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Abstract 

High Energy Laser (HEL) technology continues to improve and its place in the battlefield 

is ever evolving.  By combining the high energy delivery of solid state laser technology 

with the efficient thermal management of liquid laser technology, HELLADS has two 

main advantages over any HEL predecessors.  One, the configuration is small and light 

enough to be carried on more tactical aircraft such as fighters.  Two, the thermal 

management greatly increases HEL fire power by increasing dwell time on target. 

To assess HELLADS operational capabilities the test community has been challenged 

with how to effectively examine the advantages and limitations through a cost effective 

manner.  Modeling and simulation supports this assessment as it yields itself easily to 

relatively low cost and robust testing methodologies.  The challenge comes with building 

credible models through validation and verification of test parameters and scenarios.  An 

Air Force Standard Analysis Toolkit model, the Extended Air Defense Simulation Model 

(EADSIM), is used in this study to meet these challenges.  This research effort focuses on 

the assessment of the HELLADS operational capabilities through EADSIM.  Of 

particular interest is the investigation of the envisioned HELLADS operational envelope 

and the potential advantages it offers over other HEL systems.  Scenarios are applied to 

represent the Homeland Defense arena in which HELLADS is proposed to operate.  

Specifically this study explores what factors impact HELLADS effectiveness and 

suitability in the Homeland Defense scenarios examined.  

 

   iv



 

   v

Acknowledgments 

I would like to express my appreciation to my faculty advisor, Dr. J.O. Miller for his 

insightful and helpful guidance throughout this research effort.  I would also like to thank 

Mr. Rick Bartell for his HELEEOS support which was crucial in deriving output for my 

study.  Thanks to analyst Tim Booher and his peers at A9 for their vital HELLAD 

configuration and parameter inputs.  Finally, I would like to thank my wife for 

supporting, and putting up with, me throughout this process.   

                                                                     Ryan S. Ponack 

 

 
 

 



 

vi 

Table of Contents 
Page 

Abstract .............................................................................................................................. iv 

Acknowledgments................................................................................................................v 

Table of Contents............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Tables ..................................................................................................................... ix 

I. Introduction ......................................................................................................................1 

Background...................................................................................................................1 

Problem Statement........................................................................................................2 

Research Objectives/Questions/Hypotheses ................................................................3 

Research Focus/Scope/Methodology ...........................................................................4 

Implications ..................................................................................................................5 

Preview/Overview ........................................................................................................5 

II. Literature Review............................................................................................................7 

Introduction ..................................................................................................................7 

Modeling and Simulation ...........................................................................................12 

Hierarchical Process ...................................................................................................14 

HEL Modeling and Simulation Challenges................................................................16 

EADSIM.....................................................................................................................18 

Analysis Techniques...................................................................................................21 

Previous Research ......................................................................................................24 

Research of Captian Maurice Azar ............................................................................ 24 

Research of Captain Michael Cook ........................................................................... 26 

Research of Captain James Markham ....................................................................... 29 

Summary.....................................................................................................................31 

III. Methodology ................................................................................................................33 

General Methodology.................................................................................................33 

HELEEOS Inputs for EADSIM .................................................................................33 

EADSIM Overview....................................................................................................43 



 

vii 

Factor Levels ..............................................................................................................44 

Weapon Platform Factors ...........................................................................................44 

Target Factors.............................................................................................................46 

Vulnerability Table.....................................................................................................47 

EADSIM Scenario Setup............................................................................................50 

Summary.....................................................................................................................55 

IV. Analysis and Results....................................................................................................56 

Overview ....................................................................................................................56 

Data Table Generation................................................................................................56 

HELEEOS Results......................................................................................................57 

EADSIM Output.........................................................................................................61 

V. Conclusions and Recommendations .............................................................................75 

Chapter Overview.......................................................................................................75 

Development of Research Plan ..................................................................................75 

Conclusions of Research ............................................................................................76 

Significance of Research ............................................................................................77 

Appendix A:  Power Propagation Tables...........................................................................79 

Appendix B:  Vulnerability Tables ....................................................................................83 

Appendix C:  EADSIM Output..........................................................................................86 

Bibliography ......................................................................................................................88 

 



 

viii 

List of Figures 
Page 

Figure 1. Typical Growth of Developing Technologies ..................................................... 2 

Figure 2. Laser Basics....................................................................................................... 10 

Figure 3. DOD M&S Pyramid .......................................................................................... 15 

Figure 4. Laser Engagement Timeline.............................................................................. 20 

Figure 5. Power Comparison with Thermal Blooming..................................................... 27 

Figure 6. Allowable Jitter 150 kW System....................................................................... 28 

Figure 7. HELEEOS Setup ............................................................................................... 34 

Figure 8. HELEEOS CFLOS Probabilities....................................................................... 35 

Figure 9. CFLOS Probabilities off US North Eastern Coast ............................................ 36 

Figure 10. Extinction Coefficient vs Wavelength............................................................. 39 

Figure 11. EADSIM Data Orginization ............................................................................ 52 

Figure 12. EADSIM Track Processing Flow Diagram..................................................... 54 

Figure 13. EADSIM Propagation and Vulnerability Tables............................................. 57 

Figure 14. Average Peak Irradiance over slant range………………………………....... 58 

Figure 15. Average Peak Irradiance over all common slant ranges ................................. 59 

Figure 16. Average Peak Irradiance over low altitude slant ranges ................................. 61 

Figure 17. Model Adequacy Checks................................................................................. 67 

Figure 18. Predicted versus Actual Average Kills............................................................ 69 

Figure 19. Total Kills over all Factor Settings.................................................................. 70 

Figure 20. Average Laze Time versus Factors ................................................................. 72 

Figure 21. Average Laze Time versus Kills ..................................................................... 73 



 

ix 

List of Tables 

 

Table 1. Brightness Equation Inputs................................................................................. 26 

Table 2.  Cook's Factor Settings ....................................................................................... 29 

Table 3. Markham's Factor Settings ................................................................................. 30 

Table 4. HELEEOS Input Settings ................................................................................... 43 

Table 5. Aluminum Properties.......................................................................................... 49 

Table 6. Energy Required for specific random draws ...................................................... 50 

Table 7. EADSIM Scenario Factor Settings ..................................................................... 55 

Table 8. Non-applicable slant ranges................................................................................ 58 

Table 9. ANOVA for all effects with kill count as MOE ................................................. 63 

Table 10. Factor Level Regression Settings ..................................................................... 68 

 



 

ASSESSING CAPABILITIES OF THE HIGH ENERGY LIQUID LASER AREA 
DEFENSE SYSTEM THROUGH COMBAT SIMULATIONS 

 
 

I. Introduction 

Background 

Since the High Energy Laser Executive Review Panel (HELERP) released its 

Laser Master Plan for DOD in March of 2000, an increased level of laser research and 

testing has been conducted in an effort to make High Energy Laser (HEL) weapon 

systems available to the warfighter.  The HELERP recognized the importance of HEL 

technology in meeting challenging, offensive and defensive, weapon applications.  To 

enhance HEL combat realization the HELERP called for appropriate funding, new HEL 

technological management structures, support of an industrial base through program 

initiatives for new technologies and essential skills, and fostering cooperation with other 

agencies (Department of Defense Laser Master Plan, 2000).    

The Airborne Laser (ABL) test, planned for the end of 2008, will mark the first 

realistic test shot for a weapon of its type (Stephens, 2006).  If this test is successful it 

will come a half century after the invention of the laser.  History shows that revolutionary 

technological growth is rarely linear.  For example consider the drawn out maturation of 

precision strike weapons, which were prototyped 35 years before they were operationally 

effective (Lamberson, 2004).  According to a study, documented in the Air and Space 

Power Journal, HEL technology, now estimated at its 30 year point, seems to be on the 

cusp of a growth surge.  In the figure below time is graphed versus a relative importance 

attribute which doubles every four years. 
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Figure 1. Typical Growth of Developing Technologies (Lamberson, 2004) 

 Part of this current trend in more rapid growth is the concept of using liquid lasers 

in place of chemical or solid state lasers used thus far.  Managing the enormous amount 

of thermal energy produced by solid state lasers requires a significant cooling system.  

For example, the current Chemical Oxygen Iodine Laser (COIL) technology used in the 

ABL requires the Boeing 747 as a platform.   This immense heat generation also limits 

firing time and increases down time for cooling.  By using a liquid, exhibiting the same 

index of refraction as the gain media, a laser can potentially simultaneously fire and keep 

cool.  This new technology greatly decreases the amount of space needed for HEL 

weapon systems, thus smaller platforms will be able to take advantage of HEL 

capabilities (Shachtman, 2005).  The High Energy Liquid Laser Area Defense System 

(HELLADS) is the foremost program currently testing liquid laser technology.       

Problem Statement 

The goal of this study is to investigate the operational envelope of the HELLADS 

through modeling and simulation.  Scenarios relevant to the proposed use of HELLADS 
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are input into appropriate models.  These scenarios explore various combinations of 

different factor configurations, such as platform and target parameters, HELLADS 

characteristics, and flight profiles, to examine HELLADS operational capabilities.  This 

examination offers a first look at the theoretical limitations of HELLADS, providing a 

preliminary operational envelope where it can effectively carry out its mission.  Laser 

atmospheric transport characteristics are input into the mission level model via a proven 

laser propagation model.  Similar studies have previously been conducted using chemical 

laser inputs. 

   

Research Objectives/Questions/Hypotheses 

HQ USAF/A9, the USAF primary Study and Analysis group, has recently 

undertaken a Defense Advanced Research Projects Agency (DARPA) project to evaluate 

the military utility of HELLADS (HELLADS Military Utility Assessment, 2007).  This 

study supports the HELLADS assessment by investigating the operational envelope of 

the proposed use of HELLADS. Laser propagation inputs are attained via the High 

Energy Laser End-to-End Operational Simulation (HEELEOS) created by AFIT’s Center 

for Directed Energy.  HELEOS derives a practical degree of fidelity in estimating laser 

energy delivery given three main areas of user inputs (Bartell and Allen, 2005).   

1) Laser inputs, such as wavelengths, beam power, beam quality, jitter, exit 

aperture diameter. 

2) Platform and target inputs, such as speed, altitude, and relative spatial and 

geometric relationships.  
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3) Environmental inputs, such as atmosphere and aerosol types, HELEEOS 

provides.     

The mission level Extended Air Defense Simulation (EADSIM) model uses the 

energy delivery data provided by HELEEOS to investigate the HELLADS operational 

envelope.  Appropriate scenarios will be run in EADSIM to assess HELLADS air-to-air 

defensive capability against various missiles and rockets.  HELLADS Measures of 

Effectiveness (MOEs) will be evaluated using intended operational scenarios, but will 

also be evaluated beyond its proposed combat venues by stretching this operational 

envelope. 

Research Focus/Scope/Methodology 

HELLADS hopes to be capable of delivering 150kW of power with a weight goal 

of 5kg/kW (High Energy Laser Area Defense System, 2005).    This puts the HELLADS 

at approximately 750 kg, or 1650 lbs, an order of magnitude less than current laser 

weapon systems with similar power.  This weight reduction enables tactical aircraft, such 

as fighters, bomber, tankers, and UAVs to carry the HELLADS (HELLADS Military 

Utility Assessment, 2007).  This completely changes the way HEL can be utilized in the 

battlefield.   

Scenarios in EADSIM using these types of platforms are developed to assess the 

operational effectiveness of the HELLADS.  Output will be examined and compared to 

expected values to ensure its accuracy.  Analysis of Variance (ANOVA) is used to single 

out the driving input factors and linear regression techniques will be used to build a 

predictive model.  Once a predictive model has been derived its responses will be 
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compared to model outputs to ensure it is correct, and also to hone the predictive model 

to increase its accuracy.  Once the “best” predictive model has been derived it will be 

used to examine HELLADS operational capabilities outside those proposed or intended.        

Implications 

The results of this study provide an initial look at the HELLADS operational 

envelope and are applicable to follow-on or further study of HELLADS operational 

effectiveness.  It may be used to adjust the proposed operational scenarios in which 

HELLADS can be used and also may be used in test planning procedures.  Future 

developmental or operational testing results should be compared to the results and 

conclusion of this study.  Any disparities in results should be investigated to improve the 

model for use in future studies.  

Preview/Overview 

If successful, HELLADS will totally revolutionize HEL capability.  It will greatly 

increase how the warfighter can apply HEL weaponry to gain considerable advantages 

over the adversary.  Current HEL configurations require an enormous platform, limiting 

its engagement proficiency.  By combining the high energy delivery of solid state laser 

technology with the efficient thermal management of liquid laser technology HELLADS 

will no longer have this limitation currently hindering HEL capabilities (Cohen and 

Knight, 2005:24). 

The next four chapters give detailed information on investigating HELLADS 

capabilities.  Chapter two summarizes applicable literature used in this research.  Chapter 

three discusses the methodology used for the HELLADS assessment, including details 
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concerning input data and model integration. Chapter four discusses analysis of the 

output data, including statistical procedures, Design of Experiments (DOE) methodology, 

ANOVA, and linear regression.  Chapter five provides this study’s conclusions and 

future, or follow-on, research and assessments.   
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II. Literature Review 

Introduction 

Before beginning the process of planning, executing, and analyzing a project 

some preliminary groundwork must be accomplished.  A literature review delves into the 

generalities of the system under investigation and forms a starting point for further 

research.  Understanding of how the concept has evolved through previous technological 

advances, and how it has been used and tested in the past, yields the researcher with a 

refined scope, from which the system under study can be better assessed.   

In the past decade HEL technology has advanced substantially and there are 

currently many programs, in all services, using, or testing, HEL capabilities.  One of the 

most notable is the Army’s Tactical HEL (THEL).  The ground based THEL has proven 

effective against intercepting single, and salvos of, Rockets, Artillery and Mortars 

(RAM).  The Army is currently developing and testing the Mobile THEL (MTHEL) 

which is a transportable, ground based THEL, intended to target, not only RAM, but also 

UAVs, cruise missiles, ballistic missiles, satellites, battlefield optics and sensors, 

helicopters, and ground attack aircraft (Souder and Langille, 2004:4).    After detecting 

such enemy attacks there is only a matter of seconds, or less, to counter.  Fly out times 

make kinetic counter-measures, defeating rockets with rockets, an infeasible solution.  

Once an air attack is detected, acquired, and tracked HEL weaponry engages the target at 

the speed of light.  This instantaneous reaction time makes it a much more practicable 

solution for defeating high speed air attacks.  The Army has proven THEL and MTHEL 

ability to defeat high speed air attacks.  The HELLADS mission is also to defeat these 

types of attacks however, it will do so via air-to-air instead of ground-to-air.  
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The Air-borne Laser (ABL) was the first concept of using an air-to-air laser 

weapon system to defeat air attacks.  It uses a complex system of sensory, targeting, and 

lasing technologies to laze down ballistic missiles while they’re in their boost phase. It 

uses four different types of lasers, each with a specific purpose.  After detecting a 

boosting, ballistic missile it uses one laser to track, a second laser to aim, a third laser to 

measure the amount of atmospheric disturbance between the aircraft and missile, and a 

fourth, a HEL, to irradiate the missile.  In this case the HEL is a Chemical Oxygen Iodine 

Laser (COIL).  The COIL, invented by the Air Force Research Laboratory (AFRL) in 

1977, uses a mixture of chemicals and chemical gases to excite oxygen.  Excited iodine 

gas is then produced by injecting iodine into the excited oxygen.  When the iodine returns 

to its normal state it produces flashes called photons.  These photons are then amplified to 

produce the laser beam (Airborne Laser, 2003).  The ABL is reported to have a range of 

more than 200 miles, however, to generate this type of power it needs six COIL modules, 

each the size of an SUV and weighing 6,500 pounds (Airborne Laser, 2003).  Only large 

aircraft, like the current ABL platform, a 747, can carry such a weight. By being light 

enough to be carried by fighters, HELLADS will provide enough power and 

maneuverability to defeat close to medium range air targets. 

The Advanced Tactical Laser (ATL) is a HEL that uses a very similar COIL, but 

its primary mission is striking closer tactical targets.  The ATL uses a modified C-130 as 

its platform.  Equipped with HEL appropriate sensory and tracking systems it uses a 

turret, protruding from a 50 inch diameter hole in the belly of the aircraft, to strike at 

ground targets (Advanced Tactical Laser, 2006).  Potentially, the precision, speed, and 
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range of the ATL, will allow it to strike targets with minimal collateral damage from a 

range of 15 kilometers.  This stand-off type attack, made capable by the ATL, enables 

covert attack possible outside of the range of small arms fire and shoulder-launched anti-

aircraft missiles.  Using 100 to 300kW of power the ATL can emit a four inch diameter 

beam that can cut through metal in less than five seconds, from nine miles away 

(Advanced Tactical Laser, 2005).  With a similar power output, but lighter payload, the 

HELLADS aspires to have comparable capabilities against air targets. 

