
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2008 

Development and Flight of a Robust Optical-Inertial Navigation Development and Flight of a Robust Optical-Inertial Navigation 

System Using Low-Cost Sensors System Using Low-Cost Sensors 

Michael B. Nielsen 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Navigation, Guidance, Control and Dynamics Commons 

Recommended Citation Recommended Citation 
Nielsen, Michael B., "Development and Flight of a Robust Optical-Inertial Navigation System Using Low-
Cost Sensors" (2008). Theses and Dissertations. 2773. 
https://scholar.afit.edu/etd/2773 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact richard.mansfield@afit.edu. 











 

24 

 

 

Figure 2.3:  Camera frame illustration.  The camera reference frame originates at 
the center of the focal plane [26]. 
 

 

 An understanding of reference frames is important to express vectors properly.  

The transformation between reference frames can now be addressed. 
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2.3 Transforms Between Reference Frames 

Any vector can be expressed (or resolved) in any of the frames described.  If a 

vector is resolved in one frame, it will have the superscript corresponding to that frame.  

See Figure 2.4 below. 

 

 
 
Figure 2.4:  Expressing vectors in different frames.  The same vector can take on 
different expressions when resolved in different frames.  The magnitude is 
unaffected. 
 
 

To express a vector in one frame, when given a vector resolved in another, a 

Direction Cosine Matrix (DCM) can be used to perform a coordinate transformation.  The 

DCM can be generated from a series of Euler angles to perform an ordered set of single 
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axis rotations on the vector of interest.  Euler angles are elements of a three-parameter 

vector corresponding to a specific sequence of single-axis rotations to transform from one 

reference frame to another.  Commonly, Euler angles express the transformation from the 

navigation to body frame of an aircraft: yaw, pitch and roll.  Performing the rotations in 

this order is known as the 3-2-1 convention [23].  This convention will be used herein. 

Direction Cosine Matrices are four-parameter transformations expressed as a 3×3 

matrix [23]. The matrix consists of the inner product (or Cosines) of each basis unit 

vector in one frame with each basis unit vector in another frame. The DCM is used to 

transform vectors resolved in one frame to another, as seen below: 

 

 b b a
a=v C v  (2.1) 

 

When used to transform right-hand Cartesian coordinates, the DCM has the 

following properties: 
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( ) 1b b
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=
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When a DCM changes over time, due to the frames of interest rotating with respect to 

each other, the DCM satisfies the following differential equation [23]: 

 

 b b a
a a ba= Ω�C C  (2.3) 

 

where a
baΩ  is the skew symmetric form of the rotation vector from frame b to a, resolved 

in a ( a
baω ).  The skew symmetric operator of a vector is defined by ×ω : 

 

x

y

z

ω
ω
ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

ω            
z y

z x

y x

0 -ω ω
ω 0 -ω
-ω ω 0

⎡ ⎤
⎢ ⎥× = ⎢ ⎥
⎢ ⎥⎣ ⎦

ω                      (2.4) 

 

 Direction Cosine Matrices are essential to apply when dealing with vectors 

resolved in different frames.  Vectors from different frames cannot be used together, until 

they are transformed into the same reference frame. With an understanding of how 

vectors are expressed, the process of modeling physical systems can now be addressed. 
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2.4 Physical System Modeling 

Physical systems and their associated dynamics equations can often be written 

and arranged into convenient matrix form.  This allows the use of linear algebra to 

accomplish much of the modeling needed in INS applications.  The dynamics herein are 

modeled as systems of linear differential equations. 

2.4.1 Linear Systems.  Many physical systems can be modeled such that they fit 

the format of a linear system of equations [14]; shown below.    

  

 ( ) ( ) ( ) ( ) ( )t t t t t= +x F x B u� ;   0 0( )t =x x  (2.5) 

 

In the linear time-varying case, ( )tF  and ( )tB are time-varying matrices.  For a given set 

of initial conditions ( 0x ) and input ( ( )tu ), Equation (2.5) has a unique solution 

trajectory, ( )tx  [14]; given by: 

 
0

0( ) ( ) ( ) ( ) ( )
t

0
t

t t,t t,τ τ τ dτ= Φ + Φ∫x x B u  (2.6) 

 

The state transition matrix ( )0t,tΦ  takes the state ( )tx  from time 0t  to time t  for 

the homogeneous case (Equation (2.6) without the last term on the right hand side), and is 

defined by: 

 [ ( )] ( ) ( )0
0

d t,t t t,t
dt

Φ
= ΦF ;   ( ) I0 0t ,tΦ =  (2.7) 
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Significant properties of ( )0t,tΦ  include: 

 ( ) ( ) ( )3 1 3 2 2 1t ,t t ,t t ,tΦ = Φ Φ  (2.8) 

 ( ) ( ) ( ) I1 2 2 1 1 1t ,t t ,t t ,tΦ Φ = Φ =  (2.9) 

 1( ) ( )1 2 2 1t ,t t ,t−Φ = Φ  (2.10) 

 

In the linear time-invariant case, where ( )t =F F ,  t∈ℜ  

 

 [ ( )] ( )0
0

d t-t t-t
dt

Φ
= ΦF ;   ( ) I0Φ =  (2.11) 

 ( )( ) ( ) 0t-t
0 0t,t t-tΦ = Φ = Fe  (2.12) 

 

2.4.2 Non-Linear Systems.  Most physical systems do not allow for linear 

models.  In the non-linear case, the physical system can often be expressed as the 

nonlinear differential equation [15]; shown below. 

 

 ( ) [ ( ), ( ), ]t t t t=x f x u� ;   0 0( )t =x x  (2.13) 

 

where [ ( ), ( ), ]t t tf x u  is a vector of functions with arguments including the state vector 

( ( )tx ), the input vector ( ( )tu ), and time (t).  The non-trivial solution ( )tx is the result of 

a nonlinear differential equation. 
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 Linear properties may be retained by making linear approximations of the 

nonlinear solution, about nominal trajectory values.  For small changes about a nominal 

trajectory, many systems can be well modeled to first order through the use of the Taylor 

Series expansion [15] shown below.   

 

 
( )

[ , ( ), ][ ( ) ( )] [ ( ) ( )] .t tt t t t H.O.T
=

∂
− = − +

∂
n

n n
x x t

f x ux x x x
x

� �  (2.14) 

 

where ( )tnx  is the nominal trajectory about which the linearization occurs.  Note that 

( )tu  is assumed to be unperturbed ( ( ) ( )t t− = 0nu u ), thus eliminating the partial with 

respect to ( )tu .  If the system is well modeled to first order, the higher order terms 

(H.O.T.) may be neglected [15].  When ( )tx  is redefined to be a perturbation about the 

nominal, 

 ( ) ( ) ( )t t t= + δnx x x  (2.15) 

Equation (2.14) is approximated to first order as: 

 

 
( )

[ , ( ), ]( ) ( )t tt t
=

∂
δ = δ

∂
nx x t

f x ux x
x

�  (2.16) 

or 

 ( ) [ ; ( )] ( )t t t tnx F x xδ = δ�  (2.17) 

 

where [ ; ( )]t tnF x  is the matrix of the partial derivatives of [ , ( ), ]t tf x u  [15]: 
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 (2.18) 

 

In error analysis, the estimated value of the state vector ( ˆ ( )tx ) is equal to the true 

value of the state vector ( ( )tx ) plus some error ( ( )tδx ). 

 

 ˆ ( ) ( ) ( )t t t= + δx x x  (2.19) 

 

If Equation (2.19) is substituted for Equation (2.15), Equation (2.17) becomes a nonlinear 

differential equation for the error ( ( )tδx ) in the state estimate ( ˆ ( )tx ), linearized about the 

true state  ( ( )tx ). 

In the case where ( )tu  is not known (i.e. ( ) ( )t t− ≠ 0nu u ), the error ( ( )tδu ) can 

be modeled as well by linearizing about a nominal input trajectory.  However, this 

compromises the validity of the small perturbation approximation, used in Equation 

(2.16) [15].  If ( )tδu  cannot be approximated to 0 for all time, then it can be modeled as 

an error state according to Equations (2.20)(2.21)(2.22). 

 

 ( ) [ ; ( ), ( )] ( ) [ ; ( ), ( )] ( )t t t t t t t t tδ = δ + δn n n nx F x u x B x u u�  (2.20) 
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With the higher order derivatives neglected, ( )tδx becomes the solution to the 

time-varying, linear differential Equation (2.20).  Given a piecewise-continuous 

[ ; ( ), ( )]t t tn nF x u  and [ ; ( ), ( )] ( )t t t t∂n nB x u u , ( )tδx has a unique solution [15]: 

 

 
0

0( ) ( ) ( ) ( ) ( )
t

0
t

t t,t t,τ τ τ dτδ = Φ δ + Φ δ∫x x B u  (2.23) 

where ( )τB  is defined by Equation (2.22), and ( )0t,tΦ is defined by Equation (2.7) using 

( )tF  found in Equation (2.21). 

 These non-linear perturbation models will be used when implementing the 

extended Kalman filter, discussed later.  The extended Kalman filter will be used to aid 

the Inertial Navigation System, which will now be discussed. 
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2.5 Inertial Navigation 

Inertial navigation is accomplished by integrating specific force and angular rate 

measurements to produce an estimate of the navigation state: position, velocity and 

attitude.  Only an estimate can be attained due to imperfections in sensors and 

approximations of the true system dynamics.  This section will cover the dynamics, 

mechanization, and error propagation of an INS. 

2.5.1 Shape of the Earth.  In order to navigate on the Earth, one must know its 

shape.  There are many models for the Earth, but the World Geodetic System of 1984 

(WGS84) model will be used for this research [23].  WGS84 models the Earth as an 

ellipsoid, wider along the equator.  The mean radius of the Earth ( 0R ), the meridian 

radius of curvature ( NR ), and the transverse radius of curvature ( ER ) are modeled as:  

 

 0 N ER R R=  (2.24) 

 
2

2 2 3/ 2

(1 )
(1 sin )N

R eR
e L

−
=

−
 (2.25) 

 2 2 1/ 2(1 sin )E
RR

e L
=

−
 (2.26) 

 
These radii are functions of latitude ( L ), eccentricity of the ellipsoid model ( e ), and the 

semi-major axis ( R ); defined by WGS84: 

 
 6378137.0R = meters (2.27) 

 0.0818191908426e =  (2.28) 
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2.5.2 Gravitational Model.  Modeling gravity is critical to successful inertial 

navigation.  The subtle changes in the gravitational field must be taken into account.   

The most obvious factor affecting the strength of the gravitational field is the distance 

from the center of the Earth.  For this research, gravity will be modeled as follows [23]: 

 

 
( )2

(0)( )
1 / o

gg h
h R

=
+

 (2.29) 

 

where h  is the height above the WGS-84 ellipsoid (Earth model), oR  is the Earth’s 

radius defined above, and (0)g  is the magnitude of gravity at the ellipsoid surface: 

 

 3 2 6 2(0) 9.780318(1 5.3024 10 sin 5.9 10 sin 2 )g L L− −= + × − ×  2/m s  (2.30) 

 

Centripetal acceleration due to the rotation of the Earth affects the magnitude and 

direction of the effective gravitational field at every point on the Earth.  Figure 2.5 

illustrates this effect.  Local gravity ( lg ) becomes a function of the actual gravitational 

field vector (g ), the Earth’s rotation vector ( ieω ) and the specific position on the Earth 

(p ), and is defined: 

 

 [ ]l ie ie= − × ×g g pω ω  (2.31) 
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where g  is defined by Equation (2.29).  The n-frame is defined tangent to the ellipsoid.  

The true gravitational field varies slightly, but the difference between down defined by 

the true gravitational field and the n-frame is small.  For the purposes of this discussion 

assume that the gravitational field points down in the n-frame: 

 

[ ]0 0 ( )g h≡ Tg      (2.32) 

 

 

Figure 2.5:  Effects of centripetal force on the local gravitational field. 
 

 

 For terrestrial navigation, the Earth’s rotation (sidereal angular rate) can be 

modeled as constant [23]: 

 [ ]0 0e
ie ieΩ= Tω  (2.33) 

ieω

p

g
lg

[ ]ie ie× ×pω ω

ECEF Frame 
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However, this rotation vector, resolved in the n-frame, is a function of latitude: 

 

 [ ]cos 0 sinn
ie ie ieΩ L -Ω L= Tω  (2.34) 

 

where ieΩ and L  are the scalar Earth sidereal angular rate and latitude respectively.  

WGS84 defines: 

 57.292115 10ieΩ rad/s−= ×  (2.35) 

 

 Combining Equations (2.31),(2.4) and (2.34) yields a final expression for local 

gravity, resolved in the n-frame: 

 
l

2
n n ie 0

sin2L
Ω (R +h) 0

2
1+cos2L

g g
⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.36) 

 

2.5.3 Accelerometer Sensor Model.  INS systems typically incorporate a triad of 

accelerometers, arranged at the origin, pointing orthogonally along each of the three b-

frame axes. Despite the name, accelerometers do not measure acceleration directly.  

Accelerometers measure specific force.  Specific force is the sum of the acceleration 

experienced due to gravity, and the inertial acceleration experienced by the body [23]: 

 

 ( )( )
2

l2
i

d tt
dt

= −
pf g  (2.37) 
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where ( )tf  is the three-dimensional vector of specific forces measured by the 

accelerometers.  The position of the b-frame ( )tp  is resolved in inertial space, and lg  is 

the local gravitational vector at the specific location ( )tp .   

 In order to be used by an INS, these accelerometers must be modeled and their 

errors characterized.  The simplified accelerometer model used herein has the specific 

force measurement corrupted by a bias and an additive white Gaussian noise [26]. 

 

 b b b b
a= + +f f a w  (2.38) 

 

where ba  is the accelerometer bias, b
aw  is the additive white Gaussian noise, and bf  is 

the corrupted specific force measurement, resolved in the b-frame. 

 The accelerometer bias will be modeled as a first order Gauss-Markov process, 

defined below: 

 1
bias

b b b
a

a

a a w= − +
τ

�  (2.39) 

 

where aτ  is the time constant and 
bias

b
aw  is the process driving white noise. 

2.5.4 Gyroscope Sensor Model.  INS systems typically incorporate a triad of 

angular rate gyros, aligned with each of the three b-frame axes.  These rate gyros measure 

the angular rotation rate of the body frame relative to inertial space, and are represented 

by ( )ib tω  [23]. 
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When dealing with the b-frame relative to the n-frame, the Euler angles represent 

roll, pitch and yaw respectively.  When put into vector form, and resolved in the n-frame, 

the result is the attitude state vector [23]: 

 

 [ ]n
nb θ ψφΨ = T  (2.40) 

 

 The rate gyros will be modeled in a similar manner to the accelerometers.  The 

simplified rate gyro model used herein has the angular rate measurement corrupted by a 

bias and an additive white Gaussian noise [26]. 

 

 b b b b
ib ib b= + +b wω ω  (2.41) 

 

where bb  is the rate gyro bias, b
bw  is the additive white Gaussian noise, and b

ibω  is the 

corrupted angular rate measurement, resolved in the b-frame. 

 The rate gyro bias will also be modeled as a first order Gauss-Markov process: 

 

 1
bias

b b b
b

b

= − +
τ

b b w�  (2.42) 

 

where bτ  is the time constant and 
bias

b
bw  is the process driving white noise [26]. 

2.5.5 Strapdown INS mechanization.  The system dynamics driving inertial 

navigation will not be covered in depth here.  A full derivation of the system dynamics 
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can be found in [23] and [26].  This section will cover the mechanization equations used 

to estimate the navigation state (based on the inertial measurements), but will not explain 

their derivation. 

