
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-6-2008

Multi-Objective UAV Mission Planning Using Evolutionary Multi-Objective UAV Mission Planning Using Evolutionary

Computation Computation

Adam J. Pohl

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pohl, Adam J., "Multi-Objective UAV Mission Planning Using Evolutionary Computation" (2008). Theses
and Dissertations. 2775.
https://scholar.afit.edu/etd/2775

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F2775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2775?utm_source=scholar.afit.edu%2Fetd%2F2775&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Multi-Objective UAV Mission Planning

Using Evolutionary Computation

THESIS

Adam J. Pohl, Second Lieutenant, USAF

AFIT/GE/ENG/08-22

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GE/ENG/08-22

Multi-Objective UAV Mission Planning

Using Evolutionary Computation

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Adam J. Pohl, B.S.E.E.

Second Lieutenant, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/08-22

Multi-Objective UAV Mission Planning

Using Evolutionary Computation

Adam J. Pohl, B.S.E.E.

Second Lieutenant, USAF

Approved:

/signed/ 6 Mar 2008

Dr. Gary Lamont (Chairman) date

/signed/ 6 Mar 2008

Dr. Gilbert Peterson (Member) date

/signed/ 6 Mar 2008

Maj. Michael J. Veth, PhD (Member) date

AFIT/GE/ENG/08-22

Abstract

This investigation purports to develop a new model for multiple autonomous

aircraft mission routing. Previous research both related and unrelated to this en-

deavor have used classic combinatoric problems as models for Unmanned Aerial

Vehicle (UAV) routing and mission planning. This document presents the concept

of the Swarm Routing Problem (SRP) as a new combinatorics problem for use in

modeling UAV swarm routing, developed as a variant of the Vehicle Routing Prob-

lem with Time Windows (VRPTW). The SRP removes the single vehicle per target

restraint and changes the customer satisfaction requirement to one of vehicle on lo-

cation volume. The impact of these alterations changes the vehicle definitions within

the problem model from discrete units to cooperative members within a swarm. This

represents a more realistic model for multi-agent routing as a real world mission plan

would require the use of all airborne assets across multiple targets, without con-

straining a single vehicle to a single target. Solutions to the SRP problem model

result in route assignments per vehicle that successfully track to all targets, on time,

within distance constraints. A complexity analysis and multi-objective formulation of

the VRPTW indicates the necessity of a stochastic solution approach leading to the

development of a multi-objective evolutionary algorithm. This algorithm design is

implemented using C++ and an evolutionary algorithm library called Open Beagle.

Benchmark problems applied to the VRPTW show the usefulness of this solution ap-

proach. A full problem definition of the SRP as well as a multi-objective formulation

parallels that of the VRPTW method. Benchmark problems for the VRPTW are

modified in order to create SRP benchmarks. These solutions show the SRP solution

is comparable or better than the same VRPTW solutions, while also representing a

more realistic UAV swarm routing solution.

iv

Acknowledgements

I would like to acknowledge the massive amount of help I have received from my

peers here at AFIT. Specifically, thanks to Dan Karrels who allowed me to bypass my

inability to compile and write C++ code in the early and later stages of this project.

Everything I know about programming and Unix up to this point I attribute to him.

Thanks to Dustin Nowak for explaining different aspects of evolutionary computation

and providing a sounding board for various topics. Thanks to John McCall for reading

my thesis, giving me feedback, and of course, for keeping it real. Thanks to my Dad

for reading my thesis in the early stages and providing feedback.

I owe great appreciation for my wife supporting me in my work and helping me

deal with the stresses and strain of the previous year. She has kept me alive for the

past few years to the benefit or detriment of those around me.

Credit to my advisor Dr. Lamont for allowing me to freely pursue my ideas and

find my own way through this process. Also, thank you for always being understanding

even with the many mistakes and mis-steps made along the way.

I am hopeful that this and future work will contribute to my overarching goals

for humanity, Neca Eos Omnes Humanaeas.

Adam J. Pohl

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . x

List of Tables . xiv

List of Algorithms . xv

List of Abbreviations . xvi

I. Introduction . 1
1.1 Problem Statement . 1

1.1.1 The Vehicle Routing Problem with Time Windows 2

1.1.2 The Swarm Routing Problem 3

1.2 Routing Model Assumptions 4

1.3 Research Concepts . 4

1.3.1 Multi-objective Evolutionary Algorithms 4

1.4 Research Goals, Objectives, and Assumptions 5

1.4.1 Objective 1: Develop SRP Multi-objective Prob-
lem Model . 5

1.4.2 Objective 2: Develop and validate MOEA solu-
tion to VRPTW 5

1.4.3 Objective 4: Develop and validate MOEA solu-
tion to SRP . 6

1.5 UAV Model Assumptions 6

1.6 Sponsor . 7

1.7 Thesis Construction . 7

II. Background Research . 8

2.1 AUAV Simulation Research History at AFIT 8

2.2 Vehicle Routing Problem with Time Windows 12

2.3 Coalition Forming . 16

2.4 Path Planning . 17

2.5 Multi-objective Evolutionary Algorithms 20

2.6 Self Organized UAV Swarms 23

2.7 Summary . 26

vi

Page

III. Problem Definition . 27
3.0.1 The Swarm Routing Problem 27

3.1 Multi-objective Formulation for VRPTW and SRP . . . 32

3.2 Purpose in multi-objective formulation 34

3.3 Summary . 34

IV. High Level Concept Design . 36

4.1 Design Objectives . 36

4.2 Problem Complexity . 36

4.3 Multi-objective Algorithm Design Choices 37

4.3.1 Ant Colony Optimization 38

4.3.2 Particle Swarm Optimization 41

4.3.3 Evolutionary Computation 44

4.4 Multi-objective Genetic Algorithm Design 44

4.5 Replacement Method . 45

4.5.1 Non-dominating Sorting Genetic Algorithm II . 45

4.5.2 Strength Pareto Evolutionary Algorithm II . . . 46

4.6 VRPTW Chromosome Structure 48
4.7 SRP Chromosome Structure 51
4.8 VRPTW Genetic Operator Development 51

4.8.1 Random Crossover 52
4.8.2 Random Swap Mutation 53

4.8.3 Random Inversion Mutation 53
4.8.4 Random Insertion Mutation 53
4.8.5 Best Route Cost Mutation 54

4.9 SRP Evolutionary Operator Development 54

4.9.1 Split Mutation 55

4.9.2 Vertical Swap Mutation 55

4.9.3 Random Crossover with Tightening 56

4.10 Chapter Summary . 57

V. Low Level Software Design . 59

5.1 Implementation Objectives 59

5.2 Selection of an Evolutionary Computation Library . . . 59

5.3 Software Design . 61

5.4 Replacement Strategy and Algorithm Structure 61

5.4.1 NSGA2 . 63
5.4.2 SPEA2 . 64

5.5 Vehicle Routing Problem with Time Windows (VRPTW)
Solution Implementation 66

vii

Page

5.5.1 GVR Data Structure 66
5.5.2 Customer Class 67
5.5.3 Population Initialization 69

5.5.4 Best Route Cost Mutation 70
5.6 Swarm Routing Problem (SRP) Solution Implementation 71

5.6.1 Modified GVR Data Structure 72
5.6.2 Modified Customer Class 72
5.6.3 Population Initialization 73

5.6.4 Vertical Swap Mutation 73

5.7 Chapter Summary . 74

VI. Experimental Procedures . 76

6.1 Experimental Design Objectives 76

6.2 VRPTW and SRP Experiments 77

6.3 Testing Environment . 80

6.4 Chapter Summary . 80

VII. Results and Analysis . 81

7.1 VRPTW Results . 81
7.1.1 Random Distribution Problem 82
7.1.2 Cluster Distribution Problem 83
7.1.3 Hybrid Distribution Problem 85

7.2 Impact of VRPTW results 89

7.3 SRP Results . 92
7.3.1 Random Distribution Problem 93
7.3.2 Cluster Distribution Problem 94

7.4 Comparative and Extended Analysis of Results 96

7.5 Chapter Summary . 98

VIII. Conclusions . 100
8.1 Review of Accomplishments 100

8.1.1 Objective 1: Develop SRP as new model for UAV
routing . 101

8.1.2 Objective 2: Develop and validate MOEA solu-
tion to VRPTW 101

8.1.3 Objective 3: Develop and validate MOEA solu-
tion to SRP . 102

8.2 Future Research and Closing Remarks 103

Appendix A. Evolutionary Computation 105

A.1 Classic Genetic Algorithm 105

A.1.1 Chromosome Structure 106
A.1.2 Crossover, Mutation, and Selection 107

viii

Page

Appendix B. Implimentation Documentation 111

B.1 The Customer Class . 112
B.2 Chromosome Data Structure 112

Bibliography . 113

ix

List of Figures
Figure Page

1.1. Problem Structure . 3

2.1. The Vehicle Routing Problem with Time Windows. 13

2.2. NP-Problem subdivisions. 21

2.3. Dominance example for two objectives f1 and f2 [56]. 23

2.4. UAV local sensor pattern [37]. 24

2.5. Collision avoidance: avoid hitting nearby swarm members [37]. 25

2.6. Swarm centering: stay within sight of nearby swarm members [37]. 25

2.7. Velocity matching: match velocity of nearby swarm members [37]. 25

2.8. Migration: maintain velocity to a set way point [37]. 26

4.1. ACO Paths Being Created. 38

4.2. Particles on a Solution Space. 41

4.3. Crowding distance calculation. Dark points are non-dominated

solutions. [14] . 46

4.4. Truncation procedure removing non-dominated points [62]. . . 48

4.5. A possible chromosome structure for a VRP. 50

4.6. GVR chromosome structure for the VRP. 50

4.7. Modified GVR chromosome structure for the SRP. 51

4.8. Random crossover operator for the VRPTW. 52

4.9. Random swap operator for the VRPTW. 53

4.10. Random inversion operator for the VRPTW. 53

4.11. Random insertion operator for the VRPTW. 54

4.12. Best Route Cost mutation operator. 55

4.13. Split mutation operator for the SRP. 56

4.14. SRP vertical swap mutation operator. 56

4.15. Crossover operator modified for use on the SRP. 57

x

Figure Page

5.1. Open Beagle software architecture [17]. 61

5.2. Evolutionary Algorithm Structural Implementation. 62

5.3. Selection class structure. 63

5.4. NSGA2 Code Structure . 64

5.5. NSGA2 Code Structure . 65

5.6. GVR Data Structure and Genotype for VRPTW. 66

5.7. Individuals placement within the OB system. 67

5.8. Customer class structure. 68

5.9. Population Initialization class structure. 70

5.10. Operator class structure. 71

5.11. Modified GVR Data Structure and Genotype for SRP. 72

5.12. SRP Initialization Procedure Example. 74

6.1. Solomon test file example of 25 dimension hybrid problem. . . . 78

7.1. Trial results distribution for problem R109 with 25 customers . 83

7.2. Trial results for random distribution problem R109 with 50 cus-

tomers . 83

7.3. Significance plot for R109 with 25 customers 84

7.4. Significance plot for R109 with 50 customers 84

7.5. Trial results for random distribution problem R206 with 25 cus-

tomers . 84

7.6. Trial results for random distribution problem R206 with 50 cus-

tomers . 85

7.7. Significance plot for R206 with 25 customers 85

7.8. Significance plot for R206 with 50 customers 85

7.9. Trial results for random distribution problem C103 with 25 cus-

tomers . 86

7.10. Trial results for random distribution problem C103 with 50 cus-

tomers . 86

7.11. Significance plot for C103 with 25 customers 87

xi

Figure Page

7.12. Significance plot for C103 with 50 customers 87

7.13. Trial results for random distribution problem C205 with 25 cus-

tomers . 87

7.14. Trial results for random distribution problem C205 with 50 cus-

tomers . 88

7.15. Significance plot for C205 with 25 customers 88

7.16. Significance plot for C205 with 50 customers 88

7.17. Trial results for random distribution problem RC107 with 25

customers . 89

7.18. Trial results for random distribution problem RC107 with 50

customers . 90

7.19. Significance plot for RC107 with 25 customers 90

7.20. Significance plot for RC107 with 50 customers 90

7.21. Trial results for random distribution problem RC202 with 25

customers . 91

7.22. Trial results for random distribution problem RC202 with 50

customers . 91

7.23. Significance plot for RC202 with 25 customers 92

7.24. Significance plot for RC202 with 50 customers 92

7.25. Non-dominated front comparing NSGA2 and SPEA2 for C205

with 25 customers . 92

7.26. Non-dominated front comparing NSGA2 and SPEA2 for R206

with 25 customers . 93

7.27. Non-dominated front comparing NSGA2 and SPEA2 for RC205

with 25 customers . 94

7.28. Trial results for random distribution problem RC107 with 25

customers comparing total path length and average path length

per vehicle . 94

7.29. Comparison of average distance per vehicle in SRP results to

VRPTW results for problem R109 with 25 customers 95

xii

Figure Page

7.30. Statistical analysis comparing SRP results to VRPTW results

for problem R109 with 25 customers 95

7.31. Trial results for random distribution problem C107 with 25 cus-

tomers comparing total path length and average path length per

vehicle . 96

7.32. Comparison of average distance per vehicle in SRP results to

VRPTW results for problem C103 with 25 customers 96

7.33. Statistical analysis comparing SRP results to VRPTW results

for problem C103 with 25 customers 97

A.1. An Unsolved TSP . 106

A.2. A TSP Genotype and Solution 107

A.3. An example of Crossover . 108

A.4. An example of Mutation . 109

xiii

List of Tables
Table Page

2.1. Previous AFIT theses related to AUAV routing. 9

5.1. Evolutionary Algorithm Infrastructure Choices. 60

6.1. Solomon test problem selections (Modified for SRP). 78

6.2. VRPTW GA Settings. 79

6.3. SRP GA Settings. 79

7.1. Box plot label explanations for VRPTW experiments. 82

7.2. Box plot label explanations for SRP experiments. 93

xiv

List of Algorithms
Algorithm Page

1 ACO Algorithm . 39

2 PSO Algorithm from [7] . 43

3 Crowding Distance Assignment 46

4 NSGA2 . 47

5 SPEA2 . 49

6 Generic EA . 110

xv

List of Abbreviations

GA Genetic Algorithm

GP Genetic Programming

EA Evolutionary Algorithms

EC Evolutionary Computation

TSP Traveling Salesman Problem

MOEA Multi-objective Evolutionary Algorithm

VRP Vehicle Routing Problem

VRPTW Vehicle Routing Problem with Time Windows

SRP Swarm Routing Problem

UAV Unmanned Aerial Vehicle

AUAV Autonomous Unmanned Aerial Vehicles

GVR Genetic Vehicle Representation

PSO Particle Swarm Optimization

NSGA2 Non-dominating Sorting Genetic Algorithm 2

SPEA2 Strength Pareto Evolutionary Algorithm 2

PDES Parallel Discrete Event Simulation

SO Self Organized

OB Open Beagle

AFIT Air Force Institute of Technology

OO Object Oriented

PBS Portable Batch System

USAF United States Air Force

xvi

Multi-Objective UAV Mission Planning

Using Evolutionary Computation

I. Introduction

This research investigation studies the routing of multiple UAVs and UAV swarms

to a set of locations while meeting constraints of time on target, total mission

time, enemy radar avoidance, and total path cost optimization. United States Air

Force (USAF) research has been focused, and increasingly continues to focus, on the

development of Autonomous Unmanned Aerial Vehicles (AUAV). The development

of UAV technology is already advanced, with uses being found both for reconnaissance

and tactical strikes [52].

While hardware for these UAV systems continues to evolve, cutting edge re-

search focuses on the development of taking unmanned systems and using autonomous

control schemes with only a high level strategic decision maker (human) in the loop.

Developing a single autonomous UAV is not the objective, rather the objective is to

develop a massive array of AUAV, capable of working together toward a common

goal. The term for this array is a swarm or flock for which there are many differ-

ent design approaches as the problem itself exists in many scientific and engineering

domains. Currently, this forefront technology exists only in simulation form as hard-

ware and sensors capable of implementing an actual swarm simply do not exist. This

research focuses on the development of off-line UAV routing and mission planning,

combined with a simulation and visualization system the purpose of which is to better

understand the computational complexity of multi AUAV routing.

1.1 Problem Statement

The problem of mission planning consists of assigning multiple vehicles sets of

targets to visit. These targets exist in a field of uneven terrain where different enemy

radar lines of sight exist. There exist two problem aspects to deal with, the first is

1

the development of flight paths between targets. The path must be optimized for

cost and risk. Cost is how much energy or time it takes to traverse the path and risk

is a measure of how dangerous the flight area is. The second is the development of

path order. Once it is determined how to best fly between targets the order of these

flight paths must be determined. Generating the cost of the path is a separate and

immaterial problem related to the development of path order. In fact, the development

of single path optimization is already being studied in fields such as robotics, land,

and air based agents. Once these path costs are known, or estimated, however what

development process should be used to structure a valid route plan from them? This

process of route development is the subject matter of this investigation.

In order to model this routing situation, a combinatorics problem known as the

Vehicle Routing Problem with Time Windows (VRPTW) is used. The VRPTW en-

compass a situational problem composed of a number of vehicles, known targets with

time visitation constraints, and constraint on the visitation capacity of each vehicle.

This model most efficiently possesses all the aspects of the problem under considera-

tion and is well documented and understood. The VRPTW is limited in its ability to

model realistic UAV routing, necessitating in its extension into a new problem model.

This VRPTW variation is called the Swarm Routing Problem (SRP), presented as a

more efficient form to model the routing of multiple UAVs to multiple targets con-

currently. This problem structure is illustrated in Figure 1.1. Note that the path

planner supplies cost values to the router portion of the structure. What these values

are is irrelevant to the router itself. The purpose of the router is to efficiently search

the innumerable combinations of costs supplied to in order to determine the most

efficient (or cost effective) path possible. The remainder of this section introduces

these problem concepts in greater detail.

1.1.1 The Vehicle Routing Problem with Time Windows. The Vehicle Rout-

ing Problem (VRP) is a classic combinatorics problem in the field of computer science

and the VRPTW is a variant of it. In this context it models the routing of UAVs

2

Figure 1.1: Problem Structure

to a set of targets within a time window for each target and an overall time limit

for returning to the start location. The objective of the problem is to develop a set

of routes for a fleet of vehicles where each vehicle services a target within its time

window and returns to the start point after all the targets in its route have been

serviced. The problem is constrained by how many targets a vehicle can visit, each

target’s time window, and a return time limit to the start location [51].

1.1.2 The Swarm Routing Problem. The SRP is a variation on the VRPTW

defined for the first time in this work. While the classic VRPTW restricts each vehicle

to a single route and target, the SRP assumes the vehicles can join together and split

apart at different locations, in essence treating each vehicle as a member of a sub

swarm as opposed to a discrete vehicle. The effect of using the SRP to model UAV

swarm mission routing is that a more efficient and realistic deployment plan is created.

Basing the model on the VRPTW allows for the use of previously made insights into

the VRP and VRPTW to create effective solutions for the SRP. Analysis of the

VRPTW also allows for the development of comparable results during the solution

evaluation phase, the result of which is a metric of performance to compare the SRP

results to. The SRP problem complexity is NP-Hard by merit of its derivation from

the VRPTW. Chapter III contains a more exact complexity analysis.

3

1.2 Routing Model Assumptions

The routing model (for both VRPTW and SRP) is viewed as a static combi-

natorics problem. While the VRPTW model does take into account time constraints

for targets that is also all it is capable of doing. Modeling the routing problem as a

VRPTW imposes the limitation that the solution only be for the VRPTW. As such,

no dynamic aspects can be introduced such as in-mission rerouting or defensive mea-

sures. The problem does not take possible losses of aircraft during the mission into

account. This limits the usefulness of the model as a real world problem solver, but

is a closer approximation than a more simplistic point to point router without time

constraints.

The VRPTW and SRP are also generalized combinatorics problems and no

attempt is made integrate real world problem constraints such as vehicle movement

constraints, real world distance constraints, or communication issues. The solution to

these general models represents a top level routing strategy where the actual values

of individual route sections, or how they are determined, is immaterial. In reference

to the routing problem, there are only the individual path cost values, what they

actually are or how they are developed exists only within the users perspective.

1.3 Research Concepts

The research concepts developed as part of this investigation involved the fol-

lowing solution approaches. They are introduced to give the reader a better under-

standing of the direction taken in this endeavor.

