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Abstract

This investigation focuses primarily on the development of effective target en-

gagement for unmanned aerial vehicle (UAV) swarms using autonomous self-organized

cooperative control. This development required the design of a new abstract UAV

swarm control model which flows from an abstract Markov structure, a Partially

Observable Markov Decision Process. Self-organization features, bio-inspired attack

concepts, evolutionary computation (multi-objective genetic algorithms, differential

evolution), and feedback from environmental awareness are instantiated within this

model. The associated decomposition technique focuses on the iterative deconstruc-

tion of the problem domain state and dynamically building-up of self organizational

rules as related to the problem domain environment. Resulting emergent behaviors

provide the appropriate but different dynamic activity of each UAV agent for sta-

tistically accomplishing the required multi-agent temporal attack task. The current

application implementing this architecture involves both UAV flight formation behav-

iors and UAVs attacking targets in hostile environments. This temporal application

has been quite successful in computational simulation (animation) with supporting

statistical analysis. The effort reflects a considerable increase in effectiveness of UAV

attacks related to a previous work with increased damage and decreased causali-

ties. In the process of developing this capability an innovative paradigm shift in au-

tonomous agent system design evolved. Heretofore, large dimensional agent systems

were developed with an a priori fixed structure, usually with emphasis on top-down

or bottom-up management, control, and sensor communication. Because of the fixed

structure, extension to very large dimensional systems is generally impractical. This

new autonomous self-organized approach dynamically evolves an entangled communi-

cation and cooperative control distributed architecture. This entangled architecture

iv



paradigm can be applied to the research development of various large dimensional

agent based autonomous systems, military and industrial.
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EXPLOITATION OF SELF ORGANIZATION

IN UAV SWARMS

FOR OPTIMIZATION

IN COMBAT ENVIRONMENTS

I. Introduction

As military operations move into the 21st century and the civilian population

clamors for more efficient, effective ways to engage the enemy, autonomous

vehicles are moving into the spotlight. For the U.S. Air Force, Unmanned Aerial

Vehicles (UAV) are the new wave of technological golden bullets. Autonomy Theory

and UAV swarms come together to take the form of Self Organized Swarms for effective

control. The goal is the creation of a set of inexpensive vehicles that can carry out

a dynamic set of tasks with low communication overhead and low user interaction.

In this study we consider at not only the autonomous swarm but how to effectively

employ it in a combat environment.

This chapter sets the tone for the entire thesis. It introduces the constraints

facing today’s Air Force and the current technology behind UAV Swarm technology.

The research goals are defined, assumptions and approaches are over viewed and the

sponsorship gives its direction. Finally the structure for this document is outlined.

1.1 Problem Overview

After actions in Kosvo in the late 1990’s and early into this millennium the

United States Department of Defense (DoD) has been actively engaged in increasing

the capabilities of UAVs. Most recently the 2007 DoD budget report from the White

House sets the immediate goal to increase the number of UAV orbits in Southwest

Asia (SWA) from 12 to 21. [14]
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Figure 1.1: The Raven, a hand-launched UAV by Aeroviroment [3]

In 2005 the United States Air Force Strategic Planning directorate published

The U.S. Air Force Remotely Piloted Aircraft and Unmanned Aerial Vehicle Strategic Vision

[18]. It stated that the Air force must be committed to development:

”...in the areas of on-board data analysis, auto-target recognition, au-
tonomous flight capabilities, autonomous sensor operation, and data com-
pression.” [18]

In a 2004 study, posted by the Secretary of Defense, one of the primary goals

is to exploit the ability to reduce the size of UAVs and increase the autonomous

capabilities [69]. Also noted in this document, is that over 100 UAVs of more than

10 different types were used in Operation Iraqi Freedom (OIF). These documents

bolster the development of UAVs, capable of autonomous, heterogeneous, integrated,

reconnaissance and target engagement.

