
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-10-2008

A Formal Specification and Proof of System Safety Using the A Formal Specification and Proof of System Safety Using the

Schematic Protection Model Schematic Protection Model

Raymond S. Way

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Way, Raymond S., "A Formal Specification and Proof of System Safety Using the Schematic Protection
Model" (2008). Theses and Dissertations. 2759.
https://scholar.afit.edu/etd/2759

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F2759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2759?utm_source=scholar.afit.edu%2Fetd%2F2759&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

Sample 1. Cover, Single-Author Thesis

A FORMAL SPECIFICATION AND PROOF OF SYSTEM SAFETY

USING THE SCHEMATIC PROTECTION MODEL

THESIS

Raymond S. Way, Captain, USAF

AFIT/GCS/ENG/08-21

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government.

AFIT/GCS/ENG/08-21

A FORMAL SPECIFICATION AND PROOF

OF SYSTEM SAFETY USING

THE SCHEMATIC PROTECTION MODEL

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Science

Raymond S. Way, BS

Captain, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

iv

AFIT/GCS/ENG/08-M

Abstract

 This research formally specifies the Schematic Protection Model (SPM) and

provides a sound, flexible tool for reasoning formally about systems that implement a

security model like SPM, to prove its ability to provide security services such as

confidentiality and integrity. The theory described by the resultant model was logically

proved in the Prototype Verification System (PVS), an automated prover. Each

component of SPM was tested, as were several anomalous conditions, and each test

produced results consistent with the model.

 The model is internally modular, and therefore easily extensible, yet cohesive

since the theory to be proved encompasses the entire specification. This approach

ensures the specification is flexible enough to incorporate any extensions that can be

expressed algorithmically, such as the deontic logic properties of obligation, permission,

possibility and necessity. Furthermore, the modularity enhances the robustness of the

model to ensure that previously-proved fundamental properties are not lost in the process

of adding functionality.

v

Table of Contents

 Page

Abstract .. iv

Table of Contents ...v

 I. Introduction ..1

 Background ..1

 Research Objective ..2

 Overview..2

 Introduction..2

 Literature Review...2

 Specification of the Schematic Protection Model..3

 Schematic Protection Model Validation Scenarios..4

 Conclusion ...4

 II. Literature Review ...5

 Logic Systems ..5

 Propositional Logic ..5

 Predicate Logic ..6

 Modal Logics ...6

 The Schematic Protection Model...7

 Introduction..7

 Domains ...8

 Links ..9

 Filters ...10

 Creates..10

 The Prototype Verification System..11

 Automated Tool Selection ...12

 Split ..15

 Expand ...15

 Skolem ...15

 Flatten ..15

 SkoSimp...16

 Induct ...16

 Rewrite...16

 Install-Rewrites ..16

 Bddsimp ...16

 Assert ...17

 Replace...17

 Inst?..17

 Skolem-typepred ..17

 Lift-if..17

vi

 Bash..17

 Reduce..18

 Grind ..18

 Sequential Programming..18

 Summary ..22

 III. Specification of the Schematic Protection Model ..23

 Introduction..23

 Specification Subprocesses ..23

 Initialization ...23

 The Ticket Transfer Process ..24

 The Create Process...25

 SPM Encoding ...26

 SPM Specification ...27

 Specification Description...44

 SPM Proof..46

 Type Correctness Conditions ...46

 TCC1..47

 TCC2..47

 The System_correct Theorem ..48

 IV. Schematic Protection Model Validation Scenarios ...51

 Introduction..51

 Test Scenario 1 - No Ticket ...51

 Encoding ..51

 Results..52

 Test Scenario 2 - Ticket Not Copyable ..54

 Encoding ..54

 Results..55

 Test Scenario 3 - No Link ..57

 Encoding ..57

 Results..58

 Test Scenario 4 - No Filter...60

 Encoding ..60

 Results..62

 Test Scenario 5 - No Can-Create Relation...64

 Encoding ..64

 Results..65

 Test Scenario 6 - Unauthorized Transfer ...67

 Encoding ..67

 Results..68

 Test Scenario 7 - Unauthorized Create ..70

 Encoding ..70

 Results..71

vii

 Test Scenario 8 - Introduced Error...73

 Encoding ..73

 Results..75

 Summary ..77

 V. Conclusion ..78

 Contribution ...78

 Reliability of Results..78

 Suggestions for Further Research ..79

 SPM Modernization...79

 Deontic Logic...79

 Safety Analysis...80

viii

List of Figures

 Figure Page

 1. Propositional Truth Tables..5

 2. The Ticket Transfer Process ...25

 3. The Create Process..26

 4. SPM Proof Tree ..50

 5. PVS proof summary for SPM ...50

 6. SPM_noticket Proof Tree ...53

 7. PVS proof summary for SPM_noticket ..54

 8. SPM_nocopy Proof Tree...56

 9. PVS proof summary for SPM_nocopy ...56

 10. SPM_nolink Proof Tree ..59

 11. PVS proof summary for SPM_nolink...60

 12. SPM_nofilter Proof Tree...63

 13. PVS proof summary for SPM_nofilter ...63

 14. SPM_nocreate Proof Tree...66

 15. PVS proof summary for SPM_nocreate..67

 16. SPM_noauth_tr Proof Tree ...69

 17. PVS proof summary for SPM_noauth_tr..70

 18. SPM_noauth_cc Proof Tree..72

 19. PVS proof summary for SPM_noauth_cc...73

 20. SPM_broken Proof Tree ...76

 21. PVS proof summary for SPM_broken ..76

1

A FORMAL SPECIFICATION AND PROOF OF SYSTEM SAFETY

USING THE SCHEMATIC PROTECTION MODEL

I. Introduction

Background

 Cyber technology has seen great advances in last 20 years. The ability to create

complex systems, and to combine the capabilities of individual systems into massively

interconnected distributed systems has far outpaced the ability to model cyber systems

and reason formally about their security properties. Formal modeling and analysis has

established the security properties of small-scale subsystems such as cryptographic and

authentication protocols, and modeled the safety properties of some highly reliable

systems [Bal07]. Techniques in these specialized areas have kept pace with technological

progress, and they are used successfully today. But the formal modeling and analysis of

security properties of systems in cyberspace, such as computers, networks, or complex

distributed systems has not advanced at the same pace. Two system security models, the

Take-Grant model and the Schematic Protection Model, were developed in 1977 and

1988, respectively [Bis03]. These models have changed little since their introduction,

and as a result, are rarely used in practice to analyze real-world systems.

 Even so, the Schematic Protection Model still provides a sound and well-

understood theoretical model, which can be formally specified to model contemporary

cyber systems.

2

 The demonstrated usefulness of formal modeling and analysis in the security and

safety of protocols and the corresponding lack of progress in the establishing analogous

properties in the cyber arena indicate a new approach may be warranted [Bal07].

Research Objective

 The objective of this research is to develop a formal specification that implements

the Schematic Protection Model, and can verify whether a given protection scheme

correctly implements a specified security policy.

Overview

 Introduction.

 This chapter introduces the research problem and explains how this research

advances the state of the art using an automated tool for formally reasoning about the

safety of systems specified in the Schematic Protection Model (SPM). The developed

Prototype Verification System specification supports future research by incorporating

additional virtual processor modules. These modules support additional functionality

that can be described in an algorithm and translated into the PVS language through a

sequential coding paradigm.

 Literature Review.

 Chapter II introduces logic systems, focusing primarily on propositional and

predicate logic systems as a means of describing the underlying higher-order sequent

calculus engine of the PVS prover. The chapter discusses modal logics, specifically

deontic logic, in response to limitations of the aforementioned classical logic systems.

Extending SPM with deontic logic is recommended for future research.

3

 SPM provides the means to describe an abstract system, including entities that

comprise the system and the rules by which they interact. These rules describe the

conditions under which the system can transition from one state to another, and

consequently, allow it to be determined whether a particular state is reachable. It is this

characteristic that enables a proof that a system in a known initial state cannot end up in

an unsecure state.

 The PVS specification language, its integrated support tools and theorem prover

are described. This tool was selected largely due to the empirical examination of various

automated verification systems done by Sonali Ubhayakar in 2003 [Ubh03].

 The sequential programming paradigm, contrasted with the now more familiar

object-oriented mindset, is used to formulate linear algorithms to be translated into

assembly-like pseudocode that describes the desired behavior of the model. This

pseudocode is translated into a PVS specification that implements the state machine

presented by this research.

 Specification of the Schematic Protection Model.

 Chapter III presents a Prototype Verification System specification of the

Schematic Protection Model followed by an annotated version of the specification itself.

 The specification is considered in three parts, the first being initialization. The

initialization process declares datatypes and the variables that use them. It includes

system state initialization and setup functions common to any autonomous state machine

being considered in the model. The second and third parts each represent autonomous

state machines that implement rights transfer and entity creation, respectively, in SPM.

4

 The description is followed by the specification itself, including the PVS

statements with annotations. The results are presented using PVS-prover output,

followed by an analysis that includes an overview of the proof sequence.

 Schematic Protection Model Validation Scenarios.

 Chapter IV presents a series of exceptional conditions within the SPM and their

respective formal specifications in PVS to demonstrate that the safety of the system is

preserved. These conditions test the model's ability to prevent an unsecure state

transition.

 Conclusion.

 This research produces a formal specification that correctly implements SPM.

This specification was designed to be robust, yet flexible as it will accept modular,

autonomous additions in support of additional SPM modeling capabilities.

 SPM specifications are a promising area for future research; they offer an

established foundation from which to proceed. The use of deontic logic to reason about

system properties is proposed for future research. Deontic logic provides the foundation

for reasoning about obligation, permission, possibility and necessity, and is therefore

expected to satisfy certain requirements that SPM itself cannot.

5

II. Literature Review

 Logic Systems

 Propositional Logic.

 Propositional logic is a system of formulating and combining propositions using

atomic variables, logical operators, axioms, and rules of inference. Atomic variables are

declarative statements (i.e., propositions) such that, when their relationships are resolved

in accordance with the system's axioms and inference rules, a determination of TRUTH

or FALSITY can be made about the compound statement. Logical operators are

considered in a prescribed order of precedence to ensure that no ambiguity exists. The

axioms/rules must be both sound (all compound statements that resolve to TRUE are, in

fact, true) and complete (any compound statement that is true can be determined to be

TRUE by applying some combination of these axioms/rules.)

 For example, using the atomic statements p and q, logical operators can be used to

derive the familiar truth tables in Figure 1.

p q p ∧∧∧∧ q

T T T

T F F

F T F

F F F

p q p ∨∨∨∨ q

T T T

T F T

F T T

F F F

p q p ���� q

T T T

T F F

F T T

F F T

p ¬¬¬¬p

T F

F T

┬

T

┴

F

 Figure 1. Propositional Truth Tables

6

Predicate Logic.

 Although propositional logic can represent simple relationships like and, or, not,

and if… then, it cannot represent more complex notions such as for all x (∀x), there exists

x (∃x), or concepts like only, and at least over a range of values. Predicate logic uses

variables, functions, and constants to represent these more complex ideas. Variables

represent atomic ideas, or propositions, as they do in propositional logic. Functions are

used to express relationships between the variables. For example, Taller(x, y) might be

used to mean x is taller than y, and would resolve to TRUE in a compound statement

where that, in fact, held. Constants can be thought of as functions with no arguments,

simply returning their default value when invoked.

 Modal Logics.

 The propositional and predicate (aka classical) logics are the foundation for most

formal models, where the truth about some aspect of the system is reduced to TRUE,

FALSE, or perhaps UNDECIDABLE. That is, a property holds (is TRUE), does not hold

(is FALSE), or cannot be determined whether it holds (is UNDECIDABLE). Classical

logic cannot effectively support reasoning about systems where, for example; a property

should hold, where some agent is obliged to see to it that something occurs, or where a

property is possible or, conversely, is necessary. Furthermore, classical logic does not

support temporal reasoning. Rather, it reasons about a snapshot of the system at some

point in time. That is, if a property is TRUE under given conditions, it is always TRUE

for those conditions [Bal07]. Additionally, technical deficiencies in classical logic when

reasoning about security have been identified [ChM06], including the well-known

semantic paradox of material implication, the most troublesome example of which is that

a false antecedent implies any consequent that follows. Imagine trying to reason about

7

the security of a critical system in which Authenticated=FALSE implies

Authorized=TRUE. The system using this logic would allow any action to be

accomplished by any entity, as long as they had not been properly authenticated first.

 Reasoning about trust among distributed systems that must each perform certain

actions to achieve a goal (but in fact may not) can be modeled using notions of obligation,

permission, possibility, and necessity from deontic logic. Extending the SPM with

deontic logic is a promising area for further research.

 The fundamental task of this research is to create a sound formal specification that

captures the semantics of the Schematic Protection Model, which will ultimately enable

formal modeling, analysis, and reasoning about various aspects of cyberspace security.

