definition, the response value for y3,M6 shows the

largest improvement over the baseline for this measure. Computational cost was
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comparatively smaller, requiring 26 and 34 function evaluations, respectively. Again,

mvps with second-order Kriging surrogates had one initial point land essentially at

the optimum point. In this case, the surrogate never found an improved solution,

and all improvement was found on the poll step.

Table 5.9 HiFIRE Design Optimization Results

f1(~Y): Minimize Frobenius Norm of Response
0th Order Kriging Polys 2nd Order Kriging Polys
Best F # Evals δj Best F # Evals δj

6.147 43 25.907 6.141 49 27.089

Response ~Y Response ~Y
OBJ y1 y2 y3 y1 y2 y3

Mach 6 2.075 2.075 2.588 2.073 2.073 2.586
Mach 7 1.902 1.902 2.244 1.900 1.900 2.242
Mach 8 1.724 1.724 2.066 1.722 1.722 2.064

Table 5.10 f1(~Y) Improvement Over Baseline (Best F)

Improvement over Baseline

Minimize F = f1(~Y)
OBJ y1 y2 y3

Mach 6 0.95% 0.95% 0.74%
Mach 7 1.28% 1.28% 1.07%
Mach 8 1.57% 1.57% 1.30%

Table 5.11 HiFIRE Design Optimization Results

f2(~Y): Minimize Maximum Response Element
0th Order Kriging Polys 2nd Order Kriging Polys
Best F # Evals δj Best F # Evals δj

2.581 26 30.601 2.581 34 30.672

Response ~Y Response ~Y
OBJ y1 y2 y3 y1 y2 y3

Mach 6 2.240 2.240 2.582 2.240 2.240 2.581
Mach 7 1.895 1.895 2.408 1.895 1.895 2.407
Mach 8 1.716 1.716 2.058 1.716 1.716 2.058
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Table 5.12 f2(~Y) Improvement Over Baseline (Best F)

Improvement over Baseline

Minimize F = f2(~Y)
OBJ y1 y2 y3

Mach 6 -7.00% -7.00% 0.92%
Mach 7 1.56% 1.56% -6.23%
Mach 8 1.90% 1.90% 1.57%

Optimization of the stoichiometric fuel concentration decay distances, subject

to constraints on y1 and y2, failed to converge to a feasible point. No injection

angles were found meeting the criteria for y1 and y2. Consistent violations occurred

only at Mach 6 flight conditions. These restrictions were subsequently dropped,

and an optimum injection angle was found very near that of the Frobenius norm

objective function, f1. Both optimization methods converged to nearly the same

solution, with the second-order Kriging model finding only a slightly better solution.

Surrogate performance is shown in Table 5.15.

Table 5.13 HiFIRE Design Optimization Results

f3(~Y): Minimize Fuel Concentration Decay Distances
0th Order Kriging Polys 2nd Order Kriging Polys
Best F # Evals δj Best F # Evals δj

3.999 22 26.282 4.002 37 25.011

Response ~Y Response ~Y
OBJ y1 y2 y3 y1 y2 y3

Mach 6 2.245 2.245 2.587 2.076 2.076 2.589
Mach 7 1.901 1.901 2.243 1.904 1.904 2.245
Mach 8 1.723 1.723 2.065 1.725 1.725 2.067

5.4 HiFIRE Optimization: 2 Variables

The two-variable optimization of this problem, outlined in Section 4.1.3, re-

turned unfavorable designs. Both injection angle (δj) and number of injectors (N)

were considered for optimization. The final design chosen from each objective func-

5-11



Table 5.14 f3(~Y) Improvement Over Baseline (Best F)

Improvement over Baseline

Minimize F = f3(~Y)
OBJ y1 y2 y3

Mach 6 -7.27% -7.27% 0.71%
Mach 7 1.22% 1.22% 1.02%
Mach 8 1.49% 1.49% 1.23%

Table 5.15 Surrogate Performance by Objective Function

Surrogate Performance

F = f1(~Y) F = f2(~Y) F = f3(~Y)