Yet another current HEL program is the Joint High Power Solid State Laser 

(JHPSLL).  The JHPSLL is currently entering its third phase of development and hopes 

to soon demonstrate 100kW power generation which is intended to be used for a wide 

variety of missions including defense against RAM, anti-tank guided missiles, rocket 

propelled grenades, and man-portable SAMs (Joint High Power Solid State Laser, 2005).  

The JHPSLL uses solid state laser technology to generate its beam and it is intended to be 

mobile like the MTHEL.   

HEL power can be generated from solids, fibers, chemicals, or liquid.  Solid state 

lasers use a crystalline or glass, fiber lasers use fibers, chemical laser use a mixture of 

chemicals, such as the COIL used in the ABL, and liquid lasers use a solid and a liquid to 

produce laser beams.  Although the aforementioned use different materials, the means of 

power generation follows the same basic premise, see figure below. 
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Figure 2. Laser Basics (How Does It Work?, 2001) 

 

By pumping the medium, solid, fiber, chemical, or liquid, with light or electricity, 

the ions in the material become excited, causing them to jump to higher orbits.  When the 

electrons drop back to lower energy levels they release a photon or quantum of light.  

This process continues until the light waves’ strength builds and passes through the 

medium.  Mirrors reflect the light back and forth in the tube, creating a chain reaction 

which causes the laser to laze (Coherent Light and Its Emissions in Lasers, 2007).  

Although solid state lasers and fiber lasers are not as powerful as chemical lasers they 

offer the potential of being more suitable for a wider range of applications due to their 

compactness and their ability to function on electrical energy alone (McHale, 2006).   
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Lasers generate an immense amount of thermal energy, limiting their laze time and thus 

their capabilities.  HELLADS uses a solid state laser in conjunction with a liquid to 

lessen excessive heat generation, allowing it to laze longer. 

HELLADS will undoubtedly enhance HEL weapons’ capability.  According to 

DARPA director, Dr. Tony Tether, “a unique cooling system might allow the system to 

be 10 times lighter, significantly smaller, and approximately half the cost of current 

developmental HEL systems.”  (Tether, 2003).   

The HELLADS low weight and superb cooling efficiency will enable it to achieve 

previously impossible tasks for this type of weapon system.  It will enable tactical 

aircraft, such as fighters, to be equipped with a continuous lazing capability to target 

threats such as cruise missiles, aircraft, UAVs, low altitude missiles, rockets, artillery, 

mortars and SAMs (Robinson, 2007:20). 

The HELLADS program is currently set up into five phases (High Energy Laser 

Area Defense System, 2005).  The first phase evaluated feasibility issues of the 

HELLADS, including platform integration, carry employments, signature effects, cueing 

employment, target classifications, range, and firing methodologies.  This was 

accomplished through satisfying critical parameters by a subscale liquid laser 

demonstration.  Phase two spans four years and will attempt to demonstrate a HELLADS 

comparable system’s ability to deliver 100kW of power.  In 2004 HELLADS began its 

third phase which consisted of a laboratory demonstration of a subscale prototype laser 

with comparable geometries and attributes of the proposed operational HELLADS 

configuration (Request for Information, 2004).  
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Phase four will employ a ground-based system analogous to the final HELLADS 

configuration meeting the 5kg/kW, weight to power, specifications.  This ground based 

system will also demonstrate the ability to fit the appropriate technology into a compact 

design, small enough to be carried on a specified tactical aircraft.  Phase five will 

concentrate on the engineering, formulation, and integration needed to accomplish a 

HELLADS shot from an aircraft.  Interoperability with the platform and HELLADS will 

be tested in the ability to acquire and track targets and in controlling beam and fire 

attributes (High Energy Laser Area Defense System, 2005). 

HQ USAF/A9F planned military utility assessment of HELLADS is also split up 

into five phases that reasonably resemble the five phases listed above.  Through the use 

of modeling and simulation, this study addresses questions regarding specific HELLAD 

capabilities and isn’t necessarily tied to any one phase.  

The primary focus will be on HELLADS capabilities and limitations as they 

pertain to physical measures such as range, number of shots, time on target, and 

probability of kill, or target degradation.  These measures will be calculated over 

different combination sets of possible or relevant scenarios, given HELLADS intended 

platforms, power, firing characteristics, and targets.  The proposed use of the HELLADS 

is in the Homeland Defense CONOPS arena and scenarios in this study reflect that.     

Modeling and Simulation 

The Defense Modeling and Simulation Coordination Office (DMSCO) lays the 

groundwork for all M&S work done for DoD .  It sets specific guidelines to be followed 

and performs appropriate corporate level functions necessary to foster cooperation, 
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synergism, and cost-effectiveness among the M&S activities of the DoD Components. It 

works to foster interoperability, reuse, and affordability of M&S and the responsive 

application of these tools to maximize capabilities available to the warfighter and to 

enhance attributes of DoD operations (Mission Statement, 2006). 

 Ideally every system would be thoroughly tested operationally before ever going 

to the field.  However, due to the financial enormity of this idealistic approach, other, less 

financially obligating, means of testing are necessary.  Modeling and simulation provides 

a comparably low cost testing platform and can also be used for a wide scope of testing 

that would not be realistic, or possible, in the operational test theater.  Scenarios and 

excursions otherwise untestable can be examined through modeling and simulation.  

Historically, a model has been defined as being a “physical, mathematical, or otherwise 

logical representation of a system, entity, phenomenon, or process” and a simulation has 

been defined as a “method of implementing a model over time” (Hughes, 1997:4).   

Simulation types are classified by broad taxonomies, classifying them relative to 

their purpose, degree of aggregation, and by durability (Miller, 2007).  The type of 

simulation used in this research is classified in purpose as a constructive model; one in 

which simulated people operate simulated systems. The simulation executes an assigned 

scenario using data input from the model user and produces output data which then can 

be analyzed to assess the overall effectiveness of the system under the prescribed subject 

matter.  These models are also defined as descriptive, another purpose classifier, or 

models that facilitate decisions through inference.  Descriptive models use a set of 
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appropriate inputs to analyze the relative outputs and evaluate alternatives based on the 

cause and effect of the input/output relationships. 

For degree of aggregation, the actual models used in this study fall under the 

mission and engagement level portions of the pyramid, discussed in the next section.  

Engagement output data from HELEEOS, an engagement level model, will be used as 

inputs for EADSIM, a mission level model. 

Lastly these models are classified by durability as standing models, or legacy 

models.  Standing models are legacy models which have been used extensively in the 

past and are operated, maintained, and improved on a continual basis (Hughes, 1997:9).  

Some of these models are accepted by the analytical community and become part of the 

Air Force Standard Analysis Toolkit (AFSAT).  AFSAT serves as a benchmarked set of 

models which can be used for various levels of aggregated engagements.  AFSAT 

highlights appropriate standing models and their use for given analytical purposes.  In 

this manner AFSAT prevents analysts from re-inventing the wheel, moderates the model 

population, and, to some extent, streamlines the modeling and simulation analytical 

process (Air Force Standard Analysis Toolkit, 2006).  

 

Hierarchical Process 

Every model is applied for its intended purpose to assess a system in a specific 

scenario.  Operations research is a lever to support decisions and a model aspires to aid 

this process by achieving a realistic representation of the operations, as they pertain to the 

specific agendas under investigation (Hughes, 1997:4).  Although no two simulations will 

be exactly alike, the general type of scenario they are built to model can be stratified into 
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different levels.  Naturally, models used to assess the damage done by a single attack or 

the nature of a one-on-one scenario require a higher fidelity of interactions than do 

models simulating a campaign or mission level battle.  To this end, models are classified 

into a hierarchy exemplifying their degree of resolution. Figure 3 shows the model 

hierarchy used by DoD.  

 

HELEEOS

EADSIM

Aggregation

Resolution
Engineering

Engagement

Mission

Campaign

HELEEOS

EADSIM

Aggregation

Resolution
Engineering

Engagement

Mission

Campaign

 
Figure 3. DOD M&S Pyramid  

 

Aggregation increases as you go up the pyramid and resolution, or fidelity, 

increases as you go down the pyramid.  At the bottom, engineering level, physical 

phenomena are modeled via mathematical and physical sciences, such as the effects of 

gravity, atmosphere, propagation, and laser power delivery.  Farther up the pyramid the 

levels use the engineering conclusions as the basis to perform one-on-one, one-on-few, 

and few-on-few to simultaneously model engagements or missions.  These models also 

employ other attributes such as, command and control characteristics, to realistically 

simulate the type of engagements being investigated.   
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HEL Modeling and Simulation Challenges 

 The goal of simulating HEL is to supplement live tests by gauging how laser 

effects and target responses change via assessing target interactions in operationally 

relevant engagement environments (Appropriation/Budget Activity, 2007:25-27).  

Models traditionally used for simulating conventional kinetic weapon systems such as 

bullets, missiles, bombs, and artillery, cannot be used to simulate laser weapon systems.  

Physical effects, such as gravity and drag, which drive kinetic weapon system simulations 

do not apply to the natural physics that affect laser energy.  Projectile weapons, for the 

most part, cannot function autonomously after they’ve been employed.  Aiming points 

are derived using formulas that take into account such things which do not influence laser 

propagation.  Whereas kinetic weapons need to be dropped, fired, or launched and given 

a time window to fly, lasers arrive at the aim point instantaneously with high precision. 

 Models simulating laser effects take into consideration environmental effects that 

most directly influence laser power delivery to a target.  The most significant are thermal 

blooming, molecular and aerosol absorption/scattering, and turbulence (Zimet, 2002; 

Sprangle and others, 2004). Thermal blooming, or defocusing, is a nonlinear thermal 

distortion caused by the interaction of laser radiation and the heating of the propagation 

path by radiation absorption.  A laser beam increases the temperature of air, resulting in 

decreased density, and refractive index, of the local air.  This distortion causes defocusing 

of the beam wave front known as thermal blooming.  This distortion can be decreased by 
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using specific beam wavelengths which are scattered, and absorbed, less in various 

atmospheric environments (Sprangle and others, 2004).      

 Atmospheric conditions have a great effect on HEL weaponry.  Whereas the 

trajectory of traditional projectile weapons are not effected by water vapor, fog, and 

clouds, a laser beam cannot effectively propagate through these types of adverse 

environments.  Water vapor and other molecules between the laser source and its 

intended target scatter and absorb laser energy, significantly decreasing its power.  

Thermal fluctuations in the air, dependent on the changes caused by laser energy, also 

effect laser propagation.  Different air temperatures possess different refractive indexes, 

thus thermal changes can cause the laser beam to spread and wander.  Adaptive optics 

have proven to lessen the degrading effects of turbulence (Sprangle and others, 2004).            

 Beam characteristics such as wavelength and power can be adjusted to minimize 

adverse effects caused by thermal blooming, scattering, absorption, and turbulence.  

Certain wavelength and power combinations function better for given atmospheric 

conditions, maximizing the laser energy delivered to the target.  Target characteristics 

and the intended effect on the target are also taken into account when choosing laser 

beam wavelength and power. 

 All these factors are unique to modeling laser effectiveness and thus present a 

whole new set of challenges for accurately estimating laser degradation and laser 

efficacy.  HEELEOS, mentioned in the introduction, obtains input from the user, such as, 

beam wavelength, power, slant ranges, platform and target characteristics, and 
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atmospheric conditions, to estimate laser power delivery to the target, and consequently, 

influence probability of kill estimation calculated in EADSIM (Bartell and Allen, 2005). 

 Output from HEELEOS can subsequently be incorporated as inputs into 

EADSIM, also discussed earlier, to examine mission level scenarios, such as, one-on-few 

and few-on-many scenarios.  For this research scenario set up will be based on the 

intended use of HELLADS provided by A9, and EADSIM results will provide 

estimations for HELLADS capability and limitations, including number of shots, time 

availability, range, platform configurations, and target classes. 

 

EADSIM 

EADSIM is a workstation-hosted, system-level simulation which is used by 

combat developers, materiel developers, and operational commanders to assess the 

effectiveness of Theater Missile Defense and air defense systems against the full 

spectrum of extended air defense threats. EADSIM provides a many-on-many theater-

level simulation of air and missile warfare, an integrated analysis tool to support joint and 

combined force operations, and a tool to provide realistic air defense training to 

maneuver force exercises at all echelons (EADSIM Methodology Manual for Version 

13.00, 2005).       

EADSIM incorporates many factors to simulate air-to-air engagements, including 

multi-tier engagements, Theater Ballistic Missiles in all phases, passive defense, infra-red 

signatures, and radar signatures, to formulate probability of kills for given scenarios.  

Studies using EADSIM similar to this one have traditionally used high speed missiles in 
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lieu of laser energy.  However, recent versions of EADSIM have the ability to model 

actual laser weaponry characteristics as briefly discussed below. 

 The current version of EADSIM incorporates a Laser ruleset, capable of 

simulating Directed Energy Weapons (DEW) on air, space, and ground platforms against 

various target types.  The entire engagement timeline for DEW is modeled and includes 

simulation of laser slewing, laser warming, power propagation losses, and target 

destruction.  Targets are engaged via user inputs for threat prioritization logic, such as 

ballistic boost phases and defense of preset laser protection zones.  

 The engagement process is represented via the battle management phases which 

consist of target selection, through threat assessment and laser-to-target assignment 

procedures, and launch/laze phases, which represent HEL delivery once the decision to 

engage has been reached (EADSIM Methodology Manual, 2006:4.7.33-1). Figure 4 

illustrates this engagement process. 
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Figure 4. Laser Engagement Timeline (EADSIM Methodology Manual) 

 The decision to engage is based on several factors including, time on track, friend 

or foe identification, local track, and target criteria.  Once a target is selected for 

engagement a turn-to-target decision is made, based on laser-target geometry and target 

angle thresholds.  Once a target meets the Line-of-Sight (LOS) thresholds range, laser 

slewing, warming and settling times are then modeled (EADSIM Methodology Manual, 

2006:4.7.33-18).  EADSIM offers four lethality modeling options to specify probability 

of kill (Pk).  The intensity and fluence models apply user inputs as their values and 

calculate Pk via a random number draw representing the targets survivability percentile.  

The damage required to effectively kill the target is determined, based on the random 
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number draw, by using maximum and minimum vulnerability criteria for the engaged 

target (EADSIM Methodology Manual, 2006:4.7.33-22).  

 The HEL Vulnerability Module (VM) interface requires no inputs from the user, 

rather it looks up vulnerability data defined in the VM for specific targets and aimpoints.  

The Pk calculation for the actual engagement occurs from a random draw, unless 

otherwise specified in the planning process by the user (EADSIM Methodology Manual, 

2006:4.7.33-39).  

 The shared object option calculates Pk via a user developed algorithm to process 

an engagement.  EADSIM calls the shared object function and uses the provided lethality 

information to determine target destruction.  This lethality modeling option is similar to 

the HEL VM, but is more labor intensive as it requires the user to create an algorithm to 

derive data which HEL VM already provides (EADSIM Methodology Manual, 

2006:4.7.33-32).  

 Power propagation greatly influences laser lethality as it effects deposited energy 

on the target (EADSIM Methodology Manual, 2006:4.7.33-29).  Energy deposition is a 

function of beam spread and peak intensity, both of which depend upon power 

propagation.  EADSIM determines the effect power propagation has on the deposition of 

target energy by power propagation look up tables which will be provided by HELEEOS.  

 

Analysis Techniques 

Design of Experiments (DOE) is implemented to answer several important 

questions regarding input factors and response variables.  Before starting an experiment 
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one should take into consideration all appropriate input factors, both controllable and 

uncontrollable.  The purpose of an experiment is to accurately estimate what input 

factors, or combination of factors, have the most effect, or desirable effect, on a response 

variable under examination.  Once the most influential input factors have been 

discovered, achievement of the desired response can be investigated by changing the 

settings of these input factors.  Bias due to uncontrollable factors, and noise, can also be 

estimated and minimized through replication, randomization, and an experimental design 

known as blocking (Montgomery, 2001:12). 