Figure 1.2: The second generation predator with munition carrying hard-points.
The precursor to platforms specifically designed as UCAVs.
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What is the role of the UAV in the modern day military? Currently there

are dozens of systems employed by the US military [18]. Some, like those seen in

Figure 1.1 are simply for localized surveillance, border and fence patrol. Others like

the Predator shown in Figure 1.2 have longer ranges, more sensors and munitions. In

LtCol. Clarke’s [17] cadre paper, he defines the roles where UAVs are most likely to

be employed: Dull, Dirty, and Dangerous. Expanding on the definitions adds clarity

for the Air Force’s intended use of UAVs.

1. Dull: Includes missions with high loiter times, surveillance for instance.

2. Dirty: Includes missions with possible exposure to an unsafe environment, such

as WMD impact zones.

3. Dangerous: Although there is a lot of room for interpretation of the term danger,

the intent here is to focus on missions like Suppression of Enemy Air Defenses

(SEAD).

Although all three need to be accomplished, the first two are more mundane,

only requiring the ability to navigate through fairly static spaces. Rarely do these mis-

sions include engagement in dynamic environments. Those characteristics are what

make the dangerous missions the center of most research efforts. Due to bandwidth

constraints resulting from the President’s pledge to increase UAVs orbits in SWA [14],

they must accomplish these dangerous mission autonomously.

1.2 Proposed Research

In recent years, one explored answer to the autonomous control question is Self

Organization(SO) [22, 59, 74]. Simply stated, SO is the process in which agents with

out global knowledge come together to form emergent behaviors that accomplish

more than an single agent is capable. Here the application of SO takes the idea

of emergent behaviors, shown in biological processes, to solve autonomous control

problems. The termite mound, shown in Figure 1.3, illustrates the results of this type

of behavior; here each termite has a rule set and those rules sets define the termites
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Figure 1.3: The emergent structure of the termite hill based on the set of rules
implemented throughout a swarm of thousands of agents.

actions without explicit direction or global knowledge. Appendix A shows a myriad of

other Biologically Inspired SO Operators (or Abstract Model Types) that have shown

success in computational models. By utilizing the UAVs as a group of bio-inspired

agents with a basic rule set, swarming properties and task completion emerge.

1.2.1 Research Goals & Objectives. Numerous research efforts into creating

a self organizing swarm of Unmanned Ariel Vehicles (UAV) that maneuver through

an environment exist [22, 59, 73]. Very few techniques have been investigated that

enable a swarm to learn how to engage a target set in a successful manner, once

the swarm enters a target area. This is a critical step in creating UAV autonomous

swarms that can be successfully employed in war fighting roles. There are two tasks a

swarm must complete of this investigation, reaching the target area, shown in Figure

1.4, and exploitation of target weaknesses, shown in Figure 1.5.
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Figure 1.4: Agents find target sets by migrating towards local waypoints. The
Triangle represents the UAV and the vectors extending from it represent the distance
weighted vector for a given target. The solid line vector represents the vector sum
and resulting movement. Through this approach the agent is pulled toward higher
yield areas.

Figure 1.5: Here the agent represented by the triangle again uses a vector sum.
The weighting of the target vectors is now defined by the perceived threat. If a target
has overlapping engagement rings it is a less attractive target and therefore has a low
magnitude vector. The intent is to exploit target set weakness: engaging the middle
target causes aggregated defense effects, where engaging the top most target alleviates
aggregate capabilities.
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In this thesis investigation the goal is the development of a SO model that

enables a swarm of UAVs to effectively engage a target sets in the environment. As

part of this effort there are three major objectives:

• Develop an approach to mathematical modelling through SO problem decom-

position resulting in emergent SO structure and as a result extending the SO

rules that govern such behavior.

• Integrate the resulting behaviors and entangled hierarchy into Swarmfare [59]

UAV simulation environment to include these models.