2.5.5.1  Attitude Mechanization.  Recall Equation (2.40).  The Euler angles 

describe the relative orientation of two frames.  The Euler angles of concern to an INS 

are those relating the body frame to the navigation frame of choice.  This research will 

focus on the n-frame for navigation, although the use of the i-frame and e-frame are 

perfectly valid choices.  One dimensional rotations about each of the axis are defined by 

[23]: 

Rotation ψ  about the z-axis, 1

cos sin 0
sin cos 0
0 0 1

C
ψ ψ
ψ ψ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.43) 

 

 

Rotation θ  about the y-axis, 2

cos 0 sin
0 1 0

sin 0 cos
C

θ θ

θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.44) 

 

 

Rotation φ  about the x-axis, 3

1 0 0
0 cos sin
0 sin cos

C φ φ
φ φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (2.45) 

 



 

40 

 The order in which the individual Euler angle rotations are applied does effect the 

outcome.  Applying the 3-2-1 convention to the n-frame to b-frame DCM yields: 

 

 3 2 1
b
n =C C C C  (2.46) 

 ( ) 1 2 3
n b
b n= =

T T T TC C C C C  (2.47) 

 
cos cos cos sin sin sin cos sin sin cos sin cos
cos sin cos cos sin sin sin sin cos cos sin sin

sin sin cos cos cos

n
b

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ φ θ φ θ

− + +

+ − +

−

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

C (2.48) 

 

 The actual Euler angles are not used in the INS mechanization.  Only the DCM  

n
bC  is needed.  The Euler angles can be extracted from n

bC  in order to display attitude to 

the pilot, but this will be discussed later. 

 In [23], Titterton and Weston apply the differential Equation (2.3) to n
bC  and 

show that 

 n n b
b b nb= Ω�C C  (2.49) 

where 

 

0 -

0 -

- 0

yz

b b xz
nb nb

y x

t t

t t

t t

εε

εε

ε ε

∂⎡ ⎤∂
⎢ ⎥∂ ∂⎢ ⎥

∂∂⎢ ⎥Ω = × = ⎢ ⎥∂ ∂
⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

ω  (2.50) 
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where b
nbΩ  is the skew symmetric form of the b-frame’s angular rate relative to the n-

frame, resolved in the b-frame ( b
nbω ), and x,y,zε  are small angles about the 3 axes. For 

very small time steps ( tδ ), the DCM can be propagated as follows: 

 

 ( ) ( )[I ]n n b
b b nbt+ t t tδ δ= +ΩC C  (2.51) 

 

The measured angular rate experienced by the rate gyros ( b
ibω ) is the sum of the 

body-to-nav rate ( b
nbω ) and the nav-to-inertial rate resolved in the b-frame ( b

nC n
inω ), 

yielding: 

 b b b n
nb ib n in= −Cω ω ω  (2.52) 

 

 The angular rate of the n-frame relative to the i-frame ( n
inω ), is the sum of the 

sidereal angular rate ( n
ieω ), and the transport rate ( n

enω ), caused by the n-frame moving 

about the Earth [23]: 

 tann NE E
en

E N N

vv v L
R h R h R h
⎡ ⎤

= − −⎢ ⎥+ + +⎣ ⎦

T

ω  (2.53) 

 

 tancos sinn n n NE E
in ie en ie ie

E N N

vv v LΩ L Ω L
R h R h R h
⎡ ⎤

= + = + − − −⎢ ⎥+ + +⎣ ⎦

T

ω ω ω  (2.54) 
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where Ev  and Nv  are the east and north velocities of the n-frame respectively. ER , NR , 

h  and L  are the previously defined Earth radii of curvature, height above the Earth, and 

latitude of the n-frame respectively. 

The measured b-frame to n-frame angular rate (resolved in the b-frame) becomes 

a function of the rate gyro measurements ( b
ibω ), and the calculated sidereal rotation 

vector, dependant on latitude ( n
inω� , from Equation (2.54)) [23]: 

 

 b b b n
nb ib n in= − ωC �ω ω  (2.55) 

Combining Equations (2.49) and (2.55) yields the differential equation relating 

the DCM of interest ( n
bC ), with the measurements received by the rate gyros 

( b b
ib ib=> Ωω ), and the calculated sidereal rate ( n n

in in=> Ωω �� ): 

  

 n n b n n
b b ib in bC C C= Ω −Ω� �  (2.56) 

 

In order to be a valid DCM, the properties described in Section 2.3 must be 

maintained after each propagation cycle.  Unfortunately, due to computational 

limitations, the computed DCM ( n
bC� ) rarely has an orthonormal basis, nor is it unitary.  

This requires an ortho-normalization after each time step.  Pachter develops an algorithm 

for this task [17].  Given an imperfect DCM resulting from an INS propagation process 

( errC ): 
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11 12 13 1

21 22 23 2

31 32 33 3

err

c c c
c c c
c c c

w
C w

w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.57) 

 

where n
Tw  is the nth row of errC .  An orthogonal DCM can be created ( optC )  

 

1 31 1 1 2

1 1 1 1 2 2 1 1 3 3

2 31 2 2 2

1 1 2 2 2 2 2 2 3 3

1 3 2 3 3 3

1 1 3 3 2 2 3 3 3 3

11
2
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2
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2
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+
⋅ − −

+ +

+
− ⋅ −

+ +

+
− − ⋅

+ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⋅ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

TT T

T T T T T

TT T

T T T T T

T T T T T

T T T T T

w ww w w w
w w w w w w w w w w

w ww w w w
w w w w w w w w w w

w w w w w w
w w w w w w w w w w

C T C C  (2.58) 

 

For small time steps (δt ), b
nbω  (obtained from Equations (2.54) and (2.55)) can be 

applied to Equation (2.51) in skew symmetric form.  The result is made orthogonal, 

producing the attitude DCM propagation equation (valid to first order).  It is a function of 

the rate gyro measurements and the navigation state estimate.   

 

 ( )ˆ ˆ( ) ( ) ( )n n b b n
b orth b ib n int+ t t tδ ⎡ ⎤= + − ×⎣ ⎦C T C Cω ω� �  (2.59) 

 

2.5.5.2 Position Mechanization.  This research will concentrate on the n-frame 

resolution of the navigation state.  Recall that the n-frame is attached to the body, and the 

axes are aligned to North, East, and Down (NED) respectively.  For this reason, a 
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navigation position inside the n-frame is meaningless, as the body is always located at the 

origin.  Instantaneous navigation velocities, however, can be expressed in the n-frame 

with meaning.  For this reason, the navigation position states (latitude, longitude and 

height above the Earth), are external to the n-frame. They are obtained by integrating the 

n-frame velocities [23]. 
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for 

 [ ]n
en N E Dv v v= Tv  (2.61) 

and 
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where [ ]TL l hp =  is the position vector (latitude, longitude and height above 

respectively), and n
env  is the velocity of the n-frame relative to the e-frame, resolved in 

the n-frame.  ER  and NR  are the previously defined Earth radii of curvature.  The 

transformation neT  relates the velocity ( n
env ), which is in units of m/s, to the change in the 
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position state (p� ), which is in units of radians of latitude, longitude and meters.  The 

inverse transform is also used, and is defined as follows: 

 

 ( ) 1
en ne

−=T T  (2.63) 
 

2.5.5.3 Velocity Mechanization.  In [23], Titterton and Weston develop the 

navigation equation to solve for the velocity as a function of the accelerometer triad 

measurements ( b
ibf ), the body-to-nav DCM ( n

bC ), the sidereal angular rate ( n
ieω ), the 

transport rate ( n
enω ), and local gravity (

l

ng ), all described in previous sections: 

 

 (2 )
l

n n b n n n n
en b ib ie en en= − + × +�v C f v gω ω  (2.64) 

 

To mechanize this relationship with measurements and calculated values, Equation (2.64) 

becomes: 

 

 (2 )
l

n n b n n n n
en b ib ie en en= − + × +� � �� �� �v C f v gω ω  (2.65) 

 

For small time steps, Euler integration may be used to propagate both the position 

and velocity states as follows: 

 

 ( ) ( ) ( )t+δt t t δt= + �y y y  (2.66) 
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This approximation cannot be used for the attitude state however.  Attitude propagation 

requires Equation (2.51). 

2.5.5.4 Navigation State.  The Navigation State Vector ( x ) is comprised of 

the 9 modeled states of interest, that have been described up to this point: position, 

velocity and attitude [23]. 
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The Euler attitude angles ( n
nbΨ ) are extracted from n

bC  in the following manner [26]: 
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 (2.68) 

 

where n
b xyC  is the yth element in the xth row of n

bC . 

2.5.6 Error States.  Typical INS applications use the previously described 

mechanization to generate estimates for the navigation state ( ˆ ( )tx ).  Due to errors in 

sensor measurements and algorithmic imperfections, this estimate diverges from the true 
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state.  Generally, a state estimate can be modeled as the sum of the true state ( ( )tx ) and 

the error state ( ( )txδ ) [23]. 

 ˆ ( ) ( ) ( )t t tx x x= + δ  (2.69) 

 

In the case of inertial navigation, the relationship between error states and whole 

states is more complicated.  To begin with, a 15-state error vector ( ( )txδ ) is defined by 

the following relationships: 
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 (2.70) 

where δp  and n
ebδv  are the errors in position and velocity, ba  and bb  are the 

accelerometer and gyro biases respectively, and n
nbe  is a vector of angular errors about 

each of the three n-frame axes. 

 

 n
nb x y zε ε ε⎡ ⎤= ⎣ ⎦

T
e  (2.71) 

 

The error state dynamics can be expressed as a linear, stochastic state-space 

model driven by white Gaussian noise [14]. 

 
 ( ) ( ) ( ) ( ) ( )t t t t tx F x G wδ = δ +�  (2.72) 
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where ( )tF  and ( )tG  are time varying functions of the whole navigation state, and ( )tw  

is the dynamics driving noise associated with the inertial sensors and their biases. 

The component dynamics have already been developed: 

From Equation (2.60): 

 n
ne enp T v=�  (2.73) 

From Equation (2.64): 

 (2 )
l

n n b n n n n
en b ib ie en en= − + × +�v C f v gω ω  (2.74) 

From Equation (2.56): 

 n n b n n
b b ib in bC C C= Ω −Ω�  (2.75) 

From Equation (2.39): 

 1
bias

b b b
a

a

a a w= − +
τ

�  (2.76) 

From Equation (2.42): 

 1
bias

b b b
b

b

b b w= − +
τ

�  (2.77) 

 

The errors are assumed to be small.  Therefore, small perturbations about a 

nominal may be used to analyze the error dynamics [17]. 

 

 ˆδp p p≈ −  (2.78) 

 ˆδv v v≈ −  (2.79) 

 ˆ [I ( )]n n
b bC C≈ − ε×  (2.80) 
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Substituting these state error definitions into Equations (2.73)-(2.77), produces the 

desired error dynamics equations. 

 

 n n
ne en ne enδ δ δp T v T v= +�  (2.81) 

Through some manipulation: 
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Define: 
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Yielding: 

 n
ne en ppδ δ δp T v T p= + ��  (2.84) 

 

 Titterton and Weston [25] show that: 

 

 [ ] (2 ) (2 )
l

n n b n n b n n n n n n n
en b nb b ie en en ie en enδ δ δ δ δ δ= × + − + × − + × −�v C f C f v v gω ω ω ωe  (2.85) 
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Through some manipulation, they also show: 
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The matrices 1G  and 2G  account for the errors in the in local gravity (
l

nδg ), due to the 

errors in position and velocity. 

Titterton and Weston [25] develop the final dynamics equation needed to express 

the error in attitude, resolved in the n-frame: 
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where 
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n
inω  is not a function of ε , allowing the term 

n
inδ
δε

δε
ω  to be dropped.  Taking n

inω  from 

Equation (2.54): 
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To satisfy the dynamics model from Equation (2.72), the driving noise vector 

( ( )tw ) must include the sensor measurement and bias driving noises.  It is defined as: 

 ( )
bias

bias

b
a
b
b

b
a

b
b

t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

w
w

w w
w

 (2.93) 



 

52 

Combining Equations (2.84), (2.86), (2.91), (2.76) and (2.77), the overall error 

dynamics equation is obtained for the n-frame.   

ˆ( ) [ ; ( )] ( ) ( ) ( )δ t t t δ t t t= ⋅ + ⋅�x F x x G w  
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In many cases, the Earth can be modeled as flat and non-rotating.  This 

approximation is acceptable if the rate gyros cannot pick up the Earth’s rotation and if the 

navigation is constrained to a relatively small area.  This approximation allows many 

terms to be dropped, simplifying Equation (2.94) and reducing the computational load. 
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To model the Earth as flat and non-rotating, 0ieΩ →  and 0 N ER = R =R →∞ .  This 

reduces Equation (2.94) to: 

 

3 3 3 3

3 3 3 33 3 3

3 3 33 3 3 3

3 3 3
3 3 3 3 3

3 3 3 3

3 3 3 3
3 3 3 3 3

0 0 0 0
0 0 0 00 0 0

0 0 00 0 0 0
( ) ( ) 0 0 0 ( )10 0 0 I 0

0 0 I 0
0 0 0 I10 0 0 0 I

ne
n b n
b b

nn
bb

n
b

a

15x12

b 15x15

δ t δ t t
τ

τ

⎡ ⎤
⎢ ⎥× ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥= + −⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥−
⎢ ⎥⎣ ⎦

�

T
C f C

CC
x x C w

  (2.95) 

 

Note: neT  cannot be modeled to have 0 N ER = R =R →∞  because it is needed to convert 

velocity units into degrees of latitude and longitude.  This transform remains in the 

simplified error equation.   

The basis for INS mechanization and the associated error model have been laid.  

The first nine error states are the well understood Pinson error states [27], allowing a 

feedback extended Kalman filter to be used for aiding. The Kalman filter used to aid the 

INS, can now be discussed. 
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2.6 Kalman Filtering 

Kalman filtering is the backbone of INS aiding.  It provides an optimal estimate 

of the desired state vector, based on imperfect measurements that indirectly reflect the 

true state values.  An extended Kalman filter is used herein to aid the INS through 

bearings-only measurements.  A development of the EKF follows to aid understanding of 

the eventual algorithm.  This section presents the stochastic modeling and Kalman 

filtering concepts outlined by Maybeck [14][15].    

2.6.1 Linear Stochastic System Model.  The linear stochastic system model is 

essentially the linear system model (Equation (2.5)) with an additional stochastic term to 

account for the uncertainty of the model dynamics.  The general form of the linear 

stochastic system model can be written in the form of a linear stochastic differential 

equation [14]. 

 x Fx Bu Gw= + +�   (2.96) 

 

where x  is again the state vector, but it is now a vector of random variables.  u  is the 

deterministic input, F  and B  are the system dynamics and input matrices respectively.  

G is the noise transformation matrix, and w  is the vector of white, Gaussian, dynamics 

driving noises.  w  is a zero-mean Gaussian process with a covariance kernal, defined by: 

 

 }{ ( ) ( ) ( ) ( )t t+τ t δ τ=TE w w Q  (2.97) 
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where ( )tQ  is the noise strength matrix, and ( )δ τ  is the Dirac delta function. 

The solution to stochastic differential Equation (2.96) is a Gaussian random 

vector itself.  The dynamics driving noise creates uncertainty in the solution to an 

otherwise trivial problem.  The solution is defined by its mean and covariance [6]. 

The mean of the random vector ( )tx , for [ , )0t t∈ ∞  is defined as follows: 

 

 { } }{( ) ( ) ( ) ( ) ( ) ( ) ( )
0

t

0 0
t

t t t,t t t,τ τ τ τ= = Φ + Φ ∂∫xm E x E x B u  (2.98) 

with the initial condition 

 }{ ( )0 0tE x x=  (2.99) 

Note that ( )0t,tΦ  is derived in the same manner as in Section 2.4.1 and Equation (2.7).  

The addition of the driving noise has no effect on ( )0t,tΦ  nor the mean, which is 

equivalent to the deterministic solution from Equation (2.6) [14]. 

The covariance of the solution is defined to be 

 

 }{( ) ( ) ( ) ( ) ( )t t t t t= −T T
xx x xP E x x m m  (2.100) 

and is found by solving 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

t

0 0 0
t

t t,t t t,t t,τ τ τ τ t,τ τ= Φ Φ + Φ Φ ∂∫T T T
xx xxP P G Q G  (2.101) 

with the initial condition 

 0( )0txxP P=  (2.102) 
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Due to the Gaussian nature of the solution, the computed mean provides the best 

estimate for the true state: 

 ˆ ( ) ( )t txx m=  (2.103) 

 

The computed covariance describes the uncertainty of the estimate.  The subscript will be 

dropped henceforth. 

 ( ) ( )t txxP P=  (2.104) 

 

2.6.2 Linear Measurement Model.  In order for a Kalman filter to be of use, 

measurements of the states must be taken.  Due to their very nature, measurements are 

often discrete.  The continuous measurement case will not be covered.  In the linear 

stochastic case, measurements of the states are corrupted by additive, white Gaussian 

noise [14]. 