Replication provides the experimenter with an estimate of the experimental error 

and also the means to more accurately estimate the response variable(s) under 

investigation.  In some cases, operationally testing very expensive weapons for example, 

it may be difficult or impossible to replicate.  However, for this study, which utilizes 

modeling and simulation, replication will not be a problem. 

Randomizing input factor settings and the order in which the runs are 

accomplished average out extraneous noise, greatly increasing the validity and 

confidence of experimental conclusions.  By spreading out uncontrollable factors 

randomly throughout the design, their influences will be evenly spread out, minimizing 

their effects on the response variable and avoiding the possibility of  skewing the data, 

potentially leading the experimenter to make invalid conclusions concerning input factor 

influences on the response variable of time to complete the task.  Randomization also 

validates the assumption of independent random variables needed to make statistically 

sound conclusions.       
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 Blocking is a design strategy used to further minimize the variability caused by 

nuisance factors, those factors which have influence over the response variable but are 

not necessarily important to the experiment.  When blocking, the experiment is set up so 

that effects due to a nuisance factor can be completely discerned from effects due to 

factors of interest.  A good example of this is a design strategy which blocks on day, 

where day was not pre-selected as a factor of interest.  If we were running an experiment 

which took more than one day the test would be set it up so that relatively homogeneous 

runs were run for each block (day).  In this manner we would be interested in examining 

the variability within blocks (days), and not concerned with variability between blocks 

(days), since day was predetermined to not be a factor of interest.  If the runs done in 

each block (day) were not homogeneous it would be impossible to make inferences on 

what factor(s) influenced the response variable under investigation.  In other words the 

variability from blocks would be confounded with other factors, rendering any 

conclusions made, concerning factor influence on the response variable, invalid.  

After using DOE to set up the experiment, and conducting the runs, an analysis of 

variance (ANOVA) is often used to calculate what factors, and/or factor interactions, are 

significant.  A significant factor, or factor interactions, is one whose variability is a large 

proportion of the overall variability.  In other words variability is calculated for each 

factor, and possibly factor interactions, and compared to the overall variability of the 

experiment.  Those factors with relatively large variability would be considered 

statistically significant influencers on the response variable. 
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In addition to ANOVA, linear regression can be used to formulate a prediction 

equation.  Linear regression estimates regression coefficients for each significant factor, 

and factor interactions, and incorporates them into a function of the response variable.  A 

regression coefficient can be thought of as a weight designation for each significant 

factor.  If the factor decreases the response variable it will be given a minus notation in 

the prediction equation, likewise it will be given a positive notation if it has a positive 

affect on the response variable.  Also, the amount of significance a factor has on the 

response variable will be reflected in the regression coefficient pertaining to that 

particular coefficient.  For example, a more significant factor will be given a regression 

coefficient with a higher value.  By using regression coefficients to represent the 

expected change in the response variable per unit change in each of the significant 

factors, when all other factors are held constant, linear regression provides a function 

possible of predicting the response for a given set of significant factor inputs 

(Montgomery and others, 2004:67).  Prediction equation accuracy will be tested and 

optimized by comparing it to model results with applicable input factors.     

 

 

Previous Research 

 This research effort expands upon three recent theses written by AFIT students 

which all used EADSIM to assess HEL capabilities.  These theses provided the EADSIM 

framework for this particular study. 

Research of Captain Maurice Azar 

 24



 

  Prior to this research, in 2003, the assessment of HEL capabilities was generally 

done using several stand alone engineering models that only addressed small portions of 

a HEL weapon system (Azar, 2003:1-2,1-3).  This research assessed EADSIM’s ability to 

assess ATL capabilities against cruise missiles and provided measures of effectiveness 

for the model, and the means by which they could be applied and aggregated into higher 

level models, such as the campaign model, THUNDER (Azar, 2003:1-4).  THUNDER is 

a theater level combat model that is designed to guide policymaker decisions, by 

evaluating issues involving the utility and effectiveness of air and space power in a 

campaign level scenario (Aerospace Systems Survivability, 2001:60).  

EADSIM was used to simulate an ATL mounted on a C-130 flying in a circular 

pattern, with radius of 5 km, at 15000 meters, and 150 knots engaged nine cruise 

missiles, flying due south, at 100 meters AGL, and at 400 knots (Azar, 2003:3-2). This 

study did not use HELEEOS to generate power propagation tables as this study does; 

rather Captain Azar used a Tyson’s first order brightness equation to produce applicable 

inputs for EADSIM (Azar, 2003:3-15; Tyson, 1998:24): 
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where  

                            B = Brightness (watts / steradian) 

                            D = Diameter of transmitting aperture (meters) 

                            P = Power of laser (Watts) 

                            λ = Wavelength (meters) 
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ω = Wavefront error (root mean square as percent of λ) 

                             j = Jitter (root mean square as a percent of λ / D) 

                             τ = Transmission of atmosphere (percent) 

 

Table 1. Brightness Equation Inputs 

Variable Value 
D = Diameter of transmitting aperture (meters) 1 
P = Power of laser (Watts) 50,000 
λ = Wavelength (meters) 1.315 x 10-6 
ω = Wavefront error (root mean square as percent of λ) .2 λ 
j = Jitter (root mean square as a percent of λ / D) 0/2.205 λ 
τ = Transmission of atmosphere (percent) .9 

 

Captain Azar’s research offers some insight regarding what factors have the most 

impact on HEL effectiveness.  He examined the influence of factors such as target 

priority, laser propagation, cruise missile launch time, azimuth, power, and jitter had on 

fraction of targets killed and total laser firing time (Azar, 2003:3-22, 4-1,4-5).   

 

Research of Captain Michael Cook 

Capt Cook’s effort paralleled Capt Azar’s but had two major differences.  As 

opposed to using the brightness equation, power propagation tables were provided by 

HELEEOS, and in this effort ATL effectiveness against ground, as opposed to air, targets 

was assessed (Cook, 2004:17).  Using power propagation input from HELEEOS is 

actually preferred over using brightness equations, as HELEEOS accounts for thermal 

blooming and jitter, where the brightness equation does not explicitly (Cook, 2004:19).  

Capt Cook compared irradiance levels, at different slant ranges, calculated by the 
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brightness equation and HELEEOS.  Irradiance calculated by HELEEOS was found to be 

much less, due to thermal blooming, than the irradiance calculated by the brightness 

equation (Cook, 2004: 22).   

 
Figure 5. Power Comparison with Thermal Blooming (Cook, 2004:21) 

 

Capt Cook also noted the brightness equation’s inability to properly represent 

degradation of HEL effectiveness due to jitter (Cook, 2004: 24).  Turbulence induced 

jitter and vibration induced jitter adversely effect HEL’s ability to hit a target (Liu,Y.T. 

et, al, 2005).   As Figure 6 shows, depending upon beam quality and wavefront error, 

jitter plays a significant role in hitting a target (Neal, 1994:5).  This graph shows the 

allowable amount of jitter.  If these thresholds are exceeded HELs ability to hit a target 

greatly decrease. 
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Figure 6. Allowable Jitter 150 kW System (Neal, 1994:5) 

 

Perfect beam quality is 1 and higher numbers denote decreased beam quality.  

According to subject matter expert (SME), Mr. Rick Bartell, HELEEOS reflects the 

degradation on the ability to accurately hit a target when jitter values of greater than 5 are 

input into a model simulating a solid state laser, which is typically given a beam quality 

of 2 (Bartell, 2007).  This is verified by the figure above and albeit COIL has a better 

beam quality at 1.3, as used in Capt Cook’s study, they are still  effected by jitter.  As can 

be seen by the graph lower beam quality and greater wavefront error decrease the 

allowable jitter.  Like Capt Azar’s research, this study also gives insights into the 

importance of single factors as they apply to effecting HELs ability to destroy targets, but 

also on how they effect average dwell time.  These factors included power level, 

vulnerability level, target selection priority, weapon altitude, propagation, and weapon 

velocity.  Capt Cook used similar inputs to Capt Azar’s to formulate power propagation 
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values which were fed into EADSIM however, the other factors differed considerably 

and are shown in the table below.   

Table 2.  Cook's Factor Settings (Cook, 2004:47) 

Factor Low Medium High 
Weapon Altitude (m) 1000  4500  8000  
Weapon Velocity (m/s) 140  220  300  
Target Priority 1 - Shortest time to kill          2 – Longest time to kill 

3 – Lowest Elevation Angle  4 – Highest Elevation Angle 
ATL Power Level (W/cm2) 50000  100000 200000  
Vulnerability Tables (J/cm2) 10000  50000  90000  

 

Capt Cook concluded that weapon altitude, power level, slant range (a direct 

result of weapon and target altitude and position), target vulnerability level, and weapon 

velocity all had significant effects on the measure of effectiveness.  He also noted, albeit 

it was more robust in measuring propagation, his study did not model absorption.  In 

order to more accurately predict target vulnerability future studies of this nature should 

attempt to account for energy loss from atmospheric absorption (Cook, 2004: 91-93).  

Research of Captain James Markham 

Capt Markham’s study investigated the lethality of HEL weaponry and how to 

appropriately measure it, in order to produce data which could be entered into the Joint 

Munitions Effectiveness Manual (JMEM) (Markham, 2005: iv).  His study, like Capt 

Cook’s, focused on engaging ground targets however, his study more accurately 

evaluated target vulnerability by using empirical test data, instead of theoretical values, 

for required flux densities and also by evaluating multiple aimpoints.  Capt Markham 

used the following parameters and settings (Markham, 2005:26, 36). 
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Table 3. Markham's Factor Settings (Markham, 2005:26) 

Parameter Scenario Settings 
Slant Range (m) 2000    3000    4000    5000    6000    7000 

8000    9000    10000   11000     12000       
Platform Altitude (m) 2000  
Dwell Time (sec) 1.0        1.5        2.0        2.5        3.0 

3.5        4.0        4.5        5.0                 
Platform Velocity Perpendicular to LOS (m/s) 77         90         103        116         126 
Susceptible Target Length/Width (m)  .01       .02       .03       .04       .05       .06 
Laser Power (W/cm2) 100,000 
Beam Quality 1.1 
Magazine Depth (sec) 5  

 

Bucket, or spot, size refers to the area in which laser energy can be deposited in 

order to cause damage and dwell time refers to the seconds of laze time, although 5 

seconds is listed it is merely a minimum time for a single engagement in EADSIM and 

100 seconds was actually used to account for multiple engagement scenarios (Markham, 

2005:32).  Aerosol and atmospheric types were also factors, not listed in the table, used in 

this study.  Data for these factors were directly generated by HELEEOS and applicable 

values were used in the scenarios.  In addition to influential factors on the effectiveness 

of HEL weapons found by Capt Azar and Capt Cook, Capt Markham concluded that 

limitations existed on the applicability of ATL capabilities based on range to target, 

atmospheric profile, and target vulnerability (Markham, 2005:65).       

Applicable scenarios, settings, and findings from all three prior theses were 

considered and applied in the development of this study.  Many settings were identical, or 

close to, settings used in the prior studies discussed however, one major difference is 

weapon platform velocity and laze time.  HELLADS was employed from a fighter 

aircraft and given greater laze times.     
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Summary   

9/11 quickly made Homeland Defense a top priority, and with no foreseeable end 

to the conflicts in the Middle East it is, and will continue to be such.  Programs have been 

established by DoD to help protect our country from those who wish to do us harm.                                         

Skyguard is one such program proposed by Northrup Grumman.  It is conceptually 

comparable to the Army’s THEL system and could be used to protect airports, cities and 

industrial areas.  One system could protect approximately a 10km radius against aerial 

attacks (Skyguard, 2006). 

Raytheon’s Laser Area Defense System (LADS) uses off the shelf solid state 

technology in conjunction with commercially available optics technology recently 

demonstrated its ability to strike small, stationary mortars at a distance of 550 yards away 

(Electric Lasers Shoot Mortars, 2007).  The threshold of 100kW is conceivably not far 

out of reach and using an already existing tracking system for aerial strikes will be LADS 

next hurdle.  If successful LADS potentially will provide another asset to Homeland 

Defense.  

Over 30 years ago the Navy began The Mid Infrared Advanced Chemical Laser 

(MIRACL) program and has since been tested against tactical missiles and drone aircraft.  

It is the first megawatt-class, continuous wave, chemical laser built in the free world, and 

remains the highest average power laser in the US (Mid-Infrared Advanced Chemical 

Laser, 1998).    

The Space Based Laser (SBL) is a program currently under development.  The 

SBL has generated power levels, comparable to MIRACL’s, in a low pressure, space 
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operation environment.  The next step is to prove the feasibility of space deployment 

through an integrated space vehicle ground test with a space demonstration (Space Based 

Laser, 2005).  The SBL would provide Theater Missile Defense with its capability to 

shoot down ballistic missiles from space. 

Directed Energy Weapons (DEW), including those implementing HEL, provide 

unique advantages, including operation at the speed of light, gravitational immunity, 

precise and adjustable targeting, affordability, minimal collateral damage, repetitive 

engagements, and platform diversity,  which make them more suitable than traditional 

kinetic weapons for Homeland Defense (Spencer and Carafano: 2004). 

Terrorists will use any means necessary to inflict damage and project fear into the 

American public.  Asymmetric warfare is a low cost, high benefit way in which they can 

achieve these goals.  Cruise missiles are easy to attain, easy to conceal, adaptable, cheap, 

and are able to deliver a variety of destructive warheads over a far reaching range (Keuter 

and Kleinberg, 2007:2). 

HELLADS, along, with other HEL weaponry, will bring a distinctive advantage 

to Homeland Defense.  Using an agile platform and sufficient, medium range HEL 

power, it will be an asset in thwarting threats, such as cruise missiles, that may otherwise 

go unchecked by other Homeland Defense systems.  
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III. Methodology 
 

General Methodology 

 This chapter presents the scenarios, along with factor values and assumptions, 

which are employed in this study to assess HELLADS capability and effectiveness.  The 

methodology stems from current, and proposed, HEL Concept of Operations (CONOPS), 

and the current capacities modeling and simulation offers for emulation, which were 

discussed in the previous two chapters.  Factors, or inputs, into the models, such as beam 

characteristics and atmospheric conditions, for HELEEOS, and platform and target 

altitudes and velocities, as well as vulnerability data and weapon configuration, for 

EADSIM, were derived from subject matter experts and previous research done in HEL 

assessment via modeling.    

 

HELEEOS Inputs for EADSIM 

 As mentioned earlier EADSIM offers four ways in which to specify Pk.  Due to 

the nature of HELEEOS outputs being in the form of intensity, or irradiance, values, the 

intensity methodology for computing target lethality is used in this study.  Modeling 

lethality in this manner requires irradiance values for computing Pk.  HELEEOS provides 

irradiance values, as a function of altitude and slant range, in the form of power 

propagation tables.  Applicable inputs in HELEEOS are selected to generate applicable 

irradiance values for EADSIM to utilize.   

HELEEOS offers different site locations, representing true atmospheric 

conditions, which can be utilized by the user.  These locations represent the typical 
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atmospheric conditions such as temperature, pressure, water vapor content and optical 

turbulence as they relate to laser beam power loss, otherwise known as layer extinction.  

For the purpose of this study coastal areas are chosen to mirror HELLADS CONOPS. 

HELEEOS allows the user to go through a step-by-step process in setting up an 

engagement scenario.  These steps are shown in the figure below and explained 

thereafter. 

 
Figure 7. HELEEOS Setup 

 HEL weaponry exhibits unique operational advantages over kinetic weaponry. 

However, it does not come without a caveat that is often not fully accounted for, or rather 

made clear, when HEL assessments are conducted.  In order to properly make this 

assessment the laser beam must be able to reach its target; therefore they must assume a 

clear line of sight, designated as Cloud Free Line Of Sight (CFLOS) in HELEEOS, to the 

target.  Lasers are not capable of going through clouds, thus all assessments, although 
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they may reflect different atmospheric and aerosol environments, are conducted under the 

assumption that the laser reaches the target, with some degree of degradation caused by 

these environments.  Therefore it is important for the reader to understand this assessment 

is only applicable when CFLOS exists.  HELEEOS offers a worldwide probability of 

CFLOS.  Figure 8 shows these probabilities for all default locations in HELEEOS.   

