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Abstract 

 
  In modern warfare, Tactical Unmanned Aerial Vehicles (TUAVs) are rapidly 

taking on a leading role in traditional and non-traditional ISR, to include Automatic 

Target Recognition (ATR). However, additional advancements in processors and sensors 

on TUAVs are still needed before they can be widely employed as a primary source for 

positive identification in the Combat Identification (CID) process.  Cost is a driving 

factor for operating an ATR system using multiple TUAVs. The cost of high quality 

sensors appropriate for a single TUAV can be significantly higher than less sophisticated 

sensors suitable for deployment on a group, or swarm, of coordinated TUAVs.  

Employing two or more coordinated TUAVs with less complex sensors may lead to an 

equivalent or even better CID call than sending a single TUAV with more sophisticated 

sensors at a significantly higher cost. In addition, the coordinated TUAVs may be capable 

of reducing the time needed to correctly discriminate an object. 

In our study we construct a simulation model of a single TUAV system with a 

high quality sensor and competing TUAV swarm systems using less capable sensors in 

Arena.  We use the Boolean OR rule in our fusion algorithm to combine the declaration 

of sensors modeled in the swarm system.  Five measures of performance (accuracy, 

number of TUAVs shot down, TUAV preparation time, mean of decision time, mean of 

simulated mission time) from the simulation models are collected to compare the swarm 

system to the single TUAV system.  Statistical comparisons are conducted using a paired 

iv 



v 

t-test. The results illustrate improved performance of our swarm systems across most 

measures of performance.
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COMBAT IDENTIFICATION 

USING MULTIPLE TUAV SWARM 

 

I.  Introduction 

 

1.1. Background 

During Operation Iraqi Freedom some air-to-ground fratricide involving US pilots 

occurred. One of the worst incidents occurred when US Navy jets attacked Kurdish 

fighters and a group of US Special Forces (SOFs) leading a convoy of them in northern 

Iraq. US Special Forces sent two US fighter jets a message by radio to remove an Iraqi 

tank obstructing their way. But one of jets fired a missile at the Special Forces and 

Kurdish fighters, instead of dropping its bomb on an Iraqi tank. This incident resulted in 

18 Kurds killed and three SOF injured.  After making an investigation into the fratricide, 

the investigator announced that there was a simple communication mistake as a cause of 

incident. The radio of the US navy jet that had dropped a bomb on friendly forces was 

incompatible with the SOF. The SOF could communicate only with USAF aircraft in that 

operation. Furthermore, although the vehicles carrying the friendly fighters was marked 

with clear fluorescent-orange, the fighter aircraft could not identify them, because dust 

and low clouds had obscured the pilots’ vision [1].  

According to US Army TRADOC Fratricide Action Plan, “Fratricide is the 

employment of friendly weapons and munitions with the intent to kill the enemy or 

destroy his equipment, or facilities, which result in unforeseen and unintentional death or 

injury to friendly personnel.” The incident of fratricide has continuously happened as a 
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result of warfare on a battlefield. Especially in ground-to-ground or air-to-ground 

engagements, one of the important tasks for the efficient conduct of modern warfare is to 

preclude or reduce such misshapes from occurring. Aircrafts fly faster and Tanks fire at 

longer rages. Their precision and lethality have been increased through advances in 

technology. In addition the capability to identify friend-or-foe has made startling 

progress. Nevertheless, the lack of target identification and situational awareness on the 

battlefield occasionally results in fratricide. As seen in combat history, fratricide will 

never totally be eliminated, but the number of occurrences of fratricide can be reduced 

via development in technology for Combat Identification (CID) along with enhanced 

training.  

 When Army combat commanders are asked what has contributed most to their 

victory in Iraq, they often respond that it is Intelligence, Surveillance, and 

Reconnaissance (ISR). This comes from the coordinated use of Unmanned Aerial 

Vehicles (UAVs) (from Ravens to Global Hawks), manned aircraft carrying cameras, 

electric sensors, and many other assets for ISR [2].  

 In July 2008, in an interview with The Hill (a congressional newspaper), Air 

Force Lt. Gen. Michael Peterson said, “What we did is we took an end-to-end look at 

what we could provide and what we can deliver in terms of ISR. The highlight of that is 

the importance of full-motion video to the ground force. Today most of that is done with 

the Predator [unmanned aerial vehicle (UAV)]. Global Hawk [UAV] has still images, but 

we also moved on with a few aircraft called Reaper [UAV], which is the follow-on 

generation to the Predator.” [3]. UAVs are more often being used for military purposes, 

like search and surveillance in the battlefield. They play a decisive role in information 
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collection from hostile and unknown areas. 

 

1.2. Research problem 

 In modern warfare, UAVs are rapidly taking on a leading role in traditional and 

non-traditional ISR, to include Automatic Target Recognition (ATR). With the 

development of technology, the processors and sensors on UAVs have been improved, 

however, advancements are still needed before they can be widely employed as the 

primary or perhaps sole source for positive identification in the CID process.  

The CID process strongly depends on the ability of the sensors to determine the 

identification of objects. Poor sensor information will result in poor performance in the 

CID process. Fused sensors from coordinated UAVs can provide more information than 

the sensor with a single UAV. Cost is a driving factor for operating an ATR using 

multiple UAVs. The construction cost of such an ATR system relies on the quality of 

sensors, airframes, and many other components. However, sending two or more 

coordinated UAVs with less complex sensors may lead to an equivalent or even better 

CID call than sending a single UAV with more sophisticated sensors at a significantly 

higher cost. In addition, the coordinated UAVs may be capable of reducing the time and 

the number of UAVs needed to correctly discriminate an object. 

We expect that a swarmed system [4] incorporating the capabilities of multiple 

UAVs to cooperatively perform ATR will decrease simulated mission time and increase 

likelihood of making the correct CID call for selected scenarios.  
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1.3. Scope 

 The scope of this thesis is to analyze multi-agent UAV swarm to understand the 

effects of changing defined variables in CID process, including True Positive Rates 

(TPRs) in the discrimination process for scenarios with varying number of enemies. The 

analysis includes construction of a detailed computer simulation of the entire CID process 

in Arena for a scenario with only enemies present. The model is used to explore major 

factors that affect the decision time and the correct CID call. This analysis examines the 

feasibility of ATR using a UAV swarm compared to ATR using a single UAV for a 

variety of performance measures and provides insight into developing a strategy to 

improve ATR performance in such a system. 

 

1.4. Thesis Organization 

    The remainder of this document is organized as follows. Chapter 2 presents a 

literature review including an introduction of system, model, and simulation, an overview 

of Arena as a simulation tool, a description of CID, and an introduction of a Tactical 

UAV (TUAV) and ATR. It also contains an overview of a method to perform fusion and 

common technique used to assess ATR performance. Chapter 3 presents a methodology 

for constructing the simulation model in Arena. Chapter 4 provides the results and 

analysis of simulation. Finally, chapter 5 presents a summary of contributions and 

findings along with thoughts for the continuation of related research. 
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II. Literature review 

 

 

Introduction 

 This literature review is arranged with the following primary sections. Section 2.1 

provides a review of the subjects related to system, model and simulation. Section 2.2 

provides an overview of Arena, a simulation software package, used to build the CID 

model. Section 2.3 provides a description of CID. Section 2.4 provides a general 

knowledge of TUAV and ATR. Finally, section 2.5 presents an overview of the method 

to perform fusion and common techniques used to assess ATR performance. 

 

2.1 System, Model and Simulation 

 A system that relies on the objective of a particular study is defined as a collection 

of entities which interact each other toward the attainment of some logical end. The state 

of a system is a collection of variables necessary to describe a system at a particular time. 

For example, in a study of a bank, if one wants to decide the number of tellers needed to 

provide adequate customer service, the system can be described as a portion of the 

customers waiting in line or being served and the tellers. In addition, the tellers and the 

customers can be defined as objects and examples of possible state variables are the time 

of arrival of each customer and the number of tellers in the bank [4:3]. 

 A model is defined as a simplified representation of a system at some particular 

point in time or space intended to promote understanding of the real system.  Modeling, 

especially scientific modeling implies the process of generating a model as a conceptual 
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representation of some phenomenon.  This conceptual model is used to implement 

computer simulation that describes the behavior of a system over time. In general one 

builds a model, simulates it, gets something by simulating the model, revises the model 

and proceeds the iteration till a sufficient level of understating is obtained. 

Figure 2.1 maps out diverse ways in which a system might be studied in order for 

one to get some insight into the interactions or relationships among various components, 

or make a prediction for the performance under new conditions being set. 

 

 

Syst

Experiment 
with the 
actual 

Experiment 
with a 
model

Physical 
model 

Mathematic
al

 

Analytical 
solutio

Simulation 
n

Figure 2.1 Ways to study a system [4:4] 

 

 

2.1.1 Simulation 
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 “Simulation refers to a broad combination of techniques and applications to 

imitate the real systems. Simulation is usually implemented on computer by using several 

available software tools. Furthermore, it can be said that simulation is a general 

expression since the idea finds its applications across many fields and industries” [5]. If 

the mathematical or logical relationships that constitute a model are simple enough, 

mathematical methods, e.g., probabilistic theory or algebra would be fine with one who 

wants to gain some understanding about behavior of the model. However, because most 

real systems are too complex, realistic models cannot be evaluated analytically, and these 

models should be studied by simulation. Applications for simulation are huge and 

various. Its examples are listed below [4:2]. 

• Designing and analyzing manufacturing systems 

• Evaluating military weapons system or their logistics requirement 

• Analyzing supply chain 

• Determining hardware and software requirements for a computer system 

• Evaluating designs for service organizations such as contact centers, fast-food 

restaurants, hospitals, and post offices 

 

2.1.2 Simulation Classifying 

 Simulation is classified along three different dimensions as discussed below [4:5]. 

• Statistic vs. Dynamic Simulation Models. A static simulation model represents a 

system at a specific time, or used to represent a system where time plays no role. 

Monte Carlo models are good examples of a static simulation. On the other side, a 
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dynamic simulation is defined as a depiction of a system where it evolves over 

time, such as a queuing system in a bank.  

• Deterministic vs. Stochastic Simulation Models. A deterministic simulation model 

is defined as a simulation model does not include any probabilistic components. 

Once input quantities and relations in deterministic models are detailed, the output 

is determined. If a simulation model contains some random input components, it 

is called stochastic. A stochastic simulation model produces output that is itself 

random. 

• Continuous vs. Discrete Simulation Models. A discrete simulation model has state  

variables changing only at a countable number of points in time. These points in 

time are the ones at which the events occur, or change in state. On the other hand, 

if the state variables change in a continuous way, it is a representation of a 

continuous simulation model.  