 ( ) ( ) ( ) ( )i i i it t t tz H x v= +  (2.105) 

where ( )itz  is a vector of measurements taken at a specific time instance ( )it t= .  ( )itH  

is the observation matrix, relating the states to the measurements produced by the sensor, 

and ( )itv  is the sensor corruption noise vector, with covariance kernel defined as: 

 

 }{ ( ) ( ) ( )i j i ijt t t δ=TE v v R  (2.106) 

where ( )itR is the covariance matrix for the corruption noise, and ijδ  is the Kroeneker 

delta function. 



 

57 

2.6.3 Linear Kalman Filter.  The Kalman filter allows the use of imperfect 

measurements, to estimate the solution to the stochastic differential Equation (2.96).  

Without measurements, the covariance of the solution would grow unbounded, rendering 

the state estimate meaningless to a user.  Kalman filtering bounds the covariance, or 

uncertainty in the estimate, but does not provide perfect knowledge.  In the linear case, 

the Gauss-Markov nature of the state model allows the use a simple recursive cycle, 

repeating for every measurement. 

2.6.3.1 Kalman Filter Cycle.  The Kalman filter cycle has two parts: the 

propagation phase, and the update step.  In the propagation phase, the Kalman filter 

estimates the new mean and covariance of the state estimate for some time passage.  

During the update step, the Kalman filter adjusts the propagated mean and covariance 

based on measurements taken in.  This cycle is repeated for every measurement.  Figure 

2.6 illustrates this cycle [6][14].  

 

 

 

 

 

 

 

Figure 2.6:  Kalman filter cycle. 
 

 

Propagation phase moves estimate forward in time, 
based on 1

ˆ ( )i-tx + , 1( )i-tP + ,  and system dynamics 

Measurement taken at it  

Update step generates new 
estimate at it

+  
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Note the convention used to indicate time immediately before and after a 

measurement (illustrated in Figure 2.6, and explained below): 

•  it  refers to an instance in time; typically when a measurement is taken. 

• it
−  refers to the very instant before it .  1

ˆ ( )i-tx −  is the Kalman filter estimate the 

instant the measurement is taken, but just before it is applied.  1ˆ ( )i-tx −  and 

1( )i-tP −  are the output of the propagation phase. 

• it
+  refers to the very instant after a measurement is taken, and the update step is 

applied.  1ˆ ( )i-tx +  and 1( )i-tP +  are the output of the update step. 

 

2.6.3.2 Propagation Equations.  The state estimate and covariance are 

propagated through time using the solution to the stochastic differential Equation (2.96) 

shown in Equations (2.98) and (2.101) [14].  Applying the Kalman filter cycle 

convention, the propagation phase becomes: 

 
1

1 1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

i

i-

t

i i i- i- i
t

t t ,t t t ,τ τ τ τx x B u− += Φ + Φ ∂∫  (2.107) 

 
1

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i-

t

i i i- i- i i- i i
t

t t ,t t t ,t t ,τ τ τ τ t ,τ τ− += Φ Φ + Φ Φ ∂∫T T TP P G Q G  (2.108) 

In the discrete time case: 

 

 1 1 1 1
ˆ ˆ( ) ( ) ( ) ( ) ( )i i i- i- i- i-t t ,t t t tdx x B u− += Φ +  (2.109) 

 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )i i i- i- i i- i- i- i-t t ,t t t ,t t t t− += Φ Φ +T T
d d dP P G Q G  (2.110) 



 

59 

where ( )tu  is assumed constant over the interval 1[ , )i- it t t∈ , and : 

 
1

1( ) ( ) ( )
i

i-

t

i- i
t

t t ,τ τ τ= Φ ∂∫dB B  (2.111) 

 
1

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
i

i-

t

i- i- i- i i
t

t t t t ,τ τ τ τ t ,τ τ= Φ Φ ∂∫T T T
d d dG Q G G Q G  (2.112) 

 
2.6.3.3 Update Equations.  During the update step, the state estimate and 

covariance are adjusted to account for the measurement coming in.  The Kalman filter 

gain appropriately weighs the measurement against the estimate, as a function of the 

system model [14]. 

Kalman filter gain: 

 
1

( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i it t t t t t t
−− −⎡ ⎤= +⎣ ⎦

T TK P H H P H R  (2.113) 

Update Equations: 

 ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )i i i i i it t t t t tx x K z H x+ − −⎡ ⎤= + −⎣ ⎦  (2.114) 

 ( ) ( ) ( ) ( ) ( )i i i i it t t t tP P K H P+ − −= −  (2.115) 

 

2.6.4 Non-Linear Stochastic System Model.  In many cases, a linear system 

model does not suffice.  The non-linear stochastic system model, used in this research, is 

a variation on the deterministic non-linear system from Equation (2.13).  Like the linear 

model, it has an additional, dynamics driving, white Gaussian noise term [15]. 

 

 ( ) [ ( ), ( ), ] ( ) ( )t t t t t tx f x u G w= +�  (2.116) 
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where ( ) ( )t tG w  is defined as in the linear case; Equations (2.96), (2.97). 

2.6.5 Non-Linear Measurement Model.  The non-linear measurement model 

takes on a similar form [15]. 

 

 ( ) [ ( ), ] ( )i i i it t t t= +z h x v  (2.117) 

 

where [ ( ), ]i it th x  is a non-linear function of ( )itx  and time, and ( )itv  is defined as in the  

linear case; Equation (2.105). 

2.6.6   Linearized Model.  The non-linear stochastic system model massively 

complicates the estimation process.  The solution to the stochastic differential is no 

longer trivial, and in some cases, unsolvable.  Fortunately, many non-linear systems can 

be modeled as linear for small perturbations about a nominal trajectory.  The extended 

Kalman filter takes advantage of this property. 

Because the dynamics driving noise is additive, it does not complicate the 

linearization process.  The non-linear stochastic system may be approximated to be linear 

about a nominal trajectory as described in Section 2.4.2 [15]. 

 

 ˆ ˆ ˆ( ) ( ) [ ( ), ( ), ] [ ; ( ), ( )] ( ) ( ) ( )t t t t t t t t t t tx x f x u F x u x G w+ δ = + δ +� �  (2.118) 

 

 ˆ( ) [ ; ( ), ( )] ( ) ( ) ( )t t t t t t tx F x u x G wδ = δ +�  (2.119) 
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The resultant system models the small perturbations, or errors about the nominal.  

This fits well with the error states chosen for the INS.  Note that the nominal chosen is 

the state estimate ( ˆ ( )tx ).  The optimal nominal choice would be the true state, but since 

the true state is unobtainable, ˆ ( )tx  provides a reasonable approximation [15].  The result 

is a poorer performing Kalman filter.  Additionally, the input vector is assumed to be 

known ( ( )tδ = 0u ).   

 The same process can be applied to the measurement equation [26][15]. 

 

 1 1 1 1 1 1 1ˆ ˆ( ) [ ( ), ] [ ; ( )] ( ) ( )i+ i+ i+ i+ i+ i+ i+t t t t t t tz h x H x x v− −= + δ +  (2.121) 

 

 1 1 1 1 1
ˆ( ) [ ; ( )] ( ) ( )i+ i+ i+ i+ i+t t t t tδ = δ +z H x x v  (2.122) 
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2.6.7 Extended Kalman Filter.  After linearization, the system error model fits 

the linear form needed to create a linear Kalman filter.  Maybeck develops the extended 

Kalman filter (EKF) fully, yielding the propagation and update equations as a function of 

the linearization gradients ( ˆ[ ; ( ), ( )]t t tF x u and ˆ[ ; ( )]i it t −H x ) [15]. 

2.6.7.1 EKF Propagation Equations.  The EKF estimate is propagated 

forward to the next time sample 1i+t  by integrating the following over the interval 

1[ , ]i i+t t t∈ : 

 ˆ ˆ( ) [ ( ), ( ), ]i it/t t/t t tx f x u=�  (2.124) 

 ˆ ˆ( ) [ ; ( ), ( )] ( ) ( ) [ ; ( ), ( )] ( ) ( ) ( )i i i i it/t t t/t t t/t t/t t t/t t t t t= + +� T TP F x u P P F x u G Q G  (2.125) 

with the initial conditions: 

 ˆ ˆ( ) ( )i i it /t tx x +=  (2.126) 

 ( ) ( )i i it /t tP P +=  (2.127) 

The propagation produces: 

 1 1ˆ ˆ( ) ( )i+ i+ it t /tx x− =  (2.128) 

 1 1( ) ( )i+ i+ it t /tP P− =  (2.129) 

 

2.6.7.2 EKF Update Equations.  The EKF update is accomplished by the 

following equations [15]: 

 

 { } 1ˆ ˆ ˆ( ) ( ) [ ; ( )] [ ; ( )] ( ) [ ; ( )] ( )i i i i i i i i i it t t t t t t t t t
−− − − − −= +T TK P H x H x P H x R  (2.130) 
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 { }ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) [ ( ), ] [ ; ( )] ( )i i i i i i i i iδ t δ t t t t t t t δ t+ − − −= + − −x x K z h x H x x  (2.131) 

 

 ˆ( ) ( ) ( ) [ ; ( )] ( )i i i i i it t t t t tP P K H x P+ − − −= −  (2.132) 

where ˆ ( )iδ tx  is the error state vector containing the Pinson errors states. 

2.6.8   Extended Kalman Filter and INS Integration.  Figure 2.7 illustrates how 

the EKF and INS work together to bound the error growth. 

 

Figure 2.7:  Extended Kalman Filter and INS integration.  The EKF receives the 
state estimate from the INS system dynamics, as well as measurements from the 
update sensors.  The EKF produces an error state estimate, and applies it as a 
correction to the INS [26]. 
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2.6.9 Implicit Measurement Equation.  Sometimes, the measurement model 

used does not fit the convenient form in Equation (2.117).  Non-linearities, or singular 

matrices may not allow one to isolate the measurement vector on the left hand side of the 

equation.  In this case, the implicit measurement model may be used [19]. 

 

 ( , )=0 g x y  (2.133) 

 

 z y v= + ,   ( , )N 0∼v R  (2.134) 

 
ˆ

ˆ ˆ( , ) ( , ) ( ) . . .δ
x z

g gg x y g x z x y z HO T
x y
∂ ∂

≈ + + − +
∂ ∂

 (2.135) 

 

where ( , )g x y  is the functional relationship between the true state x  and the perfect 

measurement y .  A new measurement model can be created: 
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ˆ( , ) δ
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gg x z x v
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∂ ′= +
∂

,   ( ),N′ ′0∼v R  (2.136) 
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T

z z

g gR R
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 (2.137) 
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where ˆ( , )g x z  is substituted for z  in the EKF update Equation (2.131), and R′  is 

substituted for R in the EKF gain Equation (2.130).  Lastly, ˆ[ ; ( )]i it tH x −   is replaced    

with 
x̂

g

x

∂

∂
.  The rest of the EKF remains unchanged. 

The extended Kalman filter will be used to aid the INS using bearings only 

measurements from imagery.  The optics involved with taking images can now be 

discussed. 

 

2.7 Imaging 

In order to aid INS with imagery, the mathematics of optics must be understood.  

This section presents the aspects of this broad field which will be applied to the research 

herein, to include optical projection theory, sensor models, measurement equations, and 

feature tracking. 

2.7.1 Optical Projection Theory.  Optical projection theory relates the real 

world geometry to the geometry of an image passed through a lens.  The thin lens model 

relates the image to the true scene according to Figure 2.8, and the following equation 

[10]: 

 1 1 1
Z z f
+ =  (2.138) 

 

where Z and z are the distances of the object and image to the lens respectively, and f  is 

the focal length of the thin lens.  
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Figure 2.8:  Thin lens camera model.  The thin lens model directs parallel light rays 
toward the focus, resulting in an image.  Figure is not to scale [26]. 
 

 

Decreasing the aperture of the thin lens to a theoretical zero allows the use of a 

pinhole camera model [10].  The pinhole camera model relates the size of an image, as it 

falls onto an image plane, to the size of the true object, as given in Equation (2.138) and 

illustrated in Figure 2.9.  In order for a pinhole model to be applied, the “fish eye” 

distortion created by a wide angle lens must be removed from the image and associated 

features.  A discussion of how this is accomplished is included in [36].  For the purposes 

of this discussion, fish eye distortion will be assumed to be removed from all images and 

the pinhole camera model assumed valid. 
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Figure 2.9:  Pinhole camera model.  The pinhole camera is a theoretical camera 
model in which a thin lens aperture approaches zero.  The projected image is 
inverted on the image plane [26]. 
 

  

Inverting this image has the effect of righting it, and projecting it one focal length 

in front of the aperture; see Figure 2.10.   Consider a point source object.  The projection 

of the object’s image onto the image plane ( projs ) is a function of the object’s position 

vector, resolved in the c-frame ( cs ), and the focal length of the camera lens [10].   

 

 proj c
c
z

f
s

s s
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (2.139) 

where c
zs  is the z-component of cs , or distance of the point source from the aperture, 

projected onto the c-frame’s z-axis. 
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Figure 2.10:  Image projection model.  A point source object ( cs ) is projected onto 
the image plane of the camera ( projs ) [26]. 
 
 

Imaging arrays lie on the image plane in order to capture the focused image.  

They are made up of a ( M N× ) array of rectangular pixels.  The upper left pixel has the 

coordinates (1,1).  The pixel co-ordinate frame increases down and right [26] (see Figure 

2.11).   
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Figure 2.11:  Camera image array. The imaging array of the camera consists of an 
(M x N) array of pixels.  The physical height and width of the array are represented 
by H and W, respectively [26]. 
 

For an array with physical dimensions ( H W× ), the transform to obtain pixel 

coordinates from the projected image vector is [10]: 

 

 

10 0
2

10 0
2

pix proj

M M
H

N N
W

s s

+⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥
= +⎢ ⎥ ⎢ ⎥

+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 (2.140) 

 

Note that pixs  is a two-dimensional vector of pixel locations.  It does not have to take on 

integer values, however. 
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Combining Equations (2.139) and (2.140) yields a transform from the camera 

frame to the pixel plane [26]. 
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⎢ ⎥
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 (2.141) 

 1 pix c
p cc

zs
=z T s  (2.142) 

 

Note that pz is the homogeneous pixel coordinate vector form of pixs .  It is also the 

measurement produced by the camera. 

pix
cT  is the invertible, homogeneous transform matrix between the camera frame 

and the pixel plane.  The inverse is defined: 
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 c c c
z pix pss T z=  (2.144) 
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The object’s camera-frame position vector is thus expressed as the pixel plane 

measurement, transformed into the c-frame, and scaled by the z-component.  Given the 

pixel plane measurement pz , one must estimate the z-component of the object position 

vector in order to estimate the full object position vector.  This can be done many ways, 

and will be discussed in Chapter 3. 

The goal of imaging is to determine the relative position of an object to the 

camera in the n-frame (given the pixel plane vector).  Define n
tgtΔ to be the relative 

difference between the imaged/tracked object and the n-frame origin (resolved in the n-

frame).  Define b
camp to be the relative position of the camera origin (resolved in the b-

frame).  Define b
cC  to be the DCM corresponding to the camera alignment to the aircraft 

body.  Then n
tgtΔ can be related to pz  by the following (see Figure 2.12). 

 

 n n b n b c
tgt b cam b cΔ = +C p C C s  (2.145) 

 

 n n b c n c
tgt b cam z c pix psΔ = +C p C T z  (2.146) 

 

 Note that b c
c pixC T  is a constant matrix expression for a rigidly mounted camera, and 

n n b
c b c=C C C .   
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Figure 2.12:  Relative landmark geometry.  The n-frame and b-frame share an 
origin, but are aligned according to the aircraft Euler Angles ( n

bC ).  The relative 
position of the tracked object to the n-frame ( n

tgtΔ ) is the sum of the c-frame object 

position vector ( cs ) and the camera position inside the aircraft, resolved in the n-
frame ( n b

b camC p ). 
 

Note that n
tgtΔ  is a relative vector position in the n-frame with units of meters.  n

tgtΔ  

expressed as a function of the aircraft and target geodetic position (latitude, longitude, 

and height) is: 

 ( )n
tgt en tgtΔ = −T p p  (2.147) 

 

where p  and tgtp  are the geodetic positions of the aircraft and target respectively.   