• Validate this new model’s success through statistical analysis and evaluation of

the resulting swarm behavior.

Measured success in the define objective comes from the creation of a thorough

problem representation extended from a known problem space. The subjectivity here

allows for continual renewal and redesign based on knowledge gained from this work.

Measuring rule sets that extend the simulation environment is done by effective ex-

tension of the simulation and the library of behaviors in the software. Validation of

this new and innovative approach results from the interpolation of the new form of

the emergent behaviors of the system in simulation.

1.3 Sponsor

Research into Swarming UAVs interests Air Force Research Laboratories (AFRL)

Virtual Combat Laboratory (VCL) AFRL/SNZW. The team lead is Mr. Mike Fos-

ter, mike.foster@wpafb.af.mil. The employment int ent focuses on developing low cost

UAVs, that can operate in large swarms, numbering into the hundreds. The mission

is the jamming and electronic warfare against enemy Integrated Air Defenses Systems

(IADS). The VCL’s objective is to eliminate IAD threat through electronic or kinetic

neutralization.

The AFIT Advanced Navigation Technology (ANT) wishes to further work in

this area. In discussions with Maj Michael Veth, member of the ANT team, he
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explained that the need for swarm control in small enclosed areas such as caves or

buildings exists. Autonomous cooperative control is crucial in this type of environment

because communications is severely hampered.

1.4 Assumptions, Approach, and Risks

This section describes the assumptions used to scope the problem, the approach

used to solve the problem and the inherent risks in this domain.

1.4.1 Assumptions. Assumptions about the UAVs capabilities include:

• Markov independence assumptions

• That sensors capable of detecting adjacent swarm agents exist.

• Fundamental communication links between adjacent swarm agents.

• Sensors to pseudo-accurately detect detection and engagement rings of targets.

• The agents have a knowledge of the complexity of the real-space target area.

• Attacking a single target is not difficult.

1.4.2 Approach. Our goal is attainment of truly SO swarm behavior in the

combat environment through utilization of the U-Decomposition technique first illus-

trated in [53]. First the outline of mathematical model that defines the over arching

problem domain. Next, decomposition of the target engagement aspect of the problem

develops a subset of needed state action pairs. Then derivation of a set of SO rules

that address individual sub-problems of swarm movement and target engagement.

From the set of SO behaviors a resulting structure emerges through human and Ge-

netic Algorithm1 (GA) manipulations. The SO rules form emergent swarm behaviors

as well. The interaction amongst agents through simple rules and communications

1Genetic Algorithms search through a large solution set using a population that is a subset of
solutions. Each generation each individual solution is evaluated and the best are mutated and
recombined in order to optimize the best of the solutions.
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without global knowledge form higher level reactions to the environment This ap-

proach address the large problem space. We use a stochastic search technique, a GA,

to optimize appropriate weights and controls for the rules set in order to accomplish

realtime swarming and target engagement.

High Level Data Flow

This section shows the basic flow of the system. In order to accomplish free

movement in a space weighted vectors constrained by dynamics models defined the

next position. Sets of vectors form different control modes, reconnaissance, attack,

loiter, etc. The controller arbitrates between modes. A genetic algorithm “optimizes”

the control structure and movement vectors based on parameter weights. Figure 1.6

shows the basic flow that is used throughout the thesis effort.

Figure 1.6: The high level data flow showing the GA used to define control weights,
the BA controller to arbitrate the BAs, and the BAs pushing a weighted movement
vector for control.

1.4.3 Risks. In this research effort, the GA techniques are used to develop a

weighting system for a set of SO rules that define the behaviors. Genetic algorithms

are known to find the local optimal but due to their stochastic nature one can never

assure that optimums are found. Also, SO rule sets depend on the emergent behaviors
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of the swarm to be effective. These emergent behaviors are sometimes unpredictable

and difficult to control. Using both of these techniques the desired results are therefore

subject to variations in effectiveness during development phases.