The Schematic Protection Model

 Introduction.

 To determine the protection state of a system, rules that allow or prevent

transitions from one state to another must be described. With this structured framework,

or schema, it can be proven whether an unsecure state can be reached from a given initial

state. The Schematic Protection Model (SPM) introduces one such framework for

modeling an abstract system's security-related interrelationships.

 In SPM, entities within the system are anything that can act or be acted upon, such

as a user, a file, or a printer. These entities are classified and labeled according to their

protection type upon creation, which does not change for the life of that entity. The entity

also has associated with it zero or more tickets that collectively constrain the ways in

which the entity can act to trigger events within the system. Each ticket identifies a single

right and the target-entity to which that right applies. For example, if an entity possesses

8

the ticket Y/z, then the entity has z rights over the entity Y, or stated another way; the

ability to do z to Y. The set of all tickets that an entity has is in its possession is the

domain of that entity. Rights belong to one of two broad categories: inert rights or

control rights. Inert rights are those that, when exercised, have no effect on the security

state of the system (e.g., an authorized read or write operation). Control rights are those

that, when exercised, can affect the security state of the system (e.g., creating a new

entity). Rights are of interest as they describe the events that are allowed within the

system, and thus describe whether a violation of security policy is possible in a given

state. If the domains were static, this would conclude the analysis, but one of the

allowable events is the transfer of a ticket, which alters the reachable states, making

further safety analysis necessary.

 Rights can be transferred between entities if-and-only-if three conditions hold:

the initiating entity has in its domain a copyable version of the ticket, there is a link

between the entities, and there is an associated system policy, or filter function, which

explicitly allows the transfer. SPM differentiates between nontransferable and

transferable rights with the copy flag. That is, the transferable right r over file F would

be designated by the ticket F/rc as opposed to the noncopyable F/r.

 Domains.

 Every entity in the system has associated with it a set of tickets that collectively

describe how it can interact with other entities. A ticket is a tuple of the target entity and

the associated right, as described above. Each right r has an associated copyable right rc

[Bis03, pg. 66]. An entity need only possess the ticket X/r to exercise the right r over X,

9

but to copy the ticket to another entity, the initiator must possess the associated ticket

X/rc in its own domain.

 Links.

 A link predicate defines a relationship between two subjects in the context of the

tickets in their respective domains, and determines whether there is a link between the

two. A link predicate is a conjunction or disjunction (but not a negation) of the following

terms for any control right z [Bis03, pg. 67]

 X/z ∈ dom(X) (1)

 X/z ∈ dom(Y) (2)

 Y/z ∈ dom(X) (3)

 Y/z ∈ dom(Y) (4)

 TRUE (5)

where dom(X) is the set of tickets that X possesses.

 For example, the following link predicate establishes a link from X to Y, iff the

ticket X/z is in Y's domain

 link(X, Y) = X/z ∈ dom(Y). (6)

 The predicate link(X, Y) = TRUE is a universal link and establishes a link from X

to Y unconditionally. The existence of a valid link satisfies one of the three conditions

that must hold for a ticket transfer to take place. The action must also be allowed by a

filter function associated with the type of link, determined by the protection types of the

associated entities.

10

 Filters.

 The filter function specifies the rights that may be transferred across the

associated link. The factors that determine whether to allow the operation are the entity's

protection types (including that of the target entity, which may not be one of the two

involved in the transfer) and the right to be transferred. For example, for superuser X to

transfer a copyable read permission (rc) over file F to user Y, the link established in the

preceding paragraph between X and Y would have to have the following filter

 f(superuser, user) = { file/rc } (7)

where rc denotes a read right with an associated copy flag.

 To preserve the principle of attenuation of privilege, "no entity may have more

rights than its creator" [Bis03, pg. 71], an entity must possess a right itself before it can

transfer that right to another. This prevents the proliferation of privileges that would

occur with no such constraint. Accordingly, for X to copy the ticket F/rc to Y, it must be

true that F/rc ∈ dom(X) in the first place.

 Creates.

 The means by which new entities are created has important implications for the

integrity of the system. New entities and their respective privileges introduce

combinatoric relationships among system entities that could make safety analysis

intractable. In SPM, create-events are controlled by can-create relations between entity

types, and associated create-rules that are invoked upon creation.

 The set of entity-types T is partitioned into a subject set TS and an object set TO

[Bis03, pg. 66]. An entity a can create another entity b iff the can-create relation cc(a,b)

exists such that cc ⊆ TS × T. For example, for subject X to create object F (where X is of

11

type user and F is of type file), the tuple (user, file) must be in the can-create relation

cc(user, file). Furthermore, for any can-create relation, say, (a, b), neither entities of

type b nor any descendent (if the b-type entity creates other entities) can create an entity

of protection-type a. This acyclic-create restriction is a characteristic of SPM that makes

analysis tractable.

 A create-rule determines which tickets are assigned to the parent and the child

entities after a create. For example, the create-rule cr(a, b) is comprised of two subrules:

crp(a, b) and crc(a, b), which specify the tickets the parent and child get upon creation.

To preserve attenuation of privilege, the child cannot be given any privileges the parent

doesn't have. If necessary, the parent can be assigned new tickets at creation-time before,

in turn, granting them to the child.

 As an acyclic attenuating scheme, the Schematic Protection Model can determine

the safety of certain classes of systems. Representing this scheme in an automated

verification system such as the Prototype Verification System allows the constraints and

capabilities represented therein to be explored.

The Prototype Verification System (PVS)

 The requirements or high-level design of many systems (perhaps any system, at a

high enough level of abstraction) can be modeled as a state machine. Doing so introduces

an abstract representation of the dynamic system-state and a set of operations that can be

used to manipulate it. These operations transition the system from one state to another in

response to external inputs and their influence on internal logic.

 The development of a state machine representation requires a robust and system-

relevant collection of type definitions to build the state description. Additional types,

12

constants, and functions are needed to support subsequent formalization of the operations

that act on the state. These state operations, themselves, are functions that take the

system from one state to another or, more generally, that operate as structured

relationships between states. Many times an invariant to the system state is provided to

formalize the notion of a well-defined system state. This invariant is shown to hold in the

presence of arbitrary operations on the state, assuming it holds prior to the operation.

Other properties may be expressed as predicates over the system state and operations, and

can be proved as putative theorems that follow from the formalization [NAS93].

 PVS is a verification system. That is, a specification language integrated with

support tools and a theorem prover. It represents the state-of-the-art in mechanized formal

methods and can be used for significantly complex applications [SRI07]. Indeed, it has

been used in numerous high-complexity research efforts around the world, both in

academia and practical application [SRI08].

 This research uses PVS to create logic-based models to verify whether a given

protection scheme correctly implements a given security policy. The choice to use PVS

was based, in part, on [Ubh03].

 Automated Tool Selection.

 Sonali Ubhayakar developed a methodology and a set of evaluation criteria to

determine the utility of automated verification systems for the Naval Postgraduate School

[Ubh03]. The ability of PVS to capture the properties of software systems and to provide

a mapping between hierarchical levels of system abstractions, a necessary feature for

understanding how a systems meets security objectives, was evaluated. Fifteen

verification tools were tested based on prominence or specific characteristics of interest,

according to the following criteria:

13

 1) Age is an indicator of maturity/completeness. Tools that have been in use over

a longer period of time are more likely to have been used and assessed for

suitability for different applications. There is simply more data available which

can be used to evaluate the tool.

 2) Purpose, with a focus on the ability to describe software systems. Tools that

are tailored to a specific class of problems, e.g., a particular mathematical

property, were not considered to be good candidates.

 3) Implementation language, with a focus on portability.

 4) Resource requirements, with a focus on commonly available platforms such as

a Windows- or Unix-based workstation with no extraordinary specifications. The

availability of a suitable platform contributes to the tool's usefulness by

minimizing cost and time to implement.

 5) User friendliness. This is a trade-off between ease of use and degree of

automation. The more completely automated the tool, the more limited it is in

what it can verify. This part of the evaluation focused on the ability to use the

tool without in-depth training on the language or mechanics of the tool.

 6) User Interface. Related to user-friendliness, a well-designed graphical

interface is favored over a command-line interface.

 Important characteristics identified for further research include:

 1) User Presentation Language. The tool's usefulness is considered to be

enhanced if its interface language is one that the user is already comfortable with

and competent in.

14

 2) Consistency of specifications. A tool being used to uncover errors and

inconsistencies in the correctness of a system must first be free of these same

flaws. To the extent that the tool's correctness is suspect, so should be the results

that it produces.

 3) Executable specifications. The ability to construct and execute a potential

solution allows the user to demonstrate the modeled system's behavior and more

readily identify changes that need to be made.

 4) Multiple levels of abstraction. The tool should be able to prove that the formal

top-level specification, and the security policies that support it, together satisfy the

overall security model for the system.

 5) Expressiveness, described as the flexibility with which a tool can be applied to

more complex and difficult problems. The expressiveness of PVS is enhanced by

its support for the introduction of axioms.

 PVS was selected after applying the empirical criteria above, specifically due to

the amount of available documentation, the number of satisfied evaluation criteria, and

the researcher's familiarity. “PVS can be used to specify and validate system

requirements, verify that an implementation meets the requirements and then help to

refine the design in an effort to improve system performance” [Ubh03].

 PVS has an editing environment and an interactive theorem prover, which

facilitate the development and debugging of specifications that can be formally shown to

hold to explicitly stated properties. The prover includes powerful atomic and aggregate

commands that apply rules of inference in a sequent calculus based on a higher-order

predicate logic which allows predicates to take other predicates as arguments.

15

 The PVS prover includes many commands to apply the rules of inference

interactively at different stages of the proof. The proof begins with an assertion of the

theorem to be proved, and proceeds sequentially through the sequent invoking the

reduction tactic specified by the user. Selected commands that can be used to prove the

SPM schematic are described below.

 Split

 The Split command separates conjunctive terms for individual consideration. For

example, applying Split to the statement A AND B branches the proof into two separate

subgoals from that point, one for statement A and one for B.

 Expand.

 The Expand command is used to expand and simplify the definition of a function

during the proof. For example, the statement f(a, b) becomes a + b for the function

f(int x, int y) = x + y

 Skolem.

 Where the current sequent contains an existential antecedent, e.g., ∃x(y(x)), or a

universal consequent, e.g., ∀x(y(x)); the Skolem command introduces a particular but

arbitrarily chosen constant to represent x in the function y(). For example, ∀x(y(x)) is

reduced to y(c), for the arbitrarily chosen constant c.

 Flatten.

 The Flatten command performs disjunctive simplification on the current sequent,

transforming each formula into a list of expressions that is free of disjuncts by applying

these transformations, as appropriate [Sha01]:

 1) An antecedent formula ¬A into the consequent formula A.

16

 2) An antecedent formula A ∧ B into the two antecedent formulas A and B.

3) A consequent formula ¬A into the antecedent formula A.

4) A consequent formula A � B into the antecedent formula A and the

consequent formula B.

5) A consequent formula A ∨ B into the two consequent formulas A and B.

6) An antecedent formula A ⇔ B into the two antecedent formulas A � B

and B � A.

 SkoSimp.

 SkoSimp is an aggregate command that applies Skolem, and then Flatten.

 Induct.

 The Induct command produces base and induction cases from the target formula

based on the data type of the target which must be a natural number or a PVS-language

abstract datatype with an internally-defined induction scheme.

 Rewrite.

 Rewrite automatically determines required substitutions by matching the

conclusion of a named lemma, axiom, assumption, or function definition against

expressions in the current sequent.

 Install-Rewrites.

 Install-Rewrites can be used to invoke theories whose declarations are meant to be

used as rules for applying the Rewrite command.

 Bddsimp.

 Binary decision diagram simplification repeatedly applies the propositional rules

of inference to all the formulas in the sequent, to be reintroduced as a list of zero or more

subgoal sequents.

17

 Assert.

 Assert applies internal decision procedures to prove trivial theorems, and to

simplify complex linear arithmetic and boolean expressions.

 Replace.

 Replace substitutes formulas in the current sequent using an equality formula from

the antecedent. If there is an antecedent formula x = y, Replace will substitute y for

occurrences of x in a given target formula.

 Inst?.

 When the current sequent contains an existential consequent, e.g., ∃x(y / x - 2)), or

a universal antecedent, e.g., ∀x(y / x - 2)); the Inst? command reduces them by

instantiating the quantified variables with any matching terms having the same number of

bound variables.

 Skolem-typepred.

 Like Skolem, with the additional function of adding any discovered type

constraints on the introduced constants as antecedent formulas.

 Lift-if.

 Lift-if is a propositional reduction that brings the leftmost-innermost conditional

expression to the outermost level. (e.g., [Sha01]),

f(IF(A;B; IF(C;D;E)))

 is converted to the formula

IF(A; f(B); IF(C; f(D); f(E)))

 Bash.