1.3.1 Multi-objective Evolutionary Algorithms. Due to the high complexity

of the problem domain in this investigation, an evolutionary algorithm approach is

used as previous work that has shown a great deal of success through its utilization

[1,33,40,44,60]. Evolutionary algorithms encompass a number of different stochastic

search techniques where random solutions are “bred” into more effective solutions

through a process of selection and mutation. This work examines how multi-objective

4

approaches obtain the most effective results for highly constrained solution spaces,

such as those dealt with in this research. The concept of multi-objective evolutionary

search, non-dominated (Pareto) front solutions, as well as alternative methods of

multi-objective optimization is further examined in Chapter II.

1.4 Research Goals, Objectives, and Assumptions

The goal of this research centers on the creation of new routing software for

the UAV swarm routing problem developed in previous research [11, 44]. The solu-

tion is designed in the context the it integrate into previous work in path planning

development and UAV simulation.

1.4.1 Objective 1: Develop SRP Multi-objective Problem Model. The first

objective is to develop a problem model for multiple UAV routing. The VRPTW

serves as a basis for the development of this model. The purpose in this is to create a

problem that serves as a more realistic model for developing time constrained routes

to multiple targets. The problem is formulated in terms of the multiple objectives of

total path length, vehicle count, vehicle wait time, and average path length.

1.4.2 Objective 2: Develop and validate MOEA solution to VRPTW. The

second objective is to develop a multi-objective evolutionary solution to the VRPTW.

This is accomplished by examining previous MOEA approaches to the VRP and

VRPTW in order to develop effective genetic operators for a new implementation.

Completion of this objective consists algorithm development and fully defining genetic

operators the Genetic Algorithm (GA) uses. The purpose in developing a solution

to the VRPTW is to obtain a reference point for development of the SRP. The SRP

represents an untested model, therefore the most intelligent action is to validate the

solution procedure on a pre-existing problems.

A variety of different benchmark problems are solved using the implemented

algorithm and the results are compared to those found in the literature. The com-

5

pletion of this objective is signified by the MOEA approach achieving as good or

better results than those found in the literature and a documentable distribution of

solutions across the objective landscape. The objectives of comparison are total path

length, vehicles used, and total wait time for all vehicles. Each of these objectives

then represent metrics of performance meant to be minimized. Experimental analysis

consists of a variety of algorithmic approaches in order to examine the utility of the

each method and statistical analysis is used to show the significance of the different

methods used.

1.4.3 Objective 4: Develop and validate MOEA solution to SRP. The forth

objective is to develop a solution to the SRP. This new problem is a variation of the

VRPTW and is solved in a similar fashion. A set of benchmark problems are created

by altering existing VRPTW problems. These benchmark problems are then solved

using a solution designed parallel to the one developed for the VRPTW.

1.5 UAV Model Assumptions

No attempt is made to completely model the aerodynamics of the UAVs used.

They are assumed to be point masses whose control scheme is some undefined method,

though the scheme would most likely be some form of self-organized control. All

routing operations take place off-line. It is assumed that the UAVs have some form

of communication method though no attempt is made in this work to model the type

of communication architecture the swarm may use. It is assumed control and sensor

mechanisms exist that allow the UAVs to pilot themselves without the need for human

management.

References throughout are made to UAVs. The term is meant to refer to au-

tonomous UAVs (AUAV), not remote controlled vehicles. Chapter II contains back-

ground information on self organized control theory which is presented as a possible

control method for AUAVs traversing through a routing solution.

6

1.6 Sponsor

This research is sponsored by the Air Force Research Laboratory (AFRL) Sen-

sors Applications and Demonstrations Division (AFRL/SNZ), specifically, the Virtual

Combat Laboratory (AFRL/SNZW) at Wright Patterson Air Force Base, Ohio. The

Virtual Combat Laboratory conducts advanced development initiative as well as field

and flight test demonstrations and evaluations. A series of UAV simulation models

are maintained within the lab along with a suite of visualization tools. This research

continues the ongoing relationship between AFIT/ENG and AFRL/SNZW in which

both parties share information on, and enhance the capabilities of, UAV swarm sim-

ulations. The point of contact at AFRL is Mr. Mike Foster (AFRL/SNZW).

1.7 Thesis Construction

This thesis document has been constructed with the goal that it be readable,

efficient and thorough. The basic concepts of research are listed in this chapter and

expanded upon in Chapter II. A thorough examination of the research problem under

consideration is presented in Chapter III. High level solution composition is detailed

in Chapter IV. The implementation documentation is contained in Chapter V and

Appendix B. Chapter VI details the experiments used to validate the solution tech-

niques proposed. Chapter VII contains results and analysis. Chapter VIII concludes

the thesis with a discussion of contributions suggested future endeavors.

7

II. Background Research

This chapter is divided into several sections relevant to the areas of research pur-

sued. The first section discusses previous work that this research extends. Each

subsequent section is presented as an examination of relevant background information.

The background information also contains problem domain formulations of the vehicle

routing and path planning problems. The second section is an analysis of the Vehicle

Routing Problem with Time Windows (VRPTW) and how its solution can be used

to effectively solve the Unmanned Aerial Vehicle (UAV) routing problem for multiple

targets. The third section is an examination of the path following constraint that

is formulated in conjunction with the VRPTW. The fourth section covers the topic

of Multi-objective Evolutionary Algorithm (MOEA)s. Pareto ranking techniques are

discussed as well as the benefits of using MOEA approaches over weighted and single

objective techniques. The chapter concludes with a section on the concept of self

organized UAV swarms. Previous work in this area as well as its context in this work

is examined.

2.1 AUAV Simulation Research History at AFIT

Research into the problem of effectively routing and controlling a swarm of

UAVs has been under active development since 2000 (at AFIT). The problem is by

no means simple and crosses into many scientific fields. Currently, the technology

exists mainly in the simulation arena, though much work has been done with single

UAV control [1]. The following discussion introduces previous thesis research efforts

that have dealt with the topic of UAV routing and simulation. This information is

summarized in Table 2.1.

Research originally began with UAV routing by modeling the problem as a clas-

sic combinatoric problem called the Traveling Salesman Problem (TSP). In Sezer [43],

an advanced search tree method was developed for solving a constrained mission plan-

ning problem. Research then moved into stochastic methods when Secrest [42] devel-

oped a particle swarm optimization method for solving the TSP. At this point it had

8

Table 2.1: Previous AFIT theses related to AUAV routing.

Title Author Year Subject

Mission Route Planning with

Multiple Aircraft & Targets Using

Parallel A* Algorithm

Ergin Sezer

2000 Using a tree search method to solve routing

problems

Traveling Salesman Problem for

Surveillance Mission Using Particle

Swarm Optimization

Barry Secrest

2001 Using a combinatorics problem as a model for

UAV routing

Multi-objective Mission Route

Planning Using Particle Swarm

Optimization

Ekursat Yavuz

2002 Using PSO search method to route UAVs

Distributed Control of a Swarm of

Autonomous Unmanned Aerial

Vehicles

James Lotspeich

2003 Examining the control problem of UAV

swarms

Swarming Reconnaissance Using

Unmanned Aerial Vehicles In A

Parallel Discrete Event Simulation

Joshua Corner

2004 Developing the AFIT swarm simulator

Evaluation and Optimization of

UAV Swarm Multi-Objectives
Mark Kleeman

2004 Developing the multi-objective idea of UAV

routing

Evolution of Control Programs for

a Swarm of Autonomous

Unmanned Aerial Vehicles

Keven Milam

2004 Using GP to develop the control structure

A Genetic Algorithm for

Unmanned Aerial Vehicle Routing Matt Russell

2005 Applied new chromosome structure to the

VRP

Evolving Self Organizing Behavior

for Homogeneous and

Heterogeneous Swarms of UAVs

and UCAVs

Ian C. Price

2006 Optimizing the control structure of UAVs

AFIT UAV Swarm Mission

Planning and Simulation System
James Slear

2006 Development of path planning software

been established that the high complexity of the routing problem necessitated the use

of stochastic methods in order to achieve results approaching optimality in a tractable

time frame. In Yavuz [59], particle swarm optimization was used to develop optimal

solutions to a multi-objective routing problem. Based on lessons learned in that thesis

effort (of the different objectives relevant to the problem), further work was done by

Russell [40] where the problem was formulated as a VRP and solved using a GA [7].

Slear [44] used this problem formulation while path planning functionality was added.

9

In Kadrovach [23], Lotspeich [28], and Milam [31] methods for Self Organized

(SO) control were developed. These control schemes were based on flock and swarm

behaviors first defined by Reynolds [38]. Simulations using these control schemes were

at first, two dimensional but illustrated the validity of the idea behind flocking and

swarming.

After it was shown that self organized control could be effectively implemented,

research diverged into three areas: swarm routing, swarm communication, and SO al-

gorithm development. Swarm communication was approached by Kadrovach [23] and

Kleeman [24] where it was shown that adequate communication within a real world

swarm is an extremely complex problem. Disregarding the hardware limitations of

current wireless communication technology and the number of external sensors that

would be required, simply developing the algorithms that would be able to handle the

massive amount of internal swarm communication is still a largely unsolved problem.

Current developments in self organized control have centered on creating MOEAs

which optimize the SO rule settings. Price [36] developed an evolutionary algorithm

and simulator that was able to optimize attack patterns of the swarm in a 2D simu-

lation. Different attack patterns as well new optimization strategies were created by

Nowak [32].

Both Russell [40] and Slear [44] utilized the AFIT UAV simulator which was

first developed by Kadrovach [23] and then ported into a Linux environment and

parallelized in Corner [11]. Corner [11] also developed a Parallel Discrete Event

Simulation (PDES) methodology to simulate larger and more complex SO swarms in

3D.

Many different languages and methodologies have been applied to the develop-

ment of routing, control and simulation solutions. The most popular coding languages

(in related thesis work and in published research) have been Matlab, JavaTM, and

C++. A 2D flocking simulation in Matlab was created by Watson [54] to study the

dynamics of the self organizing behavior. A similar simulation developed in Java was

10

created by Price [36] which treated the UAVs as point masses with no dynamic control

mechanisms. Previous routing [40] and path planning programs [44] have been cre-

ated using C and C++ and both utilized an evolutionary computation library called

GALib [53] (also written in C++), as the support library for their solution techniques.

The simulator software is based on a C++ library called SPEEDES, which was de-

veloped to provide communication support for PDES. The selection of this library

was based on an investigation completed by Corner [11].

The problem of what a swarm actually does when it reaches a target (i.e. mission

type) has only recently been dealt with due to the routing problem itself being such

a complex endeavor. Some recent work has been conducted in 2D environments that

simulate different UAV missions [36]. Currently, UAV missions are viewed in a purely

reconnaissance oriented role. With the capabilities of a real-world swarm there are

no limits to what its capabilities would be. A swarm could be sent out to perform

a concentrated attack on a target, patrol for and attack targets of opportunity, or

even escort manned targets across hostile areas by not only targeting enemy units

but patrolling the area to alter the course of the manned unit with real time data.

The approach to UAV swarm simulation has been very iterative in development,

first with problem development and understanding, then routing and control solutions,

and more recently advanced simulations. This research also serves as an iterative step

to improve on the problem model used to develop routing solutions, apply true multi-

objective techniques to the solving routing and path planning problem and enhance

the current simulator technology. The basic problem remains the same now as it has

always been:

Develop a method for taking a set of targets within an area of terrain and finding

a set of paths for each UAV or UAV swarm such that all sites are visited by an

appropriate number of UAVs to accomplish the desired mission while minimizing path

cost and maximizing UAV safety.

11

2.2 Vehicle Routing Problem with Time Windows

The VRP is a well established combinatorics problem with many variations and

solutions [51], one of these variations being the Vehicle Routing Problem with Time

Windows (VRPTW) [51]. The problem is most easily explained with a real world

example. There exists a package delivery service warehouse that has a number of

trucks. Each truck can carry a limited load of packages to customers. Customers are

spread out around the depot and each can only be visited during a certain time of the

day. Likewise, the warehouse itself is only open for a certain number of hours until

it closes. Determine the shortest set of paths for each vehicle to take, such that all

customers are visited within their window of opportunity and all vehicles return on

time.

From this example, it is seen that the VRPTW consists of a set of targets, some

number of vehicles, and a depot. The depot is the deployment and return point for

all the vehicles. Each target (and the depot) has a Euclidian location (coordinate),

some associated demand (except the depot), an arrival time window, and a path to

every other location. The objective of the problem is to develop a set of routes for

each vehicle, so that all targets are visited within the time window, the associated

demand is met, and all vehicles return to the depot on time. The solved problem

is visualized in Figure 2.1 where the darker areas correspond to the time window in

which a vehicle can visit the target. Each vehicle in the problem has a set capacity

that it can not exceed while visiting customers. Visiting a customer subtracts its

demand from the vehicles capacity. The total demand on the vehicle is the sum of

the demands of all the customers visited. If the vehicles being used do not have

some type of capacity constraint the problem then decomposes to a TSP since one

vehicle can now satisfy all customers. The remainder of this section is a more detailed

mathematical description of the single-objective VRPTW presented in order to better

understand the constraints and optimization goal of the problem.

12

Figure 2.1: The Vehicle Routing Problem with Time Windows.

The VRPTW, as formulated by Toth [51] based on the ordinal formulation

by Solomon [45], is defined by a fully connected graph G = (V,A) where V =

{v0, v1, ..., vn} and v0 is the depot. The set of edges is defined as A = {(vi, vj) ∈
V, i 6= j} where each edge has associated with it some travel cost c(vi, vj). The cost

of the edge is the distance from target i to target j in the context of the problem

discussed here. Cost is not necessarily distance however, cost is only a value that is

associated with traversing the route. It could be the distance, it could be the time,

or it could be the amount of fuel required to travel the path. A time window exists

for all customers where E represents the earliest start time and, L, the latest arrival

time. The latest arrival time is the point at which the vehicle can arrive and still

complete the service time defined by S. If the vehicle arrives earlier than E, it incurs

a waiting time, W , which is the difference between the arrival time and E. The total

time a vehicle takes to complete it’s route is the summation of all route path travel

costs, waiting times, and service times (
∑

cij +
∑

wi +
∑

si) and is refereed to as

the cost of the path. The total path cost must not exceed the latest arrival time (i.e.

13

closing time) of the depot. Cost is, in essence, the total time required to traverse the

route.

Each customer also has associated with it some demand, D, satisfied by the

vehicle servicing it. There exists a number of vehicles, K, where each vehicle has

some capacity constraint, C, such that the sum of the demands, D, for all customers

visited by, k ∈ K, does not exceed C. The solution to the problem is a list of ordered

targets for each vehicle, such that the visitation of each target fulfills all customer

needs without violating any time or demand constraints. The objective then is to

determine the set of paths for the vehicles such that the total cost is minimized. Note

that the cost of a route is not the total time the route takes to complete, it is only

the sum cost of the edges the vehicle traverses.

The following is a mathematical programming formulation of the single-objective

VRPTW, again taken from [51]. Vehicles are defined within the problem by their in-

clusion in a flow variable xijk, which is a binary value indicating if vehicle k exists on

the path that connects (i, j) ∈ V at any point in the solution. A time variable ωik

indicates the start time of vehicle k at location i. The subscript j ∈ ∆±(i) indicates

the set of edges from i to j where j is not equal to i, the plus or minus indicates either

a forward or backward move along the path.

Aij - Edge cost between i and j

Vn - Network vertices for n customer (v0 is the depot)

En - Earliest arrival time of customer n

Ln - Latest arrival time of customer n

Sn - Service time of customer n

Dn - Demand of customer n

K - Set of Vehicles

Ck - Capacity of vehicle k

14

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A, (2.1)

ωik ≥ 0 i ∈ N, k ∈ K, (2.2)

Equations (2.1) and (2.2) define the flow and time variables used. The flow

variable xijk is a binary value that indicates vehicle, k, travels from location, i to j,

if equal to one, and zero otherwise. The time variable, ωik, specifies the start time at

location, i, by vehicle k.

∑

k∈K

∑

j∈∆+(i)

xijk = 1 ∀i ∈ N, (2.3)

∑

j∈∆+(0)

x0jk = 1 ∀k ∈ K, (2.4)

∑

i∈∆−(n+1)

xi,n+1,k = 1 ∀k ∈ K, (2.5)

∑

i∈∆+(j)

xijk −
∑

i∈∆−(j)

xijk = 0 ∀k ∈ K, ∀i ∈ N, (2.6)

Equations (2.3)-(2.6) define the edge constraints of the graph in a solution.

They indicate that each customer can only be assigned to a single route (2.3), that

all vehicles with a route must start from the depot (2.4), that all edge costs are

symmetrical (2.5), and that all vehicles must return to the depot (2.6).

xijk(ωik + si + tij − ωjk) ≤ 0 ∀k ∈ K, (i, j) ∈ A, (2.7)

15

ei

∑

j∈∆+(i)

xijk ≤ ωik ≤ li
∑

j∈∆+(i)

xijk ∀k ∈ K, ∀i ∈ N, (2.8)

ei ≤ ωik ≤ li ∀k ∈ K, i ∈ (0, n + 1), (2.9)

Equations (2.7)-(2.9) define the time constraints of the problem. Equation (2.7)

indicates that the arrival time at location i plus the service time and travel time to

the next location must equal the arrival time. Equation (2.8) defines the need for

arrival times to be within the customers time window. The depot also has a time

window associated with it (opening and closing time) which all vehicles must adhere

to (2.9).

∑
i∈N

di

∑

j∈∆+i

xijk ≤
K∑

k=0

ki ∀k ∈ K, (2.10)

min
∑

k∈K

∑

(i,j)∈A

cijxijk (2.11)

Equation (2.10) guarantees that the vehicle not exceed its capacity limit. The

objective function is defined by Equation (2.11) which illustrates the desire to min-

imize the total path cost. Note that the objective is the sum of the path costs per

vehicle route. The path cost does not include the service or waiting time. Time is

only a constraint that causes some routes to be infeasible.

2.3 Coalition Forming

Within the field of Artificial Intelligence and Robotics exists a field of study

called coalition forming. This field deals with the problem of determining the optimal

grouping of agents to different targets and how the robots should get there. This field

of study is a precursor to the development of the Swarm Routing Problem. In Gerkey

[20] a taxonomy for the different types of robot tasking problems is developed. Gerkey

16

defines the tasking problem and maps it to a combinatorics set covering problem.

By doing this the complexity of the problem is defined and he explores to define a

variety of solution techniques. The problem in Gerkeys research termed the single-

task robots, multi-robot tasks, time-extended assignment problem is the same premise

that is proposed in this research. However the problem is not expanded by mapping

the problem model from the VRPTW as is done here.

2.4 Path Planning

The process of path planning develops a sequence of steps to get from a start-

ing point to an end point based on the internal representation of the terrain to be

traversed. The path is then optimized for a minimal cost. Cost to get to a point

may be just the distance traveled but can include fuel used, time, or hazards within

the terrain. A path planning algorithm is a method used to calculate a path plan

given knowledge of the path environment and a set of conditions or constraints that

must be followed. Once generated, the plan is either executed, or further refined to

gain improvement. It is generally assumed that once the plan is given, the machine

becomes autonomous and can no longer interact with the planner [15].

Any path-planning algorithm must use a representation of the terrain in order

to determine what the cost of a path is. Usually this is a grid which associates

coordinates with locations in a terrain field. The points of interest that need to

be visited are known as vertices or nodes. Connectivity between these vertices is

expressed by paths, arcs or edges. From this general statement of the purpose of

path planning the concept divides into two realms known as configuration space and

trajectory space.

“Configuration space” is a problem definition where all possible positions of

some physical system are defined. The solution involves determining the set of actions

(torque, translation, etc.) necessary to move the system from an initial state to a goal

state, where both of these states exist within the defined set of states and the system

never goes outside the set of possible states. Configuration states are most often used

17

in the development of 3D robotic motion as they result in a set of states the robot

must pass through to reach its end goal.

“Trajectory space” also deals with a space of valid and invalid positions within

a space of possible configurations. The result, however is not a set of states but a set

of trajectories along a path that the physical system passes through from the initial

state to the goal state. The solution is determined by first defining a path between

the start and end positions that passes through the valid and invalid positions. The

path is then incrementally adjusted until a valid or optimum path is formed. These

adjustments are made by determining where the line intersects with obstacles and

then explores the subsection of the path to determine how it can be altered to avoid

the invalid area.

There are many methods for dealing with both of these problems space defini-

tions. For small-scale path planning problems search trees are often used to determine

the optimum path the physical system must follow [26]. As complexity increases into

3-dimensions and many hazards, evolutionary methods have been shown to be effec-

tive for determining optimal solutions [25].