Landmark 

n-frame xn 

zn 

yn 

n b
b camC p

n
tgtΔ

cs

 

b
camp
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Substituting Equation (2.147) into (2.146) yields the measurement equation for 

this camera model: 

 ( )( )1 pix c n b
p c n en tgt b camc

zs
= − −z T C T p p C p  (2.148) 

 

2.7.2  Feature Tracking.  Aiding INS with imagery can only be accomplished if 

fixed landmarks on the ground can be tracked from image frame to image frame.  Many 

feature tracking algorithms are described by Veth and others [10][26].  The inner 

workings of these feature trackers will not be discussed here, merely the characterization 

of the measurements they provide. 

For the purpose of this discussion, landmarks fall into two categories: surveyed 

landmarks, and landmarks of opportunity (LOO).   Surveyed landmarks are those with 

geodetic positions that are known via some independent source and can be identified in a 

scene.  Landmarks of opportunity have not been surveyed independently and must be 

located as they are tracked.  For the purpose of this discussion, a feature is defined as the 

projection of a specific landmark onto the image.  Feature uniqueness allows successive 

matches and tracking frame to frame. 

Feature trackers aim to track a landmark from frame to frame.  These landmarks 

appear as a collection of pixels that correlate spatially and geometrically between frames.  

The output of a feature tracker is the homogeneous pixel coordinate vector pz .  Ideally, 

this vector would correspond to the exact same n-frame location with every frame; 
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whether it be the center of mass, or a distinct corner, is moot. Unfortunately, this pixel 

coordinate vector is plagued by errors. 

The first major error is due to the quantization nature of an imaging array [26].  

Pixels are discrete, but feature locations aren’t necessarily.  Some feature generation 

algorithms claim sub-pixel level precision.  This is questionable because such precision is 

beyond the spatial sampling frequency of the camera.  While the feature tracker may 

interpolate between groups of pixels, the pixels between which they interpolate are 

discrete.  This induces a uniformly distributed spatial error, one pixel wide. 

 p p qz z n= +  (2.149) 

 

where qn  is the vector form of the uniform random variable measurement noise, defined 

as follows.  Note that the third element is always zero, as it is a two dimensional error: 

 

 { } [ ]0 0 0q = TE n  (2.150) 
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 Additional noise sources sum together and are modeled as additive, white, and 

Gaussian in nature. 

 p p q Gz z n n= + +  (2.152) 

 

where Gn  is the vector form of the Gaussian random variable measurement noise, 

defined as: 

 { } [ ]0 0 0G = TE n  (2.153) 

 { }
0
0

0 0 0

x xy
T

G G G xy y

R R
R RE n n R
⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.154) 

 

where GR  is the covariance matrix of the white Gaussian noise.  If GR  is much larger 

than qR , then they can be modeled as a single, white Gaussian noise, but this is a 

function of the quality of the tracking algorithm and imaging array used. 

 

2.8 Geometric Dilution of Precision 

Non-linear measurements are often functions of geometry.  This is especially true 

in the case of tracking features in successive images.  Some geometries are more suited to 

deliver better performance than others (e.g., as tangents approach 90 degrees, 

singularities form).  A quantifiable measure of quality (as a function of geometry) is 

called the geometric dilution of precision (GDOP).  This scalar value relates the relative 
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precision or quality of measurement that can be obtained from differing geometric 

scenarios.  The absolute value of GDOP is less insightful than the difference between two 

GDOP values; a high GDOP means much dilution, whereas a low GDOP means very 

little dilution [21]. 

The in the case of the EKF, GDOP is a function of the linearized measurement 

observation matrix ( ˆ[ ; ( )]i it tH x − ) [19].   

 

 { }1ˆ ˆ( [ ; ( )] [ ; ( )])i i i it t t t− − −= TGDOP tr H x H x  (2.155) 

 

High GDOP values indicate that the imprecision of imperfect measurements will 

be magnified by geometric effects.  Fortunately, this knowledge is built into the EKF, and 

the relative weighting of a measurement experiencing high GDOP is lowered.  This effect 

causes the EKF to behave much like it does with a very uncertain measurement (large 

( )itR ) [19].  For this reason, analyzing the GDOP of a system can provide insight into 

the performance of the associated EKF.  High GDOP essentially weakens the aiding 

strength of a measurement. 
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2.9 System Observability 

 A linear system is said to be observable if knowledge of the initial state can be 

learned after a finite amount of time and a finite number of measurements.  This is 

significant to aiding an INS because learning the state through measurements is the entire 

purpose.  For the time invariant case, the observability matrix is a function of the system 

dynamics matrix (F ) and the measurement matrix (H ) [26]; defined: 

 

 

1n-

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

#

H
HF

Q

HF

 (2.156) 

 

where n is the dimension of the associated state vector.  The H F  pair is said to be fully 

observable if Q  has rank n.  This means that the measurement model chosen is sufficient 

to observe the total state.  Because both matrices are functions of the state vector, insight 

about observability can only be obtained for perturbations about the given state 

trajectory.  In the case of INS, one must examine Q  for all the desired flight profiles and 

envelopes; no sweeping generalizations may be made. 

 In the time-varying case, another method of examining the strength of aiding 

action (provided to the INS by update measurements) must be used.  It involves studying 

the observability grammian.  A system is said to be completely observable if the 

observability grammian ( ( )tW ), for a particular measurement equation, has full rank.  
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The observability grammian is a function of the system dynamics matrix (F), the 

observation matrix (H) and the nominal trajectory about with the system is linearized 

( cx ).   

 

 ( )
0

[ ( )] [ ( )]
t

t tt e t t e dt= ⋅∫
TF T F

c cW H x H x  (2.157) 

 

The condition number of ( )tW  also speaks to the observability of the measurements.  A 

high condition number indicates weak aiding along certain trajectories while strong 

aiding along others.   

Another method of expressing GDOP is with the observability grammian.  The 

GDOP is defined as: 

 ( ){ }1t −=GDOP trace W  (2.158) 
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2.10 Summary  

In summary, this chapter laid out the framework to design an INS and develop an 

aiding strategy built around the extended Kalman filter.  The basic optics and camera 

reference frame transforms were explored to allow the development of the measurement 

equation in Chapter 3.  Lastly, the tools by which the performance will be predicted and 

evaluated were presented.  Chapter 3 will speak to the specific design used for the flight 

test.  



 

80 

III.  Developing the SLAAMR Algorithm 

 

The concept of simultaneously mapping an environment using imagery and 

navigating using this map is not new.  The Simultaneous Location And Mapping (SLAM) 

process has been proposed and discussed in many studies and research projects 

[1][4][5][8][11][19][23][24][26][28].  This paper adopts the fundamental SLAM process 

to create an algorithm that can simultaneously locate landmarks, map an environment, 

and aid an inertial navigation system, specifically using a recursive process.  This single 

routine will seamlessly locate and map landmarks when accurate navigation state data is 

provided (i.e., GPS), accurately aid the Inertial Navigation System (INS) when surveyed 

landmarks are available, or provide both tasks in the absence of surveyed landmarks or 

GPS.  The theory behind a SLAM-based aiding strategy is well understood, and has 

proven to perform well in simulation.  However, real world conditions, image processing, 

and sensors complicate the matter, requiring further study and design to produce a 

practical SLAM-based navigation system.  This chapter explores the mathematics behind 

the problem and develops the design of a low-cost, monocular optical-inertial navigation 

system.  The Simultaneous Location Aiding And Mapping Recursively (SLAAMR) 

algorithm (proposed herein) provides a robust design to accomplish the aforementioned 

tasks seamlessly in the airborne environment.   

The SLAAMR algorithm is designed to accomplish practical INS aiding, using 

passive and low-cost measures, such as monocular imagery.  It is specifically designed 

for use with a low-cost, poor quality, inertial measurement unit (IMU) aboard an airborne 
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platform.  The use of a recursive process, specifically the extended Kalman filter (EKF), 

optimizes aiding action without the need of a batch estimator.  This strategy reduces the 

hardware requirements and increases the robustness and applicability of the design 

This chapter develops the error propagation model and bearings-only 

measurement model specific to the SLAAMR algorithm.  The observability and measure 

of aiding action provided by bearings-only measurements are explored through the 

examination of the observability grammian matrix and geometric dilution of precision.  

This observability study identifies and proposes solutions to the weaknesses of a SLAM-

based system.  The proposition that INS drift can be slowed by tracking self-

located/surveyed landmarks is discussed and a practical strategy is developed.  The 

critical problem of using monocular imagery to resolve the 3-dimentions modeled in an 

EKF is discussed, and practical solutions are proposed.  Finally, the principles of the 

SLAAMR algorithm design are developed, and summarized along with the algorithmic 

architecture.  The SLAAMR algorithm differs from traditional SLAM in that it departs 

from theoretical conjecture and is designed to solve practical problems posed by realistic 

implementation limitations.  

Figure 3.1 illustrates the underlying principle that allows SLAAMR to work.  An 

aircraft using an onboard INS estimates its position, velocity, and attitude (collectively 

the navigation state or nav-state) as it flies, but this estimate drifts from truth.  Along the 

way, a camera is used to track stationary landmarks on the ground.  The position of these 

landmarks is either known or estimated. The navigation state and landmark positions are 

used to estimate where the landmark should appear in successive images.  The 
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differences between actual landmark image projections and the estimates are used to 

resolve a 3-dimensional position error, which correlates to error in the aircraft navigation 

state. 

 

 

 

Figure 3.1:  Tracking landmarks yields error vectors correlated with INS drift. 
 
 
 

This chapter discusses the theory behind the SLAAMR algorithm and develops 

the case for its underpinning assumptions and tenet of design.  A rigorous study of the 

underlying measurement equations and navigation state observability follows. 

 

True aircraft position at ti 

INS reported  
position at ti+1 

Correlated 3-D  
position error vectors  

True aircraft position at ti+1 
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3.1 Basic EKF System Model 

The underlying mechanism for SLAAMR is a low-cost inertial navigation system 

(INS) aided by bearings-only image (and other passive) measurements, via a feedback 

error state modeled by an extended Kalman filter (EKF).  Chapter 2 fully developed the 

EKF model and process, and this chapter will develop the specific propagation equations 

and measurement models. 

3.1.1 Error State Propagation Model.   The goal of SLAAMR is to aid low-cost 

INS implementing a low-quality micro-machined electromechanical systems (MEMS) 

inertial measurement unit (IMU).  This allows the assumption of a flat and non-rotating 

Earth approximation for the error propagation model.  As derived in Chapter 2, the base 

error propagation model for SLAAMR is: 

 

 ( ) ( )δ t δ t= ⋅ + ⋅�x F x G w  (3.1) 

where 
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and 
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where, neT  transforms velocity errors from units of m/s to geodetic equivalents, b ×f  is the 

skew symmetric form of the specific force vector resolved in the b-frame, n
bC  is the b-

frame to n-frame DCM, and a,bτ are the accelerometer and rate gyro bias time constants. 

The 15-state error vector ( ( )txδ ) is also defined in Chapter 2: 

 

 n n b b
eb nbδ δ δ⎡ ⎤= ⎣ ⎦

T
x p v e a b  (3.4) 

 

This basic navigation error state vector will be augmented to include landmark position 

estimates in Section 3.2.4.  The dynamics driving noise associated with the inertial 

sensors and their bias’ ( w ) is defined: 

 

 

3 3 3

3 3 3

3 3 3

3 3 3 12x12

0 0 0
0 0 0
0 0 0
0 0 0

a

b

a

b

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

R
R

w
Q

Q

 (3.5) 

 



 

85 

where aR  and bR  are the 3x3 noise strength (intensity) matrices for accelerometer and 

rate gyro (triad) measurement noise, and aQ  and bQ  are the 3x3 process driving noise 

strength (intensity) matrices for the accelerometer and rate gyro (triad) bias drift rates 

(modeled as first order Gauss-Markov processes). 

3.1.2 Linearized Measurement Model.  As described in Chapter 2, the 

SLAAMR measurement model takes the form: 

 

 1 1 1 1 1 1 1ˆ ˆ
( ) [ ( ), ] [ ; ( )] ( ) ( )i+ i+ i+ i+ i+ i+ i+t t t t t t t− −= + δ +

x x
z h x H x x v  (3.6) 

 

where 1 1[ ( ), ]i+ i+t t−h x  is the non-linear measurement equation, and 1 1[ ; ( )]i+ i+t t −H x  is the 

matrix partial derivative of h.  1( )i+tz  is the feature position measurement expressed in 

the image frame, and v is the measurement noise driven by system optics, etc.  Again, 

( )itδx  will be augmented to include landmark position estimates (discussed in Section 

3.2.4), but the form of Equation (3.6) remains the same.  The following sections develop 

this measurement model for bearings-only image measurements. 

3.1.3 Initial Landmark Position Estimation.  Before an EKF can begin, it 

requires an initial estimate of the state variables and associated covariances.  In the 

feature tracking case, the state variables are the navigation and tracked object position 

error states.  Additionally, the EKF requires an estimated nominal trajectory in order to 

perform the linearization.  This trajectory includes navigation and tracked landmark 

positions.  Initial estimates of the navigation whole and error states are obtained from 
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traditional, well-established INS alignment/transfer alignment techniques, and will not be 

discussed here [23].  Initial object position estimates must be derived from one of two 

categories of techniques: third party location (surveyed), and auto-location (self-

surveyed).  The initial position estimate provides a nominal trajectory about which the 

EKF error model is linearized.  The initial error in this position is assumed to be a zero-

mean and Gaussian (with an associated covariance matrix).  Subsequent iterations of the 

EKF refine the initial position and error covariance estimates.    

3.1.3.1 Third Party Survey.  When a third party source is used to locate a 

landmark, any errors in the estimated landmark position are independent of the EKF 

navigation state errors.  Thus, the uncertainty of the position estimate is strictly a function 

of the third party system.  Determining an object’s location through satellite imagery or a 

GPS site survey are examples of this method.  Because the aircraft and its sensors play no 

part in this process, the errors associated with third party survey are completely 

independent of the navigation state and measurement equation.  In the case of differential 

GPS position estimates, the uncertainty covariance can be sub-meter and elliptical.  These 

types of landmarks will henceforth be known as surveyed landmarks.   

3.1.3.2 Self-Survey or Auto-location.  Self-survey or auto-location involves 

determining the position of a landmark of opportunity (LOO) through measurements 

taken from onboard sensors, in this case a camera.  The camera measures the relative 

position of the landmark to the aircraft.  This relative position is then added to the aircraft 

position.  This technique has been demonstrated through the use of binocular vision, 

multiple image batch estimation, or active sensors (such as an EO/IR targeting pod) [26].  
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Single image monocular techniques are the primary method explored herein, because 

monocular imagery is a more practical and low-cost option for aircraft.  Whichever 

technique is used, the measurement equation for auto-location estimates take the form: 

 

 ˆ
tgt tgt= Δ + INSp p  (3.7) 

 

where the initial landmark position estimate ( ˆ
tgtp ) is the sum of INS calculated aircraft 

position ( INSp ) and the relative position measurement/estimate ( tgtΔ ).  The relative 

position measurement/estimate is a function of the whole INS-provided navigation state 

( cx ) and the sensor-produced measurement/estimate ( z ).   

 

 ( )
,

,tgt ΔΔ =
cx z

h x z  (3.8) 

 

where Δh  is a non-linear function used to determine the landmark’s relative position.  

Specific examples of Δh  are discussed in Section 3.5.  The associated uncertainty of the 

object position estimate is derived through perturbation analysis of this equation.  The 

error perturbations are related as: 

 

 ( ) ( )
, ,

ˆ

, ,
tgt tgtδ δ δ

δ δ
δ δ δ

δ δ
Δ Δ

= Δ +

= + +c cx z x z

p p

h x z h x z
x z p

x z

 (3.9) 
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These errors are assumed to be zero mean and Gaussian.  Therefore, the error covariance 

of the object position estimate is equal to the expected value of the outer product of the 

errors. 

