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Abstract

This work is a follow on effort of two previous Master’s theses. The first was

Modeling and Simulation of the Military Intelligence Process by Captain Carl Pawl-

ing in 2004. The other was A Knowledge Matrix Modeling of the Intelligence Cycle

by Captain Kevin Whaley in 2005. Both of these were done to facilitate the study

and analysis of the intelligence process for the National Security Space Organization

(NSSO). Here, modifications are made the Pawling model to include tasking multi-

ple intelligence sources for data collection to fulfill Requests for Information (RFIs)

and fusing the collected data into one new piece of intelligence. One fusion method

is the one suggested by Whaley, which simply takes the best intelligence collected,

while the other method captures the synergy of intelligence fusion. Both methods

are compared to each other and to the baseline model where no fusion takes place.
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SIMULATION OF NATIONAL INTELLIGENCE PROCESS WITH

FUSION

1. Introduction

1.1 Background

Information fusion is a relatively new field of study. Much research has been

done in the last few decades, and the methods and terminology are still developing.

The recent spike in interest in this field is mainly due to the amount of information

overflow experienced today. Technological developments such as new types of sensory

equipment and increased data storage capabilities along with increased processing

speed and accessability drive the need to fuse and exploit information for use in the

Global War on Terrorism.

Joint Publication 2.0 [5] defines fusion as “the process of collecting and exam-

ining information from all available sources and intelligence disciplines to derive as

complete an assessment as possible of detected activity.” Fusion theory uses tech-

niques and tools to take information from individual sources and fuse them together

to provide a more accurate and robust description of something. In doing so, we

exploit the synergy achieved by attaining more knowledge about the subject than

could be possible by using each source individually. To illustrate this, consider the

story of Operation Goldregen in World War II. The US Army received signals intel-

ligence (SIGINT) that the Luftwaffe was going to launch Operation Goldregen, but

they did not know what the operation entailed. Elsewhere at Army headquarters

was some human intelligence (HUMINT) from a prisoner of war who was a former

Luftwaffe clerk that described the details of the operation that included an attack

by large numbers of low-flying aircraft. If the information had been fused, the com-
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mander could have been warned ahead of time and perhaps employed some sort of

defense [15].

1.2 Research Objective

The US intelligence process was first modelled by Pawling [13] in his AFIT

Master’s thesis in 2004. Using Arena, he created a model that simulated the flow of

a Request for Information (RFI) through the entire intelligence process. This model

only included sourcing each RFI to a single intelligence discipline and determining if

the information collected from that single source met the requirement or not, thus it

lacked fusion of information from multiple sources. He suggests expanding his model

to incorporate multiple collection efforts from different intelligence sources and a

representation of the fusion of that data.

In his 2005 thesis, Whaley [16] created a simulation model of the intelligence

process that incorporated a basic method of representing fusion of intelligence from

multiple sources. The technique uses a knowledge matrix that quantifies the levels of

information about different aspects of a given subject. It then takes these matrices

from different sources and fuses them in a way that creates a resulting matrix com-

prised of the maximum value of each element of the input matrices. This method

does not capture the synergy that comes from a fusion process. He suggests building

on his research to try and model this fusion synergy and measure its effects on the

intelligence process.

It has been suggested that the model created by Whaley contains too much

detail in his representation, making it too complex to evaluate the overall process.

So this work will build on Pawling’s model by adding collection of intelligence from

multiple sources and comparing different fusion methodologies to the baseline level

of no fusion. The first methodology will be the one used by Whaley where given

knowledge levels A and B, the fused knowledge level C = max(A,B). The other
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methodology will be the one first introduced by Keithly [8] where C = 1 − (1 −
A)(1−B).

A third methodology will be discussed although not implemented in this study.

Neural Networks provide a very flexible and adaptive approach to fusing the quanti-

fied information in the knowledge matrices. A Neural Network requires initial data

sets of inputs with their associated outputs in order to train the network to recog-

nize patterns and establish a weighting scheme for the nodes in the network. Actual

intelligence data is classified and difficult to obtain, so only notional data is used in

this study. Because the input data is notional, the output data would have to be

deterministically computed by the user. In this sense, the relation of the outputs to

the inputs would already be known; therefore, it would be pointless to use a Neural

Network to discover the relationship.

