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Abstract 

 

Mobile wireless network protocols currently run on optimistic routing algorithms, 

adjusting node connectivity only when the chosen connectivity metrics, such as signal 

strength, pass beyond minimum thresholds.  Optimistic routing has several weaknesses.  

Optimistic routing suffers from increased network overhead during increased frequency 

of node movement and increased node density per area, and optimistic routing also 

suffers from non-optimistic access change for individual nodes.  The overall 

communication throughput of a network may be increased if the network topology 

change is scripted; a scripted plan can allow messages to travel along a more efficient 

topological path while creating less topology control traffic.  This would increase the 

overall network bandwidth and may be an alternative solution to current network routing 

problems such as route loop creation. 

This thesis tested a network with scripted movement against an unscripted 

network in a simple network featuring mobility, for increases in bandwidth due to 

scripted node access changes over optimistic access changes.  The results showed 

significant improvement in the data throughput in the scripted network when there were 

multiple overlapping networks contending for the same node. 
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SCRIPTED MOBILE NETWORK ROUTING 
 

 IN A CONTESTED ENVIRONMENT  
 
 
 

I.  Introduction 

Modern computing increasingly focuses on disconnecting the computer from the 

wall.  Devices are decreasing in size and increasing in portability while keeping the full 

functionality of a desktop computer; full computers are now the size of a paperback and 

can run any modern software for hours (OQO Products, 2008).  Unfortunately, 

communicating with other machines in a mobile environment is more difficult than in a 

wired network, as the movement of machines can break links to the network 

indiscriminately.  A significant portion of all modern computational research is now in 

the realm of mobile computing; for example, more than sixty papers for mobile systems, 

mobile computing and ubiquitous computing were submitted for the 2006 ACM 

Symposium on Applied Computing alone (SAC 2006 Paper Count, 2006).  This 

compares to only eighteen in 2003 (SAC 2003 Paper Count, 2003). 

Modern mobile computing research includes creating and improving routing 

protocols in attempts to improve the throughput by increasing the average number of bits 

per second of usable communication bandwidth or decreasing the delay between 

successive communications.  One constant in all current research is that nodes will move 

randomly and protocols are optimistic; in all current research, each node does not know 

where another node will be travelling to at any point in time, does not know where any 
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node is at any point in time, and does not know its own planned path or velocity at any 

point in time.  These protocols have a limited velocity and network node population, due 

to the increasing traffic such environments cause. 

Nodes can know, at least within a limited duration of seconds to minutes, their 

future physical or topological travel path.  A Global Positioning System connected to an 

automobile, for example, would expect to continue down an interstate at least until the 

vehicle arrived at an intersection.  In some situations, such as in a military battlespace, a 

node’s movement may be known hours or even days in advance. 

If the foreknowledge of nodes can be correlated into a plan, mobile nodes 

knowing this overall plan for network topology changes do not have to communicate 

changes, reducing network bandwidth used for topology control and increasing the 

amount of bandwidth for data transmission.  Additionally, nodes can plan their movement 

to use higher bandwidth paths sooner and avoid connections to areas containing expected 

network congestion or contention.  A system utilizing a scripted topology can improve 

average usable bandwidth and increase the overall efficiency of network 

communications, enabling the implementation of larger scale mobile networks that do not 

fail from excessive topology control overhead. 

Background 

Modern networking began about 1974, when the Ethernet was first presented by 

Robert Metcalfe and David Boggs (Kurose, 2005:459).  The continuing explosion of 

computer use and the resultant desire to share information drove the creation of a network 

of networks, the internet, and pushed the number of systems that comprised the internet 
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to over 433 million by 2007 (Internet Domain Survey, 2007).  The use of networks 

fostered the development of robust routing protocols able to handle large numbers of 

computers, including RIP (Handrick, 1988) and OSPF (Moy, 1998). 

The advent of wireless networking occurred in 1969 with ALOHAnet in Hawaii 

(Kurose, 2005:439), but such networks were limited by cost, size, and maturity of 

control.  Evidence of increasing availability of wireless networking was shown with the 

first IEEE Workshop on Wireless LANs, in 1991 (Pahlavan, 2001).  The decreasing size 

and cost of computers and wireless network components has now placed over two 

hundred fifty million subscribers to some form of wireless communication, including 

over twenty-two million mobile high-speed connections (U.S. Wireless Subscribership, 

2007).  The rapid expansion of wireless networking, coupled with the decreasing size of 

computers, has caused development of network protocols which allow mobility while 

networked. 

Many mobile networking protocols focus on ad-hoc networks, as in AODV 

(Perkins & Belding, 2003), DSDV (Perkins & Bhagwat, 1994) and OLSR (Clausen & 

Jacquet, 2003).  An ad-hoc network is a network with no pre-arranged structure, in 

contrast to wireless cell networks or wired static networks.   

Problem Statement 

Although extensive work has been done on wireless protocols and optimizations, 

relatively little research has been done in the area of preplanned, or scripted, routing.  The 

potential for improvement due lessened topology control traffic and increased bandwidth 

during optimized node movement is unknown. 
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Research Objectives/Questions/Hypotheses 

 The objective of this paper is to perform an initial exploration of scripted mobility 

to determine whether there are any obvious advantages to scripted movement on a 

network over an optimistic network.  This thesis specifically tests for differences in 

throughput between scripted network movement and an unscripted network movement, 

when a node is moving through an environment with multiple networks. 

 

H0: There is no significant difference in throughput, on a network with elements 

of mobility, between a network using a script to control topology changes and a network 

using no plan. 

 

The intent and focus of this paper is on finding situations and potential 

topological situations in which a plan influences network throughput, if any such 

situations exist. 

Methodology 

This paper uses a network simulator to test multiple identical situations under 

both scripted mobility and unscripted mobility.  Simple situations are used to look for 

indications of improvements due to scripting independent of network load.  The 

simulations test a single node moving under a single network protocol, AODV, with 

scripted topology change and without in a single-network environment, then test the same 

setup in a multiple-network environment.  The results are statistically and visually 

compared to determine differences in throughput. 
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Assumptions/Limitations 

This paper assumed network simulations are viable methods for investigating this 

type of protocol change.  Although network simulators have been evaluated for suitability 

in performing experiments, there is always a chance some issue with simulations in 

general or a specific simulator will skew the research results.  This assumption includes 

many smaller assumptions, such as the suitability of a chosen simulator’s random number 

generation, protocol implementation, and model representation. 