2.4.0.1 Evolutionary Solutions in Trajectory Space. One of the first

examples of evolutionary computation applied to trajectory space is used in the Evo-

lutionary Planner/Navigator (EP/N) created by Xiao and Michalewicz [57]. The

planner treated the path from the start to end position as the chromosome. By ma-

nipulating the location of intermediate points through the genetic operations of the

Evolutionary Algorithms (EA) the path was evolved into an optimal path consisting

of a set of way-points. This work was later refined by Sugihara [46] and then modified

into a two objective problem by Castillo [6]. These previous papers defined the idea

of starting with a straight line path and then evolving it into a path that navigated

around obstacles and hazards areas.

In order to deal with the flight dynamic constraints for UAV path planning, Slear

used a concept called B-spline curves [44]. This method allowed for the development

18

of controllable path changes while the path is being evolved. A path is defined by sets

of tuples (Xn, Yn, Zn) where each set consists of three tuples. By modifying which

sets are placed in the final path and by generating random tuple sets via mutation

optimal paths are generated. These paths can be formed according to any number of

objectives. In the case of Slear these objectives were cost and risk [44]. The cost of

the path entails the fuel required to climb or travel the distance of the path. The risk

is the proximity to enemy locations or height above ground (higher altitudes increase

radar visibility). These objectives usually do not complement each other, as a low

cost path generally has a high associated risk and a low-risk path generally involves

high cost (through the need for flying low-over uneven terrain).

The domain of the problem consists of an operational n×m grid space, a terrain

grid G (2.12) and a location set L (2.13). The location set is the set of targets from

the VRPTW described in Section 2.2.

G ∈ (n− 1)× (m− 1) (2.12)

li ∈ n×m∀l ∈ L (2.13)

The problem is constrained by a heading change requirement defined in (2.14).

This constraint indicates that changes to a paths heading can not exceed a change

greater than 45◦. This constraint exists to ensure that solution paths do not require

heading changes greater than a UAV is capable of achieving. This constraint is of

course dependent on the type of vehicle being modeled.

∀p0...pn ∈P, ∆θ(pi, pi+1) ≤ 45◦ (2.14)

where θ is the inbound heading at pi

19

The objective of the path planning problem is to develop a minimum cost path

P* from all li ∈ L to all lj ∈ L. A path is defined as a set of points pn such that

pn ∈ P . The determination of this path cost is found in five parameters divided into

two separate objectives making this a multi-objective problem. The path value Φpath

is the Euclidian ground distance between two points. The climb value Φclimb is the

change in altitude that occurs over some path length. It is found via the summation of

the change in altitude from intermediate points in the path being examined. Increases

in altitude are to be avoided while decreases in altitude are favorable as they require

less power. Detection Φdetect is a value based on if the vehicle is in a known detection

area and for how long which can also be thought of as risk. This value can be

calculated as either a binary value, which would indicate that detection areas are to

be completely avoided, or some normalized value based on how long the vehicle is in

the detection area. The kill cost Φkill is associated with being in range of the enemies

ability to fire. This is similar to the detection area but is generally smaller in area.

The kill cost can also be thought of as a binary value (i.e. always avoid) or some

normalized value (i.e. avoid as much as possible). The “terrain objective” Φterrain is

a measure of how many points the UAV can be seen from. Minimizing this objective

ensures the UAV can not be seen by known and unknown threats. This measure is

similar to the altitude cost requirement, however by inherently desiring low altitude

flight, as this decreases the odds of being spotted, it serves to effectively contribute to

path cost optimization even though it is calculated differently. These five objectives

define a multi-objective optimization problem.

2.5 Multi-objective Evolutionary Algorithms

Evolutionary and stochastic search algorithms have been applied to a variety

of optimization problems with great success [4, 8, 19, 41]. A review of the concept of

evolutionary algorithms is found in Appendix A. Evolutionary algorithms are capable

of providing polynomial time solutions for most NP and NP-Complete problems [9]

that would otherwise require an exponential or intractable solution time.

20

NP or “Non-deterministic Polynomial time” combinatorics problems [10] are

those problems where finding a solution requires a non-deterministic Turing machine

and is intractable otherwise. The solution, once found, can be verified in polynomial

time. The most difficult NP problems are termed NP-Hard, which refers to problems

that can not be solved through exhaustive search in either tractable or intractable time

frames. Some NP-Hard problems can be transformed into NP-Complete problems if

the NP-Complete solution also applies to the NP-Hard problem. The idea is that

NP-Hard problems constitute the hardest set of problems to solve in a tractable time

due to an unlimited solution space while NP-Complete problems comprise a subset of

those problems with a limited solution space that is still very large. Figure 2.2 shows

the overlapping area these problem types exist in. A classic NP-Complete problem

is the TSP. The TSP consists of a set of n points on a grid connected by weighted

edges; the objective is to determine the shortest circuit that goes through all n points

and ends where it began. For a small number of points this is not difficult, however

the solution complexity time of the problem is (n−1)!
2

and the number of solutions that

must be analyzed quickly increases to an intractable number [51].

Figure 2.2: NP-Problem subdivisions.

21

For these many different types of problems a variety of applicable solution tech-

niques exist. Many deterministic solutions exist for small or constrained NP problems

which rely on search trees. However there is a limit to how effective deterministic (or

even heuristic based) search methods can be, especially as problem size and complex-

ity grows.

One of the interesting aspects of NP problems is that many of them can also

be modeled as multi-objective problems. There are two conflicting effects of a multi-

objective problem. The first is that the problem is often more useful because it more

closely approximates reality, but this comes at a cost of the second effect: increased

complexity. The VRP is hardly realistic, however the VRPTW described earlier in this

section is closer to reality, and if more constraints were applied, such as heterogenous

vehicles, back-hauls (pick up and delivery), or multiple depots, the problem would

become even more realistic. While this makes the solution of the problem more

valuable it also makes an optimal solution that much more difficult to obtain.

With knowledge of the effective use of evolutionary algorithms and the need

for multi-objective problem solutions, recent work has focused on developing multi-

objective evolutionary algorithms [3, 33, 62]. MOEAs are basically the same as a

standard GA with the difference of how solutions are evaluated and ranked. In a

multi-objective solution the concept of dominance exists. A solution is said to dom-

inate if there is no other solution that can improve one of the objectives without

simultaneously reducing another [9].

By examining the dominance of different solutions and ranking them accord-

ingly, a more accurate selection of effective solutions can be made for future gener-

ations. Also, by ranking across multiple objectives the resulting solution achieves

optimal performance across all objectives without being biased toward any one ob-

jective. When discussing optimality in a multidimensional space the concept of the

pareto front becomes beneficial. The Pareto front is the set of non-dominated, feasible

solutions. More recent MOEAs [63] [13] use this understanding of the Pareto front in

22

Figure 2.3: Dominance example for two objectives f1 and f2 [56].

order to track which genotypes are developing better solutions. This concept of the

Pareto front is visualized in Figure 2.3. Notice that the resultant set of solutions in

the front provides solutions with different tradeoff values. Which solution is actually

used is a decision made by a user or by some pre-determined rule.

An examination of the literature reveals a growing appreciation for the use

of MOEAs in complex problems, such as the VRP [48] [29]. The reason for this is

that MOEAs are better able to navigate the highly irregular solution space that exists

within the VRPTW. What has also been shown is that multi-objective approaches not

only develop good solutions but are also better than biased single objective solutions

for the optimization of any of a problems multiple objectives [33] for certain problems.

2.6 Self Organized UAV Swarms

The idea behind self organization is that developing the control structure to

make a group of UAVs work together is computationally infeasible. SO theory defines

a method for applying simple rules to individual vehicles, which when put into large

groups develop the emergent behavior relevant to the mission [7].

Within UAV simulation a control methodology must be established that defines

how each UAV flies and makes decisions. While it is possible to manage each UAVs

23

Figure 2.4: UAV local sensor pattern [37].

flight with a deterministic method that selects optimal flight paths this is an extremely

computationally intensive operation. For this reason, a method of self-organized con-

trol is used. Self-organization [9] refers to an emergent property that exists within

complex systems composed of very simple entities. An example of this is the flocking

of birds. Each bird has no global knowledge nor understanding of direction, they only

know to stay within a certain distance of its neighbors and avoid obstacles. Figure 2.4

illustrates the local sensor area available to the swarm member. The net effect of each

bird following these simple rules is the emergent flocking behavior we see in the real

world. These rules were defined by Reynolds in his original paper on the subject [38].

It is difficult to predict what low-level rules result in the macroscopic behavior

desired in a self-organized entity. For this reason much of the current work in SO

focuses on evolving and optimizing existing rule sets that achieve the desired behav-

ior [36]. While tuning the specific parameters is difficult and time consuming, defining

the rules is not as complicated. For example, in a swarm of UAVs, the application of

Reynold’s three original flocking rules plus a rule later defined in [54] for flocking can

be used. These rules are illustrated in Figures 2.5-2.8.

The first two items can actually be seen as a single rule to stay within a certain

range of nearby flock members. Each one of these rules represents a vector of influence

for the swarm member. The direction the swarm member flies is a summation of these

four vectors. The result of these four rules is that each vehicle avoid crashing into

another, all members fly at the same speed, and the entire flock moves toward some

24

Figure 2.5: Collision avoidance: avoid hitting nearby swarm members [37].

Figure 2.6: Swarm centering: stay within sight of nearby swarm members [37].

Figure 2.7: Velocity matching: match velocity of nearby swarm members [37].

objective point. The basic idea of self- organization is not that complicated; realistic

simulations, unfortunately, are.

There are quite a few simulations of self organized behavior available online [30]

though these are generally limited to 2D simulations, with the exception of the Air

Force Institute of Technology (AFIT) UAV simulator and a few others [37]. The

problem with conducting simulations is the inherent complexity of managing the

global information of the swarm and its environment (O(n4) for the 4 basic rules per

25

Figure 2.8: Migration: maintain velocity to a set way point [37].

UAV). Recent advances in computer hardware, data structures, and parallel software

have enabled more advanced simulations but the problem complexity is still very

relevant, especially as more detailed and realistic simulations are required.

2.7 Summary

This chapter presents a short history of previous research that supports this

effort. The topics of the VRPTW, path planning, MOEAs, and SO are discussed in

their relation to this thesis investigation. Previous research is also explored as part

of topic development. The problem domain consists of UAV routing. The solution

approaches consist of MOEAs (as a solution to the routing problem). Next, the SRP

is defined as an alternate routing model and along with the VRPTW, is formulated

as a multi-objective optimization problem.

26

III. Problem Definition

This chapter formulates the SRP in a manner similar to that of the VRPTW in

Chapter II. The SRP is a modification of the VRPTW that allows for a more

realistic routing of UAVs to targets. The chapter concludes with a multi-objective

formulation of the VRPTW and SRP.

3.0.1 The Swarm Routing Problem. In almost all variations of the VRP, or

VRPTW, it is assumed that all vehicles depart from the depot location to different

targets and only one vehicle visits each target [51]. This problem model is appropriate

because each vehicle is generally assumed to be ground based. However, the use of

a UAV swarm introduces an interesting aspect which, up to this point, has not been

dealt with. When dealing with a swarm of UAVs and multiple targets to visit, it is

desirable to have the ability to route the swarm between targets in the most efficient

manner possible. The reason for this is that often many targets exist on a battlefield

which need to be visited in a timely manner, while also utilizing resources in the most

economical fashion possible. It would be much more efficient to be able to consider

UAVs as a dynamic group rather than indivisible units that can only visit one location

at a time. This implies an imperative to take advantage of the divisibility of the swarm

and route subgroups of UAVs to different targets, as it is deemed efficient to do so,

and then regroup at other targets.

By viewing the problem in this manner the value of importance changes from

edge costs between targets to the distance traveled by each UAV. Within the VRPTW

(and VRPs in general) each vehicle is seen to have some capacity associated with it

that is used to satisfy each customer. While this works for ground based delivery

routing, it would be more appropriate to view target satisfaction as the number of

UAVs on target in some time window. The path cost associated with a single vehicle

is then more reflective of the distance that needs to be traveled, and the use of many

vehicles capable of being routed through multiple targets (causing splits and joins in

the group in the process) presents a more realistic and useful problem model.

27

The problem construction is modeled off the structure of the VRPTW found in

Toth [51] and Tan [47]. The problem domain consists of a network G = (V,A) where

V = {v0v1, ...vn} and v0 is the depot. The set of edges is defined as, A = {(vi, vj) ∈
V, i 6= j}, where each edge has associated with it some cost c(vi, vj). The cost of the

edge is the cost of travel from target i to target j. For now we assume path cost as

some constant travel speed for each UAV making the travel cost simply the Euclidean

distance between points.

A time window exists for all customers where, E, represents the earliest start

time and, L, the latest arrival time. The latest arrival time is the point at which the

UAV can arrive and still complete the service time defined by S. If the vehicle arrives

earlier than E, it incurs a waiting time, W , which is the difference between the arrival

time and E. The total time a vehicle takes to complete it’s route is the summation

of all route path travel costs, waiting times, and service times (
∑

cij +
∑

wi +
∑

si).

The total path time must not exceed the latest arrival time (i.e. closing time) of the

depot.

Each customer also has associated with it some demand, D. The demand is an

indication of the number of UAVs that need to be present at the target within its time

window for the required service time. This is one of the key differences between

the SRP and VRPTW. Instead of demand being satisfied by a UAVs capacity,

it is satisfied by the number of UAVs at the target. The service time indicates the

amount of time the UAVs are required to be on target.

There exists K homogenous UAVs each of which has some travel capacity, F ,

and unit deliverable capacity. Groups of UAVs are classified as a swarm. A swarm can

split into one or more sub-swarms, join with other sub-swarms into a larger swarm,

and travel along path edges together as a swarm. It is assumed that join and split

operations only occur at targets in order to simplify problem complexity. The travel

capacity is not a deliverable value as it has been in previous versions of this problem,

it is only an indication of how far the individual UAV can fly. This constraint can

28

be viewed as the UAVs power supply limitation. The deliverable value that satisfies

the target is equal to the total number of UAVs present in a given location at a given

time. This value fulfills the demand requirement of the target during its service time.

The solution to the problem is the same as the VRPTW, a list of ordered targets

for each vehicle, such that the visitation to each target fulfills all target needs without

violating any time or demand constraints. Note, that the cost of a route is not the

total time the route takes to complete, it is only the sum cost of the edges the vehicle

traverses. The objective remains the same: determine the set of paths for the UAVs

such that the total distance is minimized.

The following is a mathematical programming formulation of the SRP, based

on the definition found in Toth [51]. Vehicles are defined within the problem by their

inclusion in a flow variable, xijk, which is a binary value indicating if UAV, k, exists

on the path that connects (i, j) ∈ V at any point in the solution. A time variable, ωik,

indicates the start time of UAV k at location i. The subscript j ∈ ∆±(i) indicates the

set of edges from i to j where j is not equal to i, the plus or minus indicates either a

forward or backward move along the path.

Aij - Edge cost between i and j

Vn - Network vertices for n target (v0 is the depot)

En - Earliest arrival time of target n

Ln - Latest arrival time of target n

Sn - Service time of target n

Dn - Demand of target n

K - Set of UAVs

Fk - Travel capacity of UAV k

xijk ∈ {0, 1} ∀k ∈ K, (i, j) ∈ A, (3.1)

29

ωik ≥ 0 i ∈ N, k ∈ K, (3.2)

Equations (2.1) and (2.2) define the flow and time variables used. The flow

variable is a binary value that indicates vehicle, k, travels from location, i to j,

if equal to one, and zero otherwise. The time variable specifies the start time at

location, i, by vehicle k.

∑

j∈∆+(i)

xijk = 1 ∀i ∈ N, ∀k ∈ K, (3.3)

∑

j∈∆+(0)

x0jk = 1 ∀k ∈ K, (3.4)

∑

i∈∆−(n+1)

xi,n+1,k = 1 ∀k ∈ K, (3.5)

∑

i∈∆+(j)

xijk −
∑

i∈∆−(j)

xijk = 0 ∀k ∈ K, ∀i ∈ N, (3.6)

Equations (3.3)-(3.6) define the edge constraints of the graph in a solution.

They indicate that the each vehicle visits a customer only once (3.3), that all vehicles

must start from the depot (3.4), that all edge costs are symmetrical (3.5), and that

all vehicles must return to the depot (3.6). Note, in Equation (3.3) the lack of the

summation over K which removes the constraint that each customer be visited by

only a single vehicle.

xijk(ωik + si + tij − ωjk) ≤ 0 ∀k ∈ K, (i, j) ∈ A, (3.7)

ei

∑

j∈∆+(i)

xijk ≤ ωik ≤ li
∑

j∈∆+(i)

xijk ∀k ∈ K, ∀i ∈ N, (3.8)

30

ei ≤ ωik ≤ li ∀k ∈ K, i ∈ (0, n + 1), (3.9)

Equations (3.7)-(3.9) define the time constraints of the problem. Equation (3.7)

indicates that the arrival time at location i plus the service time and travel time to the

next location must equal the arrival time at the next customer. Equation (3.8) defines

the need for arrival times to be within the customers time window. The depot also

has a time window associated with it (opening and closing time) which all vehicles

must adhere to (3.9).

∑
i∈N

di

∑

j∈∆+i

xijk ≥
K∑

k=0

ki ∀k ∈ K, (3.10)

∑

j∈∆+i

cijxijk ≤ Fk ∀k ∈ K, (3.11)

Up to this point the formulation is basically been the same as the VRPTW with

the exception of Equation (3.3). Equations (3.10)-(3.11) are what separate the SRP

from the VRPTW. Equation (3.10) indicates that the demand of each customer is

satisfied by the number of vehicles on location and that that number must be either

equal to or greater than the demand of the target. Equation (3.11) indicates that the

total cost of the path for a vehicle not exceed the vehicles flight cost limit.

min
∑

k∈K

∑

(i,j)∈A

cijxijk (3.12)

The single objective function is defined by Equation (3.12) which illustrates the

desire to minimize the total path cost for all vehicles. The path cost does not include

the service or waiting times. Time is only a constraint that causes some routes to be

infeasible, the cost is the total distance traveled.

31

This formulation has introduced the SRP as a modification of the VRPTW.

By changing the constraints of customer visitation and how a customers demand is

satisfied the problem becomes a more realistic model for routing UAVs to multiple

targets within a time window. Up to this point problem and the VRPTW defined

in Chapter II have only been single objective formulations. In the next section the

problems are reviewed in terms of multiple objectives.

3.1 Multi-objective Formulation for VRPTW and SRP

In Section 2.2 the VRPTW is defined and in the previous section a variant, the

SRP, is defined. The objective functions for these two problems indicates that only

path length is of critical interest. Even though path length is a primary objective

it is not the only objective that can be optimized for in the solution. Consider the

following situations that may occur within a problem:

• Vehicle exceeds its capacity to serve a route - when this happens the

route can be split into 2 or more routes. The split is made when the customer

demand causes the capacity of the vehicle to be exceeded. If the original route

(1,2,3,4,5,6) causes the vehicle capacity to be exceeded at customer 4, the route

is split into two routes (1,2,3) and (4,5,6) and a new vehicle is added to the

solution. This would be repeated in all routes until the capacity is met.

• Vehicle arrives early to a customer - when this happens the service time

for the customer is increased by the time spent waiting

• Vehicle violates a time window by arriving late - a new vehicle and

route are added, splitting the route as described when capacity constraints are

encountered.

From these situations we see that the solution to alleviating capacity and time

violations is to increase the number of vehicles (and routes). Increasing the number

of vehicles is, of course, regressive to the development of optimal paths lengths. This

is due to the introduction of depot travel times for each new route. Every time a new

32

route is added the vehicle must first travel from the depot to a location, making the

addition of new vehicle routes generally cause an increase in total path length (though

not always). It is therefore, advantageous to define 3 objectives to minimize for: path

length, vehicle count and total wait time. By optimizing for these three objectives

we seek solutions with complementary aspects, and better solutions overall. The

objective functions now consist of the following equations:

min
∑

k∈K

∑

(i,j)∈A

cijxijk (3.13)

min
K∑

k=0

k (3.14)

min
∑

k∈K

∑

(i,j)∈A

tikxijk (3.15)

Equation (3.13) defines the minimization of the path length. Equation (3.14)

defines the minimization of the number of vehicles used. Equation (3.15) defines the

minimization of the wait time where the variable t is defined in equation (3.16) for

the VRPTW and (3.17) for the SRP. The wait time for the SRP is defined as the

difference between a vehicles arrival time and the arrival time of the latest vehicle, if

the latest arriving vehicles time is past the earliest arrival time of the customer. The

latest arriving time is used because operation on a customer can not begin until all

vehicles are present. These objective functions apply to both the VRPTW and SRP.

tik =

ei − wik, if E > wik

0, otherwise

 (3.16)

33

tik =

ei − wik, if E > wik ∩ E > wiu

wiu − wik, if wiu > E

0, otherwise

where u is the latest arriving vehicle

(3.17)

3.2 Purpose in multi-objective formulation

Optimizing across multiples objectives is done with two purposes in mind. First,

to support the idea that a multi-objective formulation is capable of navigating the

solution space more effectively than optimizing for only a single objective. Since the

objectives complement each other it would seem logical that optimizing over all of

them would achieve better results. What is also noteworthy is that by optimizing for

these different objectives, solutions with decreased path lengths should be found as

opposed to optimizing solely for path length. This idea was first proposed and tested

in Ombuki [33] with beneficial results (i.e. benchmark values were not made worse

from the multi-objective approach compare to the single objective approach).