OBJ Krig 0 Krig 2 Krig 0 Krig 2 Krig 0 Krig 2
Search 82.11% 75.39% 57.20% 0.00% 65.157% 74.25%
Poll 17.89% 24.61% 42.80% 100.00% 34.85% 25.75%

tion optimization is shown in Table 5.16. Each final design included a prohibitive

number of injection ports. Paull and Stalker [55] cite experiments where poor mixing

occurred with a large number of small injection ports. In these experiments mixing

improved as the number of ports decreased. The final designs in Table 5.16 are

unfavorable for this reason. This suggests that jetpen has a modeling inadequacy

for these designs. Peformance measures for these design are assessed by jetpen as

significantly better in y2 and y3, but mildly worse in y1 as shown in Table 5.17.

Again, the quality of these estimates is deceptive; it is known that these designs

result in poor mixing characteristics. It is interesting however, that the optimal

injection angles are very similar to the designs of the single variable optimization.

This suggests that the optimal injection angle may not be sensitive to the number

of injectors.
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Figure 5.5 Algorithm Performance

Table 5.16 Designs from 2-Variable Optimization

OBJ δj Single Array N Total N

f1(~Y) 21.86 28 56

f2(~Y) 32.77 31 62

f3(~Y) 32.77 31 62

Table 5.17 2-Variable Optimization Improvement Over Baseline

Improvement Over 15o Baseline
y1 y2 y3

Mach 6 -1.50% 88.66% 18.46%
Mach 7 -1.40% 87.73% 13.88%
Mach 8 -1.62% 86.66% 14.99%

5.5 Summary

Re-optimization of the design studied by Payne identified several computation-

ally less expensive techniques. Overall, mvps with Kriging surrogates dominated the

performance of the genetic algorithms, finding better solutions in less function eval-

uations. The best designs found by both this study and Payne’s were essentially
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the same, and the performance of the genetic algorithms were also similar in both

studies. Expanding the possible number of injectors found little improvement over

Payne’s best designs.

Application of mvps with Kriging surrogates to the hifire design found mini-

mal improvement over the baseline 15o injection angle. Fixing N = 4 and optimizing

with respect to δj found optimal injection angles between 25o and 30o. Improvement

of these designs was only about 1%. Optimizing both N and δj produced designs

known to exhibit poor mixing. Very large values for N were favored in each opti-

mization, but values for δj remained between 21o and 32o.
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6. Conclusions and Future Recommendations

The optimization techniques applied in this research were effective in identifying

optimal or near-optimal designs that are supported by the literature. The applied

methods significantly reduced computational expense and show potential for future

application with higher precision scramjet models. Several improvements are sug-

gested here for further reducing computational cost and improving accuracy.

6.1 Final Design Evaluation

The final designs from each problem can be considered optimal or near-optimal

within the bounds of this study. Results from re-optimizing the previous design prob-

lem found designs similar to those of the previous study [56]. Expanded investigation

confirmed the quality of these solutions. The final design returned by the hifire

design optimization closely matches the recommendations in the literature and the

views of researchers. This design, and similar designs, are candidates for follow-

on analysis with higher fidelity methods for the hifire program. A thorough cfd

analysis should be performed on any candidate design prior to production. More re-

alistically, several designs should be analyzed through cfd with a final design chosen

on the basis of some other performance measures, such as thrust or Isp.

The optimal hifire injection angle near 30o is supported by both the literature

and engineers at afrl. Ortwerth [54] considers 15o to be the lower injection limit for

good mixing performance. Mays et al. [47], as well as engineers at afrl, consider

optimal injection to be around 30o. Payne [56] found that mixing is fairly insensitive

to injection angle when the angle is low. As could be expected, the results of this

investigation showed a difference on the order of 1% between the two. This provides

more evidence that the responses are fairly indifferent to changes at low injection

angles. This should provide greater production flexibility for the hifire program,

assuming the results are confirmed through other means.
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Low angle injection ports are difficult and costly to manufacture. It is very

difficult to precisely drill a hole in a flat surface at very low angles, thus higher angles

are preferable from a production point-of-view. The results of this study show that

afrl may pursue higher angles of injection at reduced production costs without a

sacrifice in performance. Optimization of the number of injectors must be done with

another, higher precision, analysis tool. Production of a 62-port injection array inside

a 1”×4” combustor would be extremely difficult, if not impossible. Combine this

difficulty with the known poor mixing properties of this design, and the drawbacks

are clear.