 Bash is an aggregate command that executes assert, bddsimp, inst?, skolem-

typepred, flatten, and lift-if, in that order.

18

 Reduce.

 Reduce is an aggregate command that applies bash followed by replace*,

repeating the two until it has no effect.

 Grind.

 Grind is an aggregate command that can often complete a proof branch

automatically using a combination of the aforementioned commands. Grind executes

install-rewrites to install any given theories, rewrite rules, or relevant definitions. It then

applies bddsimp, assert, replace*, and finally reduce.

Sequential Programming

 To replicate the behavior of an abstract system that implements the Schematic

Protection Model, it is helpful to envision the system's desired behavior using a sequential

programming paradigm. The term sequential programming contrasts with the more

familiar paradigm of object oriented (OO) design. To effectively reason about the

system, it was necessary to abandon such higher-order abstractions and deal explicitly

with the flow of logic through a virtual processor. SPM was initially modeled as a

collection of sequential algorithms in a pseudocode similar to the C programming

language that behaved as prescribed by the SPM under explicit initial conditions and

known subsequent transitions. For example, the ownership test and the link test are

shown in their initial form below:

void main(){

 %==BEGIN initialize (using PVS-style typing)=======
 %---
 enum Actor_type = {X, Y}
 Actor_type Actor1 = X
 Actor_type Actor2 = Y
 %---

19

 enum Right_type = {r, w}
 Right_type Right1 = r
 Right_type Right2 = w
 %---
 enum ProtT_type = {Subj, Obj}
 ProtT_type PType1 = Subj
 ProtT_type PType2 = Obj
 %---
 Record_ptr Ticket_type = [#
 actor: Actor_type,
 right: Right_type
 #]
 %---
 Ticket_type Ticket_Xr = [X, r]
 %---
 Record_ptr Domain_type = [#
 actor: Actor_type,
 domain: setof[Ticket_type]
 #]
 Domain_type Domain_X
 Domain_type Domain_Y
 %---
 Record_ptr Link_type = [#
 actor1: Actor_type,
 actor2: Actor_type,
 #]
 Set_ptr Links = setof[Link_type]
 %---
 bool State_OK = TRUE
 %---
 %==END initialize==================================

 add_Ticket([X, r], X);
 transfer([X, r], X, Y);
 IF (contains([X, r], dom(Y))) THEN State_OK = FALSE;
} //end main

bool linktest(Actor_type A, Actor_type B){
 bool response = FALSE
 IF (contains([A, B], Links)) THEN response = TRUE;
 return(response);
}

Domain_type dom(Actor_type A){
 return(domain | actor = A);
}

void add_Ticket(Ticket_type T, Actor_type A){
 Domains = Domains WITH [add(domain, T) | actor = A]
}

20

void transfer(Ticket_type T,
 Actor_type A,
 Actor_type B){
 IF (contains(T, dom(A))) THEN
 IF linktest(A, B) THEN
 addticket(T, B);
 ENDIF;
 ENDIF;
}

 These algorithms were translated into an assembly-like syntax, breaking down the

original flow-control constructs into comparisons and conditional jump statements.

===
// Pseudo-SPM in goto format:

void main(){

// (initialize as described above)

L1: Domain_X`domain = Domain_X`domain WITH
 [add(Ticket_Xr, Domain_X`domain)]

//transfer [X, r] from X to Y
L2: //test source domain for ticket
 IF (!(contains(Ticket_Xr, Domain_X`domain)))
 THEN goto L5

L3: //test for link
 IF (!(contains([X, Y], Links)))
 THEN goto L5

L4: //add [X, r] to Y
 Domain_Y`domain = Domain_Y`domain WITH
 [add(Ticket_Xr, Domain_Y`domain)]
 goto END

L5: IF (contains(Ticket_Xr, Domain_Y`domain))
 THEN State_OK = FALSE;

END:
}

 The resultant pseudo-assembly code was directly translatable into PVS

instructions [CK01]. The example above supplied the logic flow for what eventually

21

became these transition functions for the transfer test state machine in the current

specification:

trans(snapshot: State_template): State_template =
 CASES snapshot`PC OF

 % Each case applies WITH conditions before passing
 % snapshot to the specified operation, then
 % returns snapshot.

 % set up initial state and increment PC
 L1_1: Init(snapshot) WITH [PC := L2_1],

 % set up test conditions and increment PC
 L2_1: Setup(snapshot) WITH [PC := L3_1],

 % verify that source entity has copyable ticket
 % and adjust PC
 L3_1: snapshot WITH [PC :=
 IF (member(myfile_rc, snapshot`Domain(Bob)))
 AND
 myfile_rc`copyable? THEN L4_1
 ELSE L7_1
 ENDIF],

 % verify that link exists between source and
 % target/adjust PC
 L4_1: snapshot WITH [PC :=
 IF Link?(snapshot, Bob, Alice) THEN L5_1
 ELSE L7_1
 ENDIF],

 % verify that a filter function allows this
 % transfer/adjust PC
 L5_1: snapshot WITH [PC :=
 IF Filter?(snapshot, Bob,
 Alice, myfile_rc) THEN L6_1
 ELSE L7_1
 ENDIF],

 % Execute the transfer and increment PC
 L6_1: Exec_1(snapshot) WITH [PC := L7_1],

 % Test State_OK and move PC to end
 L7_1: Test_1(snapshot) WITH [PC := LEND_1],

 LEND_1: snapshot
 ELSE snapshot
 ENDCASES

22

Summary

 Propositional and predicate logic systems are the fundamental underpinnings of

the higher-order sequent calculus engine of the PVS prover. Modal logics, specifically

deontic logic, represent a promising potential extension of SPM to model modern,

complex cyber systems.

 SPM is used to describe an abstract system. The model offers clearly defined

rules through which we can prove the abstract system cannot enter a state that would

violate the system security policies.

 PVS is an interactive, semi-automated prover that proves the safety of the abstract

system. This tool was weighed empirically against various other automated verification

systems. It was found that PVS is well-suited to prove the safety properties of an abstract

system that implements the security constraints described by SPM.

 A sequential programming paradigm is used to develop the desired model

behavior algorithmically in a way that is easily transferable to a PVS specification.

23

III. Specification of the Schematic Protection Model

Introduction

 The PVS specification implementing SPM includes an initialization section,

followed by two autonomous state machines. The state machines each represent a virtual

processor against which state transition functions are applied, implementing the ticket

transfer and entity creation operations, respectively. It is here that the flexibility of this

design is realized. Additional autonomous virtual processors can be added as modules to

implement any functionality that can be described algorithmically, and integrated with a

reference to the new module in the comprehensive theory System_correct at the end of the

specification. Then, PVS can formally reason about the behavior of the new module in

the same context as the original modules. Because a single system state is shared among

modules, it may be necessary to add state variables to support additional operations.

Specification Subprocesses

 Initialization.

 Since the PVS specification is interpreted sequentially, it begins with an

initialization section in which datatypes that represent components of the SPM model are

described. This is followed by the instantiation of variables using the declared datatypes.

These are the named variables manipulated during validation of the specification.

 The next section includes state initialization and setup operations. Two state

transition functions are outside the scope of the autonomous virtual processor. These

ensure the autonomous state machines used in the System_correct theory are applied to

the same system under the same conditions.

24

 The Ticket Transfer Process.

 Transferring a ticket is contingent upon the results of three tests that together

ensure that the transfer is not a violation of system policy and that the proposed new state

of the system will remain secure.

 Consider the PVS ticket transfer process in Figure 2 where Bob transfers myfile/r

to Alice. The first test ensures that Bob has a copyable version of the ticket, which

ensures that attenuation of privilege is preserved. The specification checks Bob's domain

to verify that it contains the ticket myfile/rc, which is the copyable version of ticket

myfile/r.

 The second test ensures there is a link between Bob and Alice. This is done by

checking for a link predicate associated with the ordered pair (Bob, Alice).

 The third test ensures that a filter function associated with the link allows the

transfer of the ticket between entities with the respective protection-types of the

originating- and target-entities. The test checks the set Filters for the element (file, r)

associated with the tuple (administrator, user), all associated with the link (Bob, Alice)

which are represented by their respective IDs (0, 1). Explicitly,

(file, r) ∈ Filters(0, 1)(administrator, user)

which states that ticket {X, r}, where X is an entity with the protection-type file, may be

transferred from an entity of protection-type administrator to another of type user. Note

that the actual entity identified in the ticket (X/r) is not identified in the filter function.

Rather, the system policy applies only to the right itself and the protection type of the

entity to which the right applies.

 These three tests ensure that ticket transfers are well defined and attenuating. A

transfer can occur between any two entities, such as a user or a printer, that can initiate or

25

be affected by actions that change the security state of the system. The transfer process is

described in Figure 2 by Bob's attempt to transfer a ticket to Alice. In this example Bob

initiates a potential change to the system state, i.e., adding a ticket to Alice's domain. If

successful, the system will transition from the pre-transfer state to that identified as post-

transfer, which includes myfile/r in Alice's domain.

 Figure 2. The Ticket Transfer Process

 The Create Process.

 Creating a new entity in the PVS specification is contingent upon that creation not

being a violation of system policy. In Figure 3, Bob initiates the creation of LaserJet_1 of

type printer. A system policy, in the form of a can-create relation, specifies whether an

entity of protection-type administrator can create an entity of protection-type printer.

This rule is simply an ordered pair representing the parent and child types, respectively.

The specification checks the current state of the set Can_Creates to ensure that it contains

the pair (administrator, printer).

26

 The Pre- and Post-Create State boxes contain the members of the set Entities and

their respective domains. The system initially has only two entities (Bob and Alice).

Also shown is the relevant member of the set Can_Creates, and the sets cr`p and cr`c,

which will determine the outcome of the create. The associated create-rule sets cr`p and

cr`c include two tickets to be added to the parent's domain (myfile/rc and syslog/w) and

none for the child.

Figure 3. The Create Process

SPM Encoding

 The PVS specification for SPM is presented below. This version of the model

contains the theory named SPM, which includes the ability to transfer a ticket and create a

new entity. Slightly modified versions are presented in the next chapter to demonstrate

correct behavior under the specified exceptional conditions.

27

 The code implements two separate state-machines, implementing the rules of

ticket-transfer and the rules of entity creation, respectively. State transitions within each

are controlled with a sequential logic that mimics an assembly-like program running on a

virtual processor, referred to in the embedded comments as processor_1 and processor_2.

The program-counter is a state variable used by the transition functions to navigate the

flow of control, starting from a known initialized state.

 Since the PVS statements are interpreted by the prover in the order they appear,

these transition functions are preceded by datatype and function declarations, and

followed by the single theory through which the state machines will be evaluated

together. It is at this point that the illusion of linearity is abandoned and PVS considers

the correctness of the state transitions from every possible initial state that ultimately

results in a termination state. It is this all-possible-worlds analysis that supports the claim

that the safety of the SPM is correctly demonstrated by the specification.

 SPM Specification.

 The PVS specification below is interpreted with minor formatting changes only.

Comments (preceded by a "%" sign) are included throughout, followed by the pertinent

PVS instruction. Major sections are delineated with a horizontal row of equal signs

(%=====), minor sections with dashes (%-----):

% Schematic Protection Model State Machine
% PVS ver 4.1
%
% Raymond Way, Capt, USAF
% AFIT/GCS/ENG/08-21
% March 2008
%
SPM :THEORY

BEGIN
%===
% DEFINITIONS: This section contains the definitions of

28

% custom datatypes used by the SPM specification.

%---
% RECORD-TYPE DEFINITIONS
% PVS allows the use of a record datatype that acts as a
% record with named fields.
% The record structure allows the individual fields to be
% examined by referencing the name.
% This SPM specification defines several datatypes that
% use this structure:
% Type_name: TYPE = (#
% fieldname_1 := datatype,
% fieldname_2 := datatype,
% ...,
% fieldname_n := datatype
% #)

% Right_class is an enumerated type which lists all
% possible classes of right

Right_class: TYPE = {Control, Inert}

% Right_priv is an enumerated type which lists all allowable
% privileges in the system

Right_priv: TYPE = {read, write, append,
 execute, take, grant, demand}

% Right_type is a record type comprised of the privilege and
% the class it belongs to

Right_type: TYPE = [#
 privilege: Right_priv,
 class: Right_class
 #]

% Enumerate possible protection-types and entity classes

Entity_class: TYPE = {Subject, Object}
Protection_type: TYPE = {administrator, user, printer, file}

% define the Entity_type as a record containing an
% identifier for comparison with other entities during the
% proof, and associated protection type

ID_type: TYPE = {0, 1, 2, 3, 4}
Entity_type: TYPE = [#
 ID: ID_type,
 ptype: Protection_type
 #]

29

% Ticket_type is a record datatype that contains three named
% parts, an entity of type Entity_type and a right of type
% Right_type (each described above), and a boolean copy flag

Ticket_type: TYPE = [#
 entity: Entity_type,
 right: Right_type,
 copyable?: bool
 #]

% PTicket_type is a tuple datatype that contains two parts,
% one to hold a valid protection-type and one a valid right,
% as described in their respective datatype definitions
% above.

