

Table 11: The Confirmation Experiments Results of the 1st ROC Set

Cost Response Type Method Type Comb #
Center 1/4 3/4 Out1 Out2

Ave_acc

LCDO & Taguchi 1704 32.04 14.95 50.28 1433.31 115.15 0.931 min Cost
RPD 803 37.03 16.83 59.56 2543.79 111.88 0.928

LCDO & Taguchi 1306 35.98 16.57 57.48 1962.89 143.57 0.924
RPD1 904 35.56 16.01 57.51 2539.57 119.51 0.930 max Acc
RPD2 1005 35.13 15.61 56.70 2457.91 129.76 0.930

mean 222.24 109.49 336.54 5615.20 1013.80 0.507
mean of the best 10% 41.63 19.76 64.20 1196.70 159.03 0.912

The 1704th combination generally shows good result and it also has the maximum

accuracy. The values shaded blue show the best performance when we do the

confirmation experiment with the solutions of each evaluation method for a given design

point. We can also see how the results are close to the mean and optimal values by

looking at the last two rows of table 11. In most cases, the values of blue are better than

the mean of the best 10% and actually, they are close to the mean of the best 5%. If we

think about the accuracy, even though the threshold combination that had the maximum

accuracy in the design points, it does not attain the biggest at the confirmation

experiments. But, rather, the point that has the smallest cost has the biggest accuracy at

table 11. In addition, it is hard to say that there is a difference between two solutions of

RPD with a combined array of the accuracy response.

70

2nd ROC curve set

The ROC curves for the CID system are generally determined by the quality of

signals and the selection of the decision threshold [27]. If the 1st set of ROC curves has a

low quality of signal and hence the region of intersection between the target probability

distribution and the clutter probability distribution in the case of detector is relatively

large, the 2nd ROC curve set comes up with high quality of signals. Thus, we can expect

improved ROC curve behaviors and those are demonstrated at figure 22.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CURVE for Detection and Classification Processes

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Detection

Classification

0 0.01 0.02 0.03 0.04 0.05
0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CURVE for Detection and Classification Processes (FPR < 0.05)

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Detection

Classification

Figure 22: ROC Curves for 2nd Experiment Set

As you see, the ROC curves for 2nd set are much better than previous ones in terms of

their high TPR at the same FPR. Right-hand side graph of figure 22 is used for this

experiment and its range of x-axis (FPR) is (0, .05) for both curves. Due to different

ROC curves we may see very different results as compared with the 1st ROC set.

The Cost Response Approach

Table 12: The solutions of the cost response of the 2nd ROC set

Method Comb # TPR_D TPR_C FPR_D FPR_C Cost S|N S
LCDO 7930 0.9307 0.9661 0.015 0.04 11.4907 22.7413
SN_L 7924 0.8981 0.9661 0.012 0.04 11.5961 22.5422
RPD 9816 0.8261 0.9667 0.008 0.0495 12.9393 23.2914

71

In contrast with 1st ROC set of the cost response approach, three different

solutions are estimated but there is still no big difference between the solution of LCDO

and that of Taguchi method. Again, the following tables and figures explain how we get

the solution of RPD with a combined array.

Table 13: The Regression Analysis Results of RPD Using the Cost Response of the 2nd ROC Set

 DoF MS F P-value
SS reg 56347668.2 17 3314568.7 58921.006 0
SS res 8999699.296 159982 56.2544

SSt 65347367.49 159999
R^2 0.8623

 Coefficient Std Error T T-crit P-value

Intercept 26.0934 0.0784 332.7948 1.96 0
X1 -1.0333 0.0974 -10.6117 1.96 0
X2 -13.8853 0.0974 -142.5714 1.96 0

X1^2 13.0009 0.0811 160.4053 1.96 0
X2^2 0.5499 0.081 6.7892 1.96 0
X1X2 -5.241 0.1022 -51.2999 1.96 0

Z1 2.737 0.0482 56.7722 1.96 0
Z2 18.7106 0.0482 388.1022 1.96 0
Z3 4.7785 0.0482 99.1165 1.96 0
Z4 11.9501 0.0482 247.8725 1.96 0

X1Z1 12.0206 0.0438 274.546 1.96 0
X1Z2 -3.7072 0.0438 -84.6722 1.96 0
X1Z3 -5.2242 0.0438 -119.3194 1.96 0
X1Z4 1.4096 0.0438 32.1948 1.96 0
X2Z1 -0.0023 0.0438 -0.0531 1.96 0.9577
X2Z2 -13.5045 0.0438 -308.6534 1.96 0
X2Z3 0.4343 0.0438 9.9273 1.96 0
X2Z4 -11.5835 0.0438 -264.7483 1.96 0

Variable Definition
X1: TPR_D, X2: TPR_C, Z1: Map size, Z2: # of Enemy, Z3: # of Friend, Z4: Cost coefficient

 2 2

1 2 1 2() 26.09 1.03 13.89 13 0.55 5.24 1 2f x x x x x x= − − − − − x

2

 (3.8)

 1 2 3 4 1 1 1

1 3 1 4 2 1 2 2 2 3 2 4

(,) 2.746 18.71 4.78 11.95 12.02 3.71
 5.22 +1.41 0 13.5 0.43 11.58
h x z z z z z x z x z

x z x z x z x z x z x
= + + + − −
− + − + − z

 (3.9)

72

As shown above regression results, the interaction between the TPR of the classification

(X2) and the map size (Z1) is the only one that does not influence to the model. The R-

squared value of .8623 is acceptable.

Figure 23: Surface, Contour and Overlay Plots for RPD Using the Cost Response of the 2nd ROC Set

Again, when the maximum values of FPR for both are .05, the TPR of the detection is 1

and that of the classification is .967. The solution of the RPD with a combined array

73

method is appeared at overlay plot with lower mean and POE value and it is the 9816th

combination.

The Label Accuracy Response Approach

Table 14: The Solutions of the Label Accuracy Response of the 2nd ROC Set

 Method Comb # TPR_D TPR_C FPR_D FPR_C Sum of Acc S|N L
LCDO 5253 0.989 0.9554 0.0265 0.0265 0.9686 39.7228
SN_L 5253 0.989 0.9554 0.0265 0.0265 0.9686 39.7228
RPD1 9347 0.9795 0.9667 0.0235 0.047 0.9675 39.7117
RPD2 9992 1 0.9667 0.046 0.05 0.9551 39.6007

We get same solution, 5253rd combination for LCDO and Taguchi method, and

two slightly different answers for RPD with a combined array. However, the location

between solutions is not close like those of 1st ROC set.

Table 15: The Regression Analysis Results of RPD Using the Label Accuracy Response of the 2nd ROC Set

 DoF MS F P-value
SS reg 397.9119 17 23.4066 47894.4 0
SS res 78.1852 159982 0.0005

SSt 476.0971 159999
R^2 0.8358

 Coefficient Std Error T T-crit P-value

Intercept 0.9043 0.0002 3912.9892 1.96 0
X1 0.0491 0.0003 171.1542 1.96 0
X2 0.0242 0.0003 84.4045 1.96 0

X1^2 -0.0194 0.0002 -81.0572 1.96 0
X2^2 -0.0029 0.0002 -12.278 1.96 0
X1X2 0.0087 0.0003 28.944 1.96 0

Z1 0.0822 0.0001 578.3533 1.96 0
Z2 -0.0518 0.0001 -364.6208 1.96 0
Z3 -0.0263 0.0001 -185.1719 1.96 0
Z4 0 0.0001 0 1.96 1

X1Z1 -0.058 0.0001 -449.4661 1.96 0
X1Z2 0.0264 0.0001 204.5851 1.96 0
X1Z3 0.0287 0.0001 222.6852 1.96 0
X1Z4 0 0.0001 0 1.96 1
X2Z1 -0.0236 0.0001 -182.6671 1.96 0
X2Z2 0.0248 0.0001 192.0206 1.96 0
X2Z3 -0.0024 0.0001 -18.3741 1.96 0
X2Z4 0 0.0001 0 1.96 1

Variable Definition
X1: TPR_D, X2: TPR_C, Z1: Map size, Z2: # o Enemy, Z3: # of Friend, Z4: Cost coefficient f

74

2 2
1 2 1 2() 0.9043 0.0491 0.0242 0.0194 0.0029 0.0087 1 2f x x x x x= + + − − − x x

2

 (3.9)

 1 2 3 4 1 1 1

1 3 1 4 2 1 2 2 2 3 2 4

(,) 0.0822 0.0518 0.0263 0 0.058 0.0264
 0.0287 +0 0.0236 0.0248 0.0024 0
h x z z z z z x z x z

x z x z x z x z x z
= − − + − +

− + − + x z
 (3.10)

The regression result for this experiment illustrates that the cost coefficient factor (Z4)

and its interactions with controllable factors are redundant since the response is the

accuracy. And the R-squared value of .8358 is suitable.