The modifications done to the various processes within the simulator are assumed 

to not significantly influence the simulator results.  The model changes were tested both 

with and without an active script; however, there is always a possibility that some 

variable or process invoked causes unintended side effects only during implementation, 

and such side affects may skew research results.  

This research assumes the chance of two separate networks being accessible to a 

single node at the same time, during some point in its mobility path, is high.  With the 

number of devices that connect to the internet constantly growing, and the availability of 

consumers to obtain increasingly sophisticated wireless networking technologies 

increasing, there seems to be a time coming when there will be more than one network 

accessible in at least a portion of areas a mobile node is travelling through.  For an area 

such as a battlespace containing an extensively networked military, the possibility that 

there are two networks or subnetworks in an area, such that a device common to the 

military could potentially talk on either network, seems high.  If future situations or 
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future technology avoid network overlap, the experiments in this thesis would not have 

direct application to wireless network routing. 

Implications 

If network planning is shown to increase the average throughput of a network 

compared to a network with no plan, then adding planning to a network would increase 

the average throughput of a network.  Wireless networks would be able to send increased 

amounts of data, and would be able to support larger-scale networks.  Planning could 

become an integral part of mobile communication, increasing a mobile network’s overall 

efficiency in using its bandwidth.  This has direct implications on planned networks, such 

as deliberately deployed sensor arrays and battlefield networks; further research may find 

a method to develop a script for a broader range of mobile networks. 



 

II. Literature Review 

Chapter Overview 

This chapter reviews various factors and design considerations for the experiment 

performed.  Several papers identify the capacity of wireless networks, the advantages to 

hierarchical routing, and the difficulties in creating or maintaining that hierarchy.  Several 

protocols identify the history of networking protocols, and various wireless protocols 

represent key differences between the algorithms used in wireless networking.  Works 

pertaining to performance differences between protocols are discussed, with differences 

in experiments noted and relevance to large-scale mobile networking identified.  A 

comparison between two different simulators highlights the advantages of each in 

simulation and future experiment portability. 

The Capacity of Wireless Networks 

The scalability of wireless networks has been a constant issue and driving force in 

wireless protocol development. 

Wireless networks have been shown to have limited scalability (Kumar, 2000).  

Specifically, the most optimal possible throughput is on the order of W
n

, where W is the 

capacity of a single link, and n is the number of nodes in the network.  Wireless networks 

can show improved throughput with the support of an infrastructure or other out-of-band 

communication, on the order of  
log( )

W
n

 or even close to 1 (Kozat, 2003).  The issue is 

putting such an infrastructure in place.  Attempts have been made to use additional 
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wireless nodes as a backbone for the wireless network; one such protocol paper noted 

such a hierarchy is more suited to low mobility environments, where control traffic would 

not overwhelm the data traffic (Banerjee, 2001). 

The Internet Protocol, and IPv6 

 The Internet Protocol, or IP, is a protocol handling the transmission of data from a 

source to a destination in a network or between networks (Postel, 1981:1).  With the 

explosion of networks, the number of addresses in the 1981 specification was predicted to 

be insufficient for future needs, and a new specification was formed in 1998 called IPv6 

(Deering and Hinden, 1998) to increase the total address space significantly, simplify the 

data packet addressing header, and add extensions and options not envisioned in the 1981 

specifications (Deering and Hinden, 1998:2). 

 IPv6 was chosen as the underlying end-to-end protocol for the thesis experiments.  

The thesis exclusively performs experiments that do not impact this network protocol 

level.  IPv6 was chosen due to the increasing importance predicted for IPv6 and the 

potential removal of IPv4 in the near future; choosing IPv6 may lessen the number of 

changes needed in future research to bring the research closer to practical use. 

Wired Network Protocols 

Wired networks are characterized by high bandwidth, relatively stable topologies, 

and relatively few issues with detecting nodes.  Wireless network protocols focus on 

allowing a topology to be efficiently and completely represented and modifying the 

topology representation quickly to minimize connectivity issues.  Features such as quality 
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of service levels, multicasting, and special area representation have become more 

important factors to wired network protocol design. 

RIP 

RIP, or Routing Information Protocol, was a standard created from a common and 

prevalent routing protocol developed from the early days of ARPAnet (Hedrick, 1988:2).   

Routers using the RIP protocol iteratively share information with neighbors 

through a distance-vector algorithm.  Each router can route progressively farther as other 

systems share data from progressively more distant routers during each iteration of the 

protocol.  Thus, given enough iterations, a single router’s table will contain the route to 

send any packet of information to get the packet to its destination.  A router will 

periodically send messages to ensure the links to other routers are still viable.  The 

iterations of RIP and periodic messages were timed randomly and at sufficient intervals 

to not overload the network with synchronized network control traffic (Hedrick, 

1988:23).   

Although RIP converges in a finite time (given a static network), the time 

required to converge is not determinable (Hedrick, 1988:8).  RIP is designed for 

moderate size, homogeneous networks where the number of links traversed between 

source and destination nodes is less than 15 (Hedrick, 1988:4).   RIPng is a version of 

RIP created to handle the requirements of an IPv6 internet (Malkin and Minnear, 1997). 

OSPF 

OSPF, or Open Shortest Path First (routing), was published by the OSPF working 

group of the Internet Engineering Task Force (IETF) in 1989 (Moy, 1989), and was 
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updated to OSPF version 2 in 1991 (Moy, 1991).  OSPF was developed because RIP, the 

standard of the time, was limited in the size of the network it could handle (Hedrick, 

1988:11).  OSPF attempted to solve some of the issues that had arisen with RIP, 

including the potential for loops, the slow convergence of RIP routing tables for large 

systems, and the lack of authentication of route updates.  The result of the working group 

was a protocol that used a completely different style of algorithm, called a link-state 

algorithm. 