PTicket_type: TYPE = [Protection_type, Right_type]

% Rule_type is a record that contains two sets of tickets to
% be used in a create rule.
% The set p is for the parent and c is for the child of a
% create operation

Rule_type:TYPE=[#
 p: setof[Ticket_type],
 c: setof[Ticket_type]
 #]

% Link_type identifies the edge between two entities

Link_type: TYPE = [ID_type, ID_type]

% Filter type associates a pair of Protection_type with
% a set of PTicket_type
% e.g. [user, user] -> {(file, r), (printer, w)}

Filter_type: TYPE =
 [[Protection_type, Protection_type] -> setof[PTicket_type]]

% PCt is an enumerated datatype which lists possible values
% of the virtual program counters (suffix _x indicates
% processor). These values represent code labels, as appear
% in assembly or BASIC programs, and are used to navigate
% the logic of the state-machine.

PCt: TYPE =
 {L1_1, L2_1, L3_1, L4_1, L5_1, L6_1, L7_1, LEND_1,
 L1_2, L2_2, L3_2, L4_2, L5_2, LEND_2}

%---
% State_template is a record datatype that comprehensively
% represents the state of the system. The definition below

30

% identifies names for each of the system attributes that
% comprise the current state, each followed by their
% respective datatype. The datatypes are either inherent to
% PVS, such as boolean (bool), or defined above.

State_template: TYPE = [#
 % virtual program counter
 PC: PCt,

 % The set of all protections types, by class
 T: [Entity_class -> setof[Protection_type]],

 % The set of all privilege-bearing entities
 Entities: setof[Entity_type],

 % set of Tickets in the provided Entity's domain
 Domain: [Entity_type -> setof[Ticket_type]],

 % The set of can-create relationships
 Can_Creates: [Protection_type ->
 setof[Protection_type]],

 % The set of all active create rules
 Create_rules: [Entity_class, Entity_class ->
 Rule_type],

 % The set of all active transfer-filter policies
 Filters: [Link_type -> Filter_type],

 % Do test conditions allow the transfer?
 tr_Authorized?: bool,

 % Do test conditions allow the create?
 cc_Authorized?: bool,

 % Flag used to record breach of secure state
 State_OK: bool
 #]

%===
% INSTANTIATIONS
% In this section, named entities are created to represent
% specific system components for PVS to manipulate, as
% instantiations of record-type definitions.
% These record-types are instantiated as follows:
% Name: datatype = (#
% fieldname_1 := value_1,
% fieldname_2 := value_2,

31

% ...,
% fieldname_n := value_n
% #)
%---
% RIGHTS
% Used to represent the different privileges that can be
% exercised by one entity over another

r: Right_type = (#
 privilege := read,
 class := Inert
 #)

w: Right_type = (#
 privilege := write,
 class := Inert
 #)

%---
% ENTITIES
% Instantiate named entities for the current system
% ID's should be unique to avoid erroneous comparisons
% e.g., "Bob = Alice"

Bob: Entity_type = (#
 ID := 0,
 ptype := administrator
 #)

Alice: Entity_type = (#
 ID := 1,
 ptype := user
 #)

LaserJet_1: Entity_type = (#
 ID := 2,
 ptype := printer
 #)

myfile: Entity_type = (#
 ID := 3,
 ptype := file
 #)

syslog: Entity_type = (#
 ID := 4,
 ptype := file
 #)

%---
% TICKETS

32

% Create a copyable version of the ticket: myfile/rc
% This ticket would allow read-access to myfile to be
% exercised by any entity possessing this ticket in its
% associated domain, representing the ticket myfile/rc.

myfile_rc: Ticket_type = (#
 entity := myfile,
 right := r,
 copyable? := TRUE
 #)

% Create a non-copyable version of the same ticket: i.e.,
% myfile/r.

myfile_r: Ticket_type = (#
 entity := myfile,
 right := r,
 copyable? := FALSE
 #)

% Create a ticket representing the copyable write privilege
% (w) over the entity "LaserJet_1" representing the ticket
% LaserJet_1/wc.

LaserJet_1_wc: Ticket_type = (#
 entity := LaserJet_1,
 right := w,
 copyable? := TRUE
 #)

% Create a non-copyable version of the ticket syslog/w.

syslog_w: Ticket_type = (#
 entity := syslog,
 right := w,
 copyable? := FALSE
 #)

%===
% INITIALIZE state and SETUP the desired conditions:
% Below, the initial system state and its immediate
% successor, the setup state, are described. The latter is
% used to establish the preconditions for any test to be
% conducted.
%---
% Init can be thought of as a function, taking an argument
% (snapshot) of type State_template. It returns to the
% calling statement a State_template equal to snapshot

33

% after the changes indicated in the WITH[] block have been
% sequentially applied.

Init(snapshot: State_template): State_template =
 snapshot WITH [

 % Establish there are no protection types in TS or TO
 T := snapshot`T WITH [
 (Subject) := emptyset,
 (Object) := emptyset],

 % Establish that there are no Entities in the current
 % system state
 Entities := emptyset,

 % Establish that the domains of each instantiated
 % Entity is initially empty
 Domain := snapshot`Domain WITH [
 (Bob) := emptyset,
 (Alice) := emptyset,
 (LaserJet_1) := emptyset,
 (myfile) := emptyset],
 % Establish that there are no can-create relations
 Can_Creates := snapshot`Can_Creates WITH [
 (administrator) := emptyset,
 (user) := emptyset,
 (printer) := emptyset,
 (file) := emptyset],

 % Establish that there are no create rules
 Create_rules := snapshot`Create_rules WITH [
 (Subject, Subject)`p := emptyset,
 (Subject, Subject)`c := emptyset,
 (Subject, Object)`p := emptyset,
 (Subject, Object)`c := emptyset],

 % Establish that there are no filters.
 % Filter_type = [(Protection_type,Protection_type) ->
 % setof[PTicket_type]]
 % Filters = [Link_type -> Filter_type] (State_template)
 Filters := snapshot`Filters WITH [
 (Bob`ID, Alice`ID)
 (administrator, user) := emptyset,

 (Alice`ID, Bob`ID)
 (user, administrator) := emptyset],

34

 % Set flag to indicate a secure initial state
 State_OK := TRUE]

%---
% Set up test pre-conditions
% The Setup function takes an argument (snapshot) of type
% State_template and returns it with the following
% sequentially-applied changes:

Setup(snapshot: State_template): State_template =
 snapshot WITH [

 % Add protection types to TS and TO
 T := snapshot`T WITH [
 (Subject) := add(administrator,
 add(user,
 snapshot`T(Subject))),
 (Object) := add(printer,
 add(file,
 snapshot`T(Object)))],

 % Add Bob and Alice to the system
 Entities := add(Bob,add(Alice, snapshot`Entities)),

 % Add myfile_rc to Bob's Domain
 Domain := snapshot`Domain WITH [
 (Bob) := add(myfile_rc, snapshot`Domain(Bob))],

 %==
 % ESTABLISH SYSTEM POLICIES
 % (Link predicate policies are established in the Link?
 % function in processor_1)
 % -------------------------
 % Add Can-Create relations
 Can_Creates := snapshot`Can_Creates WITH [
 % cc(Subject, Object)
 (administrator):=
 add(user,
 add(printer,
 add(file,
 snapshot`Can_Creates(administrator))))],

 % -------------------------
 % Add Create rules
 Create_rules := snapshot`Create_rules WITH [
 % cr(Subject, Subject) =
 % cr`p(Subject, Subject) = {syslog_w, myfile_rc}
 % cr`c(Subject, Subject) = {syslog_w, myfile_r}
 (Subject, Subject)`p :=
 add(syslog_w,

35

 add(myfile_rc,
 snapshot`Create_rules(
 Subject, Subject)`p)),
 (Subject, Subject)`c :=
 add(syslog_w,
 add(myfile_r,
 snapshot`Create_rules(
 Subject, Subject)`c)),

 % cr(Subject, Object) =
 % cr`p(Subject, Object) = {syslog_w, myfile_rc}
 % cr`c(Subject, Object) = {}
 (Subject, Object)`p :=
 add(syslog_w,
 add(myfile_rc,
 snapshot`Create_rules(
 Subject, Object)`p))],

 % -------------------------
 % Add Filter
 % f(administrator, user) = {(file, r), (printer, w)}
 % to the link from Bob to Alice
 Filters := snapshot`Filters WITH [
 (Bob`ID, Alice`ID)(Bob`ptype, Alice`ptype) :=
 add((file,r),
 add((printer,w),
 snapshot`Filters(Bob`ID, Alice`ID)
 (administrator, user)))],

 %==
 % Set the expected outcomes for an attempted transfer
 tr_Authorized? := TRUE,

 % Set the expected outcomes for an attempted create
 cc_Authorized? := TRUE]

%===
%---
% Fork into separate state machines
% At this point in our sequential analysis, the logic of
% the specification forks into two distinct and autonomous
% state machines. Their respective virtual program counters
% are differentiated by suffix (_1 and _2), and the virtual
% processors are correspondingly tagged processor_1 and
% processor_2 for clarity.
% The first, processor_1, verifies the correct behavior
% of an attempt to execute a ticket transfer.

%===

36

% EXECUTE TRANSFERS (processor _1):
% Verify the correct behavior of an attempt to transfer a
% ticket.

%---
% Test Link
% Link predicate system policies are entered in the inner
% nested-CASES statements to determine a link from source to
% target. The predicates themselves are resolved to a
% boolean value which is returned as the response from Link?
% e.g., the predicate: ticket Î dom(entity) is implemented
% with:
% member(ticket, snapshot`Domain(entity))
%
% In this case, the following link predicates are
% implemented:
%
% myfile/rc Î dom(Bob), for the edge: Bob to Alice,
% TRUE, for the edge: Bob to LaserJet_1,
% TRUE, for the edge: Alice to Bob.

Link?(snapshot: State_template,
 source: ID_type,
 target: ID_type): bool =

 % CASES used to facilitate additions
 CASES source OF

 % source = Bob's ID
 0: CASES target OF

 % target = Alice's ID
 1: member(myfile_rc, snapshot`Domain(Bob)),

 % target = LaserJet_1's ID
 2: TRUE

 ELSE FALSE
 ENDCASES,

 % source = Alice's ID
 1: CASES target OF

 % target = Bob's ID
 0: TRUE

 ELSE FALSE
 ENDCASES

 ELSE FALSE
 ENDCASES

37

%---
% Test Filter
% Determine whether a filter function exists in
% snapshot`Filters, associated with the link predicate
% for (source and target), that allows tickets that match
% the tuple (protection-type, right) in the given ticket, to
% be transferred from the source to the target, as
% determined by their respective ptypes,
% implementing the filter function:
%

% (ticket`entity`ptype, ticket`right) ∈
% f(source`ptype, target`ptype)
%
% In this test case,(1): ticket = myfile_rc
% myfile_rc`entity = myfile
% myfile`ptype = file
% myfile_rc`right = r
%
% and, (2): source = Bob
% Bob`ptype = administrator
% target = Alice
% Alice`ptype = user
%
% It follows that,
% (ticket`entity`ptype, ticket`right)=(file, r) (1)
% and,
% (source`ptype, target`ptype)=(administrator, user) (2)
%
% and since the filter
% (administrator, user)={(file, r),(printer,w)}
%
% we know that
% (file,r) in (administrator, user) = TRUE
%
% and that the filter is associated with the link
% (Bob, Alice) in the State_template set, then
%
% Filters(0, 1)(administrator, user)=
% {(file, r), (printer, w)}

Filter?(snapshot: State_template,
 source: Entity_type,
 target: Entity_type,
 ticket: Ticket_type): bool =
 member((ticket`entity`ptype, ticket`right),
 snapshot`Filters(source`ID, target`ID)
 (source`ptype, target`ptype))

%---
% Establish event of interest indicator

38

% For processor_1, the event that will imply a successful
% transfer is the presence of myfile_r in Alice's domain, as
% indicated by the boolean value of Event_1?

Event_1?(snapshot: State_template): boolean =
 member(myfile_r, snapshot`Domain(Alice))

%---
% Execute transfer
% The Exec_1 function is where the actual transfer takes
% place. It takes an argument (snapshot) of type
% State_template and returns it after applying the changes
% in the WITH block. In this case the ticket myfile_r is
% added to the Alice's domain.