 
Figure 8. HELEEOS CFLOS Probabilities 

 

HELEEOS also has a CFLOS feature which allows the user to choose more 

specific locations.  Figure 9, below, shows CFLOS probability at the location of the 

scenarios ran in this study.   
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Figure 9. CFLOS Probabilities off US North Eastern Coast 

 

It is apparent from the lower left graph that there is a relatively low probability, 

approximately 30-50%, of CFLOS for the settings of weapon and target altitudes used in 

this study.  In general CFLOS probability is highest when the platform and target are the 

same altitude, highlighted by the diagonal space, having a slope of one traversing the 

graph in the lower left graph, corresponding to 100% CFLOS probability.  As seen from 

the zoomed in scenario setting box, this probability decreases as the platform and target 

altitude difference increases, due to the fact that more vertical space corresponds to a 

higher chance of cloud interference.  This graph shows the highest probability, 50%, for 

the scenario settings occurs when the platform is at 3000 meters and the target altitude is 

1500 meters.  This probability decreases as the vertical distance of the platform to the 
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target increases, thus is at it’s lowest when the platform and target are 10,000 and 500 

meters, respectively.   

Although relatively close altitudes increase CFLOS, they are not necessarily 

conducive to higher peak irradiance values.  Angle plays a large role in peak irradiance 

and more oblique angles, occurring when the platform and target altitude are relatively 

close, result in lower peak irradiance values.  For this reason it is advantageous for the 

platform to be in a position high enough above the target to mitigate peak irradiance 

degradation caused by oblique angles (Bartell, 2007).    

 The options tab allows the user to choose the desired scaling law, weapon 

configuration, and outputs.  For this study the Share Scaling Law was chosen because it 

allows for adaptive optics to be used.  It also uses the angle between the target velocity 

and beam for angle of incidence calculations.  Weapon configuration allows the user to 

choose from no aero optical model, conformal aperture, or slow moving turret to 

represent the different effects each of these has on laser power delivery.  A conformal 

aperture is what typically is found on a pod configuration, but can also be capable of 

slewing in this arrangement.  According to A9 analyst, Tim Booher, HELLADS 

configuration will be equipped on such a pod; therefore conformal aperture is used for 

HELEEOS setup, along with a slewing ability employed in EADSIM.  The Line of Sight 

of the HELLADS in this configuration plays an important role in engagement geometries 

and hence is considered a major factor in deciding Rules of Engagement (ROE) and 

CONOPS.  This will be discussed in further detail later.  Finally, output for EADSIM 
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tables and the appropriate text and matlab file selection are chosen to create the 

appropriate propagation tables that will be used to populate EADSIM vulnerability tables. 

 The Setup Atmosphere tab allows the user to choose aerosol type and atmosphere 

type.  Available HELEEOS atmospheric conditions are based on actual data from several 

reputable sources and reflect variability produced by worldwide seasonal, diurnal, and 

geographical spatial-temporal factors.  Aerosol types are classified into groups consisting 

of urban, rural, continental, maritime, desert, and arctic.  Each of these groups have 

different levels, average, clean, tropical and polluted to choose from.  For this study the 

Advanced Navy Aerosol Model is used to represent the ocean’s aerosol characteristics.  

Atmosphere type is segregated by location and can be general areas such as Mid-latitude 

North Atmosphere, or more specific, such as Ocean Regions.  One can further specify 

location with latitude, longitude settings.  In this case the model uses data from the 

closest one-by-one, latitude-longitude grid system in which it is partitioned.  Furthermore 

the model gives the choice of seasonal atmospheric conditions in the selected region.   

Earlier, the generalities of laser beam degradation from aerosols were discussed, 

but a more specific discussion of this relationship, as it pertains to maritime 

environments, is in order.  Aerosol volume decreases as altitude increases; they are 

negatively correlated.  In general, aerosols will have a negligible effect on laser 

engagements occurring above the ‘boundary layer’, or 500 meters, however, laser 

effectiveness degrades for engagements occurring below this threshold.  The volume of 

aerosols which adversely effect the laser beam depends on where, geographically, and on 

when, seasonally, the engagement is taking place.  For obvious reasons, ocean areas tend 
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to have more aerosols, in the form of water vapor and salt, than land areas under this 

boundary layer.  As mentioned above season also plays a role in the amount of aerosols 

in the air.  In general summer will have more however for this particular study, because it 

occurs over the ocean, the differences between summer and winter are too subtle to have 

a significant impact on the peak irradiance (Bartell, 2008).   

This study assesses HELLADS capabilities for Homeland Defense in a maritime 

environment and investigates HELLADS performance on the upper edge of, and above, 

this boundary layer.  Regarding HEL effectiveness, this type of scenario is potentially 

very degrading. However, as eluded to earlier in the HEL Modeling and Simulation 

Challenges section, the distortion, caused by aerosols depends on beam wavelengths, 

with specific wavelengths mitigating these degrading effects.  Figure 10 shows the 

extinction coefficient, i.e., sum of scattering and absorption, as a function of wavelength. 

(Sprangle and others, 2004). 

 
Figure 10. Extinction Coefficient vs Wavelength (Sprangle, 2004) 
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Figure 10 was generated by data representative of a mid-latitude maritime, summer, 

environment with 50 km of visibility, which closely resembles the scenario used in this 

study.  The graph shows troughs at wavelengths around 1, 1.6 and 2.2 µm, signifying 

their superiority in maritime environments, regarding extinction due to aerosols, or more 

specifically water vapor for this case.   

 The turbulence profiler offers several choices, provided by the Master Database 

for Optical Turbulence Research in Support of the Airborne Laser, for the user to choose 

an applicable turbulence level.  For this study the Hufnagel Valley 5/7 profile is chosen 

as it is seen as the default and is appropriate for this study (Bartell, 2007).     

 Next is the Engagement Geometry Setup which allows the user to input platform, 

target and wind settings.  Wind settings can be chosen between the Bufton and Expert 

Wind Profile.  If the Bufton Wind Profile is selected a speed is chosen however, when the 

Expert Wind Profile is selected a percentile is chosen.  Wind direction is designated for 

both profiles.  The Expert Wind Profile is chosen for this study because it contains 

seasonal average wind speeds over ocean areas.  Platform and target settings consist of 

altitudes, vertical and horizontal velocity, vertical and horizontal acceleration, and 

velocity and acceleration headings.  Initial settings, including distance from platform, 

relative azimuth to next object, and distance from last object, are also available to tweak 

engagement orientation.  Given the 1.07 µm wavelength used in this study, geometry will 

play little to no role in irradiance values  This particular wavelength will have little 

absorption which means it will also have very little thermal blooming.  Geometry effects 

thermal blooming but since there will be very little thermal blooming associated with this 
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wavelength, geometry is essentially not a factor in calculating irradiance (Bartell, 2007)..  

Note this wavelength is very close to the first trough found in Figure 10 above. 

Engagement dwell time and number of steps can be specified here, but also are irrelevant 

to this study as they are solely used for HELEEOS Pk calculations and will not be used in 

EADSIM.  

 Target setup consists of choosing susceptible target length and width, and also 

allows the user to calculate target damage threshold by material and thickness inputs.  

Again, for this study these are irrelevant for the same reasons just explained. 

  The final setup step involves laser parameter inputs.  Here wavelength, relative 

obscuration, beam quality, wavefront error, total system RMS jitter, laser type, laser 

propagation model, laser power, adaptive optic levels, laser system weight constraints, 

and magazine depth are specified.  Typically a wavelength of 1.31525 µm was used in 

EADSIM for previous studies assessing similar HEL capabilities however, for this study 

the wavelength is 1.07 µm, representing the proposed HELLADS wavelength.  With 

guidance from Rick Bartell a beam quality of 1.3 is used in this study and resembles that 

of previous studies of this type.  Beam quality is a value which denotes the focusability of  

a laser beam.  The diffraction limited signifies the optimal, or best, spot size which can be 

achieved by a laser beam, and is denoted by 1.  A beam quality of 1.3, then, equates to a 

beam which is capable of achieving a spot size of 1.3 times that of the optimal.  It is 

calculated via dividing wavelength by aperture diameter, thus beam quality goes down, 

gets better, as wavelength goes down and aperture diameter goes up.  Here aperture 
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diameter is set to .3 meters (1 foot) to simulate the typical aperture size used by a 

conformal aperture weapon configuration (Rick Bartell, 2007). 

Relative obscuration is a measurement of how much the primary mirror is 

obscured by the secondary mirror and is set at .1, or 10%, which is typical for HEL.  

Wavefront error only becomes a factor at slant ranges greater than approximately 100 

km. Given this study concentrates on closer ranges, wavefront error is set at zero.  Total 

system RMS jitter is a measurement of uncompensated platform jitter and is compensated 

for by the medium Adaptive Optics (AO) system setting chosen in this study.  The AO, 

and tracking system associated with this setting, will not be affected by jitter under 5 µm 

for ranges under 30 km, therefore jitter is also set at zero.  Magazine depth is not relevant 

as it relates only to the HELEEOS Pk calculation and will not play a role in EADSIM, 

thus it is left at its default setting of one.  Laser type is set at continuous wave and laser 

power is set at 150 kW to represent proposed operational values of HELLADS.  The 

HELEEOS input parameters are summarized in the following table. 
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Table 4. HELEEOS Input Settings 
Parameter Initial Settings Parameter Initial Settings 
Scaling Law Share Target Vertical Velocity 

m/s 
0 

Aero Optic Model Conformal Aperture Target Acceleration 
Heading 

N/A 

Aerosol Type Advanced Navy Aerosol Target Vertical 
Acceleration 

N/A 

Turbulence Profiler HV 5/7 Target Horizontal 
Acceleration 

N/A 

Atmosphere Type Ocean Summer:  Lat 38, 
Lon -74 

Engagement Dwell Time N/A 

Turbulence Multiplier 1 (default) Number of Steps in N/A 
Wind Model Expert  Susceptible Target Width N/A 
Wind Percentile 50% (average) Susceptible Target Length N/A 
Wind Direction 90 (east) Target Damage Threshold N/A 
Platform Altitude m 3000, 6500, 10000  Laser Wavelength µm 1.07  
Platform Velocity Heading 0 (north) Relative Obscuration .1 (Default) 
Platform Initial Distance from 
platform 

-- Beam Quality 1.3 

Platform Horizontal Velocity m/s 200, 250, 300  Wavefront Error 0  
Platform Acceleration Heading -- Total System RMS Jitter 0 
Platform Initial Relative Azimuth 
to Next Object 

315 (NW) Laser Type Continuous Wave 

Target Altitude m 500, 1000, 1500  Laser Propagation Model Top Hat 
Target Velocity Heading 270 (west) Adaptive Optics Med (No AO, Average 

Tracking System) 
Target distance from last object m 25,000  Exit Aperture Diameter m .3  
Target Horizontal Velocity m/s 200  Magazine Depth N/A 
 

EADSIM Overview 

The primary EADSIM mission used in this study will be regarding attacks from 

the air.  The employment of HELLADS to quell threats from the air, i.e. missiles and 

rockets, will be assessed by running operationally realistic potential scenarios.  Air to 

ground attacks, in particular cruise missiles, will be the primary focus of this study.  

These are the threats that brought HEL into conception.  Lasers travel at the speed of 

light and are capable of destroying enemy rockets before they even are out of their boost 

phase.  For example if a SCUD missile is launched and a missile, with an average speed 

of mach 5, is fired to intercept the SCUD, it will take approximately 3 minutes for the 
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missile to reach a distance of 200 miles.  Considering ballistics missiles are most 

vulnerable in their boost phase, and given a SCUD’s boost phase is 60 seconds, the 

missile will not arrive in time to ensure a high probability of kill (Zimet, 2002).  

Assuming it is in a position where it can engage, a HEL weapon, on the other hand, can 

deliver energy to the SCUD instantaneously, arriving during a ballistic missile’s boost 

phase, hence greatly increasing the probability of kill. 

 

Factor Levels 

 Simulation model output from inputs which do not represent HELLADS 

CONOPS, or are not practical, and would be invalid, thus to properly assess HELLADS 

capabilities great care must be taken in using appropriate inputs.  The methodology used 

in this study uses a baseline scenario, in which inputs are set at basic levels to verify 

model output aptness.  Once this is accomplished, factor levels are changed to explore 

HELLADS operational envelope.  These scenarios offer a glimpse at how different 

factors impact HELLADS overall effectiveness in different situations.  Factor levels are 

chosen to represent realistic scenarios for this type of engagement and the rationalization 

in making these choices follow.   

 

Weapon Platform Factors 

 Fighters can effectively operate at a wide range of altitudes however, for this 

particular study, considering the intended targets’ typical altitude, flight levels range from 

3000, 6500, and 10000 meters.  Higher altitudes, although they increase slant ranges, 
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offer more acute angles, which result in higher peak irradiance values and also allow the 

HELLADS weapon a larger area of coverage.  Platform velocity ranges from 200, 250, 

and 300 m/s.  The target velocity settings remain unchanged at 200 m/s throughout this 

study.  The question for this scenario becomes:  Do higher platform altitudes, which 

result in slightly higher irradiance values but have relatively smaller CFLOS 

probabilities, give the HELLADS any advantage in this particular scenario?  This 

question is answered in the next chapter.     

The scenario setup resembles a situation in which cruise missiles are detected off 

the coast and a fighter is scrambled to intercept them before they reach the coastline.  The 

scenario occurs when the first cruise missile is approximately 322 km off the coast line, 

with the fighter flying directly at the salvo.  The engagement scenario begins when the 

fighter is approximately 90 km directly in front of the first cruise missile, in between the 

salvo and it’s intended target.  This scenario allows the fighter to begin lazing on the 

incoming cruise missiles while flying head on with them.  When the fighter surpasses the 

salvo it turns 180 degrees and follows the cruise missiles, at which time the cruise 

missiles turn in an attempt to evade the chasing fighter.  The fighter reacts to the evasion 

maneuver by mimicking the evasion pattern of the cruise missiles and continues to 

engage them.   

The scenario time is 1000 seconds, or 16 minutes and 40 seconds, and the salvo of 

nine cruise missiles come in 3 groups of three, with each group starting at a different 

time, but at approximately in the same location, in the scenario.  The first, second, and 

third group of cruise missiles’ initiation times are 0, 100, and 180 seconds, respectively.         
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 Weapon configuration also plays a role, albeit indirect, in peak irradiance.  HEL 

delivered by a slewing turret, potentially, has the advantage of engaging targets in a 360◦ 

field of view.  This configuration’s shortcoming is the degrading effect airflow has on the 

laser beam when shooting with the wind, which arises anytime lazing occurs in a 

direction greater than ±90◦ from the trajectory of the platform (Bartell, 2007).   

For this study a pod, or conformal aperture, is used to resemble the proposed 

HELLADS configuration specified by Capt Timothy Booher, an A9 HELLADS analyst 

(Booher, 2007).  Although when lazing into the wind the laser beam degradation is 

negligible, employing a conformal aperture for laser beam delivery does limit HELLADS 

engagement, namely with regards to LOS.  For this reason the target must be in the 

conformal apertures LOS before it can be engaged.  However, the agility of the platform, 

a fighter, should compensate for this configuration’s LOS restrictions.   

Having a conformal aperture with no slewing capability is not a feasible 

configuration for this would put an enormous workload on the pilot.  To compensate for 

this limitation it was suggested, by A9 analysts, to incorporate a slewing capability into 

the HELLADS.  With advise from Rick Bartell and A9 analysts two different slewing 

settings were employed in this study; ±30◦ and ±60◦ (Bartell, 2007;  Booher and others, 

2007).   

 

Target Factors         

 Targets in this study consist of cruise missiles, which are typically low flying, and 

applicable altitudes and velocity were chosen to be 500, 1000, and 1500 meters and 200 
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m/s, respectively.  A salvo of nine cruise missiles incoming from the sea towards the 

coast, where the fighter scrambles to, represents the engagement scenarios.  The ability 

for a laser to burn through a material depends on laser characteristics, such as power 

density, peak power, irradiation wavelength, and pulse features, as well as on target 

characteristics, such as material density and heat capacity (McGinnis and others, 2000:3). 

According to some experts there are four main ways to kill a target via HEL 

(Souder and Langille, 2004:3).  These include causing the target to explode by sufficient 

heating, damaging the structure causing the target to deflect, abort, or disintegrate, 

damaging the guidance systems causing diversion, and damaging the sensor systems.  

Applicable settings for these factors are input into HELEEOS to calculate irradiance 

values which are then applied by EADSIM to calculate absorption, power reflection, heat 

conduction, and heat diffusion which ultimately decide when the target is defeated.  

EADSIM offers three different aimpoints for a cruise missile; nose, fuselage, and wing.  

In this study it is assumed that burn through at any of these aimpoints will cause failure 

and result in a kill. 

