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Abstract 

 

 This research formally specifies the Schematic Protection Model (SPM) and 

provides a sound, flexible tool for reasoning formally about systems that implement a 

security model like SPM, to prove its ability to provide security services such as 

confidentiality and integrity.  The theory described by the resultant model was logically 

proved in the Prototype Verification System (PVS), an automated prover.  Each 

component of SPM was tested, as were several anomalous conditions, and each test 

produced results consistent with the model. 

 The model is internally modular, and therefore easily extensible, yet cohesive 

since the theory to be proved encompasses the entire specification.   This approach 

ensures the specification is flexible enough to incorporate any extensions that can be 

expressed algorithmically, such as the deontic logic properties of obligation, permission, 

possibility and necessity.  Furthermore, the modularity enhances the robustness of the 

model to ensure that previously-proved fundamental properties are not lost in the process 

of adding functionality. 
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A FORMAL SPECIFICATION AND PROOF  OF SYSTEM SAFETY 

 

USING THE SCHEMATIC PROTECTION MODEL 

 

 

 

I.  Introduction 

 

 

Background 

 

 Cyber technology has seen great advances in last 20 years.  The ability to create 

complex systems, and to combine the capabilities of individual systems into massively 

interconnected distributed systems has far outpaced the ability to model cyber systems 

and reason formally about their security properties.  Formal modeling and analysis has 

established the security properties of small-scale subsystems such as cryptographic and 

authentication protocols, and modeled the safety properties of some highly reliable 

systems [Bal07].  Techniques in these specialized areas have kept pace with technological 

progress, and they are used successfully today.  But the formal modeling and analysis of 

security properties of systems in cyberspace, such as computers, networks, or complex 

distributed systems has not advanced at the same pace.  Two system security models, the 

Take-Grant model and the Schematic Protection Model, were developed in 1977 and 

1988, respectively [Bis03].  These models have changed little since their introduction, 

and as a result, are rarely used in practice to analyze real-world systems. 

 Even so, the Schematic Protection Model still provides a sound and well-

understood theoretical model, which can be formally specified to model contemporary 

cyber systems.   
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 The demonstrated usefulness of formal modeling and analysis in the security and 

safety of protocols and the corresponding lack of progress in the establishing analogous 

properties in the cyber arena indicate a new approach may be warranted [Bal07]. 

 

Research Objective 

 

 The objective of this research is to develop a formal specification that implements 

the Schematic Protection Model, and can verify whether a given protection scheme 

correctly implements a specified security policy. 

 

Overview 

 Introduction. 

 This chapter introduces the research problem and explains how this research 

advances the state of the art using an automated tool for formally reasoning about the 

safety of systems specified in the Schematic Protection Model (SPM).  The developed 

Prototype Verification System specification supports future research by incorporating 

additional virtual processor modules.  These modules support additional functionality 

that can be described in an algorithm and translated into the PVS language through a 

sequential coding paradigm. 

 Literature Review. 

 Chapter II introduces logic systems, focusing primarily on propositional and 

predicate logic systems as a means of describing the underlying higher-order sequent 

calculus engine of the PVS prover.  The chapter discusses modal logics, specifically 

deontic logic, in response to limitations of the aforementioned classical logic systems.  

Extending SPM with deontic logic is recommended for future research. 
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 SPM provides the means to describe an abstract system, including entities that 

comprise the system and the rules by which they interact.  These rules describe the 

conditions under which the system can transition from one state to another, and 

consequently, allow it to be determined whether a particular state is reachable.  It is this 

characteristic that enables a proof that a system in a known initial state cannot end up in 

an unsecure state. 

 The PVS specification language, its integrated support tools and theorem prover 

are described. This tool was selected largely due to the empirical examination of various 

automated verification systems done by Sonali Ubhayakar in 2003 [Ubh03].   

 The sequential programming paradigm, contrasted with the now more familiar 

object-oriented mindset, is used to formulate linear algorithms to be translated into 

assembly-like pseudocode that describes the desired behavior of the model.  This 

pseudocode is translated into a PVS specification that implements the state machine 

presented by this research. 

 Specification of the Schematic Protection Model. 

 Chapter III presents a Prototype Verification System specification of the 

Schematic Protection Model followed by an annotated version of the specification itself. 

 The specification is considered in three parts, the first being initialization.  The 

initialization process declares datatypes and the variables that use them.  It includes 

system state initialization and setup functions common to any autonomous state machine 

being considered in the model.  The second and third parts each represent autonomous 

state machines that implement rights transfer and entity creation, respectively, in SPM. 
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 The description is followed by the specification itself, including the PVS 

statements with annotations.  The results are presented using PVS-prover output, 

followed by an analysis that includes an overview of the proof sequence. 

 Schematic Protection Model Validation Scenarios. 

 Chapter IV presents a series of exceptional conditions within the SPM and their 

respective formal specifications in PVS to demonstrate that the safety of the system is 

preserved.  These conditions test the model's ability to prevent an unsecure state 

transition.   

 Conclusion. 

 This research produces a formal specification that correctly implements SPM.  

This specification was designed to be robust, yet flexible as it will accept modular, 

autonomous additions in support of additional SPM modeling capabilities. 

 SPM specifications are a promising area for future research; they offer an 

established foundation from which to proceed.  The use of deontic logic to reason about 

system properties is proposed for future research.  Deontic logic provides the foundation 

for reasoning about obligation, permission, possibility and necessity, and is therefore 

expected to satisfy certain requirements that SPM itself cannot. 
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II.  Literature Review 

 

 

 Logic Systems 

 

 Propositional Logic. 

 Propositional logic is a system of formulating and combining propositions using 

atomic variables, logical operators, axioms, and rules of inference.  Atomic variables are 

declarative statements (i.e., propositions) such that, when their relationships are resolved 

in accordance with the system's axioms and inference rules, a determination of TRUTH 

or FALSITY can be made about the compound statement.  Logical operators are 

considered in a prescribed order of precedence to ensure that no ambiguity exists.  The 

axioms/rules must be both sound (all compound statements that resolve to TRUE are, in 

fact, true) and complete (any compound statement that is true can be determined to be 

TRUE by applying some combination of these axioms/rules.) 

 For example, using the atomic statements p and q, logical operators can be used to 

derive the familiar truth tables in Figure 1. 

p q p ∧∧∧∧ q 

T T T 

T F F 

F T F 

F F F 
 

p q p ∨∨∨∨ q 

T T T 

T F T 

F T T 

F F F 
 

p q p ���� q 

T T T 

T F F 

F T T 

F F T 
 

 

p ¬¬¬¬p 

T F 

F T 
 

┬ 

T 
 

┴ 

F 
 

 Figure 1.  Propositional Truth Tables 
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Predicate Logic. 

 Although propositional logic can represent simple relationships like and, or, not, 

and if… then, it cannot represent more complex notions such as for all x (∀x), there exists 

x (∃x), or concepts like only, and at least over a range of values.  Predicate logic uses 

variables, functions, and constants to represent these more complex ideas.  Variables 

represent atomic ideas, or propositions, as they do in propositional logic.  Functions are 

used to express relationships between the variables.  For example, Taller(x, y) might be 

used to mean x is taller than y, and would resolve to TRUE in a compound statement 

where that, in fact, held.  Constants can be thought of as functions with no arguments, 

simply returning their default value when invoked. 

 Modal Logics. 

 The propositional and predicate (aka classical) logics are the foundation for most 

formal models, where the truth about some aspect of the system is reduced to TRUE, 

FALSE, or perhaps UNDECIDABLE.  That is, a property holds (is TRUE), does not hold 

(is FALSE), or cannot be determined whether it holds (is UNDECIDABLE).  Classical 

logic cannot effectively support reasoning about systems where, for example; a property 

should hold, where some agent is obliged to see to it that something occurs, or where a 

property is possible or, conversely, is necessary.  Furthermore, classical logic does not 

support temporal reasoning.  Rather, it reasons about a snapshot of the system at some 

point in time.  That is, if a property is TRUE under given conditions, it is always TRUE 

for those conditions [Bal07].  Additionally, technical deficiencies in classical logic when 

reasoning about security have been identified [ChM06], including the well-known 

semantic paradox of material implication, the most troublesome example of which is that 

a false antecedent implies any consequent that follows.  Imagine trying to reason about 
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the security of a critical system in which Authenticated=FALSE implies 

Authorized=TRUE.  The system using this logic would allow any action to be 

accomplished by any entity, as long as they had not been properly authenticated first. 

 Reasoning about trust among distributed systems that must each perform certain 

actions to achieve a goal (but in fact may not) can be modeled using notions of obligation, 

permission, possibility, and necessity from deontic logic.  Extending the SPM with 

deontic logic is a promising area for further research. 

 The fundamental task of this research is to create a sound formal specification that 

captures the semantics of the Schematic Protection Model, which will ultimately enable 

formal modeling, analysis, and reasoning about various aspects of cyberspace security.   

 

The Schematic Protection Model 

 Introduction. 

 To determine the protection state of a system, rules that allow or prevent 

transitions from one state to another must be described.  With this structured framework, 

or schema, it can be proven whether an unsecure state can be reached from a given initial 

state.  The Schematic Protection Model (SPM) introduces one such framework for 

modeling an abstract system's security-related interrelationships. 

 In SPM, entities within the system are anything that can act or be acted upon, such 

as a user, a file, or a printer.  These entities are classified and labeled according to their 

protection type upon creation, which does not change for the life of that entity.  The entity 

also has associated with it zero or more tickets that collectively constrain the ways in 

which the entity can act to trigger events within the system.  Each ticket identifies a single 

right and the target-entity to which that right applies.  For example, if an entity possesses 
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the ticket Y/z, then the entity has z rights over the entity Y, or stated another way; the 

ability to do z to Y.  The set of all tickets that an entity has is in its possession is the 

domain of that entity.  Rights belong to one of two broad categories:  inert rights or 

control rights.  Inert rights are those that, when exercised, have no effect on the security 

state of the system (e.g., an authorized read or write operation).  Control rights are those 

that, when exercised, can affect the security state of the system (e.g., creating a new 

entity).  Rights are of interest as they describe the events that are allowed within the 

system, and thus describe whether a violation of security policy is possible in a given 

state.  If the domains were static, this would conclude the analysis, but one of the 

allowable events is the transfer of a ticket, which alters the reachable states, making 

further safety analysis necessary. 

 Rights can be transferred between entities if-and-only-if three conditions hold:  

the initiating entity has in its domain a copyable version of the ticket, there is a link 

between the entities, and there is an associated system policy, or filter function, which 

explicitly allows the transfer.  SPM differentiates between nontransferable and 

transferable rights with the copy flag.  That is, the transferable right r over file F would 

be designated by the ticket F/rc as opposed to the noncopyable F/r. 

 Domains.  

 Every entity in the system has associated with it a set of tickets that collectively 

describe how it can interact with other entities.  A ticket is a tuple of the target entity and 

the associated right, as described above.  Each right r has an associated copyable right rc 

[Bis03, pg. 66].  An entity need only possess the ticket X/r to exercise the right r over X, 
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but to copy the ticket to another entity, the initiator must possess the associated ticket 

X/rc in its own domain. 

 Links. 

 A link predicate defines a relationship between two subjects in the context of the 

tickets in their respective domains, and determines whether there is a link between the 

two.  A link predicate is a conjunction or disjunction (but not a negation) of the following 

terms for any control right z [Bis03, pg. 67] 

 X/z ∈ dom(X) (1) 

 X/z ∈ dom(Y) (2) 

 Y/z ∈ dom(X) (3) 

 Y/z ∈ dom(Y) (4) 

 TRUE (5) 

where dom(X) is the set of tickets that X possesses. 

 For example, the following link predicate establishes a link from X to Y, iff the 

ticket X/z is in Y's domain 

 link(X, Y) = X/z ∈ dom(Y). (6) 

 The predicate  link(X, Y) = TRUE is a universal link and establishes a link from X 

to Y unconditionally.  The existence of a valid link satisfies one of the three conditions 

that must hold for a ticket transfer to take place.  The action must also be allowed by a 

filter function associated with the type of link, determined by the protection types of the 

associated entities.  
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 Filters. 

 The filter function specifies the rights that may be transferred across the 

associated link.  The factors that determine whether to allow the operation are the entity's 

protection types (including that of the target entity, which may not be one of the two 

involved in the transfer) and the right to be transferred.  For example, for  superuser X to 

transfer a copyable read permission (rc) over file F to user Y, the link established in the 

preceding paragraph between X and Y would have to have the following filter 

 f( superuser, user ) = { file/rc } (7) 

where rc denotes a read right with an associated copy flag. 

 To preserve the principle of attenuation of privilege, "no entity may have more 

rights than its creator" [Bis03, pg. 71], an entity must possess a right itself before it can 

transfer that right to another.  This prevents the proliferation of privileges that would 

occur with no such constraint.  Accordingly, for X to copy the ticket F/rc to Y, it must be 

true that F/rc ∈ dom(X) in the first place. 

 Creates. 