6.2 Genetic Algorithms

mvps with Kriging surrogates is superior to the genetic algorithms applied

in this study. Genetic algorithms applied to a mesh have been developed [33, 34],

allowing these versions to have convergence theory based on the ideas of Torczon [68]

and Dennis and Schnabel [27] that gave gps and its variants provable convergence.

An interesting follow on study may combine these genetic algorithms with newer

versions of mvps to optimize designs using a more computationally expensive cfd

code.

6.3 Future Applications of MVPS

This study conclusively demonstrates the quality of mvps with Kriging sur-

rogates, as applied in this study to hypersonic design optimization. The required

number of function evaluations was greatly reduced by the application of mvps

without a sacrifice in final objective function value. When compared to other op-

timization techniques such as µgas, mvps augmented with surrogates reduced the

required number of function evaluations by as much as 55.5%.
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The addition of Kriging surrogates to mvps improved convergence and reduced

computational cost when compared to mvps alone. It is interesting to note that as

the degree of Kriging polynomials increased, so did the total percentage of incumbent

improvement attributed to them, as shown in Table 5.4. These surrogates comprised

as much as 78% of the incumbent improvement after the initial ccd points, with the

poll step dominating the remaining improvement. Non-surrogate mvps runs showed

that the poll step alone accounted for nearly 95% of the overall improvement.

6.4 Future Recommendations

jetpen’s modeling inadequacy discussed in Section 5.4 is a potential source of

future investigation. If jetpen is to be applied for future optimizations, then this

problem must either be fixed or taken into consideration. jetpen’s failure to return

axial data for some candidate designs, discussed in Section 4.6, is another potential

future fix. Future versions of jetpen may include additional modeling for other

types of fuel injection and non-circular injection ports. Future applications could use

a higher fidelity cfd model with jetpen as a surrogate, with a Kriging surrogate

applied to the error between the two. Hopefully, the results of this investigation will

lead to optimizations involving more advanced analysis methods other than jetpen,

such as srgull. It was used in developing the nasa X-43A and could provide higher

quality results than jetpen.

Future investigations may also apply different surrogates or different correlation

models to Kriging surrogates. Other surrogates, such as kernel regression developed

by Nadaraya and Watson or radial basis functions may provide better surrogates for

this class of problems. For Kriging, other correlation models such as cubic splines,

linear models, and spherical models can be investigated. Any of these models may

perform better, based on an analysis of the underlying system behavior.
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An alternative optimization algorithm for possible future application is Mesh

Adaptive Direct Search (mads). It is a generalization of pattern search for non-

linear constraints. mads has also been extended to the mixed variable domain [6]

and stochastic responses [61], and may be a desirable alternative to gps in problems

with known discontinuities, poor behavior, and non-linear constraints. The hifire

problem that minimized one set of performance measures, subject to constraints on

the other performance measures, is better suited for mads. The constraints on the

other performance measures are essentially non-linear constraints. It may be possible

to take a more thorough multi-objective formulation of this problem, and possibly

generate the Pareto front.

Other initial designs and poll methods may also be investigated. A ccd is

typically not efficient in design problems with a large set of variables. A Latin

hypercube or fractional orthogonal design is more efficient than a ccd for these

problems. These can also be applied in the initial search step or can be used at

the poll step, giving greater flexibility to the user.

In the end, these results should warrant further investigation using higher

performance cfd codes. mvps gives a user much greater flexibility in the likely

case where the number of function evaluations is limited by a fixed budget. This

flexibility, combined with reduced computational costs, holds the potential to open

a whole new realm of performance for future scramjet designs.
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Appendix A. HiFIRE Mission Parameters

Combustion Parameters

Parameter Description Value Units
Fuel Ethylene
mw Fuel Molecular Weight 28
fST Stoichiometric Fuel/Air Ratio 0.0678
φ Equivalence Ratio 1
N Total # Fuel Injectors 8
d∗j Injector Diameter 0.125 Inch