Routers using OSPF periodically flood the network with their neighbor 

information, and use all router information received in the link-state algorithm to 

determine the shortest path to each router area.  Like RIP, OSPF sends updates at 

randomized times to de-synchronize updates sent by routers.   

The OSPF routing table converges in a finite, known time for a given number of 

routers, unlike RIP.  The restriction on the number of links traversed between a source 

and a destination is very high, on the order of a thousand.  OSPF for IPv6, sometimes 

called OSPF v3, is a version of OSPF created to handle the requirements of IPv6 (Coltun, 

1999). 

IS-IS 

IS-IS, or Inter-System to Inter-System (routing), started development in 1987 

from the DECnet Phase V routing algorithm (Bhatia, 2006:4).  IS-IS was developed as 

part of a protocol stack conforming to the OSI layers, interfacing with other protocols at 

approximately the same level as IP, sending data directly through layer 2 protocols 

(Bhatia, 2006:7).  Soon after its initial publication, the IETF IS-IS working group 
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published an extension of IS-IS to handle both an IP-only network and a dual IP and OSI 

network (Callon, 1990). 

IS-IS, like OSPF, is a link-state algorithm-based protocol.  Unlike OSPF, IS-IS 

does not communicate between routers via IP, but rather a proprietary message format.  

There are advantages and disadvantages to this non-IP routing traffic, but overall it 

causes little impact.  IS-IS sends periodic floods of routing messages to ensure updated 

route tables, and has extensions to support most current topology and traffic 

considerations (Bhatia, 2006: 12).   

The IS-IS routing table converges in a finite, known time for a given number of 

routers.  The restriction on the number of links traversed is somewhat high, on the order 

of sixty, with extensions allowing thousands of consecutive links between source and 

destination.  IS-IS needed no significant change to be able to handle IPv6 (Bhatia, 

2006:23). 

Wireless Network Protocols 

 Wireless networks are characterized by changing bandwidth and unstable 

topologies, making it difficult to detect all nodes in the network at any one time.  In 

addition, many wireless applications, such as remote sensors and networked digital 

assistants, are constrained by power.  Wireless protocols focus on aspects of minimizing 

control transmissions, maximizing connectivity, and maximizing fault tolerance of routes, 

although usually not in equal portions.  Each protocol attempts to maximize average 

usable bandwidth, given certain constraints on network mobility and size.  
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AODV 

AODV, or the Ad-hoc On-demand Distance Vector protocol, was published by 

the IETC MANET working group in 2003 (Perkins and others, 2003).  The MANET 

working group was created to standardize IP routing in topologies with increased 

dynamics, such as mobile networks (MANET, 2007).  AODV was designed to allow 

quick, on-demand routes to be created from source to destination, without loops and with 

low overhead (Perkins and others, 2003:1).   

Each device using AODV has the potential to route traffic, and each keeps a table 

of current routes.  A device wishing to contact another using AODV floods the network 

to a limited routing distance with a request to communicate with the destination.  The 

flood messages record the path each takes, and the one that reaches the destination has a 

complete path from source to destination.  Additional considerations are handled, such as 

using specific sequence numbers to stop loops and handling breaks in the route (Perkins 

and others, 2003:3-4).  Routes have a short time they are kept, essentially causing only 

used routes to stay active in the tables of any one node. 

 The AODV routing algorithm does not necessarily ever learn the entire network 

topology; AODV need not communicate as much topology information and can conserve 

bandwidth.  AODV can handle a large number of links between source and destination. 

OLSR 

OLSR, or Optimized Link State Routing, was published in 2003 (Clausen and 

Jacquet, 2003).  OLSR was designed to allow efficient routing in dense but dynamic 
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networks through the use of proactive routing and designated relays (Clausen and 

Jacquet, 2003:1). 

OLSR allows limited flooding for determination of short-distance neighbors, but 

minimizes large-area flooding through the use of multipoint relays, which are selected 

dynamically through algorithms to ensure both a minimized set of relays and a maximally 

connected network.  The algorithm utilizes a link-state routing algorithm like OSPF or 

IS-IS, and potentially learns the entire network topology. 

TORA 

TORA, or Temporally Ordered Routing Algorithm, was published in 2001 as an 

alternative to link-state or on-demand protocols (Park and Corson, 2001).  TORA was 

specifically designed to handle sparse networks with a minimum of route update traffic, 

while allowing both proactive and reactive routing when requested (Park and Corson, 

2001:2). 

TORA performs routing through a link-reversal algorithm; this algorithm is run 

once per route required and assigns values to each routing node, such that higher-value 

nodes can only forward traffic to lower-value nodes, and the destination has the lowest 

value.  Thus, traffic being forwarded must eventually reach the destination node.  Cases 

such as link loss and network partitions are handled (Park and Corson, 2001:3-8). 

TORA is not designed to provide routes to all network nodes.  TORA can handle 

on the order of four billion links between source and destination nodes (Park and Corson, 

2001:12-13).  TORA’s algorithm allows re-routing of traffic without new network control 

traffic. 
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ZRP 

ZRP, or Zone Routing Protocol, was published in 1997 by Cornell University 

(Haas, 1997).  ZRP was an attempt to reduce network control traffic through the 

hybridization of proactive and reactive protocols (Haas, 2002). 

In ZRP, each routing node keeps a periodically updated, proactive record of other 

nodes within a certain hop distance from the routing node; this is the routing node’s 

“zone”.  To communicate beyond its zone, a routing node floods route request messages 

from the border of its zone to other zones (Haas, 2002); this reduces the overall traffic 

involved by the factor of the zone radius. 

Routing Concepts 

LAR 

LAR, or Location Aided Routing, was published in 1998 from the Department of 

Computer Science at Texas A&M University.  More of a concept than a fully-developed 

protocol, LAR showed the potential gain of leveraging a node’s location during routing to 

improve routing performance (Ko, 2000). 