 The means by which new entities are created has important implications for the 

integrity of the system.  New entities and their respective privileges introduce 

combinatoric relationships among system entities that could make safety analysis 

intractable.  In SPM, create-events are controlled by can-create relations between entity 

types, and associated create-rules that are invoked upon creation. 

 The set of entity-types T is partitioned into a subject set TS and an object set TO 

[Bis03, pg. 66].  An entity a can create another entity b iff the can-create relation cc(a,b) 

exists such that cc ⊆ TS × T.  For example, for subject X to create object F (where X is of 
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type user and F is of type file), the tuple (user, file) must be in the can-create relation 

cc(user,  file).  Furthermore, for any can-create relation, say, (a, b), neither entities of 

type b nor any descendent (if the b-type entity creates other entities) can create an entity 

of protection-type a.  This acyclic-create restriction is a characteristic of SPM that makes 

analysis tractable. 

 A create-rule determines which tickets are assigned to the parent and the child 

entities after a create.  For example, the create-rule cr(a, b) is comprised of two subrules:  

crp(a, b) and crc(a, b), which specify the tickets the parent and child get upon creation.  

To preserve attenuation of privilege, the child cannot be given any privileges the parent 

doesn't have.  If necessary, the parent can be assigned new tickets at creation-time before, 

in turn, granting them to the child. 

 As an acyclic attenuating scheme, the Schematic Protection Model can determine 

the safety of certain classes of systems.  Representing this scheme in an automated 

verification system such as the Prototype Verification System allows the constraints and 

capabilities represented therein to be explored. 

 

The Prototype Verification System (PVS) 

 The requirements or high-level design of many systems (perhaps any system, at a 

high enough level of abstraction) can be modeled as a state machine.  Doing so introduces 

an abstract representation of the dynamic system-state and a set of operations that can be 

used to manipulate it.  These operations transition the system from one state to another in 

response to external inputs and their influence on internal logic. 

 The development of a state machine representation requires a robust and system-

relevant collection of type definitions to build the state description.  Additional types, 
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constants, and functions are needed to support subsequent formalization of the operations 

that act on the state.  These state operations, themselves, are functions that take the 

system from one state to another or, more generally, that operate as structured 

relationships between states.  Many times an invariant to the system state is provided to 

formalize the notion of a well-defined system state.  This invariant is shown to hold in the 

presence of arbitrary operations on the state, assuming it holds prior to the operation.  

Other properties may be expressed as predicates over the system state and operations, and 

can be proved as putative theorems that follow from the formalization [NAS93]. 

 PVS is a verification system.  That is, a specification language integrated with 

support tools and a theorem prover. It represents the state-of-the-art in mechanized formal 

methods and can be used for significantly complex applications [SRI07].  Indeed, it has 

been used in numerous high-complexity research efforts around the world, both in 

academia and practical application [SRI08]. 

 This research uses PVS to create logic-based models to verify whether a given 

protection scheme correctly implements a given security policy.  The choice to use PVS 

was based, in part, on [Ubh03]. 

 Automated Tool Selection.  

 Sonali Ubhayakar developed a methodology and a set of evaluation criteria to 

determine the utility of automated verification systems for the Naval Postgraduate School 

[Ubh03].  The ability of PVS to capture the properties of software systems and to provide 

a mapping between hierarchical levels of system abstractions, a necessary feature for 

understanding how a systems meets security objectives, was evaluated.  Fifteen 

verification tools were tested based on prominence or specific characteristics of interest, 

according to the following criteria: 



 

13 

 1)  Age is an indicator of maturity/completeness.  Tools that have been in use over 

a longer period of time are more likely to have been used and assessed for 

suitability for different applications.  There is simply more data available which 

can be used to evaluate the tool. 

 2)  Purpose, with a focus on the ability to describe software systems.  Tools that 

are tailored to a specific class of problems, e.g., a particular mathematical 

property, were not considered to be good candidates. 

 3)  Implementation language, with a focus on portability. 

 4)  Resource requirements, with a focus on commonly available platforms such as 

a Windows- or Unix-based workstation with no extraordinary specifications.  The 

availability of a suitable platform contributes to the tool's usefulness by 

minimizing cost and time to implement. 

 5)  User friendliness.  This is a trade-off between ease of use and degree of 

automation.  The more completely automated the tool, the more limited it is in 

what it can verify.  This part of the evaluation focused on the ability to use the 

tool without in-depth training on the language or mechanics of the tool. 

 6)  User Interface.  Related to user-friendliness, a well-designed graphical 

interface is favored over a command-line interface. 

  Important characteristics identified for further research include: 

 1)  User Presentation Language.  The tool's usefulness is considered to be 

enhanced if its interface language is one that the user is already comfortable with 

and competent in. 
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 2)  Consistency of specifications.  A tool being used to uncover errors and 

inconsistencies in the correctness of a system must first be free of these same 

flaws.  To the extent that the tool's correctness is suspect, so should be the results 

that it produces. 

 3)  Executable specifications.  The ability to construct and execute a potential 

solution allows the user to demonstrate the modeled system's behavior and more 

readily identify changes that need to be made. 

 4)  Multiple levels of abstraction.  The tool should be able to prove that the formal 

top-level specification, and the security policies that support it, together satisfy the 

overall security model for the system. 

 5)  Expressiveness, described as the flexibility with which a tool can be applied to 

more complex and difficult problems.  The expressiveness of PVS is enhanced by 

its support for the introduction of axioms. 

 PVS was selected after applying the empirical criteria above, specifically due to 

the amount of available documentation, the number of satisfied evaluation criteria, and 

the researcher's familiarity.  “PVS can be used to specify and validate system 

requirements, verify that an implementation meets the requirements and then help to 

refine the design in an effort to improve system performance” [Ubh03]. 

 PVS has an editing environment and an interactive theorem prover, which  

facilitate the development and debugging of specifications that can be formally shown to 

hold to explicitly stated properties.  The prover includes powerful atomic and aggregate 

commands that apply rules of inference in a sequent calculus based on a higher-order 

predicate logic which allows predicates to take other predicates as arguments. 
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 The PVS prover includes many commands to apply the rules of inference 

interactively at different stages of the proof.  The proof begins with an assertion of the 

theorem to be proved, and proceeds sequentially through the sequent invoking the 

reduction tactic specified by the user.  Selected commands that can be used to prove the 

SPM schematic are described below. 

 Split 

 The Split command separates conjunctive terms for individual consideration.  For 

example, applying Split to the statement A AND B branches the proof into two separate 

subgoals from that point, one for statement A and one for B. 

 Expand. 

 The Expand command is used to expand and simplify the definition of a function 

during the proof.  For example, the statement f(a, b) becomes a + b for the function 

f(int x, int y) = x + y 

 Skolem. 

 Where the current sequent contains an existential antecedent, e.g., ∃x(y(x)), or a 

universal consequent, e.g., ∀x(y(x)); the Skolem command introduces a particular but 

arbitrarily chosen constant to represent x in the function y().  For example, ∀x(y(x)) is 

reduced to y(c), for the arbitrarily chosen constant c. 

 Flatten. 

 The Flatten command performs disjunctive simplification on the current sequent, 

transforming each formula into a list of expressions that is free of disjuncts by applying 

these transformations, as appropriate [Sha01]: 

 1)  An antecedent formula ¬A into the consequent formula A. 
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 2)  An antecedent formula A ∧ B into the two antecedent formulas A and B. 

 

3)  A consequent formula ¬A into the antecedent formula A. 

 

4)  A consequent formula A � B into the antecedent formula A and the 

consequent formula B. 

  

5)  A consequent formula A ∨ B into the two consequent formulas A and B. 

 

6)  An antecedent formula A ⇔ B into the two antecedent formulas A � B 

and B � A. 
 

 SkoSimp. 

 SkoSimp is an aggregate command that applies Skolem, and then Flatten. 

 Induct. 

 The Induct command produces base and induction cases from the target formula 

based on the data type of the target which must be a natural number or a PVS-language 

abstract datatype with an internally-defined induction scheme. 

 Rewrite. 

 Rewrite automatically determines required substitutions by matching the 

conclusion of a named lemma, axiom, assumption, or function definition against 

expressions in the current sequent. 

 Install-Rewrites. 

 Install-Rewrites can be used to invoke theories whose declarations are meant to be 

used as rules for applying the Rewrite command. 

 Bddsimp. 

 Binary decision diagram simplification repeatedly applies the propositional rules 

of inference to all the formulas in the sequent, to be reintroduced as a list of zero or more 

subgoal sequents. 
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 Assert. 

 Assert applies internal decision procedures to prove trivial theorems, and to 

simplify complex linear arithmetic and boolean expressions. 

 Replace. 

 Replace substitutes formulas in the current sequent using an equality formula from 

the antecedent.  If there is an antecedent formula x = y, Replace will substitute y for 

occurrences of x in a given target formula. 

 Inst?. 

 When the current sequent contains an existential consequent, e.g., ∃x(y / x - 2)), or 

a universal antecedent, e.g., ∀x(y / x - 2)); the Inst? command reduces them by 

instantiating the quantified variables with any matching terms having the same number of 

bound variables. 

 Skolem-typepred. 

 Like Skolem, with the additional function of adding any discovered type 

constraints on the introduced constants as antecedent formulas. 

 Lift-if. 

 Lift-if is a propositional reduction that brings the leftmost-innermost conditional 

expression to the outermost level.  (e.g., [Sha01]), 

f(IF(A;B; IF(C;D;E))) 

 is converted to the formula  

IF(A; f(B); IF(C; f(D); f(E))) 

 Bash. 

 Bash is an aggregate command that executes assert, bddsimp, inst?, skolem-

typepred, flatten, and lift-if, in that order. 
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 Reduce. 

 Reduce is an aggregate command that applies bash followed by replace*, 

repeating the two until it has no effect. 

 Grind. 

  Grind is an aggregate command that can often complete a proof branch 

automatically using a combination of the aforementioned commands.  Grind executes 

install-rewrites to install any given theories, rewrite rules, or relevant definitions. It then 

applies bddsimp, assert, replace*, and finally reduce. 

 

Sequential Programming 

 To replicate the behavior of an abstract system that implements the Schematic 

Protection Model, it is helpful to envision the system's desired behavior using a sequential 

programming paradigm.  The term sequential programming contrasts with the more 

familiar paradigm of object oriented (OO) design.  To effectively reason about the 

system, it was necessary to abandon such higher-order abstractions and deal explicitly 

with the flow of logic through a virtual processor.  SPM was initially modeled as a 

collection of sequential algorithms in a pseudocode similar to the C programming 

language that behaved as prescribed by the SPM under explicit initial conditions and 

known subsequent transitions.  For example, the ownership test and the link test are 

shown in their initial form below: 

void main(){ 
 
  %==BEGIN initialize (using PVS-style typing)======= 
  %------------------------------------------------- 
  enum  Actor_type = {X, Y} 
  Actor_type Actor1  = X 
  Actor_type Actor2  = Y 
  %------------------------------------------------- 
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  enum  Right_type = {r, w} 
  Right_type Right1  = r 
  Right_type Right2  = w   
  %------------------------------------------------- 
  enum  ProtT_type = {Subj, Obj} 
  ProtT_type PType1  = Subj 
  ProtT_type PType2  = Obj 
  %------------------------------------------------- 
  Record_ptr Ticket_type = [# 
               actor: Actor_type, 
               right: Right_type 
              #] 
  %------------------------------------------------- 
  Ticket_type Ticket_Xr  = [X, r] 
  %------------------------------------------------- 
  Record_ptr Domain_type = [# 
           actor:  Actor_type, 
           domain: setof[Ticket_type] 
          #] 
  Domain_type Domain_X 
  Domain_type Domain_Y 
  %------------------------------------------------- 
  Record_ptr Link_type = [# 
           actor1: Actor_type, 
           actor2: Actor_type, 
          #] 
  Set_ptr  Links = setof[Link_type] 
  %------------------------------------------------- 
  bool  State_OK = TRUE 
  %------------------------------------------------- 
  %==END initialize================================== 
 

  add_Ticket([X, r], X); 
  transfer([X, r], X, Y); 
  IF (contains([X, r], dom(Y))) THEN State_OK = FALSE; 
} //end main 
 
bool linktest(Actor_type A, Actor_type B){ 
  bool response = FALSE 
  IF (contains([A, B], Links)) THEN response = TRUE; 
  return(response); 
} 
 
Domain_type dom(Actor_type A){ 
  return(domain | actor = A); 
} 
 
void add_Ticket(Ticket_type T, Actor_type A){ 
  Domains = Domains WITH [add(domain, T) | actor = A] 
} 
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void transfer(Ticket_type T, 
      Actor_type  A, 
      Actor_type  B){ 
  IF (contains(T, dom(A))) THEN  
    IF linktest(A, B) THEN 
       addticket(T, B); 
    ENDIF; 
  ENDIF; 
} 

  These algorithms were translated into an assembly-like syntax, breaking down the 

original flow-control constructs into comparisons and conditional jump statements.  