Figure 24: Surface, Contour and Overlay Plots for RPD Using the Label Accuracy Response of the 2nd ROC Set

75

By comparing mean and POE plots, we catch the points having high accuracy and low

POE. However, the mean model possibly does not represent real behavior of controllable

factors because, the regression tried to give us good fit employing all repressors. The

following figure constructed from the crossed array design with mean accuracy as its

response and it shows the difference that the maximum accuracy does not happen at the

exact top of both axes (controllable factors) of the design space.

Figure 25: Average Accuracy across All Design Points from the Crossed Array

Confirmation experiment for 2nd set

Table 16: The Confirmation Experiments Results of the 2nd ROC Set

Cost Response Type Method Type Comb #
Center 1/4 3/4 Out1 Out2

Ave_acc

LCDO 7930 9.28 3.57 15.68 638.04 38.56 0.979
Taguchi 7924 9.26 3.50 15.65 621.70 35.24 0.979 min cost

RPD 9816 10.27 4.08 16.85 602.55 33.42 0.978
LCDO & Taguchi 5253 12.24 4.86 20.54 868.87 56.27 0.972

RPD1 9347 11.18 4.37 18.68 696.44 51.44 0.974 max Acc
RPD2 9992 19.95 8.76 31.66 871.42 93.21 0.954

mean 17.66 7.08 30.10 1762.18 65.12 0.967
mean of the best 10% 9.75 3.64 16.46 628.70 34.73 0.978

76

The Confirmation experiment for this set is performed on the points of figure 21

and the results are presented at table 16. The 7924th combination shows good results in

the design space and the 9816th combination operates well out of design space. Again,

the values of blue display the best performance for a given design point. The last two

rows of table 16 helps to understand how the results are close to the mean and optimal

values. In all cases, the values shaded blue are better than the mean of the best 10%.

Like the 1st ROC set, the biggest accuracy occurs around the points that make the

smallest costs. There is something we need to know in this research’s confirmation

experiments. We made one table for the result but, in the case of cost response, we may

focus on the cost values and just refer accuracy value in the case of accuracy response, it

may be vice versa.

Summary of experiments results

In this Chapter, the experiments were carried out using two different ROC curve

sets with the CID model and three output analysis techniques as explained in the previous

Chapter. Further, the confirmation experiments were accomplished at the optimal

parameters obtained from three techniques for each response. The summary of

experiments and results are follows:

• In the case of the cost response, the solutions from LCDO and the Taguchi

method worked well within the design space in terms of the performance of the

confirmation experiments. The solution from RPD with a combined array gave us

lower cost and higher accuracy outside of the design space.

77

• In the case of the accuracy response, the performances were slightly enhanced due

to the solution of the RPD with a combined array in both sets.

• The parameters that achieved the minimum cost were very close to the parameters

that yielded the maximum accuracy.

• The accuracy approach is more sensitive than the cost approach with respect to

the design space. The solutions for the accuracy response did not show the largest

average accuracy in the last column of table 16. On the other hand, the solutions

from the cost approach showed the largest accuracy along with the smallest cost.

These results show that the parameters that yield the minimum cost also provide

maximum accuracy. The cost response employed in this study is mainly comprised of

four critical error rates (even though it has one more component, the TPR of the system)

located in the off-diagonals of the CM; however, the accuracy response is the sum of the

proportion of the diagonals. Thus, if we try to minimize the cost it automatically

maximizes accuracy and vice versa. Throughout the results of confirmation experiments

we can see this tendency.

78

V. Summary and Conclusions

Many studies related to CID have the same goal: to maximize combat/mission

effectiveness while reducing total casualties due to enemy action and fratricide [5:1].

The objectives of this thesis were: (1) the modeling of a CID situation and (2) obtaining

robust and controllable input variable settings. Considering the features of CID, input

variables were defined as controllable and uncontrollable and the confusion matrices that

are used in ROC theory were adapted to controllable factors.

For CID modeling this research employed the following assumptions: (1) each

detector and classifier occupies a predetermined ROC curve, (2) a neutral force and

civilian are in the clutter, (3) there are three characteristics in a virtual ROI such as:

enemy object, a friendly object, and clutter, (4) all entities have to be declared one of

these and no entity can be non-declared.

All results of the CID system are summarized by a posterior CM. Throughout the

posterior CM analysis, the responses that the simulator wants to gather can be obtained.

This study has two responses, cost and accuracy. The cost is evaluated by multiplying

error rates of the CM and their cost coefficients and the accuracy is calculated by

summing types of accuracies in the CM with respect to enemy, friend, and clutter.

To find optimal parameters for each response, three evaluation techniques were

applied: (1) LCDO, (2) Taguchi’s S|N ratio method, and (3) RPD with a combined array.

For (1) and (2), the crossed array design that has controllable factors as its inner array and

uncontrollable factors as its outer array was employed and for (3), obviously, the

79

combined array design was used. The solutions of (1) and (2) are almost the same but

that of (3) is different in two experiment sets.

We used confirmation experiments to compare the performance of each solution

and the results were: (1) LCDO and the Taguchi method give us better output in the cost

response and RPD with a combined array shows a slightly better performance in accuracy

response, (2) in general LCDO and the Taguchi method can be applied within the design

space and RPD with a combined array can be operated out of the design space, (3) the

parameters that make the minimum cost yield the near maximum accuracy and (4) the

accuracy approach is more sensitive than the cost approach with regards to the design

space.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

T
P

R

LCDO & Taguchi

Detector of 2nd set

Classifier of 2nd set
Detector of 1st set

Classifier of 1st set

0 0.05 0.1 0.15 0.2 0.25 0.3
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FPR

T
P

R

RPD with Combined Array

Detector of 2nd set

Classifier of 2nd set
Detector of 1st set

Classifier of 1st set

Figure 26: The Movement of the Optimal Points for Each Technique between Two ROC Sets

The optimal points for both detector and classifier in figure 26 moved to the

points that allow higher TPR with lower FPR (north-west corner); particularly, the TPR

of the detector for all evaluation methods increased significantly between the two ROC

sets. This may represent the importance of finding a small number of objects in a huge

ROI. Comparing two graphs in figure 26, the RPD with a combined array technique

80

generally has a strong tendency of keeping lower FPR. Thus we can expect relatively

lower error cost when we employ the RPD method since the error cost is primarily

produced by a FPR, i.e. the FPR that triggers a fratricide or incorrect detection of a clutter.

Table 17: The Best Performance Values of the Confirmation Experiments for Each ROC Set

Cost ROC Set Type
Center 1/4 3/4 Out1 Out2

Ave_acc

1st set 32.04 14.95 50.28 1433.31 111.88 0.931
2nd set 9.26 3.50 15.65 602.55 33.42 0.979

Table 17 is a table that reorganizes the best values of the confirmation

experiments for each ROC set. As shown, the improvement of ROC curve behaviors in

figure 26 induces a large decrease in the cost and a small increase in the accuracy. Even

though the accuracy only increased 5% between the two ROC sets, the cost decreased

more than 3.3 times. This implies a need for improvement in the ROC curves, the

performance of the detector and classifier, to increase accuracy and decrease error cost.

In conclusion, if we consider the diverse characteristics of CID, the simulator

needs to focus on finding the parameters that yield the maximum accuracy value. This is

because minimum cost is accomplished at the point of the maximum accuracy and the

cost approach is very subjective depending on the decision maker and the battlefield

situation. In addition, the most preferable evaluation method is RPD with a combined

array due to its superior performance outside of the design space. In the final analysis,

we need a detector/classifier pair that has good performance to minimize error cost and

maximize label accuracy.

For further research, we can apply accuracy priorities or mission priorities before

we determine the subjective weights of the responses. Though this effort simplifies the

CID model by making several simplifying assumptions, we may add a non-declaration

81

choice [17], a cooperative identification process, a decision and firing stage, or, perhaps,

a continuous variable associated with time to the current CID model. In addition, by

considering the signal and the decision factors that decide the quality of the ROC curve in

ROC theory [27], we can approach this problem in a different and inclusive manner.