Exec_1(snapshot: State_template): State_template =
 snapshot WITH [
 Domain := snapshot`Domain WITH [
 (Alice) := add(myfile_r,
 snapshot`Domain(Alice))]]

%---
% Test system state
% The Test_1 function takes a State_template and returns
% a State_template with an updated State_OK.
% If the test condition (Event_1?) returns TRUE,
% indicating that it did happen, then tr_Authorized?
% determines the value of State_OK (if it was not
% authorized, then State_OK is FALSE).
% If the test condition returns FALSE, indicating that it
% did not happen, then we don't care whether it was
% authorized, and State_OK remains TRUE.
% Note that this test does not prove that if the
% operation is authorized that it will happen, only that if
% it did happen, it was authorized.
% i.e.:
% Event_1?(snapshot) snapshot`tr_Authorized? State_OK
% 1 1 1
% 1 0 0
% 0 1 1
% 0 0 1

Test_1(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_1?(snapshot) THEN
 snapshot`tr_Authorized?
 ELSE TRUE
 ENDIF]

%---
% TRANSITION FUNCTIONS for program counter (PC) within the

39

% context of processor_1.

trans(snapshot: State_template): State_template =
 CASES snapshot`PC OF

 % Each case applies WITH conditions before passing
 % snapshot to the specified operation, then
 % returns snapshot.

 % set up initial state and increment PC
 L1_1: Init(snapshot) WITH [PC := L2_1],

 % set up test conditions and increment PC
 L2_1: Setup(snapshot) WITH [PC := L3_1],

 % verify that source entity has copyable ticket
 % and adjust PC
 L3_1: snapshot WITH [PC :=
 IF (member(myfile_rc, snapshot`Domain(Bob)))
 AND
 myfile_rc`copyable? THEN L4_1
 ELSE L7_1
 ENDIF],

 % verify that link exists between source and
 % target/adjust PC
 L4_1: snapshot WITH [PC :=
 IF Link?(snapshot, Bob`ID, Alice`ID)
 THEN L5_1
 ELSE L7_1
 ENDIF],

 % verify that a filter function allows this
 % transfer/adjust PC
 L5_1: snapshot WITH [PC :=
 IF Filter?(snapshot,
 Bob,
 Alice,
 myfile_rc) THEN L6_1
 ELSE L7_1
 ENDIF],

 % Execute the transfer and increment PC
 L6_1: Exec_1(snapshot) WITH [PC := L7_1],

 % Test State_OK and move PC to end
 L7_1: Test_1(snapshot) WITH [PC := LEND_1],

 LEND_1: snapshot
 ELSE snapshot
 ENDCASES

40

%---
% Prove safety
% Show that State_OK will still be TRUE after an attempt
% to transfer a right from any given initial state, using
% any given natural counter T.
%
% The tr_find_zero() function will recurse through the
% ELSE statement, decrementing T until it is finally called
% with T=0, at which point it returns the State_template
% initial with the virtual program counter (PC) set to L1_1,
% to be subsequently passed to the trans() function.
% The state returned from trans() will have accrued
% changes from the trans() state machine, including an
% updated PC.
% The returned state is then repeatedly passed back to
% trans(), and returned with changes and updated PC as the
% logic backs out of the recursion.
%
% The effect is that, given a nonnegative number T and a
% State_template initial, the state-transition functions
% within trans() will be applied against initial, starting
% with the first (L1_1) and proceeding according to the
% manipulation of the program counter PC.

tr_find_zero(T: nat, initial: State_template): RECURSIVE
State_template =
 IF T = 0 THEN initial WITH [PC := L1_1]
 ELSE trans(tr_find_zero(T-1, initial))
 ENDIF MEASURE T

%---
% Test all possible initial states
% Assign a boolean result to the following nested assertion
% that only authorized transfers can occur:
% Given any possible initial state, as described by the
% State_template record type:
% Given any possible nonnegative number T, such that
% the function tr_find_zero(T, initial) returns a
% State_template with the virtual program counter
% at LEND_1 (indicating termination):
% the returned State_template will also
% indicate that State_OK = TRUE.

transfer_correct: bool =
 FORALL (initial: State_template):
 FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1):
 tr_find_zero(T, initial)`State_OK = TRUE

%===
% CREATES (processor _2): Verify correct behavior of

41

% attempts to create a new entity.
%---
% Can-create test
% Test for appropriate cancreate relation; in this case:
%
% cc(administrator, printer)
%
% The test determines whether child is in the set
% CanCreates(parent)
% where child = printer
% and parent = administrator

CC?(snapshot: State_template,
 parent: Protection_type,
 child: Protection_type): boolean =
 (member(child,
 snapshot`Can_Creates(parent)))

%---
% Establish event of interest indicator
% For processor_2, the event that will imply a successful
% create is the presence of LaserJet_1 in the system, and
% the appropriate updates to both the parent and child
% domains, as indicated by the boolean Event_2?

Event_2?(snapshot: State_template): boolean =
 (member(LaserJet_1, snapshot`Entities))

%---
% Execute create
% The Exec_2 function is where the actual create takes
% place. It takes an argument (snapshot) of type
% State_template and returns it after adding LaserJet_1 to
% the set Entities.
%
% The two entities' Domains are updated at create-time to
% reflect the create rule
%
% cr(Subject, Object)
%
% which is comprised of these system policies, established
% in the Setup function:
% cr`p(Subject, Object) = {syslog_w, myfile_rc}
% cr`c(Subject, Object) = {}

Exec_2(snapshot: State_template,
 parent: Entity_type,
 child: Entity_type): State_template = snapshot WITH[

 % Create entity
 Entities := add(child, snapshot`Entities),

42

 % Invoke associated create-rules
 Domain :=
 IF member(child`ptype, snapshot`T(Subject)) THEN

 snapshot`Domain WITH [
 (parent) :=
 union(snapshot`Create_rules(
 Subject, Subject)`p,
 snapshot`Domain(parent)),
 (child) :=
 union(snapshot`Create_rules(
 Subject, Subject)`c,
 snapshot`Domain(child))]

 ELSIF member(child`ptype, snapshot`T(Object)) THEN
 snapshot`Domain WITH [
 (parent) :=
 union(snapshot`Create_rules(
 Subject, Object)`p,
 snapshot`Domain(parent)),
 (child) :=
 union(snapshot`Create_rules(
 Subject, Object)`c,
 snapshot`Domain(child))]
 ELSE snapshot`Domain
 ENDIF]

%---
% Test system state
% The Test_2 function takes a State_template and returns
% a State_template with an updated State_OK.
% If the test condition (Event_2?) returns TRUE,
% indicating that it did happen, then cc_Authorized?
% determines the value of State_OK (if it was not
% authorized, then State_OK is FALSE).
% If the test condition returns FALSE, indicating that it
% did not happen, then we don't care whether it was
% authorized, and State_OK remains TRUE.
% Note that this test does not prove that if the
% operation is authorized that it will happen, only that if
% it did happen, it was authorized.
% i.e.:
% Event_1?(snapshot) snapshot`tr_Authorized? State_OK
% 1 1 1
% 1 0 0
% 0 1 1
% 0 0 1

Test_2(snapshot: State_template): State_template =
 snapshot WITH [

43

 State_OK := IF Event_2?(snapshot) THEN
 snapshot`cc_Authorized?
 ELSE TRUE
 ENDIF]

%---
% TRANSITION FUNCTIONS for program counter (PC) within the
% context of processor_2.

create(snapshot: State_template): State_template =
 CASES snapshot`PC OF

 % Each case applies WITH conditions before passing
 % snapshot to the specified operation, then
 % returns snapshot.

 % initialize system state
 L1_2: Init(snapshot) WITH [PC := L2_2],

 % establish setup conditions
 L2_2: Setup(snapshot) WITH [PC := L3_2],

 % verify that a cancreate relation will allow the
 % create
 L3_2: snapshot WITH [PC :=
 IF CC?(snapshot,
 Bob`ptype,
 LaserJet_1`ptype) THEN L4_2
 ELSE L5_2
 ENDIF],

 % execute the create
 L4_2: Exec_2(snapshot, Bob, LaserJet_1) WITH [
 PC := L5_2],

 % test State_OK and move PC to end
 L5_2: Test_2(snapshot) WITH [PC := LEND_2],

 LEND_2: snapshot
 ELSE snapshot
 ENDCASES

%---
% Prove safety
% Show that State_OK will always be TRUE after a create
% attempt.
% The function cc_find_zero will decrement T down to 0
% recursively, and pass the State_template initial to the
% create state-machine with program counter (PC) set to
% L1_2, and then step through the state-machine in the same
% way that tr_find_zero did above.

44

cc_find_zero(T: nat, initial: State_template): RECURSIVE
State_template =
 IF T = 0 THEN initial WITH [PC := L1_2]
 ELSE create(cc_find_zero(T-1, initial))
 ENDIF MEASURE T

%---
% Test all possible initial states
% Assign a boolean result to the following nested assertion
% that only authorized creates can occur:
% Given any possible initial state, as described by the
% State_template record type:
% Given any possible nonnegative number T, such that
% the function cc_find_zero(T, initial) returns a
% State_template with the virtual program counter
% at LEND_2 (indicating termination):
% the returned State_template will also
% indicate that State_OK = TRUE.

cancreate_correct: bool =
 FORALL (initial: State_template):
 FORALL (T: nat | cc_find_zero(T, initial)`PC = LEND_2):
 cc_find_zero(T, initial)`State_OK = TRUE

%===
% SPM Safety Theorem
% System_correct is the single theorem to be proved by PVS.
% It asserts that the boolean statements transfer_correct
% and cancreate_correct resolve to TRUE

System_correct: Theorem transfer_correct
 AND
 cancreate_correct

END SPM
%---
%===

 Specification Description.

 The System_correct theorem asserts that transfer_correct and cancreate_correct

are both TRUE expressions.

 The statement transfer_correct asserts that for any possible initial state and any

possible starting point submitted to the recursive function tr_find_zero, which

45

successfully terminates, the boolean state variable State_OK will be TRUE. State_OK is

a flag set when the model operates correctly.

 The tr_find_zero function takes the natural number T and the current system state

as input. It recursively decrements T, until T = 0, at which point it introduces the current

state into the sequential state-transition function trans. The returned state is repeatedly

passed back to the trans function, with accrued changes, as tr_find_zero backs out of the

recursion. Transfer_correct initiates this process for all possible values of T, and all

possible initial states.

 The trans function behaves as a virtual processor, applying the state transition

function indicated by the program counter (PC) and updating it as appropriate. The

internal state transition operations represent the PVS-language interpretation of assembly-

like pseudocode derived from a sequential algorithm, using the process described in

Chapter II to implement the correct behavior of the ticket transfer component of SPM.

 A positive outcome of the proof indicates the applied rules behave as expected for

all possible valid inputs, and the boolean indicator State_OK was not changed.

 Just like tranfer_correct, the statement cancreate_correct asserts that for any

possible initial state and any possible starting point submitted to the recursive function

cc_find_zero, which successfully terminates, the boolean state variable State_OK will be

TRUE.

 The cc_find_zero function takes the natural number T and the current system state

as input. It recursively decrements T, until T = 0, at which point it introduces the current

state into the sequential state-transition function create.

46

 The create function behaves as a second virtual processor, applying the state

transition function indicated by the program counter (PC), and updating it accordingly.

 A positive outcome of the proof indicates the applied rules behave as expected for

all possible valid inputs, and the boolean indicator State_OK was not changed.

SPM Proof

 The System_correct theorem at the end of the SPM specification is the single

statement that resolves to TRUE if and only if the specification correctly implements

SPM. The theorem consists of the boolean statement

transfer_correct AND cancreate_correct

which, when the two state machines correctly implement their respective transfer and

create processes, resolves to the formula

TRUE AND TRUE

 Before the specification is tested by the prover, the PVS parser checks datatypes

and logic flow structures for consistency and completeness. In some cases, the

correctness of the proof depends upon the properties of datatypes, so these must also be

proved for the results to be complete. These alerts are presented by PVS as Type

Correctness Conditions.

 Type Correctness Conditions.

 Type Correctness Conditions (TCC), such as those identified in Figure 4 as

tr_find_zero_TCC1 and tr_find_zero_TCC2, describe assumed conditions that must hold

to ensure well-formed values for the variable indicated in the TCC description.

 In the SPM specification, two such conditions were discovered: the nonnegative

property of the nat datatype, and the inevitability of reaching the termination condition in

47

the recursive function tr_find_zero. The TCCs proofs were accomplished separately from

the System_correct proof, and are described below.

 TCC1.

 The condition entitled tr_find_zero_TCC1 is a response to this line from the

recursive function tr_find_zero, which makes a references to T-1:

ELSE trans(tr_find_zero(T-1, initial))

 Since the function tr_find_zero is expecting to be passed a natural (nonnegative)

number, it must be shown that T-1 will, in fact, be natural. More formally:

FORALL (T: nat): NOT T = 0 IMPLIES T - 1 >= 0

 This expression was proved as a stand-alone theory using the automated prover.