========================================= 
// Pseudo-SPM in goto format: 
 
void main(){ 
 
//  (initialize as described above) 
 
L1:  Domain_X`domain = Domain_X`domain WITH 
  [add(Ticket_Xr, Domain_X`domain)] 
 
//transfer [X, r] from X to Y 
L2:  //test source domain for ticket 
     IF (!(contains(Ticket_Xr, Domain_X`domain)))  
 THEN goto L5 
 
L3:  //test for link 
     IF (!(contains([X, Y], Links)))  
 THEN goto L5 
 
L4:  //add [X, r] to Y 
     Domain_Y`domain = Domain_Y`domain WITH 
  [add(Ticket_Xr, Domain_Y`domain)] 
 goto END 
 
L5:  IF (contains(Ticket_Xr, Domain_Y`domain))  
 THEN State_OK = FALSE; 
 
END: 
} 
 

  The resultant pseudo-assembly code was directly translatable into PVS 

instructions [CK01].  The example above supplied the logic flow for what eventually 
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became these transition functions for the transfer test state machine in the current 

specification: 

trans(snapshot: State_template): State_template =  
 CASES snapshot`PC OF 
 
  % Each case applies WITH conditions before passing  
  % snapshot to the specified operation, then  
  % returns snapshot. 
 
  % set up initial state and increment PC 
  L1_1:  Init(snapshot)  WITH [PC := L2_1], 
 
  % set up test conditions and increment PC 
  L2_1:  Setup(snapshot) WITH [PC := L3_1], 
 
  % verify that source entity has copyable ticket  
  % and adjust PC 
  L3_1:  snapshot        WITH [PC :=  
   IF (member(myfile_rc, snapshot`Domain(Bob))) 
       AND  
       myfile_rc`copyable?   THEN L4_1 
              ELSE L7_1 
   ENDIF], 
 
  % verify that link exists between source and  
  % target/adjust PC 
  L4_1:  snapshot        WITH [PC :=   
   IF Link?(snapshot, Bob, Alice) THEN L5_1 
          ELSE L7_1 
   ENDIF], 
 
  % verify that a filter function allows this  
  % transfer/adjust PC 
  L5_1:  snapshot        WITH [PC := 
   IF Filter?(snapshot, Bob, 
      Alice, myfile_rc)   THEN L6_1 
              ELSE L7_1 
   ENDIF], 
 
  % Execute the transfer and increment PC 
  L6_1: Exec_1(snapshot) WITH [PC := L7_1], 
 
  % Test State_OK and move PC to end 
  L7_1: Test_1(snapshot) WITH [PC := LEND_1], 
 
  LEND_1: snapshot 
  ELSE    snapshot 
 ENDCASES 
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Summary 

 Propositional and predicate logic systems are the fundamental underpinnings of 

the higher-order sequent calculus engine of the PVS prover.  Modal logics, specifically 

deontic logic, represent a promising potential extension of SPM to model modern, 

complex cyber systems. 

 SPM is used to describe an abstract system.  The model offers clearly defined 

rules through which we can prove the abstract system cannot enter a state that would 

violate the system security policies. 

 PVS is an interactive, semi-automated prover that proves the safety of the abstract 

system.  This tool was weighed empirically against various other automated verification 

systems.  It was found that PVS is well-suited to prove the safety properties of an abstract 

system that implements the security constraints described by SPM. 

 A sequential programming paradigm is used to develop the desired model 

behavior algorithmically in a way that is easily transferable to a PVS specification.  
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III.  Specification of the Schematic Protection Model 

 

 

Introduction 

 The PVS specification implementing SPM includes an initialization section, 

followed by two autonomous state machines.  The state machines each represent a virtual 

processor against which state transition functions are applied, implementing the ticket 

transfer and entity creation operations, respectively.  It is here that the flexibility of this 

design is realized.  Additional autonomous virtual processors can be added as modules to 

implement any functionality that can be described algorithmically, and integrated with a 

reference to the new module in the comprehensive theory System_correct at the end of the 

specification.  Then, PVS can formally reason about the behavior of the new module in 

the same context as the original modules.  Because a single system state is shared among 

modules, it may be necessary to add state variables to support additional operations. 

 

Specification Subprocesses 

 Initialization. 

 Since the PVS specification is interpreted sequentially, it begins with an 

initialization section in which datatypes that represent components of the SPM model are 

described.  This is followed by the instantiation of variables using the declared datatypes.  

These are the named variables manipulated during validation of the specification. 

 The next section includes state initialization and setup operations.  Two state 

transition functions are outside the scope of the autonomous virtual processor.  These 

ensure the autonomous state machines used in the System_correct theory are applied to 

the same system under the same conditions. 
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 The Ticket Transfer Process. 

 Transferring a ticket is contingent upon the results of three tests that together 

ensure that the transfer is not a violation of system policy and that the proposed new state 

of the system will remain secure. 

 Consider the PVS ticket transfer process in Figure 2 where Bob transfers myfile/r 

to Alice.  The first test ensures that Bob has a copyable version of the ticket, which 

ensures that attenuation of privilege is preserved.  The specification checks Bob's domain 

to verify that it contains the ticket myfile/rc, which is the copyable version of ticket 

myfile/r. 

 The second test ensures there is a link between Bob and Alice.  This is done by 

checking for a link predicate associated with the ordered pair (Bob, Alice). 

 The third test ensures that a filter function associated with the link allows the 

transfer of the ticket between entities with the respective protection-types of the 

originating- and target-entities.  The test checks the set Filters for the element (file, r) 

associated with the tuple (administrator, user), all associated with the link (Bob, Alice) 

which are represented by their respective IDs (0, 1).  Explicitly, 

(file, r) ∈ Filters(0, 1)(administrator, user) 

which states that ticket {X, r}, where X is an entity with the protection-type file, may be 

transferred from an entity of protection-type administrator to another of type user.  Note 

that the actual entity identified in the ticket (X/r) is not identified in the filter function.  

Rather, the system policy applies only to the right itself and the protection type of the 

entity to which the right applies.   

 These three tests ensure that ticket transfers are well defined and attenuating.  A 

transfer can occur between any two entities, such as a user or a printer, that can initiate or 
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be affected by actions that change the security state of the system.  The transfer process is 

described in Figure 2 by Bob's attempt to transfer a ticket to Alice.  In this example Bob 

initiates a potential change to the system state, i.e., adding a ticket to Alice's domain.  If 

successful, the system will transition from the pre-transfer state to that identified as post-

transfer, which includes myfile/r in Alice's domain. 

 Figure 2.  The Ticket Transfer Process 

 The Create Process. 

 Creating a new entity in the PVS specification is contingent upon that creation not 

being a violation of system policy.  In Figure 3, Bob initiates the creation of LaserJet_1 of 

type printer.  A system policy, in the form of a can-create relation, specifies whether an 

entity of protection-type administrator can create an entity of protection-type printer.  

This rule is simply an ordered pair representing the parent and child types, respectively.  

The specification checks the current state of the set Can_Creates to ensure that it contains 

the pair (administrator, printer). 
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 The Pre- and Post-Create State boxes contain the members of the set Entities and 

their respective domains.  The system initially has only two entities (Bob and Alice).  

Also shown is the relevant member of the set Can_Creates, and the sets cr`p and cr`c, 

which will determine the outcome of the create.  The associated create-rule sets cr`p and 

cr`c include two tickets to be added to the parent's domain (myfile/rc and syslog/w) and 

none for the child. 

 
Figure 3.  The Create Process 

 

 

SPM Encoding 

 

 The PVS specification for SPM is presented below.  This version of the model 

contains the theory named SPM, which includes the ability to transfer a ticket and create a 

new entity.  Slightly modified versions are presented in the next chapter to demonstrate 

correct behavior under the specified exceptional conditions. 
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 The code implements two separate state-machines, implementing the rules of 

ticket-transfer and the rules of entity creation, respectively.  State transitions within each 

are controlled with a sequential logic that mimics an assembly-like program running on a 

virtual processor, referred to in the embedded comments as processor_1 and processor_2.  

The program-counter is a state variable used by the transition functions to navigate the 

flow of control, starting from a known initialized state. 

 Since the PVS statements are interpreted by the prover in the order they appear, 

these transition functions are preceded by datatype and function declarations, and 

followed by the single theory through which the state machines will be evaluated 

together.  It is at this point that the illusion of linearity is abandoned and PVS considers 

the correctness of the state transitions from every possible initial state that ultimately 

results in a termination state.  It is this all-possible-worlds analysis that supports the claim 

that the safety of the SPM is correctly demonstrated by the specification. 

 SPM Specification. 

 

 The PVS specification below is interpreted with minor formatting changes only.  

Comments (preceded by a "%" sign) are included throughout, followed by the pertinent 

PVS instruction.  Major sections are delineated with a horizontal row of equal signs 

(%=====), minor sections with dashes (%-----): 

% Schematic Protection Model State Machine 
% PVS ver 4.1 
% 
% Raymond Way, Capt, USAF 
% AFIT/GCS/ENG/08-21 
% March 2008 
% 
SPM :THEORY 
 
BEGIN 
%=========================================================== 
% DEFINITIONS:  This section contains the definitions of  
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% custom datatypes used by the SPM specification.  
 
%----------------------------------------------------------- 
% RECORD-TYPE DEFINITIONS 
%  PVS allows the use of a record datatype that acts as a  
% record with named fields. 
%  The record structure allows the individual fields to be  
% examined by referencing the name.   
%  This SPM specification defines several datatypes that  
% use this structure: 
% Type_name: TYPE = (# 
%        fieldname_1 := datatype, 
%        fieldname_2 := datatype, 
%        ..., 
%        fieldname_n := datatype 
%        #) 
 
% Right_class is an enumerated type which lists all  
% possible classes of right 
 
Right_class: TYPE = {Control, Inert} 
 
% Right_priv is an enumerated type which lists all allowable  
% privileges in the system 
 
Right_priv:  TYPE = {read, write, append, 
     execute, take, grant, demand} 
 
% Right_type is a record type comprised of the privilege and  
% the class it belongs to 
 
Right_type:  TYPE = [# 
     privilege: Right_priv, 
     class:     Right_class 
     #] 
 
% Enumerate possible protection-types and entity classes 
 
Entity_class:    TYPE = {Subject, Object} 
Protection_type: TYPE = {administrator, user, printer, file} 
 
% define the Entity_type as a record containing an  
% identifier for comparison with other entities during the  
% proof, and associated protection type 
 
ID_type:    TYPE = {0, 1, 2, 3, 4} 
Entity_type: TYPE = [# 
     ID: ID_type, 
     ptype: Protection_type 
     #] 
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% Ticket_type is a record datatype that contains three named  
% parts, an entity of type Entity_type and a right of type  
% Right_type (each described above), and a boolean copy flag 
 
Ticket_type: TYPE = [# 
     entity: Entity_type,  
     right: Right_type, 
     copyable?: bool 
     #] 
 
% PTicket_type is a tuple datatype that contains two parts,  
% one to hold a valid protection-type and one a valid right,  
% as described in their respective datatype definitions  
% above. 
 
PTicket_type: TYPE = [Protection_type, Right_type] 
 
% Rule_type is a record that contains two sets of tickets to  
% be used in a create rule. 
% The set p is for the parent and c is for the child of a  
% create operation 
 
Rule_type:TYPE=[# 
    p: setof[Ticket_type], 
    c: setof[Ticket_type] 
    #] 
 
% Link_type identifies the edge between two entities 
 
Link_type: TYPE = [ID_type, ID_type] 
 
% Filter type associates a pair of Protection_type with 
% a set of PTicket_type 
% e.g. [user, user] -> {(file, r), (printer, w)} 
 
Filter_type: TYPE = 
 [[Protection_type, Protection_type] -> setof[PTicket_type]] 
 
% PCt is an enumerated datatype which lists possible values  
% of the virtual program counters (suffix _x indicates  
% processor).  These values represent code labels, as appear  
% in assembly or BASIC programs, and are used to navigate  
% the logic of the state-machine. 
 
PCt: TYPE = 
 {L1_1, L2_1, L3_1, L4_1, L5_1, L6_1, L7_1, LEND_1, 
  L1_2, L2_2, L3_2, L4_2, L5_2,             LEND_2} 
 
%----------------------------------------------------------- 
% State_template is a record datatype that comprehensively  
% represents the state of the system.  The definition below  
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% identifies  names for each of the system attributes that  
% comprise the current state, each followed by their  
% respective datatype.  The datatypes are either inherent to  
% PVS, such as boolean (bool), or defined above.   
 