82

APPENDIX A: MATLAB® CODE

A. CID Simulation

% This Thesis Code is made by the author.

clc;
close all;
clear all;
tic

[TagforReg,Tag]=combarray();

for r=1:size(Tag,1) %for each row in Design matrix ===================================
 area = zeros(Tag(r,3),1);

 for i=1:Tag(r,4)
 area(i,1)=1;
 end
 area=sortrows(area);
 for i=1:Tag(r,5)
 area(i,1)=2;
 end

 if Tag(r,8)==1
 cost=[1 1 1 1 2]';
 else
 cost=[5 1 1 1 2]';
 end

 d_table = []; %template for detection, 2x2
 c_table = []; %template for classification, 2x3

 d_table = [Tag(r,1), Tag(r,6); 1-Tag(r,1) 1-Tag(r,6)];
 c_table = [Tag(r,2), Tag(r,7) .5; 1-Tag(r,2) 1-Tag(r,7) .5; 0 0 0];

%%%%%% Detection process %%%%%%

 output1 = []; %for result of detection process
 output2 = []; %for result of classification process

 column_d = [3 0]; %for detection 0 means nothing, 3 means something
 column_c = [1 2 0]; %for classification 1 means enemy, 2 means friend

 prob = [];
 [I,J] = size(area);
 N = 100;
 cum_confusion = zeros(3);

 for n = 1:N
 confusion = zeros(3);

83

 for i = 1:I
 for j = 1:J
 if area(i,j) ~= 0
 prob = d_table(:,1);
 [numberchoices,cols] = size(prob);

 out=zeros(2,1);
 out(1,1) = prob(1);

 for k = 2:numberchoices
 out(k,1) = prob(k) + out(k-1,1); %cumulation
 end

 check = 0;
 index = 1;

 while check == 0
 if out(index,1) >= rand(1) %comparing threshold with random number
 output1(i,j) = column_d(index);
 check = 1;
 else
 index = index + 1;
 end
 end

 else
 prob = d_table(:,2);
 [numberchoices,cols] = size(prob);

 out=zeros(2,1);
 out(1,1) = prob(1);

 for k = 2:numberchoices
 out(k,1) = prob(k) + out(k-1,1);
 end

 check = 0;
 index = 1;
 while check == 0
 if out(index,1) >= rand(1)
 output1(i,j) = column_d(index);
 check = 1;
 else
 index = index + 1;
 end
 end
 end

 if output1(i,j) == 0

 %confusion matrix for detection
 if area(i,j)==0
 confusion(3,3) = confusion(3,3) + 1;
 output2(i,j) = 0;

84

 GENLSQ=0;% 0 is off <----------user input

%%%%%%%%add a column of ones to A if it needs one and get sizes of A (n by p)
 Y=Response;
 n=size(A,1);
 if A(:,1)~=ones(n,1)
 A=[ones(n,1) A];
 end
 p=size(A,2);
 globalp=p;
 Filter = int8(ones(1,p));

 %Filter out certain regressors - uncomment to "eliminate"
% Filter(1,1)=0;% filter B0 <----------user input*
% Filter(1,2)=0;% filter B1 <----------user input
% Filter(1,3)=0;% filter B2 <----------user input*
% Filter(1,4)=0;% filter B3 <----------user input*
% Filter(1,5)=0;% filter B4 <----------user input
% Filter(1,6)=0;% filter B5 <----------user input*
% Filter(1,7)=0;% filter B6 <----------user input
% Filter(1,8)=0;% filter B7 <----------user input

 X=A;
 for i=p:-1:1
 if Filter(1,i)==0
 X(:,i) = [];
 end
 end
 p=size(X,2);

 explist=ones(1,p);
 Xform=int8(zeros(1,p));
 %Pick regressors to transform - uncomment to Xform via Box-Tidwell
%%%%%%%%%%%%%Do not transform x0 via Box Tidwell
% Xform(1,2)=1;% Xforms x1 via Box-Tidwell <----------user input
% Xform(1,3)=1;% Xforms x2 via Box-Tidwell <----------user input
% Xform(1,4)=1;% Xforms x3 via Box-Tidwell <----------user input
% Xform(1,5)=1;% Xforms x4 via Box-Tidwell <----------user input
% Xform(1,6)=1;% Xforms x5 via Box-Tidwell <----------user input
% Xform(1,7)=1;% Xforms x6 via Box-Tidwell <----------user input
% Xform(1,8)=1;% Xforms x7 via Box-Tidwell <----------user input

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if Warnng==0
 warning off;
end

%%%%%%%%%%%%%%%%Least Squares
if GENLSQ==1
 Save=X;
 V=cov(X');
 invV=(V)^-1;
 Bhatz=((X'*invV*X)^-1)*X'*invV*Y;

89

 K=(V)^.5;% <--------- if covariances are negative, sqrts will be imaginary.
 Bee=((K)^-1)*X;
 bigZ=Bee*Bhatz; % <-------------also imaginary

 SSresz=bigZ'*bigZ-Bhatz'*Bee'*bigZ;
 MSresz=SSresz/(n-p);

 SSregz=Bhatz'*Bee'*bigZ;
 MSregz=SSregz/(p-1);

 SStz=bigZ'*bigZ;

 %Calculate F statistic for model
 alpha=.90;
 Foz=MSregz/MSresz;
 Fstatz=finv(alpha,p-1,n-p);
 Fpvaluez=1-fcdf(Foz,p-1,n-p);

 %R-squared
 R2z=SSregz/SStz;
 R2adjz=1-(SSresz/(n-p))/(SStz/(n-1));

 %Build table (see pg 80 in book for explanation)
 glmANOVA=zeros(4,6);
 glmANOVA(1,1)=SSregz; glmANOVA(1,2)=p-1;
 glmANOVA(1,3)=MSregz;
 glmANOVA(1,4)=Foz; glmANOVA(1,5)=Fpvaluez;
 glmANOVA(2,1)=SSresz; glmANOVA(2,2)=n-p;
 glmANOVA(2,3)=MSresz;
 glmANOVA(3,1)=SStz; glmANOVA(3,2)=n-1;
 glmANOVA(4,1)=R2z; glmANOVA(4,2)=R2adjz;

 clear invV K Bee;
 X=Save;
end
%%%%%%%%%%%%%%%%transformations on X -BoxTidwell
 alpha=.9;% <----------user input
 y=Y;

 leading=ones(n,1);
 for i=1:p

 if Xform(1,i)==1
 x=[leading, X(:,i)];
 px=size(x,2);
 a=1;
 olda=10;

 while abs(olda-a)>.00005
 %step 1
 bhat=((x'*x)\eye(px))*x'*y;
 yhat=x*bhat;
 C=(x'*x)\eye(px);

90

 SSres=y'*y-bhat'*x'*y;
 MSres=SSres/(n-px);
 To=abs(bhat(px,1)/sqrt(MSres*C(px,px)));
 Tcrit=tinv((alpha+(1-alpha)/2),n-px);

 %step 2
 w=x(:,px).*log(x(:,px));
 xw=[x,w];

 %step 3
 bhatw=((xw'*xw)\eye(px+1))*xw'*y;
 yhatw=xw*bhatw;

 %step 4
 Cx=(xw'*xw)\eye(px+1);
 SSresx=y'*y-bhatw'*xw'*y;
 MSresx=SSresx/(n-(px+1));

 Tox=abs(bhatw(px+1,1)/sqrt(MSresx*Cx(px+1,px+1)));
 Tcritx=tinv((alpha+(1-alpha)/2),n-(px+1));

 %step 5
 if To>Tcrit && Tox>Tcritx
 a=bhatw(px+1,1)/bhat(px,1)+a;
 else
 olda=a;
 end

 %step 6
 x(:,px)=x(:,px).^a;

 end
 explist(1,i)=a;
 end
 end

 for i=1:p
 explist(1,i)=round(explist(1,i)*2)/2;

 if explist(1,i)>2
 explist(1,i)=2;
 end
 if explist(1,i)<(-2)
 explist(1,i)=(-2);
 end
 end

 for i=1:p
 X(:,i)=X(:,i).^explist(1,i);
 end

clear x y olda To Tcrit Tox Tcritx w Cx bhatw;
clear MSresx SSresx MSres SSres yhatw bhat a xw yhat;
clear Xform leading %explist;