LAR showed that there was significant improvement in routing when nodes 

routed using information on the destination’s last known location, over many densities 

and speeds of simulated MANET random movement.  The improvement, in terms of 

routing packets per data packet and number of routing packets per route discovery, was 

on the order of twenty to fifty percent over all densities and speeds of nodes. 
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Simulators – OPNET and NS2 

OPNET models networks in a multi-layer GUI approach; nodes, processes and 

states are each modeled at a different layer.  OPNET allows the user to change any of 

these layers separate from other layers.  A state can be changed for a common process, 

affecting all nodes using that process and therefore the entire network; a new process can 

be added to just one node type, changing those nodes but leaving all other nodes 

untouched (Begg, 2006:10). 

NS2 models simulate networks through text definitions of the nodes and links in a 

two-layer approach; a definition of the object type, and a list of objects and their 

associations (Altman and Jimenez, 2003:14).  NS2 can also have different objects 

modified with or without changing other objects, but the process is intrinsically different 

due to the emphasis on written definition in NS2 over GUI modeling in OPNET.  NS2 

includes a visualizer to graphically show the network simulation, but this visualizer only 

shows the finished network; it is not used in network simulation set-up directly. 

Protocol Comparisons 

Iwata measures on-demand routing, such as AODV, Fisheye State Routing (FSR), 

and Hierarchical State Routing (HSR, developed in-house) (Iwata and others, 1999).  

This comparison was geared toward large networks and validating the HSR protocol as 

advantageous in large situations; the tests used the number of nodes as one factor, and 

mobility of one hundred communication pairs as a separate factor.   
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Their conclusion shows on-demand routing is better for smaller networks, while 

proactive routing and hierarchical routing has definite benefits for networks containing 

more than one hundred communication pairs.    

 

Latiff and Fisal compared DSDV, AODV, DSR, TORA, ZRP, LANMAR and 

LAR; the results show again that the size of the network determines the best protocol for 

the situation; DSDV, AODV, TORA and DSR are favored smaller networks, while ZRP, 

LANMAR and LAR perform better in larger networks (Latiff and Fisal, 2003). 

 

Royer performs a broad comparison between DSDV, CGSR, The Wireless 

Routing Protocol (WRP), AODV, DSR, TORA, Associativity-Based Routing (ABR) and 

Signal Stability Routing (SSR) (Royer, 1999).  Royer compares table-driven and source-

initiated protocols separately and all together.   

Among the table-driven protocols, WRP, DSDV and CGSR all have the same 

amount of communication complexity to solve link failures and additions, but WRP has a 

lower time complexity, since a single node does not communicate changes to the entire 

network, but only to neighbors (Royer, 1999:52-53). 

Among source-initiated protocols, Royer describes each protocol as best for a 

specific situation.  DSR is efficient for small, moderate-mobility networks; TORA is best 

for large, dense networks; ABR is useful when stable routes are required, and SSR has 

potential to be more efficient than ABR, but also has a lack of partial route recovery and 
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lack of partial route discovery, both of which can speed up connection time (Royer, 

1999:53-54). 

Royer’s comparison of table-driven routing versus source-initiated routing notes 

the advantages of route discovery for table-driven protocols in general, and the 

disadvantages of higher bandwidth and power use due to the need for periodic updates 

(Royer, 1999:54). 

Summary 

Numerous routing protocols have been developed over the course of computer 

networking.  There is a marked difference between the requirements for a protocol in the 

static, wired network environment and the dynamic environment of a wireless network.  

Specifically in a MANET, the optimal routing algorithm can be markedly different based 

on the density and speed of the nodes. 

A key to all MANET routing protocols studied is the minimization of route 

control traffic to increase the ratio of possible data traffic.  This minimization can be 

accomplished through on-demand routing (Perkins and others, 2003), minimizing the 

scale of request flooding (Clausen, 2001), minimizing the number of messages through 

hybridization (Haas, 2002) or unique routing schemes (Park and Corson, 2001) (Ko, 

2000). 

There tends to be at least two types of MANET protocols: proactive, table-driven 

protocols which maintain nearly up-to-date paths in memory at all time; and reactive, on-

demand protocols which develop routes only when needed.  Different protocols differ in 

method and designed scale, and each can be best for a given situation. 



 

III.  Methodology 

Chapter Overview 

This chapter details the logic, methods, and instruments used in testing the 

research hypothesis.  A scripted network is only useful if there is a significant 

improvement of a scripted network over an unscripted network.  Proper testing is the only 

way to determine differences that arise between a scripted and an unscripted network; 

proper testing involves isolating the factor to be tested, such as the presence of a script, 

from outside factors, such as the performance of one specific protocol over another.  The 

experiment was designed to minimize undesired factors, to give more accurate and 

reliable results on the difference between the scripted and unscripted network.  The 

simulation runs the same network with the same code, environment and random seeds; 

the only item that changes is the inclusion of data that constitutes a set of scripted 

movements within the topology.   

Simulator Choice 

Begg noted that both OPNET and NS2 were the best choices for their simulations 

(Begg and others, 2006:52).  NS2 handles models programmatically, while OPNET 

handles models in a graphically modular fashion, but both had adequate levels of support 

and would be able to simulate a wireless environment with appropriate results.  These 

two simulators were the only two readily available for this project.  OPNET was chosen 

for the simulator because future theses would most likely build upon this work, and 
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OPNET’s modules allow developed functionality to be modularized for future 

simulations. 

Protocol Logic 

The proposed protocol modification uses a script to plan node movement.  The 

modifications to the simulator processes utilize aspects of common wireless and router 

implementations to control topological node movement in the network.  At a given time, 

the node first forcibly changes its physical-layer channel.  The node then updates its 

address.  Finally, the source and destination nodes send traffic with source and 

destination reflecting the current addresses of the communication pair. 

Protocol Implementation  

The choreographing of node movement through a plan is done through two 

functions already present in current wireless internet protocols: wireless channel 

changing and router soliciting.  OPNET simulator processes are then used to 

automatically handle re-addressing of traffic in response to node movement. 

A script describing all network movement in terms of topology changes is 

distributed at initialization of each node; each node reads a file containing a node index, 

the time, and new channel the node will connect to.  The modified processes use this data 

to trigger wireless channel and node address changes at the specified script times. 