 
 
 
State_template: TYPE = [# 
 % virtual program counter 
 PC:             PCt, 
 
 % The set of all protections types, by class 
 T:   [Entity_class -> setof[Protection_type]], 
  
 % The set of all privilege-bearing entities 
 Entities:       setof[Entity_type], 
 
 % set of Tickets in the provided Entity's domain 
 Domain:         [Entity_type -> setof[Ticket_type]], 
 
 % The set of can-create relationships 
 Can_Creates:    [Protection_type -> 
     setof[Protection_type]], 
 
 % The set of all active create rules 
 Create_rules:  [Entity_class, Entity_class ->  
        Rule_type], 
 
 % The set of all active transfer-filter policies 
 Filters:   [Link_type -> Filter_type], 
 
 % Do test conditions allow the transfer? 
 tr_Authorized?: bool, 
 
 % Do test conditions allow the create? 
 cc_Authorized?: bool, 
 
 % Flag used to record breach of secure state 
 State_OK:       bool 
 #] 
 
%=========================================================== 
% INSTANTIATIONS 
% In this section, named entities are created to represent  
% specific system components for PVS to manipulate, as  
% instantiations of record-type definitions.  
% These record-types are instantiated as follows: 
%    Name: datatype = (# 
%        fieldname_1 := value_1, 
%        fieldname_2 := value_2, 
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%        ..., 
%        fieldname_n := value_n 
%        #) 
%----------------------------------------------------------- 
% RIGHTS 
% Used to represent the different privileges that can be  
% exercised by one entity over another 
 
r: Right_type = (# 
     privilege := read, 
     class     := Inert 
     #) 
 
w: Right_type = (# 
     privilege := write, 
     class     := Inert 
     #) 
 
%----------------------------------------------------------- 
% ENTITIES 
% Instantiate named entities for the current system 
% ID's should be unique to avoid erroneous comparisons 
% e.g., "Bob = Alice" 
 
Bob:        Entity_type = (# 
       ID    := 0, 
       ptype := administrator 
       #) 
 
Alice:      Entity_type = (# 
       ID    := 1, 
       ptype := user 
       #) 
 
LaserJet_1: Entity_type = (# 
       ID    := 2, 
       ptype := printer 
       #) 
 
myfile:     Entity_type = (# 
       ID    := 3, 
       ptype := file 
       #) 
 
syslog:     Entity_type = (# 
       ID    := 4, 
       ptype := file 
       #) 
 
%----------------------------------------------------------- 
% TICKETS 
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% Create a copyable version of the ticket: myfile/rc 
% This ticket would allow read-access to myfile to be  
% exercised by any entity possessing this ticket in its  
% associated domain, representing the ticket myfile/rc. 
 
 
 
 
myfile_rc: Ticket_type = (# 
      entity    := myfile, 
      right     := r, 
      copyable? := TRUE 
      #) 
 
% Create a non-copyable version of the same ticket: i.e.,  
% myfile/r. 
 
myfile_r:  Ticket_type = (# 
      entity    := myfile, 
      right     := r, 
      copyable? := FALSE 
      #) 
 
% Create a ticket representing the copyable write privilege  
% (w) over the entity "LaserJet_1" representing the ticket  
% LaserJet_1/wc. 
 
LaserJet_1_wc: Ticket_type = (# 
      entity    := LaserJet_1, 
      right     := w, 
      copyable? := TRUE 
      #) 
 
% Create a non-copyable version of the ticket syslog/w. 
 
syslog_w: Ticket_type = (# 
     entity    := syslog, 
     right     := w, 
     copyable? := FALSE 
     #) 
 
%=========================================================== 
% INITIALIZE state and SETUP the desired conditions: 
% Below, the initial system state and its immediate  
% successor, the setup state, are described. The latter is  
% used to establish the preconditions for any test to be  
% conducted. 
%----------------------------------------------------------- 
% Init can be thought of as a function, taking an argument  
% (snapshot) of type State_template.  It returns to the  
% calling statement a State_template equal to snapshot  
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% after the changes indicated in the WITH[] block have been  
% sequentially applied. 
 
 
 
 
 
 
Init(snapshot: State_template): State_template = 
 snapshot WITH [ 
 
 % Establish there are no protection types in TS or TO 
 T := snapshot`T WITH [ 
   (Subject)   := emptyset, 
   (Object)   := emptyset], 
      
 % Establish that there are no Entities in the current 
  % system state 
 Entities       := emptyset, 
  
 % Establish that the domains of each instantiated  
 % Entity is initially empty 
    Domain := snapshot`Domain WITH [ 
   (Bob)    := emptyset, 
   (Alice)    := emptyset, 
   (LaserJet_1)   := emptyset, 
   (myfile)    := emptyset], 
 % Establish that there are no can-create relations 
 Can_Creates := snapshot`Can_Creates WITH [ 
   (administrator)  := emptyset, 
   (user)     := emptyset, 
   (printer)     := emptyset, 
   (file)     := emptyset], 
 
 % Establish that there are no create rules 
 Create_rules := snapshot`Create_rules WITH [ 
   (Subject, Subject)`p := emptyset, 
   (Subject, Subject)`c := emptyset, 
   (Subject, Object)`p  := emptyset, 
   (Subject, Object)`c  := emptyset], 
 
 % Establish that there are no filters. 
 % Filter_type = [(Protection_type,Protection_type) -> 
 %       setof[PTicket_type]] 
 % Filters = [Link_type -> Filter_type] (State_template) 
 Filters := snapshot`Filters WITH [ 
   (Bob`ID, Alice`ID) 
   (administrator, user)   := emptyset, 
 
   (Alice`ID, Bob`ID) 
   (user, administrator)   := emptyset], 
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 % Set flag to indicate a secure initial state 
    State_OK         := TRUE] 
 
%----------------------------------------------------------- 
% Set up test pre-conditions  
% The Setup function takes an argument (snapshot) of type  
% State_template and returns it with the following  
% sequentially-applied changes: 
 
Setup(snapshot: State_template): State_template =  
  snapshot WITH [ 
 
 % Add protection types to TS and TO 
 T := snapshot`T WITH [ 
  (Subject) := add(administrator, 
       add(user, 
       snapshot`T(Subject))), 
  (Object)  := add(printer, 
       add(file, 
       snapshot`T(Object)))], 
 
 % Add Bob and Alice to the system 
 Entities := add(Bob,add(Alice, snapshot`Entities)), 
 
 % Add myfile_rc to Bob's Domain 
 Domain := snapshot`Domain WITH [ 
  (Bob) := add(myfile_rc, snapshot`Domain(Bob))], 
 
 %====================================================== 
 % ESTABLISH SYSTEM POLICIES 
 % (Link predicate policies are established in the Link? 
  % function in processor_1) 
 % ------------------------- 
 % Add Can-Create relations  
 Can_Creates    := snapshot`Can_Creates WITH [ 
  % cc(Subject, Object) 
  (administrator):= 
     add(user, 
        add(printer, 
           add(file, 
       snapshot`Can_Creates(administrator))))], 
 
 % ------------------------- 
 % Add Create rules  
 Create_rules   := snapshot`Create_rules WITH [ 
 % cr(Subject, Subject) = 
 %  cr`p(Subject, Subject) = {syslog_w, myfile_rc} 
 %  cr`c(Subject, Subject) = {syslog_w, myfile_r} 
 (Subject, Subject)`p :=  
  add(syslog_w, 
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   add(myfile_rc, 
    snapshot`Create_rules( 
     Subject, Subject)`p)), 
 (Subject, Subject)`c :=  
  add(syslog_w, 
   add(myfile_r, 
    snapshot`Create_rules( 
     Subject, Subject)`c)), 
 
 % cr(Subject, Object) = 
 % cr`p(Subject, Object) = {syslog_w, myfile_rc} 
 % cr`c(Subject, Object) = {} 
 (Subject, Object)`p  := 
  add(syslog_w, 
   add(myfile_rc, 
    snapshot`Create_rules( 
     Subject, Object)`p))], 
 
 
 
 % ------------------------- 
 % Add Filter 
 % f(administrator, user) = {(file, r), (printer, w)} 
 % to the link from Bob to Alice  
 Filters := snapshot`Filters WITH [ 
  (Bob`ID, Alice`ID)(Bob`ptype, Alice`ptype) := 
     add((file,r), 
        add((printer,w), 
           snapshot`Filters(Bob`ID, Alice`ID) 
      (administrator, user)))], 
 
 %====================================================== 
 % Set the expected outcomes for an attempted transfer  
 tr_Authorized? := TRUE, 
 
 % Set the expected outcomes for an attempted create 
 cc_Authorized? := TRUE] 
 
%=========================================================== 
%----------------------------------------------------------- 
% Fork into separate state machines 
% At this point in our sequential analysis, the logic of  
% the specification forks into two distinct and autonomous  
% state machines.  Their respective virtual program counters  
% are differentiated by suffix (_1 and _2), and the virtual  
% processors are correspondingly tagged processor_1 and  
% processor_2 for clarity.   
% The first, processor_1, verifies the correct behavior  
% of an attempt to execute a ticket transfer. 
 
%=========================================================== 
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% EXECUTE TRANSFERS (processor _1): 
% Verify the correct behavior of an attempt to transfer a  
% ticket. 
 
%----------------------------------------------------------- 
% Test Link 
% Link predicate system policies are entered in the inner 
% nested-CASES statements to determine a link from source to  
% target.  The predicates themselves are resolved to a  
% boolean value which is returned as the response from Link? 
% e.g., the predicate: ticket Î dom(entity) is implemented  
% with: 
%  member(ticket, snapshot`Domain(entity)) 
% 
% In this case, the following link predicates are  
% implemented: 
% 
% myfile/rc Î dom(Bob), for the edge: Bob to Alice, 
% TRUE,                 for the edge: Bob to LaserJet_1,  
% TRUE,         for the edge: Alice to Bob. 
 
Link?(snapshot: State_template, 
  source:   ID_type, 
  target:   ID_type): bool =  
 
 % CASES used to facilitate additions 
 CASES source OF 
 
  % source = Bob's ID 
  0: CASES target OF 
    
   % target = Alice's ID 
   1:   member(myfile_rc, snapshot`Domain(Bob)), 
 
   % target = LaserJet_1's ID 
       2:   TRUE 
 
   ELSE FALSE 
     ENDCASES, 
 
  % source = Alice's ID 
  1: CASES target OF 
 
   % target = Bob's ID 
   0:   TRUE 
 
   ELSE FALSE 
     ENDCASES 
 
  ELSE FALSE 
 ENDCASES 
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%----------------------------------------------------------- 
% Test Filter 
% Determine whether a filter function exists in 
% snapshot`Filters, associated with the link predicate  
% for (source and target), that allows tickets that match 
% the tuple (protection-type, right) in the given ticket, to  
% be transferred from the source to the target, as  
% determined by their respective ptypes,  
% implementing the filter function: 
% 

%  (ticket`entity`ptype, ticket`right) ∈ 
%  f(source`ptype, target`ptype) 
% 
% In this test case,(1): ticket    = myfile_rc 
%     myfile_rc`entity = myfile 
%     myfile`ptype   = file 
%     myfile_rc`right  = r 
% 
% and,   (2): source       = Bob 
%     Bob`ptype      = administrator 
%     target        = Alice 
%     Alice`ptype    = user 
% 
% It follows that, 
% (ticket`entity`ptype, ticket`right)=(file, r)      (1) 
% and, 
% (source`ptype, target`ptype)=(administrator, user) (2) 
%  
% and since the filter 
% (administrator, user)={(file, r),(printer,w)} 
%     
% we know that 
% (file,r) in (administrator, user) = TRUE 
% 
% and that the filter is associated with the link 
% (Bob, Alice) in the State_template set, then 
% 
%   Filters(0, 1)(administrator, user)= 
%  {(file, r), (printer, w)} 
 
Filter?(snapshot: State_template, 
    source: Entity_type, 
    target: Entity_type, 
    ticket: Ticket_type): bool =  
  member((ticket`entity`ptype, ticket`right),  
   snapshot`Filters(source`ID, target`ID) 
     (source`ptype, target`ptype)) 
 
%----------------------------------------------------------- 
% Establish event of interest indicator 
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% For processor_1, the event that will imply a successful  
% transfer is the presence of myfile_r in Alice's domain, as  
% indicated by the boolean value of Event_1? 
 
Event_1?(snapshot: State_template): boolean =  
     member(myfile_r, snapshot`Domain(Alice)) 
 
%----------------------------------------------------------- 
% Execute transfer 
% The Exec_1 function is where the actual transfer takes  
% place.  It takes an argument (snapshot) of type  
% State_template and returns it after applying the changes  
% in the WITH block.  In this case the ticket myfile_r is  
% added to the Alice's domain. 
 
Exec_1(snapshot: State_template): State_template =  
 snapshot WITH [ 
  Domain := snapshot`Domain WITH [ 
   (Alice) := add(myfile_r, 
    snapshot`Domain(Alice))]] 
 
%----------------------------------------------------------- 
% Test system state 
%  The Test_1 function takes a State_template and returns  
% a State_template with an updated State_OK. 
%  If the test condition (Event_1?) returns TRUE,  
% indicating that it did happen, then tr_Authorized?  
% determines the value of State_OK (if it was not  
% authorized, then State_OK is FALSE). 
%  If the test condition returns FALSE, indicating that it  
% did not happen, then we don't care whether it was  
% authorized, and State_OK remains TRUE. 
%  Note that this test does not prove that if the  
% operation is authorized that it will happen, only that if  
% it did happen, it was authorized. 
% i.e.: 
% Event_1?(snapshot)   snapshot`tr_Authorized?   State_OK 
% 1   1     1   
% 1   0     0 
% 0   1     1 
% 0   0     1 
 
Test_1(snapshot: State_template): State_template = 
  snapshot WITH [ 
  State_OK := IF Event_1?(snapshot) THEN 
     snapshot`tr_Authorized? 
       ELSE TRUE 
       ENDIF] 
 
%----------------------------------------------------------- 
% TRANSITION FUNCTIONS for program counter (PC) within the  
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% context of processor_1. 
 
trans(snapshot: State_template): State_template =  
 CASES snapshot`PC OF 
 
  % Each case applies WITH conditions before passing  
  % snapshot to the specified operation, then  
  % returns snapshot. 
 