 

 ( )( )

ˆ ˆ
tgt tgt tgt

tgt tgt

tgt tgt tgt tgt

δ δ

δ δ δ δ

δ δ δ δ δ δ δ δ

⎡ ⎤= ⎣ ⎦
⎡ ⎤= Δ + Δ +⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= Δ Δ + Δ + Δ +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

T

T

T T T T

P E p p

E p p

E E p E p E p p

 (3.10) 

 

The aircraft position errors are independent of the relative position estimate, but 

in practice, the measurement equation is evaluated about the nominal, errant navigation 

state.   The assumption is made that nominal is close to truth.  Thus, the aircraft position 

errors are approximated to be independent of the relative position estimate.  The 

covariance expression simplifies to: 

 

 

tgt tgt tgtδ δ δ δ

δ δ δ δδ δ δ δ δ δ
δ δ δ δ

δ δ δ δδ δ δ δ
δ δ δ δ

δ δ δ δδ δ δ δ δ δ
δ δ δ δ

Δ Δ Δ Δ

Δ Δ Δ Δ

Δ Δ Δ Δ

⎡ ⎤ ⎡ ⎤= Δ Δ +⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ⎡ ⎤= + + +⎢ ⎥⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

⎡+ + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

T T

T
T

T T
T T

T T
T T T

P E E p p

h h h hE x z x z E p p
x z x z

h h h hE x x E x z
x x x z

h h h hE z x E z z E p p
z x z z

⎤⎣ ⎦

= + + + +T T T T
x xx x x xz z z zx x z zz z ppH P H H P H H P H H P H P

 (3.11) 
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where ppP ,  xxP  and zzP  are the aircraft position, navigation state, and measurement error 

covariances, respectively.  xzP  and zxP  are the cross correlation matrices between the 

navigation state and the measurements.  xH and zH  are the partial derivatives of ( ),Δh x z  

with respect to x and z, evaluated at cx and z .  The camera optical uncertainties are 

independent of the navigation state errors, allowing the simplification: 

 

 tgt = + +T T
x xx x z zz z ppP H P H H P H P  (3.12) 

 

In the case in which a perfect relative measurement can be taken ( tgtδΔ =0), the 

uncertainty in the object’s initial position estimate can be no better that the uncertainty in 

the aircraft’s own position estimate.  Precise optics and continued bearings measurements 

could theoretically refine tgtΔ  to a near perfect estimate, but since this is a relative 

estimate, the uncertainty contribution of the aircraft’s own position will always remain.  

Thus, the lower limit to LOO position estimate certainty is driven by ppP .  A tracked 

LOO position estimate uncertainty can approach, but never exceed that of the host 

aircraft.  When considering surveyed landmarks, the reverse is true; the aircraft’s position 

uncertainty can approach, but never exceed that of the best surveyed landmark. 
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3.2  Feature Tracking Measurement Model 

Tracking features in successive images is the underpinning process that will allow 

the SLAAMR algorithm to operate.  It involves multiple steps from generating features, 

to matching them correctly, and eventually mapping their measurements into the 

navigation state.  For a landmark projected onto an image to be tracked, two things must 

occur: the associated feature must precisely, accurately correspond to the same geodetic 

position in each frame, and it must be correctly and consistently identified.   

3.2.1 Feature Generation.  In his work, Veth implemented a scale-invariant 

feature transform (SIFT©) created by Lowe [26][11].  The SIFT© generates ‘key points’ 

for distinct features in an image.  Each key point contains a camera frame position (in 

pixel coordinates), scale, orientation and a distinct descriptor allowing matching to occur. 

Veth’s work demonstrated that SIFT© is a practical and functional feature generator and 

was used in the research herein.  Figure 3.2 shows an image from flight test with overlaid 

features generated by SIFT©.  Feature scale, orientation and descriptor data are not 

shown. 
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Figure 3.2:  Flight test image with overlaid SIFT© generated features.  The features 
are identified by a dot.   

 

 

3.2.2 Feature Matching.  The descriptor generated by SIFT© is a distinct 128-

element vector.  Figure 3.3 plots the 128-descriptor values versus the element’s location 

(for one specific feature), compares it to a matched feature in another image and a feature 

that does not match.   
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Figure 3.3:  Representative descriptor values versus their element location. 
 

The nature of the descriptor allows accurate matching using an auto-correlation 

routine.  A correlation coefficient ( ρ ) is derived for a frame-to-frame feature comparison 

via the dot product of the two feature descriptor vectors, normalized by the dot product of 

the first feature descriptor with itself.  The correlation routine implemented is 

  

 d d
d d

a b

a a
ρ •=

•

T

T  (3.13) 

 

where da  and db  are the descriptor vectors of the two features being compared.  The 

coefficient ρ  varies from 1 (perfect match) to potentially -1.  Practically, the range is 

0.5-1.0 because of the generally positive descriptor element values.  A match is declared 

if ρ  exceeds a threshold derived for a good match.   

The use of SIFT© allows the SLAAMR algorithm to operate in nearly any 

environment, and travel long distances without the need to revisit old landmarks.  
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Previous work on SLAM algorithms used a set of pre-placed targets in a confined area 

[5].  The targets were found and matched using a template matching algorithm.  This 

approach worked well, but limits environment in which it can operate and relies on a 

priori information about the targets (appearance) despite not knowing their location. 

For any given image, SIFT© produces hundreds to thousands of features.  

Applying the correlation equation to every feature (in order to find a match) is 

computationally impractical and could lead to potential false matches.  The EKF 

naturally predicts the geodetic position of all tracked landmarks and assigns an 

uncertainty volume to that prediction.  Projecting this estimated position and uncertainty 

in subsequent images allows the SLAAMR algorithm to spatially constrain which 

features will be considered for a match.  The 3-dimensional landmark position and 

uncertainty project into the image as a 2-dimensional pixel location and corresponding 

ellipsoid.  Figure 3.4 illustrates this principle. 

The cross and ellipse represent the estimated feature projection and 3-sigma 

uncertainty bound (3 standard deviations of ~99% confidence).  Only features that fall 

within the ellipse are considered for a match.  If none exceed the threshold for a good 

match, the track is considered broken. 
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Figure 3.4:  Constrained feature search volume. 
 

 

The projection of landmark position and uncertainty into the image is 

accomplished via the measurement vector ( [ ( ), ]i it t−h x ) and observation matrix 

( [ ; ( )]i it t −H x ), which are developed in the next section.  The general form of the estimated 

landmark projection is  

 

 ˆ ( ) [ ( )]i it t= INSz h x  (3.14) 
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where 1
ˆ ( )i+tz  is the estimated projection expressed in pixel coordinates, and 1( )i+tINSx is 

the INS derived navigation state.   The uncertainty in the estimated projection is mapped 

into the image by: 

 i i[ (t )] [ (t )]= ⋅ ⋅ +T
zz INS xx INSP H x P H x R  (3.15) 

 

where zzP  is a 2x2 covariance matrix describing the 2-dimentional uncertainty ellipse, 

xxP is error state uncertainty covariance matrix and R is the measurement noise 

covariance matrix. 

3.2.3 Image-Only Measurement Equation.  As described in Chapter 2, the 

position vector of a tracked landmark, resolved in the c-frame ( cs ), is a function of 

aircraft and landmark geodetic position (p  and tgtp ), camera mounting position  and 

alignment (relative to the IMU, b
camp  and b

cC ), and aircraft navigation state derived 

transformations ( enT  and n
bC ), where c c b

n b n=C C C : 

 

 ( )c c n b
n en tgt b cam
⎡ ⎤= − −⎣ ⎦s C T p p C p  (3.16) 

 

where enT  transforms the relative difference between aircraft and the tracked landmark 

position from geodetic units into meters.  The relative position vector between the tracked 

object and the aircraft can be expressed as: 

 

 ( ) n b
en tgt b camΔ = − −T p p C p  (3.17) 
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The c-frame object position vector is transformed into the homogeneous image 

measurement expressed in camera pixel location coordinates: 

 

 ( )

1

1

1

pix c
p cc

z

pix c n b
c n en tgt b camc

z

pix c
c nc

z

s

s

s

=

⎡ ⎤= − −⎣ ⎦

= Δ

z T s

T C T p p C p

T C

 (3.18) 

 

If the magnitude of b
camp  is small (as it was in this study), it can be ignored in order to 

simplify calculations.  This step is not required, nor does the inclusion of a non-trivial 

b
camp  change the problem or analysis.  The scalar c

zs  is the z-component of the object 

position vector.  It can be expressed as: 

 [ ]0 0 1c c
z ns = ΔC  (3.19) 

 

The projection of the object’s image onto the image plane is defined as: 

  

 proj
f fx ,y ,f⎡ ⎤= ⎣ ⎦

T
s  (3.20)  

 

and is related to the c-frame object position vector ( cs ) as follows 

 

 proj c
c
z

f
s

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

s s  (3.21) 



 

97 

Substituting into Equation (3.18) yields 

 

 1pix proj
p c f
=z T s  (3.22) 

 

Equation (3.22) is over-determined, allowing a simplification.  Optical 

measurements have the “strength” of two equations only; image projections onto a focal 

plane are two-dimensional.  pz  is a homogeneous vector, and there is no need to 

calculate the third component (which is a constant 1).   projs  also has a known third 

component, the focal length.  These properties simplify the measurement equation 

development. 

The c-frame object position vector ( cs ) and image projection vector ( projs ) form 

similar triangles and are scaled by the ratio of their lengths. 

  

 1 1f
c

fproj c

x
y
f

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦

s
s s

 (3.23)  

 

where the length of the projs   and cs  are defined by the 3-D norm 

 

 2 2 2proj
f fx y f= + +s  (3.24) 

Because c
nC  is unitary 

 2 2 2c
x y z= Δ = Δ + Δ + Δs  (3.25)  
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Combining equations yields: 

 

 
2 2 2f

f f c
f n

x
x y f

y
f

⎡ ⎤ + +⎢ ⎥ = Δ⎢ ⎥ Δ
⎢ ⎥⎣ ⎦

C  (3.26)  

 

The focal length is the third component of the vector on the left hand side of Equation 

(3.26), and can be expressed as 

  

 [ ]
2 2 2

0 0 1f f c
n

x y f
f

+ +
= Δ

Δ
C  (3.27) 

  

Equation (3.27) is used to eliminate the scalar on the right hand side of Equation (3.22).  

Isolating the unknown scalar (which also features the range to the landmark) yields: 

 

 
[ ]

2 2 2

0 0 1
f f

c
n

x y f f+ +
=

Δ ΔC
 (3.28) 

  

Substituting into the original relationship yields the two measurement equations: 

  

 
[ ]

1 0 0
0 1 00 0 1

f c
nc

f n

x f
y
⎡ ⎤ ⎡ ⎤

= Δ⎢ ⎥ ⎢ ⎥Δ ⎣ ⎦⎣ ⎦
C

C
 (3.29) 
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By dropping the homogeneous third component, the two-dimensional measurement 

equation vector ( pz ) becomes 

 

 

1 0 0 1
0 1 0

1 0 0
0 1 0

pix proj
p c

fpix
c

f

f

x
y

f
f

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

z T s

T
 (3.30) 

 

3.2.4 Augmented State Vector for Landmark Position Estimation.  Augmenting 

the navigation state vector with the landmark’s position vector allows the measurement 

model to fit the Kalman filter mold described in Chapter 2.  It is also important to do this 

in order to model the errors in the knowledge of the landmark’s position, for although it 

does not move, its true location cannot be known for certain.  Thus, the augmented state 

vector is 

 
n
eb
n N E D tgt tgt tgt
nb

tgt

L l h v v v θ ψ L l hφ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= = ⎣ ⎦⎢ ⎥Ψ
⎢ ⎥
⎢ ⎥⎣ ⎦

# # #
T

p
v

x

p

 (3.31) 

 

Note that the accelerometer and gyro biases are not included in the navigation state vector 

for this discussion.  These bias states are normally included in the state vector, but play 

no part in optical measurements.  For the sake of readability and without loss of 

generality, they are thus excluded from this discussion. 
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The associated augmented error state vector is then: 

 

n
eb

n N E D x y z tgt tgt tgt
nb

tgt

L l h v v v L l h

δ
δ

δ δ δ δ δ δ δ ε ε ε δ δ δ

δ

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤= =⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

# # #
T

p
v

x e
p

   (3.32) 

 

3.2.5 Linearized Image-Only Measurement Equation.  In order to implement an 

EKF, the measurement equation must be linearized.  Recall the form of the non-linear 

measurement model [15]. 

 ( ) [ ( )] ( )p t t t= +z h x v  (3.33) 

 

Since , c
nΔ C  are derived from the navigation state ( )tx , the deterministic portion of ( )p tz  

( [ ( )]th x ) can be re-written:  

 
1 0 0

[ ( )]
0 1 0

fpix
c

f

x
t y

f
f

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

Th x  (3.34) 

 

pix
cT , and f  are constant, thus a simpler measurement equation may be considered 

 

 [ , ] fc
n

f

x
y
⎡ ⎤

′ Δ = ⎢ ⎥
⎣ ⎦

h C  (3.35) 
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where 

( ) 1 0 0 [ , ]
[ ( )] [ , ]

0 1 0

cpix
c nc
nt

f f
′⎡ ⎤Δ⎡ ⎤′= Δ = ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

h CTh x h h C                 (3.36) 

and 

 ( )( ) [ , ] ( )c
p nt t′= Δ +z h h C v  (3.37) 

  
Because pix

cT  and f  are constant, the partial derivative of [ ( )]th x  with respect to ( )tx  is 

the partial derivative of [ , ]c
n′ Δh C  with respect to ( )tx  (or equivalently,Δ  and c

nC ) 

multiplied by a constant matrix. 

 To develop the linearization of the measurement equation, unit vectors must first 

be introduced: 

 1

1
0
0

e
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,   2

0
1
0

e
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,   3

0
0
1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

e  (3.38) 

  

The measurement equation can now be written more compactly:   

  

 

1

3

2

3

[ , ]

T c
n

T c
f nc

n T c
f n

T c
n

x
f

y

⎡ ⎤Δ
⎢ ⎥Δ⎡ ⎤ ⎢ ⎥′ Δ = =⎢ ⎥ ⎢ ⎥Δ⎣ ⎦ ⎢ ⎥

Δ⎢ ⎥⎣ ⎦

e C
e C

h C
e C
e C

 (3.39)  
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To linearize the measurement Equation (3.39), the partials with respect to the state 

variables must be taken.  The partials with respect to Δ  equal the partials with respect to 

the relative camera and landmark positions.  Also, for the relatively small changes in 

geodetic position over time (that a conventional aircraft undergoes in flight), the 

transform between geodetic and n-frame units of measurement ( enT ) is treated as a 

constant matrix.  This simplifies the solution only somewhat.  The following is the 

mathematical derivation for the perturbation model used to linearize the measurement 

model about the INS calculated trajectory.   

Now, the measurement equation elements are 

  

 ( ) ( )
( )

1 1
1

33

c n
nn c

c nc
cn

h , =f f
Δ Δ′ Δ =

ΔΔ

TT T

T TT

e C C eC
C ee C

 (3.40)  

( ) ( )
( )

2 2
2

33

c n
nn c

c nc
cn

h , =f f
Δ Δ′ Δ =

ΔΔ

TT T

T TT

e C C eC
C ee C

 (3.41) 

  

This form of the measurement equation facilitates the calculation of the partial 

derivatives.   Each element ( 1h′  and 2h′ ) of the measurement equation takes the form: 

  

 y =
T

T
x a
x b

 (3.42)  

 

where a and b are constant vectors.   
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The perturbation in y with respect to xδ  is thus: 

 

 
( )

( )2
1yδ δ δ

′∂
= = −
∂

T T T

T

h x x ba ab x
x x b

 (3.43) 

 

In Equations (3.40) and  (3.41), let x = Δ , 1,2
n
c=a C e , and 3

n
cb C e= .  This substitution 

yields:  

( )
( )

( )
3 3

2 2

3

1 n c n c
c i n c i n

i n
c

h =fδ δ δΔ −Δ′ = − Δ
Δ

T T T T
T T T

T T

C e e C C e e Cx ba ab x
x b C e

     (3.44) 

 

The component due to perturbations in attitude requires further development. 