The proof was accomplished by invoking the prover to execute the aggregate command

SUBTYPE-TCC, which applied repeated skolemization, instantiation, and if-lifting,

resulting in the following proof:

tr_find_zero_TCC1 :

 |-------
{1} FORALL (T: nat): NOT T = 0 IMPLIES T - 1 >= 0

Rerunning step: (SUBTYPE-TCC)
Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

 TCC2.

 The condition entitled tr_find_zero_TCC2 is a termination warning in reference to

the inner part of the same statement

tr_find_zero(T - 1, initial)

 Since this function is recursively decrementing to zero, it must be shown that T-1

is, in fact, less than T, and progresses toward zero. More formally

FORALL (T: nat): NOT T = 0 IMPLIES T - 1 < T

48

 This expression was also proved as an autonomous theory using PVS. It was

accomplished by invoking the automated prover to execute the aggregate command

TERMINATION-TCC, which applied repeated skolemization, instantiation, and if-

lifting, resulting in the following proof:

tr_find_zero_TCC2 :

 |-------
{1} FORALL (T: nat): NOT T = 0 IMPLIES T - 1 < T

Rerunning step: (TERMINATION-TCC)
Trying repeated skolemization, instantiation, and if-lifting,
Q.E.D.

 The System_correct Theorem.

 The System_correct theorem asserts the correct behavior of the model as an

implementation of SPM with the statement

transfer_correct AND cancreate_correct

 The PVS split command was used to consider the two statements separately.

Each individual statement then represents a subgoal of the original theorem. The prover

presented each subgoal as a sequent, and satisfied (aka, dismissed) them according to the

sequence of commands shown in Figure 4.

 For example, in node 1 of Figure 4, the command expand "transfer_correct"

replaces the statement transfer_correct with its definition from within the specification,

resulting in the sequent

|-------
{1} FORALL (initial: State_template):
FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1):
tr_find_zero(T, initial)`State_OK

 The skosimp command, applied to the above sequent, inserts the skolem constant

initial!1 to represent an arbitrary variable with which to test the outer FORALL condition,

resulting in the sequent

49

 |-------
{1} FORALL (T: nat | tr_find_zero(T, initial!1)`PC = LEND_1):
 tr_find_zero(T, initial!1)`State_OK

 The command induct "T" runs a natural-number induction against the variable T,

resulting in three subgoals. The first two subgoals are dismissed with the grind

command, an aggregate of several prover commands,

Inducting on T on formula 1,
this yields 3 subgoals:
System_correct.1.1 :

 |-------
{1} tr_find_zero(T!1, initial!1)`PC = LEND_1
{2} tr_find_zero(T!1, initial!1)`State_OK

Rerunning step: (GRIND)
Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of System_correct.1.1.

System_correct.1.2 :

 |-------
{1} tr_find_zero(0, initial!1)`PC = LEND_1 IMPLIES
 tr_find_zero(0, initial!1)`State_OK

Rerunning step: (GRIND)
tr_find_zero rewrites tr_find_zero(0, initial!1)
 to initial!1 WITH [PC := L1_1]
Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of System_correct.1.2.

and the third subgoal of node 1 generates more subgoals by performing an induction on

the variable j in this sequent

System_correct.1.3 :

 |-------
{1} FORALL j:
 (tr_find_zero(j, initial!1)`PC = LEND_1 IMPLIES
 tr_find_zero(j, initial!1)`State_OK)
 IMPLIES
 tr_find_zero(j + 1, initial!1)`PC = LEND_1 IMPLIES
 tr_find_zero(j + 1, initial!1)`State_OK

Rerunning step: (INDUCT "j")
Inducting on j on formula 1,
this yields 2 subgoals:

50

 The proof of the System_correct theorem progressed in this way until all subgoals

were dismissed as shown in Figure 4, using the combination of the PVS prover

commands described in Chapter II.

Figure 4. SPM Proof Tree

 The proof-summary in Figure 5 was generated by PVS for the SPM theory. It

shows that the theory was proved, and that the necessary Type Correctness Conditions

(TCCs) discovered by PVS during the proof were each, themselves proved.

 Proof summary for theory SPM
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.32 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.03 s)
 System_correct.......................proved - complete [SHOSTAK](36.75 s)
 Theory totals: 3 formulas, 3 attempted, 3 succeeded (37.10 s)

Figure 5. PVS proof summary for SPM

51

IV. Schematic Protection Model Validation Scenarios

Introduction

 The Schematic Protection Model describes the conditions under which rights can

be transferred from one entity to another, and new entities can be created in the system.

These conditions test the model's ability to prevent transition to an unsecure state. Each

of these conditions is tested in the following scenarios, followed by several tests of

anomalous conditions.

Test Scenario 1 - No Ticket

 Below is a test scenario modification to the Setup function. In this test, the entity

Bob initiates a transfer of the ticket myfile_r, but does not possess the ticket in its domain,

which is a necessary condition to allow the transfer.

Encoding.

 In the original SPM specification, the ticket myfile_rc is added to Bob's domain in

the Setup function. To test this condition of the model, the statements below were

commented out effectively removing them from Bob's domain:

 % Add myfile_rc to Bob's Domain
 %Domain := snapshot`Domain WITH [
 % (Bob) := add(myfile_rc, snapshot`Domain(Bob))],

 When the transition function L3_1 is invoked by the trans function, the current

state of the model, encapsulated in snapshot, does not include myfile_rc in Bob's domain.

Since this is a necessary condition to allow the transfer, the program counter PC is set to

proceed to the transition function L7_1 for the next iteration, rather than step through the

remaining sequence of tests.

52

 % verify that source entity has copyable ticket
 % and adjust PC
 L3_1: snapshot WITH [PC :=
 IF (member(myfile_rc, snapshot`Domain(Bob)))
 AND
 myfile_rc`copyable? THEN L4_1
 ELSE L7_1
 ENDIF],

 Transition function L7_1 sets PC to the terminal value LEND_1, and passes

snapshot to the Test_1 function for a determination of whether the model has correctly

implemented this condition of SPM.

 % Test State_OK and move PC to end
 L7_1: Test_1(snapshot) WITH [PC := LEND_1],

 The Test_1 function passes the state snapshot to Event_1? to determine whether

the event of interest in this case has occurred. Event_1? returns the boolean value of the

statement

member(myfile_r, snapshot`Domain(Alice))

which resolves to FALSE because myfile_r was never added to Alice's domain. Since the

IF condition in Test_1 is FALSE, the logic diverts to the ELSE statement, setting the

value of State_OK to TRUE, indicating that the unauthorized transfer did not take place.

 Test_1(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_1?(snapshot) THEN
 snapshot`tr_Authorized?
 ELSE TRUE
 ENDIF]

Results.

 The statement transfer_correct is an assertion that State_OK will be TRUE.

When the resultant state is eventually returned from the recursive tr_find_zero function

with the program counter PC set to LEND_1, the value of State_OK is TRUE, and the

boolean value of transfer_correct becomes TRUE.

53

transfer_correct: bool =
 FORALL (initial: State_template):
 FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1):
 tr_find_zero(T, initial)`State_OK = TRUE

 The proof of the System_correct theorem with this test modification progressed as

shown in Figure 6 until all subgoals were dismissed, using a combination of the PVS

prover commands as described in Chapter II.

Figure 6. SPM_noticket Proof Tree

54

 The PVS-generated proof summary in Figure 7 shows that this modification of the

theory was proved, and that necessary Type Correctness Conditions implied by the theory

were also proved:

 Proof summary for theory SPM_noticket
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.68 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.27 s)
 System_correct.......................proved - complete [SHOSTAK](40.54 s)
 Theory totals: 3 formulas, 3 attempted, 3 succeeded (41.49 s)

Figure 7. PVS proof summary for SPM_noticket

Test Scenario 2 - Ticket Not Copyable

 Below is a test scenario modification for the SPM in which the ticket to be

transferred exists in the initiating entity's domain, but the ticket is not copyable, which is

a necessary condition to allow the transfer.

Encoding.

 The only modification required for this test was to instantiate the ticket with

copyable? = FALSE:

 myfile_rc: Ticket_type = (#
 entity := myfile,
 right := r,
 copyable? := FALSE
 #)

 In the L3_1 transition function, the test of the originator's domain is conducted as

normal, failing the second conjunctive test in the IF condition: myfile_rc`copyable?. The

logic diverts to the ELSE statement, and sets the program counter (PC) to L7_1, skipping

the subsequent tests and the transfer operation itself.

 % verify that source has copyable ticket/adjust PC
 L3_1: snapshot WITH [PC :=
 IF (member(myfile_rc, snapshot`Domain(Bob)))
 AND
 myfile_rc`copyable? THEN L4_1
 ELSE L7_1
 ENDIF],

55

 In the next pass, the statement at L7_1 is invoked, setting the PC to LEND_1 and

passing the state information contained in snapshot to Test_1 for a determination of

whether the model has correctly implemented this condition of SPM.

 % Test State_OK and move PC to end
 L7_1: Test_1(snapshot) WITH [PC := LEND_1],

 The Test_1 function passes the state snapshot to Event_1? to determine whether

the event of interest in this case has occurred. Event_1? returns the boolean value of the

statement

member(myfile_r, snapshot`Domain(Alice))

which resolves to FALSE because myfile_r was never added to Alice's domain. Since the

IF condition is FALSE, the logic diverts to the ELSE statement, setting the value of

State_OK to TRUE, indicating that the unauthorized transfer did not take place.

 Test_1(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_1?(snapshot) THEN
 snapshot`tr_Authorized?
 ELSE TRUE
 ENDIF]

Results.

 The proof of the System_correct theorem with this test modification progressed as

shown in Figure 8 until all subgoals were dismissed, using a combination of the PVS

prover commands as described in Chapter II.

56

Figure 8. SPM_nocopy Proof Tree

 The PVS-generated proof summary for this modification in Figure 9 shows that

the theory was proved, and that necessary conditions implied by the theory were also

proved. Since the unauthorized transfer did not happen, the safety of the system holds.

 Proof summary for theory SPM_nocopy
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.68 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.27 s)
 System_correct.......................proved - complete [SHOSTAK](28.90 s)
 Theory totals: 3 formulas, 3 attempted, 3 succeeded (29.85 s)

Figure 9. PVS proof summary for SPM_nocopy

57

Test Scenario 3 - No Link

 Below is a test scenario modification for the SPM in which no link exists between

the entity (Bob) initiating a transfer and the intended recipient (Alice); a necessary

condition to allow the transfer.

Encoding.

 In the original SPM specification, the link from Bob to Alice is determined by the

link predicate myfile_rc ∈ dom(Bob), and evaluated in the Link? function:

Link?(snapshot: State_template,
 source: ID_type,
 target: ID_type): bool =

 % CASES used to facilitate additions
 CASES source OF

 % source = Bob's ID
 0: CASES target OF

 % target = Alice's ID
 1: member(myfile_rc, snapshot`Domain(Bob)),
 .
 .
 .

 To test this condition of the model, the inner case statement was changed so that

the test for a link from Bob to Alice would fail:

 % target = Alice's ID
 1: FALSE,

 When the transition function L4_1 is invoked by the trans function, the returned

value of the call to Link? is FALSE:

 L4_1: snapshot WITH [PC :=
 IF Link?(snapshot, Bob, Alice) THEN L5_1
 ELSE L7_1
 ENDIF],

 Since this is a necessary condition to allow the transfer, the program counter PC is

set to the transition function L7_1 for the next iteration, rather than step through the

58

remaining sequence of tests. The transition function L7_1 sets PC to the terminal value

LEND_1, and passes snapshot to the Test_1 function for a determination of whether the

model has correctly implemented this condition of SPM.

 % Test State_OK and move PC to end
 L7_1: Test_1(snapshot) WITH [PC := LEND_1],

 The Test_1 function passes the state snapshot to Event_1? to determine whether

the event of interest in this case has occurred. Event_1? returns the boolean value of the

statement

member(myfile_r, snapshot`Domain(Alice))

which resolves to FALSE because myfile_r was never added to Alice's domain. Since the

IF condition in Test_1 is FALSE, the logic diverts to the ELSE statement, setting the

value of State_OK to TRUE, indicating that the unauthorized transfer did not take place.

 Test_1(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_1?(snapshot) THEN
 snapshot`tr_Authorized?
 ELSE TRUE
 ENDIF]

Results.

 The statement transfer_correct is an assertion that State_OK is TRUE. When the

resultant state is eventually returned from the recursive tr_find_zero function with the

program counter PC set to LEND_1, the value of State_OK is discovered to be TRUE,

and the boolean value of transfer_correct becomes TRUE.

transfer_correct: bool =
 FORALL (initial: State_template):
 FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1):
 tr_find_zero(T, initial)`State_OK = TRUE

59

 The proof of the System_correct theorem with this test modification progressed as

shown in Figure 10 until all subgoals were dismissed, using the indicated PVS prover

commands.