  

2.1.3 Discrete Event Simulation 

 In a discrete event simulation, the system operation is defined as a chronological 

sequence of events. Each event occurs at an instant in time and marks a change of state in 

the system [6]. “Though simulation has been applied to a great diversity of real world 

systems, discrete event simulation models all share a number of common components 

and there is a logical organization for these components that promotes the programming, 

debugging, and future changing of a simulation model’s computer program” [4:9]. In 

most discrete-event simulation models, the following components are found. 

• System state: The collection of state variables necessary to describe the system at 
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a particular time. 

• Simulation clock: A variable giving the current value of simulated time. 

• Event list: A list containing the next time when each type of simulated Time. 

• Statistical counters: Variables used for storing statistical information about 

system performance. 

• Initialization routine: A subprogram to initialize the simulation model at time 

zero. 

• Time routine: A subprogram that determines the next event from the vent list and 

then advances the simulation clock to the time when that event is to occur. 

• Event routine: A subprogram that updates the system state when a particular type 

of event occurs (there is one event routine for each event type). 

• Library routines: A set of subprograms used to generate random observations 

from probability distributions that were determined as part of the simulation 

model. 

• Report generator: A subprogram that computes estimates of the desired measures 

of performance and produces a report when the simulation ends. 

• Main program: A subprogram that invokes the timing routine to determine the 

next event and then transfers control to the corresponding event routine to update 

the system state appropriately. 

 

Figure 2.2 shows the logical relationships among these components. First of all, 

the initialization routine is invoked in the main program, and the simulation starts at the 

time zero, where the simulation clock is set to zero, the simulation initializes the system 
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state, statistical counter, and event list. Then, the main program takes control in order for 

it to invoke the timing routine to decide the next event time. If event type i is the next to 

occur, the time routine advances the simulation clock to the time that an event i will 

occur, and event routine i is invoked by the main program. After the system state and the 

statistical counters gathering information about performance of system are updated, the 

occurrence time of future events are generated, and the information is added to the event 

list. Then, if the stopping conditions are satisfied, the estimates (from the statistical 

counters) of performance measure and a report are, respectively, computed and made by 

the report generator. On the other hand, if the conditions for termination are not enough, 

the main program is invoked from the event routine i and all processing is repeated until 

the stopping conditions are met. 
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Figure 2.2 Flow of control for the next-event time-advance approach [4:10] 
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2.2 Overview of Arena 

Arena 10 is used for the development and analysis of this research. This 

simulation and automation software using the SIMAN processor and simulation language 

is developed by Rockwell Automation. Arena is widely used to simulate a company’s 

process, such as manufacturing plants, to analyze its current performance as well as 

possible changes that could be made. By accurately simulating a process, a company can 

see the outcome of changes without implementing them in real-time, thus saving valuable 

time and resources. 

With Arena, the user can build their model by dragging module representing 

process or logic from the Project Bar into the Model Window Flowchart and placing it 

and simulate the performance of the system to understand complicated relationships and 

figure out opportunities for improvement. Besides, since it can visualize the operation 

with dynamic animation graphic, this feature gives the user more clear understanding and 

helps the user check model verification. Finally, to decide the best way, the user analyzes 

how the system will perform in its various configurations and under a myriad of possible 

alternatives [7].  

Arena itself has three additional tools for analyzing data or performance 

measures. Firstly, the input analyzer is used to determine the best fit of probability 

distribution functions to input data. Besides, it can generate random data, such as a set of 

inter-arrival time or process time, to be analyzed. The output analyzer component of 

Arena is used to display output data so that it allows the user to view and analyzed his 

data quickly and easily. Lastly, if the simulation model is completed, validated and 

configured properly for use by the process analyzer, the process analyzer is used to 
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compare the outputs from validated models based on different model inputs, such as 

different process times and possible number of teller in a bank and etc., or scenarios.  

 

2.3 Description of Combat Identification  

 Sensors, communications and computation systems to provide situational 

awareness of battle space are combined in network centric warfare (NCW). One of 

elements of the awareness is known as CID to indentify friendly combat entities or 

enemies. 

 CID is defined as a process of attaining accurate characteristics of objects 

detected in the battle-space and identifying the objects as friends, neutrals and enemies. 

CID must be performed in the all of mission area including air, land and sea in order for 

commanders to timely decide their COA on enemy action and to effectively employ their 

forces and weapons and to minimize friendly force’s casualties. 

 

2.3.1 Taxonomic Relationships Defined  

As shown in Figure 2.3, identity can be described by seven states. Each object 

detected is identified as one of them consisting of hostile, neutral and friendly. It refers to 

where the object is detected and which type of object is at different levels of detail from 

platform type like fighter. Nationality implies that which country the aircraft belongs to. 

Finally, activity mission tells for what the aircraft is doing such as air patrol or strike.  
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Figure 2.3 Combat ID Taxonomy [9] 

 

2.3.2 Outline of CID Process 

The entire concept of CID is shown in Figure 2.4. The “Direct” ID source comes 

from sensors equipped with the platform of shooter but the “Indirect” ID source refers to 

off-board. Single or multi sources of ID information each have some probability of 

correct ID are fused to provide an overall statistical declaration of the identity. Then, the 

engagement rules are applied and if it is within threshold for statistical declaration, firing 

decision will be given.   

  

Figure 2.4 Combat Identification Process [10] 
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2.3.3 Air to Ground (A/G) CID Scenario 

 Though there are several CID scenarios such as Air to Air and Air to Ground and 

etc, this section will cover only A/G scenario of CID, because this research is a flavor of 

A/G CID. The A/G CID architecture consists of three platforms: a Forward Air 

Controller (FAC) being assumed to a ground FAC, A/G shooter being a fixed-wing 

aircraft, and A/G surveillance by Off-board sources or UAVs. Each of the platforms is 

connected to each of the other platforms to pass data in all nodes. Given an object 

detected, a fusion algorithm is applied to combine various sources from cooperative and 

non-cooperative systems. If it is declared as a target, CID information will be transferred 

to a warfighter to let him know all information of the target. After all, he will shoot the 

target and completes his mission.  

 

2.3.4 Introduction to Automatic Target Recognition 

 As mentioned above, Combat ID uses both cooperative system and non-

cooperative identification methods. Identification Friend or Foe (IFF) system is an 

example of cooperative systems. This system inquires it using electronic communication 

between two friendly systems to identity a potential target. If there is no feedback, non-

cooperative means must be made.  

Non-cooperative means can be performed by a man-in-the-loop, autonomously by an 

identification system, or by both. One possible man-in-loop mean is for the pilot to 

visually confirm the potential target before engagement. An Automatic Target 

Recognizer (ATR) is considered to be a case of non-cooperative Combat ID performed 

by an autonomous system [11:2].   
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Military ATR systems have been around since the early 1960’s [12]. Laine [11] 

states, “improved ATR systems would help streamline the Combat ID process and allow 

the USAF to use Global Hawk at more than the one-third capacity used during Operation 

Iraqi Freedom (OIF).”  

 Figure 2.5 shows a notional ATR system with sensors. One or multi sensors on 

the same of different platforms are assigned to the Region of Interest where potential 

targets can be located. Then, the system performs detecting, tracking and classifying 

them. The ATR system is suggested that it contain a minimum of three output labels: 

Target, Non-Target, and Non-declaration. According to USAF doctrine, a desired level of 

confidence in declaring the object is needed before making a fire decision [13], [14]. 

When “non-declaration” is labeled due to lack of confidence, the ATR system may keep 

watching to get more information. In these situations, the current ATR system takes 

multiple looks of the same target within limited time, since other platforms may not be 

available to help in the ID process [11:5]. 

 

 

Figure 2.5 Notional ATR System with Sensors A & B Collecting Data through Time [11] 
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2.4 Data Fusion for Automatic Target Recognition. 

 Lots of quantitative techniques are available to implement fusion at various levels. 

It is important for one to find the best technique for a given application. All the data 

fusion communities do not agree about which fusion methodology is best for the 

application [15]. However, if the individual sensor data is refined to create a class label, 

then the Boolean voting logic is considered as a standard fusion methodology to figure 

out a single class estimate [16], [17], [18]. 

 

2.4.1 Boolean Fusion Methodologies for ATR System 

Boolean rules can be used as a method of combining output labels of distinctive 

identification systems. The followings are examples of Boolean fusion rules. 

• Logical AND. If and only if all of the sensor labels denote the target is a “Hostile”, 

the unknown objective is identified as a Hostile target. This rule may be called as 

the AND rule. 

• Logical OR. If any of the sensors classify it as a “Hostile”, then the system 

concludes an object is a “Hostile.” This rule may simply be referred to as the OR 

rule. 

• Majority Vote. A majority of the sensors is required to determine the target as a 

“Hostile.” For example, 2 or more “Hostile” label are needed for a three sensor 

suite to declare “Hostile.” 

• Sensor Corroboration. The fusion logic related to sensor corroboration requires 

one of the sensor not only to declare a target as a “Hostile” but also to corroborate 
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this label with one of others. As mentioned by Hill (2003), such a fusion rule may 

be appropriate when sensors do perform different function in discriminating an 

object. 

• Sensor dominance. This fusion logic may be appropriate in the case that one 

sensor performs better than others. For example, sensor A has high confidence 

and declares a fused “Hostile” label regardless of the labels from sensor B and C. 

 

Figure 2.6 for the use of three sensors (SA, SB and SC) depicts an illustration of 

Boolean logic fusion rules for the use of three sensors. Positive declarations of “Hostile” 

targets are represented by the grey areas for each of the Boolean fusion rules. 

 

 

Figure 2.6 Examples of Various Boolean Fusion Rules with Venn Diagrams [11:45] 
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2.4.2 Mathematical Framework for 3-Class Data Fusion Experiment 

Various classification problems have been modeled at the top-level using 2-

classes. An ATR system declaring an unknown object as a target or non target is an 

example showing a 2-classes model above. However, before an ATR system declares an 

unknown object as a target and it is engaged, a minimum level of confidence is required 

by the USAF. Consequently, three output classes including “Target,” “Non-target” and 

“Non-declaration” are required to explain for those cases when the confidence is not 

satisfied. Figure 2.7 shows a sample of 2-class confusion matrix with a “Non-

declaration,” with a column for each labeled class and a row for each true class. For most 

applications, warfighters perform horizontal analysis, but engineers are concerned with 

vertical analysis of the confusion matrix yields the estimates of error from the number of 

class labeled. The error rates are calculated as conditional probabilities using Bayes rule 

with other prior probabilities of class membership (denoted PT and PF). 

 

 

Figure 2.7 Confusion Matrix with Rejection and Error Contributions [11:121] 
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The critical and non critical errors will be defined as below. 