Consider the scalar function 

 ( )y ′=h x ,    : 1 1′ ℜ →ℜh  (3.45) 

 

where the variable of interest can be written as the nonlinear relationship 

 

 n
cx = Ta C b  (3.46)  

  

Here, a = Δ  and 1,2,3=b e .  Both are 3 dimensional column vectors.  The perturbation in 

y caused by a perturbation in the DCM is: 

 

 n
cy=δ δ

′∂
∂

Th a C b
x

 (3.47)  
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Small changes in the DCM are driven by the small changes in the camera attitude angles’ 

error vector n
nce .  The following holds true about the perturbed DCM [23]: 

 

 ( )( ) ( )n n n n n n n n
c nc c c nc c c cδ= − × = − × +I �perturbedC e C C e C C C  (3.48) 

 

Thus it can be declared that: 

 ( )n n n
c nc cδ = − ×C e C  (3.49) 

  

Hence, the perturbation in y caused by n
nce  is: 

  

 ( )n n
nc cy=δ

′∂
− Δ ×
∂

Th e C
x

 (3.50)  

 

Since the camera is rigidly connected to the b-frame, and n
nce  are errors about the n-frame 

axis, n
nce  is equivalent to the aircraft attitude angles’ error vector n

nbe .  Substituting the 

variables yields: 

 

( )( ) ( )( )
( )

3 3

2

3

n n n n n n
c nb c i c i nb c

n
c

y=fδ
Δ −Δ × + Δ Δ ×

Δ

T T T T

T

C e e C e C e e C e

C e
            (3.51) 
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Using the identity ( ) ( )n n
c c

⎡ ⎤× = − ×⎣ ⎦a b b ae C e C e e , n
nbe  is pulled out to the right hand side : 

 

( ) ( )( )
( )

3 3

2

3

n n n
c c i i c n

nbn
c

fδ
Δ Δ ×− Δ ×

=
Δ

T T T

T

C e C e e C e
y e

C e
  (3.52) 

 

where ( )n
c iC e ×  is the skew symmetric form of the transformed vector n

c iC e .  Combining 

all the perturbations for the optical measurement Equations (3.40) and (3.41) yields the 

perturbation model with respect to the navigation state errors: 

  

 
( )

( ) ( )( )
( )

( )
[ ( ) ( ) ( )( )

3 33 3
2 2

3 3

3 3 3 32

3

n n nn c n c
c c i i c nc i n c i n

i nbn n
c c

n c n n n n
c i i n c c i i c nbn

c

h f f

f

δ δ

δ

Δ Δ ×− Δ ×Δ −Δ′= Δ+
Δ Δ

⎤= Δ − Δ+Δ Δ ×− Δ × ⎦
Δ

T T TT T T T

T T

T T T T T T

T

C e C e e C eC e e C C e e C e
C e C e

C e e e e C C e C e e C e e
C e

 (3.53) 

  

To simplify, the unit vectors can be collected as such:  

 
3 1 1 3 2

3 3 1

T T

T T
2 2

− = − ×

− = ×

e e e e e

e e e e e
 (3.54)  

The skew symmetric form of the unit vectors are defined 

  

1 1

0 0 0
0 0 1
0 1 0

E e
⎡ ⎤
⎢ ⎥= × = −⎢ ⎥
⎢ ⎥⎣ ⎦

,   2 2

0 0 1
0 0 0
1 0 0

E e
⎡ ⎤
⎢ ⎥= × = ⎢ ⎥
⎢ ⎥−⎣ ⎦

,   3 3

0 1 0
1 0 0
0 0 0

−⎡ ⎤
⎢ ⎥= × = ⎢ ⎥
⎢ ⎥⎣ ⎦

E e  (3.55) 
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 Recall, the navigation error state augmented with the uncertainty in the landmark 

position is 

 N E D x y z tgt tgt tgtδL δl δh δv δv δv δL δl δhδ ε ε ε⎡ ⎤= ⎣ ⎦# # #
T

x (3.56) 
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Thus the simplified observation matrix is written: 
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x
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(3.58) 

 

 

The complete observation matrix is obtained by applying Equation (3.36): 
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c
c

H xTH x    (3.59) 
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The transform enT  merely changes the units from geodetic (radians of longitude and 

latitude) to meters, and is considered essentially constant.  Without loss of generality, it 

can be pulled out of Equation (3.59), and applied to the error states before the Kalman 

filter update cycle.  Also, a reference frame can be declared such that enT  is identity.  The 

same can be said for the constants in front.  For the sake of readability, enT  and the 

constants in front will be omitted from the observation matrix from this point on. 

3.2.6 Tracking Many Unknown Landmarks.  Tracking of multiple landmarks 

with position that is unknown simply requires augmenting the error state (and associated 

state vector) with additional landmark position states: 
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 (3.60) 

 

 

where p , v  and Ψ  are the states associated with the INS, and tgtnp  is the nth landmark 

position vector.   
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 The error propagation equations are augmented to model the stationary objects as 

follows: 

 

MxM Mx3 Mx3 Mx6

3xM 3x3 3x3 3x6

3xM 3x3 3x3 3x6

δ δ δ
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0 0
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0 0 0 0

"
"�

# # % # #
"

F G

x x w
 (3.61) 

 

where F  and G are the INS (MxM) systems dynamics matrix and the (Mx6) noise 

transformation matrix from Chapter 2.  One column and row of zeros is added for every 

new object position state variable added. 

The measurement Equations (3.40) and (3.41) are augmented as well to reflect the 

added measurements and state variables.  The observation matrix ( [ ( )]tcH x ) is 

augmented with two additional rows for each additional tracked landmark.  The ith pair of 

rows, corresponding to the ith of N tracked landmarks, are defined: 
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(3.62)
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3.2.7 Tracking Known Landmarks.  If the landmark position is known perfectly, 

the state variables concerning the object location can be dropped, and substituted for 

constants throughout the model.  True landmark position knowledge is reasonably 

attainable through an a priori survey, but will not be discussed.  In the case in which a 

single object is tracked, the object line-of-sight (LOS) vector can be substituted for the 

position vector.  

 
p

p

p

x x
y y
z z

⎡ ⎤−
⎢ ⎥← Δ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

p  (3.63)     

Thus the new navigation state error vector is now: 

 

 n
nbδ δ δ⎡ ⎤= Δ⎣ ⎦

TT T Tx v e  (3.64)  

 

Because the LOS vector is now the difference between the camera position and a constant 

landmark position, the position and velocity derivatives, and therefore the error 

propagation equations, do not change from before: 
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n n
nb nb

δ δ
δ δ δ
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�
�
�
v F v G w

e e
 (3.65)  

 

The measurement equation also remains as described before.   
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 The case where many known landmarks are tracked is a simple extension.  Since 

all the landmarks are known and stationary, the position of one can be related to another 

by differencing their positions.   

 

 1 1( ), 2, ,tgt tgt tgt tgt i N= + − = …i ip p p p  (3.66)  

 

Because the landmarks are stationary, the differences in their positions are constant.  

Therefore, no matter how many known landmarks are tracked, the state dimension 

remains the same. The LOS vectors iΔ  used in the additional measurement equations are 

therefore expressed: 

 

 , 1,...,i tgt i i NΔ = − =p p  (3.67) 

 

 The augmented measurement equation ( [ ( )]t′′h x ) simply becomes a vector of N 

functions taking the form of Equation (3.36). 
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The Observation matrix then contains N pairs of rows, where the ith pair of rows are: 
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(3.69)

3.3 Image-Only Measurement Observability 

 The strength of aiding action provided to the INS from optical measurements 

depends on the degree of observability of the INS error states as provided by the 

measurement equation.  The observation matrix ( )( )tcH x  is time-dependent.  Hence, the 

degree of observability provided by bearings-only measurements requires the calculation 

of the observability grammian 

  

 ( ) ( ) ( )
0

( ) ( )
T

t
t T tt e t t e dt= ⋅∫ F F

c cW H x H x  (3.70) 

 

Note that the observability grammian is also trajectory-dependent.  A study of the 

observability of bearings-only measurements for a SLAM based system has been 

accomplished [30], but this section fully develops the problem for an airborne application 

in an attempt to design an aiding strategy more effectively.  It is important to note that 

this study applies to the update cycle of the EKF and speaks nothing to the error growth 
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that occurs between measurements.  Error growth that occurs in the EKF propagation 

cycle is a function of the IMU being used.  This error is constrained most effectively 

when the measurement equation has good observability.  This study also examines the 

continuous-measurement case, but the findings can be extended into the discrete, still-

camera realm in good faith.   

3.3.1  Surveyed Landmark Tracking Observability.  It is useful to begin with the 

simpler condition of tracking landmarks with perfectly known positions (nav-state not 

augmented for landmark position estimation).  Consider wings-level, constant-altitude 

flight.  A downward looking camera is employed from the aircraft flying at a constant 

velocity (v) and constant altitude (h) over flat terrain for time (t).  A landmark directly 

along the flight path is tracked.  The INS aiding action may be thoroughly examined in 

this simple scenario. 

The camera, body, and nav- frames are all nominally aligned. Thus, In
b =C .  In 

the case where one known landmark is tracked, the 9x9 observability grammian for level, 

un-accelerated flight is  



 

113 

2

1

1

( )

22

x

2 2

x

2

x x x

2

x

2

2

2 22 2 3

x x x

2 2

3

2

2

Δv v

h h h

8Δ t 6Δ tv v
+ +

h h 12h 12h

Δv t
0 - - 0

h h 2

t
0 0 0

2

Δ Δ t Δv t v
- - 0 - - 0

h h 3 h h 2h

Δt v t
0 - - 0

2 h 2h 3

t t
0 0 0

f 2 3
h Δ tv t t v

- - 0 -
h 3 2h 4 h

t

2

t

2

t

t
3

t
3

t

t

t t

+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

=
⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

W

0
2

0

23 2 3

2x

2 2 x2 2 2

x x

2 3

x x

2

x

2

x

2 3

2 23 3

x x

x

x

2

+ + +
v

h

3Δ tv gt v vt
Δ t

Δ +hv gt h 8 2h h 4
-

h h 6 Δ gt Δvt
Δ

6h 2 h

Δ t 2Δ t Δ tt v vt gt ht

3 1 4 3 8 2h 2

Δ t
- 0

3h

gt gt ht
0 h 0

6 8

0 0

Δ t
0 +Δ 0

3 2

4

vtvt
2

+

− − +

+ − − −

+ −

− −

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢ ⎛ ⎞⎢ ⎜ ⎟⎢ ⎝ ⎠
⎢
⎢
⎢

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎝ ⎠ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

0

0

2 22 2

x x

2

x

23 2 3

2x

x2 22 2

x x

2 2 2 3

x x

2
x

2 3

x

2
x

3

3

Δ t Δ +hv t v gt
- - 0 - 0

h 3 2h h h 6

gt
0 h 0 +Δ

6

3Δ tv gt v vt
Δ t

8Δ t 6Δ tv v h 8 2h 4h
+ + 0

h 12hh 12h Δ gt Δvt
Δ

6h 2 h

Δ t 2v v vt
- - +

h 3h h 4

Δ tt v

3 1

t

4

t

4

vt
2

−

− − +

+ − − −

+
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎝ ⎠⎝ ⎠

⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

0

2

2 23

x x

3

x

3 2 22 4 4

x x

3 2 22 4 2

x x

2 2 3 32

x x x

2

22 4 2 3

2 x

2

Δ t Δ tgt ht
+ +

3 8 2h 2

Δ tgt ht
0 0

8 3 2

3Δ t Δ tv vt v gt

Δ t Δ tv t v 5 4 h 10 hh
0 0

5 h 2hh 3h Δ gt Δ t Δ tvt

8h 3 22h

gΔ tg t ght gvt vht
0 0

20 3 8 6 2

vt

h

+

−

−

+ + −

+ − − −

− + +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞⎛ ⎞ ⎝ ⎠ ⎝ ⎠+ +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

−

20
2

0

2

2

3

x

3 2 22 4 4

x x

2

3 32

x x x

2

3

x

3 32 4 2 4
3 2 2 x x

x x2

2 2 42 4 2 2 2
2 2x x

x x2

t gΔg t t gh

3h 3

Δ

3Δ t Δ t v vv vt v gt

hh5 4 h 10 hh
0 0

Δ gt Δ t Δ tvt
Δ h

8h 3 22h

gΔ tgvt

8

Δ t 2Δ tt v gvt
Δ vt Δ 2t

5 5 h h

t v
2tΔ v

h

Δ
h

+ − − + +

+ + −

+ − − − +

+ + + −

+ +

+

−

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 2 2

2

x x x

vht v t
Δ 0 Δ t+Δ

6 2 3
h v− −

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

+ ⎥⎦

(3.71) 



 

114 

where  ( ) T

o x y zt = ⎡ ⎤Δ Δ Δ Δ⎣ ⎦    ,   ( )x xt +v tΔ = Δ ⋅    ,   0y (t)Δ =   ,    z hΔ ≡ .  

Additional variables are the camera focal length ( f ) and gravitational constant (g). 

Here, the components of the specific force resolved in the body frame ( xf , yf  

and zf ) are defined: 0x yf f= = , and zf g= − , and thus not readily apparent.  

Additionally, the velocity component is strictly along the b-frame x-axis as aircraft 

generally fly with no sideslip.  Drift due to wind is ignored.  This can be done without 

loss of generality as an arbitrary body frame can always be redefined to align with any 

constant velocity.  To increase the readability of the above matrix, the tracked landmark 

was chosen to be along the flight path ( 0y (t)Δ = ).  Through analysis it was found that 

this restriction did not affect the rank of the observability grammian matrix.  Following 

matrices are less complex and the 0y (t)Δ =  restriction is omitted. 

Landmarks must be tracked over time. Note that, as time goes on, the elements of 

the grammian grow polynomially.  Additionally, the entire matrix is scaled by t (factored 

out, and multiplying the whole matrix).  This implies the great benefit of long observation 

periods.   

There is a suggestion of scalability as well.  It is evident by the 21 h term factored 

out, and multiplying the whole matrix.  This suggests that the absolute altitude plays as 

an important role as the angular geometry, and will be evaluated with simulation in 

Chapter 4. 

To calculate the rank of the observability grammian, its Row Reduced Echelon 

Form (RREF) is obtained: 
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 (3.72) 

 

where the position of the tracked landmark is not confined to the flight path 

( ( )y ytΔ = Δ ).  Notice that in the RREF, all reference to time drops out.   Tracking a 

landmark for long period does not affect rank, but will affect matrix condition number. 

The 9X9 grammian matrix is not of full rank 9, but has a rank of 6 for all time. 

Only a partial state estimate can be obtained. Tracking a single known landmark will not 

enable one to aid all 9 INS states. Additional independent measurements of the 

navigation state are needed for full INS aiding action (full rank).  

 In the RREF of the grammian, the forms /h v , /x vΔ  and /y vΔ  appear quite 

often.  The ratio of velocity to lateral displacement and ratio of velocity to altitude (V 

over h, as it is more commonly known) plays an important role in INS aiding using 
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bearings-only measurements.  V over h is a measure of image apparent angular rate and 

has units of radians per sec (sec-1).  This parameter ultimately drives the measure of 

geometric dilution of precision (GDOP) and observability grammian condition number.  

By controlling V over h, one cannot affect rank per se, but can maximize aiding benefit 

and distribution.      

 In the case in which the object is directly over-flown ( 0yΔ = ), the rank remains 

6 as well.  This implies that the lateral position of the landmark does not affect the overall 

observability of the system.  Geometry does, however, affect how the aiding action is 

distributed.  Better insight to this distribution is attained by examining the condition 

number of the observability grammian and GDOP.   

In the case in which the aircraft’s trajectory is not constrained to the level, un-

accelerated flight regime (where the specific force vector is aligned with the z-axis), the 

grammian rank increases to 7, and the RREF is 
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This implies that accelerated flight does benefit INS aiding with a single tracked 

landmark of known position.  This condition requires continuous maneuvering and is, 

therefore, impractical for typical missions.  Accelerated flight is more favorable, but the 

level un-accelerated flight condition is the worst case, and will be considered from hence 

forth.   

Tracking one landmark does not provide full observability.  The question is thus 

posed whether tracking more objects will improve observability, and if so, how many is 

enough.  It turns out, that two tracked landmarks are enough to provide full grammian 

rank, and thus, full observability and INS aiding action.  The following development 

illustrates this. 
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The grammian for level, un-accelerated flight and two tracked landmarks can be 

expressed as the sum of two grammians, each corresponding to a single tracked 

landmark.   

 

 
1 2

2 ( ) ( ) ( )t t t
Δ Δ

= +W W W  (3.74)                              

where, it can be expressed  

 1 1 22Δ = Δ + −P PP P  (3.75) 

 

The grammians 
1

( )t
Δ

W  and 
2

( )t
Δ

W  correspond to the two tracked landmarks, and take 

the form of the single track grammian above, but evaluated at the corresponding relative 

landmark position vectors 1Δ  and 2Δ .   The observability grammian for multiple tracked 

landmarks simply becomes the sum of the single track grammians, evaluated for the LOS 

vector to the additional landmarks: 

 

 
1

( ) ( )
i

i
Δ

=

=∑
N

NW t W t  (3.76) 

 

where N is the number of landmarks being tracked, iΔ  is the LOS vector to the ith 

landmark, ( )tW is the single landmark grammian from Equation (3.71), and ( )tNW is the 

composite observability grammian matrix for N tracked landmarks of known location.  
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This realization greatly simplifies the procedure for evaluating observability grammian 

matrix condition number when tracking many landmarks. 