Figure 10. SPM_nolink Proof Tree

60

 The PVS-generated proof summary in Figure 11 shows that this modification of

the System_correct theory was proved, and that necessary conditions implied by the

theory were also proved:

 Proof summary for theory SPM_nolink
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.68 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.27 s)
 System_correct.......................proved - complete [SHOSTAK](27.42 s)
 Theory totals: 3 formulas, 3 attempted, 3 succeeded (28.37 s)

Figure 11. PVS proof summary for SPM_nolink

Test Scenario 4 - No Filter

 Below is a test scenario modification for the SPM in which the filter on the link

from Bob to Alice does not allow the transfer of ticket myfile_r.

 To allow the transfer, it is necessary that this filter function

(file, r) ∈ f(administrator, user)

be associated with the link from Bob to Alice, where

 1) Bob's protection type = administrator

 2) Alice's protection type = user

 3) myfile's protection type = file

 4) myfile_rc's right = r

Encoding.

 In the original SPM specification, the filter on the link from Bob to Alice is

established in the Setup function

 Filters := snapshot`Filters WITH [
 (Bob`ID, Alice`ID)(Bob`ptype, Alice`ptype) :=
 add((file,r),
 add((printer,w),
 snapshot`Filters(Bob`ID, Alice`ID)
 (administrator, user)))],

and tested in the Filter? function

61

Filter?(snapshot: State_template,
 source: Entity_type,
 target: Entity_type,
 ticket: Ticket_type): bool =
 member((ticket`entity`ptype, ticket`right),
 snapshot`Filters(source`ID, target`ID)

 (source`ptype, target`ptype))

 To test this condition of the model, the statement in the Setup function that

created the filter was commented out.

% Filters := snapshot`Filters WITH [
% (Bob`ID, Alice`ID)(Bob`ptype, Alice`ptype) :=
% add((file,r),
% add((printer,w),
% snapshot`Filters(Bob`ID, Alice`ID)
% (administrator, user)))],

 When the transition function L5_1 is invoked by the trans function, the returned

value of the call to Filter? is FALSE. Since this is a necessary condition to allow the

transfer, the program counter PC is set to the transition function L7_1 for the next

iteration, rather than proceed to L6_1.

 L5_1: snapshot WITH [PC :=
 IF Filter?(snapshot,
 Bob,
 Alice,
 myfile_rc) THEN L6_1
 ELSE L7_1
 ENDIF],

 The transition function L7_1 sets PC to the terminal value LEND_1, and passes

snapshot to the Test_1 function for a determination of whether the model has correctly

implemented this condition of SPM.

 % Test State_OK and move PC to end
 L7_1: Test_1(snapshot) WITH [PC := LEND_1],

 The Test_1 function passes the state snapshot to Event_1? to determine whether

the event of interest in this case has occurred. Event_1? returns the boolean value of the

statement

62

member(myfile_r, snapshot`Domain(Alice))

which resolves to FALSE because myfile_r was never added to Alice's domain. Since the

IF condition in Test_1 is FALSE, the logic diverts to the ELSE statement, setting the

value of State_OK to TRUE, indicating that the unauthorized transfer did not take place.

 Test_1(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_1?(snapshot) THEN
 snapshot`tr_Authorized?
 ELSE TRUE
 ENDIF]

Results.

 The statement transfer_correct is an assertion that State_OK will hold to be

TRUE. When the resultant state is eventually returned from the recursive tr_find_zero

function with the program counter PC set to LEND_1, the value of State_OK is

discovered to be TRUE, and the boolean value of transfer_correct becomes TRUE.

transfer_correct: bool =
 FORALL (initial: State_template):
 FORALL (T: nat | tr_find_zero(T, initial)`PC = LEND_1):
 tr_find_zero(T, initial)`State_OK = TRUE

 The proof of the System_correct theorem with this test modification progressed as

shown in Figure 12 until all subgoals were dismissed, using a combination of the PVS

prover commands as described in Chapter II.

63

Figure 12. SPM_nofilter Proof Tree

 The PVS-generated proof summary in Figure 13 shows that this modification of

the System_correct theory was proved, and that necessary conditions implied by the

theory were also proved:

 Proof summary for theory SPM_nofilter
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.69 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.27 s)
 System_correct.......................proved - complete [SHOSTAK](40.14 s)
 Theory totals: 3 formulas, 3 attempted, 3 succeeded (41.10 s)

Figure 13. PVS proof summary for SPM_nofilter

64

Test Scenario 5 - No Can-Create Relation

 Below is a test scenario modification for the SPM in which there is no system

policy established as a can-create relation between Bob's protection-type (administrator)

and that of LaserJet_1 (printer), which is a necessary condition to allow the create.

 Encoding.

 In the original SPM model, the can-create relation is established in the Setup

function by adding the target class to the set associated with the originator's class. For

this modification, that operation was commented out.

% Can_Creates := snapshot`Can_Creates WITH [
% (administrator):=
% add(user,
% add(printer,
% add(file,
% snapshot`Can_Creates(administrator))))],

 The test for a valid can-create relation is done by the CC? function. This function

is passed the parent's and the proposed child's protection types, and looks for the child's

type to be associated with the parent's in the set Can_Creates, in the context of the

current state of the model encapsulated in snapshot.

CC?(snapshot: State_template,
 parent: Protection_type,
 child: Protection_type): boolean =
 (member(child,
 snapshot`Can_Creates(parent)))

 When the transition function L3_2 is invoked by the create function, the returned

value of the call to CC? is FALSE, because the setup operation to establish the can-create

relation was bypassed. Since this is a necessary condition to allow the create, the

program counter PC is set to proceed to the transition function L5_2 for the next iteration,

rather than proceed to L4_2, where the create would have been executed.

65

 L3_2: snapshot WITH [PC :=
 IF CC?(snapshot, Bob, LaserJet_1) THEN L4_2
 ELSE L5_2
 ENDIF],

 The transition function L5_2 sets PC to the terminal value LEND_2, and passes

snapshot to the Test_2 function for a determination of whether the model has correctly

implemented this condition of SPM.

 L5_2: Test_2(snapshot) WITH [PC := LEND_2],

 The Test_2 function passes the state snapshot to Event_2? to determine whether

the event of interest in this case has occurred.

Test_2(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_2?(snapshot) THEN
 snapshot`cc_Authorized?
 ELSE TRUE
 ENDIF]

 Event_2? returns the boolean value of the statement

(member(LaserJet_1, snapshot`Entities))

as FALSE because LaserJet_1 was never added to Entities. Since the IF condition in

Test_2 is FALSE, the logic diverts to the ELSE statement, setting the value of State_OK

to TRUE, indicating that the unauthorized transfer did not take place.

Results.

 The statement cancreate_correct asserts State_OK is TRUE. When the resultant

state is eventually returned from the recursive cc_find_zero function with the program

counter PC set to LEND_1, the value of State_OK is discovered to be TRUE, and the

boolean value of cancreate_correct becomes TRUE.

cancreate_correct: bool =
 FORALL (initial: State_template):
 FORALL (T: nat | cc_find_zero(T, initial)`PC = LEND_2):
 cc_find_zero(T, initial)`State_OK = TRUE

66

 The proof of the System_correct theorem with this test modification progressed as

shown in Figure 14 until all subgoals were dismissed, using a combination of the PVS

prover commands as described in Chapter II.

Figure 14. SPM_nocreate Proof Tree

67

 The PVS-generated proof summary in Figure 15 shows that this modification of

the System_correct theory was proved, and that necessary conditions implied by the

theory were also proved:

 Proof summary for theory SPM_nocreate
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.69 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.28 s)
 System_correct.......................proved - complete [SHOSTAK](39.11 s)
 Theory totals: 3 formulas, 3 attempted, 3 succeeded (40.08 s)

Figure 15. PVS proof summary for SPM_nocreate

Test Scenario 6 - Unauthorized Transfer

 Below is a test scenario modification for the SPM in which all of the conditions to

enable a ticket transfer are valid, but the tr_Authorized? flag has inadvertently been set to

FALSE. The expected result is PVS will be unable to prove the theorem, because the

theorem relies on the flag to reflect whether the event in Event_1? should have happened

under the established conditions.

Encoding.

 The only modification necessary for this test was to set the tr_Authorized? flag to

FALSE in the Setup function, as shown here:

 % Set the expected outcome for an attempted transfer
 tr_Authorized? := FALSE,

 When the proof reaches the Test_1 function, the function passes the state snapshot

to Event_1? to determine whether the event of interest in this case has occurred.

Event_1? returns the boolean value of the statement

member(myfile_r, snapshot`Domain(Alice))

which resolves to TRUE because myfile_r was added to Alice's domain under these valid

conditions. Since the IF condition is TRUE, the logic proceeds to the THEN statement,

68

setting the value of State_OK to the current value of tr_Authorized?, which in this case is

FALSE.

 Test_1(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_1?(snapshot) THEN
 snapshot`tr_Authorized?
 ELSE TRUE
 ENDIF]

Results.

 The proof of the System_correct theorem with this test modification progressed as

shown in Figure 16 until the sequent in Table 1 was encountered, and no further progress

was possible. In this test, this was the expected result, which indicates that the model is

working as desired. Otherwise, a different proof strategy could be entered interactively at

this point, or this sequent could be used to isolate the flaw in the original design.

Table 1. SPM_noauth_tr result
[-1] j!1 >= 0
{-2} j!1 - 5 = 0
 |-------
[1] j!1 - 4 = 0
[2] j!1 - 3 = 0
[3] j!1 - 2 = 0
[4] j!1 - 1 = 0
[5] j!1 = 0

 The sequent in Table 1 clearly cannot be proved. All antecedent lines, denoted

with negative line numbers above the turnstile (|---) represent conjunctive assumptions

that, if true, imply disjunctively one or more of the consequent propositions below the

turnstile. That is,

([-1] AND {-2})

IMPLIES

([1] OR [2] OR [3] OR [4] OR [5])

 It may not be apparent at first glance, that this sequent is invalid. But, if we

replace j!1 with x for clarity, the PVS-prover sequent reads as follows:

69

(x >= 0 AND x - 5 = 0)

IMPLIES

(x - 4 = 0 OR x -3 = 0 OR x - 2 = 0 OR x - 1 = 0 OR x = 0)

 This can be further reduced to the following assertion, which is clearly incorrect:

(x = 5)

IMPLIES

 (x = 4 OR x = 3 OR x = 2 OR x = 1 OR x = 0)

Figure 16. SPM_noauth_tr Proof Tree

70

 The PVS-generated proof summary for this modification in Figure 17 shows that,

although the necessary conditions implied by the theory were proved, the theory itself

remains unproved. This result is, again, the correct result for this test:

 Proof summary for theory SPM_noauth_tr
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.67 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.27 s)
 System_correct.......................unfinished [SHOSTAK](35.90 s)
 Theory totals: 3 formulas, 3 attempted, 2 succeeded (36.84 s)

Figure 17. PVS proof summary for SPM_noauth_tr

Scenario 7 - Unauthorized Create

 Below is a test scenario modification for the SPM in which all of the conditions to

enable a create operation are valid, but the cc_Authorized? flag has inadvertently been set

to FALSE. The expected result is PVS will be unable to prove the theorem, because the

theorem relies on the flag to reflect whether the event in Event_2? should have happened

under the established conditions.

Encoding.

 The only modification necessary for this test was to set the flag to FALSE in the

Setup function, as shown here:

 % Set the expected outcome for an attempted create
 cc_Authorized? := FALSE,

 When the proof reaches the Test_2 function, the function passes the state snapshot

to Event_2? to determine whether the event of interest in this case has occurred.

Event_2? returns the boolean value of the statement

Event_2?(snapshot: State_template): boolean =
 (member(LaserJet_1, snapshot`Entities))

which resolves to TRUE because LaserJet_1 was added to Entities under these valid

conditions. Since the IF condition is TRUE, the logic proceeds to the THEN statement,

71

setting the value of State_OK to the current value of cc_Authorized?, which in this case is

FALSE.

Test_2(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_2?(snapshot) THEN
 snapshot`cc_Authorized?
 ELSE TRUE

 ENDIF]

Results.

 The proof of the System_correct theorem with this test modification progressed as

shown in Figure 18 until the sequent in Table 2 was encountered, and no further progress

was possible. In this test, this was the expected result, which indicates that the model is

working as desired. Otherwise, a different proof strategy could be entered interactively at

this point, or this sequent could be used to isolate the flaw in the original design.

Table 2. SPM_noauth_cc result
[-1] j!1 >= 0
{-2} j!1 - 3 = 0
 |-------
[1] j!1 - 2 = 0
[2] j!1 - 1 = 0
[3] j!1 = 0

 The sequent in Table 2 cannot be proved. All antecedent lines, denoted with

negative line numbers above the turnstile (|---) represent conjunctive assumptions that, if

true, imply disjunctively one or more of the consequent propositions below the turnstile.