• Probability of a Critical Error: the probability of classifying a Friend as “Target”, 

s ch a caseu  like fratricide, 

ܲሺܧோሻ ൌ
"ݐ݁݃ݎܽܶ" ݏܽ ݀݁ݎ݈ܽܿ݁݀ ݏ݀݊݁݅ݎܨ ݂ ݎܾ݁݉ݑܰ

ܶ ܽ ݐTarget" declarations" ݂ ݎܾ݁ݑ݊ ݈  

               ൌ  ிܲ ܲி

ிܲ ܲி  ்ܲ ்ܲ
 ,                                                                                        ሺ2.1ሻ 

• Probability of a Non Critical Error: the probability of classifying an Enemy as a 

Friend, for y,  example lost opportunities to engage the enem

ܲሺܧேሻ ൌ
"݀݊݁݅ݎܨ" ݏܽ ݀݁ݎ݈ܽܿ݁݀ ݏݐ݁݃ݎܽܶ ݂ ݎܾ݁݉ݑܰ

ܶ ܽ ݐFriend" declarations" ݂ ݎܾ݁ݑ݊ ݈  

               ൌ  ்ܲ ܲிே

ிܲ ்ܲே  ்ܲ ܲிே
 ,                                                                                       ሺ2.2ሻ 

and the probabilities of False Negatives and True Negatives are, ܲிே ൌ ܲிேሺߠሻ ൌ 1 െ

்ܲሺߠሻ and ்ܲே ൌ ்ܲேሺߠሻ ൌ 1 െ ܲிሺߠሻ. If it is assumed that all objects belong to one 

of the true classes, ܲ, the probability of declaration, can be used as a performance 

measure of the “Non-declaration” labels. The probability of rejecting a sample is related 

as: ܲோா ൌ 1 െ ܲ. The probability of a declaration is then:  

• Probab ther class being declared “ND” ility of a Declaration: the probability of ei

             ܲ ൌ
"ܦܰ" ݏܽ ݀݁ݎ݈ܽܿ݁݀ ݏݐ݆ܾܿ݁ ݂ ݎܾ݁݉ݑܰ

ܾ ݀݁ݐܽݑ݈ܽݒ݁ ݏݐ݆ܿ݁ ݈ܽݐݐ  

                                                                                    ሺ2.3ሻ      ൌ ்ܲ ்ܲ  ிܲ ܲி ,                             

where ்ܲ ൌ ܲሺ"ܰܦ"|ܶሻ ܽ݊݀ ܲி ൌ ܲሺ"ܰܨ|"ܦሻ. Given all probabilities calculated from 

test, ܲ ൌ ܲ will be assumed for the remainder. 

19 



2.5 Concept of Tactical Unmanned Aerial Vehicle (TUAV) 

 TUAV is designed to be a ground maneuver brigade commander’s UAV, 

providing him with a number of benefits to include: enhanced enemy situational 

awareness, a target acquisition capability, battle damage assessment (BDA), and 

enhanced battle management capabilities (friendly situation and battlefield visualization). 

TUAV gives the commander “dominant eye” allowing him to see into area where the 

commander does not want to send ground reconnaissance elements or manned aerial 

platforms. It can be linked to and cued by sound IPB and wide area sensors such as 

JSTARS Common Ground Station (CGS), Artillery Counter Mortar/Battery Radars, and 

Forward Area Air Defense System (FAADS) for distribution via intelligence channels.  

The system is designed for ease in launching, operating, recovering, and 

maintaining with minimal training, logistics, and personnel. To reduce its footprint, tear 

down in rapid, deploy and set up, and minimize impact on brigade combat service 

support (CSS) resources, it presents a small profile in battlefield.  

A TUAV system consists of four basic components: Ground Control Stations 

(GCS) and related equipment, Air Vehicles (AV), Modular Mission Payloads (MMP), 

and communications. The TUAV baseline is to provide 12 hours of continuous 

operations within a 24-hour period. For no more than three consecutive days, the system 

is capable of surge operations for 18 hours per 24-hour period, and the following day is 

limited to 8 hours of operation. A full baseline requires a crew of approximately 22 for 

operation and maintenance at the operational tempo above. 
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2.5.1 Air Vehicle 

 The air vehicle (Figure 2.8), constructed of composite materials and powered by a 

rotary engine, is a mid-wing monoplane with a twin boom empennage supporting an 

inverted-V tail. The TUAV system has four-hour endurance with a range of 50 kilometers 

from the launch and recovery site. It is operated with clear line of sight between the air 

vehicle and ground data terminal/portable ground data terminal [19]. Though it is not 

designed to meet the requirements of low signature, due to composite materials and its 

small size, it can reduces signature characteristics and is not visually detectable from 

range exceeding 4,000 ft and not audible from ranges exceeding 2,000 ft. It is capable of 

operating during less than ideal weather conditions, such as moderate rain condition, 

within its radius of action. Nominal operating/survivable altitudes for day and night 

operations are respectively from 8,000 to 10,000 feet Above Ground Level (AGL)/from 

6,000 to 8,000 feet AGL. Heavy icing, precipitation, or high surface winds may prevent 

launches or operations in some areas. 

 

 

Figure 2.8 Air Vehicle [20]  
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2.5.2 Modular Mission Payloads (MMPs) 

 The baseline sensor of the TUAV is the Electro-Optic/Infrared (EO/IR) payload 

(Figure 2.9). The payload is a multi-mode, Forward Looking Infrared (FLIR) / Line 

Scanner / TV sensor. It is required to have resolution enough to detect and recognize an 

Armored Personnel Carrier (APC) sized target at the operational altitudes of day and 

night operation and at survivable standoff ranges (3-5km) from imaged target. In EO and 

IR mode, the requirements are respectively for 80 percent probability of detection at 3.8 

km and 70 percent of that at the targeted range of 3.5 km [18]. It is capable of 

autonomous preplanned operation and instantaneous retasking throughout a mission. In 

addition, it can provide continuous zoom capabilities when in EO mode and multiple 

Fields of View (FOV) when in IR and slew 360 degrees.  

 

 

Figure 2.9 EO/IR Payload [20] 

 

 The payload of secondary priority is a Synthetic Aperture Radar/Moving Target 

Indicator (SAR/MTI).  This payload increases situational awareness by providing high-

resolution imagery enough to detect and recognize APC sized target at operational 

altitudes and survivable standoff range in this situation, e.g., adverse weather or 
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battlefield obscurants. The MTI adjunctive to Joint Surveillance and Target Attack Radar 

System (JSTARS) serves as an immediate cure to potential threat activity. If it detects 

and recognizes threat activity, the activity can be confirmed by onboard EO/IR or SAR 

sensors.  

 

 

Figure 2.10 Synthetic Aperture Radar Imaging Concept  

 

Michael P. Farmer [21:69] states, “A TUAV payload that incorporates a SAR, 

which is one of the future payloads being designed for the TUAV, combined with an 

ATR system at the GCS, could provide this solution (to reduce / remove the role of the 

man in the loop in the CID process) in the near future.”  According to Sandia National 

Laboratories [23], the expected appearance of target vehicles in SAR imagery are 

modeled and quantified. Match metrics, derived from mathematical principles, measure a 

level of agreement between target models and potential targets detected in new SAR 

imagery.   

 The TUAV Communications/Data Relay payload is used to provide Very High 

Frequency/Ultra High Frequency (VHF/UHF) beyond line of sight relay for 

23 



communications, supporting extended range operations of Army XXI with 

communication while operating on board the TUAV.  

 

2.5.3 Ground Control Station (GCS) 

 A GCS is designed for two primary functions. The first primary function is to 

control, track, and operate the AV. Second, it is used to manipulate the payload, receive, 

and process telemetry and video downlinks. In addition, it can call for and adjust indirect 

fire.  

TUAV system has two GCSs, each in a High Mobility Multipurpose Wheeled 

Vehicle (HMMWV) mounted Command and Control (C2) shelter. The GCS consists of 

two operator positions, an air vehicle operator position and a Mission Payload Operator 

(MPO) position. Since both positions are identical in capability, functions can be 

transferred to either when one operator position fails. It can not only control and 

communicate with one AV at a time but also control another AV while another GCS 

prepares its AV for launching or recovering. As long as there is line of sight path between 

the Ground Data Terminal (GDT) and the AV, the AV is controlled through the GDT to 

distances up to 50 kilometers.  
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Figure 2.11 Ground Control Station (GCS) – Interior View [20] 

 

2.5.4 Ground Communications 

 The GCS provides easy interface to the existing secure command, control, 

communications, computers, and intelligence (C4I) architecture. It includes Common 

Ground Station (CGS), Advanced Field Artillery Tactical Data System (AFATDS), All 

Source Analyses System (ASAS), Forward Area Air Defense System (FAADS), and 

Army Airspace Command and Control (A2C2). Various communication systems 

including secure voice, electronic dissemination, and video in the GCS are used for 

intelligence reports. Secure communications and intelligence dissemination are provided 

through the standard DoD tactical (VHF and UHF) radios, Mobile Subscriber Equipment 

(MSE), and the Tactical Local Area Network (TACLAN). TUAV communications must 

interface with selected standard DoD C4I systems, National Security Agency approved 

encryption systems, and etc.  
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The tactical communication system gives TUAV tactical users integrated 

communication for mission support and communication between GCSs. Radio 

communications between operators in GCS, external system users, and support units are 

performed through Single Channel Ground and Airborne Radio System (SINCGARS) 

radios. The Single Unit Transceiver radio (SUT) provides external voice communications 

on the flight line. 

 

 

Figure 2.12 GCS Radios and Communications Devices [19] 

 

Telephones can be also used for communication between the TUAV Control 

Shelters, Mobile Maintenance Facility, and system users. A tactical telephone as a part of 

the TUAV system is capable of handing digital data and voice communication. There are 

two telephone networks available: Mobile Subscriber Equipment (MSE) for telephone 

(voice/data) communication and one fiber optic net (Ethernet) for intra shelter voice/data 

communication. 

26 



III. Methodology 

 

Introduction 

 Chapter 3 presents our methodology for analyzing TUAV swarm with low-value 

sensors versus a single TUAV with a high-value sensor and how our simulation model 

was constructed. This chapter consists of four sections; the first provides a conceptual 

model description and assumptions for the simulation model, the second section focuses 

on the steps of building the simulation model using Arena, the third covers specific 

variables and statistics used for our study, and finally the fourth section discusses 

verification and validation of the model. 