91

%%%%%%%%%%%%%%%%transformations on Y -BoxCox
 if BOXCOX==1
 lamda=linspace(-2,2,21);
 lp=size(lamda,2);

 ydot=exp((1/n)*sum(log(Y)));

 for i=1:lp
 if lamda(1,i)~=0
 ytemp=(Y.^lamda(1,i)-1)./(lamda(1,i).*ydot^(lamda(1,i)-1));
 else
 ytemp=ydot.*log(Y);
 end
 bhat=((X'*X)\eye(p))*X'*ytemp;
 yhat=X*bhat;
 C=inv(X'*X);
 SSreslamda(1,i)=ytemp'*ytemp-bhat'*X'*ytemp;
 end

 lmin=min(SSreslamda);
 for i=1:lp
 if SSreslamda(1,i)==lmin
 location=i;
 end
 end
 if lmin~=0
 Y=(Y.^lamda(1,location)-1)/lamda(1,location);
 BoxCoxusedlamda=lamda(1,location)
 else
 Y=log(Y);
 BoxCoxusedlog=1
 end
 if GRAPHS==1
 figure(1)
 scatter(lamda,SSreslamda,'or', 'MarkerFaceColor','c');
 xlabel('Power Transformation Parameter Lamda');
 ylabel('SS_r_e_s'); title('SS_r_e_s vs. Lambda');
 end
 end
clear lp lmin ytemp location bhat yhat SSreslamda lamda ydot;

%%%%%%%%%%%%%%%fit model
 Bhat=((X'*X)\eye(p))*X'*Y;
 Yhat=X*Bhat;

%%%%%%%%%%%%All possible regressions (p counts the intercept)
 if ALLREG==1
 clear All Nines Btemp mm nn U pall Bhata;

 AllReg=zeros(1,p);

 for i=1:p
 cmb=combntns(1:p,i);

92

 mm=size(cmb,1);
 nn=size(cmb,2);
 Btemp=zeros(mm,p);
 for j=1:mm
 for k=1:nn
 Btemp(j,cmb(j,k))=1;
 end
 end
 AllReg=[AllReg;Btemp];
 end

 clear mm nn;
 mm=size(AllReg,1);
 nn=size(AllReg,2);

 U=X; %U holds the original X
 for i=1:mm
 for j=nn:-1:1
 if AllReg(i,j)==0
 X(:,j) = [];
 end
 end

 pall=size(X,2);
 Bhata=((X'*X)\eye(pall))*X'*Y;
 Yhata=X*Bhata;
 e=Y-Yhata;
 H=X*((X'*X)\eye(pall))*X';
 for s=1:n
 ePRESS(s,1)=(e(s,1)/(1-H(s,s)))^2;
 end

 All(i,1)=Bhata'*X'*Y -(Y'*ones(n,1))^2/n; %SSreg
 All(i,2)=Y'*Y-Bhata'*X'*Y; %SSres
 All(i,3)=All(i,1)+All(i,2); %SSt
 All(i,4)=All(i,1)/All(i,3); %R2
 All(i,5)=1-(All(i,2)/(n-pall))/(All(i,3)/(n-1)); %R2adj
 All(i,6)=sum(ePRESS); %PRESS

 X=U;
 end
 X=U; %reset X

 numrgs=sum(AllReg')';
 tempM=ones(1,6);
 PandR2s=zeros(1,3);

 for i=1:p
 k=1;
 for j=1:mm
 if numrgs(j,1)==i
 tempM(k,:)=All(j,:);
 k=k+1;
 end

93

 end
 pickbiggest=max(tempM ,[] ,1);
 PandR2s(i,1)=i; %the # of parameters used
 PandR2s(i,2)=pickbiggest(1,4); %R2
 PandR2s(i,3)=pickbiggest(1,5); %R2adj
 end

 if GRAPHS==1
 figure(2)
 plot(PandR2s(:,1),PandR2s(:,2),'r:o')
 hold on
 plot(PandR2s(:,1),PandR2s(:,3),'b:+')
 hold off
 xlabel('Number of Regression Coeficients');
 ylabel('R^2'); title('R^2 vs. Number of Regression Coefficients');
 legend('R^2','R^2 Adj.',2);
 end

 Nines=ones(mm,1)*9999999;
 All=[AllReg,Nines,All];
 else
 clear All;
 end
 clear nn mm nopt i j k Bhata Nines U pall cmb AllReg Btemp numrgs tempM;
 clear pickbiggest PandR2s;

%%%%%%%%%%%%%%%%%%%perform ANOVA
 alpha=.95;% <----------user input

 C=(X'*X)\eye(p);

 SSres=Y'*Y-Bhat'*X'*Y;
 MSres=SSres/(n-p);

 SSreg=Bhat'*X'*Y-(Y'*ones(n,1))^2/n;
 MSreg=SSreg/(p-1);

 SSt=SSreg+SSres;

 %Calculate F statistic for model
 Fo=MSreg/MSres;
 Fstat=finv(alpha,p-1,n-p);
 Fpvalue=1-fcdf(Fo,p-1,n-p);

 %Perform marginal T test for each Bhat
 for i=1:p
 To(i,1)=Bhat(i,1)/sqrt(MSres*C(i,i));
 StdErr(i,1)=sqrt(MSres*C(i,i));
 Tcrit(i,1)=tinv((alpha+(1-alpha)/2),n-p);
 Tpvalue(i,1)=2*(1-tcdf(abs(To(i,1)),n-p));
 end

 %R-squared
 R2=SSreg/SSt;

94

 R2adj=1-(SSres/(n-p))/(SSt/(n-1));

 %Multicollinearity
% Z=X;
% Z(:,1)=[];

% invR=corr(Z)\eye(p-1);
% VIF=zeros(p,1);
% for i=1:p-1
% VIF(i+1,1)= invR(i,i);
% end

 for i=1:p
 CIforBhat(i,1)=Bhat(i,1)-tinv((alpha+(1-alpha)/2),n-p)*sqrt(MSres*C(i,i));
 CIforBhat(i,2)=Bhat(i,1);
 CIforBhat(i,3)=Bhat(i,1)+tinv((alpha+(1-alpha)/2),n-p)*sqrt(MSres*C(i,i));
 end

 %Build table (see pg 80 in book for explanation)
 ANOVA=zeros(5+p,6);
 ANOVA(1,1)=SSreg; ANOVA(1,2)=p-1; ANOVA(1,3)=MSreg; ANOVA(1,4)=Fo;
ANOVA(1,5)=Fpvalue;
 ANOVA(2,1)=SSres; ANOVA(2,2)=n-p; ANOVA(2,3)=MSres;
 ANOVA(3,1)=SSt; ANOVA(3,2)=n-1;
 ANOVA(4,1)=R2; ANOVA(4,2)=R2adj;
 for i=1:p
 ANOVA(5+i,1)=Bhat(i,1);
 ANOVA(5+i,2)=StdErr(i,1);
 ANOVA(5+i,3)=To(i,1);
 ANOVA(5+i,4)=Tcrit(i,1);
 ANOVA(5+i,5)=Tpvalue(i,1);
% ANOVA(5+i,6)=VIF(i,1);
 end

clear n p Filter Si2 SSres MSres SSreg MSreg SSt Fo Fstat ePRESS i r d t;
clear alpha disp residuals H Fpvalue C R2 R2adj dfssres dfsspe dfsslof;
clear nvector ttlvector Ybarvector m j N groupnum counter lofFo e;
clear lofFpvalue SSlof SSpe StdErr To Tstat Tpvalue Bhat Rstud I VIF;
clear invR Tcrit X LofFit ALLREG BOXCOX GRAPHS globalp Warnng jvector;
clear DFFITS Cooks GENLSQ Foz Fpvaluez SStz SSresz SSregz MSresz MSregz;
clear Yhata Bhata Fstatz R2z R2adjz Save s;

D. Confirmation experiment

This Thesis Code is made by the author.

clear all;
close all;

95

clc;

a1 = input('Input optimal solution # of method 1: ');
a2 = input('Input optimal solution # of method 2: ');
a3 = input('Input optimal solution # of method 3: ');
a4 = input('Input optimal solution # of method 4: ');
a5 = input('Input optimal solution # of method 5: ');
a6 = input('Input optimal solution # of method 6: ');

[TagforReg, Tag, cvector, dvector, evector]=combarray_confirm();