 

Vulnerability Table 

EADSIM uses a vulnerability table to look up applicable data in making a Pk 

assessment.  Peak irradiance values were generated in HELEEOS for specific platform 

and target altitudes, with specific slant ranges, and used to generate power propagation 

(pp) files in EADSIM.  EADSIM uses these pp-tables to look up applicable peak 

irradiance values which it then uses to look up the dwell time needed to kill the target, 
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given the value from the pp-table.  The vulnerability table, or ll-file, contains the same 

peak irradiance values from the appropriate pp-table, along with chosen Pk values, which 

are calculated by a random draw in EADSIM.  Using the peak irradiance values and the 

randomly drawn Pk, it looks up the applicable dwell times which populate appropriate 

vulnerability table, or ll-file.  The platform altitudes are 3000, 6500, and 10,000 meters.  

Using each of these platform altitudes, scenarios were set up to engage the targets at their 

applicable settings.  Examples of the power propagation and vulnerability tables in 

Appendices A and B.  Employing these HELEEOS inputs, results in the desired Peak 

Irradiance values, at resulting slant ranges, used by EADSIM to assess Pk.   

EADSIM has a built in cruise missile target designator and Pk values are  

calculated, by estimating the power necessary to defeat such a target.  A material damage 

study conducted at the Naval Postgraduate School (NPS) in 2000 investigated this very 

issue.   It used the following equation, along with physical characteristics of aluminum, to 

calculate laser intensity required to bring aluminum to vaporization temperature: 

 

0 ( [ ] [ ] )m o m v m vE d c T T H C T T Hρ= − + Δ + − + Δ                             (2) 

 

 Where E0 is the required flux density, ρ is the density, d is material thickness, C is 

specific heat, Tm is the melting temperature, To is the ambient temperature, Tv is the 

vaporization temperature, ∆Hm is the latent heat of melting, and ∆Hv is the latent heat of 

vaporization (McGinnis and others, 2000:5, 6).  Table 5 shows specific values for these 

variables used in the NPS study. 
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Table 5. Aluminum Properties 

ρ (kg/m3) d (cm) C (J/kg-K) Tm (K) To (K) Tv (K) ∆Hm (J/kg) ∆Hv (J/kg) 

2,700 3 896 855 300 2,570 400,000 10,800,000

 

Using 3 cm for d, and an ambient temperature of 25ºC, equation (2) yields a flux density 

of 113,234 J/cm2 and is accurate if the material being targeted absorbs all the energy 

deposited by a laser, however, this is an unreasonable assumption.  Different materials 

have different absorption rates.  The NPS study used a 50% absorption rate for aluminum 

resulting in a flux density of 226,468 J/cm2 needed to vaporize the target.  To mirror units 

used in EADSIM calculations, this flux density is converted to 226, 468 W·sec/cm2.  This 

is an approximation of the amount of energy, or irradiance that is expected to defeat a 

cruise missile.  Required dwell time can then be simply calculated by the following 

equation. 

       0
d

ET
Irradiance

=             (3) 

Units cancel out leaving dwell time, Td, required to destroy the target in terms of seconds.  

In this manner it is possible to estimate how long it will take, given certain inputs, to 

destroy a cruise missile in EADSIM.     

 For each target EADSIM makes a random draw, from a uniform distribution, to 

establish the amount of energy required to defeat it.  The average, or minimum, energy 

required to defeat a specific target would be considered the 50th percentile and would 

correspond to a .5 being drawn in EADSIM.  The methodology used in this study equates 

any draw less than or equal to .5 to the average irradiance, approximated from equation 2, 
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needed to defeat a cruise missile; recall this values was estimated to be 226, 468 

W·sec/cm2.  Table 6 shows energy required for percentiles above 50, which correspond to 

random draws in EADSIM above .5. 

Table 6. Energy Required for specific random draws 

EADSIM Random Draw (d) Energy Required Percentile Energy Required W/cm2 (E0) 
0 < d ≤ .5 50th 226, 468 
.5 < d ≤ .6 60th 249,115 
.6 < d ≤ .7 70th 271,762 
.7 < d ≤ .8 80th 294,408 
.8 < d ≤ .9 90th 317,055 
.9 < d ≤ 1 100th 339,702 

   

 Random draws in increments of ten represent 10% more energy to defeat the 

target.  Therefore energy required for the 60th, 70th, 80th, 90th, and 100th percentiles are 

calculated by multiplying the minimum energy required at 0th to 50th percentiles, 226, 

468 W/cm2, by 1.1, 1.2, 1.3, 1.4, and 1.5, respectively.  Once the energy requirement has 

been established equation (3) will determine the dwell time requirement by using the E0 

from Table 6 and the irradiance found in the propagation tables, provided by HELEEOS, 

for the specific engagement parameters.  This methodology is used in populating the 

vulnerability tables, or ll-files in EADSIM.   

 

EADSIM Scenario Setup 

Taking into consideration the Homeland Defense nature of HELLADS CONOPS, 

scenarios for this study are located on coastal areas.  A fighter is scrambled to intercept 

and destroy an incoming salvo of cruise missiles.  The cruise missiles’ target is an airbase 

located near the coastline and once the fighter intercepts the cruise missiles’ path, and 
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begins engagement, the cruise missiles start evasion tactics which the fighter reacts to 

with its own offensive maneuvers.  

 EADSIM scenarios are built in a hierarchical process with each level building on 

lower levels.  The elements level is the lowest level and consists of airframes, sensors, 

rulesets, communication devices, jammers, weapons, navigations, protocols, radar cross 

sections, infra-red signatures, probability of kill (Pk), formations, fly out tables, 

maneuvers, and electromagnetic pulses (EADSIM User’s Manual, 2006: 5-13, 5-14).  

Combinations of these individual components makeup the systems, which are the next 

level up in the hierarchical process.  Systems are then deployed to form the next level, 

platforms, which are subsequently organized to form laydowns.  These laydowns are 

interconnected with networks and combinations of all these lower levels can be built to 

form scenarios.  This hierarchical construction process is summarized in Figure 11 

(EADSIM User’s Manual, 2006: 5-2, 5-3). 
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Figure 11. EADSIM Data Organization 

 
The four main elements used in this study are airframe, sensor, weapon, and 

ruleset.  A fighter aircraft is chosen as the airframe and given applicable settings for 

HELLAD type engagements versus cruise missiles.  Sensors are set up to be able to 

perform the functions required by a HEL weapon.  Here also, laser is the obvious weapon 

choice and ruleset features are discussed below. 

A combination of defined elements makes up a system.  A system can be one of 

three types, ground, airframe, or satellite.  A system ruleset determines how the chosen 

system type will behave (EADSIM User’s Manual, 2006:5-26, 5-27).  Ruleset 

architecture consists of three main areas: the Battle Management/C3 (BM/C3) phases, 

Message Processing, and Track Processing.  The first two areas are highly interdependent 
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as BM/C3 decisions will be based on received messages (EADSIM Methodology 

Manual, 2006:4-24).   

Tracks can be initiated, maintained, and updated via local and remote sensors 

(EADSIM Methodology Manual, 2006:4.6-1).  The fighter in this study, for instance, 

relies solely on it’s onboard tracking sensor.  It is imperative for a HEL weapon to have a 

tracking system that is capable of performing at a level which allows the HEL weapon to 

operate as it is intended.  A HEL weapon should be able to track and laze, 

simultaneously.  Without an appropriate tracking system the advantages a HEL weapon 

possesses are negated (Bartell, 2007).         

 Both local and remote track data is processed the same with the local track thread 

being totally devoted to processing incoming track data in the form of locally generated 

track measurements.  Figure 12 summarizes the track thread processing methodology 

(EADSIM Methodology Manual, 2006: 4.6-7, 4.6-8). 
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Figure 12. EADSIM Track Processing Flow Diagram 

 

 Tracked targets are added to a target list where they are prioritized on a user 

defined basis.  Engagement prioritization can be assessed using the following options:  

shortest time to kill, longest time to kill, highest altitude, lowest altitude, highest 

elevation angle, lowest elevation angle, shortest time to burnout, track maturity, and 

shortest time from launch (EADSIM Methodology Manual, 2006:4.7.33-12).  Once the 

engagement decision is reached the laser phase, consisting of slewing, warming, settling, 

and lazing, begins.   
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Table 7 shows the settings for the EADSIM scenarios with three factors at three 

levels and one factor at two levels.  For a full factorial, in which all combinations of 

every setting is represented, this experiment result in 33 · 21, or 54 runs. 

 

Table 7. EADSIM Scenario Factor Settings 

Factor Low Med High 
Weapon Altitude (m) 3000 6500 10000 

Weapon Velocity (m/s) 200 250 300 
Target Altitude (m) 500 1000 1500 

Target Velocity (m/s) 200 200 200 
HELLADS LOS (deg) ±30 N/A ±60 

 

Summary 

 This section explained the methodologies of this study as they pertain to models 

used, HELEEOS and EADSIM, and also discusses applicable parameter settings and the 

reasoning behind their designations.  Subject matter expert input was used in all settings 

possible, such as weapon configuration, assumptions, limitations, and HELLADS 

CONPOS.  The methodologies in this section are used in building scenarios that, as 

closely as possible, represent realistic operational HELLADS engagements.  Output from 

these scenarios was analyzed to determine the significance of factors, such as weapon and 

target altitude and speed, and HELLADS LOS, and how they effect MOEs, primarily 

HELLADS Pk.  The next chapter, Results and Analysis, delves into the analysis of the 

outputs provided by the methodologies discussed in this chapter.  



 

IV. Analysis and Results 

Overview 

This chapter discusses the results determined by analyzing the data provided in 

Appendix C.  The primary analysis tools used in this study are ANOVA and linear 

regression.  ANOVA is applied in determining how each factor, and factor interactions, 

effects the MOEs.  Once this determination is made, significant factors can be labeled 

and used, via linear regression, to build a prediction equation which provides a 

reasonable method for predicting MOEs given specific factor settings. 

Data Table Generation 

As explained in the previous chapter there is a total of 54 runs in this study.  For 

half of these however, the pp-tables are identical since one of the settings, HELLADS 

LOS, set in EADSIM, does not affect peak irradiance values.  HELEEOS is used to 

generate peak irradiance values for 27 runs, each consisting of 50 slant ranges, resulting 

in 1350 total irradiance values, which are subsequently used to populate the appropriate 

pp-tables used in EADSIM.  Also discussed in chapter 3 was the methodology used to 

calculate the dwell times for peak irradiance at each slant range for the 0th, 50th, 60th, 70th, 

80th, 90th, and 100th Pk percentiles.  This results in a total of 7·50·27, or 9450, dwell times 

used to populate the vulnerability tables, or ll-files, in EADSIM.  An example of the 

tables used for power propagation, pp-tables, and vulnerability, ll tables, are shown in the 

figure below. 

 

 

 56



 

 
Figure 13. EADSIM Propagation and Vulnerability Tables 

 

HELEEOS Results 

 Plotting peak irradiance values generated by HELEEOS allows investigation of 

their validity.  In other words do HELEEOS peak irradiance values reflect the expected 

effects of different factor settings?  We would expect the peak irradiance values to be 

lower for more oblique angles and larger slant ranges.  The fifty slant ranges used range 

from 500 to 25,000 meters in increments of 500 meters.  Note that certain slant ranges are 

not applicable at specific platform and target altitude settings.  For instance, platform and 

target altitude settings of 3,000 and 500; 3,000 and 1,000; and 3,000 and 1,500 meters; 

will never have a slant range of less than 2,500; 2,000; and 1,500 meters respectively.  

Table 8 shows the slant ranges that are not applicable for certain platform and target 

altitudes.   
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Table 8. Non-applicable slant ranges 

Platform Altitude (m) Target Altitude (m) Non-Applicable Slant Ranges (m)
3000 500 < 2500 

 1000 < 2000 
 1500 < 1500 

6500 500 < 6000 
 1000 < 5500 
 1500 < 5000 

10000 500 < 9500 
 1000 < 9000 
 1500 < 8500 

 

From figure 14 it is evident that peak irradiance values calculated by HELLEOS 

do follow our expectation and decrease as slant range increases.  Although there is a 

small increase in average peak irradiance at closer slant ranges for slower velocities, it 

has a negligible effect.  
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 Figure 14. Average Peak Irradiance over slant range 

 

The next validity check on HELEEOS output is to verify the expected effect 

angle, referred to earlier as obliqueness, has on peak irradiance.  In this assumption, as 
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the angle between the laser and the target decreases so will the peak irradiance.  In other 

words the more similar the altitudes of the platform and target are, the lower the peak 

irradiance should be.  Figure 15 below shows the average peak irradiance values, over all 

applicable slant ranges, across all altitudes and velocities used in this study. 
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Figure 15. Average Peak Irradiance over all common slant ranges 
 

It is apparent that the average peak irradiance increases as the platform altitude 

increases.  This verifies that HELEEOS is reflecting the relationship between peak 

irradiance and angle of incidence correctly; as platform and target altitude differences 

grow, so does peak irradiance.   

Figures 14 and 15, above, verify HELEEOS accuracy in calculating peak 

irradiance as it relates to specific parameters however, as seen in Table 8, higher altitudes 

negate more of the close slant range peak irradiance values.  Figure 15 shows the average 
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peak irradiance values applicable over all the platform altitudes for each target altitude, 

but the results for this table are calculated using only slant ranges applicable to all the 

platform altitudes at each target altitude.  For example, for the case where target altitude 

is 500 meters the peak irradiance for each platform setting is averaged over slant ranges 

of 9500 to 25000 meters.  In other words the average peak irradiance for higher altitudes 

is higher however; it does not take into account the peak irradiance values occurring in 

ranges that are applicable at lower platform altitudes.  This is a vital insight in 

understanding EADSIM output.   

By looking at Figure 15 it may be presumed that higher altitudes, resulting in 

higher average peak irradiance values, equates to a higher Pk however, this is not the 

case.  Since peak irradiance values are more influenced by slant range, the increase of 

peak irradiance due to higher altitudes is completely negated by the larger slant ranges 

they apply to.  A platform and target altitude of 10000 and 500 meters, respectively, will 

never have a slant range of less than 9500 however, if the platform and target altitudes 

are 3000 and 500 meters, respectively, the minimum slant range is 2500 meters.  Peak 

irradiance values at smaller slant ranges, applicable only in lower platform altitudes, give 

the platform a much better advantage than peak irradiance increases due to higher 

platform altitudes, see Figure 14.  It is also important to keep in mind CFLOS probability, 

not accounted for in this study, decreases as the platform and target altitude differences 

increase. 
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Figure 16. Average Peak Irradiance over low altitude slant ranges 
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It is very clear from this figure that the lower slant ranges, which only apply for 

lower platform altitudes, result in relatively large peak irradiance values.  It is at slant 

ranges, not attainable at higher platform altitudes, where HELLADS should be most 

effective. 

 

EADSIM Output 

 For this study each of the 54 design points was run 5 times using the monte carlo 

feature in EADSIM.  This feature allows the user to run a determined number of runs for 

a specific scenario.  Each run originates from a different set of random numbers 

generated using the built in linear congruential algorithm.   
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 The factorial design for this study consists of three factors at 3 levels and one 

factor at two levels with 5 replications at each combination of each factor level 

combination, resulting in 33·21·5, or 270, total observations.  In order to model this design 

correctly each factor and every interaction must be incorporated in the regression model.  

There are , or 4, main effects, , or 6, two way interactions, , or 4, three way 

interactions, and , or 1, four way interaction to be considered, resulting in the model: 

4
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⎜ ⎟
⎝ ⎠

4
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⎛ ⎞
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⎝ ⎠
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⎛ ⎞
⎜ ⎟
⎝ ⎠

4
4
⎛ ⎞
⎜ ⎟
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h i j k hi hj hk ij ik jk hhijkl

hijklhik hjk ijk hijk

y μ
ijβ γ ϕ τβ τγ τϕ βγ βϕ γϕ τβγτ

τβϕ τγϕ βγϕ τβγϕ ε

= + + + + + + + + + + +

+ + + + +
           (4) 

where h = 1, 2, 3 

           i = 1, 2, 3 

           j = 1, 2, 3 

           k = 1, 2 

           l = 1, 2, 3, 4, 5  

Hereμ  represents the overall mean of the MOE, τ  represents the effect due to platform 

altitude, β  represents the effect due to target altitude, γ  represents the effect due to 

platform velocity, ϕ  represents the effect due to HELLADS LOS, and ε  represents the 

effect due to error.  Note, this model is general in that it does not show possible quadratic 

effects. 