The reason multi-objective formulation is more effective is because the problem

under consideration has such an irregular solution space. Time constraints introduce

irregularities to the Pareto front such that non-dominated solutions become more

isolated. This problem is exacerbated as more constraints are applied to the prob-

lem such as heterogenous vehicle fleets or pick-up and delivery problems. Only by

optimizing across multiple objectives can the solution space be traversed accurately

enough to allow the determination of non-dominated solutions. We now proceed with

the high level solution design to this fully formed multi-objective problem.

3.3 Summary

This chapter introduced the SRP routing problem variation as a model for

routing swarms of UAVs. By eliminating the restriction of single city visitation for

each vehicle and changing target satisfaction to be based on vehicle count the SRP

34

serves as a better problem model for UAV routing. A multi-objective formulation

for the both the VRPTW and SRP shows the objectives can be optimized for: path

length, vehicle count, and wait time per vehicle. The next chapter introduces the

high level solution design for these two problems.

35

IV. High Level Concept Design

This chapter presents the high level design that forms a solution to the multi-

objective VRPTW and SRP defined in Chapter III. An analysis of problem

complexity precedes a development of the algorithmic solution. This development

follows a process of determining the type of solution, the structure of the algorithm

itself, and the individual components that make up its design.

4.1 Design Objectives

The design objectives for this research are to develop a solution procedure for

the multi-objective routing problems described in the previous chapter. This solution

must return information that can be integrated with previous work on UAV path

planning [44] and simulation [11]. The end result of this design is a fully developed

form of an algorithm to be applied to the VRPTW and SRP whose output is a set of

feasible vehicle routes.

A discussion of the problem complexity is performed in order to illustrate design

requirements of the algorithm. An introduction to the form of the required solution

is then shown; this form requires two aspects: a selection method and set of genetic

operators. A description of two multi-objective EAs is given in support of the first

requirement. This is followed by a set of genetic operators that compose the GA

solution for the VRPTW and SRP, each contained in its own respective section 1.

4.2 Problem Complexity

The VRPTW is NP-Hard [10, 51] meaning that no polynomial time solution

exists unless P = NP . This complexity valuation is determined by analysis of the

VRP as NP-Hard [45] and through restriction, determining that the VRPTW is also

1The term evolutionary algorithm and genetic algorithm are almost interchangeable and often
used as such. Evolutionary algorithm is usually considered a broader term encompassing many
different type of evolutionary computation. Genetic algorithms refer exclusively to optimization
and search algorithms which employ chromosomal solution manipulation, where the chromosome is
directly related to the solution (this excludes genetic programming)

36

NP-Hard. For a fixed number of vehicles the problem becomes NP-Complete [51] for

either problem variation. The SRP, as an extension of the VRPTW, can likewise be

classified as NP-Hard in the general sense and NP-Complete for fixed fleet sizes.

To determine the solution space complexity we start with the complexity of a

restrained problem, called the TSP. In TSP the number of vehicles is constrained

to one, making the size of the problem 1/2(n − 1)! for n > 2, where n is the num-

ber of customers/targets in the problem. The solution space size of the VRP, S, is

approximated by Equation (4.1).

S u
exp

(π

√
2n!/3)

(n− 1)!

8n
√

3
(4.1)

This equation is found by combining an integer partition distribution generating

function and the the complexity of a single n customer routing problem [55]. The

result of this approximation yields a solution space complexity of O(expn n!). For

the VRPTW the solution space is the same as it contains the same number of total

solutions as the VRP minus some constant number of solutions made invalid by time

constraints. This same idea would apply to any VRP variation (i.e. the SRP solution

space complexity is that of the VRPTW). This rapid increase in the solution space is

the source for the VRP being such a difficult problem to solve in the general sense.

The complexity of the VRPTW leads to the conclusion that a polynomial time

solution most likely does not exist. The best course of action is to then pursue a

heuristic based solution most likely structured within a stochastic algorithm [9]. This

assumption is backed by published research on the success of stochastic solutions to

the VRP and VRPTW [21] [34] [47] [3].

4.3 Multi-objective Algorithm Design Choices

Many applicable algorithm choices exist for solving the VRPTW and most are

capable of returning optimal solutions in a reasonable time as seen by the choices

37

examined in this section. The choices have been constrained to stochastic based

algorithms as our previous complexity analysis has shown that a deterministic search

process would be intractable.

4.3.1 Ant Colony Optimization. Ant colony optimization is defined by a set

of artificial ants, or agents, navigating through a defined search space attempting to

optimize some problem solution. The route the ants construct within the search space

forms the solution. Each ant exists at some point in the solution space and makes a

local decision of where to go next. This decision is inherently stochastic but is based

on the idea of the pheromone matrix. In nature, ants lay pheromone as they wander

through a space. These pheromones attract other ants to follow the same path. As the

ants encounter desirable factors more ants start to follow the same path reenforcing

the path. This idea is presented visually in Figure 4.1. While this does not lead to

an optimum solution (true best solution) it does often lead to optimal solutions (high

value that may or may not be the true best value), especially in Euclidian spaces

(specific to routing problems).

Figure 4.1: ACO Paths Being Created.

The decision of which direction an ant travels, within the ACO model, is defined

by the probability definition in Equation (4.2). The equation is the pheromone inten-

38

sity, τ , times the distance between two points, divided by the summation of all other

options calculated the same way. η is a visibility term that denotes the inverse of

the distance between two points. This causes the ant to have a preference for shorter

routes. This probability is a function of the pheromone matrix which is updated as

solutions are found. Altering the update method, seen in Equation (4.4), to update

under certain conditions or only for the highest performing ant also impacts the per-

formance of the algorithm. The pheromone matrix is also altered by Equation (4.3)

where ρ is the evaporation rate [0− 1]. The net result of these methods is to enforce

the use of paths that have lead to good solutions. Algorithm 1 incorporates these

ideas into a pseudo code representation.

Algorithm 1 ACO Algorithm

1: procedure ACO([best] = max it,N ,τ0)
2: initialize τij // usually initialized with the same τ0

3: initialize best
4: place each ant k on a randomly selected edge
5: t ← 1
6: while t < max it do
7: for i = 1 to N do
8: Build a solution by applying a probabilistic
9: transition rule (e− 1) times.

10: The rule is a function of τ and η
11: e is the number of edges on the graph G
12: end for
13: Evaluate each solution
14: if an improved solution is found then
15: update the best solution found
16: end if
17: Update pheromone trails
18: t ← t + 1
19: end while
20: end procedure

39

Pr(i, j) =
τ(i, j).[η(i, j)]β∑

allowedj
τ(i, j)α.[η(i, j)]β

(4.2)

η(i, j) = 1/d(i, j), β = 2

τij ← (1− ρ)τij + ∆τij (4.3)

Supd ← arg max
s∈Siter

F (s) (4.4)

This is an example of a popular elitist update strategy where for every iteration

in the number of generated solutions the one with the highest fitness value is used to

update the matrix.

4.3.1.1 Applying ACO to the MOP VRPTW. ACO can be applied

to multi-objective problems in one of two ways. A set of different colonies can be

run simultaneously attempting to optimize each objective before forming a final so-

lution [19], or a single colony can be run where the probability equation described

previously (Equation 4.2) is based not only on the pheromone matrix but also on ob-

jective weights that become associated with the pheromone matrix [3]. Each option

has advantages and disadvantages. Attempting to solve for all objectives simultane-

ously has the risk of creating bias toward some objectives, and using different colonies

has a higher computational complexity.

Optimizing for all objectives simultaneously requires each of the objectives de-

scribed in Section 3.1 to be incorporated into the fitness evaluation used to calculate

the quality of a solution. Baran suggests a method where each ant initially creates

a feasible solution by adding cities to routes as they are deemed feasible (within the

time window and vehicle capacity) [3]. From this point, a variation of the pheromone

matrix is used to incorporate the value of pheromone paths to the different objectives

40

being optimized (4.5). This new equation introduces the ηJ value which indicates

time between cities. In this way, a single colony can be used to develop a solution

that is optimal for all objectives.

Pr(i, j) =
τ(i, j).[ηL(i, j)]β.[ηJ(i, j)]β∑

allowedj
τα(i, j).[ηL(i, j)]β.[ηJ(i, j)]β

(4.5)

ηL(i, j) = 1/d(i, j), ηJ(i, j) = 1/t(i, j), β = 2

4.3.2 Particle Swarm Optimization. Particle Swarms are multi agent sys-

tems inspired by biological systems. They are a progression in the area of natural

computing borrowing ideas from genetic algorithms, ant colonies, and self organiza-

tion. The general algorithm consists of a population of agents in D-dimensional, real

valued space (RD). These agents move through the space attempting to locate opti-

mal solutions (as seen in Figure 4.2). Where a given agents movement is based on its

own experience, its current location, and the experience of the agents around it.

The agents in the swarm are defined as Xi = (xi1, xi2, xi1, ..., xiD), where X is a

position in the space. Each agent also has an associated velocity Vi = (vi1, vi2, vi1, ..., viD).

The velocity a particle travels is defined by Equation (4.6). The variables ci represent

positive constants while ϕ represents a uniform random number generation function.

Figure 4.2: Particles on a Solution Space.

41

The variable w represents the inertia of the problem which corresponds to the expe-

rience the agent has had in the search space. The p term is the best value found so

far and the best found by a neighbor (pgd). These terms work to move the particles

velocity toward better solutions. These best values can be set to either a local best

or a global best. The impact of either depends on the problem being solved, though

global knowledge is usually more beneficial [58].

vid(t + 1) =w × vid(t)+ (4.6)

c1 × ϕ1 × [pid(t)− xid(t)(t)]+

c2× ϕ2 × [pgd(t)− xid(t)(t)]

Each particle also has a max and min velocity that it can achieve. This value is

set by the user and keeps the particle from either shutting down or accelerating out

of the solution space. These ideas are incorporated into pseudo code in Algorithm 2.

4.3.2.1 Applying PSO to the MOP VRPTW. In Zhu [61] and Yan-

wei [58], a Particle Swarm Optimization (PSO) algorithm is applied to a VRPTW. A

solution is structured as a 2× n + k− 1 particle, where n is the number of customers

visited by k vehicles. Thus a solution to a six dimension problem (with zero as the

depot) would be:

Node :00123456

Index :26874315

The objectives to be minimized are the total path length, the number of vehicles

used, and the time lost waiting for customers. In Zhu [61], infeasible solutions (those

that violate capacity or time constraints) are penalized instead of being repaired or

thrown out. Thus, each objective constraint has some weight associated with it.

42

Algorithm 2 PSO Algorithm from [7]

1: procedure [X] = PSO(max it,AC1,AC2, vmax,vmin)
2: initialize X // usually xi, ∀i, is initialized at random
3: initialize M xi // at random, M xi ∈ [vmin,vmax]
4: t ← i
5: while t < max it do
6: for i = 1 to N do
7: if g(xi) < g(pi) then
8: pi = xi

9: end if
10: g = i // arbitrary
11: // for all neighbors
12: for j = indexes of neighbors do
13: if g(pj) > g(pg) then
14: g = j // index of best neighbor
15: end if
16: end for
17: M xi ←M xi + ϕ⊗ (pi − xi) + ϕ⊗ (pg − xi)
18: M xi ∈ [vmin, vmax]
19: xi ← xi+ M xi

20: end for
21: t ← t + 1
22: end while
23: end procedure

These values are incorporated into the fitness function that determines how good a

solution is and ultimately where a particle goes.

Methods for incorporating multi-objective capabilities include running multiple

populations for individual objectives and then combining the best results for a final

search [3] and using a memory system to store non-dominated solutions [16]. In

Hu [22], a method of randomly selecting non-dominated points to be incorporated

into the population is used to ensure exploration of the search space as well as pursuit

of all objectives. The implementation of such an algorithm would closely resemble

the general implementation in Section 4.3.2. Since PSO algorithms do not rely on

structure like GAs the only aspect that is problem specific is the solution structure

and the fitness function. The search of the solution space is carried out by a vector

definition in Equation (4.6), defined by fitness values, not the solution structure.

43

4.3.3 Evolutionary Computation. For a review of basic evolutionary compu-

tation concepts please refer to Appendix A. Evolutionary computation works on the

idea that existing problem solutions can be modified in an intelligent manner in order

to allow for the creation of new and better solutions. Evolutionary Computation (EC)

methods are very applicable to routing problems because routing solutions can be cod-

ified in very simplistic chromosome structures. This simplification allows for easier

construction of the algorithm and a faster run time. The next section presents an

expanded description of the multi-objective GA.

4.4 Multi-objective Genetic Algorithm Design

Multi-objective GAs differ from single objective GAs in how solutions are strat-

ified. In a single objective algorithm, determining the quality of a solution is a simple

matter. If the objective is minimization it is a simple compare operation to the low-

est value. For multi-objective optimization this process is not as simple. While it

is possible to weight objectives in order to obtain a single value associated with the

solution this is not an advisable pursuit. Weighted objectives introduce bias because

no weighting procedure can accurately treat the different objectives in a manner such

that all objectives are optimized effectively [9]. To accurately classify solutions over

a multi-objective domain ,a ranking procedure must be used that takes into account

not only the value of the solution across the different objectives but also its proximity

to other solutions, which is an indication of the value of the information the solution

contains. Chapter II expands on this idea of pareto front searching.

There are three major components to the EA design: the replacement method,

the chromosome structure, and the genetic operators. The replacement method de-

termines which solutions are kept after a new generation is created. Within this step

the solutions are ranked and discarded. The selection methods chosen are shown in

the context of the complete EA. The sections following the replacement method ex-

pand on the chromosome structure, population initiation, and genetic operators. The

44

chromosome structure is a critical step which drives the effectiveness of the entire

algorithm and how the different genetic operations function.

4.5 Replacement Method

In this section two replacement methods are shown in the context of the GA

they form. Both of these methods rely on non-dominated sorting and objective space

distance to rank and select solutions for the next generation. How Pareto ranking and

dominance is utilized multi-objective search is discussed in Section 2.5. As arguments

can be made for any given selection method for any given problem two algorithms

were selected so that their results could be statistically compared. While many dif-

ferent MOEA selection methods exist, Non-dominating Sorting Genetic Algorithm

2 (NSGA2) and Strength Pareto Evolutionary Algorithm 2 (SPEA2) were chosen for

their general acceptance within the research community and previous experiments

showing their effectiveness [35] [62].

4.5.1 Non-dominating Sorting Genetic Algorithm II. NSGA2 uses an elitist

sorting mechanism of the non-dominated points to first organize the solution set [14].

The result of this sorting is a set of solution ranks. The first rank is the hard non-

dominated set. Hard non-dominated refers to a point that is not dominated by any

other solution, as apposed to soft non-dominated solutions which are only dominated

by those points in the first rank. Each decreasing rank is dominated by more points.

These points are then compared to each other in order to determine the distribution of

points in the current Pareto front and which points contribute best to an exploration

of the solution space. This process is called crowding-distance-assignment and is

shown in Algorithm 3.

The notation Γ[i].m refers to the m-th objective value for the the i-th solution.

By using the crowding distance and ranking procedure the solutions are ordered by

how ”good” they are. A visualization of this idea is shown in Figure 4.3. The next

45

Algorithm 3 Crowding Distance Assignment

1: procedure CrowdDisAssign(Γ)
2: l = |Γ|
3: for each i, Γ[i]distance = 0 do
4: for each objective m do
5: Γ = Sort(Γ, m)
6: Γ[1]distance = Γ[l]distance = ∞
7: for i− 2to(l − 1) do
8: Γ[i]distance = Γ[i + 1]distance + (Γ[i + 1].m− Γ[i− 1].m)
9: end for

10: end for
11: end for
12: end procedure

generation is then filled with the best solution down until the population limit is

reached.

The complexity of SPEA2 is O(MN2) due to the sorting phase of the algorithm.

This complexity more than improves on the factorial complexity of the problem. The

only caveat to this is how the genetic operators perform as, based on their complexity,

they could dominate the algorithm if not constructed competently. The algorithm is

described via pseudo code in Algorithm 4.

4.5.2 Strength Pareto Evolutionary Algorithm II. The SPEA2 was devel-

oped by Zitzler [64] as an improvement to the original SPEA algorithm [65]. SPEA2

Figure 4.3: Crowding distance calculation. Dark points are non-dominated solutions.
[14]

46

Algorithm 4 NSGA2

1: procedure NSGA2
2: t := 0;
3: initialize P (0) := {~a1(0), ...,~aµ(0)} ∈ Iµ;
4: evaluate P (0) : {Φ(~a1(0)), ..., Φ(~aµ(0))};
5: while (ι(P (t) 6= true) do
6: R(t) = P (t) ∪Q(t)
7: F = Fast Nondominated Sort(Rt);
8: All non-dominated fronts of Rt

9: while |P ′(t)| < N do
10: Crowding Distance Assignment(Fi)
11: P ′(t) = P ′(t) ∪ Fi

12: end while
13: Sort(P ′(t),≥n)
14: P ′(t) = P ′(t)[0 : N]; first N elements in P’(t)
15: crossover : ~a′k(t) := rsc,pc(P (t));
16: mutate: ~a′′k(t) := msm,pm(P ′(t));
17: evaluate: P ′′(t) := (~a′′1(t)), ..., (~a

′′
µ(t)) :

18: Φ(~a′′1(t)), ..., Φ(~a′′µ(t));
19: select : P (t + 1) = s(P ′′(t)

⋃
Q);

20: t := t + 1;
21: end while
22: end procedure

uses a strength ranking procedure to stratify solutions. Each solution is assigned a

strength value based on the number of solutions that dominate it. First, it is deter-

mined how many points dominate each solution, this is referred to as the fitness value.

Then each dominated point is assigned the sum of all the fitness values that dominate

it, this value is then called the strength value of the solution. It is this strength value

that is used to rank the solution. The strength ranking procedure ensures that while

good solutions are kept, solutions that are more isolated (but still dominated) are also

kept in order to ensure better exploration of the solution space.

After all the solutions are ranked, an environmental selection method reduces

the population to a user specified value. Zitzler refers to this value as the archive,

which is a misleading term. The archive does not actually save any information

from one generation to another. Its purpose is to give the user the ability to control

how many points should be saved each generation. By contrast, in NSGA2 once the

47

Figure 4.4: Truncation procedure removing non-dominated points [62].

solutions are ranked the crowding distance method runs until the next population is

filled. In SPEA2, the user specifies an archive size that indicates how many points

should be selected from the ranking procedure to be put back into the population.

The intended effect of this is to reduce the number of, what is hoped to be, redundant

points passing from one generation to another. Figure 4.4 illustrates this idea by

showing how non-dominated points would be removed from a Pareto front.

The run time of the algorithm is dominated largely by the truncation operation.

The fitness assignment procedure requires O(N2) while the truncation operation is

O(N3) where N is the number of individuals. While this is a high level of complexity

it is still preferable to the factorial complexity described in Section 4.2. Algorithm 5

illustrates the full structure of SPEA2.

4.6 VRPTW Chromosome Structure

Any chromosome solution used in a VRP must be able to specify how many

vehicles are required and which cities must be visited in what order. The solution

chromosome defines a genotype, which is a code corresponding to a phenotype which

is the actual solution. In terms of total information the genotype does not need to

contain redundant or implied information. For example, in the VRP it is implied

that a route starts at the depot and ends there. Encoding this information in a

48

Algorithm 5 SPEA2

1: procedure SPEA2
2: N := populationsize;
3: N := archivesize;
4: t := 0;
5: generate P (0) := {~a1(0), ...,~aµ(0)} ∈ Iµ;
6: generate P (0) := ∅;
7: evaluateFitness P (t);
8: evaluateFitness P (t);
9: while (ι(P (t) 6= true) do

10: envSelection: P (t + 1) = nonDomPt(P (t), P (t));
11: mateSelection: P (t + 1) = Tournament(P (t + 1));
12: recombine: P ′(t + 1) := rΘr(P (t));
13: mutate: P ′′(t + 1) := mΥm(P (t));
14: evaluate: P (t + 1) : Φ(~a′′1(t)), ..., Φ(~a′′µ(t));

15: P (t + 1) = P (t));
16: t := t + 1;
17: end while
18: end procedure

chromosome would therefore be a waste of space. There are three ways to accomplish

this, others could be formulated but these have been deemed effective through their

repeated usage [39].