  % set up initial state and increment PC 
  L1_1:  Init(snapshot)  WITH [PC := L2_1], 
 
  % set up test conditions and increment PC 
  L2_1:  Setup(snapshot) WITH [PC := L3_1], 
 
  % verify that source entity has copyable ticket  
  % and adjust PC 
  L3_1:  snapshot        WITH [PC :=  
   IF (member(myfile_rc, snapshot`Domain(Bob))) 
       AND  
       myfile_rc`copyable?     THEN L4_1 
               ELSE L7_1 
   ENDIF], 
 
  % verify that link exists between source and  
  % target/adjust PC 
  L4_1:  snapshot        WITH [PC :=   
   IF Link?(snapshot, Bob`ID, Alice`ID) 
            THEN L5_1 
                ELSE L7_1 
   ENDIF], 
 
  % verify that a filter function allows this  
  % transfer/adjust PC 
  L5_1:  snapshot        WITH [PC := 
   IF Filter?(snapshot, 
       Bob, 
       Alice, 
       myfile_rc)         THEN L6_1 
              ELSE L7_1 
   ENDIF], 
 
  % Execute the transfer and increment PC 
  L6_1: Exec_1(snapshot) WITH [PC := L7_1], 
 
  % Test State_OK and move PC to end 
  L7_1: Test_1(snapshot) WITH [PC := LEND_1], 
 
  LEND_1: snapshot 
  ELSE    snapshot 
 ENDCASES 
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%----------------------------------------------------------- 
% Prove safety 
%  Show that State_OK will still be TRUE after an attempt  
% to transfer a right from any given initial state, using  
% any given natural counter T. 
% 
%  The tr_find_zero() function will recurse through the  
% ELSE statement, decrementing T until it is finally called  
% with T=0, at which point it returns the State_template  
% initial with the virtual program counter (PC) set to L1_1,  
% to be subsequently passed to the trans() function. 
% The state returned from trans() will have accrued  
% changes from the trans() state machine, including an  
% updated PC. 
% The returned state is then repeatedly passed back to  
% trans(), and returned with changes and updated PC as the  
% logic backs out of the recursion. 
% 
%  The effect is that, given a nonnegative number T and a  
% State_template initial, the state-transition functions  
% within trans() will be applied against initial, starting  
% with the first (L1_1) and proceeding according to the  
% manipulation of the program counter PC. 
 
tr_find_zero(T: nat, initial: State_template): RECURSIVE 
State_template =  
 IF T = 0 THEN initial WITH [PC := L1_1] 
          ELSE trans(tr_find_zero(T-1, initial)) 
 ENDIF MEASURE T 
 
%----------------------------------------------------------- 
% Test all possible initial states 
% Assign a boolean result to the following nested assertion  
% that only authorized transfers can occur: 
%  Given any possible initial state, as described by the  
% State_template record type: 
%  Given any possible nonnegative number T, such that  
%  the function tr_find_zero(T, initial) returns a  
%  State_template with the virtual program counter  
%  at LEND_1 (indicating termination): 
%    the returned State_template will also  
%    indicate that State_OK = TRUE. 
 
transfer_correct: bool = 
  FORALL (initial: State_template): 
    FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1): 
  tr_find_zero(T, initial)`State_OK = TRUE 
 
%=========================================================== 
% CREATES (processor _2):  Verify correct behavior of  
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% attempts to create a new entity. 
%----------------------------------------------------------- 
% Can-create test 
% Test for appropriate cancreate relation; in this case:  
% 
%  cc(administrator, printer) 
% 
% The test determines whether child is in the set 
% CanCreates(parent) 
%  where child  = printer 
% and   parent = administrator 
 
CC?(snapshot: State_template, 
      parent: Protection_type, 
      child:  Protection_type): boolean =  
     (member(child, 
      snapshot`Can_Creates(parent))) 
 
%----------------------------------------------------------- 
% Establish event of interest indicator 
% For processor_2, the event that will imply a successful  
% create is the presence of LaserJet_1 in the system, and  
% the appropriate updates to both the parent and child  
% domains, as indicated by the boolean Event_2? 
 
Event_2?(snapshot: State_template): boolean = 
  (member(LaserJet_1, snapshot`Entities)) 
     
%----------------------------------------------------------- 
% Execute create 
% The Exec_2 function is where the actual create takes  
% place.  It takes an argument (snapshot) of type  
% State_template and returns it after adding LaserJet_1 to  
% the set Entities. 
% 
%  The two entities' Domains are updated at create-time to  
% reflect the create rule 
% 
%   cr(Subject, Object) 
% 
% which is comprised of these system policies, established  
% in the Setup function: 
%  cr`p(Subject, Object) = {syslog_w, myfile_rc} 
%  cr`c(Subject, Object) = {} 
 
Exec_2(snapshot: State_template,  
       parent: Entity_type,  
       child:  Entity_type): State_template = snapshot WITH[ 
 
    % Create entity 
    Entities := add(child, snapshot`Entities), 
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    % Invoke associated create-rules 
    Domain   :=  
    IF member(child`ptype, snapshot`T(Subject)) THEN 
 
  snapshot`Domain WITH [  
   (parent) :=    
      union(snapshot`Create_rules( 
      Subject, Subject)`p, 
       snapshot`Domain(parent)), 
       (child)  := 
      union(snapshot`Create_rules( 
      Subject, Subject)`c, 
      snapshot`Domain(child))] 
         
    ELSIF member(child`ptype, snapshot`T(Object)) THEN 
  snapshot`Domain WITH [ 
    (parent) :=    
      union(snapshot`Create_rules( 
      Subject, Object)`p, 
       snapshot`Domain(parent)), 
        (child)  := 
      union(snapshot`Create_rules( 
      Subject, Object)`c, 
      snapshot`Domain(child))] 
    ELSE snapshot`Domain 
    ENDIF] 
 
%----------------------------------------------------------- 
% Test system state 
%  The Test_2 function takes a State_template and returns  
% a State_template with an updated State_OK. 
%  If the test condition (Event_2?) returns TRUE,  
% indicating that it did happen, then cc_Authorized?  
% determines the value of State_OK (if it was not  
% authorized, then State_OK is FALSE). 
%  If the test condition returns FALSE, indicating that it  
% did not happen, then we don't care whether it was  
% authorized, and State_OK remains TRUE. 
%  Note that this test does not prove that if the  
% operation is authorized that it will happen, only that if  
% it did happen, it was authorized. 
% i.e.: 
% Event_1?(snapshot)   snapshot`tr_Authorized?   State_OK 
% 1   1     1   
% 1   0     0 
% 0   1     1 
% 0   0     1 
 
Test_2(snapshot: State_template): State_template =  
 snapshot  WITH [ 
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  State_OK := IF Event_2?(snapshot)  THEN  
    snapshot`cc_Authorized?  
           ELSE TRUE 
        ENDIF] 
 
%----------------------------------------------------------- 
% TRANSITION FUNCTIONS for program counter (PC) within the  
% context of processor_2. 
 
create(snapshot: State_template): State_template =  
 CASES snapshot`PC OF 
 
  % Each case applies WITH conditions before passing  
  % snapshot to the specified operation, then  
  % returns snapshot. 
 
  % initialize system state 
  L1_2:   Init(snapshot)   WITH [PC := L2_2], 
 
  % establish setup conditions 
  L2_2:   Setup(snapshot)  WITH [PC := L3_2], 
 
  % verify that a cancreate relation will allow the 
  % create 
  L3_2:  snapshot   WITH [PC := 
   IF CC?(snapshot, 
          Bob`ptype, 
          LaserJet_1`ptype) THEN L4_2 
         ELSE L5_2 
   ENDIF], 
 
  % execute the create 
  L4_2:   Exec_2(snapshot, Bob, LaserJet_1) WITH [ 
     PC := L5_2], 
 
  % test State_OK and move PC to end 
  L5_2:   Test_2(snapshot) WITH [PC := LEND_2], 
 
  LEND_2:  snapshot 
  ELSE     snapshot 
 ENDCASES 
 
%----------------------------------------------------------- 
% Prove safety 
%  Show that State_OK will always be TRUE after a create  
% attempt. 
%  The function cc_find_zero will decrement T down to 0  
% recursively, and pass the State_template initial to the  
% create state-machine with program counter (PC) set to  
% L1_2, and then step through the state-machine in the same  
% way that tr_find_zero did above. 
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cc_find_zero(T: nat, initial: State_template): RECURSIVE  
State_template =  
 IF T = 0 THEN initial WITH [PC := L1_2] 
          ELSE create(cc_find_zero(T-1, initial)) 
 ENDIF MEASURE T 
 
%----------------------------------------------------------- 
% Test all possible initial states 
% Assign a boolean result to the following nested assertion  
% that only authorized creates can occur: 
%  Given any possible initial state, as described by the  
% State_template record type: 
%  Given any possible nonnegative number T, such that  
%  the function cc_find_zero(T, initial) returns a  
%  State_template with the virtual program counter  
%  at LEND_2 (indicating termination): 
%    the returned State_template will also  
%    indicate that State_OK = TRUE. 
 
cancreate_correct: bool = 
  FORALL (initial: State_template): 
    FORALL (T: nat | cc_find_zero(T, initial)`PC = LEND_2): 
  cc_find_zero(T, initial)`State_OK  = TRUE 
 
%=========================================================== 
% SPM Safety Theorem 
% System_correct is the single theorem to be proved by PVS. 
% It asserts that the boolean statements transfer_correct 
% and cancreate_correct resolve to TRUE 
 
System_correct: Theorem transfer_correct  
    AND 
                cancreate_correct 
 
END SPM 
%----------------------------------------------------------- 
%=========================================================== 

 

 Specification Description. 

 The System_correct theorem asserts that transfer_correct and cancreate_correct 

are both TRUE expressions. 

 The statement transfer_correct asserts that for any possible initial state and any 

possible starting point submitted to the recursive function tr_find_zero, which 
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successfully terminates, the boolean state variable State_OK will be TRUE.  State_OK is 

a flag set when the model operates correctly. 

 The tr_find_zero function takes the natural number T and the current system state 

as input.  It recursively decrements T, until T = 0, at which point it introduces the current 

state into the sequential state-transition function trans.  The returned state is repeatedly 

passed back to the trans function, with accrued changes, as tr_find_zero backs out of the 

recursion.  Transfer_correct initiates this process for all possible values of T, and all 

possible initial states. 

 The trans function behaves as a virtual processor, applying the state transition 

function indicated by the program counter (PC) and updating it as appropriate.  The 

internal state transition operations represent the PVS-language interpretation of assembly-

like pseudocode derived from a sequential algorithm, using the process described in 

Chapter II to implement the correct behavior of the ticket transfer component of SPM. 

 A positive outcome of the proof indicates the applied rules behave as expected for 

all possible valid inputs, and the boolean indicator State_OK was not changed. 

 Just like tranfer_correct, the statement cancreate_correct asserts that for any 

possible initial state and any possible starting point submitted to the recursive function 

cc_find_zero, which successfully terminates, the boolean state variable State_OK will be 

TRUE. 

 The cc_find_zero function takes the natural number T and the current system state 

as input.  It recursively decrements T, until T = 0, at which point it introduces the current 

state into the sequential state-transition function create.   
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 The create function behaves as a second virtual processor, applying the state 

transition function indicated by the program counter (PC), and updating it accordingly. 

 A positive outcome of the proof indicates the applied rules behave as expected for 

all possible valid inputs, and the boolean indicator State_OK was not changed. 

 

SPM Proof 

 The System_correct theorem at the end of the SPM specification is the single 

statement that resolves to TRUE if and only if the specification correctly implements 

SPM.  The theorem consists of the boolean statement 

transfer_correct AND cancreate_correct 

which, when the two state machines correctly implement their respective transfer and 

create processes, resolves to the formula 

TRUE AND TRUE 

 Before the specification is tested by the prover, the PVS parser checks datatypes 

and logic flow structures for consistency and completeness.  In some cases, the 

correctness of the proof depends upon the properties of datatypes, so these must also be 

proved for the results to be complete.  These alerts are presented by PVS as Type 

Correctness Conditions. 

 Type Correctness Conditions. 

 Type Correctness Conditions (TCC), such as those identified in Figure 4 as 

tr_find_zero_TCC1 and tr_find_zero_TCC2, describe assumed conditions that must hold 

to ensure well-formed values for the variable indicated in the TCC description. 