For flight in the vertical plane, and without the level flight assumption, the RREF 

of the grammian associated with the ith tracked landmark is 
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(3.77) 

 

When two or more landmarks are tracked, the RREF of the observability 

grammian is an identity matrix. The question must be answered as to whether or not two 

tracked landmarks will always give an observability grammian with full rank.  The 

answer is affirmative, but there are two exceptions.  The grammian has full rank as long 
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as the LOS vectors for both landmarks are not co-linear, and the aircraft is not in a state 

of free-fall ( 0x y zf f f= = = ). 

The LOS vectors for both landmarks are co-linear if the following is true 

 

 12 aΔ = Δ   (3.78) 

 

where a is a scalar multiplication factor.  If the camera and the two landmarks, all lie on a 

straight line, the observability grammian’s rank drops to 6.  This is intuitive, as both 

landmarks provide the same measurement information to a two-dimensional camera; the 

only difference between the landmarks (in the camera frame) is in depth, a dimension the 

camera cannot discern.   

The camera and two landmarks are on the same straight line in two degenerate 

cases: 1) the aircraft crosses the axis defined by the two landmarks, and, 2) the aircraft is 

flying along this same axis.  In the first case, the observability drop is transitory.  As the 

aircraft crosses this axis, the grammian rank drops momentarily, but then returns.  The 

condition of the observability grammian matrix will remain poor until the aircraft is far 

enough away to ensure good geometry.  If the aircraft travels along the axis, it will lose 

aiding benefit in the unobservable dimensions; position and velocity along the axis, and 

in rotation about it.  This is illustrated in Figure 3.5. 
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Figure 3.5:  Unobservable dimensions for two landmark tracks. 
 
 

 An INS on board an aircraft traveling along the axis formed by the two tracked 

objects will receive no aiding benefit in position, velocity and rotation along and about 

that axis.  As the aircraft approaches and crosses such an axis, observability drops and 

aiding suffers. 

The second exception to the rule, weightlessness ( 0x,y,zf = ), reduces the 

observability grammian matrix rank to 8 (when 2 or more landmarks are being tracked).  

For typical aircraft applications, weightlessness, or zero-g, conditions tend to be 

transitory, and should not cause significant aiding degradation.  Free fall weaponry using 

this method of aiding would be affected, however.  Notably, GPS aiding (of an INS) 

suffers much greater than landmark tracking; loosely coupled GPS aiding rank drops to 6 

at zero-g conditions. 

3.3.1.1 Non-Dimensional Study of Aiding Strength.  Full observability speaks 

to the existence of a complete aiding solution, but says very little of the quality of that 
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solution.  For this, GDOP and observability grammian matrix condition number must be 

studied.  The GDOP is defined as 

 

 ( ){ }1t −=GDOP trace W  (3.79) 

 

where ( )tW  is the observability grammian when two landmarks are being tracked.  A 

high condition number of the grammian matrix indicates poor geometry and consequently 

a high GDOP.  The result of a full rank grammian with high condition number is that all 

states are being aided, but the aiding action is poor and unevenly distributed.  GDOP 

provides a scalar measure for the dilution of precision attained by a particular geometry 

presented to the measurement device.  A low GDOP value indicates little dilution of 

navigation aiding precision.   

It is important to non-dimensionalize the variables and problem parameters when 

studying the nature of the observability grammian matrix.   This ensures scaling issues 

don’t obscure the insight into observability gained from the condition number or GDOP 

calculation, and, hence, INS aiding action.  The following development explores the 

effects of geometry in a simple scenario.   

      The scenario considered entails an aircraft at an altitude h and velocity v, traveling 

towards, and over-flying, two landmarks arranged in a line.  The positions of the 

landmarks are expressed as a multiple of the aircraft’s altitude, as shown in Figure 3.6. 
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Figure 3.6:  Flight in the vertical plane.  
 

 

 The aircraft at an altitude h and velocity v travels towards two landmarks arranged 

in a line; their positions are expressed as multiples of the aircraft’s altitude.  In this 

scenario, all motion is confined to the z-x plane; y≡0, though 3-dimensions are still 

maintained in the state vector.  

To non-dimensionalize, all positional variables are scaled by h.  Time is non-

dimensionalized as follows: 

 gt t
h

′ →  (3.80) 

and 

 T Tg
h

′ →  (3.81) 

where T is the duration of flight and g is the Earth’s gravitational acceleration.   
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Aircraft velocity is non-dimensionalized by setting  

 

 1v v
gh

′ →  (3.82) 

 

Aircraft and ground object positions are thus expressed:   

 

            [ ]t 0 1v= T
acp               [ ]0 0= α T

1p                [ ]0 0= β T
2p (3.83) 

 

Finally, the specific force vector is also normalized by dividing through by g: 

 

 [ ]0 0 1= T
f  (3.84) 

Without loss of generality, we constrain β  to be greater than α . 

 

 
−∞ < α < ∞
α < β < ∞

 (3.85) 

 

The parameters α  and β  determine the geometry of the measurement arrangement 

The time variable is constrained to those instances when both ground objects are 

in view.  For the sake of generality, assume an ideal camera with a 180 degree field-of-

view (FOV) and infinite pixel resolution.  The camera’s tracking ability is not limited by 

the geometry of the objects. 
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Thus the four non-dimensional problem parameters are α , β , v′  and T′ .   The 

9x9 non-dimensionalized dynamics matrix for this scenario is 

 

 
3 3 3

3 3 3 3

3 3 3

I 0 1 0
-1 0 0
0 0 0

,
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= × × =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

0 0
0 0
0 0 0

F e e  (3.86) 

 

and the relative ground object position vectors needed for the measurement equation are 

 

 [ ]1 - 0 1v t′Δ = α T  (3.87) 

and  

 [ ]2 - 0 1v t′Δ = β T  (3.88) 

 

The focal length (f) must also be divided by h so that the non-dimensional focal 

length is small. The nominal body-to-nav frame DCM is the identity matrix, and the 

altitude (h) is unity. Hence, the observation matrix is 

 

  

 ( )

( )

( )

2

2

1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0

( )
1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0

v t v t
v t

t f
v t v t

v t

⎡ ⎤′ ′α − −α +
⎢ ⎥

′− −α⎢ ⎥= ⎢ ⎥′ ′β − −β +⎢ ⎥
⎢ ⎥′− −β⎣ ⎦

cH x  (3.89)  
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Choosing the geometry 

 50, 1, 1 , 10mv =   v h g f
sec

−⎛ ⎞⎡ ⎤′ ′ ′α = β = = =⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 (3.90) 

 

allows the GDOP and condition number (κ (T)) for this scenario to be calculated as a 

function of tracking time (T). 

Figures 3.7 and 3.8 illustrate the behavior of non-dimensional GDOP in this 

simple scenario as time progresses.  The amount of time a landmark is tracked is defined 

to be dwell time.   
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Figure 3.7:  GDOP vs dwell time in the non-dimensional case study. 
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Figure 3.8:  Observability grammian matrix condition number vs dwell time in the 
non-dimensional case study. 

 
 

Figures 3.7 and 3.8 illustrate the benefit of tracking features for long periods of 

time.  A long dwell time allows the aircraft to traverse through space, and develop larger 

observation or tracking angles on tracked landmarks.  The nature of these plots show the 

great benefit of the first 45 degrees of tracking angle (occurring at time = 1 for this non-

dimensionalized case), and that relatively little added benefit is gained past this point.  

The condition number begins to rise again after approximately 2.3, but this is attributed to 

Non-dimensional dwell time
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the tracked landmarks approaching the co-linear condition as they move to the horizon.  

In this case, the geometry effects overcome the benefit of dwell, and the matrix 

approaches a singular condition. 

In their work, George and Sukkarieh achieved reasonable navigation performance 

using a SLAM algorithm [5].  They leveraged dwell time and a fast camera rate to 

converge on a solution.  The test did, however, revisit the same environment, spiraling 

around a set of features with a side looking camera.  Looking into the turn naturally 

increased dwell time.  If this type of flight profile meets mission needs, then performance 

can be greatly increased.  However, the dwell time on landmarks tracked when traveling 

long distances is driven by camera look angle and optical resolution.  Performance is then 

affected by GDOP as landmarks move to the horizon.  A balance must be made to 

optimize all variables.  In either case, it is evident that tracking a landmark over time is 

beneficial, but there are other factors to consider. 

3.3.1.2 V over h Influence on Aiding Strength.  V over h stands out as the key 

aircraft controlled parameter (in the observability grammian matrix) affecting aiding 

quality.  Landmark relative lateral displacement will change as a matter of course as 

landmarks traverse the camera field-of-view.  The velocity-to-height ratio, however, is 

directly established by the flight path.  The observability grammian matrix is a nine-

dimensional function making a concise analysis very difficult.  One dimensional 

measures of GDOP and matrix condition number give some insight, but sweeping 

generalizations cannot be made.  The V over h investigation is even more complex as 

varying velocity, height or dwell time, ultimately affects the geometry.  No true single 
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variable isolation can be made.  In any case, this section will examine the non-

dimensional scenario in an attempt to gain some insight. 

Consider the non-dimensional case describe above, but allow velocity to vary, 

adjusting the V over h ratio.  Because dwell time and tracking angle are related by 

velocity, two conditions are considered.  In the first, the dwell time is held constant as 

velocity (V over h) is varied.  This leads to a tracking angle that increases with velocity 

(V over h).   In the second, the total tracking angle is made constant by varying the dwell 

time to achieve the same distance traveled.  In this case, one landmark starts 45 degrees 

in front and finishes directly below, while the other starts directly below and finishes 45 

degrees behind.  The constant dwell time case is important because time between images 

(measurements) is constant.  Since the Kalman filter aims to limit INS error growth that 

accumulates between measurements, it is important to examine the ability of the system 

to control this growth effectively over constant time intervals.  These intervals will of 

course vary with application.  The constant tracking angle case is important to examine as 

it eliminates the geometry from the equation, leaving the effect of dynamics.   

The effect of scalability cannot be ignored.  It is also illustrated for each of the 

conditions describe above.  The height is varied about the nominal height (ho) for three 

different cases, but angular geometry is held constant.  Figure 3.9 illustrates the effect 

varying V over h has on observability grammian matrix condition number.  
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Figure 3.9:  Observability grammian matrix condition number as a function of V 
over h.  For a non-dimensionalized case, as altitude (h) varies about a nominal 
height (ho). 
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For the constant dwell time case, lower V over h ratios yield lower condition 

numbers, and thus more evenly distributed aiding (among all estimated states).  A ratio of 

approximately 1 appears to be a knee in the curve before the matrix condition number 

grows very large.  This is due to the fact that, for the non-dimensionalized dwell time of 

1, both landmarks remain within 45 degrees of the nadir when the V over h ratio is less 

than 1.  The dwell time study above showed that tracking angles up to 45 degrees provide 

the best aiding.   For V over h ratios greater than 1, the landmarks have passed underneath 

and proceeded towards the horizon.   In this case, the geometry has drastically changed 

and the landmarks approach a co-linear condition.  This is the reason condition number 

grows, not V over h ratio itself.  When the landmarks remain inside 45 degrees of nadir, V 

over h has little to no effect on grammian matrix condition number or the distribution of 

aiding among the navigation state variables.  

Notably, a lower altitude (h=ho/2) provides better aiding than a higher one 

(h=ho*2), despite the same V over h ratio and geometry (absolute altitude drives the 

magnitude of the condition number, while V over h drives the shape of the graph).  This 

speaks to the scalability problem faced by bearings-only measurements.  The angular 

resolution of a camera drives its ability to discern small displacements from far away, and 

thus positional estimation suffers.  This study implies that flying slow and low (flying 

lower for a given V over h ratio) provides the strongest and most even aiding.  This is 

supported by Veth’s work on indoor navigation [26]. 

In the constant track angle case, the landmarks all remain inside 45 degrees of 

nadir, and each experience a 45 degree tracking angle.  The dwell time however varies 
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with V over h.  Figure 3.9 implies a sweet spot somewhere in the middle.  The V over h 

ratio factors into the observability grammian in many places.  Too large or small a value 

will naturally increase the condition number of the matrix.  This finding merely indicates 

that the aiding will not be evenly distributed.  It is proposed that landmarks which have 

low angular rates (or effective V over h) provide good attitude aiding, but poor positional 

aiding.  It is also proposed that landmarks which have the highest angular rates (or 

effective V over h) provide the best positional aiding and poorest attitude aiding.  This 

proposition is supported by the fact that a star tracker (stars are effectively all on the 

horizon because none exhibit angular rates due to aircraft translation) provides excellent 

attitude aiding, but no positional aiding.  The fact that Figure 3.9 illustrates a non-

dimensional case and the sweet spot varies with absolute height means that predicting the 

sweet spot is very difficult.  An aiding strategy that maximizes V over h span will 

increase the likelihood that the sweet spot is captured.  Also, if in fact the two ends of the 

spectrum represent good attitude aiding and good positional aiding respectively, then 

capturing both ends will complement each other.  Chapter 4 will experimentally evaluate 

the effect of V over h and attempt to validate these propositions. 

A low V over h ratio at low altitude appears to be the most favorable condition to 

provide evenly distributed aiding to the whole navigation state.  The added benefit of 

increased attitude aiding is felt throughout the system, as a good attitude estimate is 

critical to resolve the rest of the navigation state.  This proposal is supported by the work 

of George and Sukkarieh who flew a small UAV at approximately 125 meters altitude 

and at slow speeds, looking sideways (into the turn) while orbiting a target area.  Altitude 
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and V over h were inherently low, and they achieved reasonable performance [5].  

However, this condition may not be attainable for many applications which travel in a 

straight line.   

The full aiding picture cannot be seen until GDOP is examined.  Consider the 

non-dimensional scenario from a GDOP perspective; see Figure 3.10.   Again, the 

constant dwell time and tracking angle are examined as well as scalability.   

In the constant dwell time case, there appears to be a slight advantage to a V over 

h ratio between 1 and 10, despite the absolute altitude.  In this region, the landmarks have 

exited the 45 degree cone about nadir.  The condition number has increased, but the 

GDOP has decreased.  This finding is not intuitive, but suggests that perhaps the higher 

tracking angle (for the given dwell time) provides an overall benefit that overcomes the 

effects that penalize condition number.   Thus, there is yet another sweet spot, but this 

one at a higher V over h than the associated sweet spot described above.   This suggests 

that an aiding strategy that captures higher V over h ratios could take advantage of an 

improved GDOP. 

Once again, the scalability principle shows that absolute altitude significantly 

affects GDOP across the board.  Lower absolute altitudes reduce precision dilution, and 

thus improve aiding action. 

 

 



 

134 

 

Figure 3.10:  Geometric Dilution of Precision as a function of V over h.  For a non-
dimensionalized case, as altitude (h) varies about a nominal height (ho). 
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In the constant track angle case, a lower V over h definitively improves GDOP.  

Since the aircraft-to-landmark geometry dependence is removed, it isn’t readily apparent 

why this is the case.  If the discrete case is considered, a lower V over h allows more 

measurements in the same tracking angle.  More measurements allow the corrupting 

errors to be averaged out more precisely.  If the limit is taken such that a continuous set 

of measurements is available, then the benefit of a lower V over h is understandable.  The 

dynamics of the inertial system cannot be ignored either.  In any case, this finding 

suggests that an aiding strategy that captures lower V over h ratios could take advantage 

of an improved GDOP.   

So far there has been evidence that capturing both high and low V over h ratios 

provide benefit.  This cannot be accomplished with a single landmark, but can be done by 

tracking many different landmarks simultaneously.  V over h ultimately drives aiding 

strength and distribution, and will be evaluated experimentally in Chapter 4.  