Aj Fuel Injector Area 0.098175 Inch2

TTj
Jet Total Temperature 540 oRankine

R Ideal Gas Constant 0.07092 BTU
lbm−R

Table A.1 HiFIRE Combustion Parameters

Flowpath Parameters

Parameter Description Value Units
l Combustor Width 4 Inch
lf Fueled Combustor Width 4 Inch
lnf Unfueled Combustor Width 0 Inch
h Combustor Height 1 Inch
Ac Combustor Area 4 Inch2

Table A.2 HiFIRE Flowpath Parameters

Fuel Flow Conditions

Flight M ṁj Mj TSj
PSj

PTj
γj cpj

6 0.405 1 490 109.1 193.4 1.202 0.431
7 0.343 1 489 92.0 163.5 1.209 0.423
8 0.285 1 487 76.1 135.5 1.216 0.416

Table A.3 HiFIRE Fuel Flow Conditions
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Air Flow Conditions

Flight M ṁa Ma TSa PSa PTa TTa γa cpa

6 5.97 2.41 1408 26.0 390.8 2730 1.323 0.277
7 5.06 2.86 1456 18.9 595.7 3368 1.321 0.278
8 4.21 3.25 1633 14.7 880.6 4334 1.313 0.283

Table A.4 HiFIRE Air Flow Conditions
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Appendix B. Dependent Variables

Injector Area:

Aj = Nπ

(
d∗j
2

)2

(B.1)

Fuel Static Temperature:

TSj
=

TTj

1 +
(

γj−1

2

) (B.2)

Fuel Static Pressure:

PSj
=

ṁjRjTSj

MjAj

√
32.2γjRjTSj

(B.3)

Fuel Total Pressure:

PTj
= PSj

[
1 +

1

2
(γj − 1) M2

j

] γj
γj−1

(B.4)

Air Static Temperature:

TSa =
32.2γa

Ra

(
AcPSaMa

ṁa

)2

(B.5)

Air Total Temperature:

TTa = TSa

[
1 +

1

2
(γa − 1) M2

a

]
(B.6)

Air Total Pressure:

PTa = PSa

[
1 +

1

2
(γa − 1) M2

a

] γa
γa−1

(B.7)

Ratio of Specific Heats:

γ =
Cp

Cp −R
(B.8)

B-1



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

28–03–2008 Master’s Thesis Mar 2007 — Mar 2008

SCRAMJET FUEL INJECTION ARRAY OPTIMIZATION UTILIZING
MIXED VARIABLE PATTERN SEARCH WITH KRIGING
SURROGATES

Sparkman, Bryan Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GOR/ENS/08-19

AFRL/RZAS, Bldg 18
Attn: Dr. Mark R. Gruber
1950 5th Street DSN: 785-4539
WPAFB OH 45433-7765 e-mail: mark.gruber@wpafb.af.mil

Approval for public release; distribution is unlimited.

Fuel-air mixing analysis of scramjet aircraft is often performed through experimental research or computational fluid dynamics (cfd)
algorithms. Design optimization with these approaches is often impossible under a limited budget due to their high cost per run. This
investigation uses jetpen, a known inexpensive analysis tool, to build upon a previous case study of scramjet design optimization. Mixed
Variable Pattern Search (mvps) is compared to evolutionary algorithms in the optimization of two scramjet designs. The first revisits the
previously studied approach and compares the quality of mvps to prior results. The second applies mvps to a new scramjet design in
support of the Hypersonic International Flight Research Experimentation (hifire). The results demonstrate the superiority of mvps over
evolutionary algorithms and paves the way for design optimization with more expensive approaches.

mixed variable optimization, pattern search, Kriging, surrogate functions, HiFIRE, scramjets, scramjet fuel injection,
JETPEN, evolutionary algorithms, hypersonic design optimization

U U U UU 105

James W. Chrissis, PhD, Associate Professor (ENS)

(937) 785-3636, ext 4606; e-mail: james.chrissis@afit.edu


	Scramjet Fuel Injection Array Optimization Utilizing Mixed Variable Pattern Search with Kriging Surrogates
	Recommended Citation

	tmp.1585170121.pdf.aiqEU