 

3.1 Model Description and Assumptions  

Our CID process begins with a wide area sensor’s (such as JSTARS) reception of 

Moving Target Indicator (MTI) data. This data from the JSTARS platform is transferred 

to the JSTARS CGS located at a Brigade Tactical Operations Center (TOC). A decision 

maker, such as Brigade Commander, Executive Officer, or Operational Officer, at the 

TOC has to decide if he develops the MTI item further or not. If he decides to further 

develop it, he may use one of their internal assets (i.e., TUAVs or ground reconnaissance 

units) to gain more information on the MTI or request additional intelligence an outside 

agency such as satellite imagery. If tasked to the TUAV, the item is routed to a GCS.  All 

TUAVs (the single system or the two system swarm) are assumed to use the same 

platform and assumptions for preparation time, and time to travel to target area, etc. The 

only modeled difference is in terms of better (at a significantly higher cost) sensor 
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capabilities on the single system TUAV. In the case of single TUAV system, on receiving 

an MTI, a GCS prepares to launch its TUAV and send it to a mission area. After 

preparation, a TUAV moves to the mission area and begins the discrimination process in 

a Region of Interest (ROI). We define the discrimination process as the TUAV declaring 

(labeling) the MTI data as an enemy (target) or not. For this study every MTI is 

considered to be a true enemy and all MTIs occur within the defined ROI. Once in a 

position to begin its mission execution, a TUAV may be shot down by air defense 

weapons of an enemy. This is modeled through use of a defined effective area for an 

enemy air defense system where a TUAV will have a probability of being shot down 

within this area. When a TUAV is shot down, another TUAV will be prepared and 

launched to the current MTI or to respond to additional MTI data. On the other hand, a 

functioning TUAV proceeds to location of current MTI and declares whether a target is 

present or not after reviewing the on-board sensor information. Then, if there are no 

additional MTIs that need to be developed, the TUAV returns to its Launch & Recovery 

(L/R) site and waits for new MTIs. 

With our swarm system, two TUAVs are launched together to perform this 

mission. Once the MTI item is transferred from a TOC to a GCS, two TUAVs are 

prepared for a mission and move to the mission area. For our study the CID process is 

modeled in the following way: Given that each MTI is a target, once TUAV 1 (or TUAV 

2) declares a target is present, this declaration result of TUAV 1 (or TUAV 2) is 

transferred to the neighboring TUAV 2 (or TUAV 1). On receiving the information, the 

TUAV 2 (or TUAV 1) stops its discrimination process. Finally, the object is declared 

(labeled) as an enemy by our fusion algorithm. If TUAV 1 finishes reviewing the 
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information on the ROI from its onboard sensor earlier than TUAV 2 and does not 

declare a target is present, the declaration result of TUAV 1 is transferred to TUAV 2 and 

TUAV 2 continues the discrimination process. If TUAV 2 declares a target is present, our 

fusion rule returns a target is present in the ROI. If both TUAVs fail to declare the MTI 

as a target, our fusion algorithm returns no target present in the ROI. In either case, both 

TUAVs either return to their L/R site or respond to additional MTI data.    

Either or both TUAVs can be shot down by the antiaircraft weapon system of an 

enemy while executing a mission. If one TUAV is shot down in a swarm, the remaining 

TUAV continues its mission alone until a fresh TUAV is ready. If both TUAVs are shot 

down, two fresh TUAVs are prepared one by one. As soon as the first TUAV is ready it 

is launched and performs its mission alone until the second TUAV is ready and launched.   

 Multiple TUAVs fly in formation in response to each MTI item. In a swarm, one 

is a leader TUAV and another is a follower TUAV. Therefore the flight speed and 

position of a follower TUAV depend only on those of a leader TUAV.  Figure 3.1 

illustrates multiple TUAVs coordinating to discriminate an object.  

 

29 



 

Figure 3.1 Cooperative UAVs Discriminating an Object 

 

Collision avoidance between TUAVs is not an issue in this research. An efficient 

CID strategy is to obtain a correct CID call (in our case enemy) in a minimum time by 

cooperating and coordinating with other TUAVs. Because cooperation can be achieved 

by communication with other TUAVs, we assume that TUAVs in a swarm communicate 

with each other for cooperation while performing discriminating tasks.  

 We assume that each TUAV is provided with the following equipment to enable it 

to perform ATR: wireless communication capability for sending and receiving 

information from other TUAVs and the ground station, one image sensor capable of 

capturing snapshots of the area over which the TUAV flies, a global positioning system 

(GPS) that returns the 3-d coordinates of the TUAV’s current position, image processing 

software that enables the TUAV to discriminate objects obtained by its image sensors as 
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a potential target. In a swarm system, each TUAV performs its mission in formation. 

However, the declaration of a TUAV depends only on its individual onboard sensor 

information.  

 In reality, a decision maker at a Brigade TOC has many options to further develop 

a MTI item. However, we consider only one option, TUAV tasking, is available to him to 

simplify this CID model and focus on the performance of a swarm system. In addition, 

though four TUAVs are typically available at the level of Brigade, there is no limitation 

on number of TUAVs available in our model. Our model also does not consider times 

required to upload and download information on a MTI or communication problems 

between TUAVs. 

 To perform fusion, Boolean logic is used in this research. Though it is easy to 

implement, Robinson and Aboutalib [24] show that Boolean fusion for decision labels is 

suboptimal for two or more sensors when each sensor is optimized independently. 

However, the assumption of independence provides us with a reasonable estimate of 

system performance (that is also easily implemented in our model) using Boolean fusion 

for decision labels.    

 

3.2 Simulation Phases 

With our given conceptual model of the CID process, there are many different 

ways to incorporate the objects of interest in a discrete event simulation model. In our 

CID model, a Moving Target Indicator (MTI) is defined as an entity. A MTI represents a 

radar presentation which shows only targets which are in motion. Signals from stationary 

targets are subtracted out of the return signal by the output of a suitable memory circuit. 
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MTIs are created one at a time with a selected random amount of time between each and 

are later randomly placed within the defined ROI. A TUAV is modeled as a resource with 

an unlimited number available. However, only one TUAV can be in active in the system 

for the single TUAV system, while up to two TUAVs can be active in the swarm system.  

Figure 3.2 represents the entire model from creating objects to the CID decision. 

The main flow consists of several sub models which represents the sub phases and 

actions occurring in each. 

 

 

Figure 3.2 Entire Simulation Model 

 

3.2.1 The ROI 

 The ROI is modeled as the area bounded by a half-circle of radius 50km. The area 

within this ROI is populated by stationary non-threatening enemies and threats. The 

locations (xx, yy) of targets are initially unknown. As discussed previously, there is one 

target placed in the ROI for each MTI. Targets are placed by randomly selecting a 

distance between 10km and 50km form the center of the ROI and then randomly 

selecting an angle between zero and pi radians. Figure 3.3 shows a notional ROI with an 

example target placed. 
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Figure 3.3 Notional ROI with a target 

 

Threats have anti-craft capabilities, such as surface-to-air missiles (SAMs) in each 

cell. The threat is capable of destroying TUAVs with a kill probability by a random draw 

(UNIF (0, 1)). The detail will be explained later. Figure 3.3 illustrates attributes assigned 

for each MTI to position objects within the ROI before proceeding to the next sub model. 

 

 

Figure 3.4 Object Allocations for Environment 
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3.2.2 JSTARs to GCS  

Once a ROI is established, as discussed above, each MTI proceeds to be 

developed through a TUAV tasking to obtain information on its location which is routed 

to a GCS.  The important logic in this phase involves computing the amount of time ( ܶ) 

for a TUAV moving from one position to the place where the ith object is located.  

Let (xx, yy) be a set of x and y coordinates where an on-board sensor begins a scan 

to discriminate a target. These coordinates are defined to be three kilometers (fixed) away 

from the location of a target passed as an MTI. The three kilometers (a survivable 

standoff range) represents a safe distance that a TUAV has to keep from a target to 

prevent loss of TUAVs. Consider 

   ݔݔ ൌ ܽܽ ൈ ߣ  ሺ1 െ ሻߣ ൈ ܿܿ 

ݕݕ    ൌ ܾܾ ൈ ߣ  ሺ1 െ ሻߣ ൈ ݀݀                                         (3.1)     

where ߣ is defined as: 

ߣ ൌ
3ሺ݇݉ሻ

50ሺ݇݉ሻ ൈ ඥሺܿܿ െ ܽܽሻଶ  ሺ݀݀ െ ܾܾሻଶ
,             ሺλ Ԗ R and 0   λ   1ሻ  

and (aa, bb) is a set of x and y coordinate representing a current position of a TUAV and 

(ܿܿ, ݀݀) is a set of x and y coordinate implying a location of the ith target. 

Therefore, a travel time ( ܶ) of a TUAV for discriminating the ith object can be expressed 

as: 

ܶ ൌ ඥሺݔݔ െ ܽܽሻଶ  ሺݕݕ െ ܾܾሻଶ ൈ 50ሺ݇݉ሻ ൊ 2ሺ݇݉
݉݅݊ൗ ሻ                  (3.2) 

The distance from (aa, bb) to (xx, yy) in our ROI is multiplied by 50km to compute a real 

distance, then it is divided by 2km/min implying an average flight speed of a TUAV to 

calculate the time ( ܶ). 
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 The Decision time is the amount of time it takes our ATR system to review 

information from a sensor on board and make a declaration for an MTI. For our single 

TUAV system the decision time is uniformly distributed from one to five minutes, while 

for our swarm system with two TUAVs active, we use the joint distributions (1 + 4 × 

BETA(1.03, 1.29) min for system and 2, 0.59 + GAMM(0.713, 2.85)min for system 3) 

developed using another Arena model. To come up with this joint distribution, two 

hundred decision times were first simulated and collected and then processed using the 

Arena input analyzer to fit a theoretical distribution function to the data. Figure 3.4 

illustrates the sub model for collecting decision times to compute the joint distribution. 

 

 

Figure 3.5 Sub model for collecting decision times 

 

For example, if both TUAVs declare a target is present in the simulated ROI, the 

declarations are saved in the “id.label” as an attribute and the event is defined as Type 4 

(used for routing later in model and statistic collection). Then we store the minimum of 

the two TUAV times for making a target declaration. This follows the logic for our fusion 

rule where we only require one TUAV declaration to make a decision. The minimum 
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time in this case is considered the decision time for our swarm system. On the other hand, 

if two TUAVs declare a target is not present, the maximum time for a declaration with 

each TUAV is used. The maximum time in this case is considered the decision time of 

our swarmed system. We use the various decision times as described in coming up with 

our joint distribution. 

 

3.2.3 TUAV-IN 

Once an MTI item is allocated a TUAV (or TUAV swarm), a TUAV moves to the 

place where the target is located. It takes the amount of time specified in the “TUAV to 

GCS” sub model. A TUAV first attempts to execute its mission while remaining within 

its survivable standoff range. However, a TUAV might be restricted in its execution due 

to dust, cloud, camouflage, and etc.  To deal with this situation in our model, we require a 

TUAV (or TUAV swarm) to proceed beyond its standoff range to perform discrimination 

a small percentage of the time. Based on [21] we use a fixed probability of 92.5% for 

successful discrimination and transmission of target information back to the GCS outside 

of a 3km standoff range. If a TUAV is unable to perform discrimination outside the 

standoff range (7.5% of the time). The TUAV moves into the standoff range and toward 

the MTI location a random distance (UNIF(0.5, 1)km) which is expressed as “extra 

moving distance” in Equation 3.4. While within the standoff range, a TUAV has a 50% 

probability of being shot down by enemy air defense systems. If shot down, another 

TUAV is prepared and launched to continue the mission. Otherwise the TUAV continues 

the CID process by making a declaration and continues back to the L/R point or to 

another MTI location. Similar logic is used for our swarm system, with separate random 
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draws taken to determine if one or both TUAVs can perform their mission outside the 

standoff range and separate draws for survivability if one or both are required to move 

into the standoff range.   