The modified processes add time-based channel changing to the wireless model, 

to support scripted movement based on the time triggers in the script.  Wireless channel 

changing is a required part of wireless access cards supporting mobility; there is always a 
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chance a node will move out of range of its current access point and will need to find 

another.  Channel changing usually involves scanning for the next available channel; the 

script protocol adds a modified procedure which mimics changing to a new channel after 

a successful scan. 

The script-based protocol times a router solicitation to coincide with an access 

point channel change, to quickly get an address within the new subnet area the node 

moved into.  Router soliciting normally allows a node to request a new address from a 

router when first connecting to the network (Deering, 1991); the node requests a new 

address after it has connected to the new access point.  Without a new address to coincide 

with an access point change, the new router may not know of the movement of the node 

and won’t forward traffic appropriately. 

  As nodes are changing addresses, the source-destination pairs must change their 

packet destination addresses to match the addresses based on the plan.  OPNET 

automatically addresses packets with correct destinations, regardless of movement, if the 

application source and destination are defined by name instead of address.  Although 

implementation was scripted to be implemented through code modification, OPNET 

showed the capability for automatically re-addressing packets between source-destination 

pairs in an application regardless of addresses.  In the application setup of FTP file 

transfers, the source and destination were entered by name; the “by name” entry 

automatically modified packet destinations to match any new addresses as nodes moved.  

This method simulates the packet addressing by plan sufficiently and coordinates with the 

movement plan. 
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Dynamic routing tables were not implemented, and only end nodes show scripted 

mobility.   

The initial experiment included a form of global geographic addressing connected 

to area routing; geographic routing has the potential to facilitate movement planning.  

Due to time constraints, the geographic routing portion of the experiment was removed 

from the research. 

Base Protocol 

  For the purposes of this paper, the protocol modifications were created to 

coincide with AODV.  The modified routing does not change AODV, and can be used 

with any routing protocol.  AODV is tested with and without the plan for differences. 

Protocol Performance Metrics and Measurement Tools 

End-to-end data throughput will be used as the measure of MANET protocol 

performance; this is one of the performance measurements noted by the MANET 

working group RFC on MANET protocol performance issues and evaluation 

considerations (Corson, 1999). 

OPNET’s statistic measuring was used to collect data for analysis, and the 

number of IPv6 packets per second received by the server was chosen to represent end-

to-end throughput.  The IPv6 statistic was chosen over other statistics because this 

statistic seemed to exclude control traffic and showed no packets received when there 

was no network connectivity to the client.  In comparison, client IPv6 packets showed 

traffic even without connectivity, as the client continued to connect to the routers.  The 

data collection rate was set at one second intervals. 
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Each setup was run thirty times, each with a different random number seed; the 

results were averaged and compared.  The packet throughput difference between 

unscripted and scripted AODV was statistically analyzed using JMP 6.0.2 for Windows 

(copyright 2006 SAS Institute, Inc.) to determine whether there was a statistical 

difference between a network with and without a plan, and, if possible, which protocol 

performed better than the other. 

Common Experiment Settings 

Each connection in the experiment uses a different non-interfering channel to 

eliminate the possible effects of interference on the experiment; 802.11a was chosen as 

the wireless protocol because it has more non-interfering channels than 802.11 b or g. 

Applications and movement were delayed seventy seconds in all cases to allow 

the network to fully initialize, and only the server moves during the simulation.   

In all cases, routers advertising an access point were denoted with a circle, 

centered on the router and with a range equal to the maximum range a node could 

communicate with the router meaningfully.  Each router communicates with only one 

other router using a dedicated 802.11a channel.  The network is based on a star pattern, 

with a four-interface wireless router in the center, labeled router_0.  All other routers are 

two-interface wireless routers. 

All routers were set up as identically as possible; when a setting was router-

specific, each router has the same setting.  When a setting was interface-specific, each 

interface was set as similarly as possible.  Each interface set as an access point was given 

a unique subnet range for its access point.  Each router interface and each client was 
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given a unique IPv6 address.  Any settings not dealing with the routing protocol, wireless 

channel number, or wireless protocol (as in 802.11a) was left at default settings.  Any 

setting for the wireless protocol not dealing with either allowing or disallowing the 

protocol use was left at default settings.   

Network Topology Experiment: Uncontested and Contested 

A topology was created to explore the effect of planning in an environment involving 

multiple networks.  See Figure 1 and Figure 2.  

 

 

 

 

  

Figure 1: Network Setup 

(Uncontested)  
Figure 2: Network Setup (Contested) 



 

 

Only a single client and server, using repeated FTP file transfers of fifty thousand 

bytes, tested connectivity and throughput, while the server moved along the white 

trajectory.    The route is effectively a straight line, and the server is travelling at a 

constant thirty kilometers per hour.  The turn close to the end is present to test server 

connectivity outside of router_3’s AP, while ensuring the server does not leave the AP 

coverage of the larger network. 

Routers hosting an AP are denoted by a circle centered on the router, with the 

circle width equal to the maximum effective communication range between the router 

and another node.  Router_3 is a separate network, hosting its own AP and not connected 

to the other routers.  All other routers are connected only to router_0.  The router in the 

center, Router_0, hosts no AP.  This network was tested with router_3 not interacting 

with the other network at all, as shown by the “x” on router_3 denoting a failed, or shut-

off, node in 
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Figure 1, and with router_3 in direct contest with the connected network for the 

server when the server must change its AP, as shown in the center of Figure 2. 

Summary 

The experiment was designed to minimize undesired influences to the results; this 

increases the validity of the script as the source of any differences in throughput between 

the scripted and unscripted networks.  Thirty simulation runs were performed on a simple 

structured network, involving a single mobile node, to average and minimize the effects 

of outlying data in a single experiment.  The results are examined statistically to 

determine any difference between scripted and unscripted networks. 

 



 

IV.  Analysis and Results 

Chapter Overview 

This chapter details the results from the experiments between scripted and 

unscripted networks.  The results were examined visually and statistically, to determine 

what results, if any could be determined from the data. 

The data showed distinct sections where throughput showed significantly 

different characteristics; these coincided with topology changes.  The data from each 

topology change area was grouped before statistical analysis to determine whether there 

were statistical differences in the medians of each section and within each section. 