1.5 Thesis Layout

In this first Chapter, we have laid out the introduction to this research effort.

The second Chapter discusses the background of the problem domain and similar

approaches to finding solutions. Because of the size and decomposition of the Problem

Domain (high-level) and Algorithm Domain implementation (low-level) designs, they

are discussed in two separate chapters, three and four. After that, Chapter Five

articulates the design of the experiments to accomplish the validation of the rules and

GA techniques. Chapter Six records and reduces the data for analysis. Conclusions,

recommendations and suggested future research sections compose the final chapter.
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II. Background

This chapter describes the state of the practice in several areas providing a foun-

dation to this research investigation. Thus, we discuss the background for

three prominent aspects of research in UAV swarms: the problem model, autonomous

control (including SO), simulation environments, and evolutionary algorithms. The

Partially Observable Markov Decision Process (POMDP) is used as a mathematical

model for several previous works involving UAV swarm. For this reason it is discussed

in detail. Through this construct, we describe the precise dynamic nature of move-

ment through a domain space and the uncertain nature of the domain’s response when

acted upon by the agents. Many different control structures are used in previous work

on autonomous control. Section 2.2, presents some of these control structures. The

discussion then narrows to Self Organization approaches. SO provides the governing

structure that allows the construction of swarms and their emergent behavior. This

results in simple, dynamic, autonomous and fast decision making. A short discussion

of existing simulations exists to provide background in the application SO principles

in computation. Finally a summary of different Evolutionary Algorithm approaches

that can be used for developing autonomous control behaviors are presented.

2.1 Partially Observable Markov Decision Process

Working with UAV swarms in unknown environments is represented by stochas-

tic processes. These processes are commonly modelled by one of the set of Markovian

models. Table 2.1 shows the questions defined by Littman [45] to determine the best

fit model.

Markov Do we have Control over the state transitions?
Models NO YES

Are the States
completely
observable?

YES Markov Chain Markov Decision Process
(MDP)

NO Hidden Markov
Model (HMM)

Partially Observable
Markov Decision Process
(POMDP)

Table 2.1: Markov Models [45]
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Considerable research into similar problems indicates use of POMDPs as a

model. There are three papers that model similar problems with POMDPs: Roy [65],

Nikovski [52] and Wardell [80]. Khosla’s [41] paper present another way of modeling

the paper the provides insight and juxtaposition to the POMDP mapping.

Wardell’s thesis [80] mapped movement of autonomous agents to a POMDP.

In his domain the agents are playing soccer in a discrete environment. But the

agents have no knowledge of the actions of other agents. This uncertain nature of the

state and inability to understand how actions effect the environment fits the POMDP

defining characteristics. His solution focused on Reinforcement learning based in FSA.

Several learning algorithms were implemented: Q-learning, PHC, WoLF and several

combinations and slight modifications of that set. This reinforcement learning requires

the ability to easily quantify feedback. The system provides only basic capabilities.

Nikovski worked in a domain of Decision-Theoretic Navigation of mobile robots.

Nikovski’s [52] work does not specify the particulars about the learning, but instead

discusses autonomous agent movement and fundamentals of navigation. The pa-

per discusses foundational (FSA) and Q-learning structures. Four different learning

heuristics are explained, which attempt to resolve several key shortfalls in estimating

states. Steep Gradient Ascent uses probabilities to predict the states. The Baum-

Welch algorithm was adapted for Hidden Markov Model learning [52]. From these

two algorithms, two novel approaches were proposed to overcome shortfalls. In Best

First Model Merging (BFMM) the objective is to accurately predict which actual

time-state pair the current POMDP observed state is modeling. Criteria for merging

are used to decrease the likelihood of error in the states iteratively, to a decision ap-

propriate level. State Merging (SMTC) searches for the same objective but instead

of the greedy search used in BFMM, the system includes suboptimal solutions that

can be merged in order to solve for an aggregate better solution in the long run.