When a TUAV is needed to perform inside of the standoff range, an additional 

travel time ( ܶ
ᇱ) of a TUAV for discriminating an ith object can be calculated as follow:  

Let (xx, yy) be a set of x and y coordinate that an on-board sensor of a TUAV begins 

scanning to discriminate a t n o . target after addi io al m ving

ݔݔ                                                                     ൌ ܽܽ ൈ ߣ  ሺ1 െ ሻߣ ൈ ܿܿ 

ݕݕ                                            ൌ ܾܾ ൈ ߣ  ሺ1 െ ሻߣ ൈ ݀݀                                         (3.3) 

where (aa, bb) is a set of x and y coordinate representing a current position of a TUAV 

(i.e., the position that a TUAV is supposed to execute discrimination before deciding to 

move toward a target more) and (cc, dd) is a set of x and y coordinate implying a location 

of a target. the λ is defined as, 

ߣ ൌ
3ሺ݇݉ሻ െ ሺ݇݉ሻ݁ܿ݊ܽݐݏ݅݀ ݃݊݅ݒ݉ ܽݎݐݔ݁

50ሺ݇݉ሻ ൈ ඥሺܿܿ െ ܽܽሻଶ  ሺ݀݀ െ ܾܾሻଶ
,   ሺλ Ԗ R and 0   λ   1ሻ  

Therefo , n rare  an additio al t vel time is calculated as,  

            ܶ
ᇱ ൌ ඥሺݔݔ െ ܽܽሻଶ  ሺݕݕ െ ܾܾሻଶ ൈ 50ሺ݇݉ሻ ൊ 2ሺ݇݉

݉݅݊ൗ ሻ                           (3.4) 

To decide success or failure of the discrimination, our simulation compares a 

prior TPR (shown in Table 3.1 as ்ܲ) in CM (or a posterior TPR in case of TUAV 

swarm) with a random number representing the probability of an object being 

discriminated correctly. For example, if a posterior TPR of a TUAV swarm is 0.9 and the 

random number is 0.46, the system correctly declares the object a target. However, the 

system fails to discriminate the target if the random number is greater than the TPR. 
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Table 3.1 summarizes the probability estimates associated with horizontal analysis of 

each row, and the vertical analysis metrics in terms of the confusion matrix cells, CM 

(row, col). For our system we are only interested in the upper left cell of this table since 

we only model a single class (all objects are targets) and are interested only in the ்ܲ (in 

our case computed as all objects declared targets divided by all objects). 

 

Table 3.1 Typical Performance Measures Associated with the Confusion Matrix Cells, 

CM (row, col) [11] 

 

 

3.2.3.1 Fusion Process for Computing the Posterior TPR 

 A TUAV swarm makes a CID decision through use of a Boolean fusion rule 

(logical OR). When one of UAVs in a swarm (or both) declares an enemy is present, the 

swarm system finally returns a label of enemy. Figure 3.4 presents the Arena model 

developed with this fusion logic used to generate the TPR for our swarm system.  
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Figure 3.6 Fusion Process in Discrimination 

 

The Boolean logical OR rule is used to combine the output labels from our two 

TUAV sensors. This rule returns a target for the simulated system if either or both 

TUAVs conclude an object under investigation is a target. With two sensors fused, 22 = 4 

different sensor labels are generated for any given assessment of a target. For example, 

the following labels of the fusion can be possible: both TUAV 1 and TUAV 2 declare a 

target is present (defined as case 4 in the simulation model for routing), TUAV 1 declares 

a target is present while TUAV 2 does not (defined as case 6), TUAV 2 declares a target 

is present while TUAV 1 does not (defined as case 5), or both TUAVs declare an target is 

not present (defined as case 7). Therefore, successful declaration of a target where at least 

one of TUAVs correctly discriminates a target can be represented by 4, 5, and 6 as the 

output fusion process. If it is labeled as 7, the discrimination process has failed for that 

object. 
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3.2.4 TUAV-OUT 

 After completing its mission, a TUAV (or TUAVs) has three options. One is to 

return its L/R site and to wait for the arrival of a fresh MTI (i.e., it does not land but flies 

over the site) when there is no MTI item waiting to be developed. However, if a fresh 

MTI item arrives at a TUAV GCS before a TUAV reaches the L/R site, a TUAV is 

redirected from the current position (defined as (aa, bb) in our map) to the new ROI 

(defined as (cc, dd)) and performs a new task. If there are any MTIs waiting to be 

developed after processing the current MTI, a TUAV is immediately redirected to 

execute new mission. We use a FIFO rule here to deal with which MTI item is first 

served among MTIs waiting to be developed. If there are any undeveloped MTIs, a 

TUAV heads to the first one received. 

   

3.3 Variables and attributes 

 In this section the attributes and variables used throughout the model and in 

collecting statistics are listed and explained briefly in Table 3.2. These attributes and 

variables are used as part of the logic throughout the simulation model 
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Table 3.2 Variables and Attributes in the model 

Dist.    Distance from a L/R site of a TUAV to the position of a TUAV 
beginning its discrimination process 

Degree    Centering around a L/R site, an angle of the position of a TUAV 
beginning its discrimination process 

Prob.swarm.shot.down 
   Probability of either or both TUAVs in a swarm being shot down 
by enemy air defense systems while executing a mission within its 
survivable standoff range 

Prob.TUAV1.shot.down    Probability of TUAV1 being shot down while executing a 
mission alone within its survivable standoff range 

Prob.TUAV1.shot.down    Probability of TUAV2 being shot down while executing a 
mission alone within its survivable standoff range 

Prob.discriminated. 
correctly    Probability of an object being discriminated correctly 

1Prob.Object.discriminated
.inside 

   Probability of an object being discriminated by TUAV1 inside 
the standoff range 

2Prob.Object.discriminated
.inside 

   Probability of an object being discriminated by TUAV2 inside 
the standoff range 

Decide.time.swarm    Decision time (min) of a swarm system for declaring an object 
Decide.time.TUAV1    Decision time (min) of TUAV1 for declaring an object, 
Decide.time.TUAV2    Decision time (min) of TUAV2 for declaring an object, 

TPR.of.swarm    True Positive Rate of a swarm system when two TUAVs 
perform discrimination 

TPR.of.TUAV1    True Positive Rate of TUAV1 when TUAV1 performs 
discrimination alone in a swarm system 

TPR.of.TUAV2    True Positive Rate of TUAV2 when TUAV1 performs 
discrimination alone in a swarm system 

Prep.time.TUAV1    Time to prepare and launch TUAV1 
Prep.time.TUAV2    Time to prepare and launch TUAV2 

More.travel.TUAV1    Additional distance in our map that TUAV1 has to move to 
discriminate an object inside the standoff range 

More.travel.TUAV2    Additional distance in our map that TUAV2 has to move to 
discriminate an object inside the standoff range 

aa    x-coordinate of the current position of a TUAV in a single 
TUAV system or a leader TUAV in a swarm system 

bb    y-coordinate of the current position of a TUAV 
Num.of.TUAVs    Number of TUAVs in the simulation 

Num.TUAVs.shot.down    Number of TUAVs shot down 
Total.decision.time    Total decision time of a system until the simulation is terminated 

Total.TUAVs.Prep.time    Total time that a GCS spend to prepare and launch TUAVs 
id.label    Decision label of a TUAV in discrimination process. 
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3.4 Verification and Validation  

In this section, verification and validation of the simulation model are discussed.  

Verification is a process that is used to check if a simulation model is coded correctly or 

logic in the model is correct. Validation is the process of establishing a high level of 

assurance that a simulation model matches the real system. 

 The simulation model can be verified by the animation feature of Arena. 

Whenever a module for building each process of CID is added, our simulation model is 

run to check if the flow of entity is appropriate or not.  

 Currently, no UAV swarm concept is being employed based on the finding in this 

region. Therefore, the face validity is used for validation of our simulation model. Our 

results of model are reasonable with expected performances for the hypothesized system 

 

3.8. Conclusion 

 This chapter focused on description and assumptions of the simulation model, 

concepts of building a simulation model and application of steps for making our 

simulation model reasonable. The specific variables and attributes for our research were 

also described. Results and analysis from our model are discussed in the next chapter. 
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IV. Analysis and Results 
 

 
General 

 This chapter focuses on model results and analysis. In the first section, we present 

the factors used and output data obtained in our model, and the appropriate replication 

length and number also are discussed. The following include comparisons between 

different competing systems on the various performance measures and the analysis of 

responses from this simulation model.   

 

4.1 Measure of Effectiveness 

 Measures of Effectiveness (MOE) in various fields of military require some kind 

of quantification. Number of targets detected, survivability score, aircraft availability and 

accident rates, and many other measures serve to reduce a large number of data into 

meaningful information. Quantitative methods are used to analyze and explain actions or 

outputs to a decision maker such as the commander of a Brigade.  

  MOEs should be selected and interpreted with care, because MOEs that 

appropriately distill and precisely reflect reality help decision makers make informed, 

timely decisions. If measures are poorly selected or wrongly interpreted, the collection 

and analysis of the MOE may waste time and effort [25]. 

 In this research, the outputs we captured are the accumulated accuracy, the 

number of TUAVs shot down, mean of simulated mission time, mean of decision time 

per a MTI, and total time for TUAV preparation.  
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 Each scenario is run for 30 replications. This number of replications was selected 

because 30 replications are generally enough to meet Central Limit Theorem condition 

for independent and identically-distributed random variables and give us a reasonable 

half width (for each MOE plus or minus 5%). 

 

4.2 Simulation Results 

 In this section we present the simulation results of the systems using the following 

three different configurations. 

• A high-value sensor which has a high-level TPR (called system 1) 

• Two low-value sensors which has a low-level TPR (system 2) 

• Two middle-value sensors which has a middle-level TPR (system 3) 

 
Table 4.1 Specification of a sensor used in each system 

Level TPRs Decision time Prob. of a TUAV successfully discriminating 
target inside of the stand-off range 

High UNIF(0.85,0.97) 
Improved by 30% 

UNIF(0.91,4.91) 
Improved by 3% 

0.938875 
Improved by 1.5% Improvement 

based on 
the value of low-

level 

Middle UNIF(0.71,0.83) 
Improved by 10% 

UNIF(0.97,4.97) 
Improved by 1% 

0.929625 
Improved by 0.5% 

Low UNIF(0.64,0.76) UNIF(1,5) 0.925 
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Figure 4.1 Accuracy of the systems as a function of No. of MTIs 

 

To assess the performances of the system using one of three configurations 

described above, we simulated each system in the environments with 20, 40, 60, 80, and 

100 targets (labeled as MTIs in our figures). For all the simulation runs in this paper, the 

homogeneous targets are randomly assigned to the ROIs while a system executes its 

mission. We synchronize use of the same random number streams for the same purpose 

when simulating each of our systems, therefore, the location of targets and the threats 

level of targets are all the same for each configuration.  