Tag_conf = [Tag(1:10000,1:2),Tag(1:10000,6:7)];
Tag_conf = [Tag_conf(a1,:);Tag_conf(a2,:);Tag_conf(a3,:);Tag_conf(a4,:);Tag_conf(a5,:);
Tag_conf(a6,:)];

c = ceil((cvector(2,1)-cvector(1,1))/4);
d = ceil((dvector(2,1)-dvector(1,1))/4);
e = ceil((evector(2,1)-evector(1,1))/4);

new_cvector = [2*c, c, 3*c, 40*c, 2000]'; %Map size
new_dvector = [2*d, d, 3*d, 40*d, 10]'; %number of enemy
new_evector = [2*e, e, 3*d, 40*d, 70]'; %number of friend
cost_coef = [3 1 1 1 2; 2 1 1 1 2; 4 1 1 1 2; 40 1 1 1 2 ; 10 1 1 1 2]; %cost coefficient

for m = 1:size(new_cvector,1) %ROI for Confirmation experiment

 for r = 1:size(Tag_conf,1) %Threshold needed to confirm

 d_table = [Tag_conf(r,1), Tag_conf(r,3); 1-Tag_conf(r,1) 1-Tag_conf(r,3)];
 c_table = [Tag_conf(r,2), Tag_conf(r,4) .5; 1-Tag_conf(r,2) 1-Tag_conf(r,4) .5; 0 0 0];
 area = zeros(new_cvector(m,1),1); %Map size

 for j=1:new_dvector(m,1) % Enemy
 area(j,1)=1;
 end
 area=sortrows(area);

 for j=1:new_evector(m,1) % Friend
 area(j,1)=2;
 end

 cost = cost_coef(m,:)';
 output1 = []; %for result of detection process
 output2 = []; %for result of classification process
 column_d = [3 0]; %for detection 0 means nothing, 3 means something
 column_c = [1 2 0]; %for classification 1 means ET, 2 means FT

 prob = [];
 [I,J] = size(area);
 N = 1000;
 cum_confusion = zeros(3);

 for n = 1:N
 confusion = zeros(3);

96

 for i = 1:I
 for j = 1:J
 if area(i,j) ~= 0
 prob = d_table(:,1);
 [numberchoices,cols] = size(prob);

 out=zeros(2,1);
 out(1,1) = prob(1);

 for k = 2:numberchoices
 out(k,1) = prob(k) + out(k-1,1); %cumulative distribution function
 end
 check = 0;
 index = 1;

 while check == 0
 if out(index,1) >= rand(1) %search for the probability that is large enough
 output1(i,j) = column_d(index);
 check = 1;
 else
 index = index + 1;
 end
 end

 else
 prob = d_table(:,2);
 [numberchoices,cols] = size(prob);

 out=zeros(2,1);
 out(1,1) = prob(1);

 for k = 2:numberchoices
 out(k,1) = prob(k) + out(k-1,1);
 end

 check = 0;
 index = 1;
 while check == 0
 if out(index,1) >= rand(1)
 output1(i,j) = column_d(index);
 check = 1;
 else
 index = index + 1;
 end
 end
 end

 if output1(i,j) == 0

 %confusion matrix for detection
 if area(i,j)==0
 confusion(3,3) = confusion(3,3) + 1;
 output2(i,j) = 0;
 end

97

 if area(i,j)==1
 confusion(3,1) = confusion(3,1) + 1;
 output2(i,j) = 5;
 end
 if area(i,j)==2
 confusion(3,2) = confusion(3,2) + 1;
 output2(i,j) = 55;
 end

 elseif output1(i,j) ~= 0
 if area(i,j) == 1
 prob = c_table(:,1);
 [numberchoices,cols] = size(prob);
 gen_prob = rand(1);
 out(1,1) = prob(1);

 for k = 2:numberchoices
 out(k,1) = prob(k) + out(k-1,1);
 end

 check = 0;
 index = 1;
 while check == 0
 if out(index,1) >= gen_prob
 output2(i,j) = column_c(index);
 check = 1;
 else
 index = index + 1;
 end
 end

 elseif area(i,j) == 2

 prob = c_table(:,2);
 [numberchoices,cols] = size(prob);
 out(1,1) = prob(1);

 for k = 2:numberchoices
 out(k,1) = prob(k) + out(k-1,1);
 end

 check = 0;
 index = 1;
 while check == 0
 if out(index,1) >= rand(1)
 output2(i,j) = column_c(index);
 check = 1;
 else
 index = index + 1;
 end
 end

 elseif area(i,j) == 0

98

 prob = c_table(:,3);
 [numberchoices,cols] = size(prob);
 out(1,1) = prob(1);

 for k = 2:numberchoices
 out(k,1) = prob(k) + out(k-1,1);
 end

 check = 0;
 index = 1;
 while check == 0
 if out(index,1) >= rand(1)
 output2(i,j) = column_c(index);
 check = 1;
 else
 index = index + 1;
 end
 end
 end

 %confusion matrix for classification
 if output2(i,j) == 1
 if area(i,j) == 1
 confusion(1,1) = confusion(1,1) + 1;
 elseif area(i,j) == 2
 confusion(1,2) = confusion(1,2) + 1;
 elseif area(i,j) == 0
 confusion(1,3) = confusion(1,3) + 1;
 end
 elseif output2(i,j) == 2
 if area(i,j) == 1
 confusion(2,1) = confusion(2,1) + 1;
 elseif area(i,j) == 2
 confusion(2,2) = confusion(2,2) + 1;
 elseif area(i,j) == 0
 confusion(2,3) = confusion(2,3) + 1;
 end
 end
 end
 end
 end
 cum_confusion = cum_confusion + confusion;
 end
 CM = cum_confusion / N;

 TPR(r,m) = CM(1,1)/sum(CM(:,1)); % vertical analysis P("E"|E)
 E1(r,m) = CM(1,2)/sum(CM(1,:)); % horizontal analysis P(F|"E")
 E2(r,m) = CM(2,1)/sum(CM(2,:)); % horizontal analysis P(E|"F")
 E3(r,m) = sum(CM(1:2,3))/sum(sum(CM(1:2,:))); % horizontal analysis P(C|"E" or "F")
 E4(r,m) = sum(CM(3,1:2))/sum(CM(3,:)); % horizontal analysis P(E or F | "C")

 Cost(r,m) = cost(1,1)*CM(2,1)+cost(2,1)*CM(1,2)+cost(3,1)*(CM(1,3)+CM(2,3))

+ cost(4,1)*(CM(3,1)+CM(3,2))-cost(5,1)*TPR_r(r,1);
 Accuracy(r,m) = CM(1,1)/sum(sum(CM)) + CM(2,2)/sum(sum(CM)) + CM(3,3)/sum(sum(CM));

99

 end
end

E. Radial Basis Functions – Create ROC curves

% This Thesis Code is provided by Todd Paciencia [16], after that...
% Capt Taeho Kim modified for his analysis.

function[newpts,data]=createsurrogate(regtype,X1,X2,kerneltype,polytype,numnewpts)

%polytypes are regpoly0, regpoly1, regpoly2, regpoly2reduced, regpoly3,
%regpoly3reduced

dvmatrix=[];
dvmatrix(1)=min(X1); %General surrogate
dvmatrix(2)=max(X2);

if strcmp(regtype,'rbf')==1
 %kernel types: bi-harmonic, tri-harmonic, multiquadric, invmultiquadric, thinplatespline, gaussian
 rbfmodel=buildRBF(X1,X2,kerneltype,polytype);
 newpts=genpts(numnewpts,1,X1);
 for i=1:size(newpts,1)
 fx(i)=evalRBF(newpts(i,:)',rbfmodel); %input is col
 end
 data=fx;

elseif strcmp(regtype,'nw')==1
 %Just set hmin,hmax
 hmin=0.1; %A lot of curvature to get to points
 hmax=50; %Assuming not all responses are same, was 3
 h=mean(hmin,hmax);
 %kernel types: gaussian, uniform,triangle,epanechnikov,quartic,triweight,cosinus
 nwmodel=buildNW(X1,X2,kerneltype,h,hmin,hmax);
%nwmodel.sigma
 newpts=genpts(numnewpts,1,X1);
 for i=1:size(newpts,1)
 fx(i)=evalNW(newpts(i,:)',nwmodel);
 if fx(i)==1/eps
 fx(i)=NaN;
 end
 end
 data=fx;

elseif strcmp(regtype,'dace')==1
 %kerneltype is really corr type
 [s1,s2]=size(X1);
 thetaint=10*ones(1,s2);
 [upb,lob,initialtheta] = thetabds(X1,X2,polytype,kerneltype,thetaint,0);
 [dmodel,perf]=dacefit(X1,X2,polytype,kerneltype,initialtheta,lob,upb);