 To determine what factors significantly affect the MOE an ANOVA was 

conducted investigating all main effects and interactions.  Using kills as the MOE the 
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following ANOVA table was generated with A, B, C, and D representing platform 

altitude, target altitude, platform velocity, and HELLADS LOS respectively. 

Table 9. ANOVA for all effects with kill count as MOE 

Source  SS DF MS F P-value 
Prob > F 

Significance 

Block 12.57 4 3.14    
Model 1240.30 53 23.40 26.30 < 0.0001 significant 
    A 850.50 2 425.25 477.93 < 0.0001 significant 
    B 116.72 2 58.36 65.59 < 0.0001 significant 
    C 112.03 2 56.01 62.95 < 0.0001 significant 
    D 34.13 1 34.13 38.36 < 0.0001 significant 
    AB 13.48 4 3.37 3.79 0.0054 significant 
    AC 21.04 4 5.26 5.91 0.0002 significant 
    AD 1.36 2 0.68 0.76 0.4681  
    BC 24.21 4 6.05 6.80 < 0.0001 significant 
    BD 0.69 2 0.34 0.39 0.6795  
    CD 6.76 2 3.38 3.80 0.0240 significant 
    ABC 26.72 8 3.34 3.75 0.0004 significant 
    ABD 8.76 4 2.19 2.46 0.0465 significant 
    ACD 13.56 4 3.39 3.81 0.0052 significant 
    BCD 4.56 4 1.14 1.28 0.2789  
    ABCD 5.80 8 0.72 0.81 0.5902  
Residual 188.63 212 0.89    
Cor Total 1441.50 269     

 

The p-value, for each factor, is the probability of getting an F Value equal to the size 

shown in the table if the term does not have an effect on the response variable.  Terms 

with p-value of less than .05 are considered influential on the response, or significant.   

P-values greater than 0.10 are generally regarded as not significant.  This ANOVA table 

shows A, B, C, D, AB, AC, BC, CD, ABC, ABD, and ACD to be significant to the MOE, 

kills.  Since AD, BD, BCD, and ABCD were not found to have a significant effect on 

kills they can be rolled up into the error term.  Doing so and reanalyzing the model results 
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in the same terms A, B, C, D, AB, AC, BC, CD, ABC, ABD, and ACD being significant 

factors.  All factors in this model are significant and the adjusted R squared value of 

.8350 means that this model is explaining 83.5% of the variation about the mean.  The 

closer the adusted R squared is to 1 the more variation the model is explaining, and thus 

better fitting the data.  Although this model fits the data nicely, it consists of eleven 

factors, which is considered a lot.  In regression, parsimony is sought to attain a model 

which adequately fits the data, but with a minimum number of factors.  In other words 

any data set could be fitted perfectly using all main and interaction effects however, this 

would not be considered a good model.  The goal in linear regression is to adequately fit 

the data with a minimum nuber of terms, or effects.  Basically, the analyst should be 

willing trade a higher adjusted R squared value, for less terms, in determing the final 

model.   

  Using this mind set, the significant two and three way interactions could be 

eliminated to investigate how this effects model efficiency, or more specifically the 

adjusted R squared and lack of fit.  First the three way interactions are dropped from the 

model, resulting in an adjusted R squared of .8099 which is still considered adequate.  

Next only the main effects are considered resulting in an adjusted R squared of .7732, 

which, again, is considered adequate. 

  Since a model using only main effects can adequately explain our data the next 

step in analyzing the data is to ensure certain assumption hold.  These being the 

assumptions of normality, independence (uncorrelated data), and the error term, ε, having 

zero mean and constant variance.  All of these assumptions can be checked by analyzing 
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the residuals, or the differences in observed values and fitted values.  The residual 

equation is presented below. 

                                                   
i

ˆi iy yε = −                                                     (5) 

where               i = 1, 2, 3, …, 270 

Where yi  represents the actual observed values at the ith observation and ŷi represents the 

fitted value, given by the current model, for the ith observation.   

The normality assumption is checked by examining the Normal Probability Plot 

(NPP) of the residuals.  The NPP plots the residuals in rank order against the cumulative 

probability given by  

         1( ) /
2i iP = − n   (6) 

where               i = 1, 2, 3, …, 270 

If the NPP resembles a straight line, the normality assumption is satisfied.  Checking for 

independence, or the absence of correlation, requires a check for time dependency in the 

residuals.  For this assumption to hold there should be no obvious patterns related to time.  

In other words we should see no trends in the residuals over time, this plot should be 

structureless.  Checking for error terms with mean zero and constant variance requires 

examining the plot of residuals versus fitted, or predicted, values.  This plot should be 

stuctureless as well, with no noticeable patterns.   

All these assumptions hold for the main effects model however, the software 

package used for this analysis, Design Expert, suggests using a Box-Cox, or power, 

transform to correct a slightly noticeable nonconstant variance term for the error.  The 
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purpose of the Box-Cox transform is to stabilize the variance of the response variable.  

When residual versus fitted values plot shows some recongnizable pattern it indicates the 

residuals are actually somehow related to, or dependent upon, the predicted response 

variable.  The Box-Cox transformation modifies the response variable, by applying a 

power to it, which stabilizes the relationship between the residuals and the fitted 

response, equating to a more constant variance for the residuals.  Design Expert suggests 

using y1.29, in place of y, for the response variable.  Power law transformations can only 

be performed on responses that are greater than zero, so in this case, since there do exist 

responses of 0, a constant of 1 is added to all responses to satisfy this limitation.                            

Rerunning the aforementioned analysis using the transformed response data results in 

adequate adjusted R squared, justifying the use of using the main effects model for the 

response variable kills.  The following figure shows the model assumptions are satisfied. 
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Figure 17. Model Adequacy Checks 

 

At a glance the Residual vs Predicted plot in the upper right of Figure 17 causes 

some initial suspicion.  The plot shows an obvious lines with negative slopes throughout.  

Patterns that would raise concern would be disproportionate amounts of points either 

above or below zero for any specific predicted values.  For instance an outward opening 

funnel pattern would signify the variance is increasing as our response variable increases.  

This plot shows the residuals are scattered both above and below zero for all predicted 

kills, thus there is no reason to suggest a nonconstant variance. 
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This analysis on kills as the response results in a prediction equation:  

(y + 1)1.29 = 11.46 + 4.67A + .071A2 – 1.94B + 1.01B2 – 1.85C + .42C2 + .79D        (7) 

Where y is calculated as the expected number of kills given the levels of the factors.  The 

levels of factors used in this design are shown in the next table.  Recall A, B, C, and D 

represent platform altitude, target altitude, platform velocity, and HELLADS LOS, 

respectively. 

Table 10. Factor Level Regression Settings 

Factor A A2 B B2 C C2 D 

Level 1 1 0 1 0 1 0 -1 

Level 2 0 1 0 1 0 1 1 

Level 3 -1 -1 -1 -1 -1 -1 N/A 

 

To solve equation (7) to predict how many kills are expected when the platform is flying 

at 3000 meters (A: level 1) and a speed of 300 m/s (C: level 3), the target is flying at 

1000 m (B: level 2), and the HELLADS LOS is ±30 degrees (D: level 1) we put the  

linear and quadratic values given in the table above for the applicable levels given.  

Solving for y results in an expected number of kills of 8.3.  The actual average number of 

kills given for these factor levels is 8.  Using this methodology the following figure was 

created to show actual versus predicted values for the average number of kills for each of 

the 54 design points.  
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Figure 18. Predicted versus Actual Average Kills 

 
 The error bars show, in general, the predicted values are rarely outside of ±1 of 

the actual average kills.  It should also be noted that a basic correlation between factors 

and kills can be summarized, by equation (7) and the given the factor levels in table 10 

above.  Platform altitude has a negative correlation with mean kills, the higher the 

altitude the lower the kills, target altitude has a postive correlation with mean kills, the 

higher the altitude the higher the kills, platform velocity has a positive correlation with 

mean kills, the higher the velocity the higher the kills, and LOS has also has a positive 

correlation with mean kills, the higher the LOS the higher the kills.  From the equation 

we can also distinguish the most to least influential factors by the coefficients they 

possess, the higher the coefficient, the more influence that factor has on mean kills.  The 

most to least influential factors are platform altitude, target altitude, platfrom velocity, 

and LOS, respectively.  Also note that target altitude and platfrom velocity are very 

similar in terms of how much they influence mean kills.    
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 The next step in the analysis is to get an overall sense of where HELLADS is 

most effective.  The figure below show the total kills for each factor level. 

 

Figure 19. Total Kills over all Factor Settings 

           500         1000       1500       500        1000        1500       500        1000       1500                                            500         1000       1500       500        1000        1500       500        1000       1500 
Target Altitude m and platform velocity m/s 

                          200                                      250                                       300                                                                              200                                      250                                      300  

 These results matchup with similar analysis conducted on HELEEOS peak 

irradiance values performed earlier.  Lower platform altitude, or more generally the 

closer the altitude of the platform and target, as long as it is enough to give the platform a 

practicl shot, the higher the kill count.  The only caveat on this general observation is 

when the platform velocity is greater than that of the target it appears to lower the kill 

count if their respective altitude difference is under 2000 meters.  This is apparent by the 

drop in kills, when the platform is flying 50 m/s faster than the target, when the altitude 

difference is 1500 meters, for both LOS settings.  A positive correlation can also be seen 

between platform velocity and kill count, except for the case where the platform and 

target are at 10000 and 1500 meters, respectively,.  This trend was observed in the 

EADSIM runs.  A higher platform to target velocity ratio gives the platform an advantage 

because it can more easily get the target in range once it’s detected.  Unfortuately, 

velocity change in EADSIM was a limitation in this study.  In a realistic engagement the 
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fighter could vary its speed to maximize time on target and consequently probability of 

kill. 

 Analysis of number of kills also showed, regardless of target altitude and 

HELLADS LOS, that lower platform altitudes and higher platform velocities increased 

the number of kills.  Since these two factors are directly under a pilot’s control they can 

be adjusted to create an engagement, where target altitude and LOS are known variables, 

which should maximize HELLADS effectiveness.   

 Next data analysis using average laze time as an MOE is discussed.  Performing a 

similar ANOVA to average laze time resulted in platform altitude, target altitude, and 

platform velocity being significant.  All laze times were utilized for this analysis, even if 

the laze did not result in a kill.  HELLADS LOS was not found to be a significant factor, 

thus, it was not considered as a factor in this ANOVA.  The two levels of LOS were 

absorbed into the design giving 10 replications, instead of 5 for each LOS, at each design 

point.  This is often referred to as collapsing the design in DOE.  It allows the analyst to 

ignore insignificant factors resulting in more reps for the reduced number of design 

points.  In this case, for instance, since LOS was not found to be significant it was left 

out, decreasing the number of design points by a factor of 2, from 54 to 27.  The  27 

design points are all the possible combinations of those factors found to be significant, 

which here is 33.  Now the 270 runs are a result of a full 33 factorial design with 10 runs 

at each of the 27 design points.   

 The three two way interactions, as well as the three way interactions, were also 

found to be significant, but with much less influence.  A simple comparison was 

 71



 

accomplished by analyzing the values over each main effect factor to see how they 

effected average laze time.  From Figure 20 below it is apparent that the only main effect 

practically influential on average laze time was platform altitude.    

 
Figure 20. Average Laze Time versus Factors 

  Also indicative from examining this figure, and the previous figure concerning 

factor influence on kills, is the negative correlation between kills and average laze time.  

In other words this figure shows the average laze time increases as platform altitude 

increases, whereas in the kill analysis the opposite was evident, the response went down 

as platform atltitude went up.  This suggest that higher average laze times do not equate 

to higher kill counts.  This trend can be seen in the following figures. 
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 Average Laze Time vs Kills
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Figure 21. Average Laze Time versus Kills 

1-2    2-3    3-4     4-5   5-6    6-7     7-8     8-9   9-10  10-11  11-12  13-14 
Average Laze Time (101  sec) 

Note the graphs in the figure above are essentially showing the same trend in the 

relationship between kills and average laze time.  The graph on the left shows the 

relationship over all 270 runs and the graph on the right shows it for the average kills in 

each of the 10 second bins specified.   

 The tendency for higher laze times equating to less kills was also witnessed in the 

EADSIM playback files.  The higher the platform altitude setting the more laze time was 

required to defeat a target.  As explained in the HELEEOS output analysis, increased 

altitude differences between the platform and target consequently increase the slant 

range, thus leading to a lower peak irradiance value, and ultimately a reduced Pk for 

these particular scenarios.  Higher average laze times found in these scenarios can be 

attributed to the corresponding lower kill counts.  Lower average laze times actually 

indicate the HELLADS platform is firing, and destroying the target more quickly, which 

again happens when the platform is relatively low, where the slant ranges are smaller, and 

peak irradiance values are higher. 
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 Similar analysis was conducted using minimum and maximum laze times as 

MOEs.  As expected, results were very much the same as using the average laze time as 

the MOE.  Both max and min laze times were influenced most by platform altitude and, 

like the analysis on average laze time, increased as platform altitude did.      



 

V. Conclusions and Recommendations 
 

Chapter Overview 

This chapter discusses the divergence from original or suggested research plan 

paths.  Reasons for these departures will be provided, along with tying in how this study 

can be used as a baseline for future research.  Conclusions, derived in Chapter 4, will be 

highlighted and recommendations will be formulated.  Finally, future research 

suggestions will be offered. 

 

Development of Research Plan 

This research used simulations to investigate how different factors would affect a 

HELLADS system.  Varying realistic and appropriate input parameters, resulted in varied 

model outputs, thus the analyst could form a relatively accurate estimation of how these 

factors may affect real world engagements in an operational HELLADS platform.   

Originally, a lot of factors were under consideration, including jitter, aperture 

size, seasonal atmospheric conditions, dynamic engagement profiles, and target priority, 

none of which were actually tested.  Some factors, such as seasonally atmospheric 

conditions, were not considered simply because they would have had no impact 

whatsoever on the HELLADS system.  Others, such as jitter, aperture size, and target 

priority, were not included because their effect was already known, either from basic 

physics, previous research, or subject matter expertise.  Finally, others, such as dynamic 

engagement profiles, or one in which the platform and target flight patterns would react 
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to one another, were not examined due to time constraints and EADSIM knowledge.  

Time did not allow learning how to set up dynamic flight profiles in EADSIM.   

 

Conclusions of Research 

The factors actually tested, platform altitude, target altitude, platform velocity, 

and HELLADS LOS was accomplished and could be used in forming a baseline for 

future research regarding this type of laser platform.  All the factors mentioned, but that 

were not included in this study, could be investigated to see how they affect HELLADS 

performance.  Again the results from this study could be used as a starting point for the 

investigation of these factors.      

This study revealed the most influential factors on HELLADS performance and 

also identified settings that increased HELLADS Pk.  In most to least influential were 

platform altitude, target altitude, platform velocity, and LOS.  Optimization showed that, 

regardless of target altitude and LOS, lower platform altitudes and higher platform 

velocities maximized HELLADS effectiveness.  Keep in mind a lower platform altitude 

is relative to the target altitude.  Thus, to maximize effectiveness a lower platform 

altitude would be one that is relatively similar to the target altitude, perhaps 1500 to 2500 

feet above the target altitude.  This ensures the HELLADS can be in a position to engage 

targets in a scenario which will have smaller slant ranges.     

 The results from the models revealed the most effective means to maximize 

HELLADS capability.  Given target altitudes, velocities, and the LOS of the HELLADS 

a pilot could potentially increase the chances of defeating a target by flying at specific 
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altitudes and velocities.  Namely these would be 50 to 100 m/s faster than the target and, 

at the most, 3000 feet above the target.  This assumption is based on a HELLADS with 

the same factor settings used in this study however, as mentioned earlier, most of these 

settings, if changed, would have a significant effect on HELLADS performance.  For 

example, increasing the aperture size of the laser would equate to higher peak irradiance 

values, and thus increase HELLADS effectiveness.  The conclusions of significance in 

terms of factor correlation and influence would most likely not change if factors such as 

these were varied, but would mirror what would be expected.  However, varying such 

factors would, most likely, change the operational envelope of HELLADS.  For instance 

if a higher laser power setting were used, i.e. 200 kW, the platform altitude and velocity, 

relative to the target, would probably still have the same effects on HELLADS 

performance only in this case they may even have a bigger impact.  It may also increase 

the significance of factors which weren’t found to be very significant in this study.  For 

instance, more power would increase the lethal slant range and mask the degrading effect 

platform altitude had on HELLADS effectiveness, witnessed in this research.  Given 

increased power would increase HELLADS lethal range, this degradation would still be 

apparent, only at larger slant ranges.      