 In the SPM specification, two such conditions were discovered:  the nonnegative 

property of the nat datatype, and the inevitability of reaching the termination condition in 
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the recursive function tr_find_zero.  The TCCs proofs were accomplished separately from 

the System_correct proof, and are described below. 

 TCC1. 

 The condition entitled tr_find_zero_TCC1 is a response to this line from the 

recursive function tr_find_zero, which makes a references to T-1:   

ELSE trans(tr_find_zero(T-1, initial)) 

 Since the function tr_find_zero is expecting to be passed a natural (nonnegative) 

number, it must be shown that T-1 will, in fact, be natural.  More formally:  

FORALL (T: nat): NOT T = 0 IMPLIES T - 1 >= 0 

 This expression was proved as a stand-alone theory using the automated prover.  

The proof was accomplished by invoking the prover to execute the aggregate command 

SUBTYPE-TCC, which applied repeated skolemization, instantiation, and if-lifting, 

resulting in the following proof: 

tr_find_zero_TCC1 :   
 
  |------- 
{1}   FORALL (T: nat): NOT T = 0 IMPLIES T - 1 >= 0 
 
Rerunning step: (SUBTYPE-TCC) 
Trying repeated skolemization, instantiation, and if-lifting, 
Q.E.D. 

 TCC2. 

 The condition entitled tr_find_zero_TCC2 is a termination warning in reference to 

the inner part of the same statement 

tr_find_zero(T - 1, initial) 

 Since this function is recursively decrementing to zero, it must be shown that T-1 

is, in fact, less than T, and progresses toward zero.  More formally 

FORALL (T: nat): NOT T = 0 IMPLIES T - 1 < T 
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 This expression was also proved as an autonomous theory using PVS.  It was 

accomplished by invoking the automated prover to execute the aggregate command 

TERMINATION-TCC, which applied repeated skolemization, instantiation, and if-

lifting, resulting in the following proof: 

tr_find_zero_TCC2 :   
 
  |------- 
{1}   FORALL (T: nat): NOT T = 0 IMPLIES T - 1 < T 
 
Rerunning step: (TERMINATION-TCC) 
Trying repeated skolemization, instantiation, and if-lifting, 
Q.E.D. 
 

 The System_correct Theorem. 

 The System_correct theorem asserts the correct behavior of the model as an 

implementation of SPM with the statement 

transfer_correct AND cancreate_correct 

 The PVS split command was used to consider the two statements separately.  

Each individual statement then represents a subgoal of the original theorem.  The prover 

presented each subgoal as a sequent, and satisfied (aka, dismissed) them according to the 

sequence of commands shown in Figure 4.   

 For example, in node 1 of Figure 4, the command expand "transfer_correct" 

replaces the statement transfer_correct with its definition from within the specification, 

resulting in the sequent 

|------- 
{1}   FORALL (initial: State_template): 
FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1): 
tr_find_zero(T, initial)`State_OK 

 The skosimp command, applied to the above sequent, inserts the skolem constant 

initial!1 to represent an arbitrary variable with which to test the outer FORALL condition, 

resulting in the sequent 
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  |------- 
{1}   FORALL (T: nat | tr_find_zero(T, initial!1)`PC = LEND_1): 
        tr_find_zero(T, initial!1)`State_OK 

 The command induct "T" runs a natural-number induction against the variable T, 

resulting in three subgoals.  The first two subgoals are dismissed with the  grind 

command, an aggregate of several prover commands,  

Inducting on T on formula 1, 
this yields  3 subgoals:  
System_correct.1.1 :   
 
  |------- 
{1}   tr_find_zero(T!1, initial!1)`PC = LEND_1 
{2}   tr_find_zero(T!1, initial!1)`State_OK 
 
Rerunning step: (GRIND) 
Trying repeated skolemization, instantiation, and if-lifting, 
 
This completes the proof of System_correct.1.1. 
 
System_correct.1.2 :   
 
  |------- 
{1}   tr_find_zero(0, initial!1)`PC = LEND_1 IMPLIES 
       tr_find_zero(0, initial!1)`State_OK 
 
Rerunning step: (GRIND) 
tr_find_zero rewrites tr_find_zero(0, initial!1) 
  to initial!1 WITH [PC := L1_1] 
Trying repeated skolemization, instantiation, and if-lifting, 
 
This completes the proof of System_correct.1.2. 

and the third subgoal of node 1 generates more subgoals by performing an induction on 

the variable j in this sequent 

System_correct.1.3 :   
 
  |------- 
{1}   FORALL j: 
        (tr_find_zero(j, initial!1)`PC = LEND_1 IMPLIES 
          tr_find_zero(j, initial!1)`State_OK) 
         IMPLIES 
         tr_find_zero(j + 1, initial!1)`PC = LEND_1 IMPLIES 
          tr_find_zero(j + 1, initial!1)`State_OK 
 
Rerunning step: (INDUCT "j") 
Inducting on j on formula 1, 
this yields  2 subgoals:  
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 The proof of the System_correct theorem progressed in this way until all subgoals 

were dismissed as shown in Figure 4, using the combination of the PVS prover 

commands described in Chapter II. 

Figure 4.  SPM Proof Tree 

 The proof-summary in Figure 5 was generated by PVS for the SPM theory.  It 

shows that the theory was proved, and that the necessary Type Correctness Conditions 

(TCCs) discovered by PVS during the proof were each, themselves proved.   

 Proof summary for theory SPM 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.32 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.03 s) 
    System_correct.......................proved - complete   [SHOSTAK](36.75 s) 
    Theory totals: 3 formulas, 3 attempted, 3 succeeded (37.10 s) 

Figure 5.  PVS proof summary for SPM
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IV.  Schematic Protection Model Validation Scenarios 

 

Introduction 

 The Schematic Protection Model describes the conditions under which rights can 

be transferred from one entity to another, and new entities can be created in the system.   

These conditions test the model's ability to prevent transition to an unsecure state.  Each 

of these conditions is tested in the following scenarios, followed by several tests of 

anomalous conditions. 

 

Test Scenario 1 - No Ticket 

 Below is a test scenario modification to the Setup function.  In this test, the entity 

Bob initiates a transfer of the ticket myfile_r, but does not possess the ticket in its domain, 

which is a necessary condition to allow the transfer. 

Encoding. 

 In the original SPM specification, the ticket myfile_rc is added to Bob's domain in 

the Setup function.  To test this condition of the model, the statements below were 

commented out effectively removing them from Bob's domain: 

 % Add myfile_rc to Bob's Domain 
 %Domain := snapshot`Domain WITH [ 
 % (Bob) := add(myfile_rc, snapshot`Domain(Bob))], 

 When the transition function L3_1 is invoked by the trans function, the current 

state of the model, encapsulated in snapshot, does not include myfile_rc in Bob's domain.  

Since this is a necessary condition to allow the transfer, the program counter PC is set to 

proceed to the transition function L7_1 for the next iteration, rather than step through the 

remaining sequence of tests. 
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  % verify that source entity has copyable ticket  
  % and adjust PC 
  L3_1:  snapshot        WITH [PC :=  
   IF (member(myfile_rc, snapshot`Domain(Bob))) 
       AND  
       myfile_rc`copyable?   THEN L4_1 
              ELSE L7_1 
   ENDIF], 

 Transition function L7_1 sets PC to the terminal value LEND_1, and passes 

snapshot to the Test_1 function for a determination of whether the model has correctly 

implemented this condition of SPM. 

  % Test State_OK and move PC to end 
  L7_1: Test_1(snapshot) WITH [PC := LEND_1], 

 The Test_1 function passes the state snapshot to Event_1? to determine whether 

the event of interest in this case has occurred.  Event_1? returns the boolean value of the 

statement 

member(myfile_r, snapshot`Domain(Alice)) 

 

which resolves to FALSE because myfile_r was never added to Alice's domain.  Since the 

IF condition in Test_1 is FALSE, the logic diverts to the ELSE statement, setting the 

value of State_OK to TRUE, indicating that the unauthorized transfer did not take place. 

 Test_1(snapshot: State_template): State_template = 
   snapshot WITH [ 
   State_OK := IF Event_1?(snapshot) THEN 
      snapshot`tr_Authorized? 
            ELSE TRUE 
       ENDIF] 

Results. 

 The statement transfer_correct is an assertion that State_OK will be TRUE.  

When the resultant state is eventually returned from the recursive tr_find_zero function 

with the program counter PC set to LEND_1, the value of State_OK is TRUE, and the 

boolean value of transfer_correct becomes TRUE. 
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transfer_correct: bool = 
  FORALL (initial: State_template): 
    FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1): 
  tr_find_zero(T, initial)`State_OK = TRUE 

 The proof of the System_correct theorem with this test modification progressed as 

shown in Figure 6 until all subgoals were dismissed, using a combination of the PVS 

prover commands as described in Chapter II. 

 

Figure 6.  SPM_noticket Proof Tree 
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 The PVS-generated proof summary in Figure 7 shows that this modification of the 

theory was proved, and that necessary Type Correctness Conditions implied by the theory 

were also proved: 

 Proof summary for theory SPM_noticket 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.68 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.27 s) 
    System_correct.......................proved - complete   [SHOSTAK](40.54 s) 
    Theory totals: 3 formulas, 3 attempted, 3 succeeded (41.49 s) 

Figure 7.  PVS proof summary for SPM_noticket 

 

 

Test Scenario 2 - Ticket Not Copyable 

 Below is a test scenario modification for the SPM in which the ticket to be 

transferred exists in the initiating entity's domain, but the ticket is not copyable, which is 

a necessary condition to allow the transfer.  

Encoding. 

 

  The only modification required for this test was to instantiate the ticket with 

copyable? = FALSE: 

 myfile_rc: Ticket_type =  (# 
            entity    := myfile, 
            right     := r, 
              copyable? := FALSE 
              #) 

 In the L3_1 transition function, the test of the originator's domain is conducted as 

normal, failing the second conjunctive test in the IF condition: myfile_rc`copyable?.  The 

logic diverts to the ELSE statement, and sets the program counter (PC) to L7_1, skipping 

the subsequent tests and the transfer operation itself. 

 % verify that source has copyable ticket/adjust PC 
 L3_1:  snapshot WITH [PC :=  
   IF (member(myfile_rc, snapshot`Domain(Bob))) 
       AND  
       myfile_rc`copyable?   THEN L4_1 
              ELSE L7_1 
   ENDIF], 
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 In the next pass, the statement at L7_1 is invoked, setting the PC to LEND_1 and 

passing the state information contained in snapshot to Test_1 for a determination of 

whether the model has correctly implemented this condition of SPM.  

 % Test State_OK and move PC to end 
 L7_1: Test_1(snapshot) WITH [PC := LEND_1], 

 

 The Test_1 function passes the state snapshot to Event_1? to determine whether 

the event of interest in this case has occurred.  Event_1? returns the boolean value of the 

statement 

member(myfile_r, snapshot`Domain(Alice)) 
 

which resolves to FALSE because myfile_r was never added to Alice's domain.  Since the 

IF condition is FALSE, the logic diverts to the ELSE statement, setting the value of 

State_OK to TRUE, indicating that the unauthorized transfer did not take place. 

 Test_1(snapshot: State_template): State_template = 
   snapshot WITH [ 
   State_OK := IF Event_1?(snapshot) THEN 
      snapshot`tr_Authorized? 
            ELSE TRUE 
       ENDIF] 

 

Results. 

 The proof of the System_correct theorem with this test modification progressed as 

shown in Figure 8 until all subgoals were dismissed, using a combination of the PVS 

prover commands as described in Chapter II. 
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Figure 8.  SPM_nocopy Proof Tree 

 The PVS-generated proof summary for this modification in Figure 9 shows that 

the theory was proved, and that necessary conditions implied by the theory were also 

proved.  Since the unauthorized transfer did not happen, the safety of the system holds. 

 Proof summary for theory SPM_nocopy 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.68 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.27 s) 
    System_correct.......................proved - complete   [SHOSTAK](28.90 s) 
    Theory totals: 3 formulas, 3 attempted, 3 succeeded (29.85 s) 

Figure 9.  PVS proof summary for SPM_nocopy 
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Test Scenario 3 - No Link 

 

 Below is a test scenario modification for the SPM in which no link exists between 

the entity (Bob) initiating a transfer and the intended recipient (Alice); a necessary 

condition to allow the transfer. 

Encoding. 

 

 In the original SPM specification, the link from Bob to Alice is determined by the 

link predicate myfile_rc ∈ dom(Bob), and evaluated in the Link? function: 

Link?(snapshot: State_template, 
  source:   ID_type, 
  target:   ID_type): bool =  
 
 % CASES used to facilitate additions 
 CASES source OF 
 
  % source = Bob's ID 
  0: CASES target OF 
    
   % target = Alice's ID 
   1:   member(myfile_rc, snapshot`Domain(Bob)), 
  . 
  . 
  . 
 