3.3.1.3 Look Angle Influence on Aiding Strength.  The question then arises, 

what V over h and what altitude should be flown for a given application (aircraft and 

mission).  This decision, of course, will be influenced by the performance of the aircraft 

and its mission requirements, but V over h can be affected another way.  Given an aircraft 

flying over flat terrain, the V over h ratio described only applies at nadir.  In actuality, V 

over h should be considered a measure of apparent angular rate, which varies throughout 

the scene.  Objects on the horizon show zero angular rate (for straight and level flight), 

while V over h is highest at nadir.  The benefit of a lower V over h is shown in Figures 

3.9 and 3.10.  The portion of the scene near the horizon naturally exhibits low V over h.  
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The portion of the scene near nadir naturally exhibits higher V over h, but doesn’t 

necessarily approach the critical and unknown sweet spots.   V over h can be, to an extent, 

varied by observing different portions of a scene.   

Suppose that the entire scene exhibits a V over h less than 1 sec-1.  This is optimal 

for even distribution of aiding (for constant time intervals), but can’t be generally 

guaranteed.  However, there exists a portion of every scene, between nadir and the 

horizon, where V over h is less than this threshold.  It must be stressed that condition 

number suffers if the lowest V over h is caused by tracking landmarks on the horizon.  

These landmarks will never generate large tracking angles.  With a wide enough lens, the 

camera FOV should strive to capture portions near the horizon for even aiding strength to 

all navigation states (over constant time intervals) in order to ensure that all navigation 

state errors are constrained.  However, due to the naturally low tracking angles of these 

landmarks, a complementary approach that tracks landmarks over large angles must be 

accomplished. 

  If a landmark position requires triangulation, a lower GDOP is more favorable.  

This was shown to happen between a V over h of 1 and 10 sec-1 (for the non-dimensional 

case).  This condition cannot be guaranteed in any scene, but there is no penalty for 

trying.  Given conventional aircraft performance, this condition would rarely exist 

anywhere other than at nadir.  Also, it would be rare for a conventional aircraft to exceed 

a V over h of 3-5 sec-1 at nadir.  Thus, to ensure the maximum benefit of a low GDOP, a 

camera FOV should strive to capture nadir.  Since a low V over h can always be 

guaranteed, and a high V over h cannot, capturing nadir should outweigh capturing the 



 

137 

horizon if camera field-of-view is limited, especially since landmarks tracked on the 

horizon require another to be orthogonally tracked at high V over h.  

The purposed sweet spots in the V over h spectrum cannot be practically predicted 

or controlled.  Despite this nature, it has already been shown that capturing both high and 

low V over h potions of the scene is beneficial.  Fortunately the sweet spots reside 

between the high and low limits demonstrated in the non-dimensional case.  An aiding 

strategy that captures the horizon and nadir will maximize the potential to capture the V 

over h sweet spots described here. 

Since landmarks generally exist below the horizon, a 180 degree field-of-view 

camera lens could reasonably view the entire scene presented to an aircraft.  This, 

however, creates a complex calibration problem.  A 90 degree field of view is a practical 

compromise between pin-hole camera model calibration, and capturing enough of the 

scene.  This would also ensure capturing nadir and one horizon, but which horizon is 

optimal?  Humans look forward, capturing the forward horizon, but this is because 

humans use their eyes for navigation and guidance.  From an aviation navigation 

standpoint, guidance can be accomplished by steering to inertial coordinates, freeing the 

camera to look anywhere (if dedicated to the navigation task).   

An EKF is an iterative process, and the element of time ordering plays an 

important role.  The method by which a landmark enters and exits the scene affects the 

resultant aiding.  If a landmark’s position is well surveyed, then, arguably, order doesn’t 

matter.  One would want simply to track it for as long as possible, or dwell on it, with the 

lowest possible observability grammian condition number and GDOP to ensure the most 
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optimal aiding.  Suppose, however, that the landmark position is not known.  It would 

have to be located by triangulation before dwelling on it would provide any benefit.  This 

suggests that the camera should be positioned to observe landmarks in the higher V over 

h portion of the scene before dwelling in the lower V over h portion of the scene.  For a 

90 degree field-of-view, this means pointing the camera backwards at a 45 degree angle.  

Figure 3.11 illustrates this principle.   

 

 

 

 

 

 

 

 

Figure 3.11:  Rear facing camera geometric advantage. 
 

 A rearward looking camera allows landmarks to be triangulated before they are 

tracked, thus maximizing useful dwell time.  This assertion is counter-intuitive, but 

insightful and unique to this research.   

If time were not a factor, i.e., an offline optimal smoother or batch estimator was 

used, order of flow would not matter.  However, it was shown in Figure 3.7 that dwell 

time affects condition number.  Looking backwards maximizes useful dwell time on 

features that have been first triangulated.  Looking forward, the system dwells on 
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landmarks before they have been triangulated well (the best GDOP occurs just before 

landmarks leave the scene).  This is of course a simplification of a continuous process, 

but the principles remain.  An experimental evaluation of camera look angle is 

accomplished in Chapter 4, supporting this assertion. 

3.3.1.4 Scene Geometry Influence on Aiding Strength.  From a strict 

observability standpoint, one needs only to track two surveyed landmarks.  Matrix 

condition and GDOP, however, depend on geometry.  Tracking many randomly placed 

landmarks increase the probability of attaining good geometry (a low condition number 

and good GDOP) at all times.  The observability grammian, condition number, and 

GDOP calculations are highly non-linear, complex, time-variant, and thus difficult to 

predict.  A single study of the effects of scene geometry provides little predictive value 

for deciding which geometry would best suit the myriad of scenarios an aircraft could 

face.  In practice, one would benefit from an over-determined system, by tracking as 

many landmarks as possible, providing a varied set of geometry at all times.  Using 

statistical brute force, randomly selected landmarks spanning the scene give the most 

robust strategy to ensure a low GDOP and condition number at all times. 

3.3.2 Alternative Measurements to Augment Observability.  Reconsider the 

single landmark tracking case.  It is an under-determined problem, resulting in a less-

than-full-rank observability grammian matrix.  The question is posed, what, if any, other 

passive measurements may be made to achieve full rank?  This investigation is pivotal in 

the development of an aiding strategy for tracking landmarks of opportunity. 
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An inspection of the observability grammian’s RREF in Equation (3.72) reveals 

that measuring h eliminates ambiguities between height and velocity (allowing the h / v  

dimension to be resolved).  Both position and velocity would benefit since this term 

appears in row 3 and 6, suggesting a potential rank increase of 2.  Additionally, the 

specific force vector components ( x,y,zf ) are factored with x,yΔ  and v , requiring a 

measurement to resolve.  In level flight x,yf are essentially 0, leaving only v  and the 

horizontal LOS components ( x,yΔ ) in the last column.  The most immediately evident 

solution is to measure heading (ψ ) in order to resolve directional ambiguities.   This 

suggests that, in lieu of tracking additional landmarks, full observability may be 

achievable with passive measurements that are readily available on most aircraft: altitude 

via an altimeter, and heading via a compass. 

 Taking an altitude measurement results in augmenting the observation matrix as 

such: 

 ( ) ( )
[ ]

' ( )
( )

0 0 1 0 0 0 0 0 0
t

t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

c
c

H x
H x  (3.91) 

 

where ( )( )tcH x is defined in Equation (3.59).  Recalculating ( )tW  reveals that the 

simple addition of an altitude measurement increases the rank of ( )tW  from 6 to 8.  The 

RREF becomes: 
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (3.92) 

 

Notably, when the un-accelerated flight restriction is removed, full rank is achieved.  

Maneuvering has consistently been shown to help aiding. 

Likewise, taking a heading measurement results in augmenting the observation 

matrix as such: 

 ( ) ( )
[ ]

' ( )
( )

0 0 0 0 0 0 0 0 1
t

t
⎡ ⎤
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⎣ ⎦

c
c

H x
H x  (3.93) 

 

Recalculating ( )tW  reveals that the simple addition of a heading measurement increases 

the rank of ( )tW  from 6 to 7.  The RREF becomes:  
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 (3.94) 

 

Notably, when the un-accelerated flight restriction is removed, a rank of 8 is achieved.  

Maneuvering has consistently been shown to help aiding. 

Lastly, taking both a heading and altitude measurement results in augmenting the 

observation matrix as such: 
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t
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⎡ ⎤
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c
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H x
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and produces a full rank observability grammian matrix. 
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Notably, measuring either xΔ  or yΔ  (aircraft position states) yield the same result 

as measuring h , but are not measurements that can be made passively like altitude.  

Single channel inertial velocity measurements increase rank by 1, but cannot be measured 

by typical (independent) passive sensors.  Additionally, they have no effect on rank when 

altitude is simultaneously being measured.  Roll or pitch measurements have the same 

effect as heading, but are again not available through (independent) passive sensors.  

Lastly, only heading or roll measurements solve the observability problem caused by the 

zero-g condition, restoring full rank. 

In summary, independent measurements of the heading (ψ ), the altitude ( h ), and 

bearings measurements of a single known landmark make it possible to update the 

complete nav-state.  Atmospheric pressure bias and magnetic variation would need to be 

considered, but change slowly and should provide little challenge.  This is an important 

finding as the additional measurements of ψ , h will be further discussed in the case when 

landmark position is not known independently, and full observability cannot be achieved 

through landmark bearing measurements alone. 

3.3.3 Estimated Landmark Position Tracking Observability.  Tracking surveyed 

landmarks (without augmenting the navigation state vector to estimate their position) is a 

relatively trivial task and has been demonstrated before [8].  When landmark positions 

must be estimated (as proposed in SLAM and SLAAMR), the navigation state dimension 

grows and the observability grammian changes.  As described in Section 3.2.6, when 

tracking N landmarks of unknown position or landmarks of opportunity (LOO), the 



 

144 

navigation and error states are augmented, and the observation matrix ( )( )tcH x  is 

augmented with two additional rows for each of the N tracked LOO: 
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When the observability grammian matrix is calculated with the new observation 

matrix and state vectors, it takes a similar form as in the known tracking case.  The inner 

9x9 matrix is identical  

  

 '
9 9( ) ( )t t=N x NW W  (3.97) 

 

where ' ( )tNW  is the observability grammian matrix for N estimated landmark tracks and 

( )tNW is the observability grammian matrix from the N known landmark tracking case as 

defined in Equation (3.76).  
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Additionally, the summation property from Equation (3.76) remains true. 

 ' '

1
( ) ( )i i

i
Δ

=

=∑
N

NW t W t  (3.98) 

 

and ' ( )i iΔ
W t  is defined 
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where m n0 x  is a m-by-n matrix of zeros, iW  is short hand for ( )i iΔ
W t  and ( )i j:k,m:nW  is a 

subset of iW  defined by the j through kth row and m through nth column.  It stands to 

reason that a similar extension is made for the RREF of ' ( )tNW . 

Two questions arise and must be addressed.  First, can full observability 

grammian matrix rank be obtained when no survey is provided?  Second, does the 

increased navigation state dimension affect observability when landmark positions are 

surveyed independently, but inserted as “good” estimates?  The answer to the first 

question is no, and the second is yes, but for all practical purposes, no.  The development 

follows. 

3.3.3.1  Landmark of Opportunity Tracking.  Again, consider the case of un-

accelerated flight with two tracked landmarks, with positions that are now estimated.  

Call these landmarks of opportunity (LOO).  '
1 ( )tW  becomes a 15x15 matrix with rank 
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10.  Understandably, full rank cannot be achieved by measuring angular differences 

between two positions, both of which are unknown.   In fact, for the specific case of 

level, un-accelerated flight over flat terrain, rank trails state dimension by a constant 

value, 5, as the number of tracked landmarks increases.  State dimension N x  grows 

linearly with number of tracked landmarks NL  as follows 

 
0x xN N 3 NL= + ⋅ ,    

 ( )'Rank ( ) N 5xt = −NW  (3.100) 

where 
0xN  is the length of the basic navigation state (9 or 15, depending on inclusion of 

sensor bias states).  This constant offset suggests that tracking many landmarks may 

eventually dilute the effect of the underdetermined set of measurement equations.  The 

dimensions along which observability is not obtained are not apparent, but their number 

does not grow with added landmark tracks.  It cannot be said that tracking more LOO 

will alter the nature of the unobserved dimensions, but there is no observability penalty 

for tracking many.  It is proposed that tracking many LOO may dilute the effect of 

deficient rank with no penalty.   

This proposition is key to the design of the SLAAMR algorithm, as it incorporates 

many simultaneous tracks.  The effects of tracking varying numbers of LOO will be 

evaluated experimentally in Chapter 4.  Tracking more landmarks increases state 

dimension linearly, but computation speed geometrically.  For the SLAAMR algorithm, 

implemented in Matlab©, using ten tracks was a practical compromise between speed and 

performance.  Ten tracks were sufficiently many, yet allowed real-time computation. 



 

147 

 Another important finding is that, if both tracked landmarks fall along the flight 

path, rank drops from 10 to 9.  This is an important distinction from the known landmark 

tracking case in which lateral offset ( 0y (t)Δ ≠ ) did not affect rank.  This speaks to the 

importance of varied landmark geometry.  Along with tracking many landmarks, 

SLAAMR ensures to maximize lateral separation between chosen landmarks.  To ensure 

a robust solution allowing for rolls and turns, new landmarks are chosen to track such that 

the entire population of tracked features spans the camera frame.  This allows rolls and 

turns in any direction without dropping a significant portion out of the field of view.  

SLAAMR accomplishes this by weighting new feature selection based on distance from 

each other, frame edges, open space in the image, etc.  This is an ad hoc technique and 

designed with engineering judgment. 

 When the additional independent measurements of altitude and heading are 

applied as described in Section 3.3.2 to the case in which two unknown landmarks are 

tracked, rank increases from 10 to 12 (full rank being 15); each measurement contributing 

one order of rank.  In fact, rank now trails state dimension by only 3 as the number of 

tracked landmarks increases.  This holds true when the level flight restriction is removed.  

In the known landmark position tracking case, heading and altitude measurements 

enabled full observability when tracking a single landmark.  In the unknown case, full 

rank can never be achieved.  Nonetheless, observability increases, and the effects of these 

measurements is evaluated experimentally in Chapter 4. 

3.3.3.2 Using DTED to Constrain Errors Further.  Digital Terrain Elevation 

Data (DTED) is a satellite-based survey of the Earth’s surface.  It can be used to resolve 
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uncertainty in a LOO’s vertical position.  A direct measurement cannot be taken, but 

intersecting the 3-dimentional DTED map with the LOO’s image projection provides a 

good estimate of elevation.  With perfect knowledge of aircraft position and attitude, the 

errors in a DTED-based LOO elevation estimate are dependent on the fidelity of the 

DTED map itself.  However, if the aircraft position and attitude estimate used to intersect 

the map are errant, the wrong portion of the map will be intersected, and the estimate will 

be in error.  Areas of flat terrain are naturally less prone to this source of error, while 

mountainous regions are more prone.  In either case, without perfect knowledge of 

aircraft navigation state, DTED intersection errors are not independent of the navigation 

state errors, nor are they zero-mean or Gaussian.   

Consider, however, that perfect navigation state knowledge was obtainable, and 

two LOO were being tracked and their positions estimated.  The observability 

contribution of incorporating DTED intersections should be studied.  The DTED 

intersection produces a 3-dimensional position estimate, but only the vertical element is 

independent of the navigation state estimates.  If DTED intersections could be considered 

independent and direct measurements of landmark vertical position, the observation 

matrix would be augmented as such: 
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where the third (vertical) position state of both LOO are directly measured.  The resultant 

observability grammian matrix rank increases by an order of 1, no matter how many 

LOO are being tracked.  This holds true whether one LOO vertical position is estimated 

with DTED or all are.   

This behavior also extends to the case in which heading and aircraft altitude are 

measured, causing rank to trail state dimension by only 2 as the number of tracked 

landmarks increases.  This study is ideal, and not truly realizable, but the practical effect 

of DTED intersection is experimentally evaluated in Chapter 4. 

3.3.3.3 Surveyed Landmarks with Augmented State Vector.  Consider that the 

tracked landmarks were independently surveyed, but done so imperfectly.  In essence, the 

landmark positions are estimated, but the uncertainty is small, and the source is 

independent of the system being aided.  The independent position measurement/survey is 

applied directly to the landmark position states, and the uncertainty applied to the error 

state covariance matrix.  The state vector is the collection of estimated states augmented 

with the landmark’s surveyed position ( surveyp ): 

 

 ( ) 1
ˆˆ ˆ ˆˆ n n

i ac eb nb tgt tgtt ⎡ ⎤= Ψ⎣ ⎦# " "
TT T T T T T
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and the associated 3-dimensional uncertainty ( surveyP ) is inserted into the whole state 

covariance matrix ( ( )itP ), with zeros filling the cross covariance elements: 

    