1.3 Overview

Chapter 2 contains a brief summary of the intelligence process and the different

intelligence disciplines. It will reference relevant literature on how to quantify data as

knowledge, different methods of information fusion, and previous work done to model

the intelligence process and information fusion. Chapter 3 explains the methodology

used to develop the develop the model in Arena. Chapter 4 presents the simulation

output with analysis and results of the research. Chapter 5 presents lessons learned

with conclusions and recommendations for future research.
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2. Literature Review

2.1 Introduction

This section begins with a description of the national intelligence process. It

will detail the steps involved in the intelligence cycle with emphasis on the Depart-

ment of Defense’s (DOD) view of information fusion. Further discussion of types of

fusion, fusion techniques, and fusion theory will follow. This will include examples of

work that has been done in the field of information fusion to include neural network

fusion strategies. The knowledge matrix approach to quantifying intelligence will be

a key part of this. Finally a discussion of why a simulation approach to evaluating

fusion is needed.

2.2 The Intelligence Cycle

Intelligence operations are essential throughout the range of military opera-

tions. The purpose of intelligence is to provide commanders and decision makers

with the information they need to accomplish missions and ensure national security.

The DOD developed a joint doctrine to dictate terminology and outline the process

of gathering and producing intelligence that is accurate, timely, and relevant. The

process is a cycle of six categories that are interrelated and overlapping. The cycle,

seen in Figure 2.1, consists of Planning and Direction, Collection, Processing and Ex-

ploitation, Analysis and Production, Dissemination and Integration, and Evaluation

and Feedback [5].

The Planning and Direction phase is where the cycle starts. Intelligence needs

are identified by planners based on possible threats or from essential information

commanders must know to accomplish missions. These needs are transferred into

Priority Information Requests (PIRs). PIRs in turn provide a basis for Intelligence

Operations and drive the Intelligence Process. Intelligence agencies review PIRs
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Figure 2.1 The Intelligence Cycle [5]

and source them out to different collection agencies. An information request can

be tasked to more than one collection agency either because the request cannot be

fulfilled by a single agency or to generate redundancy for improved accuracy.

The next step is the collection of the actual data needed to satisfy the requests

for information generated in the Planning and Direction phase. Collection agencies

task their assets to collect data at specified times and/or places about specific targets.

The sources of the data are categorized into seven different Intelligence Disciplines

which can be further broken down into subcategories as shown in Figure 2.2. The

result of the collection process is simply raw data. It is generally not useful at the

time of collection either because it is not intelligible yet or because it is only one

part of an overall big picture that is trying to be generated.

The raw data is transformed into usable information in the Processing and

Exploitation phase. Sometimes this phase runs concurrently with the collection

phase as is the case with some SIGINT systems where the data is automatically
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Figure 2.2 Intelligence Disciplines [5]

processed upon collection. HUMINT teams can take considerably more time to

process data acquired from a debriefing or an interrogation. Once the data has been

transformed into information, it can be made immediately available to a commander

or further developed in the next phase by an intelligence analyst.

In the Analysis and Production phase, the information generated in the Pro-

cessing and Exploitation phase is transformed into its final product, actual intelli-

gence. Here the information from one or more sources is integrated, evaluated and

interpreted to generate a final product that will satisfy one or more of the initial PIRs.

The integration is now more formally known as fusion. Fusion exploits the synergy of

combining intelligence from several sources. It is used to maximize the strengths and

minimize the weaknesses of the different intelligence disciplines. A fused intelligence

product from multiple sources provides the highest level of understanding about the

target. Fusion is also used as a safeguard against enemy deception efforts by cross-

2-3



checking information from single-source intelligence reports. A further discussion of

fusion will come later.

The Dissemination and Integration phase consists of delivering the intelligence

report to the person or agency requesting the information and then the information

being integrated into the decision making process. The means of delivery is classified

as either push or pull. Pull is more common because it can save time and resources as

the end user can access the data as they need it. The push method usually occurs in

the event that the intelligence is urgent as in the case with a warning to the theater

that could affect operations.