The experiments showed improvements of the scripted over the unscripted 

network, and suggested planning would have significant advantages when multiple 

networks were in the same area. 

Visual Results of the Network Simulations 

The results from the simulations were averaged, then graphed to visually examine 

the data; the difference between the scripted and unscripted network throughput was 

examined both visually and statistically.  There was a statistically significant increase in 

the throughput of the scripted network when the network to connect to was contested. 

AODV without Planning 

The results from unscripted network between an uncontested environment and a 

contested environment showed significant differences; see Figure 3. 
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Figure 3: AODV Throughput without Planning 

AODV exhibited increased throughput when the server was communicating on 

the same channel as the client; the throughput was greatly reduced other times.  As 

expected, AODV exhibited no throughput when the server chose to connect to the 

contesting network. 

AODV with Planning 

The results from the scripted network in an uncontested and a contested 

environment were almost identical; see Figure 4. 
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Figure 4: AODV Throughput with Planning 

Again, AODV showed increased throughput when both client and server were 

communicating on the same wireless channel; in the contested case, the planning allowed 

the server to connect to a channel on the non-contesting network and continue to transmit 

to the client. 

Partitioning the Data 

In the network both with and without planning, there seem to be distinct sections 

of communication which correspond to the topology changes as the server moved.  All 

graphs of network throughput were combined to visually identify different sections, as in 

Figure 5.  These sections corresponded to wireless channel changes, which were used to 

partition the data for statistical analysis.  The data was categorized as occurring before 
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one hundred seconds, occurring between one hundred and one hundred fifty seconds, and 

occurring on or after one hundred fifty seconds. 
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     Distinct Throughput    
     Sections 

Figure 5: Throughput Sections of Scripted and Unscripted Networks 

Difference between Unscripted Network and Scripted Network while Uncontested 

Although there are visual differences between the scripted and unscripted network 

throughput for the uncontested case, statistics show the data to have no statistical 

significance.  The data between one hundred and one hundred fifty seconds was not 

normally distributed, so the Krushkal-Wallis test was used to test the rank of the medians 

against each section against the others.  The Krushkal-Wallace test showed no significant 

difference between the rank of the medians for the uncontested network (p=0.756), and 
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we cannot reject the hypothesis that the difference between the scripted network and 

unscripted network is 0. 

Difference between Unscripted Network and Scripted Network while Contested 

Both visually and statistically, the network with planning performed better than 

the network without planning when there were contesting networks involved.  The data 

between one hundred and one hundred fifty seconds was not normally distributed, so the 

Kruskal-Wallis rank test was performed; the test showed a definite rejection of the 

hypothesis that the medians were equal (p<0.0001).  A z-test was performed on the data 

from the section one hundred to one hundred fifty seconds.  The results showed any 

differences between the means of the network types were almost certainly not due to 

chance, and the difference was most likely in the favor of the scripted network.  The 

mean difference in the data showed the scripted network averaging almost twenty-nine 

more packets per second than the unscripted network. 

Summary 

The average simulation run throughput in the networks without contention 

showed no difference with or without planning, statistically, but some difference visually.  

The network with planning had a higher mean throughput than the network without 

planning.



 

V.  Conclusions and Recommendations 

Chapter Overview 

This chapter discusses the results and implications of Chapter four, and indicates 

avenues for further research.  The research shows increased throughput when contesting 

networks are involved in the environment; this could have significant results in all 

aspects of wireless networking, as the number of overlapping networks increases.  There 

are significant potential scalability advantages to a scripted network, as control of a 

network with a plan can simulate a hierarchical static network.  Many aspects of network 

movement planning have not been researched, and such research could reap significant 

increases in average throughput for wireless networks. 

Experiment Conclusions 

The planning test did not show significant differences between the unscripted 

network and the scripted network in a low-mobility environment with no contesting 

networks.  The scripted protocol was very beneficial in an environment where multiple 

distinct networks using the same wireless technologies coexist, as it can increase 

throughput through optimal AP choices. 

Significance of Research 

The future military battlefield networks could immediately see benefits to the use 

of this research.  The current military battlefield is quickly becoming a mass of semi-

connected networks.  Even if two sub-networks are connected through a common 

backbone, each may use different means to reach that backbone; a single unit connecting 

to the wrong network would experience significant data delays and additional chances to 
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lose data as the traffic travels through longer paths.  Even in a homogeneous network, 

scripted movement and access point changes have the potential to optimize bandwidth 

use and minimize AP or MANET topology changes.  The military already plans its 

movements, so developing the network movement plan can simply build on battle plans 

already formulated. 

Mobile networks are increasing in number; there is a much greater chance for 

nodes to choose an incorrect AP and lose significant bandwidth.  A mobility plan may 

also increase the average throughput of a connection by changing to a new AP while both 

APs have a strong signal, decreasing the likelihood of interference causing errors.  

Adding a plan to mobile protocols will reduce the throughput loss that occurs with loss of 

connectivity. 

Planned Movement against Common 802.11 Wireless Channel Changing 

The common method for 802.11a, b and g to change channels is to scan each 

frequency channel, in order of frequency, until a new access point is found.  This 

opportunistic channel changing will scan all channels for a signal, as nodes do not know 

when a channel will contain an access point.  With a script, the node can change to the 

channel containing the access point immediately.  This scenario was initially tested; the 

results showed a scripted access point change can be up to five times faster than the 

standard change, occurring in one tenth of a second instead of up to half a second.  

However, these results were found to be insignificant in the low-mobility setting of the 

tested scenario. 
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Using a Distributed Plan to Emulate a Static Hierarchical Network  

A mobile network is characterized by its ubiquitous node movement and frequent 

topology changes.  Both proactive and reactive protocols can cause increased network 

control message traffic in networks where there are increasing numbers of nodes and 

when nodes move at increasingly higher velocities, limiting the overall scalability of 

these types of protocols.  By scripting both node movement and routing changes, the two 

types of topology change in the network are isolated from each other.  The scripted 

network’s traffic can flow along paths which minimize control message traffic.  A 

scripted network could be implemented in a distributed manner with almost no control 

traffic overhead using scripted address changes, scripted routing changes, and a set of 

hierarchical nodes for computer lookup. 