 

Significance of Research 

This research gives a reasonable estimation of where HELLADS will be effective 

given certain parameters.  The two main advantages that HELLADS brings to the 

warfighter are increased maneuverability and continuous laze time.  Employing this type 
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of technology on a fighter aircraft increases the engagement envelope and does not 

require constant loitering.  A HELLADS equipped fighter could scramble to a location 

and use its superior speed and agility to maximize HELLADS lethality.  One of these 

advantages, continuous laze time, could actually be tested in future research more 

completely.  This study revealed that longer average laze times was synonymous with 

less kills however, if certain input factors were varied, such as power, longer laze times 

may prove to have an enormous benefit.  

  This study explored initial capabilities of a developmental high energy laser 

weapon system using proposed input factors and realistic engagement scenarios.  It 

presents a view of what HELLADS is initially capable of and a baseline for follow on 

research.  
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Appendix A:  Power Propagation Tables 
 

The following 3 tables show peak irradiance calculated by HELEEOS for derived slant 
ranges applicable to platform and target parameters.  These tables directly contributed to 
EADSIM Power Propagation tables.  Velocity refers to platforms velocity (target velocity 
is always 200 m/s), TA refers to target altitude, and PA refers to platform altitude. 
 

Velocity 
200 

TA 500   TA 1000   TA 1500   

Slant 
Range 

PA 3k PA 6.5k PA 10k PA 3k PA 6.5k PA 10k PA 3k PA 6.5k PA 10k 

25000 231.239 437.6557 527.8839 234.8757 458.5544 543.4019 246.6658 476.0056 555.9006 
24500 245.6311 461.3529 554.6302 249.8283 483.144 570.7371 262.3162 501.2859 583.6405 
24000 261.0772 486.7382 583.2159 266.0607 509.7427 599.938 279.2223 528.3352 613.2646 
23500 277.8269 514.0832 613.8888 283.6571 538.0895 631.6792 297.6274 557.4557 645.0329 
23000 295.9672 543.4488 646.7543 302.7201 568.5071 665.2214 317.5635 588.6897 679.0436 
22500 315.7404 575.1759 682.1221 323.5362 601.3568 701.3024 339.3472 622.4159 715.6221 
22000 337.2128 609.3316 720.1158 346.14 636.689 740.0406 362.9971 658.7325 754.8833 
21500 360.7057 646.3584 761.1329 370.9169 674.9705 781.8441 388.9318 698.0216 797.2431 
21000 386.3166 686.3612 805.345 397.9331 716.2929 826.8792 417.196 740.4064 842.9602 
20500 414.3882 729.803 853.1858 427.5852 761.1392 875.5884 448.6264 786.391 892.3035 
20000 445.1474 776.965 904.9765 460.0953 809.7875 928.293 482.6093 836.2514 945.679 
19500 478.9326 828.2693 961.1527 495.811 862.667 985.4328 519.9258 890.4242 1003.529 
19000 516.1833 884.2726 1022.262 535.1994 920.3499 1047.562 561.0825 949.4964 1066.414 
18500 557.2139 945.3567 1088.756 578.5667 983.2126 1115.132 606.3627 1013.838 1134.785 
18000 602.6639 1012.325 1161.402 626.6191 1052.085 1188.92 656.5077 1084.302 1209.427 
17500 653.0137 1085.767 1240.845 679.8297 1127.549 1269.576 711.9896 1161.47 1290.992 
17000 709.0604 1166.435 1327.889 738.8174 1210.367 1357.906 773.4478 1246.106 1380.29 
16500 771.4581 1255.542 1423.691 805.4112 1301.787 1455.085 842.032 1339.493 1478.503 
16000 841.0721 1353.942 1529.217 878.777 1402.653 1562.08 918.4054 1442.471 1586.602 
15500 918.9615 1462.907 1645.783 960.7403 1514.256 1680.22 1003.669 1556.345 1705.921 
15000 1006.606 1584.2 1775.11 1052.864 1638.394 1811.242 1099.485 1682.947 1838.207 
14500 1105.345 1719.409 1918.899 1156.457 1776.813 1956.858 1207.193 1823.885 1985.178 
14000 1216.907 1871.549 2079.286 1273.293 1931.316 2119.218 1328.79 1981.254 2148.994 
13500 1343.463 2041.315 2258.876 1405.603 2104.626 2300.949 1466.21 2157.677 2332.293 
13000 1487.831 2232.894 2460.928 1556.305 2300.06 2505.333 1622.632 2356.51 2538.371 
12500 1652.916 2449.679 2689.002 1728.293 2521.031 2735.953 1800.999 2581.177 2770.824 
12000 1842.555 2696.115 2947.634 1925.499 2772.027 2997.373 2005.283 2836.203 3034.235 
11500 2061.456 2977.655 3242.383 2152.766 3058.551 3295.187 2240.398 3127.126 3334.221 
11000 2317.533 3301.052 3580.13 2416.123 3387.411 3636.319 2512.547 3460.803 3677.73 
10500 2614.491 3675.017 3969.632 2723.904 3767.395 4029.564 2829.826 3846.081 4073.59 
10000 2963.33 4109.852 4421.521 3084.421 4208.871 4485.563 3201.544 4293.368 4532.472 
9500 3376.035 4619.04 4950.216 3510.299 4725.416 5018.166 3640.141 4816.331 5068.229 
9000 3868.049 5219.948 4950.216 4017.391 5334.499 5646.012 4161.637 5432.521 5698.701 
8500 4459.832 5935.238 4950.216 4626.435 6058.948 5646.012 4787.009 6164.835 6448.166 
8000 5178.62 6794.891 4950.216 5365.13 6928.925 5646.012 5544.114 7043.548 6448.166 
7500 6061.302 7839.31 4950.216 6270.915 7985.026 5646.012 6473.937 8109.365 6448.166 
7000 7158.626 9123.827 4950.216 7395.347 9282.876 5646.012 7621.538 9418.003 6448.166 
6500 8542.038 10726 4950.216 8810.675 10900.28 5646.012 9062.997 11047.31 6448.166 
6000 10315.92 12756.44 4950.216 10620.9 12948.82 5646.012 10902.89 13108.66 6448.166 
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5500 12629.94 12756.44 4950.216 12979.57 15597.05 5646.012 13296.66 15765.92 6448.166 
5000 15717.45 12756.44 4950.216 16120.69 15597.05 5646.012 16477.1 19272.78 6448.166 
4500 19946.34 12756.44 4950.216 20424.31 15597.05 5646.012 20816.2 19272.78 6448.166 
4000 25928.47 12756.44 4950.216 26486.78 15597.05 5646.012 26931.17 19272.78 6448.166 
3500 34730.45 12756.44 4950.216 35388.13 15597.05 5646.012 35895.91 19272.78 6448.166 
3000 48335.51 12756.44 4950.216 49115.87 15597.05 5646.012 49702.46 19272.78 6448.166 
2500 70797.31 12756.44 4950.216 71662.93 15597.05 5646.012 72382.5 19272.78 6448.166 
2000 70797.31 12756.44 4950.216 112162.8 15597.05 5646.012 113012.6 19272.78 6448.166 
1500 70797.31 12756.44 4950.216 112162.8 15597.05 5646.012 195151.7 19272.78 6448.166 
1000 70797.31 12756.44 4950.216 112162.8 15597.05 5646.012 195151.7 19272.78 6448.166 
500 70797.31 12756.44 4950.216 112162.8 15597.05 5646.012 195151.7 19272.78 6448.166 

 
Velocity 

250 TA 500   TA 1000   TA 1500   
Slant 

Range PA 3k PA 6.5k PA 10k PA 3k PA 6.5k PA 10k PA 3k PA 6.5k PA 10k 
25000 239.865 455.1792 540.9717 249.6868 477.5844 556.3569 264.0813 496.7287 569.0972
24500 254.8182 479.5392 568.1476 265.3594 502.8033 584.0498 280.4588 522.7344 597.2707
24000 270.8696 505.6209 597.1826 282.2735 529.7902 613.6285 298.1303 550.5513 627.3567
23500 288.2623 533.6765 628.309 300.6371 558.8128 645.332 317.3308 580.4599 659.5981
23000 307.1035 563.7898 661.6501 320.4991 589.9486 679.2813 338.1044 612.5283 694.1137
22500 327.6224 596.2762 697.4958 342.1356 623.5334 715.774 360.7502 647.1072 731.2062
22000 349.9065 631.2312 735.9913 365.6036 659.6512 754.9529 385.31 684.2693 771.0153
21500 374.2582 669.069 777.5118 391.2622 698.7378 797.2009 412.1829 724.4731 813.9316
21000 400.7956 709.9218 822.2514 419.1959 740.9176 842.7089 441.567 767.8261 860.1415
20500 429.8543 754.2334 870.6296 449.7882 786.6551 891.9035 473.629 814.8086 910.0776
20000 461.6739 802.2969 922.9768 483.2646 836.2428 945.1153 508.7181 866.1616 964.0717
19500 496.5934 854.5396 979.7322 519.9753 890.1171 1002.788 547.2089 921.4203 1022.569
19000 535.7138 911.501 1041.43 560.3922 948.8323 1065.462 589.6001 981.6012 1086.114
18500 578.0057 973.5946 1108.544 604.8395 1012.799 1133.611 636.2049 1047.109 1155.181
18000 624.7674 1041.596 1181.82 654.0015 1082.82 1207.991 687.7575 1118.768 1230.531
17500 676.4896 1116.105 1261.918 708.3671 1159.499 1289.263 744.7597 1197.175 1312.83
17000 733.7906 1197.892 1349.651 768.5658 1243.608 1378.244 807.8721 1283.112 1402.897
16500 797.631 1288.13 1446.145 835.9281 1336.357 1476.072 878.2171 1377.811 1501.88
16000 868.7454 1387.914 1552.393 910.6786 1438.63 1583.743 956.4885 1482.155 1610.775
15500 948.1928 1498.136 1669.715 994.1411 1551.723 1702.583 1043.822 1597.455 1731.84
15000 1037.417 1620.702 1799.806 1087.875 1677.397 1834.299 1141.836 1725.499 1864.956
14500 1137.77 1757.224 1944.38 1193.237 1817.271 1980.609 1251.887 1867.911 2012.766
14000 1250.996 1909.781 2105.583 1312.051 1973.445 2143.665 1375.793 2026.807 2177.433
13500 1379.268 2080.935 2286.484 1446.586 2148.507 2326.086 1515.843 2204.799 2361.59
13000 1525.367 2273.884 2489.42 1599.725 2345.698 2531.092 1676.342 2405.394 2568.476
12500 1692.249 2492.072 2718.404 1774.451 2568.484 2762.286 1857.488 2631.636 2801.712
12000 1883.755 2739.933 2977.965 1974.696 2822.564 3024.208 2064.641 2888.231 3065.859
11500 2105.237 3022.893 3273.651 2205.306 3110.97 3322.418 2302.686 3180.695 3366.501
11000 2361.509 3347.703 3612.336 2472.315 3441.726 3663.802 2577.806 3515.883 3710.551
10500 2660.653 3722.913 4002.681 2783.438 3823.462 4057.037 2897.949 3902.491 4106.704
10000 3011.874 4158.828 4455.323 3150.439 4266.556 4512.744 3272.473 4350.941 4565.589
9500 3427.174 4668.821 4983.651 3580.32 4784.482 5044.692 3714.31 4874.804 5099.066
9000 3922.114 5270.103 4983.651 4091.364 5394.564 5671.503 4238.233 5491.496 5728.185
8500 4517.112 5985.119 4983.651 4704.142 6119.412 5671.503 4865.452 6223.722 6475.177
8000 5239.237 6843.535 4983.651 5446.032 6988.854 5671.503 5623.65 7101.469 6475.177
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7500 6125.087 7885.284 4983.651 6354.041 8042.954 5671.503 6550.113 8164.995 6475.177
7000 7224.839 9165.003 4983.651 7478.946 9336.477 5671.503 7696.18 9469.312 6475.177
6500 8608.85 10759.2 4983.651 8893.409 10945.84 5671.503 9133.991 11091.13 6475.177
6000 10378.19 12781.15 4983.651 10696.62 12976.87 5671.503 10966.91 13139.9 6475.177
5500 12681.75 12781.15 4983.651 13039.91 15599.01 5671.503 13346.37 15776.1 6475.177
5000 15756.55 12781.15 4983.651 16151.39 15599.01 5671.503 16501.64 19247.5 6475.177
4500 19938.26 12781.15 4983.651 20389.74 15599.01 5671.503 20792.7 19247.5 6475.177
4000 25822.81 12781.15 4983.651 26344.52 15599.01 5671.503 26810.88 19247.5 6475.177
3500 34406.03 12781.15 4983.651 35036.69 15599.01 5671.503 35592.59 19247.5 6475.177
3000 47567.61 12781.15 4983.651 48328.73 15599.01 5671.503 48979 19247.5 6475.177
2500 68977.43 12781.15 4983.651 69909.26 15599.01 5671.503 70670.57 19247.5 6475.177
2000 68977.43 12781.15 4983.651 107819.2 15599.01 5671.503 108644.2 19247.5 6475.177
1500 68977.43 12781.15 4983.651 107819.2 15599.01 5671.503 182157.1 19247.5 6475.177
1000 68977.43 12781.15 4983.651 107819.2 15599.01 5671.503 182157.1 19247.5 6475.177

500 68977.43 12781.15 4983.651 107819.2 15599.01 5671.503 182157.1 19247.5 6475.177
 