The Evaluation and Feedback phase occurs concurrently with all the other

phases. It is a process of Total Quality Management and seeks to ensure that the

entire process is operating at a satisfactory level. Qualitative measures are taken

throughout the process to evaluate such attributes as timeliness, accuracy, usability,

completeness, relevance, objectiveness, and availability. If any of these attributes fall

below an acceptable level, it is an indication of some problem with the intelligence

cycle.

2.3 Fusion

The theory behind information fusion is that when information from multi-

ple sources is fused, the result is more robust knowledge about the subject of the

information such that the decision made from that knowledge is in some way qual-

itatively or quantitatively better than it would have been if the information from

any of the individual sources was used [4]. So the reason for fusion is to gain a more

accurate description of the battlespace or whatever target information is being ac-

quired on. Gathering intelligence from multiple sources and/or disciplines and fusing

them together generates a more complete picture than any one source alone. Fused

information is at least as good as information from any one source [12].
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Fusion can be classified in several different ways [12]. It can be classified based

on the relationship among the sources, the abstraction level, or the input/output of

the fusion process. When classified on relationships, fusion is referred to as com-

plementary if independent sources provide different pieces of information that are

not redundant. Then the pieces can be put together to form a broader picture.

Redundant fusion occurs when the independent sources provide the same informa-

tion. Cooperative fusion happens when the information is fused to provide a better

description of the scene than could be provided by the sources individually. This

classification is an example of the synergy that can result from information fusion.

Different abstraction level classifications include Low-Level, Medium-Level,

High-Level, and Multilevel fusion. Low-Level fusion is also called signal or measure-

ment level fusion and is simply combining the information inputs into one output

that is more accurate than any of the individual inputs. Here the information is

just in the form of raw data. Medium-Level fusion is also called feature or attribute

level fusion. This is when information inputs are used to try to predict or estimate

some new piece of information not readily observable using the available sources.

High-Level fusion is also known as symbol or decision level fusion. It combines sym-

bolic representations or decisions to make a more confident or higher level decision.

Finally Multilevel fusion is just what it sounds like - when more than one of the

aforementioned abstraction levels are applied in the fusion process.

The third way of classifying fusion is similar to the abstraction level method in

that it considers the abstraction level of inputs and outputs to the process. It begins

with the lowest level, Data In-Data Out, and progresses through increasing levels

of input/output including Data In-Feature Out, Feature In-Feature Out, Feature

In-Decision Out, and finally Decision In-Decision Out. These input/output classi-

fications correspond to the abstraction level classifications but attempt to reduce

ambiguity when the inputs are of a different abstraction level than the outputs.
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The Joint Directors of Laboratories (JDL) further classified fusion by defining

fusion levels. This was initially done in 1985, and the JDL Data Fusion Model has

been modified since then [8]. It begins with Level 0 fusion in which an observation

or piece of collected intelligence is organized and normalized. In this study, Level 0

fusion is associated with representing intelligence data with a knowledge matrix that

will be discussed in detail later. Level 1 fusion deals with refining and correlating the

data which leads to information about position, track, and identity of objects. Level

2 fusion is referred to as aggregation. Relationships among objects are examined

to determine which objects are associated with one another. Level 3 fusion is the

interpretation of the objects capability and prediction of the objects intent. Level 4

fusion is like a feedback loop that assesses the fusion process controls the continuous

improvement and refinement of entire process.

The fusion modelled in this thesis will be both complementary and redundant

in terms of sources. It will be medium level in terms of abstraction. Inputs and

outputs will be knowledge matrices, so it will be Data In-Data Out. Under the JDL

Data Fusion Model, it will deal with levels 0 through 3.

2.4 Fusion Methods

There have been dozens of methods and techniques developed to perform in-

formation fusion. This section will highlight some of the more popular methods.

One popular technique is the use of a Kalman filter [12]. It is used to predict a

discrete-time state vector at time k+1 based on information collected at time k.