A possible solution structure is a bit string where every bit corresponds to an

edge 2 in the solution (and every bit is either one or zero indicating whether it is or is

not in the solution). This structure is very simple but grows large very quickly and the

organization requirement of the VRP lends itself more toward real valued structures

anyway. The second structure is a single array of real values representing each target,

the order of which indicates the order of visitation. Each route is separated by zeros

as shown in Figure 4.5. This structure is more efficient but still requires the use of

separators to indicate where a route begins and ends.

In [49] a structure for a VRP chromosome is defined that uses a similar idea as

the array structure but attaches each route to a support structure, like that seen in

Figure 4.6. The most beneficial aspect of this structure is that changes made to a given

2An edge being a connecting line between two points in a graph.

49

Figure 4.5: A possible chromosome structure for a VRP.

route do not require a shift to the entire array of values. In Tavares [49], this structure

is proposed, and shown to be, an affective structure especially for the VRPTW. This

structure is also used in previous research by Slear [44] and Russell [40].

Figure 4.6: GVR chromosome structure for the VRP.

The GVR structure offers many attributes that make it desirable as a chromo-

some structure. Its information content does not contain redundancies. Each route

implies the existence of a departure and return to the depot even though it is not

explicitly stated. This is made possible by the support structure that contains and

separates each route. It is also desirable that infeasible solutions are not turned into

feasible solutions by adding customers but instead only by rearranging and removing

50

customers. The impact of this is that whenever a solution is checked for feasibility

after the addition of a customer it can be safely discarded if infeasible, knowing the

solution is a dead end.

4.7 SRP Chromosome Structure

The chromosome structure used for the SRP is essentially the same as for the

VRPTW. It consists of single route definitions arranged in a support structure. The

only difference is the arrangement of data within the structure. Since each customer

must be visited by more than one vehicle at a time the SRP structure must also reflect

this. A diagram of this is shown in Figure 4.7.

Figure 4.7: Modified GVR chromosome structure for the SRP.

4.8 VRPTW Genetic Operator Development

The operators described in this section are taken from several publications [33,

41,50]. The genetic operator alters a solution in a random manner by either randomly

changing the solution or optimizing some sub-section of the solution. This opens two

avenues to pursue, simple operators applied many times or the use complex heuristics

used to intelligently optimize part of a solution. Classic GAs made use of random

operators, however more and more hybrid algorithms incorporate heuristics and local

search techniques to great effect [47]. For this research a random crossover method,

three random mutations, and a heuristic based mutation operator are used.

51

4.8.1 Random Crossover. Crossover is the genetic operation that occurs

most frequently and ensures that children created from the process are feasible. The

operation takes two parents, a donor and a receiver. A random selection of customers

is selected from the donor and placed into the first available route in a copy of the

receiver, after the customers in the incoming sub-route have been removed. The first

available route is the route that when receiving the sub-route does not violate any

constraints. If no route exists then the sub-route is added as a new route after the

copy customers are deleted in the receiver. The net result of this is a child that is a

copy of the receiver but contains some sub route section from the donor. This process

is illustrated in Figure 4.8.

Figure 4.8: Random crossover operator for the VRPTW.

52

4.8.2 Random Swap Mutation. In swap mutation two random customers in

a solution are swapped if doing so does not violate constraints. If constraints become

violated the mutation does not proceed. This process is illustrated in Figure 4.9.

Figure 4.9: Random swap operator for the VRPTW.

4.8.3 Random Inversion Mutation. Select a random sub-route within a

solution and reverse the order of visitation. The mutation does not proceed if this

results in an invalid solution. This process is illustrated in Figure 4.10. The resultant

route may or may not be longer than the original route.

Figure 4.10: Random inversion operator for the VRPTW.

4.8.4 Random Insertion Mutation. Move a random customer to a random

location in the solution while ensuring feasibility. It is possible to create a new route

53

with probability 1
2V

where V is the number of vehicles [50]. This process is illustrated

in Figure 4.11.

Figure 4.11: Random insertion operator for the VRPTW.

4.8.5 Best Route Cost Mutation. This operator randomly selects a route

within a solution and optimizes its construction by rearranging customers within that

route. This is accomplished by first searching the route and determining which of the

customers is closest to the depot. This customer then becomes the first customer. The

closest customer to this customer that is in the route is then moved next to the the

first customer and so forth, creating a route based on customer proximity. Customers

that can not be feasibly added are moved to a new route. It is always assumed that

a single customer within a route is valid, without this assumption the problem would

not be solvable. The construction of a new route proceeds in the same way, placing

customers by order of proximity. This process is illustrated in Figure 4.12.

4.9 SRP Evolutionary Operator Development

The SRP genetic operators are variants of the VRPTW operators altered to

take into account the different structure of the SRP solutions. The difficultly in

developing these operators is ensuring the validity of the child genotype. Since the

chromosome contains location sensitive information across two dimensions, as opposed

54

Figure 4.12: Best Route Cost mutation operator.

to the VRPTW chromosome which is only sensitive across a single route, making even

slight changes can cause invalid solutions to be created.

4.9.1 Split Mutation. Split mutation randomly selects a route within the

SRP solution and attempts to reduce the total length of that route be eliminating

unnecessary target visitations. Each customer is satisfied with a certain number of

UAVs at its location, however more can be present than are actually needed. This may

cause a route to be longer than it needs to be since its divergence to an unnecessary

target takes longer than a direct route. The split mutation operation determines if this

is occurring in a random route and attempts to remove the target from the vehicles

flight plan. If this operation then results in an infeasible solution it is considered to

have failed, and is not implemented. This process is illustrated in Figure 4.13.

4.9.2 Vertical Swap Mutation. The vertical swap operator swaps two differ-

ent locations vertically in a given solution. This is in contrast to the VRPTW swap

mutation in section 4.8.2 in which the swapped targets can be anywhere. Columns

within the SRP have a close approximation to time within the solution. It is not

exact because distance information is not contained within the solution, and cities in

55

Figure 4.13: Split mutation operator for the SRP.

the same column may not actually be visited at the same time. The swap operator

randomly selects a column and two different targets within that column. These tar-

gets are then swapped and feasibility is checked. An infeasible solution is not used.

Figure 4.14 illustrates this process. Note the swap of customer four and six between

vehicle two and four.

Figure 4.14: SRP vertical swap mutation operator.

4.9.3 Random Crossover with Tightening. The crossover operation must be

done with particular care as effective alterations to the solution are difficult to achieve.

The basic idea of the crossover operation is the same as the VRPTW crossover op-

eration, from two solutions a random route is selected from each. This route is then

added to the other solution. The problem is, unlike the VRPTW crossover operation,

56

subsections of a route can not be easily transferred between two solutions. In order

to compensate for this, the route to be crossed is added to the solution as an entirely

new route. The solution then undergoes an operation called tightening. During this

operation the solution is searched to determine what customers are over satisfied or

visited at inappropriate times, the customers in the new route are given preference for

staying. The resultant solution contains the additional information of the crossover

operation without the redundancy or errors the operation would otherwise result in.

This process is illustrated in Figure 4.15.

Figure 4.15: Crossover operator modified for use on the SRP.

4.10 Chapter Summary

This chapter contains the high level design for the MOEA solution to the

VRPTW and SRP models defined in Chapter III. An evolutionary algorithm is chosen

57

due to success in its application from previous research and analysis of the problem

of vehicle routing. Two selection methods and genetic operators for each problem

are devised and detailed. In the next chapter it is shown how these operations are

implemented into testable code.

58

V. Low Level Software Design

This chapter contains the low-level solution construction of a router for the

VRPTW and SRP. The design presented in the previous chapter is mapped

to an implementable software design. The programming language, data structures,

and code infrastructure used are presented as part of the evolution of the research

conducted.

5.1 Implementation Objectives

The high level GA design necessitates many elements of preplanning before

construction of a solution can take place. These decisions include coding language

decisions, the use of GA libraries, and the level of generalization required. The level

of generalization implies how dependent the software is on the problem and how

difficult it is to transition the software to different problems. The coded solutions for

the VRPTW, SRP, and path planner consist of a series of processing steps: read in

problem data, maintain customer(target) information, construct individual solutions,

apply the MOEA to those solutions, and return the results in a readable format. The

implementation must be able to accomplish these steps and return results compatible

with the simulation software. The software must adhere to object-oriented standards,

be generalized enough to allow for the alteration of algorithm parameters, and be

compatible with available hardware.

5.2 Selection of an Evolutionary Computation Library

A basic structure exists within all genetic algorithm search techniques. This

structure is defined by the transition of populations of solutions through a modification

and selection process. Due to this structural concept it is advantageous to use a

programming library or other software utility that has already been created with this

basic structure in mind, hereafter refereed to as the infrastructure of the GA. There

are a variety of infrastructure options available for evolutionary computation across

many coding platforms. Some of these options are listed in Table 5.1.

59

Table 5.1: Evolutionary Algorithm Infrastructure Choices.
Language Object

Oriented
Advantages Disadvantages

GALib C++ Yes Previous work cre-
ated in GALib.
C++ data structure
functionality.

Construction is very
outdated and library
is no longer sup-
ported by author.
Functionality is lim-
ited.

Java GA
Package

Java Yes Offers the portabil-
ity of the Java en-
gine. Java data
structures and pro-
gramming architec-
ture easy work with.

Less efficient than
a C based code.
Not easy to integrate
with previous work
coded in C code.

Matlab GA
Toolbox

NA No Matlab is easiest
language to program
in and toolbox func-
tionality allows for
fast construction.

Very slow processing
and difficult to al-
ter toolbox function-
ality past preset con-
struction.

Open
Beagle

C++ Yes C++ data structure
are very powerful
and efficient. Very
powerful functional-
ity due to strict ob-
ject oriented con-
struction. Library
is still currently sup-
ported by author.

Object oriented
structure entails
high level of com-
plexity requiring
longer initial pro-
duction time.

For this research the Open Beagle (OB) library was selected. Previous routing

work used the GALib library [41], however for this research it was determined that

a transition to a more contemporary library would be beneficial. The OB library

contains very powerful and well constructed tools for the creation of evolutionary al-

gorithms. It is written in C++ allowing for easier integration with existing simulation

uses, all of which are written in C++, and the library allows the use of the vector

data structure. The library is written in very strict object oriented protocol, meaning

little work is required on the part of the user to get program specific details inte-

60

grated into the overall programm structure, assuming they are written to the same

Object Oriented (OO) standard. More details concerning the implementation level

design aspects of OB can be found in Appendix B and online [18]. The selection of

this infrastructure drives the code level requirement of all the program components

as well as the data structures available (C++ data structures).

5.3 Software Design

The OB system is capable of a variety of different evolutionary computation

methods including Genetic Programming (GP) and Evolutionary Strategies which

arises from the object oriented structure of OB shown in Figure 5.1.

Figure 5.1: Open Beagle software architecture [17].

The top level GA structure contains the problem specific functions as seen in

Figure 5.2. Note the use of different classes within the OB structure to separate the

various operations. An expansion of each of these classes in the following sections

shows their internal structure.

5.4 Replacement Strategy and Algorithm Structure

Within OB, the algorithm being used is implemented as a replacement strategy

which selects individuals from the population of children and parents to be put into

the next generation. As presented in Chapter IV, NSGA2 [14] and SPEA2 [62] are

selected as the replacement strategies. Both algorithms are implemented in a similar

fashion within the overall OB structure, with the only major difference being the

ranking and selection functions used. The NSGA2 algorithm is installed as an option

61

Figure 5.2: Evolutionary Algorithm Structural Implementation.

within the OB program and was written by Marc Parizeau. The SPEA2 algorithm

is based on the coded algorithm written for the PISA system [5] and was translated

into the OB form by the author.

Figure 5.3 describes both a replacement and selection method contained within

the selection class. The overall EA structure in Figure 5.2 shows the purpose of both

of these methods. The selection class contains both methods within its class.

62

Figure 5.3: Selection class structure.

5.4.1 NSGA2. The NSGA2 uses two functions to rank and replace indi-

viduals: sortFastND and evalCrowdingDistance. The sortFastND function ranks all

solutions by non-dominated rank. The sorted solutions are then put back into in the

population via the evalCrowdingDistance method. Figure 5.4 shows the structural

implementation of the NSGA2 algorithm.

The sorting function is called on line 9 and returns an ordered list of individuals.

The structure that defines this list is a vector of integer vectors. The first vector in

the set contains the rank zero, non-dominated members. The vectors that follow

contain the remaining dominated individuals in ranking order (i.e. the second vector

contains rank one). Following the sort and insertion of non-dominated members into

the population (lines 8 - 15), the last pareto front is inserted into the population

using the crowding distance function. Note how changes to the population are made

by overwriting existing members (line 25 - 27).

The algorithm begins by being passed the ioDeme, which a structure that con-

tains populations of individuals. A copy is made of the population and all children

are generated within the copy population (lines 4 - 5). The sortFastND function then

63

1 void NSGA2Op::applyAsReplacementStrategy(Deme& ioDeme, Context& ioContext)

2 {

3 // Generate a new generation of individuals, merged with the actual one.

4 Individual::Bag lOffsprings(ioDeme);

5 lOffsprings = generateNextGeneration();

6

7 // Fast non-dominated sorting, followed by insertion of the first Pareto fronts.

8 NSGA2Op::Fronts lParetoFronts;

9 sortFastND(lParetoFronts, ioDeme.size(), lOffsprings, ioContext);

10 unsigned int lIndexDeme=0;

11 for(unsigned int j=0; j<(lParetoFronts.size()-1); ++j) {

12 for(unsigned int k=0; k<lParetoFronts[j].size(); ++k) {

13 ioDeme[lIndexDeme++] = lOffsprings[lParetoFronts[j][k]];

14 }

15 }

16

17 // Insertion of the last Pareto front, using crowding distance

18 Individual::Bag lLastFrontIndiv;

19 for(unsigned int l=0; l<lParetoFronts.back().size(); ++l) {

20 lLastFrontIndiv.push_back(lOffsprings[lParetoFronts.back()[l]]);

21 }

22 NSGA2Op::Distances lDistances;

23

24 evalCrowdingDistance(lDistances, lLastFrontIndiv);

25 for(unsigned int m=0; lIndexDeme<ioDeme.size(); ++m) {

26 ioDeme[lIndexDeme++] = lLastFrontIndiv[lDistances[m].second];

27 }

28 }

Figure 5.4: NSGA2 Code Structure

receives the new population and a vector for storing reference numbers. The original

ioDeme is then modified by overwriting existing individuals with new ones from the

lOffsprings structure based on ID numbers in the lParetoFronts structure, updating

the population with the first rank of non-dominated solutions. The evalCrowdingDis-

tance function is then used to evaluate the dominated members of the population.

The remaining population members are updated with the results from this function.

5.4.2 SPEA2. The SPEA2 structure is the same as the NSGA2 structure, in

that the individuals are generated and reinserted in the same manner. The difference

is how they are selected for insertion. The code structure for SPEA2 is shown in

Figure 5.5.

After a new generation is created the individuals are assigned a fitness value by

the calcFitness function on line 11. Adjacency matrices are then generated at line

13. These matrices are used in truncation functions. The matrix data structure is

implemented as another vector of vectors structure. Based on the number of non-

64

1 void SPEA2Op::applyAsReplacementStrategy(Deme& ioDeme, Context& ioContext)

2 {

3 // Generate a new generation of individuals, merged with the actual one.

4 Individual::Bag lOffsprings(ioDeme);

5 lOffsprings = generateNextGeneration();

6

7 //except for the first entry, IDs of zero indicate the indiv. was removed

8 SPEA2Op::vecFitness lIndivIDValues;

9

10 //calculate SPEA fitness values for all individuals

11 this->calcFitness(lIndivIDValues, lOffsprings, ioContext);

12 //create the distance matrices used in the truncation process

13 this->calcDistances(lOffsprings.size(), lOffsprings);

14

15 //truncate the population using the strength and fitness environmental selection method

16 if (fitness_bucket[0] > (*mArchiveSize).getWrappedValue())

17 {

18 truncate_nondominated(outFitnessValues, inIndividualPool, ioContext);

19 }

20 else if (inIndividualPool.size() > (*mArchiveSize).getWrappedValue())

21 {

22 truncate_dominated(outFitnessValues, inIndividualPool, ioContext);

23 }

24 return;

25

26 //add the selected individuals back into the population

27 unsigned int row=0;

28 unsigned int lIndexDeme=0;

29

30 for(unsigned int k=0; k<lIndivIDValues[0].size(); ++k) {

31 //a zero value indicates it was removed from the population

32 if(lIndivIDValues[0][k] != KILL_VALUE)

33 {

34 ioDeme[lIndexDeme] = lOffsprings[lIndivIDValues[0][k]];

35 ++lIndexDeme;

36 }//end if

37 if(lIndexDeme>=ioDeme.size()) //stop if you fill up the deme

38 break;

39 }//end for

40 }

Figure 5.5: NSGA2 Code Structure

dominated individuals and the archive size, a process of either truncating dominated

or non-dominated members is pursued (line 16). Member truncation occurs via the

process described in Section 4.5.2. The lIndivIDValues data structure initialized at

line 8 is a vector which contains the ID numbers of all members in order. As individu-

als are truncated the ID number is then changed to a negative one. When individuals

are inserted back into ioDeme the existence of this value indicates that the value

should not be included.

65

5.5 VRPTW Solution Implementation

The VRPTW solution uses an object oriented structure divided into into 3

classes: the customer information class, genetic operator class, and initialization class

as seen in Figure 5.2. The selection methods are defined in section 5.4.

The customer information class contains information about individual customers

and the methods for evaluating individual solutions. The genetic operator class en-

compasses all the modifying operations that take place on an individual. The ini-

tialization class contains the method that creates the first population. This section

concludes with a description of the heuristic mutation procedure; Best Cost Route

Mutation. The remaining operations are described in Chapter IV.

5.5.1 GVR Data Structure. As presented in Chapter IV, Genetic Vehicle

Representation (GVR) defines the structure of a single solution. The requirement

imposed by GVR is a data structure that contains each route, and within each route,

each customer, in order. These requirements are met by utilizing the vector data

structure available within the C++ language, specifically, a vector of integer vectors,

shown in Figure 5.6.

Figure 5.6: GVR Data Structure and Genotype for VRPTW.

The first vector contains a set of vectors, each of which represents a single

route. Each of those vectors contain integers which represent identification numbers

66

for customers. The utility of this method is the use of iterators and standard vector

operations that exist within C++. No customer information is kept within an indi-

vidual, the individual is only a code of integers that correspond to information kept

within the customerInfo class described in the next section.

Figure 5.7: Individuals placement within the OB system.

Open Beagle stores each individual as a sub class member in a population hi-

erarchy as shown in Figure 5.7. The utility of this structure allows populations and

individuals to be passed in a completely encased class with the individual genotypes

referenced as sub-class members. This not only keeps the design in line with software

design principles but simplifies the construction of the GA by generalizing how the

solutions are passed between different operation.

5.5.2 Customer Class. The customer class contains solution evaluation

methods and customer relevant data. The evaluation methods are called by all levels

of the algorithm as every solution must be checked for validity during construction

and alteration which is why the methods are contained in a separate class, making

it accessible to all other classes. The data structures of the customer class contain

problem specific data used in the evaluation process and for heuristic calculations in

some mutation operator methods (i.e. Best Cost Mutation). Figure 5.8 shows this

structural concept.

67

Figure 5.8: Customer class structure.

As problem data is read in, customer objects are created. Each object has prob-

lem information associated with it (ID number, x coordinate, y coordinate, demand,

ready time, due time, and service time). These objects are stored within a vector that

is kept by the customerInfo class. A single customerInfo object is created at startup

which is persistent throughout the run of the GA.

Two important data structures are used within the Customer class. These are

the adjacency matrix [10] and the proximity matrix. Both are created by defining

a vector of integer vectors. The adjacency matrix contains distances between all

customer locations (i.e. edge costs). The purpose of the matrix is to serve as a

lookup table for distance values during the evaluation procedures, alleviating the

need to constantly recalculate distances.

The proximity matrix contains an ordered list of the customers by proximity.