Velocity 
300 TA 500   TA 1000   TA 1500   

Slant 
Range PA 3k PA 6.5k PA 10k PA 3k PA 6.5k PA 10k PA 3k PA 6.5k PA 10k 

25000 246.7657 466.1855 548.2455 258.9867 491.4457 565.9037 276.5428 511.5605 578.6569
24500 262.0401 490.9752 575.7121 275.1197 517.1357 593.8903 293.5573 538.094 607.2261
24000 278.4154 517.5199 605.0596 292.5361 544.6158 623.7758 311.9031 566.3518 637.5525
23500 296.126 546.0576 636.5091 311.4378 574.137 655.7871 332.2139 596.7002 670.0283
23000 315.2938 576.6908 670.1973 331.8905 605.7946 690.0581 353.7068 629.2278 704.7862
22500 336.1383 609.7174 706.4001 354.154 639.9028 726.8712 377.089 664.2645 742.113
22000 358.7649 645.2539 745.2798 378.3048 676.5675 766.3856 402.4193 701.9087 782.1667
21500 383.4672 683.6945 787.1941 404.6855 716.205 808.9692 430.0776 742.5948 825.3205
21000 410.3797 725.1915 832.351 433.3978 758.9578 854.8285 460.1396 786.4553 871.7783
20500 439.8296 770.1756 881.1577 464.8173 805.2767 904.3791 493.0143 833.9567 921.9609
20000 472.0683 818.9472 933.9492 499.1799 855.4581 957.9587 528.9368 885.397 976.2045
19500 507.4412 871.9362 991.1652 536.8367 909.9415 1016.013 568.2832 941.2233 1034.957
19000 546.6897 929.666 1053.328 578.2391 969.2647 1079.07 611.5286 1001.987 1098.751
18500 589.5754 992.5716 1120.926 624.4404 1033.86 1147.62 659.0065 1068.122 1168.077
18000 636.9993 1061.411 1194.688 674.6464 1104.505 1222.402 711.425 1140.431 1243.681
17500 689.4792 1137.533 1275.281 730.0892 1182.027 1304.086 769.2916 1219.53 1326.233
17000 747.6655 1220.22 1363.524 791.4213 1266.807 1393.497 833.2821 1306.22 1416.564
16500 812.4942 1311.355 1460.512 859.6386 1360.197 1491.74 904.4661 1401.685 1515.787
16000 884.7288 1411.861 1567.259 935.4925 1463.118 1599.835 983.5804 1506.844 1624.923
15500 965.4434 1523.015 1685.082 1020.082 1576.868 1719.109 1072.137 1623.003 1745.305
15000 1056.064 1646.515 1815.65 1114.928 1703.176 1851.716 1170.994 1751.92 1878.626
14500 1157.957 1783.98 1960.68 1221.391 1843.672 1998.487 1281.855 1895.224 2026.618
14000 1272.892 1937.494 2122.314 1341.286 2000.461 2162.006 1406.589 2055.04 2191.444
13500 1403.045 2109.614 2303.149 1476.88 2176.134 2344.888 1547.527 2233.975 2375.728
13000 1552.934 2303.479 2506.34 1630.983 2373.867 2550.312 1707.566 2435.238 2582.655
12500 1721.792 2522.558 2735.486 1806.606 2597.154 2781.899 1889.81 2662.336 2815.855
12000 1915.318 2771.267 2995.083 2008.401 2850.447 3044.172 2098.289 2919.751 3079.863
11500 2138.203 3055.008 3290.63 2239.79 3139.19 3342.663 2337.992 3212.965 3380.226
11000 2396.35 3380.51 3628.952 2507.435 3470.168 3684.232 2615.099 3550.149 3723.826
10500 2697.215 3756.188 4018.57 2819.036 3851.861 4077.439 2937.332 3937.133 4119.251
10000 3049.914 4192.324 4470.031 3183.952 4294.613 4532.842 3314.013 4385.667 4577.097
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9500 3466.238 4702.177 4997.468 3614.391 4811.76 5064.043 3757.328 4909.194 5110.988
9000 3961.654 5302.789 4997.468 4126.093 5420.417 5689.355 4286.225 5524.944 5738.459
8500 4556.253 6016.336 4997.468 4739.613 6142.89 5689.355 4914.609 6255.333 6483.489
8000 5276.674 6872.075 4997.468 5482.048 7008.573 5689.355 5673.148 7129.919 6483.489
7500 6160.836 7909.285 4997.468 6389.718 8056.893 5689.355 6598.745 8188.295 6483.489
7000 7254.382 9181.548 4997.468 7512.482 9341.674 5689.355 7741.889 9484.435 6483.489
6500 8628.002 10763.65 4997.468 8920.053 10937.92 5689.355 9174.787 11093.38 6483.489
6000 10380.59 12765.84 4997.468 10718.97 12952.71 5689.355 10994.09 13121.84 6483.489
5500 12657.16 12765.84 4997.468 13041.41 15547.57 5689.355 13348.02 15722.06 6483.489
5000 15676.77 12765.84 4997.468 16115.26 15547.57 5689.355 16458.26 19138.73 6483.489
4500 19781.76 12765.84 4997.468 20285.76 15547.57 5689.355 20670.82 19138.73 6483.489
4000 25529.06 12765.84 4997.468 26113.58 15547.57 5689.355 26548.25 19138.73 6483.489
3500 33874.14 12765.84 4997.468 34558.89 15547.57 5689.355 35054.46 19138.73 6483.489
3000 46535.34 12765.84 4997.468 47340.9 15547.57 5689.355 47912.3 19138.73 6483.489
2500 66858.48 12765.84 4997.468 67764.51 15547.57 5689.355 68434.49 19138.73 6483.489
2000 66858.48 12765.84 4997.468 102675.4 15547.57 5689.355 103483.8 19138.73 6483.489
1500 66858.48 12765.84 4997.468 102675.4 15547.57 5689.355 168429.6 19138.73 6483.489
1000 66858.48 12765.84 4997.468 102675.4 15547.57 5689.355 168429.6 19138.73 6483.489

500 66858.48 12765.84 4997.468 102675.4 15547.57 5689.355 168429.6 19138.73 6483.489
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Appendix B:  Vulnerability Tables 
 

The following table is one example of the 27 vulnerability tables used in EADSIM and 
shows the calculated dwell times needed to destroy a target given the Pk derived from the 
EADSIM random draw.  Platform altitude is 3000 m, platform velocity is 200 m/s, and 
target altitude is 500 m.   
 

 Pk Required Dwell Times 
Intensity 0 50 60 70 80 90 100 
231.239 979.0736 979.0736 1076.981 1174.888 1272.796 1370.703 1468.61

245.6311 921.7074 921.7074 1013.878 1106.049 1198.22 1290.39 1382.561
261.0772 867.1765 867.1765 953.8941 1040.612 1127.329 1214.047 1300.765
277.8269 814.8958 814.8958 896.3854 977.875 1059.365 1140.854 1222.344
295.9672 764.9497 764.9497 841.4447 917.9397 994.4347 1070.93 1147.425
315.7404 717.0449 717.0449 788.7494 860.4539 932.1583 1003.863 1075.567
337.2128 671.3861 671.3861 738.5248 805.6634 872.802 939.9406 1007.079
360.7057 627.6586 627.6586 690.4244 753.1903 815.9561 878.722 941.4878
386.3166 586.0479 586.0479 644.6526 703.2574 761.8622 820.467 879.0718
414.3882 546.3476 546.3476 600.9823 655.6171 710.2519 764.8866 819.5214
445.1474 508.5956 508.5956 559.4551 610.3147 661.1742 712.0338 762.8934
478.9326 472.7178 472.7178 519.9896 567.2614 614.5332 661.805 709.0768
516.1833 438.6039 438.6039 482.4642 526.3246 570.185 614.0454 657.9058
557.2139 406.3071 406.3071 446.9379 487.5686 528.1993 568.83 609.4607
602.6639 375.6654 375.6654 413.232 450.7985 488.3651 525.9316 563.4982
653.0137 346.7002 346.7002 381.3702 416.0403 450.7103 485.3803 520.0503
709.0604 319.2958 319.2958 351.2254 383.155 415.0845 447.0141 478.9437
771.4581 293.4702 293.4702 322.8173 352.1643 381.5113 410.8583 440.2054
841.0721 269.1802 269.1802 296.0983 323.0163 349.9343 376.8523 403.7704
918.9615 246.365 246.365 271.0015 295.6381 320.2746 344.9111 369.5476
1006.606 224.9142 224.9142 247.4056 269.897 292.3884 314.8798 337.3712
1105.345 204.8229 204.8229 225.3052 245.7875 266.2698 286.7521 307.2344
1216.907 186.0455 186.0455 204.65 223.2545 241.8591 260.4636 279.0682
1343.463 168.5197 168.5197 185.3717 202.2236 219.0756 235.9276 252.7796
1487.831 152.1678 152.1678 167.3846 182.6013 197.8181 213.0349 228.2517
1652.916 136.9701 136.9701 150.6671 164.3641 178.0611 191.7581 205.4551
1842.555 122.8729 122.8729 135.1602 147.4474 159.7347 172.022 184.3093
2061.456 109.8253 109.8253 120.8078 131.7904 142.7729 153.7554 164.7379
2317.533 97.69011 97.69011 107.4591 117.2281 126.9971 136.7661 146.5352
2614.491 86.59429 86.59429 95.25372 103.9132 112.5726 121.232 129.8914

2963.33 76.40054 76.40054 84.04059 91.68064 99.3207 106.9608 114.6008
3376.035 67.06092 67.06092 73.76702 80.47311 87.1792 93.88529 100.5914
3868.049 58.5308 58.5308 64.38388 70.23696 76.09004 81.94312 87.7962
4459.832 50.76425 50.76425 55.84067 60.9171 65.99352 71.06995 76.14637

5178.62 43.71821 43.71821 48.09004 52.46186 56.83368 61.2055 65.57732
6061.302 37.35171 37.35171 41.08688 44.82205 48.55722 52.29239 56.02756
7158.626 31.62618 31.62618 34.7888 37.95142 41.11403 44.27665 47.43927
8542.038 26.50421 26.50421 29.15464 31.80506 34.45548 37.1059 39.75632
10315.92 21.94666 21.94666 24.14132 26.33599 28.53065 30.72532 32.91999
12629.94 17.92566 17.92566 19.71823 21.51079 23.30336 25.09593 26.88849
15717.45 14.40437 14.40437 15.84481 17.28524 18.72568 20.16612 21.60655
19946.34 11.35045 11.35045 12.4855 13.62054 14.75559 15.89063 17.02568
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25928.47 8.731714 8.731714 9.604885 10.47806 11.35123 12.2244 13.09757
34730.45 6.518775 6.518775 7.170652 7.82253 8.474407 9.126285 9.778162
48335.51 4.683927 4.683927 5.152319 5.620712 6.089105 6.557497 7.02589
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
 

 Pk Required Dwell Times 
Peak 

Irradiance 0 50 60 70 80 90 100 
231.239 979.0736 979.0736 1076.981 1174.888 1272.796 1370.703 1468.61

245.6311 921.7074 921.7074 1013.878 1106.049 1198.22 1290.39 1382.561
261.0772 867.1765 867.1765 953.8941 1040.612 1127.329 1214.047 1300.765
277.8269 814.8958 814.8958 896.3854 977.875 1059.365 1140.854 1222.344
295.9672 764.9497 764.9497 841.4447 917.9397 994.4347 1070.93 1147.425
315.7404 717.0449 717.0449 788.7494 860.4539 932.1583 1003.863 1075.567
337.2128 671.3861 671.3861 738.5248 805.6634 872.802 939.9406 1007.079
360.7057 627.6586 627.6586 690.4244 753.1903 815.9561 878.722 941.4878
386.3166 586.0479 586.0479 644.6526 703.2574 761.8622 820.467 879.0718
414.3882 546.3476 546.3476 600.9823 655.6171 710.2519 764.8866 819.5214
445.1474 508.5956 508.5956 559.4551 610.3147 661.1742 712.0338 762.8934
478.9326 472.7178 472.7178 519.9896 567.2614 614.5332 661.805 709.0768
516.1833 438.6039 438.6039 482.4642 526.3246 570.185 614.0454 657.9058
557.2139 406.3071 406.3071 446.9379 487.5686 528.1993 568.83 609.4607
602.6639 375.6654 375.6654 413.232 450.7985 488.3651 525.9316 563.4982
653.0137 346.7002 346.7002 381.3702 416.0403 450.7103 485.3803 520.0503
709.0604 319.2958 319.2958 351.2254 383.155 415.0845 447.0141 478.9437
771.4581 293.4702 293.4702 322.8173 352.1643 381.5113 410.8583 440.2054
841.0721 269.1802 269.1802 296.0983 323.0163 349.9343 376.8523 403.7704
918.9615 246.365 246.365 271.0015 295.6381 320.2746 344.9111 369.5476
1006.606 224.9142 224.9142 247.4056 269.897 292.3884 314.8798 337.3712
1105.345 204.8229 204.8229 225.3052 245.7875 266.2698 286.7521 307.2344
1216.907 186.0455 186.0455 204.65 223.2545 241.8591 260.4636 279.0682
1343.463 168.5197 168.5197 185.3717 202.2236 219.0756 235.9276 252.7796
1487.831 152.1678 152.1678 167.3846 182.6013 197.8181 213.0349 228.2517
1652.916 136.9701 136.9701 150.6671 164.3641 178.0611 191.7581 205.4551
1842.555 122.8729 122.8729 135.1602 147.4474 159.7347 172.022 184.3093
2061.456 109.8253 109.8253 120.8078 131.7904 142.7729 153.7554 164.7379
2317.533 97.69011 97.69011 107.4591 117.2281 126.9971 136.7661 146.5352
2614.491 86.59429 86.59429 95.25372 103.9132 112.5726 121.232 129.8914

2963.33 76.40054 76.40054 84.04059 91.68064 99.3207 106.9608 114.6008
3376.035 67.06092 67.06092 73.76702 80.47311 87.1792 93.88529 100.5914
3868.049 58.5308 58.5308 64.38388 70.23696 76.09004 81.94312 87.7962
4459.832 50.76425 50.76425 55.84067 60.9171 65.99352 71.06995 76.14637

5178.62 43.71821 43.71821 48.09004 52.46186 56.83368 61.2055 65.57732
6061.302 37.35171 37.35171 41.08688 44.82205 48.55722 52.29239 56.02756
7158.626 31.62618 31.62618 34.7888 37.95142 41.11403 44.27665 47.43927
8542.038 26.50421 26.50421 29.15464 31.80506 34.45548 37.1059 39.75632
10315.92 21.94666 21.94666 24.14132 26.33599 28.53065 30.72532 32.91999
12629.94 17.92566 17.92566 19.71823 21.51079 23.30336 25.09593 26.88849
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15717.45 14.40437 14.40437 15.84481 17.28524 18.72568 20.16612 21.60655
19946.34 11.35045 11.35045 12.4855 13.62054 14.75559 15.89063 17.02568
25928.47 8.731714 8.731714 9.604885 10.47806 11.35123 12.2244 13.09757
34730.45 6.518775 6.518775 7.170652 7.82253 8.474407 9.126285 9.778162
48335.51 4.683927 4.683927 5.152319 5.620712 6.089105 6.557497 7.02589
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
70797.31 3.197862 3.197862 3.517648 3.837434 4.15722 4.477007 4.796793
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Appendix C:  EADSIM Output 
 
The following table shows EADSIM output where 
LOS:  HELLADS Line Of Sight 
PA:  Platform Altitude 
TA:  Target Altitude 
PV:  Platform Velocity 
 

LOS PA TA PV Average 
Kills 

Average Laze Time Average Max Laze 
Time 

Average  Min Laze 
Time 

30 3000 500 388 6 18.56833 56.07 5.268 
30 3000 500 485 6.8 12.95004 49.224 4.594 
30 3000 500 582 7.2 18.91017 45.296 4.494 
30 3000 1000 388 6.6 18.07167 54.998 4.396 
30 3000 1000 485 8.2 16.09717 52.548 3.304 
30 3000 1000 582 8 16.52332 46.624 4.078 
30 3000 1500 388 7.8 15.86707 53.796 3.908 
30 3000 1500 485 8 12.925 47.252 3.114 
30 3000 1500 582 7.2 14.88633 44.994 3.582 
30 6500 500 388 2.8 45.25533 66.418 31.246 
30 6500 500 485 4 39.32986 59.23 27.184 
30 6500 500 582 5.2 33.72314 57.512 14.528 
30 6500 1000 388 5.4 35.77412 64.816 20.052 
30 6500 1000 485 5.4 27.76235 53.2 16.928 
30 6500 1000 582 6.8 32.11824 56.884 15.744 
30 6500 1500 388 5.4 28.2962 65.5 14.59 
30 6500 1500 485 5.6 25.4534 52.39 14.662 
30 6500 1500 582 5.6 33.4127 69.318 12.702 
30 10000 500 388 1.6 87.99233 97.594 79.706 
30 10000 500 485 1 90.54233 100.008 81.606 
30 10000 500 582 3.8 57.2048 80.974 33.246 
30 10000 1000 388 2.6 72.30817 90.556 62.48 
30 10000 1000 485 3.6 67.73303 91.264 45.112 
30 10000 1000 582 3.4 95.07134 129.904 69.206 
30 10000 1500 388 2.2 74.38853 110.512 46.144 
30 10000 1500 485 4.8 56.36182 81.886 42.08 
30 10000 1500 582 3.8 67.3405 95.918 48.286 
60 3000 500 388 7 17.95029 55.686 4.438 
60 3000 500 485 7.4 15.24179 49.086 3.986 
60 3000 500 582 8.4 16.38722 44.974 4.174 
60 3000 1000 388 7.6 16.182 54.438 4.756 
60 3000 1000 485 8.2 21.66175 106.91 3.02 
60 3000 1000 582 9 12.15578 43.012 2.88 
60 3000 1500 388 8 15.607 54.704 3.934 
60 3000 1500 485 8 12.925 47.252 3.114 
60 3000 1500 582 8 18.045 51.87 2.75 
60 6500 500 388 2.6 50.68547 64.406 41.048 
60 6500 500 485 5.4 32.31953 56.34 19.758 
60 6500 500 582 6.4 32.6641 54.454 16.64 
60 6500 1000 388 4.6 36.33117 64.328 17.408 
60 6500 1000 485 6.4 30.28119 58.058 15.306 
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60 6500 1000 582 8.4 29.93614 66.062 14.936 
60 6500 1500 388 6.2 29.9573 57.262 14.21 
60 6500 1500 485 6.6 28.43343 62.008 12.394 
60 6500 1500 582 7.8 25.61127 51.118 12.654 
60 10000 500 388 0.8 91.626 91.626 91.626 
60 10000 500 485 2.8 70.16317 94.702 51.798 
60 10000 500 582 3 59.55483 75.558 48.552 
60 10000 1000 388 3.8 71.1046 105.19 46.726 
60 10000 1000 485 4.8 61.87659 93.02 40.33 
60 10000 1000 582 5 67.66345 118.628 43.754 
60 10000 1500 388 2.6 78.5954 102.676 59.068 
60 10000 1500 485 5.8 58.58071 98.44 29.188 
60 10000 1500 582 3.8 67.3405 95.918 48.286 
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