The prediction equation used with the Kalman filter approach is

Xk+1 = FXk + Jwk (2.1)

where

Xk = the state matrix,
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F = system or transition matrix,

J = input matrix, and

wk = disturbance input vector or noise [10].

The type of fusion that usually takes place here is low level fusion of redundant data.

Using this method requires a priori knowledge of the state space being observed. The

model also assumes that the system noise can be modelled as zero mean Gaussian

noise. The state estimate provided by a Kalman filter is statistically optimal in that

it minimizes the mean squared error between the estimated and actual observed

velocity and position states of the target.

Another popular method is the use of Bayesian inference. It is based on Bayes’

rule for calculating the probability of Y given that event X has occurred:

Pr(Y |X) =
Pr(X|Y )Pr(Y )

Pr(X)
(2.2)

Bayesian inference is commonly used in decision level fusion. It relies on basic prob-

ability theory to determine the belief that an event will occur in terms of conditional

probability. As with the Kalman filter, some a priori knowledge is required. In 2.2,

the probabilities Pr(X) and Pr(X|Y ) must be known or estimated. If they are

estimated, then the output of this type of fusion will only be as good as the estimate

of the inputs in terms of quality. This is an example of the garbage-in, garbage-out

principle, and it can sometimes be accounted for by applying the Bayesian filter iter-

atively throughout a series of time periods where the resulting probabilities from the

previous time period are used as the input probabilities for the current time period

[10].

Dempster-Shafer Evidential Theory is another probability based method that

is a generalized form of Bayesian inference. It is more flexible than Bayesian inference

for two reasons: 1) the prior probabilities do not have to be known. They are only

assigned when the information is available, and 2) different types of information can
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be included with different levels of detail. It works by starting with the assumption

that all possible states are known and are enumerated. For example a target is of

a certain type. Next information is collected on that target from multiple sources

or disciplines and each individual source of information is used to compute a mass

distribution function m(H) or more simply put, a belief that a certain hypothesis is

true. These mass functions are then combined using Dempster’s rules of combination

and a decision is made to choose the hypothesis with the highest amount of support-

ing evidence [10]. Another benefit of Dempster-Shafer fusion over Bayesian fusion

is that the former includes a method for representing uncertainty when the proba-

bilities cannot be determined. While this does make the Dempster-Shafer method

more flexible, there is a tradeoff for accuracy.

A fusion technique that has applications across most of the other methods is

fuzzy logic [10]. Despite the name, fuzzy logic is a well-defined and applicable method

with precise outputs. Fuzzy logic is best applied when the boundaries between the

sets of values are are not definitely defined or fuzzy. An example would be the

difference between warm and hot. There is no set temperature to distinguish the

two, and different people might distinguish the two sets at different boundaries.

Fuzzy systems use membership functions that define those boundaries and transform

both exact and fuzzy inputs from multiple sources into fuzzy sets. Once in the sets,

production rules are implemented to evaluate all of the inputs simultaneously. The

logical output of this process is then defuzzified to produce a well-defined output

value. Fuzzy logic is useful in military applications to define the battlespace and

classify possible targets.

A powerful and popular method of information fusion is with a Neural Net-

work. Neural networks get their name from the similarities to the neurons in the

brain. Humans brains have the ability to learn, adapt, and parallel process large

amounts of data to characterize information. This is the key feature to neural net-

works. Using learning sets of inputs and output, a neural network can be trained to
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recognize patterns and classify targets. Neural networks have been used to perform

complementary fusion for automatic target recognition in military applications [12].

Neural networks are a set of inter-connected processing nodes called neurons that are

configured in layers. The first layer takes the inputs where the nodes simultaneously

process the input data and send their output as input to the next layer of nodes. The

logical process usually consists of a series of weighting of the input data to generate

an output that characterizes the target. To do this, the network must first be trained

using a predetermined data set in which the classification of the target for each set

of inputs is known.