 From Figure 4.1 we can see that the System 3 out-performs the others in terms of 

the accumulated accuracy of a system. The performance of System 3 with two middle-

value sensors fares better than the system with two low-value sensors and the system one 

high-value sensor. Although the TPR of the sensor used in System 3 is less than that of 

the sensor in System 1, the performance of System 3 is more successful than that of 

System 1 because of the increased TPR with fusion of information in our swarm system. 
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 We looked at additional simulation outputs to study the performances of these 

systems for the same ROIs. Figure 4.2 shows loss of TUAVs and preparation time for 

fresh TUAVs over the same range of targets. 
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Figure 4.2 Number of TUAVs shot down and TUAV preparation time 

as a function of No. of MTIs 

 

 These values give a good indication of the survival rate of a single TUAV 

(System 1) versus use of a swarm system (System 2 and 3). It is obvious that our 

cooperative method provides a significant improvement in the number of TUAVs shot 

down. As discussed before, a TUAV can be shot down when it performs discrimination 

inside of the standoff range. If it executes its mission outside of the range, the TUAV is 

secure from any threats. In addition, if at least one TUAV in the swarm can execute its 

task outside this range, our cooperative algorithm does not allow the remaining TUAV to 

move inside of the range for discrimination. It only allows TUAVs to move inside the 

standoff range when both TUAVs fail to perform discrimination outside of the range. 
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This is why the numbers of TUAVs shot down with one of our swarm systems are 

significantly less than that number for System 1, the single TUAV system. The pattern of 

the two plots in Figure 4.2 looks similar to each other. It does make sense because the 

smaller loss of TUAVs, the less preparation time for fresh TUAVs, however, there is 

little difference between the performances of the two swarm systems for either plot in 

Figure 4.2. This indicates that this MOE is more dependent on our cooperative algorithm 

with a swarm system than the increased TPR of System 3 over System 2. 
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Figure 4.3 Mean of Decision and Simulated mission time as a function of No. of MTIs 

  

 The left plot in Figure 4.3 shows mean of decision time representing the mean 

time that a system spends collecting data and making a declaration for an object. The 

right plot shows mean of simulated mission time. The performances of the proposed 

fusion algorithm (System 2 and 3) were compared to that of the system using one TUAV. 

In our fusion algorithm, successful declaration of a target is defined as the case where at 

least one TUAV correctly discriminates a target. We also modeled the single TUAV 
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decision time as being slightly improved over the two swarm systems. Therefore, we 

expected to see some decrease in the swarm system performance for this measure. As we 

can see from Figure 4.3, the performances of the swarm systems are slightly better than 

that of the single TUAV system. This is due to once again to our fusion rule. Once one of 

the TUAVs declares a target is present, the other TUAV does not spend time on the same 

object leading to a decrease in decision time. In addition since we assumed the middle-

level sensor used in the System 3 is slightly improved based on the low-level, the 

performance of System 3 is better than that of System 2.  

 Our mean of simulated mission time (Figure 4.3) depends strongly on TUAVs 

preparation time, travel time, inter-arrival time between MTIs, and decision time. The 

simulated mission times of the swarm systems are less than that of the System 1. As 

presented before, the total TUAVs preparation time and decision time of the swarm 

system are less than those of the System 1. In addition, since the locations of targets and 

the flight speed of TUAVs in our simulation are all the same while the TUAVs of each 

system perform its mission, the total travel time of each system differs little from each 

other. This is why the swarm systems show better performance in terms of shorter mean 

of simulated mission time. As the number of MTIs increase, mean of simulated mission 

time of three systems tends to decrease. At the beginning of these simulations, an inter-

arrival time between MTIs strongly affects the simulated mission time because the longer 

an inter-arrival time between MTIs, the bigger the simulated mission time. However, as 

the number of MTIs increase more of the time there will be MTIs waiting to be 

developed. In such a case the inter-arrival time does not affect the simulated mission time 

anymore and the travel times of TUAVs decrease because TUAVs directly move to the 
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next MTI without spending time going back and forth to L/R point. This is why the mean 

of simulated mission time decreases as the number of MTIs increase. 

 

4.3 Comparison of Competing Systems 

 In this section statistical analysis is performed to answer the question of whether 

or not these measures represent a statistically significant difference in performance of the 

three systems. One approach is to compare the confidence intervals for a pair of means 

and unless they overlap we can say the difference between these system means is 

statistically significant. This is an informal test and we set up a hypothesis to provide us a 

decision based on a chosen confidence level in order to quantify how certain we are of 

the difference [2:164]. 

 The paired t-test is a common method to compare alternatives of real systems. 

The statistic for this test is the difference between the two alternatives for each 

replication. The null hypothesis is that the mean of the differences is zero. This approach 

does not require equal variances and independence between systems, but the sample size 

should be equal.  

 Because the output from a simulation is a random variable, the precision of the 

results from the simulation will be decided by the variance of the output. One statistical 

technique to reduce such a variance is the use of Common Random Numbers (CRN) 

along with the paired t-test. The idea of using CRN is to ensure that alternative 

configurations of a model are different only due to those configurations and not due to 

different random conditions used in the model, so the use of an exclusive random number 
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stream for each place in the simulation where a random variate draw occurs is advised 

[2:169]. 

 Three different systems are used in this study. All requirements, such as dedicated 

random number streams and starting replications for each system with the same random 

number, related to getting the most form using CRN are incorporated in our simulation. 

These different system configurations are examined in terms of accuracy, number of 

TUAVs shot down, TUAV preparation time, decision time, and simulated mission time 

of the systems. The following discussion presents paired t-test results comparing 

performance of the single TUAV and the swarm systems for sets of 20, 60, and 100 

targets (MTIs). All confidence intervals used are two-tailed at a 95% level of confidence 

and all p-values are two-tailed. 
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The first paired t-test (Table 4.2) was performed to determine if the means of the 

difference between these systems is zero in terms of accuracy.  

 

Table 4.2 Paired t-test for Accuracy (%) 

 

MTIs=20 N Mean St. Dev. SE Mean MTIs=20 N Mean St. Dev. SE Mean
Sys 1 30 0.90833 0.07081 0.01293 Sys 1 30 0.90833 0.07081 0.01293
Sys 2 30 0.88000 0.07944 0.01450 Sys 3 30 0.93167 0.06757 0.01234
Diff. 30 0.02833 0.05972 0.01090 Diff. 30 -0.02333 0.05529 0.01010

0.00603 0.05063 -0.04398 -0.00269

MTIs=60 N Mean St. Dev. SE Mean MTIs=60 N Mean St. Dev. SE Mean
Sys 1 30 0.90556 0.04160 0.00759 Sys 1 30 0.90556 0.04160 0.00759
Sys 2 30 0.88389 0.04844 0.00884 Sys 3 30 0.93111 0.03178 0.00580
Diff. 30 0.02069 0.04424 0.00822 Diff. 30 -0.02556 0.03681 0.00672

0.00386 0.03752 -0.03930 -0.01181

MTIs=100 N Mean St. Dev. SE Mean MTIs=100 N Mean St. Dev. SE Mean
Sys 1 30 0.91033 0.02977 0.00543 Sys 1 30 0.91033 0.02977 0.00543
Sys 2 30 0.88700 0.03583 0.00654 Sys 3 30 0.92600 0.02513 0.00459
Diff. 30 0.02333 0.03871 0.00707 Diff. 30 -0.01567 0.02837 0.00518

0.00888 0.03779 -0.02626 -0.00507

P-value 0.00068

95% CI
P-value 0.00517

95% CI
P-value 0.02812

95% CI
P-value 0.01120

95% CI
P-value 0.00256

95% CI
P-value 0.01456

95% CI

 

In the case of the comparison of System 1 (single TUAV) and System 2, the 

means of the difference are significantly greater than zero, none of the confidence 

intervals contain zero, and all the P-values are less than 0.05, providing evidence that 

System 1 shows better performance than System 2. On the other hand, for System 1 and 

System 3 all the means of differences are less than zero, none of the confidence intervals 

contain zero, and all the P-values are less than 0.05. It indicates that the accuracy of 

System 3 is higher than that of the System 1. However, the differences range from only 

about one to four percent which may not be practically significant, but would need to be 

researched further. 
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 The second paired t-test (Table 4.3) was used to test the null hypothesis that the 

numbers of TUAVs shot down with the single TUAV and each swarm system are 

statistically the same. Here all confidence intervals lie above zero indicating that the 

number of TUAVs shot down with System 1 is statistically larger either swarm system. 

The results indicate that in terms of survival rate the performance of a swarm system is 

better than that of a single TUAV system.  

 

Table 4.3 Paired t-test for Number of TUAVs shot down 

 

MTIs=20 N Mean St. Dev. SE Mean MTIs=20 N Mean St. Dev. SE Mean
Sys 1 30 1.30000 1.20773 0.22050 Sys 1 30 1.30000 1.20773 0.22050
Sys 2 30 0.23333 0.67891 0.12395 Sys 3 30 0.23333 0.67891 0.12395
Diff. 30 1.06667 1.25762 0.22961 Diff. 30 1.06667 1.25762 0.22961

0.59706 1.53627 0.59706 1.53627

MTIs=60 N Mean St. Dev. SE Mean MTIs=60 N Mean St. Dev. SE Mean
Sys 1 30 4.00000 2.01717 0.36828 Sys 1 30 4.00000 2.01717 0.36828
Sys 2 30 0.43333 0.81720 0.14920 Sys 3 30 0.43333 0.81720 0.14920
Diff. 30 3.56667 2.22344 0.40594 Diff. 30 3.56667 2.22344 0.40594

2.73642 4.39691 2.73642 4.39691

MTIs=100 N Mean St. Dev. SE Mean MTIs=100 N Mean St. Dev. SE Mean
Sys 1 30 6.16667 2.54725 0.46506 Sys 1 30 6.16667 2.54725 0.46506
Sys 2 30 0.70000 1.31700 0.24045 Sys 3 30 0.70000 1.31700 0.24045
Diff. 30 5.46667 2.51524 0.45922 Diff. 30 5.46667 2.51524 0.45922

4.52746 6.40587 4.52746 6.40587

P-value 0.00000

No. of TUAVs shot down

95% CI
P-value 0.00000

No. of TUAVs shot down

95% CI
P-value 0.00007

No. of TUAVs shot down

95% CI
P-value 0.00000

No. of TUAVs shot down

95% CI
P-value 0.00000

No. of TUAVs shot down

95% CI
P-value 0.00007

No. of TUAVs shot down

95% CI
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The third paired t-test (Table 4.4) was performed to test if there is difference in 

the performance representing the TUAV preparation time of the swarm systems and the 

single TUAV system. As shown in this table, none of the confidence intervals contain 

zero and all the P-values are below 0.05, so the difference is statistically significant. 