The row the vector is in implies the customer it is associated with. The proximity

matrix is used to make the process of rearranging customers and determining better

routes a more efficient process. Instead of repeatedly searching through the adja-

cency matrix to determine the closest customer a single search through a row of the

proximity matrix returns the same information.

68

The customer class also contains methods for the evaluation of solutions and the

verification of individual routes. These methods are not only used to determine the

path length of an individual, but also to validate that changes made to a route have

not resulted in an invalid solution. Two methods evaluate entire solutions; evaluateS-

olution() and validateSolution(). The evaluation method returns the actual values

associated with the solution while the verification is a boolean method that returns

true if the solution is valid and false if not. Each of these methods employ route level

methods called evaluateRoute and validateRoute. The evaluateRoute method deter-

mines the total length and wait time of a route. validateRoute is a boolean method

which calls the evaluateRoute method and ensures the values are within problem

boundaries. The solution evaluation methods are passed entire solutions (vector of

integer vectors) while the route level methods are passed only integer vectors. This

break up of the methods is done in accordance with software coding principles.

The design impact of the customer class is to keep all problem specific data

outside of the actual genetic algorithm. This reduces the amount of information that

needs to be kept track of by the infrastructure. It also ensures a generalization of

internal GA functions by requiring calls to the customerInfo class rather than putting

the functionality in a single isolated GA function. New problem types or evaluation

procedure modifications can then be more readily implemented.

5.5.3 Population Initialization. Before operations can be performed on a

population, that population needs to be created. The initialization process creates

a set of random population members, however the process is conducted in a more

intelligent way than simply assigning random customers to vehicles. This process as

well as its placement within the initialization class is shown in Figure 5.9.

To begin, a vector is assigned a random series of numbers the size of the number

of customers. Each number represents a customer ID. The first individual in the list

is added to the first route. To select the customer that follows, a check is made to the

proximity matrix. The function goes through this list attempting to find the closest

69

Figure 5.9: Population Initialization class structure.

customer that can be feasibly added. When no new customers can be added via the

proximity matrix selection process, a new customer is taken from the random vector

to add to the next route. It is of course ensured that through this process the random

vector is updated as to which members are removed. This process is repeated until

all solutions for the population are created.

5.5.4 Best Route Cost Mutation. The best route cost mutation begins by

first selecting a random route within the solution to be optimized. Four vectors are

then created, a route vector, a live copy vector, a proximity listing vector, and a

transfer list vector. The route vector stores the route as it is being constructed. The

live copy vector stores the previous route, its members are deleted as they are added

to the route vector. The proximity listing stores the proximity listing for the customer

currently being searched for. The transfer list vector stores customers that can not

be added to the solution, these customers are later added into new routes.

A double nested for loop determines which of the customers in the route is closest

to the depot. This becomes the first city in the optimized route. An iterative process

then commences where the search for the next customer in the route is determined by

70

searching through the proximity listing for that customer. A customer is taken from

the proximity listing and added to the route vector. If the route is valid that customer

is removed from the live copy and the proximity listing is updated to reference this

new customer. If a customer within the live copy vector can not be added back into

the route it is put into the transfer list. If the transfer list contains more than one

customer the previously described process repeats, customers from the transfer vector

are added into new routes based on proximity.

This process results in an optimization of the selected route and an optimal

placement of the remaining customers. The operator class shown in Figure 5.10

contains only the mutation operator described here, however all operators adhere to

this same I/O structure within the operator class.

Figure 5.10: Operator class structure.

5.6 SRP Solution Implementation

The SRP implementation is a modification of the VRPTW implementation.

All of the data structures within the VRPTW code are used in the same manner in

the SRP code. This decreased the production time of the SRP solution. The SRP

software structure also remains the same, containing a customer information class,

genetic operator class, and initialization class. Each of the methods within these

71

classes are then modified for use the SRP solution. The overall structure is the same

as that shown in Figure 5.2.

The customer information class contains information about individual customers

and the methods for evaluating individual solutions. The genetic operator class en-

compasses all the modifying operations that take place on an individual. The ini-

tialization class contains the method that creates the first population. This section

concludes with a description of the vertical swap mutation procedure implementation.

5.6.1 Modified GVR Data Structure. SRP uses the same chromosome struc-

ture as the VRPTW with the difference that customers do not appear only once. The

implementation remains a vector of integer vectors. Each integer vector represents a

single vehicles route within the solution and each integer in the route represents the

ID of the customer to be visited.

Figure 5.11: Modified GVR Data Structure and Genotype for SRP.

5.6.2 Modified Customer Class. The customer class contains the customer

object and methods for solution evaluation. The information kept about a single

customer is the same as for the VRPTW with the exception of customer demand.

Since demand is no longer satisfied by capacity and instead by the number of UAVs

on site, the demand values meaning is changed.

72

Solutions can no longer be evaluated by route since customer satisfaction occurs

across all routes at once. Customer demand is also not not satisfied until all vehicles

arrive, so wait time is not only based on earliest arrival but also latest arriving vehicle

(wait time equals earliest arrival time minus latest arriving member time if latest

member arrives past earliest start time). Due to this, evaluation take place by column

across all routes at once.

The process of evaluation works by first determining the path length from the

depot to the fist customer via the adjacency matrix. The cost value is kept in a vector

the size of the number of vehicles in the solution. The method then iterates through

the solution updating the cost vector for each additional customer. Wait times are

calculated by determining the vehicle arriving last. The method ends by connecting

all routes back to the depot to determine the final path length and cost for each

vehicle.

5.6.3 Population Initialization. The initial population for the SRP is created

using the same heuristic method as described for the VRPTW. A random customer

is added to a route followed by the next, closest feasible customer. The proximity is

determined via the proximity matrix. The modification for the SRP stems from the

need to track all routes as they are being constructed. The process is shown in Figure

5.12.

The fist selected customer is added to the number of vehicles needed to satisfy

its demand. The process then iteratively attempts to add new customers to existing

routes in the solution until the demand for that customer is satisfied. If the demand

is not satisfied after all existing routes have been attempted a new vehicle is added

to the solution. This process continues until all customers have been assigned.

5.6.4 Vertical Swap Mutation. To apply vertical swap mutation two random

locations are selected within the individual, ensuring that they occur at the some

point in time (i.e. the same column). To determine if a swap is possible a copy of the

73

Figure 5.12: SRP Initialization Procedure Example.

solution is modified to include the swapped members. This solution is then passed

to the customer class for evaluation. If the solution returns as valid the mutation

is performed on the actual solution and returned to the population. If the swap has

resulted in an invalid solution the mutation fails, if not, then the mutation is successful

and the method terminates.

5.7 Chapter Summary

This chapter presented the software solution design. This design process entailed

selection of EA infrastructure software, the separation of tasks within the program,

and feasible implementation designs for the different genetic operators. Some of these

aspects were driven by the infrastructure choice. The OB library has a very specific

construction procedure for each genetic operator simplifying the implementation task.

Outside the scope of the infrastructure is the customer class which separates all cus-

74

tomer data and evaluation methods from the main evolutionary algorithm. In the

next chapter a series of experiments are designed to validate these design choices.

75

VI. Experimental Procedures

This chapter contains information about the design of experiments performed as

part of this thesis. The objective of the experiment design phase is to develop

testing methods for the problem model and solution design. The experiments divide

into three sections which test the effectiveness of the routing software, the path plan-

ner, and the simulator. The purpose of these experiments is to validate the algorithm

design of the routing software by applying standard VRPTW benchmark problems

and comparing the solutions to best known solutions. Modified versions of these test

problems are also applied to the SRP routing software in order for the results to be

comparable.

6.1 Experimental Design Objectives

The goal of any experiment is to contribute evidence to the hypothesis proposed.

In this case, there are two hypotheses to test stemming from the objectives defined

in Chapter I; the proposed solution design for application to the VRPTW is valid

across a spectrum of benchmark problems, and the solution design for application to

the SRP produces valid results comparable to those obtained in the corresponding

VRPTW benchmark. These objectives drive the experiment design such that a set of

benchmarks are applied to the VRPTW and SRP solutions resulting in a set of valid

solutions. These solutions then contain measurable metrics of total path length, total

vehicle count, total wait time, and average path length (these metrics apply to both

the VRPTW and SRP). In the case of the SRP the benchmarks are modified such

that customer demand is an indication of vehicle count and not capacity demand, as

in the VRPTW. Comparison of these metrics of performance allows for an intelligent

comparison of the solution process to benchmark problems.

Accurate performance comparisons require the application of different design

choices to the same problem, using the same settings when possible. To fulfill this re-

quirement genetic algorithm settings are chosen and kept constant across the spectrum

of algorithm choices. These settings are determined through empirical experiments

76

deemed to best represent the performance capability of the different genetic operators.

Population size and generation limit are chosen within the desire to limit program

run time.

Three different algorithm designs, each with two options for selection strategies,

are used in the experimental procedures. These three designs are NSGA2, SPEA2,

and a biased elitism algorithm. The biased elitism algorithm uses no strategy to

rank solutions instead using an elitist ordering procedure that is biased toward path

length. The top number of individuals, equal to the population size, are selected

from the population after genetic alteration. Each of these designs is then paired

with either a random or tournament selection process. Recall that selection refers to

how solutions are selected for genetic mutation. Tournament selection means some

number of random individuals is selected from the population, with replacement,

and ranked (biased by path length) with the top rank selected for alteration. The

SRP experiments employ only the use of the tournament selection method as random

selection was deemed more harmful to the SRP solution process from the fact that

the genetic operators employ no local search techniques.

6.2 VRPTW and SRP Experiments

The most commonly used benchmarks for the VRPTW are the Solomon prob-

lems developed in 1987 [45]. They exist in three different varieties; a random dis-

tribution of customers (R), clustered sets of customers (C), and hybrid (RC). Each

of these three problems comes in dimensions of twenty five and fifty customers. In

order to examine the effectiveness of the software as well as the impact of the multi-

objective design, two problems from each type are tested, listed in Table 6.1. The

use of this variety of problems illustrates the impact of problem type on the solution

design as well as solution performance in different instances. The number designation

of each problem constitutes the time windows that exist for that problem. Problems

that begin with a one, such as R109, have small time windows, while R206 has much

larger time windows.

77

Table 6.1: Solomon test problem selections (Modified for SRP).
Random Cluster Hybrid

25 Targets R206 R109 C103 C205 RC107 RC202
50 Targets R206 R109 C103 C205 RC107 RC202

Each test problem contains a set of target coordinates, target time windows,

and vehicle capacity. The test file is structured as seen in Figure 6.1. The Euclidean

distance between targets is considered to be the edge cost. The same problem selec-

tions are applied to the SRP solution modified in the demand column to ensure that

each problem contains a realistic UAV requirement.

Figure 6.1: Solomon test file example of 25 dimension hybrid problem.

Algorithm effectiveness varies greatly as different parameters within the program

are tuned. The settings for each algorithm type were determined from empirical

analysis and literature review [33]. The operator percentage indicates the chance that

operator is used on an individual during the alteration phase. The more effective

operators are used more often while the random operators are used less. All the

options for the algorithm used to solve the VRPTW problems are listed in Table 6.2,

the option for the SRP algorithm are listed in Table 6.3.

78

Table 6.2: VRPTW GA Settings.

Operator
Setting

Random Crossover 40%
Swap Mutation 25%
Inversion Mutation 25%
Insertion Mutation 10%
Best Route Cost Mutation 40%
SPEA2 Archive Size 80
Generation Limit 1000
Population Size 100
µ
λ

ratio 2

The SRP software experiments use the NSGA2 and biased elitism algorithms.

The reason for this is that results from the VRPTW reveal a consistent dominance

of these two methods over SPEA2. Each algorithm/problem experiment is run thirty

times in order to ensure reliable statistical analysis. Each replacement strategy uses

a tournament selection method. The population size and operator application per-

centages are different from the VRPTW settings in order to counter the SRPs fragile

structure. More simple operations are performed to take the place of a few intelligent

operations. Experiments are run against a small subset of the problems applied to

the VRPTW (those entries bolded in Table 6.3).

Table 6.3: SRP GA Settings.

Operator
Setting

Random Crossover 50%
Split Mutation 25%
Vertical Swap Mutation 5%
Generation Limit 5000
Population Size 100
µ
λ

ratio 2

79

6.3 Testing Environment

Experiments are performed on an Opteron 248 processor operating at 2.2GHz.

The system has 4 GB off chip memory and a 128 KB L1 cache. The code is compiled

in 64-bit using GNU C++. All test programs are run using a bash scripting method

and Portable Batch System (PBS) submission system.

6.4 Chapter Summary

This Chapter justifies the experiments performed using the VRPTW and SRP

design developed in chapter V. A selection of VRPTW problems representing the

spectrum of available benchmarks are used on both the VRPTW and SRP, with the

problems for the SRP modified slightly in terms of of what the demand per customer

represents. In the next chapter the results from these experiments are analyzed.

80

VII. Results and Analysis

This chapter contains results obtained from experimental procedures in Chap-

ter VI, analytic analysis of the results and their contextual meaning. The

VRPTW section contains results from experimental trials compared to literature re-

sults. A statistical comparison of these results further compares the performance of

the different procedures used. Results from the SRP exist solely in the context of this

investigation and are shown only in terms of the results obtained. Statistical analysis

further compares the procedures used.

7.1 VRPTW Results

VRPTW optimization occurs across three dimensions of total path length, total

wait time, and number of vehicles used. Previous analysis, and the classical view, of

this problem attempts to optimize path length and the number of vehicles used [33]

or path length alone [51]. Experiments performed in this investigation do not yield

a single solution optimized in any one direction but rather a Pareto front of non-

dominated values. In order to compare the results found here to those in the literature

they are first shown in terms of the best path length found overall. The following box

plots show the best path lengths available at the time of this writing compared to a

distribution of values found from experimental trials (30 trials). Each box plot shows

results for a single problem across six algorithm settings: SPEA2, NSGA2, Biased

Single Objective; each of which uses either random or tournament selection. The

wording used to express each of these settings is shown in Table 7.1. Each plot also

shows the best answer for path length optimization found in Toth [51] and Diaz [12].

Where appropriate, a Kruskal-Wallis 1 test is used to further analyze perfor-

mance for the different algorithms on specific problems. Following these box plots,

solution space plots are shown across dimensions of path length and wait time in order

1A Kruskal-Wallis test is a variance analysis tool used to test the equality of a population among
median groups. The result of the test is a window over the values of the distribution indicating
if other samples are significantly different. Here, Matlab is used to create a visual of this window
showing which sample are different from each other using an alpha of 0.05.

81

Table 7.1: Box plot label explanations for VRPTW experiments.

Plot Definition Meaning

SPEA2 Tourn
SPEA2 replacement strategy using tournament selection
for genetic operator application

NSGA2 Tourn
NSGA2 replacement strategy using tournament selection
for genetic operator application

Bias Single Tourn
Biased Single Objective replacement strategy using tour-
nament selection for genetic operator application

SPEA2 Rand
SPEA2 replacement strategy using random selection for
genetic operator application

NSGA2 Rand
NSGA2 replacement strategy using random selection for
genetic operator application

Bias Single Rand
Biased Single Objective replacement strategy using random
selection for genetic operator application

to better examine algorithmic performance. The drive for this is that observing only

path length can be misleading when examining MOEA performance. This section

also divides into each type of problem defined in Chapter VI: random, cluster, and

hybrid.

7.1.1 Random Distribution Problem. The difference in performance between

high and low dimension problems is readily observable by comparing Figures 7.1 and

7.2. NSGA2 is observed to return results closer to the best answer, followed by

the biased single objective algorithm, with SPEA2 doing worst. A Kruskal-Wallis

statistical analysis performed in Matlab confirms these visual observations as seen in

Figure 7.3 and 7.4.

The performance observation per algorithm is repeated in the R206 problem.

NSGA2 again manages to pull ahead in terms of the path length objective and along

with the biased algorithm approaches the best solution in the higher dimension 50

customer problem in Figure 7.6. Observe the consistent convergence of solutions in

Figure 7.5 for NSGA2 using tournament selection. The performance of NSGA2 is

further clarified by the statistical plot in Figures 7.7 and 7.8.

82

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

430

440

450

460

470

480

490

500

510

520

P
at

h
Le

ng
th

Best Answer: 441.3

Figure 7.1: Trial results distribution for problem R109 with 25 customers

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

750

800

850

900

950

1000

1050

1100

P
at

h
Le

ng
th

Best Answer: 786.8

Figure 7.2: Trial results for random distribution problem R109 with 50 customers

7.1.2 Cluster Distribution Problem. Within the cluster benchmarks the

path length objective becomes less consistent in returns. Figure 7.9 shows all meth-

ods closing in on the best answer with NSGA2 actually achieving it in a few trials.

83

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.3: Significance plot for R109 with
25 customers

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.4: Significance plot for R109 with
50 customers

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

360

380

400

420

440

460

480

P
at

h
Le

ng
th

Best Answer: 374.4

Figure 7.5: Trial results for random distribution problem R206 with 25 customers

Increasing the dimension of the problem, in Figure 7.10, causes a return to the per-

formance seen so far, with no algorithm approaching the best solution. Statistical

analysis shows only SPEA2 being significantly outperformed in Figure 7.11 and 7.12.

Figure 7.13 shows convergence using the biased algorithm with a wide dispersion

of points using SPEA2 or NSGA2. Figure 7.14 maintains the decrease in performance

over higher dimensional problems. Statistical analysis in Figures 7.15 and 7.16 show

NSGA2 returning better results. It is interesting to note the results of NSGA2 with

84

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

600

650

700

750

800

850

P
at

h
Le

ng
th

Best Answer: 647

Figure 7.6: Trial results for random distribution problem R206 with 50 customers

random selection returning with such consistent results. This can be most likely at-

tributed to the nature of the cluster problems working well with the genetic operators

used.

7.1.3 Hybrid Distribution Problem. The hybrid problem would seem to

represent the most difficult landscape to work in, however Figure 7.17 shows that

no algorithm had particular trouble arriving at the optimal solution. This is less

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.7: Significance plot for R206 with
25 customers

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.8: Significance plot for R206 with
50 customers

85

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

170

180

190

200

210

220

230

240

250

260

270

P
at

h
Le

ng
th

Best Answer: 190.3

Figure 7.9: Trial results for random distribution problem C103 with 25 customers

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

300

350

400

450

500

550

600

650

P
at

h
Le

ng
th

Best Answer: 361.4

Figure 7.10: Trial results for random distribution problem C103 with 50 customers

true for the fifty dimension problem in Figure 7.18 as seen from the results being

further from the optimal value line. Statistical analysis of the results in Figure 7.20

show NSGA2 and the biased algorithm returning consistent values with tournament

86

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.11: Significance plot for C103
with 25 customers

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.12: Significance plot for C103
with 50 customers

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

200

250

300

350

P
at

h
Le

ng
th

Best Answer: 214.7

Figure 7.13: Trial results for random distribution problem C205 with 25 customers

selection being the deciding factor in superior performance. Further generational

development would most likely force the solution closer to the optimal. Figure 7.19

shows NSGA2 achieving statistically better results by a small margin, further leading

to the conclusion of its usefulness in developing solutions. However, previous results

also show consistent returns using the biased algorithm, meaning no one strategy

dominates overall.

87

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

300

350

400

450

500

550

600

650

700

P
at

h
Le

ng
th

Best Answer: 359.8

Figure 7.14: Trial results for random distribution problem C205 with 50 customers

The hybrid problem in Figure 7.21 again shows convergence of the biased al-

gorithm while NSGA2 and SPEA2 maintain a larger coverage. This is also seen in

Figure 7.22. The comparison plots in Figures 7.23 and 7.24 show consistent results

across NSGA2 and the biased algorithm. SPEA2 is again beaten in this particular

performance measure.

0 50 100 150 200 250 300

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.15: Significance plot for C205
with 25 customers

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.16: Significance plot for C205
with 50 customers

88

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

290

300

310

320

330

340

350

360

370

P
at

h
Le

ng
th

Best Answer: 298.3

Figure 7.17: Trial results for random distribution problem RC107 with 25 customers

7.2 Impact of VRPTW results

Results from only observing the path length objective can be informative but

also slightly misleading. It might be assumed that SPEA2 is being outperformed in

all problem instances, and in terms of path length it is. However as seen in Figures

7.25-7.27 analysis of the non dominated front generated by the NSGA2 and SPEA2

trials shows a return of results consistent with what one would expect from a multi-

objective problem.