2.5 The Knowledge Matrix

All of the fusion methods above contain logical and mathematical algorithms

based on either continuous or discrete quantifiable data, so to use these methods

requires that the inputs to the processes be quantified numerically. The question

then becomes how is intelligence information quantified? A well-accepted and use-

ful method was developed by Keithley [8] for the Multi-INT Fusion study for the

Decision Support Center (DSC). He proposed a 6x6 knowledge matrix made up of

six quality levels for each of six different types of knowledge. The knowledge types

are location, track, identification, activity, capability, and intent. The quality levels

range from 0(low) to 5(high) as shown in Figure 2.3.

A knowledge matrix can be used to quantify the quality of some piece of

information about an entity. Each cell of the matrix is filled in with the likelihood

that the data in this particular piece of information achieves at least that quality

level for that type of knowledge. Likelihoods can be referred to as probabilities,

so the entries of each cell have to take on a value between 0 and 1. The level of

quality decreases as you go down a column in the matrix, thus the probability of

the intelligence source attaining that level increases. Figure 2.4 shows an example of

a knowledge matrix generated from some information gathered from an intelligence
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Figure 2.3 Knowledge Matrix level descriptions [14]

Figure 2.4 Sample Knowledge Matrix [11]

source. If the desired quality was a 90% level, then this matrix would demonstrate

that the desired quality was achieved at level 2 for location, 1 for track, 2 for identity,

1 for capability, 2 for intent, and no knowledge for activity. The way to interpret these

results is to refer back to the level descriptions. It can be said that the location of the

entity is know within 100m, it is moving, it’s identity can be categorized, minimal

capability information is available, and it’s general objectives are known.

The 90% level was arbitrary to illustrate how to deduce the quality of a piece

of information from its knowledge matrix. Typically in simulations, the quality for
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a particular knowledge type is generated by sampling from a uniform distribution

from 0 to 1. The uniform data sample is assigned to a variable. If that variable

takes the value of say 0.7, then the sample matrix in Figure 2.4 would indicate that

location quality level 3, track quality level 2, identity level 2, capability level 1, and

intent level 2 were achieved.

2.6 Why Simulation?

Modeling and simulation is used to study the performance of the intelligence

cycle because it is not practical to use real classified data, and alternate process

architectures may not be feasibly applied in the real world. So as with many other

problems and issues faced by the military, a discrete event simulation model is used

to gain insight into how fusion affects the intelligence process [6]. The intelligence

cycle was modelled by Pawling [13] to examine the performance of each portion of the

intelligence process and compare two different theories of distribution: Task, Process,

Exploit, Disseminate (TPED) and Task, Process, Post, Use (TPPU). He developed a

high level simulation model that compared several Measures of Effectiveness (MOEs)

including an aggregate measure termed information needs satisfaction. This measure

of overall performance simply calculates the ratio of satisfiability of needs that were

met at a given level of satisfaction requested. One thing lacking in the model is the

representation of information fusion. Pawling states that a simplification was made

in this area for the purpose of a higher, less detailed, simulation model. He suggests

that future research in this are might include integrating the fusion process into the

model.

Whaley [16] furthered the efforts of Pawling by adding multi-INT fusion into

the process. He uses an adaptation of the knowledge matrix concept developed by

Keithley [8] to represent the level of satisfaction the customer gets from a given

piece of information, so it becomes more of a satisfaction matrix than a knowledge

matrix. The type of fusion he uses is a simplified method where the resulting fused
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satisfaction matrix is made up of the max value of each element of each of the

input matrices. Otherwise stated, if F represents the resultant fused matrix, and

In represent the input matrices, Fi,j = max(I1
i,j, I

2
i,j, ..., I

n
i,j) for all n input matrices.

While this is a useful method for capturing statistics about the performance of

different architectures, it fails to capture the synergy of intelligence or information

fusion as Whaley states in his suggestions for future research.

Fusion methods have been tested in engineering simulations for the develop-

ment of multi-sensor systems. Bossé et al. [2] developed a simulation testbed for

the design of data fusion systems for military applications. This model supports the

implementation of different fusion methods and algorithms to fuse the multi-sensor

data and collect MOPs to determine which methods could be actual candidates for

use in the development a real-world fusion architecture.