Because the smaller value in this measure implies the better performance, we can say that 

the swarm systems lead to a decrease in TUAV preparation time. 

 

Table 4.4 Paired t-test for TUAV preparation time (minutes) 

 

MTIs=20 N Mean St. Dev. SE Mean MTIs=20 N Mean St. Dev. SE Mean
Sys 1 30 15.46600 20.39687 3.72394 Sys 1 30 15.46600 20.39687 3.72394
Sys 2 30 4.71390 13.97316 2.55114 Sys 3 30 4.71390 13.97316 2.55114
Diff. 30 10.75210 23.06731 4.21150 Diff. 30 10.75210 23.06731 4.21150

2.13862 19.36558 2.13862 19.36558

MTIs=60 N Mean St. Dev. SE Mean MTIs=60 N Mean St. Dev. SE Mean
Sys 1 30 42.78557 34.08991 6.22394 Sys 1 30 42.78557 34.08991 6.22394
Sys 2 30 8.81667 16.98095 3.10028 Sys 3 30 8.81667 16.98095 3.10028
Diff. 30 33.96890 38.99293 7.11910 Diff. 30 33.96890 38.99293 7.11910

19.40870 48.52910 19.40870 48.52910

MTIs=100 N Mean St. Dev. SE Mean MTIs=100 N Mean St. Dev. SE Mean
Sys 1 30 64.85667 36.05568 6.58284 Sys 1 30 64.85667 36.05568 6.58284
Sys 2 30 14.96887 28.01269 5.11439 Sys 3 30 14.96887 28.01269 5.11439
Diff. 30 49.88780 38.27825 6.98862 Diff. 30 49.88780 38.27825 6.98862

35.59447 64.18113 35.59447 64.18113

0.00005

TUAVs Prep. time

95% CI
P-value 0.00000

P-value

TUAVs Prep. time

95% CI
P-value 0.01620

TUAVs Prep. time

95% CI
P-value 0.00005

TUAVs Prep. time

95% CI
P-value 0.00000

TUAVs Prep. time

95% CI
P-value 0.01620

TUAVs Prep. time

95% CI

 

 The fourth set of paired t-tests examining the difference of mean of decision time 

between the single and swarm system are shown in Table 4.5. For the smallest number of 

targets (MTIs = 20), there is no statistical difference in the mean of decision time 

between the systems because the confidence intervals contain zero and the P-values are 

much larger than 0.05. However, as the number of targets increase (which clearly 
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increase mission time), the difference between systems grows, with a significant 

difference between System 1 and 3 at 60 targets, and significant difference between the 

single TUAV and both swarm systems at 100 targets.  

 

Table 4.5 Paired t-test for mean of decision time (minutes) 

 

MTIs=20 N Mean St. Dev. SE Mean MTIs=20 N Mean St. Dev. SE Mean
Sys 1 30 2.899352 0.297227 0.055194 Sys 1 30 2.899352 0.297227 0.055194
Sys 2 30 2.827463 0.228567 0.04173 Sys 3 30 2.734633 0.324942 0.059326
Diff. 30 0.07004 0.375886 0.068627 Diff. 30 0.16287 0.474003 0.086541

-0.07032 0.21040 -0.01413 0.33987

MTIs=60 N Mean St. Dev. SE Mean MTIs=60 N Mean St. Dev. SE Mean
Sys 1 30 2.919843 0.139549 0.025478 Sys 1 30 2.919843 0.139549 0.025478
Sys 2 30 2.883583 0.151786 0.027712 Sys 3 30 2.737937 0.175466 0.032036
Diff. 30 0.03626 0.203542 0.037161 Diff. 30 0.181907 0.208019 0.037979

-0.03974 0.11226 0.10423 0.25958

MTIs=100 N Mean St. Dev. SE Mean MTIs=100 N Mean St. Dev. SE Mean
Sys 1 30 2.914603 0.107031 0.019541 Sys 1 30 2.914603 0.107031 0.019541
Sys 2 30 2.854067 0.112013 0.020451 Sys 3 30 2.710083 0.115408 0.02107
Diff. 30 0.060537 0.16211 0.029597 Diff. 30 0.20452 0.151809 0.027716

0.00000 0.12107 0.14783 0.26121

0.06991

0.00005

0.00000

95% CI
P-value

95% CI
P-value

95% CI
P-value

0.33726

0.04999

95% CI
P-value 0.31589

95% CI
P-value

95% CI
P-value

 

Finally, the null hypothesis that the mean of the difference in simulated mission 

time of the swarm system and single TUAV system is zero is tested by a paired t-test. 

These results are shown in Table 4.6. The difference between System 1 and System 2 is 

not statistically significant for simulated mission time, while the difference between 

System 1 and System 3 is statistically significant. However, it is found that the difference 

between System 1 and System 3 may not be practically significant, because the 

performance of System 3 has decreased by about 6% compared to the performance of 

System 1 and the difference can be considered to be not significant in the real world.  
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Table 4.6 Paired t-test for mean of simulated mission time (minutes) 

 

MTIs=20 N Mean St. Dev. SE Mean MTIs=20 N Mean St. Dev. SE Mean
Sys 1 30 20.64983 3.209447 0.585962 Sys 1 30 20.64983 3.209447 0.585962
Sys 2 30 19.4644 2.24118 0.409182 Sys 3 30 19.34167 2.697191 0.492437
Diff. 30 1.185433 3.913194 0.714448 Diff. 30 1.308167 3.088029 0.563794

-0.27578 2.64664 0.15508 2.46126

MTIs=60 N Mean St. Dev. SE Mean MTIs=60 N Mean St. Dev. SE Mean
Sys 1 30 18.97897 1.869383 0.341301 Sys 1 30 18.97897 1.869383 0.341301
Sys 2 30 18.1579 1.475109 0.269317 Sys 3 30 17.9007 1.345255 0.245609
Diff. 30 0.821067 2.326918 0.424835 Diff. 30 1.078267 1.676573 0.306099

-0.04782 1.68995 0.45222 1.70431

MTIs=100 N Mean St. Dev. SE Mean MTIs=100 N Mean St. Dev. SE Mean
Sys 1 30 18.3621 1.251194 0.228436 Sys 1 30 18.3621 1.251194 0.228436
Sys 2 30 17.78377 1.095421 0.199996 Sys 3 30 17.5714 1.09267 0.199493
Diff. 30 0.578333 1.615134 0.294882 Diff. 30 0.7907 1.43563 0.262109

-0.02477 1.18143 0.25463 1.32677

P-value

95% CI
P-value

0.02756

0.00144

0.005270.05952

95% CI
P-value

95% CI

P-value

95% CI
P-value

0.10785

0.06310

P-value
95% CI

95% CI

 

4.4 Conclusion 

  In this chapter, statistical analysis on the outputs from our simulation was 

discussed. First the proper length and number of replications of our simulation model was 

determined, then the factors which contribute to our model were presented. Finally by 

using a paired t-test, the performances of the systems having different configuration were 

analyzed. The following chapter will discuss the conclusions and recommendations. 
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V. Conclusions and Recommendations 
 

 

General 

 This chapter gives a short summary and conclusions of this research, and then 

recommendations for future research are discussed. 

 

5.1 Summary and Conclusions 

 The objective of this research was to analyze a TUAV swarm with low-value 

sensors versus a single UAV with a high-value sensor to investigate the effects of 

changing defined variables in the CID process.  First, we constructed a detailed computer 

model of the entire CID process with only targets present after making several 

assumptions, and defining a number of variables, and desired statistics. We defined three 

different systems (a single TUAV and two different swarm configurations) and 

performed 30 replications for each. The outputs from these different configurations were 

captured and five performance measures were evaluated.  

 In this study, we simulated a CID process using a TUAV swarm for 

discriminating a target within an unknown region. A key issue to capture swarm behavior 

of TUAVs is to design logic such that the swarm of TUAVs performs the discrimination 

mission cooperatively based on information they get. We developed a cooperative fusion 

algorithm using a Boolean OR rule.  

Five measures are evaluated for the comparison of different systems. These 

measures are accuracy, number of TUAV shot down, TUAV preparation time, mean of 
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decision time, and mean of simulated mission time. The performance achieved using a 

single TUAV was compared with the swarm systems. As shown in Table 5.1, the swarm 

systems are consistently better (across all performance measures). For System 2 we 

picked the sensor capabilities for the swarm to roughly match the TPR performance of 

the single TUAV. For System 3 the sensor levels were selected in order for the TPR 

performance of System 3 to show a modest improvement over System 2. 

 

Table 5.1 System showing better performance in each environment 

No. of
MTIs

No. of 
TUAVs

shot down

TUAV
preparation
time (min)

Decision
time
(min)

Simluation
time
(min)

Accuracy
(%)

No diff.

Swarm
(System 3)

Swarm
(System 3)

Swarm
(System 3)

Swarm
(System 3)

Swarm

SwarmSwarm

Swarm Swarm No diff.

Swarm

Swarm

Swarm

Swarm

20

60

100
 

  

 The results of the statistical tests indicate we can cut down our expenses for 

purchasing air frames and sensors by employing the swarm system that we proposed 

because our swarm system shows much better performance than the single TUAV system 

in terms of number of TUAVs shot down. Besides, we can decrease research and 

development expenditures for developing sensor capabilities because as we can see in 

Table 5.1, sending two coordinated TUAVs (our swarm systems) with less complex 

sensors leads to an equivalent or even better CID call than sending a single TUAV with 

more sophisticated sensor. Cost is a driving factor for constructing and maintaining a 
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military system and a decision maker wants to achieve the maximum efficiency at a 

minimum of effort and cost. Because of the significant reduction in costs with our swarm 

system from fewer TUAV platform lost to enemy fire in the scenarios examined along 

with a much lower projected sensor cost, we conclude that our swarm system with fused 

sensors presents the potential for future employment.  

 

5.2 Recommendations for Future Study 

 This simulation model can be improved by adding an additional process such as 

classification and identification as well as including both friendly objects and clutter in 

each ROI. For people who study ATRs, an entire CID process consists of five processes. 

These are detection, discrimination, classification, recognition, and identification. By 

modeling from detection to identification with different object types, we can get more 

robust measures of system performance in a more realistic operational environment. 

 Current sensor and classifier fusion texts provide evidence not only to Boolean 

fusion rules’ general use and acceptance but also to their easy implementation. However, 

as mentioned in Chapter 3, the use of Boolean fusion for decision labels results in 

suboptimal for more than two sensors when each sensor is optimized independently.  