The key to emulating a static network would be a geographic addressing scheme.  

A geographic-based routing protocol allows emulation of a static network through 

separation of the node movement and the routing changes, allowing each to be handled 

separately.  Each can be linked to the geographic map as a common reference instead of 

to the other change type.  Thus, for each of the two changes, it is possible to map the 

other topology change statically.  IPv6 has enough space in its addressing scheme to hold 

addressing space to map the entire world to less than one square meter two-dimensional 

resolution, a unique ID that will allow any number of interfaces to coexists at the same 

fifty-bit location address while providing possibilities for finding nodes that did not 

follow the script, and a small amount of space to specify both IPv6 address type and 

subnets.   There would still be room for optimization in this addressing system, as the 

mapping also maps the almost empty oceans to one-meter resolution as well.   
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The key to distributing this scripted network control would be a distributed DNS-

style node lookup.  The nodes for this lookup would have a portion of the plan related to 

nodes below them in the hierarchy, transmitted from the nodes themselves.  These servers 

could be polled for a node’s address by node ID and any part of an address; the 

distributed hierarchy would allow the IDs to be searched efficiently.  Additionally, node 

lookup could be cached, sending fewer messages to find frequented nodes.  The hierarchy 

allows the lower-level ID servers to keep track of node movement changes without 

flooding the entire network. 

Nodes could keep track of their own expected path, and from their path make 

their own “script”, which they send to the ID server.  The node would know of its own 

movement, which it would use to create its change script.  The node would update the 

server every update period plus a random amount, avoiding the synchronization problem 

which was shown to occur in “timed update” scenarios (Hendrick, 1988:23).  The 

updating node would send updates long enough to cover the maximum time before the 

next update.  When sending messages to other nodes, the sending node would send 

enough of its future movement within the message header to ensure the receiver knew 

where to send the return message, eliminating the need for multiple node lookups for one 

communication stream. 

The routing in such a system would use area routing to separate node movement 

from routing changes.  Each router could router over a certain geographic area, based on 

the extent of their wireless coverage.  A hierarchy of areas could be covered by a 

hierarchy of routers; higher-level routers would cover a larger “virtual area” of routers 

subdividing the large area.  At the highest level, multiple routers would share their scripts 
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denoting planned coverage with each other to resolve conflicts of coverage.  One possible 

method to map an area of coverage would be to note the expected range of the wireless 

broadcast, and map a rectangle, cube or pyramid within that area.  Whether a node was 

covered would be two lookups in a table, corresponding to the upper-right and lower-left 

corners of the large area, and also corresponding to the edges of each sub-area covered by 

lower-level routers.   

For an area always connected, the routers could change their coverage based on 

their movement; as the routers moved, the areas covered by the routers would also 

change, but the addresses would be routed to the same geographic locations as another 

router moved to cover the area.  This could correspond to multiple aircraft, each a 

separate router, providing wireless coverage of a single area, for example. 

For an area not always connected, the routers at the highest hierarchy which does 

cover the area could send a message back to the sending node noting the time the area is 

planned to be covered, allowing the node to plan its next transmission without polling the 

network and increasing control traffic.  

This area routing style could also be improved; the addressing scheme might be 

optimized for the most common aspect of looking up an area, for example. 

Such a described plan, if proven feasible, could host many nodes or high-speed 

nodes without significant loss of network throughput due to topology control messages. 
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Recommendations for Future Research 

There are many areas in network movement planning that must still be researched 

to determine the true impact of a network plan.  The direct areas of research stemming 

from this study include creating a more robust protocol to investigate high-speed 

movement and protocol optimization.  The addition of mobility to a wireless structure 

network, in the form of mobile routers, can also be investigated for throughput 

improvements.  Other aspects of protocol performance, such as network control 

overhead, end-to-end delay and dropped packets could be researched.  Many areas in 

planning can be explored, such as exploring alternative implementations of planning, 

attempting to design and implement a self-sustaining plan, and exploring locally 

omniscient plan compared to the centralized plan used in the test simulations.  The effects 

of planning with respect to various protocol algorithms could be explored, to determine 

what the most efficient protocol-planning combination would be. 
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Appendix A: OPNET Modified Nodes and Processes – Detail 

Visual identification of changed process states 

 

Figure 6: Changed sections of IP - IPv6_ra_host 
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Figure 7: Changed sections of wlan_mac 

Ipv6_ra_host and Wlan_mac INIT Changes 

/* Temp variable to read the Node number, so it can be used to check for */ 
/* the end of the plan */ 
/* other temp variables read the AP BSS and Time */ 
int NodeCounter,NodeNumber=0,NodeBSS; 
double NodeTime,NodePrevTime; 
 
/* Address holder, to determine the UID from the address  */ 
/* UID_temp_str is used in a number to string conversion  */ 
/* to standardize the address strings                     */ 
char addr1[INETC_ADDR_STR_LEN]; 
char UID_str[20]="ffff:ffff:ffff:ffff"; 
InetT_Address addr0; 
 
/* Opening the plan file for reading */ 
FILE * fp; 
fp = fopen("I:\\My Documents\\OPNET\\Modified Models\\structure_plan.txt","r"); 
 
 
 
/* reading in the UIDs for the plan */ 
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NodeCounter=0; 
while (strncmp(addr1,"ffff:ffff:ffff:ffff",19)) 
 { 
 fscanf(fp,"%s %*s", addr1); 
 strncpy(Obj_Table[NodeCounter],addr1,19); 
 NodeCounter++; 
 } 
 
fscanf(fp,"%d %lf %s %d\n",&NodeCounter, &NodeTime, addr1, &NodeBSS); 
/* While the read node is not -1, continue to enter nodes into the table. */ 
while (NodeCounter > -1) 
 { 
 Time_Mark=0; 
 NodePrevTime=-1; 
/* While the current time is more than the previous time, continue to read times */ 
/* to the same node - this will cause errors if the time or node is incorrect    */ 
 while (NodeTime>NodePrevTime) 
  { 
  PMAP_Table[NodeCounter][Time_Mark].Time=NodeTime; 
  PMAP_Table[NodeCounter][Time_Mark].bss=NodeBSS; 
  strncpy(PMAP_Table[NodeCounter][Time_Mark].Addr,addr1,39); 
  Time_Mark++; 
  NodePrevTime=NodeTime; 
/* read the next line */   
  fscanf(fp,"%d %lf %s %d\n",&NodeCounter, &NodeTime, addr1, &NodeBSS); 
  } 
 } 
 