Another example of a fusion simulation modeling is by FOI, the Swedish De-

fence Research Agency. In 2002, FOI decided to build a simulation laboratory specif-

ically for information fusion research [7]. Again the target audience is the military.

The intent is to create, evaluate, and demonstrate new technologies for informa-

tion fusion in military applications. They cited a need for a more flexible simulation

framework that would allow the implementation and testing of different fusion meth-

ods.

The Knowledge Matrix concept was further developed in a RAND study for

the United States Army [14]. The study took different pieces of information from

either like or different intelligence disciplines and represented the level of knowledge

from each piece of information in a knowledge matrix. The knowledge matrices were

generated in a deterministic simulation model. Then they used an equation that they

suggested was an extension of the Dempster-Shafer theory of evidence to combine the

knowledge matrices into one knowledge matrix with knowledge probabilities greater

than any of the input matrices. The equation can also be derived from probability

theory by computing the joint probability of two independent events.
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Figure 2.5 Fusing two input matrices into a combined matrix [14]

Their technique was to build a combined matrix, K, from observation matrices,

G and H using the formula Ki,j = 1 − (1 − Gi,j)(1 − Hi,j). Figure 2.5 illustrates

how this equation is applied to the knowledge matrix. Note that each entry in the

combined matrix is at least as good as the corresponding entries in either of the input

matrices. This method captures the synergy that occurs due to information fusion.

This also ensures that applying fusion will not decrease the level of knowledge. The

equation can also be expanded to include more than two knowledge matrices while

still adhering to the computation of the joint probability of the independent events.
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3. Methodology

This chapter begins with a brief outline of the functionality of the original model

developed by Pawling followed by a description of the changes made to implement

data collection from multiple sources and the fusion of the data collected. The

problem of input data is of importance, since real data was not available for this

study, so a discussion of how the notional data was derived will be included. There

will also be a section describing how the results of the simulation were calculated

and collected.

3.1 Original Model

Pawling [13] created a model in Arena of each of the steps in the intelligence

cycle. Each phase is organized into a submodel, and routing among these submodels

is accomplished with a submodel referred to as the communications module. It

begins with the Planning and Direction submodel. Here there are five different

users modeled that each generate Requests for Information (RFIs). Each RFI gets

assigned quality required, time required and priority level attributes. Each user

creates standing RFIs that go directly to the Collection submodel and additional

RFIs that get routed to a library search submodel. Upon reaching the Library Search

submodel the RFI’s timeliness is checked. If the timeliness has expired, defined by

the simulation time being past the time required, TimeR, attribute value, the RFI is

sent directly to the Evaluation submodel without any further processing. Otherwise,

the RFI will undergo a delay and get assigned a quality achieved, QualA, attribute.

Quality achieved is compared to quality required, QualR, to determine if the RFI

must go the the Collection submodel. Before leaving the Planning submodel, each

RFI is assigned binary attributes that will be used in the Communications submodel

to route the RFIs to their required submodels. Not all RFIs will go through every

part of the intelligence cycle because one of the intended purposes of the thesis was
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to compare Task, Process, Exploit, Disseminate (TPED) and Task, Process, Post,

Use (TPPU) methodologies.

The Communications submodel contains the logic that routes the RFIs to

the submodels they are required to pass through. The logic is too complicated for

standard Arena modules, so it is accomplished in VBA. Each of these submodels

has the same underlying construct. First the timeliness of the RFI is checked. This

is done by comparing the TimeR attribute to the difference between the current

simulation time and the time the RFI was created. If the RFI is no longer timely,

it is sent directly to the Evaluation submodel without any further processing. If

it is timely, it will undergo a delay associated with the process modeled, and the

QualA attribute is updated to represent the increase in quality associated with that

process. Three of the submodels, Processing, Exploitation, and Analysis, also have

an additional fusion branch built in. Each fusion branch consists of a timeliness

check, a delay, and a quality update. Since fusion was not modeled as part of this

study, the quality achieved remains unchanged after an RFI passes through this

branch.