The conclusion to be made is that the multi-objective solution is effective in

returning a broad range of results and that these results are pushing the front of the

problem. It is therefore not odd that the multi-objective approach did not return a

near optimal value for path length. The returned value represents the solution space

for the objectives selected. The fact that the returned values are close (i.e within

10 percent in most cases) to the highest benchmark value, shows the validity of the

MOEA approach as being able to find the optimal value for a single objective, while

89

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

600

650

700

750

800

850

900

P
at

h
Le

ng
th

Best Answer: 642.7

Figure 7.18: Trial results for random distribution problem RC107 with 50 customers

80 100 120 140 160 180 200 220 240 260

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.19: Significance plot for RC107
with 25 customers

50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.20: Significance plot for RC107
with 50 customers

90

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

300

350

400

450

500

550

600

P
at

h
Le

ng
th

Best Answer: 338

Figure 7.21: Trial results for random distribution problem RC202 with 25 customers

SPEA2 Tourn NSGA2 Tourn Bias Single Tourn SPEA2 Rand NSGA2 Rand Bias Single Rand

500

600

700

800

900

1000

1100

1200

P
at

h
Le

ng
th

Best Answer: 613.6

Figure 7.22: Trial results for random distribution problem RC202 with 50 customers

also optimizing across the range of objectives. In short, it appears that multi-objective

optimization is appropriate for this particular routing problem.

91

0 50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.23: Significance plot for RC202
with 25 customers

50 100 150 200 250 300 350

Bias Single Rand

NSGA2 Rand

SPEA2 Rand

Bias Single Tourn

NSGA2 Tourn

SPEA2 Tourn

Figure 7.24: Significance plot for RC202
with 50 customers

200 250 300 350
0

500

1000

1500

2000

2500

3000

3500

Path length

W
ai

t T
im

e

SPEA2
NSGA2

Figure 7.25: Non-dominated front comparing NSGA2 and SPEA2 for C205 with 25
customers

7.3 SRP Results

SRP optimization occurs across dimensions of total path length, wait time, the

number of vehicles used, and average path length. As this problem formulation is

unique to this investigation there are no readily comparable results. Though the

problems differ in formulation the objectives remain the same between the SRP and

VRPTW. As such, the results obtained from the VRPTW solution are compared

in order to illuminate the hypothesis that the SRP represents a superior problem

model in terms of individual vehicle operation and mission optimization. As in the

previous section results are organized in box plots representing trial results for the

92

350 400 450 500 550 600 650
0

100

200

300

400

500

600

700

Path length

W
ai

t T
im

e

NSGA2
SPEA2

Figure 7.26: Non-dominated front comparing NSGA2 and SPEA2 for R206 with 25
customers

selected problem. Definitions for the labels used in the plots is found in Table 7.2

A comparison of the best results from the VRPTW solution are also shown both in

terms of total path length and average path length (even though average path length

is not an optimized objective in the VRPTW).

Table 7.2: Box plot label explanations for SRP experiments.

Plot Definition Meaning

NSGA2 Tourn
NSGA2 replacement strategy using tournament selection
for genetic operator application

Bias Single Tourn
Biased Single Objective replacement strategy using tour-
nament selection for genetic operator application

7.3.1 Random Distribution Problem. Figure 7.28 compares the total and

average path length returned by NSGA2 and biased algorithm. The biased algorithm

seems to be converging while NSGA2 retains a larger spread of the solution space.

In Figure 7.29 the average path lengths are compared to the average path length

returns for the VRPTW using the same algorithm type. Neither NSGA2 or the biased

algorithm perform significantly better than one another, as seen in Figure 7.30.

93

300 400 500 600 700 800 900 1000 1100
0

200

400

600

800

1000

1200

1400

1600

Path length

W
ai

t T
im

e

NSGA2
SPEA2

Figure 7.27: Non-dominated front comparing NSGA2 and SPEA2 for RC205 with 25
customers

NSGA2 Tourn Bias Single Tourn

1350

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

P
at

h
Le

ng
th

Total Path Length

NSGA2 Tourn Bias Single Tourn

85

90

95

100

105

110

115

120

P
at

h
Le

ng
th

Average Path Length

Figure 7.28: Trial results for random distribution problem RC107 with 25 customers
comparing total path length and average path length per vehicle

7.3.2 Cluster Distribution Problem. For the cluster distribution problem,

Figure 7.31 shows the return of total and average path length between NSGA2 and

the biased algorithm. Further comparison between the same VRPTW results in Fig-

ure 7.32 shows a decreasing ability to handle this particular type of problem. This

behavior should be expected as the VRPTW solution contains heuristic operators that

94

NSGA2 Tourn Bias Single Tourn NSGA2 Tourn − VRPTW Bias Single Tourn − VRPTW

70

80

90

100

110

120

A
ve

ra
ge

 P
at

h
Le

ng
th

Figure 7.29: Comparison of average distance per vehicle in SRP results to VRPTW
results for problem R109 with 25 customers

40 60 80 100 120 140 160 180 200 220

Bias Single Tourn − VRPTW

NSGA2 Tourn − VRPTW

Bias Single Tourn

NSGA2 Tourn

Figure 7.30: Statistical analysis comparing SRP results to VRPTW results for prob-
lem R109 with 25 customers

deal specifically with clustered targets, while the SRP does not. Note in Figure ??

the equal performance of the biased algorithm and NSGA2 for the VRPTW. Even

with the high constraints of the SRP problem model it is still possible to return per

vehicle path length of the same distance.

95

NSGA2 Tourn Bias Single Tourn

1100

1200

1300

1400

1500

1600

1700

P
at

h
Le

ng
th

Total Path Length

NSGA2 Tourn Bias Single Tourn

80

90

100

110

120

130

140

P
at

h
Le

ng
th

Average Path Length

Figure 7.31: Trial results for random distribution problem C107 with 25 customers
comparing total path length and average path length per vehicle

NSGA2 Tourn Bias Single Tourn NSGA2 Tourn − VRPTW Bias Single Tourn − VRPTW
50

60

70

80

90

100

110

120

130

140

A
ve

ra
ge

 P
at

h
Le

ng
th

Figure 7.32: Comparison of average distance per vehicle in SRP results to VRPTW
results for problem C103 with 25 customers

7.4 Comparative and Extended Analysis of Results

Results from the VRPTW experimentation showed a consistent return of results

across a broad spectrum of problems. Optimization along the path length objective

96

60 80 100 120 140 160 180 200 220

Bias Single Tourn − VRPTW

NSGA2 Tourn − VRPTW

Bias Single Tourn

NSGA2 Tourn

Figure 7.33: Statistical analysis comparing SRP results to VRPTW results for prob-
lem C103 with 25 customers

showed less than optimal results, however when combined with a view of the achieved

non-dominated front, it is clear that the MOEA strategy is working correctly. Further

comparison between results shows the NSGA2 algorithm performing better or as well

as the biased algorithm. However, in some cases (Figure 7.14 and 7.21) the biased

solution converged early while the MOEA approaches maintained a breadth of search

in the solution space. These results lead to the conclusion that the MOEA solution

method developed and implemented here is effective at optimization over a range of

different problems.

Even with a multi-objective design, optimization of the path length objective

still approaches optimal value. NSGA2 is able to achieve a path length value within

10 percent of the optimal value, and is even closer in some cases (Figure 7.9). It can

be concluded that even while the algorithm is optimizing across multiple objectives

the returns for a single objective are no being compromised, as evidenced by NSGA2s

performance on the various benchmark problems.

With the validation of the MOEA design in place, obtained through analysis

of results over VRPTW benchmark problems, attention can then be turned to to

the SRP problem model. Results for the SRP again show consistent returns of total

97

and average path length. Average path length is then compared to the average path

length returns for the VRPTW solution in order to show that the SRP achieves

comparable results, which it does. That the average path length returns for the SRP

are comparable indicates the merit of the model as a per vehicle optimization strategy.

The purpose of the SRP as model is to develop time constrained routes between many

different targets each of which requires some number of vehicle visitations. It is no

sunrise that total path length is greater for the SRP returns, it would have to be,

what is important is that the returned solution does not require any one vehicle to

visit a large number of points, as would be the case in the VRPTW.

The benchmarks used in these experiments should also be considered reflective

of real world problems and not merely contrived problems. A real world mission

for a compliment of UAVs can conceivably contain 20 or more targets, to which

these benchmarks affectively match. The SRP model shows capability not only as

a combinatorics formulation but also as an applicable model for real world problem

formulation, as the solutions shown here validate a capability to return consistent

solutions.

7.5 Chapter Summary

This chapter presented the results and analysis from the VRPTW and SRP ex-

periments defined in Chapter VI. Results from the VRPTW experimentation showed

consistent returns across the spectrum of problems applied to it and results compa-

rable to single objective optimization results found in the literature. Drawing from

these results leads to the conclusion that the VRPTW algorithmic solution design

constructed in this investigation represents a valid construct for optimizing VRPTW

solutions.

Results from the SRP experiments showed consistent returns for the two algo-

rithmic procedures examined. Average vehicle length results did not compare consis-

tently favorably nor unfavorably to the VRPTW results. As the objectives for both

problem models are arrived at through different procedures it should not be con-

98

cluded that the VRPTW model has outperformed the SRP. Rather, the results show

the SRP model achieves per vehicle optimization comparable to the VRPTW mean-

ing that while the number of vehicles used is greater, which would be an expected

aspect of the models design, each vehicle does the same amount of average work. In

the next chapter the objectives for this investigation are reviewed and future research

is discussed.

99

VIII. Conclusions

Ruminations on the topics covered in this research lead to many different trains

of thought. This chapter summarizes the results obtained and analyzed in the

previous chapter and associates the objectives in the first chapter. A discussion of

future research related to both UAV simulation and direct extensions of this work

concludes the investigation.

8.1 Review of Accomplishments

This research endeavor has yielded a number of significant returns:

• Development of the Swarm Routing Problem (SRP) model is shown to be

an effective and solvable problem model for multi UAV routing. The

SRP evolves from the initial definition of the VRPTW and is modified it by

removing single target visitation restrictions and changing target sat-

isfaction to be based on vehicle volume at a certain point in time. These

changes cause the model to treat the vehicles as members of a sub-swarm

as opposed to discrete vehicles. The solution to this problem model better rep-

resents reality and offers an optimized allocation of UAV resources.

• Implementation of MOEA solution in software using the Open Beagle

evolutionary computation library. The benefit of this library allowed for

cross use of many methods between the VRPTW and SRP solution. The soft-

ware itself is also easily expandable and general allowing for the testing

of a very large number of experimentation settings and algorithmic

domains.

• Results from the VRPTW experiments show consistent returns often within

and under 10 percent of published results. The benefit of the solution

presented is a consistent return of results not constrained by problem

specific information.

100

• The proposed solution and SRP experimentation also shows the desired effect

of decreasing individual UAV path cost while still routing all UAVs

to all targets within the time limits.

8.1.1 Objective 1: Develop SRP as new model for UAV routing. The first

objective, defined in Section 1.4.1, is to modify the existing VRPTW problem into

a new type of combinatorics problem called the SRP. The drive from this originates

from the VRPTW being an incomplete model for UAV routing. This stems from

the VRPTW being a closer model to truck routing, where each vehicle is seen as a

large movable entity capable of visiting many targets. This is not the case with UAV

routing which consists of many small vehicles which satisfy target demand based

not on inherent capacity but volume on location (the number of UAVs on site at a

particular time). The VRPTW is modified to remove the restriction that each target

be visited by only a single vehicle. The complexity of the problem remains at least

as hard the VRPTW.

8.1.2 Objective 2: Develop and validate MOEA solution to VRPTW. The

second objective uses an established combinatorics problem to model the routing of

UAVs across multiple targets within time constraints. The problem is discussed in

terms the multiple objectives of path length, vehicle count, and total wait time. A

MOEA solution structure is chosen after analysis of the problem concludes the very

fast growing solution space necessitates some form of stochastic solution. The MOEA

solution is first designed in terms of a generic GA structure (defining the selection and

replacement method) and then a definition of the specific operators used to modify

individual solutions. Within this design phase an optimization strategy involving

a local search technique is created. This local search takes place with a mutation

operator called best route cost (see Section 4.8.5) where a single route is optimized

across the parameter of path length.

The use of an MOEA necessitates the use of an evolutionary algorithm software

package, resulting in the selection of the Open Beagle library written in C++. This

101

library offers a powerful set of tools for developing genetic algorithms without being

problem specific. Genetic operators and an overall software structure are designed

using this library for the VRPTW with great success.

Problems from the Solomon benchmark set are chosen in order to validate the

solution and have comparable results to other achievements in the field. Results show

effective solutions for 25 and and 50 dimension problems with large time windows with

a degradation in performance for large dimension, highly constrained time window

problems. As benchmark problems are optimized only for the single objective of path

length defining algorithm effectiveness in terms of path length is ineffective, though

it is used in order to have a comparable metric. Resultant solutions were within 10

percent of the benchmark value in most cases. The net effect of this experimenta-

tion shows the overall effectiveness of the MOEA routing method to develop “good”

solutions to routing problems.

8.1.3 Objective 3: Develop and validate MOEA solution to SRP. As the

complexity of the SRP is at least that of the VRPTW, shown in Section 4.2, a

stochastic solution is deemed appropriate. The solution process parallels that of the

VRPTW in terms of algorithm structure and the code library used. Experiments used

the Solomon problems for the VRPTW. These problems were chosen due to there ease

of availability and to have some type of result to compare to.

Since the structure of the SRP is different from the VRPTW exact solution

comparison is not possible. The same objectives exist for both problems, however

since targets are satisfied in different manners comparing objectives of path length

and vehicle count are not appropriate. Instead, average path length per vehicle is

used a comparison metric. Results showed that the proposed solution generated better

results over a set number of iterations and that average path length was reduced. How

much better the results are is arbitrary as the results generated for these benchmarks

is unique to this work. The important point to take from this objective is that by

102

using the SRP problem model routing solutions can be developed which “optimize”

the path for individual UAVs while still solving a large and complex routing problem.

8.2 Future Research and Closing Remarks

As mentioned in Chapter II this effort is one in a long line of research concerning

UAV routing and simulation. With the development of this advanced routing capa-

bility, new developments in SO control schemes [32], and previous work developing

a 3D UAV simulator the goal still remains of developing a high quality UAV swarm

simulator (operational in either online or off line mode). Within the confines of this

research next step investigations within UAV routing would be:

1. Further research on the SRP as a UAV routing problem model.

2. Integration of routing software with path planning software [44].

3. Full integration of mission planning software, recently developed SO controls

[32], and the AFIT simulator [40]. Each of these pieces now exists and are

ready to be combined.

Outside the realm of UAV routing the following topics could easily be extended

from this work. These topics would extend understanding of the VRPTW, SRP, and

MOEA solution techniques:

1. Development of different heuristic operators for the VRPTW in order to further

optimize performance. Many local search techniques have already been defined

for the VRPTW such as path savings strategies and problem relaxation tech-

niques. It would take a small amount of effort to convert one of these search

techniques into a mutation operator.

2. Alteration of design algorithm to handle other VRP variants to match different

real world problem applications.

103

3. Expansion of MOEA solution method to handle very high dimension problems

(> 100 targets). Dealing with problem dimensions higher than 50 entails a

number of complexity and decision problems.

4. Further research on the SRP as a combinatorics problems to define different

solutions approaches and variants. Some possible solution approaches are de-

scribed in Chapter 4.3.

Work yet remains in the field of UAV simulation and mission planning. The cur-

rent pace of development for experiments such as the ones shown here be maintained

or increased if significant information is to be obtained before hardware capable of

meeting the demands of a real UAV swarm are developed. Currently at AFIT research

within the Advanced Navigation Technology (ANT) Lab is focused on development

of onboard sensor and computer systems that can provide a basis for further swarm

development. The fastest development to a deploy-able UAV swarm is achieved when

a full understanding and simulatable model of UAV swarms has been developed long

before capable hardware is.

104

Appendix A. Evolutionary Computation

Evolutionary computation is a subfield within the domain of natural computing [8].

Natural computing an area of research in computer science that attempts to emulate

and simulate processes found in nature for the purpose of solving real world prob-

lems. Evolutionary computation encompasses a wide number of search techniques.

Throughout the literature the term GA is also used to signify an evolutionary algo-

rithm. In the context of this work both terms refer to the same algorithm type.

An EC algorithm uses a process of manipulation in order to generate optimal

solutions to single or multi-objective complex problems. This process (refereed to as

evolving a solution) involves using methods of recombination, mutation, and selection

on a population of solutions in order to develop this optimal solution [2]. This process

is discussed in further detail in section A.1.

An important aspect of this evolutionary process is the structure of the chromo-

some that defines an individual solution. This structure is refereed to as a genotype

and is what determines how the different processes in the GA occur (the actual solu-

tion is called the phenotype). The structure is also what determines how the solution

is represented. Often the structure of the genotype determines how effective the GA

is at finding better solutions. In this paper we present a new type of chromosome

that possesses redundant information treated as a type of memory for that particular

solution. By using this structure the algorithm is able to make more efficient use of

the GA methods. This structure is incorporated into a GA and applied to a Traveling

Salesman problem in order to illustrate the effect.

A.1 Classic Genetic Algorithm

A standard GA is defined mathematically as an evolutionary algorithm in [2].

The EA works via a process of selection, crossover, and mutation and is based on the

chromosome structure the algorithm uses. For this paper we use a TSP problem to

illustrate these functions within a GA.

105

A.1.1 Chromosome Structure. The chromosome structure (genotype) is

what determines the solution to the problem being solved (phenotype). The TSP

is a combinatorics problem that easily lends itself to being solved with a Genetic

Algorithm due to the way a solution can be structured. There are many variations to

the classic TSP, however in its most general form it is a graph consisting of n vertexes

and n-1 edges. The goal is to determine a path from one vertex, through all the other

vertex points exactly once and ending back at the start point (called a circuit). The

objective of the problem is to determine the shortest possible path that accomplishes

this goal. This is illustrated in Figure A.1 though the graph edges are not shown. It

is assumed that distances between cities is Euclidean (i.e. the distance from 1 to 2 is

less than the distance from 1 to 5).

Figure A.1: An Unsolved TSP

The chromosome structure is a code that defines a particular solution. In [27]

a TSP genotype is formatted as follows. All cities in the graph are viewed as an

index. Each city has a connection point that indicates which city it leads to. This

chromosome structure as well as the resultant TSP solution is illustrated in Figure A.2.

This structure is used to facilitate crossover operations that are discussed in the next

section.

106

Figure A.2: A TSP Genotype and Solution

Please note that the structure illustrated is not the exact structure that would

be used in a coded implementation. Obviously the information indicating the index is

redundant and is only shown for illustrative purposes. The only necessary information

is the second string where the index is implied by the order of the vertexes.

A.1.2 Crossover, Mutation, and Selection. Crossover, mutation, and selec-

tion are the methods the GA uses that provide the search functionality. Each can be

constructed in a variety of ways and each impacts the effectiveness of the GA search

process. We continue to use the TSP as the example problem.

Crossover is a process where two solutions are ”crossbred” resulting in two

children genotypes, each of which is constructed with some aspect of its parent. This

process is illustrated in Figure A.3.

Note that the crossover operation is not a static process. Often times crossover

results in an invalid solution. For example when Parent II tries to add its bottom

107

Figure A.3: An example of Crossover

three vertexes to Child I there is a conflict if vertex 2 were to point to vertex 1,

because vertex 1 already points to vertex 2. This problem can be addressed in two

ways. Either the invalid solution can be dropped from the population or the solution

can be repaired. This repair result is also shown in Figure A.3.

If only crossover operations occurred no new information would ever be added

to the system. Thus after a few generations most of the genotypes would start to

look the same (depending on the selection process used). This is the classic struggle

of exploration versus exploitation. In order to add new information to the system we

incorporate the concept of mutation. Mutation is a random change applied stochasti-

cally to a genotype. The result of this operation is a random tour that is incorporated

into the population at a random interval. An example of this process is shown in Fig-

108

Figure A.4: An example of Mutation

ure A.4. Note that the net effect of mutation is actually just a switch of two vertex

points.

As new population members are created via Crossover and Mutation a process

must exist that eliminates ineffective solutions. In evolutionary computation a prop-

erty called fitness is used to describe how effective a solution is. In the case of our

single objective TSP the fitness of a solution is the total length of the circuit. This

concept of fitness combined with a deterministic or stochastic selection method de-

termines which of the new population members continue into future generations. A

detailed examination of this method and the others discussed in this section can be

found in [7]. These operations are incorporated into a pseudo code description of an

EA in Algorithm 6.