100

 %dmodel.theta %theta vector
 %Corr fn types (kerneltype): corrgauss, corrcubic, correxp, correxpg, corrlin,
 %corrspherical, corrspline
 newpts=genpts(numnewpts,1,X1);
 for i=1:size(newpts,1)
 fx(i)=predictor(newpts(i,:),dmodel);
 end
 data=fx;
end

function rbfmodel = buildRBF(S,Y,typeKernel,poly)

%BUILDRBF Build a surrogate function based on Radial Basis Functions

%***
% buildRBF: Builds a surrogate based on radial basis functions.
% --
% VARIABLES:
% S = matrix of data sites, stored row-wise
% Y = column vector of responses, each corresponding to a data site
% typeKernel = string indicating the type of kernel used in the RBF
% rbfmodel = structure of parameters that define the RBF estimator
% .kernel = type of kernel used in the RBF estimator
% .S = matrix of data sites
% .coeff = vector of polynomial coefficients
% nSites = number of data sites
% n = number of variables
% r = matrix of distances between data sites
% A = system matrix
%***
[nSites, n] = size(S);
r = zeros(nSites,nSites);
for i = 1:nSites
 for j = 1:i-1
 r(i,j) = norm(S(i,:) - S(j,:));
 end
 r(1:i-1,i) = r(i,1:i-1);
end
%Added
if strcmp(typeKernel,'multiquadric') || strcmp(typeKernel,'invmultiquadratic') ||
strcmp(typeKernel,'gaussian') ==1
 c = mean(mean(r)); %Avg dist between centers
 rbfmodel.c = c;
else
 %Not used, could be anything
 c=1;
 rbfmodel.c = 1;
end
%Note, you must use either x2fx or regpoly in both build and eval, o.w.
%coeffs change order
%Also, regpoly1 is present, skips the if block and leaves S alone
check=0;

101

if strcmp(poly,'regpoly2')==1
 S_orig = S;
 S = x2fx(S,'quadratic');
 S(:,1)=[]; %get rid of constant term, is added later
 n=size(S,2);
 check=1;
elseif strcmp(poly,'regpoly2reduced')==1
 S_orig = S;
 S = x2fx(S,'purequadratic');
 S(:,1)=[]; %get rid of constant term, is added later
 n=size(S,2);
 check=1;
elseif strcmp(poly,'regpoly3')==1
 S_orig = S;
 S = regpoly3(S);
 S(:,1)=[]; %get rid of constant term, is added later
 n=size(S,2);
 check=1;
elseif strcmp(poly,'regpoly3reduced')==1
 S_orig = S;
 S = regpoly3reduced(S);
 S(:,1)=[]; %get rid of constant term, is added later
 n=size(S,2);
 check=1;
elseif strcmp(poly,'regpoly0')==1
 S_orig = S;
 S=[];
 n=0;
 check=1;
end

%----
A = [kernelRBF(typeKernel, r, c), ones(nSites,1), S;
 [ones(nSites,1), S]', zeros(n+1,n+1)];
%**
%REPAIRING ILL-CONDITIONED MATRIX USING SINGULAR VALUE DECOMPOSITION IF
%REPAIR IS NEEDED, ELSE COEFFICIENTS ARE COMPUTED VIA LU FACTORIZATION
%**
if condest(A)>=1/eps%1e15
 disp('Ill-conditioned, repairing')
 [U,S2,V] = svd(A);
 s = diag(S2);
 e = zeros(length(s),1);
 ind = s/max(abs(s)) >= eps;%1e-8;
 e(ind) = 1./s(ind);

 E = U*diag(e)*V';
 rbfmodel.coeff = E * [Y(:); zeros(n+1,1)];
else
 rbfmodel.coeff = A \ [Y(:); zeros(n+1,1)];
end
%**
%END SVD IF IT WAS NEEDED, ELSE COEFFICIENTS WERE COMPUTED VIA LU
%FACTORIZATION

102

%**
rbfmodel.kernel = typeKernel;

if check==1
 S=S_orig;
end
rbfmodel.poly = poly;
%------
rbfmodel.S = S;

return

function fx = evalRBF(x,rbfmodel)

%EVALRBF Evaluate a radial basis function surrogate function at a given point

%***
% evalRBF: Evaluates a radial basis function surrogate at a given point.
% --
% Calls: kernel
% VARIABLES:
% fx = RBF value at x
% x = the point to be evaluated
% rbfmodel = structure of all parameters that define the RBF surrogate
% .S = matrix of data sites
% .kernel = string indicating the choice of kernel function
% .coeff = coefficients that define the RBF
% nSites = number of data sites
% n = number of variables
% r = vector of distances from x to data sites
%***
[nSites,n] = size(rbfmodel.S);
r = zeros(nSites,1);
for j = 1:nSites
 r(j) = norm(x - rbfmodel.S(j,:)');
end
%Added
if strcmp(rbfmodel.poly,'regpoly2')==1
 x=x2fx(x','quadratic');
 x=x';
 x(1,:)=[];%Get rid of constant, taken care of later
elseif strcmp(rbfmodel.poly,'regpoly2reduced')==1
 x=x2fx(x','purequadratic');
 x=x';
 x(1,:)=[];%Get rid of constant, taken care of later
elseif strcmp(rbfmodel.poly,'regpoly3')==1
 x=regpoly3(x');
 x=x';
 x(1,:)=[];%Get rid of constant, taken care of later
elseif strcmp(rbfmodel.poly,'regpoly3reduced')==1
 x=regpoly3reduced(x');

103

 x=x';
 x(1,:)=[];%Get rid of constant, taken care of later
elseif strcmp(rbfmodel.poly,'regpoly0')==1
 x=[]; %Just a constant added to RBFs
end
%--------
y = [kernelRBF(rbfmodel.kernel,r, rbfmodel.c); 1; x(:)];
fx = rbfmodel.coeff'*y;
if ~isfinite(fx)
 fx = 1/eps;
end
return

function [chromosomes] = genpts(pop,numdv,X)

%Each chromosome has set of dv values

mindv=min(X);
maxdv=max(X);

%Initialize chromosomes using range in dv space
for i=1:pop

 for j=1:numdv
 chromosomes(i,j)=mindv(j)+(maxdv(j)-mindv(j))*rand(1);
 end

end

function K = kernelRBF(typeKernel,x, c)

%KERNEL Evaluate the kernel of an RBF estimator at a given point.

% --
% Called by: evalRBF
% VARIABLES:
% typeKernal = type of kernel used in the Nadaraya-Watson estimator
% x = point to be evaluated (vectors allowed, scalars preferred)
% K = kernel value at the point x
%***
switch lower(typeKernel)
 case 'bi-harmonic'
 K = x;
 %Added
 case 'tri-harmonic'
 for i=1:size(x,1) %row
 for j=1:size(x,2) %col
 K(i,j) = x(i,j)^3;
 end
 end

104

 case 'multiquadric'
 for i=1:size(x,1) %row
 for j=1:size(x,2) %col
 K(i,j) = (x(i,j)^2+c^2)^.5;
 end
 end
 case 'invmultiquadric'
 for i=1:size(x,1) %row
 for j=1:size(x,2) %col
 K(i,j)=(x(i,j)^2+c^2)^(-.5);
 end
 end
 case 'thinplatespline'
 for i=1:size(x,1) %row
 for j=1:size(x,2) %col
 if x(i,j)==0
 K(i,j)=0; %otherwise have log of 0
 else
 K(i,j) = x(i,j)^2*log(x(i,j));
 end
 end
 end
 case 'gaussian'
 for i=1:size(x,1) %row
 for j=1:size(x,2) %col
 K(i,j)=exp(-c*x(i,j)^2);
 end
 end
 otherwise
 error('Invalid kernel type used in Radial Basis Function estimator');
end
return

function [f, df] = regpoly1(S)

%REGPOLY1 First order polynomial regression function

% Call: f = regpoly1(S)
% [f, df] = regpoly1(S)
%
% S : m*n matrix with design sites
% f = [1 s]
% df : Jacobian at the first point (first row in S)

% hbn@imm.dtu.dk
% Last update April 12, 2002

[m n] = size(S);
f = [ones(m,1) S];
if nargout > 1
 df = [zeros(n,1) eye(n)];
end