The last stop for every RFI in the model is the Evaluation submodel. Here

all of the statistics are collected and measures such as quality, timeliness, and user

satisfaction are evaluated. The actual disposal of each RFI takes place back in the

Planning submodel rather than in the Evaluation submodel. This is done to facilitate

the implementation of feedback as part of the intelligence cycle. Currently the model

is not programmed to do anything with the feedback feature.

Also, some of the process times were represented with an exponential distribu-

tion. This makes it possible, although unlikely, to have unusually large processing

times. These were replaced with triangular distributions that had similar means as

the exponentials.For a more detailed explanation of Pawling’s model, the reader is

referred to his 2004 thesis.
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3.2 Model Modifications

The first thing done was to eliminate some of the redundant VBA code. There

were six VBA blocks in the Communications submodel. Each block had the same

code in it with the exception of the number of if-then statements that would search

the next station attributes for a value of one in order to route the RFI to that next

station. The first block had seven, then the second block would strip off the first

if-then statement leaving six. The third block would have five and so on. The code

in the first block was kept and saved as a subroutine. Then the only code contained

in each block was one line that called the subroutine. Additionally, just before an

RFI would leave a station such as the Processing station, the attribute that indicated

processing was required was changed from one to zero facilitating the use of a single

subroutine rather than including a separate block of code that would not check for

the processing attribute.

The next thing was to take out some portions of the model. The original model

used a single attribute for quality required, QualR, and another single attribute for

quality achieved, QualA. The QualA attribute was updated at each step of the intel-

ligence process. Since the new method is to use a knowledge matrix, the individual

attributes were deleted. The blocks that would update the QualA attribute were

removed from each submodel. For the purposes of this study, the value of the knowl-

edge matrix will retain the same values as assigned in the Collection submodel. The

knowledge matrix will only change if multiple knowledge matrices are fused together

in the Analysis submodel. The representations of fusion in the Processing and Ex-

ploitation submodels were removed. Additionally, many of the expressions that were

functions of QualA or QualR had to be modified or removed because they were no

longer being used.
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3.2.1 Planning and Direction

The first major change to the Pawling model was the removal of the library

search portion. As it was, each user modeled had two create nodes. One was for

standing RFIs and the other for additional RFIs. It was assumed that standing

RFIs could not be satisfied with information in the library and were routed directly

the planning stage. Additional RFIs would go to a simulated library search. A

discrete distribution would return an indicator of whether there was information in

the library to satisfy the request; if so, the value of QualA was set. This value was

checked against the QualR value. If it was good enough, then the RFI would skip

the collection stage and proceed through the appropriate portions of the model. The

number and frequency of RFIs being generated was changed. Instead of each user

generating 20 RFIs at approximately 24-hour intervals, each user generates one RFI

at approximately one-hour intervals.

With the use of the knowledge matrix, it is not sufficient to check a single qual-

ity value to determine if a requirement was met. In fact, to compare the different

fusion methods, actual quality levels are recorded as statistics rather than counting

the number that met the requirement versus the number that did not. Additionally,

each RFI needs to go through the Collection submodel to simulate tasking different

resources for intelligence and fusing the intelligence in the Analysis submodel. Sub-

stituting a library search for collection was therefore eliminated; however, the idea

of a library was not removed from the model entirely. Four intelligence sources are

represented in the Collection submodel, and one of them is OSINT or Open Source

Intelligence. This source acts as a substitute for the library search portion of the

model.

Since additional RFIs were sent directly to a library search, they were removed

from the model as well. Only standing RFIs remain, and they are given nearly the

same attributes as before with a few additions. The quality required was changed to

a Uniform(0,1) distribution. This represents the level of confidence the user wishes to
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Figure 3.1 Planning and Direction Submodel

have about a particular type of knowledge represented by a column in the knowledge

matrix, so there are actually six quality required attributes assigned to each RFI,

QualR1-QualR6. Later, the quality level at which that confidence level is met gets

checked and recorded into the replication statistics. Also, rather than assigning an

information source attribute here, the number of sources to be used is set. Next the

attributes for routing the RFI to the next station are set, and then the RFI gets

duplicated. The number of sources dictates the number of duplicates. For example,

if three sources are required, two duplicates are made. Each duplicated RFI has

the same serial number as the original that was cloned. The result is a set of RFIs

representing a single RFI. This is shown in Figure 3.1. The source to be tasked by

each RFI is set just before leaving the Planning submodel.