Modeling different levels of correlation among fused sensors and exploring other fusion 

rules may lead to improved system performance. 

 In addition, by adding and modeling costs for operating the system (i.e., research 

and development expenditures and expenses for purchasing sensors and air frames, we 

can get more robust measures related to cost-effectiveness. 
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Appendix A. Decision times of System 2 for computing  
 

the Joint Distribution of Decision time 
 

 

Obser.
Decision
Time

Obser.
Decision
Time

Obser.
Decision
Time

Obser.
Decision
Time

Obser.
Decision
Time

1 2.2741 41 4.0796 81 3.0263 121 2.5115 161 2.12
2 1.3176 42 1.366 82 1.8724 122 1.1572 162 2.9964
3 2.0479 43 2.2961 83 3.1915 123 1.9864 163 3.3975
4 3.0128 44 1.9214 84 3.95 124 1.0782 164 3.5007
5 4.7687 45 4.1515 85 1.7938 125 1.3234 165 3.5475
6 1.8524 46 3.1157 86 3.5648 126 3.6882 166 1.5686
7 2.9912 47 1.2693 87 3.5776 127 3.3462 167 2.8005
8 2.6575 48 1.7961 88 1.4115 128 4.8182 168 1.5516
9 3.8534 49 4.6784 89 2.7369 129 1.6595 169 2.546
10 1.2849 50 4.6402 90 2.2583 130 3.9649 170 1.7544
11 1.019 51 2.5055 91 1.757 131 3.5509 171 2.6032
12 2.8035 52 2.9171 92 2.7755 132 3.4896 172 4.5282
13 2.917 53 3.9767 93 4.0217 133 3.2053 173 1.7274
14 2.4238 54 2.5971 94 3.5783 134 1.1893 174 3.1034
15 2.6494 55 4.067 95 1.8514 135 1.6737 175 3.6694
16 1.2517 56 2.2324 96 4.2135 136 4.1399 176 1.1742
17 3.165 57 4.3188 97 4.2689 137 4.8479 177 3.1843
18 2.1216 58 4.0718 98 2.9485 138 1.4924 178 1.7444
19 1.3259 59 2.2072 99 4.8257 139 1.0542 179 3.7596
20 2.827 60 4.004 100 2.0861 140 3.0849 180 2.0802
21 3.2456 61 2.522 101 1.8054 141 4.8184 181 3.9897
22 3.5875 62 1.0495 102 3.0221 142 4.4169 182 2.2492
23 3.1902 63 4.92 103 1.0112 143 2.4975 183 2.1124
24 3.8602 64 4.1507 104 4.3401 144 4.008 184 2.1551
25 3.0345 65 3.2836 105 1.2508 145 2.9522 185 4.295
26 1.9815 66 1.6889 106 2.9335 146 2.2435 186 3.1539
27 4.773 67 1.7597 107 1.5967 147 4.4196 187 1.9713
28 1.8357 68 3.9707 108 1.0571 148 1.3722 188 1.7656
29 3.4543 69 1.6218 109 1.1236 149 1.2961 189 2.1627
30 4.2258 70 2.4886 110 2.146 150 3.4396 190 1.5564
31 4.0128 71 1.2417 111 4.6991 151 3.5975 191 1.9686
32 2.3925 72 2.2004 112 4.1527 152 3.1413 192 2.4398
33 1.7588 73 2.6371 113 1.0859 153 3.5084 193 2.6077
34 4.8875 74 3.2283 114 3.3519 154 3.9024 194 3.1387
35 4.769 75 3.0252 115 3.6183 155 3.3662 195 3.8958
36 2.1407 76 3.1724 116 3.2912 156 3.1524 196 3.2427
37 3.7364 77 2.3263 117 4.1124 157 4.4756 197 4.146
38 4.4123 78 1.0959 118 2.9527 158 3.0534 198 1.8907
39 2.271 79 1.8612 119 3.232 159 1.9517 199 3.2574
40 1.5128 80 2.9534 120 2.0684 160 1.8329 200 2.0761
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Appendix B. TPRs of System 2 for computing the Joint Distribution of TPR 

 

 

Obser. TPR Obser. TPR Obser. TPR

1 0.91 36 0.95 71 0.92
2 0.92 37 0.94 72 0.93
3 0.89 38 0.95 73 0.93
4 0.86 39 0.89 74 0.89
5 0.99 40 0.93 75 0.93
6 0.92 41 0.92 76 0.9
7 0.84 42 0.87 77 0.89
8 0.93 43 0.97 78 0.94
9 0.91 44 0.9 79 0.86
10 0.93 45 0.92 80 0.93
11 0.89 46 0.9 81 0.94
12 0.92 47 0.9 82 0.95
13 0.96 48 0.88 83 0.93
14 0.92 49 0.94 84 0.92
15 0.93 50 0.92 85 0.92
16 0.92 51 0.9 86 0.9
17 0.93 52 0.95 87 0.92
18 0.95 53 0.86 88 0.9
19 0.95 54 0.97 89 0.89
20 0.87 55 0.95 90 0.95
21 0.95 56 0.94 91 0.98
22 0.92 57 0.9 92 0.9
23 0.89 58 0.91 93 0.91
24 0.92 59 0.91 94 0.87
25 0.93 60 0.93 95 0.87
26 0.9 61 0.93 96 0.92
27 0.94 62 0.91 97 0.91
28 0.92 63 0.88 98 0.91
29 0.88 64 0.92 99 0.86
30 0.83 65 0.86 100 0.94
31 0.92 66 0.88
32 0.95 67 0.86
33 0.89 68 0.93
34 0.9 69 0.85
35 0.91 70 0.93
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Appendix C. Decision times of System 3 for computing  
 

the Joint Distribution of Decision time 
 
 

 

Obser.
Decision
time

Obser.
Decision
time

Obser.
Decision
time

Obser.
Decision
time

Obser.
Decision
time

1 1.478 41 3.9669 81 2.9963 121 2.4815 161 4.5235
2 1.2876 42 3.2752 82 1.8424 122 1.1272 162 2.4344
3 2.0179 43 4.8172 83 2.8733 123 2.3835 163 1.7812
4 2.9828 44 3.5777 84 3.92 124 1.2422 164 3.7953
5 4.7387 45 2.4392 85 1.7638 125 2.5799 165 3.5175
6 1.898 46 1.5849 86 3.5348 126 3.6582 166 2.0262
7 1.1924 47 4.1724 87 3.5476 127 3.2409 167 1.6029
8 2.61 48 1.151 88 1.3815 128 1.8822 168 1.5216
9 3.8234 49 4.6484 89 1.304 129 1.3437 169 2.768
10 4.6018 50 4.6102 90 4.1162 130 2.317 170 1.7244
11 0.98909 51 4.2969 91 2.2829 131 1.8376 171 1.1157
12 2.2611 52 2.8871 92 1.7002 132 2.1187 172 1.8311
13 1.3404 53 4.7796 93 3.9917 133 3.0291 173 4.2117
14 3.465 54 2.5671 94 1.574 134 1.1593 174 1.3262
15 2.6194 55 4.037 95 1.2516 135 1.6437 175 3.6394
16 1.3754 56 1.1851 96 4.1835 136 4.2363 176 2.9495
17 2.776 57 4.2888 97 1.7787 137 4.8179 177 2.2707
18 2.0916 58 3.264 98 2.6487 138 4.5368 178 1.8605
19 1.2959 59 1.299 99 4.7957 139 1.0242 179 3.6795
20 2.797 60 1.6416 100 1.8178 140 1.3523 180 2.802
21 3.2156 61 1.6806 101 1.7754 141 1.7408 181 1.7151
22 3.5575 62 1.1319 102 3.4249 142 2.1068 182 1.6452
23 2.933 63 2.9396 103 1.8717 143 1.4007 183 4.1335
24 4.1267 64 3.3325 104 4.3101 144 2.8815 184 4.4041
25 3.3978 65 4.4178 105 2.7043 145 2.9222 185 1.103
26 2.3609 66 1.6589 106 1.2919 146 2.2135 186 2.8286
27 4.4769 67 2.5695 107 1.5667 147 2.2866 187 1.9413
28 2.5866 68 3.9407 108 1.0271 148 1.268 188 2.3281
29 3.4243 69 1.3441 109 1.0936 149 1.7487 189 3.4004
30 4.1958 70 2.2521 110 2.116 150 1.9476 190 1.5264
31 3.9828 71 1.2117 111 4.6691 151 3.5675 191 4.0938
32 1.0219 72 2.9439 112 3.1724 152 2.7379 192 2.4098
33 1.3266 73 2.6071 113 1.0559 153 1.5587 193 2.5777
34 4.8575 74 1.3198 114 3.3219 154 4.9649 194 3.8708
35 3.4945 75 4.6561 115 2.3209 155 4.1425 195 3.8658
36 2.9028 76 1.6135 116 2.0113 156 3.9895 196 2.8419
37 3.0504 77 2.2963 117 1.021 157 1.6943 197 1.504
38 2.3913 78 1.9079 118 4.9249 158 3.9224 198 1.8607
39 2.1549 79 1.0546 119 3.694 159 1.4385 199 1.2182
40 1.4828 80 2.5334 120 1.4839 160 1.8029 200 2.0775
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Appendix D. TPRs of System 3 for computing the Joint Distribution of TPR 

 

 

Obser. TPR Obser. TPR Obser. TPR

1 0.93 36 0.96 71 0.93
2 0.95 37 0.96 72 0.93
3 0.91 38 0.98 73 0.96
4 0.91 39 0.95 74 0.92
5 0.99 40 0.97 75 0.94
6 0.95 41 0.95 76 0.95
7 0.89 42 0.93 77 0.95
8 0.94 43 0.98 78 0.96
9 0.93 44 0.92 79 0.93
10 0.93 45 0.96 80 0.96
11 0.97 46 0.93 81 0.96
12 0.94 47 0.95 82 0.97
13 0.97 48 0.93 83 0.94
14 0.95 49 0.96 84 0.94
15 0.97 50 0.97 85 0.92
16 0.96 51 0.94 86 0.93
17 0.94 52 0.96 87 0.96
18 0.98 53 0.9 88 0.94
19 0.99 54 0.97 89 0.92
20 0.91 55 0.97 90 0.95
21 0.99 56 0.95 91 0.99
22 0.92 57 0.97 92 0.97
23 0.94 58 0.97 93 0.94
24 0.96 59 0.97 94 0.92
25 0.93 60 0.97 95 0.92
26 0.93 61 0.97 96 0.98
27 0.97 62 0.94 97 0.93
28 0.95 63 0.95 98 0.96
29 0.92 64 0.96 99 0.95
30 0.9 65 0.93 100 0.99
31 0.96 66 0.92
32 0.96 67 0.91
33 0.94 68 0.95
34 0.95 69 0.92
35 0.94 70 0.94
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