 To test this condition of the model, the inner case statement was changed so that 

the test for a link from Bob to Alice would fail: 

   % target = Alice's ID 
   1:   FALSE, 
 

 When the transition function L4_1 is invoked by the trans function, the returned 

value of the call to Link? is FALSE: 

  L4_1:  snapshot        WITH [PC :=   
   IF Link?(snapshot, Bob, Alice) THEN L5_1 
          ELSE L7_1 
   ENDIF], 

 Since this is a necessary condition to allow the transfer, the program counter PC is 

set to the transition function L7_1 for the next iteration, rather than step through the 
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remaining sequence of tests.  The transition function L7_1 sets PC to the terminal value 

LEND_1, and passes snapshot to the Test_1 function for a determination of whether the 

model has correctly implemented this condition of SPM. 

  % Test State_OK and move PC to end 
  L7_1: Test_1(snapshot) WITH [PC := LEND_1], 

 The Test_1 function passes the state snapshot to Event_1? to determine whether 

the event of interest in this case has occurred.  Event_1? returns the boolean value of the 

statement 

member(myfile_r, snapshot`Domain(Alice)) 

 

which resolves to FALSE because myfile_r was never added to Alice's domain.  Since the 

IF condition in Test_1 is FALSE, the logic diverts to the ELSE statement, setting the 

value of State_OK to TRUE, indicating that the unauthorized transfer did not take place. 

 Test_1(snapshot: State_template): State_template = 
   snapshot WITH [ 
   State_OK := IF Event_1?(snapshot) THEN 
      snapshot`tr_Authorized? 
            ELSE TRUE 
       ENDIF] 

Results. 

 The statement transfer_correct is an assertion that State_OK is TRUE.  When the 

resultant state is eventually returned from the recursive tr_find_zero function with the 

program counter PC set to LEND_1, the value of State_OK is discovered to be TRUE, 

and the boolean value of transfer_correct becomes TRUE. 

transfer_correct: bool = 
  FORALL (initial: State_template): 
    FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1): 
  tr_find_zero(T, initial)`State_OK = TRUE 
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 The proof of the System_correct theorem with this test modification progressed as 

shown in Figure 10 until all subgoals were dismissed, using the indicated PVS prover 

commands. 

 

Figure 10.  SPM_nolink Proof Tree 
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 The PVS-generated proof summary in Figure 11 shows that this modification of 

the System_correct theory was proved, and that necessary conditions implied by the 

theory were also proved: 

 Proof summary for theory SPM_nolink 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.68 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.27 s) 
    System_correct.......................proved - complete   [SHOSTAK](27.42 s) 
    Theory totals: 3 formulas, 3 attempted, 3 succeeded (28.37 s) 

Figure 11.  PVS proof summary for SPM_nolink 

 

 

Test Scenario 4 - No Filter 

 

 Below is a test scenario modification for the SPM in which the filter on the link 

from Bob to Alice does not allow the transfer of ticket myfile_r. 

 To allow the transfer, it is necessary that this filter function 

(file, r) ∈ f(administrator, user) 

be associated with the link from Bob to Alice, where  

 1)  Bob's protection type = administrator 

 2)  Alice's protection type = user 

 3)  myfile's protection type = file 

 4)  myfile_rc's right = r 

Encoding. 

 

 In the original SPM specification, the filter on the link from Bob to Alice is 

established in the Setup function 

 Filters := snapshot`Filters WITH [ 
  (Bob`ID, Alice`ID)(Bob`ptype, Alice`ptype) := 
     add((file,r), 
        add((printer,w), 
           snapshot`Filters(Bob`ID, Alice`ID) 
      (administrator, user)))], 
 

and tested in the Filter? function 
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Filter?(snapshot: State_template, 
    source: Entity_type, 
    target: Entity_type, 
    ticket: Ticket_type): bool =  
  member((ticket`entity`ptype, ticket`right),  
   snapshot`Filters(source`ID, target`ID) 

     (source`ptype, target`ptype)) 
 

  To test this condition of the model, the statement in the Setup function that 

created the filter was commented out. 

% Filters := snapshot`Filters WITH [ 
%  (Bob`ID, Alice`ID)(Bob`ptype, Alice`ptype) := 
%     add((file,r), 
%        add((printer,w), 
%           snapshot`Filters(Bob`ID, Alice`ID) 
%      (administrator, user)))], 
 

 When the transition function L5_1 is invoked by the trans function, the returned 

value of the call to Filter? is FALSE.  Since this is a necessary condition to allow the 

transfer, the program counter PC is set to the transition function L7_1 for the next 

iteration, rather than proceed to L6_1. 

  L5_1:  snapshot WITH [PC := 
    IF Filter?(snapshot, 
       Bob, 
          Alice, 
        myfile_rc) THEN L6_1 
               ELSE L7_1 
    ENDIF], 

   The transition function L7_1 sets PC to the terminal value LEND_1, and passes 

snapshot to the Test_1 function for a determination of whether the model has correctly 

implemented this condition of SPM. 

  % Test State_OK and move PC to end 
  L7_1: Test_1(snapshot) WITH [PC := LEND_1], 

 The Test_1 function passes the state snapshot to Event_1? to determine whether 

the event of interest in this case has occurred.  Event_1? returns the boolean value of the 

statement 
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member(myfile_r, snapshot`Domain(Alice)) 

 

which resolves to FALSE because myfile_r was never added to Alice's domain.  Since the 

IF condition in Test_1 is FALSE, the logic diverts to the ELSE statement, setting the 

value of State_OK to TRUE, indicating that the unauthorized transfer did not take place. 

 Test_1(snapshot: State_template): State_template = 
   snapshot WITH [ 
   State_OK := IF Event_1?(snapshot) THEN 
      snapshot`tr_Authorized? 
            ELSE TRUE 
       ENDIF] 

Results. 

 The statement transfer_correct is an assertion that State_OK will hold to be 

TRUE.  When the resultant state is eventually returned from the recursive tr_find_zero 

function with the program counter PC set to LEND_1, the value of State_OK is 

discovered to be TRUE, and the boolean value of transfer_correct becomes TRUE. 

transfer_correct: bool = 
  FORALL (initial: State_template): 
    FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1): 
  tr_find_zero(T, initial)`State_OK = TRUE 

 The proof of the System_correct theorem with this test modification progressed as 

shown in Figure 12 until all subgoals were dismissed, using a combination of the PVS 

prover commands as described in Chapter II. 
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Figure 12.  SPM_nofilter Proof Tree 

 

 The PVS-generated proof summary in Figure 13 shows that this modification of 

the System_correct theory was proved, and that necessary conditions implied by the 

theory were also proved: 

 Proof summary for theory SPM_nofilter 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.69 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.27 s) 
    System_correct.......................proved - complete   [SHOSTAK](40.14 s) 
    Theory totals: 3 formulas, 3 attempted, 3 succeeded (41.10 s) 

Figure 13.  PVS proof summary for SPM_nofilter 
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Test Scenario 5 - No Can-Create Relation 

 Below is a test scenario modification for the SPM in which there is no system 

policy established as a can-create relation between Bob's protection-type (administrator) 

and that of LaserJet_1 (printer), which is a necessary condition to allow the create. 

 Encoding. 

 In the original SPM model, the can-create relation is established in the Setup 

function by adding the target class to the set associated with the originator's class.  For 

this modification, that operation was commented out. 

% Can_Creates    := snapshot`Can_Creates WITH [ 
%  (administrator):= 
%     add(user, 
%        add(printer, 
%           add(file, 
%       snapshot`Can_Creates(administrator))))], 

 

 The test for a valid can-create relation is done by the CC? function.  This function 

is passed the parent's and the proposed child's protection types, and looks for the child's 

type to be associated with the parent's in the set Can_Creates, in the context of the 

current state of the model encapsulated in snapshot. 

CC?(snapshot: State_template, 
      parent: Protection_type, 
      child:  Protection_type): boolean =  
     (member(child, 
      snapshot`Can_Creates(parent))) 

 When the transition function L3_2 is invoked by the create function, the returned 

value of the call to CC? is FALSE, because the setup operation to establish the can-create 

relation was bypassed.  Since this is a necessary condition to allow the create, the 

program counter PC is set to proceed to the transition function L5_2 for the next iteration, 

rather than proceed to L4_2, where the create would have been executed. 
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  L3_2:  snapshot   WITH [PC := 
   IF CC?(snapshot, Bob, LaserJet_1)  THEN L4_2 
          ELSE L5_2 
   ENDIF], 

 The transition function L5_2 sets PC to the terminal value LEND_2, and passes 

snapshot to the Test_2 function for a determination of whether the model has correctly 

implemented this condition of SPM. 

  L5_2:   Test_2(snapshot) WITH [PC := LEND_2], 

 The Test_2 function passes the state snapshot to Event_2? to determine whether 

the event of interest in this case has occurred. 

Test_2(snapshot: State_template): State_template =  
 snapshot  WITH [ 
  State_OK := IF Event_2?(snapshot) THEN  
     snapshot`cc_Authorized?   
         ELSE TRUE 
      ENDIF] 

  Event_2? returns the boolean value of the statement 

(member(LaserJet_1, snapshot`Entities)) 

as FALSE because LaserJet_1 was never added to Entities.  Since the IF condition in 

Test_2 is FALSE, the logic diverts to the ELSE statement, setting the value of State_OK 

to TRUE, indicating that the unauthorized transfer did not take place. 

Results. 

 The statement cancreate_correct asserts State_OK is TRUE.  When the resultant 

state is eventually returned from the recursive cc_find_zero function with the program 

counter PC set to LEND_1, the value of State_OK is discovered to be TRUE, and the 

boolean value of cancreate_correct becomes TRUE. 

cancreate_correct: bool = 
  FORALL (initial: State_template): 
    FORALL (T: nat | cc_find_zero(T, initial)`PC = LEND_2): 
  cc_find_zero(T, initial)`State_OK  = TRUE 
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 The proof of the System_correct theorem with this test modification progressed as 

shown in Figure 14 until all subgoals were dismissed, using a combination of the PVS 

prover commands as described in Chapter II. 

 

Figure 14.  SPM_nocreate Proof Tree 
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 The PVS-generated proof summary in Figure 15 shows that this modification of 

the System_correct theory was proved, and that necessary conditions implied by the 

theory were also proved: 

 Proof summary for theory SPM_nocreate 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.69 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.28 s) 
    System_correct.......................proved - complete   [SHOSTAK](39.11 s) 
    Theory totals: 3 formulas, 3 attempted, 3 succeeded (40.08 s) 

Figure 15.  PVS proof summary for SPM_nocreate 

 

Test Scenario 6 - Unauthorized Transfer 

 Below is a test scenario modification for the SPM in which all of the conditions to 

enable a ticket transfer are valid, but the tr_Authorized? flag has inadvertently been set to 

FALSE.  The expected result is PVS will be unable to prove the theorem, because the 

theorem relies on the flag to reflect whether the event in Event_1? should have happened 

under the established conditions. 

Encoding. 

 

 The only modification necessary for this test was to set the tr_Authorized? flag to 

FALSE in the Setup function, as shown here: 

 % Set the expected outcome for an attempted transfer 
 tr_Authorized? := FALSE, 

 

  When the proof reaches the Test_1 function, the function passes the state snapshot 

to Event_1? to determine whether the event of interest in this case has occurred.  

Event_1? returns the boolean value of the statement 

member(myfile_r, snapshot`Domain(Alice)) 
 

which resolves to TRUE because myfile_r was added to Alice's domain under these valid 

conditions.  Since the IF condition is TRUE, the logic proceeds to the THEN statement, 
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setting the value of State_OK to the current value of tr_Authorized?, which in this case is 

FALSE. 

 Test_1(snapshot: State_template): State_template = 
   snapshot WITH [ 
   State_OK := IF Event_1?(snapshot) THEN 
      snapshot`tr_Authorized? 
            ELSE TRUE 
     ENDIF] 

 

Results. 

 The proof of the System_correct theorem with this test modification progressed as 

shown in Figure 16 until the sequent in Table 1 was encountered, and no further progress 

was possible.  In this test, this was the expected result, which indicates that the model is 

working as desired.  Otherwise, a different proof strategy could be entered interactively at 

this point, or this sequent could be used to isolate the flaw in the original design.  