3.2.2 Collection

Upon entering the Collection submodel (Figure 3.2), the 36 attributes repre-

senting the knowledge matrix are initialized. These attributes take the form “kmcr”

where c and r both range in value from one to six. The first value, c, is associated

with the types of knowledge in the matrix. For example one refers to location, two

refers to track, three refers to identity and so forth. The second value, r, is associated
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with the quality levels. Although the actual quality levels range from zero to five,

they are represented with a range from one to six for ease of use in VBA code.

Figure 3.2 Collection Submodel

The timeliness of the RFI is checked before the simulated collection. If the time

required has already passed, the RFI is routed directly to the Fusion submodel via

the Analysis submodel. In the Pawling model, untimely RFIs were sent directly to

the Evaluation submodel. Since the RFIs were duplicated in the Planning submodel,

they must pass through the Fusion submodel to be batched back into a single RFI

before being sent to Evaluation.

After the timeliness check, a decision node directs the RFIs to the appropriate

source for collection where they pass through a seize-delay-release node to simulate

the time and manpower needed to obtain the intelligence data. Next an attribute

is set from a triangular distribution to represent the quality level each intelligence

source will obtain for each type of intelligence with 90% confidence. These values are
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used as a seed in the following VBA blocks to populate the knowledge matrix. This

process is discussed in more detail in Section 3.3. The VBA code used to accomplish

this can be found in the appendix. This code contains a call to a function called

NormProb. This function was taken from the internet [1], and it calculates the value

of the standard normal cumulative distribution function. Just before exiting this

submodel, attributes used to route the entity through the Communications submodel

to the next submodel are set.

3.2.3 Processing and Exploitation

Figure 3.3 Processing Submodel

In the Pawling model, a resource would be seized as an RFI would enter either

of these submodels. Following that, the timeliness was checked. If the RFI was not

timely, the resource was released without any simulated time passing. If the RFI was

timely, it would enter a delay node followed by a release node to free the resource.

The following caveat was included:

Although untimely items grab the resource, that resource is released af-
ter a 0 time delay, effectively not using the resource. This should not
affect time weighted statistics, but would affect discrete statistics such
as number of times a resource was used.

The purpose for this could not be found, so these submodels were changed to per-

form the timeliness check first. If the RFI was deemed timely, it entered a single

seize-delay-release node, assigned appropriate routing attributes, then sent to the

Communications submodel. Untimely entities were sent to the Analysis submodel
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to undergo fusion after having their knowledge matrix attributes reset to zero. This

is done to replace the previous method of sending the RFI directly to Evaluation.

The idea is that since the RFI was not properly processed and exploited due to its

tardiness, the information collected (represented by the knowledge matrix) would be

useless and therefore not considered in the fusion process. The Processing submodel

is shown in Figure 3.3. The Exploitation submodel is identical to the Processing

submodel.

3.2.4 Analysis

Figure 3.4 Analysis Submodel

The Analysis submodel is shown in Figure 3.4. The timeliness comes first,

and untimely RFIs are sent directly to the Fusion submodel without being analyzed

and therefore the knowledge matrix gets reset to zero as before. Prior to the trial

runs, timely RFIs woulde seize a resource and undergo a delay before being sent to

the Fusion submodel. Then after returning from the Fusion submodel, the resource

would be released. This caused a bottleneck in the system because some RFIs would

get stuck in the Fusion queue waiting for their duplicated counterparts to undergo

fusion. The problem was that the duplicates could never get to the Fusion submodel
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Appendix B. VBA Code

This appendix contains the VBA code used to implement the logic required in the

model that is not possible with standard Arena modules. Most of the VBA blocks

in the model call the subroutines near the end of the code. The function at the very

end is credited to M.A. (Thijs) van den Berg [1].
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