That is,

([-1] AND {-2})

IMPLIES

([1] OR [2] OR [3]).

 If we replace j!1 with x for clarity, the PVS-prover sequent reads

(x >= 0 AND x - 3 = 0)

IMPLIES

(x - 2 = 0 OR x - 1 = 0 OR x = 0).

72

This can be further reduced to the following assertion, which is clearly incorrect

(x = 3)

IMPLIES

 (x = 2 OR x = 1 OR x = 0).

Figure 18. SPM_noauth_cc Proof Tree

73

 The PVS-generated proof summary for this modification in Figure 19 shows that,

although the necessary conditions implied by the theory were proved, the theory itself

remains unproved. This result is, again, the correct result for this test:

 Proof summary for theory SPM_noauth_cc
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.67 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.27 s)
 System_correct.......................unfinished [SHOSTAK](35.90 s)
 Theory totals: 3 formulas, 3 attempted, 2 succeeded (36.84 s)

Figure 19. PVS proof summary for SPM_noauth_cc

Test Scenario 8 - Introduced Error

 Below is a test scenario modification for the SPM in which an inappropriate

transfer is allowed to occur, to demonstrate how the PVS prover treats an unprovable

theory. In this experiment, we temporarily violate the model by allowing a transfer to

occur in spite of the failure of the first test, which ensures that the initiator of the transfer

is in possession of the ticket which is being transferred. The PVS prover should not be

able to prove that State_OK will hold TRUE in this invalid SPM model.

Encoding.

 As in Test Scenario 1, the addition of the ticket myfile_rc to Bob's domain is

prevented from happening by commenting out that section of the Setup function.

 % Add myfile_rc to Bob's Domain
 %Domain := snapshot`Domain WITH [
 % (Bob) := add(myfile_rc, snapshot`Domain(Bob))],

 Since Bob's possession of the ticket is a necessary condition to allow the transfer,

the ticket should not be appear in Alice's domain. The test condition tr_Authorized? is set

to FALSE in the Setup function to indicate that the transfer should not be allowed.

 tr_Authorized? := FALSE,

74

 However, the ELSE statement in transition function L3_1 has been changed for

this test. Instead of jumping to L7_1 and skipping the ticket transfer, the program counter

(PC) is set to L6_1 for the next iteration.

 L3_1: snapshot WITH [PC :=
 IF (member(myfile_rc, snapshot`Domain(Bob)))
 AND
 myfile_rc`copyable? THEN L4_1
 ELSE L6_1
 ENDIF],

 The transition function L6_1 sets the PC to L7_1 and passes the current state,

encapsulated in snapshot, to the Exec_1 function, where myfile_r is added to Alice's

domain.

 % Execute the transfer and increment PC
 L6_1: Exec_1(snapshot) WITH [PC := L7_1],

 The transition function L7_1 sets PC to the terminal value LEND_1, and passes

snapshot to the Test_1 function for a determination of whether the model has correctly

implemented this condition of SPM.

 % Test State_OK and move PC to end
 L7_1: Test_1(snapshot) WITH [PC := LEND_1],

 The Test_1 function passes the state snapshot to Event_1? to determine whether

the event of interest in this case has occurred. Event_1? returns the boolean value of the

statement

member(myfile_r, snapshot`Domain(Alice))

which resolves to TRUE because myfile_r was added to Alice's domain by Exec_1. Since

the IF condition in Test_1 is TRUE, State_OK is set to the value of tr_Authorized? within

snapshot, which has been set to FALSE, indicating that the transfer was unauthorized.

75

 Test_1(snapshot: State_template): State_template =
 snapshot WITH [
 State_OK := IF Event_1?(snapshot) THEN
 snapshot`tr_Authorized?
 ELSE TRUE
 ENDIF]

Results.

 The proof of the System_correct theorem with this invalidated SPM model

progressed as shown in Figure 20 until the sequent in Table 3 was encountered, and no

further progress was possible. In this test, this was the expected result of trying to prove

the properties of SPM for an invalid model.

Table 3. spm_broken result
[-1] j!1 >= 0
{-2} j!1 - 3 = 0
 |-------
[1] j!1 - 1 = 0
[2] j!1 - 2 = 0
[3] j!1 = 0

 The sequent in Table 3 can be further reduced to the following assertion, which is

clearly incorrect

(x = 3)

IMPLIES

(x = 2 OR x = 1 OR x = 0).

76

Figure 20. SPM_broken Proof Tree

 Figure 21 is the PVS-generated proof summary for this modification. It shows

that the theory has yet to be proved, although the TCCs for the theory were proved.

 Proof summary for theory SPM_broken
 tr_find_zero_TCC1....................proved - complete [SHOSTAK](0.68 s)
 tr_find_zero_TCC2....................proved - complete [SHOSTAK](0.27 s)
 System_correct.......................unfinished [SHOSTAK](35.90 s)
 Theory totals: 3 formulas, 3 attempted, 2 succeeded (36.85 s)

Figure 21. PVS proof summary for SPM_broken

77

Summary

 The Schematic Protection Model describes the conditions under which rights can

be transferred from one entity to another, and new entities can be created in the system.

These conditions test the model's ability to prevent transition to an unsecure state. Each

of these conditions was tested in the preceding scenarios.

 Each test produced the expected results. The absence of a required precondition

to process a ticket transfer: originator-possession of the copyable ticket, a valid link to

the recipient, or the absence of an enabling filter function; resulted, in each case, in the

prevention of the transfer. And the absence of a can-create rule was shown to prevent the

unauthorized create operation.

 The correct functionality of the tr_Authorized? and cc_Authorized? flags was also

tested. The Test_1 and Test_2 functions rely on these flags for the correct interpretation

of the other tests. Finally, a test was run against an altered specification that does not

correctly model SPM, to demonstrate that an attempt to prove it correct fails, as expected.

78

V. Conclusion

Contribution

 The formal specification of the Schematic Protection Model provides a tool for

reasoning about systems that implement the SPM security model. It is designed to be

easily modifiable to incorporate any logical extensions that can be expressed

algorithmically, such as the deontic logic properties of obligation, permission, possibility,

and necessity. The specification is robust; it accepts the modular addition of autonomous

virtual processors that can each implement any set of operations that can be described

algorithmically. As such, this specification is a solid, flexible tool for formally reasoning

about any security model that can be expressed in this manner.

 This tool can now be used as the basis for further use of SPM to meet the

modeling challenges posed by contemporary cyber systems. Proposed modifications can

be added systematically to the specification to formally demonstrate correctness of both

the autonomous modification and the integrated model as a whole.

Reliability of Results

 This research proved the safety properties of the Schematic Protection Model,

using the Prototype Verification System automated prover. The results are, of course,

only as reliable as the prover itself. However, the uncertainty of this is mitigated by the

widespread use of PVS by researchers and scientists worldwide since 1993. PVS has

been used extensively within the scientific and academic communities [SRI08] to

formally express well-known mathematical theorems and algorithms, and has yielded

proofs that are consistent with expected results. These include the Fundamental

79

Theorems of both Arithmetic and Calculus, the Infinitude of Primes, and the Law of

Cosines [NAS07]. It has also been used to formally verify complex, real-world systems,

revealing inconsistencies that would have otherwise been practically undiscoverable, such

as during the formal analysis of the AAMP5 microprocessor [NAS07].

Suggestions for Further Research

 SPM Modernization.

 It will be worthwhile to reassess SPM for its applicability to modern cyber

systems. SPM was proposed in 1988 as a tool for modeling and reasoning about

computer systems. While the complexity and interdependence of automated systems

have advanced dramatically in both practice and theory keeping pace with enabling-

advances in technology, no popularly accepted analytical techniques have emerged in

kind. As a result, these models, including SPM, are rarely used to reason about actual

systems. It would be useful to identify specific extensions or modifications to the original

model, to reestablish the ability to formally reason about actual modern cyber systems.

 Deontic Logic.

 A broader range of practical applicability may be realized by extending the SPM

with modal logic concepts such as obligation, permission, possibility, and necessity.

Deontic logic provides the “right fundamental logic system to provide us with a logical

validity criterion of normative reasoning as well as a formal representation and

specification language” while Classical Mathematical Logic (CML) fails to describe the

notion of relevance when accounting for the validity of a statement. In CML, “the notion

of conditional, which is intrinsically intensional but not truth-functional, is represented by

the notion of material implication, which is intrinsically an extensional truth-function”

80

[ChM06]. It is through these implications that the idea of vacuous truth arises, where a

statement is regarded as TRUE simply because the premise itself is FALSE. The more

expressive relationships between actors and actions offered by deontic logic would

expand the field of scenarios about which the system is capable of reasoning.

 Safety Analysis.

 This specification presented herein can be modified to perform safety analysis of

an explicitly described system by adding a virtual processor module that recursively

executes all allowable transfer- and create-operations until no more are possible. It is

only the resultant maximal state that need be tested for adherence to stated policy to make

a determination about the safety of the system design. It is important to note that in order

to ensure a maximal state is reached, the create-operations must be both acyclic and

attenuating. Acyclicity means simply that no descendent of entity-type x can create an

entity of type x. This rule simplifies the safety analysis by ensuring that create-operations

do not continue recursively ad infinitum [Bis03, pg. 70]. Attenuation is considered with

respect to tickets that are given to the new entity spawned by a create operation. An

entity may not give a ticket to another entity that it does not, itself, possess.

References

[Bal07] Rusty Baldwin and Barry Mullins, Modeling and Analysis of Cyber Security,

Tracking, and Targeting using Modal Logics, draft of research proposal, 30

Jan 07.

[Bis03] Matt Bishop, Computer Security, Pearson Education, Inc., 2003.

[ChM06] Jingde Cheng and Junichi Miura, Deontic Relevant Logic as the Logical Basis

for Specifying, Verifying, and Reasoning about Information Security and

Information Assurance, Proceedings of the 1
st
 International Conference on

Availability, Reliability and Security (ARES’06), April 2006, Vienna, Austria,

pp. 601-608.

[CK01] Edmund Clarke and Daniel Kroening, 15-820A Proving Software with PVS,

Carnegie Mellon University course notes, http://www.cs.cmu.edu/~emc/15-

820A/reading/, posted 30 Apr 03.

[NAS93] National Aeronautics and Space Administration, NASA Technical

Memorandum 108991, An Elementary Tutorial on Formal Verification and

Specification Using PVS, Unpublished technical report, 1993.

[NAS07] National Aeronautics and Space Administration, NASA Langley Formal

Methods Website, http://shemesh.larc.nasa.gov/fm/, accessed 17 Jan 2007.

[Sha01] N. Shankar, S. Owre, J. M. Rushby, D. W. J. Stringer-Calvert, PVS Prover

Guide Version 2.4, SRI International, November 2001, http://pvs.csl.sri.com/,

accessed 04 Aug 07.

[SRI07] SRI International, Formal Methods and Dependable Systems Website,

http://www.csl.sri.com/programs/formalmethods/, accessed 17 Jan 2007.

[SRI08] SRI International, PVS Old User Links, http://pvs.csl.sri.com/users.shtml,

accessed 29 Jan 2008.

[Ubh03] Sonali Ubhayakar, Evaluation of Program Specification and Verification

Systems, Thesis/Naval PostGraduate School, June 2003.

 (ADA417580)

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
27-03-2008

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2006 – Mar 2008

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

A Formal Specification and Proof of System Safety using the Schematic Protection Model

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Way, Raymond, S., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/EN)

 2950 Hobson Way

 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/08-21

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Det 1, AFRL/WS

 Attn: Dr. Steven Rogers, AFRL/SN

 2130 Eighth St, Suite 205

 WPAFB OH 45433-7542 DSN: 674-9891

 EMAIL: Steven.Rogers@WPAFB.af.mil

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 This research formally specifies the Schematic Protection Model (SPM) to prove its ability to provide security services such as confidentiality and integrity.

The theory described by the resultant model was logically proved in the Prototype Verification System (PVS). Each component of SPM was tested, as were several

anomalous conditions, and each test produced results consistent with the model.

 The model is internally modular, and therefore easily extensible, yet cohesive since the theory to be proved encompasses the entire specification. This

approach ensures the specification is flexible enough to incorporate any extensions, such as the deontic logic properties of obligation, permission, possibility and

necessity.

 The culmination of this effort was the development of a sound, flexible tool for reasoning formally about systems that implement a security model like SPM.

Recommendations to further extend the utility of the specification are discussed.

15. SUBJECT TERMS
 Security, Systems Design, Logic, Specification, Schematic Protection Model, Prototype Verification System, Formal Proof

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Dr. Rusty O. Baldwin (ENG)

REPORT

U

ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
92

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4445; e-mail: Rusty.Baldwin@afit.edu

	A Formal Specification and Proof of System Safety Using the Schematic Protection Model
	Recommended Citation

	Microsoft Word - Thesis - Way.doc