105

function [f, df] = regpoly2(S)

%REGPOLY2 Second order polynomial regression function

% Call: f = regpoly2(S)
% [f, df] = regpoly2(S)
%
% S : m*n matrix with design sites
% f = [1 S S(:,1)*S S(:,2)S(:,2:n) ... S(:,n)^2]
% df : Jacobian at the first point (first row in S)

% hbn@imm.dtu.dk
% Last update September 4, 2002

[m n] = size(S);
nn = (n+1)*(n+2)/2; % Number of columns in f
% Compute f
f = [ones(m,1) S zeros(m,nn-n-1)];
j = n+1; q = n;
for k = 1 : n
 f(:,j+(1:q)) = repmat(S(:,k),1,q) .* S(:,k:n);
 j = j+q; q = q-1;
end

if nargout > 1
 df = [zeros(n,1) eye(n) zeros(n,nn-n-1)];
 j = n+1; q = n;
 for k = 1 : n
 df(k,j+(1:q)) = [2*S(1,k) S(1,k+1:n)];
 for i = 1 : n-k, df(k+i,j+1+i) = S(1,k); end
 j = j+q; q = q-1;
 end
end

106

APPENDIX B: ROC THRESHOLD DATA FILE

SET1 SET2
DETECTOR CLASSFIER DETECTOR CLASSFIER

FPR__D TPR_D FPR_C TPR_C FPR__D TPR_D FPR_C TPR_C
0.01 0.1685 0.01 0.0803 0.0005 0.4422 0.0005 0.4082
0.02 0.3483 0.02 0.166 0.001 0.4932 0.001 0.4592
0.03 0.524 0.03 0.2542 0.0015 0.5694 0.0015 0.5354
0.04 0.6816 0.04 0.3431 0.002 0.6098 0.002 0.5758
0.05 0.8 0.05 0.4311 0.0025 0.644 0.0025 0.61
0.06 0.8443 0.06 0.5168 0.003 0.674 0.003 0.64
0.07 0.8656 0.07 0.5987 0.0035 0.684 0.0035 0.65
0.08 0.8825 0.08 0.6751 0.004 0.704 0.004 0.67
0.09 0.8996 0.09 0.7435 0.0045 0.714 0.0045 0.68
0.1 0.917 0.1 0.8 0.005 0.724 0.005 0.69
0.11 0.9268 0.11 0.8375 0.0055 0.754 0.0055 0.72
0.12 0.9321 0.12 0.8629 0.006 0.754 0.006 0.72
0.13 0.9362 0.13 0.8802 0.0065 0.764 0.0065 0.73
0.14 0.9403 0.14 0.8919 0.007 0.7667 0.007 0.7327
0.15 0.944 0.15 0.9 0.0075 0.7865 0.0075 0.7525
0.16 0.948 0.16 0.9067 0.008 0.8261 0.008 0.7921
0.17 0.9517 0.17 0.9118 0.0085 0.8261 0.0085 0.7921
0.18 0.9549 0.18 0.9153 0.009 0.8261 0.009 0.7921
0.19 0.9576 0.19 0.9178 0.0095 0.8379 0.0095 0.8039
0.2 0.96 0.2 0.92 0.01 0.854 0.01 0.82
0.21 0.9627 0.21 0.9231 0.0105 0.8673 0.0105 0.8333
0.22 0.9653 0.22 0.9263 0.011 0.8673 0.011 0.8333
0.23 0.9676 0.23 0.9292 0.0115 0.8771 0.0115 0.8431
0.24 0.9695 0.24 0.9317 0.012 0.8981 0.012 0.8641
0.25 0.971 0.25 0.9339 0.0125 0.8981 0.0125 0.8641
0.26 0.9722 0.26 0.9356 0.013 0.8994 0.013 0.8654
0.27 0.9731 0.27 0.937 0.0135 0.909 0.0135 0.875
0.28 0.9738 0.28 0.9381 0.014 0.9102 0.014 0.8762
0.29 0.9743 0.29 0.9391 0.0145 0.9292 0.0145 0.8952
0.3 0.975 0.3 0.94 0.015 0.9307 0.015 0.8967
0.31 0.9761 0.31 0.9412 0.0155 0.9308 0.0155 0.8972

107

0.32 0.9773 0.32 0.9425 0.016 0.9308 0.016 0.8972
0.33 0.9786 0.33 0.9437 0.0165 0.9401 0.0165 0.9065
0.34 0.9798 0.34 0.9448 0.017 0.9495 0.017 0.9159
0.35 0.9809 0.35 0.9459 0.0175 0.9595 0.0175 0.9259
0.36 0.9819 0.36 0.9468 0.018 0.9595 0.018 0.9259
0.37 0.9828 0.37 0.9476 0.0185 0.9595 0.0185 0.9259
0.38 0.9836 0.38 0.9484 0.019 0.9595 0.019 0.9259
0.39 0.9843 0.39 0.9492 0.0195 0.9595 0.0195 0.9259
0.4 0.985 0.4 0.95 0.02 0.9595 0.02 0.9259
0.41 0.9857 0.41 0.951 0.0205 0.9595 0.0205 0.9259
0.42 0.9865 0.42 0.952 0.021 0.9595 0.021 0.9259
0.43 0.9871 0.43 0.9531 0.0215 0.9595 0.0215 0.9259
0.44 0.9877 0.44 0.9542 0.022 0.9595 0.022 0.9259
0.45 0.9882 0.45 0.9552 0.0225 0.9694 0.0225 0.9358
0.46 0.9887 0.46 0.9562 0.023 0.97 0.023 0.9364
0.47 0.9891 0.47 0.9572 0.0235 0.9795 0.0235 0.9459
0.48 0.9894 0.48 0.9581 0.024 0.9795 0.024 0.9459
0.49 0.9897 0.49 0.959 0.0245 0.9795 0.0245 0.9459
0.5 0.99 0.5 0.96 0.025 0.9795 0.025 0.9459
0.51 0.9904 0.51 0.961 0.0255 0.9795 0.0255 0.9459
0.52 0.9908 0.52 0.9621 0.026 0.9795 0.026 0.9459
0.53 0.9911 0.53 0.9631 0.0265 0.989 0.0265 0.9554
0.54 0.9915 0.54 0.9641 0.027 0.9891 0.027 0.9558
0.55 0.9918 0.55 0.9651 0.0275 0.9891 0.0275 0.9558
0.56 0.9921 0.56 0.9661 0.028 0.9894 0.028 0.9561
0.57 0.9923 0.57 0.9671 0.0285 0.9894 0.0285 0.9561
0.58 0.9926 0.58 0.9681 0.029 0.9894 0.029 0.9561
0.59 0.9928 0.59 0.969 0.0295 0.9894 0.0295 0.9561
0.6 0.993 0.6 0.97 0.03 0.9894 0.03 0.9561
0.61 0.9932 0.61 0.971 0.0305 0.9894 0.0305 0.9561
0.62 0.9935 0.62 0.972 0.031 0.9894 0.031 0.9561
0.63 0.9937 0.63 0.973 0.0315 0.9894 0.0315 0.9561
0.64 0.994 0.64 0.974 0.032 0.9894 0.032 0.9561
0.65 0.9942 0.65 0.975 0.0325 0.9894 0.0325 0.9561
0.66 0.9944 0.66 0.976 0.033 0.9898 0.033 0.9565
0.67 0.9945 0.67 0.977 0.0335 0.9898 0.0335 0.9565
0.68 0.9947 0.68 0.978 0.034 0.9898 0.034 0.9565
0.69 0.9948 0.69 0.979 0.0345 0.9898 0.0345 0.9565