 
/* close the plan file */ 
fclose(fp); 
 
 
 /* Read the address attribute                                    */ 
 /* Read the top-level wireless attribute ID                      */ 
 op_ima_obj_attr_get (op_topo_parent(op_id_self()),"IP Host Parameters", &NodeBSS); 
 /* (Copied from wlan_mac) get the (unnamed) child                */ 
 NodeCounter = op_topo_child (NodeBSS,OPC_OBJTYPE_GENERIC, 0); 
 /* get Interface info from the child of IP Host Parameters       */ 
 op_ima_obj_attr_get(NodeCounter,"Interface Information", &NodeBSS); 
 /* get the (unnamed) child */ 
 NodeCounter = op_topo_child (NodeBSS,OPC_OBJTYPE_GENERIC, 0); 
 /* get IPv6 Params from the child of Interface Info              */ 
 op_ima_obj_attr_get(NodeCounter,"IPv6 Parameters", &NodeBSS); 
 /* get the (unnamed) child */ 
 NodeCounter = op_topo_child (NodeBSS,OPC_OBJTYPE_GENERIC, 0); 
 /* get Global Address(es) Info from the child of IPv6 Parameters */ 
 op_ima_obj_attr_get(NodeCounter,"Global Address(es)", &NodeBSS); 
 /* get the (unnamed) child */ 
 NodeCounter = op_topo_child (NodeBSS,OPC_OBJTYPE_GENERIC, 0); 
 /* copy the Addr attr. so we don't have to run through this again */ 
 Addr_Attr = NodeCounter; 
 
 /* get Address from the Global Address(es)                       */ 
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 op_ima_obj_attr_get(Addr_Attr,"Address", &addr1); 
 
 /* create an address from the attribute, to pass to the GUID fn. */ 
 addr0 = inet_address_create(addr1,InetC_Addr_Family_v6); 
 
 /* a function that pulls the GUID from a full IPv6 address       */ 
 /* the function returns a string, which matches the lower 4      */ 
 /* 4 octets of the IPv6 address.  The 64 bits will not normally  */ 
 /* fit in an int.                                                */ 
    InetT_addr_to_GUID(addr0,UID_str); 
 
 Self_Index=str_binary_search(0,20,UID_str,Obj_Table); 
 
/* Setting Time_Mark to the first PMAP entry index. 
/* The Time_Mark is the next position(@time) the node will move to. */ 
Time_Mark = 0; 
  
 op_intrpt_schedule_self(PMAP_Table[Self_Index][Time_Mark].Time+0.2,IPV6C_RA_HOST_R

XMT_TIMER); 

 

Function Called in All Other States of IPv6_ra_host 

static void 
ipv6_timed_solicit(int Addr_Id,PMAP_Address_Entry* PMAP) 
 { 
 /* internal variables for conversion of an IPv6 address to a string and back */ 
 char Addr_str[INETC_ADDR_STR_LEN]; 
 InetT_Address Addr; 
  
 /* This function initiates a solicitation for a router at a specified time */ 
 FIN (ipv6_timed_solicit(Addr_Id,PMAP[Time_Mark])); 
  
 // Check to ensure the time is after the current indexed time 
 if (PMAP[Time_Mark].Time<=op_sim_time()) 
  { 
  // create a new address from the plan 
  Addr = inet_address_create(PMAP[Time_Mark].Addr,InetC_Addr_Family_v6); 
  inet_address_print(Addr_str,Addr); 
 
  /* Set the new global address                                        */ 
  op_ima_obj_attr_set(Addr_Id,"Address", &Addr_str); 
  /* Get the new address (for debugging checks)                        */ 
  op_ima_obj_attr_get(Addr_Id,"Address", &Addr_str); 
  
  /*  Set new time to just after the wireless channel has been found (.2 sec)*/ 
  Time_Mark++; 
 
 op_intrpt_schedule_self(PMAP[Time_Mark].Time+CHANNEL_CHANGE_TIME,IPV6C_RA_H
OST_RXMT_TIMER); 
  } 
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 FOUT; 
 } 

Lines added to All Other States of Wlan_mac 

if (op_sim_time() > PMAP_Table[PMAP_Index][Time_Index].Time) 
 { 
 roam_state_ptr->ap_reliability = WLANC_AP_RELIABLE; 
 roam_state_ptr->scan_mode = OPC_TRUE; 
 channel_num  = PMAP_Table[PMAP_Index][Time_Index].bss; 
 Time_Index++; 
 } 
 

IP_Plan.h Declarations Included in Each Modified Process 

typedef struct _PMAP_Entry { 
double Time; 
char   Addr[40]; 
int    bss; 

} PMAP_Address_Entry; 
 
//binary search of an ordered list for a specific float-represented 
time 
static int 
Time_binary_search(const int LowC,const int N,const double time,const 
PMAP_Address_Entry * Table); 
 
//binary search of an ordered list for a specific string 
static int 
str_binary_search(int low,int high,const char* string,const char 
Table[40][20]); 
 
//ascii to hexadecimal 
static int atoh(const char* String); 
 
// Returns the last 64 bits in hexadecimal form, with all zeros 
static void 
InetT_addr_to_GUID(const InetT_Address addr,char* UID_str); 
 
//creates an OPNET IPv6 Address from a location x/y coordinates and a 
UID string 
static InetT_Address 
PMAP_Addr_Conv(const char GUID[20], const int PMAP_x, const int PMAP_y, 
const char Prefix[5]); 

Example plan.txt File 

0000:0000:0000:0001 [Record:0-Router_1:IF0] 
0 9999.0 8000:0011:F900:17EA:0:0:04:7 1 
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