 

Table 1.  SPM_noauth_tr result 
[-1]  j!1 >= 0 
{-2}  j!1 - 5 = 0 
  |------- 
[1]   j!1 - 4 = 0 
[2]   j!1 - 3 = 0 
[3]   j!1 - 2 = 0 
[4]   j!1 - 1 = 0 
[5]   j!1 = 0  

 

 The sequent in Table 1 clearly cannot be proved.  All antecedent lines, denoted 

with negative line numbers above the turnstile (|---) represent conjunctive assumptions 

that, if true, imply disjunctively one or more of the consequent propositions below the 

turnstile.  That is, 

([-1] AND {-2}) 

IMPLIES 

([1] OR [2] OR [3] OR [4] OR [5]) 

 

 It may not be apparent at first glance, that this sequent is invalid.  But, if we 

replace j!1 with x for clarity, the PVS-prover sequent reads as follows: 
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(x >= 0 AND x - 5 = 0) 

IMPLIES 

(x - 4 = 0 OR x -3 = 0 OR x - 2 = 0 OR x - 1 = 0 OR x = 0) 

 

 This can be further reduced to the following assertion, which is clearly incorrect: 

(x = 5) 

IMPLIES 

 (x = 4 OR x = 3 OR x = 2 OR x = 1 OR x = 0) 

 

Figure 16.  SPM_noauth_tr Proof Tree 
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 The PVS-generated proof summary for this modification in Figure 17 shows that, 

although the necessary conditions implied by the theory were proved, the theory itself 

remains unproved.  This result is, again, the correct result for this test: 

 Proof summary for theory SPM_noauth_tr 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.67 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.27 s) 
    System_correct.......................unfinished          [SHOSTAK](35.90 s) 
    Theory totals: 3 formulas, 3 attempted, 2 succeeded (36.84 s) 

Figure 17.  PVS proof summary for SPM_noauth_tr 

 

 

Scenario 7 - Unauthorized Create 

 Below is a test scenario modification for the SPM in which all of the conditions to 

enable a create operation are valid, but the cc_Authorized? flag has inadvertently been set 

to FALSE.  The expected result is PVS will be unable to prove the theorem, because the 

theorem relies on the flag to reflect whether the event in Event_2? should have happened 

under the established conditions. 

Encoding. 

 

 The only modification necessary for this test was to set the flag to FALSE in the 

Setup function, as shown here: 

 % Set the expected outcome for an attempted create 
 cc_Authorized? := FALSE, 

 

  When the proof reaches the Test_2 function, the function passes the state snapshot 

to Event_2? to determine whether the event of interest in this case has occurred.  

Event_2? returns the boolean value of the statement 

Event_2?(snapshot: State_template): boolean = 
 (member(LaserJet_1, snapshot`Entities)) 

 

which resolves to TRUE because LaserJet_1 was added to Entities under these valid 

conditions.  Since the IF condition is TRUE, the logic proceeds to the THEN statement, 
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setting the value of State_OK to the current value of cc_Authorized?, which in this case is 

FALSE. 

Test_2(snapshot: State_template): State_template =  
 snapshot  WITH [ 
  State_OK := IF Event_2?(snapshot) THEN  
     snapshot`cc_Authorized?   
         ELSE TRUE 

      ENDIF] 

 

Results. 

 The proof of the System_correct theorem with this test modification progressed as 

shown in Figure 18 until the sequent in Table 2 was encountered, and no further progress 

was possible.  In this test, this was the expected result, which indicates that the model is 

working as desired.  Otherwise, a different proof strategy could be entered interactively at 

this point, or this sequent could be used to isolate the flaw in the original design. 

Table 2.  SPM_noauth_cc result 
[-1]  j!1 >= 0 
{-2}  j!1 - 3 = 0 
  |------- 
[1]   j!1 - 2 = 0 
[2]   j!1 - 1 = 0 
[3]   j!1 = 0  

 

 The sequent in Table 2 cannot be proved.  All antecedent lines, denoted with 

negative line numbers above the turnstile (|---) represent conjunctive assumptions that, if 

true, imply disjunctively one or more of the consequent propositions below the turnstile.  

That is, 

([-1] AND {-2}) 

IMPLIES 

([1] OR [2] OR [3]). 

 

 If we replace j!1 with x for clarity, the PVS-prover sequent reads 

(x >= 0 AND x - 3 = 0) 

IMPLIES 

(x - 2 = 0 OR x - 1 = 0 OR x = 0). 
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This can be further reduced to the following assertion, which is clearly incorrect 

(x = 3) 

IMPLIES 

 (x = 2 OR x = 1 OR x = 0). 

 

Figure 18.  SPM_noauth_cc Proof Tree 
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 The PVS-generated proof summary for this modification in Figure 19 shows that, 

although the necessary conditions implied by the theory were proved, the theory itself 

remains unproved.  This result is, again, the correct result for this test: 

 Proof summary for theory SPM_noauth_cc 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.67 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.27 s) 
    System_correct.......................unfinished          [SHOSTAK](35.90 s) 
    Theory totals: 3 formulas, 3 attempted, 2 succeeded (36.84 s) 

Figure 19.  PVS proof summary for SPM_noauth_cc 

 

 

Test Scenario 8 - Introduced Error 

 

 Below is a test scenario modification for the SPM in which an inappropriate 

transfer is allowed to occur, to demonstrate how the PVS prover treats an unprovable 

theory.  In this experiment, we temporarily violate the model by allowing a transfer to 

occur in spite of the failure of the first test, which ensures that the initiator of the transfer 

is in possession of the ticket which is being transferred.  The PVS prover should not be 

able to prove that State_OK will hold TRUE in this invalid SPM model. 

Encoding. 

 

 As in Test Scenario 1, the addition of the ticket myfile_rc to Bob's domain is 

prevented from happening by commenting out that section of the Setup function. 

 % Add myfile_rc to Bob's Domain 
 %Domain := snapshot`Domain WITH [ 
 % (Bob) := add(myfile_rc, snapshot`Domain(Bob))], 

 Since Bob's possession of the ticket is a necessary condition to allow the transfer, 

the ticket should not be appear in Alice's domain.  The test condition tr_Authorized? is set 

to FALSE in the Setup function to indicate that the transfer should not be allowed. 

   tr_Authorized? := FALSE, 
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 However, the ELSE statement in transition function L3_1 has been changed for 

this test.  Instead of jumping to L7_1 and skipping the ticket transfer, the program counter 

(PC) is set to L6_1 for the next iteration. 

 L3_1:  snapshot        WITH [PC :=  
  IF (member(myfile_rc, snapshot`Domain(Bob))) 
      AND  
      myfile_rc`copyable?   THEN L4_1 
             ELSE L6_1 
  ENDIF], 
 

 The transition function L6_1 sets the PC to L7_1 and passes the current state, 

encapsulated in snapshot, to the Exec_1 function, where myfile_r is added to Alice's 

domain. 

  % Execute the transfer and increment PC 
  L6_1: Exec_1(snapshot) WITH [PC := L7_1], 
 

   The transition function L7_1 sets PC to the terminal value LEND_1, and passes 

snapshot to the Test_1 function for a determination of whether the model has correctly 

implemented this condition of SPM. 

  % Test State_OK and move PC to end 
  L7_1: Test_1(snapshot) WITH [PC := LEND_1], 

 The Test_1 function passes the state snapshot to Event_1? to determine whether 

the event of interest in this case has occurred.  Event_1? returns the boolean value of the 

statement 

member(myfile_r, snapshot`Domain(Alice)) 

 

which resolves to TRUE because myfile_r was added to Alice's domain by Exec_1.  Since 

the IF condition in Test_1 is TRUE, State_OK is set to the value of tr_Authorized? within 

snapshot, which has been set to FALSE, indicating that the transfer was unauthorized. 
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 Test_1(snapshot: State_template): State_template = 
   snapshot WITH [ 
   State_OK := IF Event_1?(snapshot) THEN 
      snapshot`tr_Authorized? 
            ELSE TRUE 
       ENDIF] 

 

Results. 

 The proof of the System_correct theorem with this invalidated SPM model 

progressed as shown in Figure 20 until the sequent in Table 3 was encountered, and no 

further progress was possible.  In this test, this was the expected result of trying to prove 

the properties of SPM for an invalid model.   

Table 3.  spm_broken result 
[-1]  j!1 >= 0 
{-2}  j!1 - 3 = 0 
  |------- 
[1]   j!1 - 1 = 0 
[2]   j!1 - 2 = 0 
[3]   j!1 = 0  

 

 The sequent in Table 3 can be further reduced to the following assertion, which is 

clearly incorrect 

(x = 3) 

IMPLIES 

(x = 2 OR x = 1 OR x = 0). 
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Figure 20.  SPM_broken Proof Tree 

 Figure 21 is the PVS-generated proof summary for this modification.  It shows 

that the theory has yet to be proved, although the TCCs for the theory were proved. 

 Proof summary for theory SPM_broken 
    tr_find_zero_TCC1....................proved - complete   [SHOSTAK]( 0.68 s) 
    tr_find_zero_TCC2....................proved - complete   [SHOSTAK]( 0.27 s) 
    System_correct.......................unfinished          [SHOSTAK](35.90 s) 
    Theory totals: 3 formulas, 3 attempted, 2 succeeded (36.85 s) 

Figure 21.  PVS proof summary for SPM_broken 
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Summary 

 The Schematic Protection Model describes the conditions under which rights can 

be transferred from one entity to another, and new entities can be created in the system.  

These conditions test the model's ability to prevent transition to an unsecure state.  Each 

of these conditions was tested in the preceding scenarios. 

 Each test produced the expected results.  The absence of a required precondition 

to process a ticket transfer:  originator-possession of the copyable ticket, a valid link to 

the recipient, or the absence of an enabling filter function;  resulted, in each case, in the 

prevention of the transfer.  And the absence of a can-create rule was shown to prevent the 

unauthorized create operation.   

 The correct functionality of the tr_Authorized? and cc_Authorized? flags was also 

tested.  The Test_1 and Test_2 functions rely on these flags for the correct interpretation 

of the other tests.  Finally, a test was run against an altered specification that does not 

correctly model SPM, to demonstrate that an attempt to prove it correct fails, as expected. 
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V.  Conclusion 

 
 

Contribution 

 The formal specification of the Schematic Protection Model provides a tool for 

reasoning about systems that implement the SPM security model.  It is designed to be 

easily modifiable to incorporate any logical extensions that can be expressed 

algorithmically, such as the deontic logic properties of obligation, permission, possibility, 

and necessity.  The specification is robust; it accepts the modular addition of autonomous 

virtual processors that can each implement any set of operations that can be described 

algorithmically.  As such, this specification is a solid, flexible tool for formally reasoning 

about any security model that can be expressed in this manner. 

 This tool can now be used as the basis for further use of SPM to meet the 

modeling challenges posed by contemporary cyber systems.  Proposed modifications can 

be added systematically to the specification to formally demonstrate correctness of both 

the autonomous modification and the integrated model as a whole. 

 

Reliability of Results 

 This research proved the safety properties of the Schematic Protection Model, 

using the Prototype Verification System automated prover.  The results are, of course, 

only as reliable as the prover itself.  However, the uncertainty of this is mitigated by the 

widespread use of PVS by researchers and scientists worldwide since 1993.  PVS has 

been used extensively within the scientific and academic communities [SRI08] to 

formally express well-known mathematical theorems and algorithms, and has yielded 

proofs that are consistent with expected results.  These include the Fundamental 
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Theorems of both Arithmetic and Calculus, the Infinitude of Primes, and the Law of 

Cosines [NAS07].  It has also been used to formally verify complex, real-world systems, 

revealing inconsistencies that would have otherwise been practically undiscoverable, such 

as during the formal analysis of the AAMP5 microprocessor [NAS07]. 

 

Suggestions for Further Research 

 SPM Modernization. 

 It will be worthwhile to reassess SPM for its applicability to modern cyber 

systems.  SPM was proposed in 1988 as a tool for modeling and reasoning about 

computer systems.  While the complexity and interdependence of automated systems 

have advanced dramatically in both practice and theory keeping pace with enabling-

advances in technology, no popularly accepted analytical techniques have emerged in 

kind.  As a result, these models, including SPM, are rarely used to reason about actual 

systems.  It would be useful to identify specific extensions or modifications to the original 

model, to reestablish the ability to formally reason about actual modern cyber systems. 

 Deontic Logic. 

 A broader range of practical applicability may be realized by extending the SPM 

with modal logic concepts such as obligation, permission, possibility, and necessity.  

Deontic logic provides the “right fundamental logic system to provide us with a logical 

validity criterion of normative reasoning as well as a formal representation and 

specification language” while Classical Mathematical Logic (CML) fails to describe the 

notion of relevance when accounting for the validity of a statement.  In CML, “the notion 

of conditional, which is intrinsically intensional but not truth-functional, is represented by 

the notion of material implication, which is intrinsically an extensional truth-function” 
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[ChM06].  It is through these implications that the idea of vacuous truth arises, where a 

statement is regarded as TRUE simply because the premise itself is FALSE.  The more 

expressive relationships between actors and actions offered by deontic logic would 

expand the field of scenarios about which the system is capable of reasoning. 

 Safety Analysis. 

 This specification presented herein can be modified to perform safety analysis of 

an explicitly described system by adding a virtual processor module that recursively 

executes all allowable transfer- and create-operations until no more are possible.  It is 

only the resultant maximal state that need be tested for adherence to stated policy to make 

a determination about the safety of the system design.  It is important to note that in order 

to ensure a maximal state is reached, the create-operations must be both acyclic and 

attenuating.  Acyclicity means simply that no descendent of entity-type x can create an 

entity of type x.  This rule simplifies the safety analysis by ensuring that create-operations 

do not continue recursively ad infinitum [Bis03, pg. 70].  Attenuation is considered with 

respect to tickets that are given to the new entity spawned by a create operation.  An 

entity may not give a ticket to another entity that it does not, itself, possess. 
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