109

Algorithm 6 Generic EA

1: procedure EA
2: t := 0;
3: generate P (0) := {~a1(0), ...,~aµ(0)} ∈ Iµ;
4: evaluate P (0) : {Φ(~a1(0)), ..., Φ(~aµ(0))};
5: while (ι(P (t) 6= true) do
6: recombine: P ′(t) := rΘr(P (t));
7: mutate: P ′′(t) := rΘr(P

′(t));
8: evaluate: P ′′(t) : Φ(~a′′1(t)), ..., Φ(~a′′µ(t));
9: select : P (t + 1) = sΘs(P

′′(t)
⋃

Q);
10: t := t + 1;
11: end while
12: end procedure

110

Appendix B. Implimentation Documentation

The software library selected for this investigation is the Open Beagle Evolutionary

Computation library [18]. The library consists of a complete evolutionary compu-

tation infrastructure coded in object oriented C++. This library has a number of

benefits over coding an evolutionary algorithm for a specific case.

The software is structured such that each component of an evolutionary algo-

rithm is represented within its own class structure. Each structure is then controlled

and managed by an overarching control structure that manages the application of

each operation, the population, and statistical analysis. Control of all the operations

is managed by a user created XML file. This file controls the structure of the evolu-

tionary algorithm to be used, statistical tools to be applied, and how results should

be stored. Settings for the algorithm can either be set within the XML sheet or on

the command line.

Open Beagle also offers integrated printing of debug statements. Rather than

using standard output methods open beagle uses its own structure for controlling

logged output. This allows for a hierarchy of debug information. By setting each

debug setting to a level appropriate to its information content total output information

can then be set from the command line.

Open Beagle offers an infinite expendability and modification capability within

the limits of standard GA definitions. By formulating each class in only general terms

and wrapping the individuals within a standardized class the implementation of any

GA design is allowed take place without being constrained by the Open Beagle archi-

tecture. In regards to the implementation discussed in this document four important

aspects were created. The customer class, the chromosome data structure, and var-

ious genetic operators. The construction concept of one of the operators is found in

Chapter V.

111

B.1 The Customer Class

The customer class is created as a persistent object at the intimidation phase.

This object then creates and stores all the problem relevant data. Each operator

that requires the use of a customer class method is passed a reference pointer to the

customer class object. In this way all problem information and evaluation capability is

kept within the customer class. This serves the purpose of simplifying the evaluation

of individuals and keeping information in a single location as apposed to being passed

among the population. Each population member is only a code of numbers whose

meaning exists in the customer class.

All methods within the GA also call the customer class in order to evaluate

solutions. This not only eliminates the need to pass problem information between

classes it also creates a single evaluation function that entire algorithm uses simplifying

the construction process and adhering to basic software engineering standards.

B.2 Chromosome Data Structure

The chromosome data structure had to be created as a standard one did not

exist with the Open Beagle library. The design required a data structure consisting

of a vector of integer vectors. To accomplish this the integer vector data structure

within the Open Beagle was modified such that the vector contained integer vectors

instead of just integers. A new print function was also created for displaying the

chromosome in the output files.

112

Bibliography

1. Agarwal, A., M.-H. Lim, M.Y.W. Kyaw, and M.J. Er. “Inflight rerouting for
an unmanned aerial vehicle”. Genetic and Evolutionary Computation - GECCO
2004. Genetic and Evolutionary Computation Conference. Proceedings, Part II
(Lecture Notes in Computer Science Vol.3103), p859 – 868. Springer-Verlag, In-
telligent Syst. Center, Nanyang Technol. Univ., Singapore, 2004. ISBN 3 540
22343 6. URL http://search.ebscohost.com/.

2. Bäck, Thomas. Evolutionary algorithms in theory and practice: evolution strate-
gies, evolutionary programming, genetic algorithms. Oxford University Press,
Oxford, UK, 1996. ISBN 0-19-509971-0.

3. Barn, Benjamn and Matilde Schaerer. “A Multiobjective Ant Colony System for
Vehicle Routing Problem with Time Windows”. Proceedings of the 21st IASTED
International Conference. Innsbruck, Austria, February 2003. URL http://www.

actapress.com/PaperInfo.aspx?PaperID=14090.

4. Benyahia, I. and J.-Y. Potvin. “Decision support for vehicle dispatching using ge-
netic programming”. Systems, Man and Cybernetics, Part A, IEEE Transactions
on, 28(3):306–314, May 1998.

5. Bleuler, Stefan, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. “PISA —
A Platform and Programming Language Independent Interface for Search Algo-
rithms”. Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb,
and Lothar Thiele (editors), Evolutionary Multi-Criterion Optimization (EMO
2003), Lecture Notes in Computer Science, 494 – 508. Springer, Berlin, 2003.

6. Castillo, Oscar, Leonardo Trujillo, and Patricia Melin. “Multiple Objective Ge-
netic Algorithms for Path-planning Optimization in Autonomous Mobile Robots”.
Soft Comput., 11(3):269–279, 2006. ISSN 1432-7643.

7. de Castro, Leandro Nunes. Fundamentals of Natural Computing (Chapman &
Hall/Crc Computer and Information Sciences). Chapman & Hall/CRC, 2006.
ISBN 1584886439.

8. de Castro, Leandro Nunes and Fernando Jos Von Zuben. Artificial Immune Sys-
tems: Part Ii - A Survey Of Applications. Technical Report DCA-RT 02/00,
Department of Computer Engineering and Industrial Automation, School of Elec-
trical and Computer Engineering, State University of Campinas, SP, Brazil, Feb
2000. URL citeseer.ist.psu.edu/nunesdecastro00artificial.html.

9. Coello Coello, Carlos A. and Gary B. Lamont (editors). Application of Multi Oob-
jective Evolutionary Algorithms, volume 1 of Advances in Natural Computation.
World Scientific Publishing, 2004.

113

10. Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press, September 2001.
ISBN 0262531968. URL http://www.amazon.ca/exec/obidos/redirect?tag=

citeulike09-20\&path=ASIN/0262531968.

11. Corner, Joshua. Swarming Reconnaissance Using Unmanned Aerial Vehicles In
A Parallel Discrete Event Simulation. Master’s thesis, Air Force Institute of
Technology, 2004.

12. Daz, Bernab Dorronsoro. “The VRP Web: Solution Techniques for VRP”. http:
//neo.lcc.uma.es/radi-aeb/WebVRP/m, 2007. URL http://neo.lcc.uma.es/

radi-aeb/WebVRP/.

13. Deb, K., L. Thiele, M. Laumanns, and E. Zitzler. “Scalable Test Problems for
Evolutionary Multi-Objective Optimization”. A. Abraham, R. Jain, and R. Gold-
berg (editors), Evolutionary Multiobjective Optimization: Theoretical Advances
and Applications, chapter 6, 105–145. Springer, 2005. ISBN 1-85233-787-7.

14. Deb, Kalyanmoy, Samir Agrawal, Amrit Pratab, and T. Meyarivan. “A Fast
Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimiza-
tion: NSGA-II”. Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin
Yao, Evelyne Lutton, J. J. Merelo, and Hans-Paul Schwefel (editors), Pro-
ceedings of the Parallel Problem Solving from Nature VI Conference, 849–858.
Springer. Lecture Notes in Computer Science No. 1917, Paris, France, 2000. URL
citeseer.ist.psu.edu/deb00fast.html.

15. Dogan, A. “Probabilistic approach in path planning for UAVs”. Intelligent Con-
trol. 2003 IEEE International Symposium on, 608–613, 2003.

16. Donati, A., L. Gambardella, N. Casagrande, A. Rizzoli, and R. Montemanni.
“Time Dependent Vehicle Routing Problem with an Ant Colony System”. URL
citeseer.ist.psu.edu/562261.html.

17. Gagn, Christian. “Documentation:Manual:Architecture”. Online,
http://beagle.sourceforge.net/wiki/index.php/Documentation:Manual:Architecture,
2007.

18. Gagn, Christian and Julie Beaulieu. “Open BEAGLE W3 Page”. http://

beagle.gel.ulaval.ca/index.html, 2006. URL http://beagle.gel.ulaval.

ca/index.html.

19. Gambardella, L. M., E. Taillard, and G. Agazzi. MACS-VRPTW: A Multiple
Ant Colony System for Vehicle Routing Problems with Time Windows. Technical
report, Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 1999.

20. Gerkey, Brian Paul. On multi-robot task allocation. Ph.D. thesis, Los Angeles,
CA, USA, 2003. Adviser-Maja J. Mataric.

114

21. Homberger, Joerg and Hermann Gehring. “Two Evolutionary Metaheuristics for
the Vehicle Routing Problem with Time Windows”. INFOR Journal, 37(3):297
– 318, August 1999.

22. Hu, Xiaohui, Russell C. Eberhart, and Yuhui Shi. “Particle Swarm with Extended
Memory for Multiobjective Optimization”. Swarm Intelligence Symposium, 2003.
SIS ’03. Proceedings of the 2003 IEEE, 193 – 197. April 2003. URL citeseer.

ist.psu.edu/hu03particle.html.

23. Kadrovach, Tony. Communications Modeling System For Swarm-Based Sensors.
Ph.D. thesis, Air Force Institute of Technology, 2003.

24. Kleeman, Mark. Evaluation and Optimization of UAV Swarm Multi-Objectives.
Master’s thesis, Air Force Institute of Technology, 2004.

25. Kostaras, A., I. Nikolos, and K. Valavanis. “Evolutionary Algorithm based 3-D
On-Line Path Planner for UAV Navigation”. K. C. Giannakoglou, D. T. Tsahalis,
J. Périaux, K. D. Papailiou, and T. Fogarty (editors), Evolutionary Methods for
Design Optimization and Control with Applications to Industrial Problems, 481–
486. International Center for Numerical Methods in Engineering (Cmine), Athens,
Greece, 2001. ISBN 84-89925-97-6.

26. Ladd, A. M. and L. E. Kavraki. “Fast Tree-Based Exploration of State Space for
Robots with Dynamics”. M. Erdmann, D. Hsu, M. Overmars, and A. F. van der
Stappen (editors), Algorithmic Foundations of Robotics VI, 297–312. Springer,
STAR 17, 2005.

27. LaLena, Michael. “Traveling Salesman Problem Using Genetic Algorithms”.
http://www.lalena.com/AI/Tsp/, 2006. URL http://www.lalena.com/AI/

Tsp/.

28. Lotspeich, James. Distributed Control of a Swarm of Autonomous Unmanned
Aerial Vehicles. Master’s thesis, Air Force Institute of Technology, 2003.

29. Lou, Shan-Zuo and Zhong-Ke Shi. “A New Method for Multi-Depot Vehicle
Routing Problem with Time Windows”. Machine Learning and Cybernetics, 2006
International Conference on, 2503–2509. Aug. 2006.

30. Machado, Penousal, Jorge Tavares, Francisco B. Pereira, and Ernesto Costa. “Ve-
hicle Routing Problem: Doing It The Evolutionary Way”. GECCO 2002: Pro-
ceedings of the Genetic and Evolutionary Computation Conference, 690. Morgan
Kaufmann Publishers, New York, 9-13 July 2002. ISBN 1-55860-878-8. URL
citeseer.ist.psu.edu/machado02vehicle.html.

31. Milam, Keven. Evolution of Control Programs for a Swarm of Autonomous Un-
manned Aerial Vehciles. Master’s thesis, Air Force Institute of Technology, 2004.

32. Nowak, Dustin. EXPLOITATION OF SELF ORGANIZATION IN UAV
SWARMS FOR OPTIMIZATION IN COMBAT ENVIRONMENTS. Master’s

115

thesis, Graduate School of Engineering and Management, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, March 2008.

33. Ombuki, Beatrice, Brian J. Ross, and Franklin Hanshar. “Multi-Objective Ge-
netic Algorithms for Vehicle Routing Problem with Time Windows”. Applied
Intelligence, 24(1):17–30, 2006. ISSN 0924-669X.

34. Pohl, Adam. “Applying Evolutionary Algorithms to the Vehicle Routing and
Path Planning Problem”, 2007. Assignment for CSCE 886.

35. Pohl, Adam. “An Examination of SPEA2 Performance Using PISA”, 2007. As-
signment for CSCE 886.

36. Price, Ian C. Evolving Self Organizing Behavior for Homogeneous and Het-
erogeneous Swarms of UAVs and UCAVs. Master’s thesis, Graduate School of
Engineering and Management, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, March 2006.

37. Reynolds, C. W. “Interaction with Groups of Autonomous Characters”. Game
Developers Conference. 2000.

38. Reynolds, Craig W. “Flocks, Herds, and Schools: A Distributed Behavioral
Model”. Computer Graphics, 21(4):25–34, 1987. URL citeseer.ist.psu.edu/

reynolds87flocks.html.

39. Rothlauf, Franz and David E. Goldberg. Representations for Genetic and Evolu-
tionary Algorithms. Physica-Verlag, 2002. ISBN 3790814962.

40. Russell, M.A., G.B. Lamont, and K. Melendez. “On using SPEEDES as a platform
for a parallel swarm simulation”. Winter Simulation Conference, 2005 Proceedings
of the, 9pp. 4-7 Dec. 2005.

41. Russell, Matthew A. and Gary B. Lamont. “A genetic algorithm for unmanned
aerial vehicle routing”. GECCO ’05: Proceedings of the 2005 conference on Ge-
netic and evolutionary computation, 1523–1530. ACM Press, New York, NY, USA,
2005. ISBN 1-59593-010-8.

42. Secrest, Barry. Traveling Salesman Problem for Surveillance Mission Using Par-
ticle Swarm Optimization. Master’s thesis, Air Force Institute of Technology,
2001.

43. Sezer, Ergin. Mission Route Planning with Multiple Aircraft & Targets Using
Parallel A* Algorithm. Master’s thesis, Air Force Institute of Technology, 2000.
URL http://www.stormingmedia.us/11/1190/A119083.html.

44. Slear, James N. AFIT UAV Swarm Mission Planning and Simulation System.
Master’s thesis, Air Force Institute of Technology, 2006.

45. Solomon, M. M. “Algorithms for the vehicle routing and scheduling problems with
time window constraints”. Oper. Res., 35(2):254–265, 1987. ISSN 0030-364X.

116

46. Sugihara, Kazuo. “A Genetic Algorithm for 3-D Path Planning of a Mobile
Robot”. URL citeseer.ist.psu.edu/177344.html.

47. Tan, K., L. Lee, Q. Zhu, and K. Ou. “Heuristic methods for vehicle routing
problem with time windows”. Artificial Intelligence in Engineering, 15:281–295,
2001. URL citeseer.ist.psu.edu/article/tan99heuristic.html.

48. Tan, K.C., T.H. Lee, Y.H. Chew, and L.H. Lee. “A multiobjective evolution-
ary algorithm for solving vehicle routing problem with time windows”. Systems,
Man and Cybernetics, 2003. IEEE International Conference on, volume 1, 361–
366vol.1. 5-8 Oct. 2003.

49. Tavares, Jorge, Penousal Machado, Francisco B. Pereira, and Ernesto Costa. “On
the influence of GVR in vehicle routing”. SAC ’03: Proceedings of the 2003 ACM
symposium on Applied computing, 753–758. ACM Press, New York, NY, USA,
2003. ISBN 1-58113-624-2.

50. Tavares, Jorge, Francisco B. Pereira, Penousal Machado, and Ernesto Costa.
“GVR Delivers It On Time”. 4th Asia-Pacific Conference on Simulated Evo-
lution And Learning (SEAL’02), 745–749. 2002. URL http://cisuc.dei.uc.

pt/ecos/dlfile.php?fn=61_pub_vrp_seal2002.pdf&get=1&idp=61&ext=.

51. Toth, Paolo and Daniele Vigo (editors). The Vehicle Routing Problem. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001. ISBN
0-89871-498-2.

52. Unknown. “Raven UAV Draws Raves From The Field”. On-
line, Feb 2005. URL http://www.defenseindustrydaily.com/

raven-uav-draws-raves-from-the-field-067.

53. Walls, Matthew. “GAlib: A C++ Library of Genetic Algorithm Components”.
URL http://lancet.mit.edu/ga/.

54. Watson, N.R., N.W. John, and W.J. Crowther. “Simulation of unmanned air
vehicle flocking”. Theory and Practice of Computer Graphics, 3:130–137, 2003.
URL http://ieeexplore.ieee.org/xpls/.

55. Weisstein, Eric W. “Partition Function P.” From MathWorld–A Wolfram Web
Resource. URL http://mathworld.wolfram.com/PartitionFunctionP.html.

56. Wikipedia. “Wikipedia, the free encyclopedia: Pareto Efficiency”. http:

//en.wikipedia.org/wiki/Pareto_efficiency, 2007. URL http://en.

wikipedia.org/wiki/Pareto_efficiency.

57. Xiao, Jing, Zbigniew Michalewicz, and Krzysztof Trojanowski. “Adaptive Evo-
lutionary Planner/Navigator for Mobile Robots”. IEEE Transactions on Evolu-
tionary Computation, 1(1):18–28, 1997.

58. Yanwei, Zhao, Wu Bin, Ma Yaliang, Dong Hongzhao, and Wang Weian. “Particle
Swarm Optimization method for Vehicle Routing Problem”. Intelligent Control
and Automation, 3:2219–2221, 2004.

117

59. Yavuz, Ekursat. Multiobjective Mission Route Planning Using Particle Swarm
Optimization. Master’s thesis, Air Force Institute of Technology, 2002. URL
http://stinet.dtic.mil/oai/.

60. Zhu, Kenny Qili. “A New Genetic Algorithm For VRPTW”. International Con-
ference on Artificial Intelligence, Las Vegas, USA. 2000.

61. Zhu, Qing, Limin Qian, Yingchun Li, and Shanjun Zhu. “An Improved Particle
Swarm Optimization Algorithm for Vehicle Routing Problem with Time Win-
dows”. Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, 1386–
1390. 16-21 July 2006.

62. Zitzler, E., K. Deb, and L. Thiele. “Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results”. Evolutionary Computation, 8(2):173–195, 2000.

63. Zitzler, Eckart, Dimo Brockhoff, and Lothar Thiele. “The Hypervolume Indicator
Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integra-
tion.” Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and
Tadahiko Murata (editors), EMO, volume 4403 of Lecture Notes in Computer
Science, 862–876. Springer, 2006. ISBN 3-540-70927-4.

64. Zitzler, Eckart, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. Technical Report 103, Computer Engi-
neering and Networks Laboratory (TIK), Swiss Federal Institute of Technology
(ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, May 2001.

65. Zitzler, L., E.; Thiele. “Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach”. Evolutionary Computation, IEEE
Transactions on, 3(4):257–271, Nov 1999. ISSN 1089-778X.

118

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
27-03-2008

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Aug 2006 – Mar 2008

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Multi-Objective UAV Mission Planning Using Evolutionary Computation

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Pohl, Adam J., 2LT, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENG)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GE/ENG/08-22

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFRL/SNZW
Attn: Mike Foster michael.foster@wpafb.af.mil
2241Avionics Circle
WPAFB OH 45433-7303 DSN: 986-4899x3030

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This investigation purports to develop a new model for multiple autonomous aircraft mission routing. Previous research both related and unrelated to this
endeavor have used classic combinatoric problems as models for \ac{UAV} routing and mission planning. This document presents the concept of the Swarm
Routing Problem (SRP) as a new combinatorics problem for use in modeling UAV swarm routing, developed as a variant of the Vehicle Routing Problem
with Time Windows (VRPTW). The SRP removes the single vehicle per target restraint and changes the customer satisfaction requirement to one of vehicle
on location volume. The impact of these alterations changes the vehicle definitions within the problem model from discrete units to cooperative members
within a swarm. This represents a more realistic model for multi-agent routing as a real world mission plan would require the use of all airborne assets across
multiple targets, without constraining a single vehicle to a single target. Solutions to the SRP problem model result in route assignments per vehicle that
successfully track to all targets, on time, within distance constraints. A complexity analysis and multi-objective formulation of the VRPTW indicates the
necessity of a stochastic solution approach leading to the development of a multi-objective evolutionary algorithm. This algorithm design is implemented
using C++ and an evolutionary algorithm library called Open Beagle. Benchmark problems applied to the VRPTW show the usefulness of this solution
approach. A full problem definition of the SRP as well as a multi-objective formulation parallels that of the VRPTW method. Benchmark problems for the
VRPTW are modified in order to create SRP benchmarks. These solutions show the SRP solution is comparable or better than the same VRPTW solutions,
while also representing a more realistic UAV swarm routing solution.

15. SUBJECT TERMS
Unmanned Aerial Vehicles, Genetic Algorithms, Evolutionary Computation, Vehicle Routing Problem with Time Windows

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON

Dr. Gary B. Lamont (AFIT/ENG)
REPORT

U
ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 135

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 x 4718;
Email; gary.lamont@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Multi-Objective UAV Mission Planning Using Evolutionary Computation
	Recommended Citation

	tmp.1584731041.pdf.vxitK