108

0.7 0.995 0.7 0.98 0.035 0.9898 0.035 0.9565
0.71 0.9952 0.71 0.9811 0.0355 0.9902 0.0355 0.9569
0.72 0.9953 0.72 0.9821 0.036 0.9902 0.036 0.9569
0.73 0.9955 0.73 0.9832 0.0365 0.9902 0.0365 0.9569
0.74 0.9956 0.74 0.9842 0.037 0.9902 0.037 0.9569
0.75 0.9958 0.75 0.9853 0.0375 0.9902 0.0375 0.9569
0.76 0.9959 0.76 0.9863 0.038 0.9906 0.038 0.9573
0.77 0.9961 0.77 0.9873 0.0385 0.9906 0.0385 0.9573
0.78 0.9962 0.78 0.9883 0.039 0.9906 0.039 0.9573
0.79 0.9964 0.79 0.9892 0.0395 0.9994 0.0395 0.9661
0.8 0.9965 0.8 0.99 0.04 0.9994 0.04 0.9661
0.81 0.9966 0.81 0.9907 0.0405 0.9997 0.0405 0.9664
0.82 0.9967 0.82 0.9914 0.041 0.9997 0.041 0.9664
0.83 0.9969 0.83 0.992 0.0415 0.9997 0.0415 0.9664
0.84 0.997 0.84 0.9926 0.042 0.9997 0.042 0.9664
0.85 0.9971 0.85 0.9931 0.0425 0.9997 0.0425 0.9664
0.86 0.9972 0.86 0.9936 0.043 0.9997 0.043 0.9664
0.87 0.9972 0.87 0.9941 0.0435 0.9997 0.0435 0.9664
0.88 0.9973 0.88 0.9945 0.044 0.9997 0.044 0.9664
0.89 0.9972 0.89 0.9948 0.0445 0.9997 0.0445 0.9664
0.9 0.997 0.9 0.995 0.045 0.9997 0.045 0.9664
0.91 0.9965 0.91 0.9949 0.0455 0.9997 0.0455 0.9664
0.92 0.9958 0.92 0.9948 0.046 1 0.046 0.9667
0.93 0.9952 0.93 0.9946 0.0465 1 0.0465 0.9667
0.94 0.9948 0.94 0.9946 0.047 1 0.047 0.9667
0.95 0.9945 0.95 0.9947 0.0475 1 0.0475 0.9667
0.96 0.9946 0.96 0.995 0.048 1 0.048 0.9667
0.97 0.995 0.97 0.9956 0.0485 1 0.0485 0.9667
0.98 0.996 0.98 0.9965 0.049 1 0.049 0.9667
0.99 0.9976 0.99 0.998 0.0495 1 0.0495 0.9667

1 1 1 1 0.05 1 0.05 0.9667

109

Bibliography

1. 10 August 2006 Interview by Zito, S, McNickle, C., Craig, F. “Full Transcript of

Donald Rumsfeld Interview,” The post chronicle, 31 August 2006.

2. Defense Science Board. Combat Identification. Report. Washington: Office of the

Secretary of Defense for Acquisition and Technology, 1996.

3. Shannon, R.E. Systems Simulation: The Art and Science. Englewood Cliffs, N.J.:

Prentice-Hall, 1975.

4. Hartman, James K. Course notes, OPER 671, Combat Modeling I, Lecture Notes in

Aggregated Combat Modeling. Air Force Institute of Technology, Wright-Patterson
AFB OH, 1985.

5. Defense science and technology strategy and plans, “Combat Identification,” 2000.

[http://www.wslfweb.org/docs/dstp2000/jwstppdf/08-CID.pdf; Accessed Jul 9, 2007].

6. George Mason University, “Combat Identification with Bayesian Networks.”

[http://ite.gmu.edu/~klaskey/papers/LaskeyCCRTSCombatID.pdf; Accessed Aug 4, 2007].

7. Sadowski, C. "Combat Identification." Briefing to students, Air Force Institute of

Technology, Wright-Patterson AFB OH. 3 May 2007.

8. Rodriguez, June., PhD Student. “Combat Identification Characterization.” Air

Force Institute of Technology, Wright-Patterson AFB OH, 2006.

9. Donohue, Tom and Hylton, Paul. “A/G Requirement.” Briefing to students, Air

Force Institute of Technology, Wright-Patterson AFB OH. Mar 1999.

10. Hall, Debbie. “Air Force CID Issues and Analyses.” Briefing to students, Air Force

Institute of Technology, Wright-Patterson AFB OH. May 2001.

11. Rice, Roy E. “Quantifying “Persistence” in the Context of Find-Fix-Finish (FFF),”

The Bulletin of Military Operations Research, PHALANX, 40-2: 11-16 (June 2007)

12. Sanchez, Paul J. “As Simple As Possible, But No Simpler: A Gentle Introduction to

Simulation Modeling,” Winter Simulation Conference (2006).

13. Macal, Charles M. and North, Michael J. “Tutorial on Agent-Based Modeling and

Simulation Part2: How to Model with Agents,” Winter Simulation Conference
(2006).

14. Answers.com: Online dictionary.

[http://www.answers.com/object; Accessed Oct 2007].

110

15. Fawcett, Tom. “An introduction to ROC analysis,” Pattern Recognition Letters, 27
(December 2005).

16. Paciencia, Todd J. Multi-Objective Optimization of Mixed Variable, Stochastic

Systems Using Single-Objective Formulations. MS thesis, AFIT/GOR/ENS/08-17.
Department of Operations Research, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, 2008.

17. Laine, Trevor I and Bauer, Jr. Kenneth W. “A Mathematical Framework to

Optimize ATR Systems with Non-Declarations and Sensor Fusion,” Computer &
Operations Research, 2006.

18. Alsing, Stephen G. The evaluation of competing classifiers. MS thesis,

AFIT/DS/ENS/00-01. Department of Operations Research, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, 2000 (ADA375294).

19. Koopman, B.O. OEG Report 56 on Search and Screening. Operations Evaluation

Group, office of the Chief of Naval Operations, Navy Department, 1946.

20. Miller, John O. Class Slides, OPER 671, Combat Modeling I. Department of

Operations Research, Air Force Institute of Technology, Wright-Patterson AFB OH,
July 2007.

21. Nocedal Jorge and Wright, Stephen J. Numerical Optimization. New York:

Springer, 2006.

22. Montgomery, Douglas C. Design and Analysis of Experiments (6th Edition). New

Jersey: Wiley, 2005.

23. Fowlkes, W. Y. and Creveling, C. M. Engineering Methods for Robust Product

Design: Using Taguchi Methods in Technology and Product Development. New
Jersey: Pearson Education, 1995.

24. Montgomery, Douglas C. Design and Analysis of Experiments (3rd Edition). New

Jersey: Wiley, 1991.

25. Law Averill M. Simulation modeling and analysis (4th Edition). New York:

McGraw-Hill Book Company, 2007.

26. Wackerly, Denneis D. and others. Mathematical statistics with applications (6th

Edition). Pacific Grove CA: Duxbury, 2002.

27. Bauer, Kenneth W. Course Notes, OPER 685, Applied Multivariate Analysis I.

Department of Operational Sciences, Air Force Institute of Technology, Wright-
Patterson AFB OH. November 2007: 88, 95

111

112

Vita

 Captain TaeHo Kim graduated from Gwang-Ju high school in Gwang-Ju, Korea.

He entered undergraduate studies at the Korea Military Academy where be graduated

with a Bachelor of Engineering Degree in Civil Engineering and received a regular

commission in March 2003.

 He served as a platoon leader, G-1 officer at Engineer Battalion unit and so on for

three years. In August 2006 he entered the Graduate School of Operations Research, Air

Force Institute of Technology. Upon graduation, he will be assigned to be a company

commander.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

07-03-2008
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Jun 2007 - Mar 2008
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

COMBAT IDENTIFICATION MODELING USING ROBUST

OPTIMIZATION TECHNIQUES
5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Kim, TaeHo, Captain, ROKA

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Street, Building 642
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/GOR/ENS/08-11

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
ACC/A8SI, AFOSR
Attn: Charles Sadowski Jr.
204 Dodd Blvd Suite 226
Langley AFB, Va 23665-2702

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The purposes of this research were: (1) the modeling of a CID situation and (2) the search for robust and controllable input variable settings.

The inputs were defined as controllable and noise variables and the confusion matrices in ROC theory were adapted to act as controllable factors. In

this research a simple virtual battlespace representation is employed. The experimental results of the CID system are summarized by a posterior

confusion matrix and throughout the confusion matrix analysis we can obtain all various types of data such as accuracy, error cost, error rates, and so

forth. To find the optimal parameters three evaluation techniques were applied: (1) Linearly constrained discrete optimization, (2) Taguchi’s S|N

ratio method and (3) Robust parameter design with a combined array. The results are compared and contrasted across different objective functions.

15. SUBJECT TERMS

 Combat Modeling, Combat Identification, Receiver Operating Characteristics Analysis, Confusion Matrix,
 Robust Parameter Design, Linearly Constrained Optimization, Taguchi’s Signal to Noise Ratio, Accuracy

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. Kenneth W. Bauer

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

125

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4328; e-mail: Kenneth.Bauer@afit.af.mil

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

113

114