Tests are run on 5 planners using these learning techniques over the same data sets.

None of the combinations converge to the optimum but the systems do show limited

improvement. The cause of this non-convergence stems from the systems inability
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to learn the correct model. Of those, Assumptive Planning with SMTC using vector

matching prior to and after, combined with matching indicate better results. There

also exists a bit of concern about mapping vectors leading into and out of a state if

the system being modelled is Markovian. This work, although not thorough in the

definition of the problem domain, presents several plausible solutions to the the UAV

problem domain.

Roy uses a POMDP to move autonomous robots through a 2D space [65]. He

uses this scenario to accomplish Markov Localization. The problem space is so large

that the state is decomposed into belief planes. These belief planes allow the system

to abstract the state, reducing problem dimensionality. The reduction technique used

is Principal Component Analysis (PCA). It is an effective approach in the localization

domain.

Khosla [41] use Evolutionary algorithms for Weapon Allocation and Schedul-

ing (WAS). In this domain two parameters are optimized, Threat Kill Maximization

(TKM) and Asset Survival Maximization (ASM). Three approaches are used to find

solution sets. The deterministic selection evaluates the entire domain space and re-

turns optimal solutions for pedagogical problems, but does not scale well. A GA

proved more efficient and effective, solving to the sub-optimal levels outside the peda-

gogical limits. It also improved on the results from his other stochastic work. Finally

the two were combined providing no improved results, again, stopping at pedagogical

limits. Despite the fact that this mapping approaches more of a set covering problem

than a POMDP [41], its mapping proves very insightful because it sets the tone for

possible fitness objectives.

2.1.1 POMDP Model and Complexity. The POMDP structure is defined by

the tuple in Equation 2.1.

D(S, A, T, O, R) (2.1)
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Here S is the set of states, A is the set of actions taken in S. T defines a stochas-

tic transaction from that state to the next. O defines the set of agent observations

and R is the reward or feedback mechanism.

A POMDP of autonomous control vehicles relates to the sub-problem Vehicle

Routing Problem (VRP) 1. The VRP maps to the TSP a NP-hard Problem [5]. In

Secomandi [70] the VRP with Stochastic Demands (VRPSD) is mapped to a MDP.

There are a few differences in POMDP and VRP. First the VRP has a standard

global knowledge of the system. Dynamic VRPs remove knowledge of all the nodes

by letting the change [5]. Also, the VRP is deterministic, but the VRPSD proposed

by [70] shows the constrained problem and connects it with the MDP. The mapping

of the VRP by [5] facilitates comparison of the models:

• v = v0, , vn is a vertex set, where:

– Consider a depot to be located at V0.

– Let v′ = v{v0} be used as the set of n cities.

• A = {(vi, vj)/vi, vj} exist in V ; i not equal to j is an arc set.

• C is a matrix of non-negative costs or distances cij between customers vi and

vj.

• d is a vector of the customer demands.

• Ri is the route for vehicle .

• m is the number or vehicles (all identical). One route is assigned to each vehicle.

The VRP does not isomorphically map to the POMDP. The state S is defined

by the agents and targets or customers states in both cases. By focusing on the data

structure of the VRP we can map it, the set of vertices, v, directly to the set of targets,

τ . The set of arcs, A, can be mapped to the set of SO action transition definitions,

1Vehicle Routing Problem is a benchmark optimization problem in which an agent has to make
deliveries from a central location. Here the route is optimized for minimum distance, minimum time,
or minimum service agents.
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T . In the POMDP however the transitions are stochastic. The actions A in both

problems are movement between vertices, with a POMDP the movement is much

more complex. The observations O in the POMDP are shown by the changes in the

environment through sensor readings which map to the changes to the environment

in the Dynamic VRPs. If a reward for arriving at a customer is established, the VRP

provides a simple R based on state. The POMDP reward is a function of the current

and previous state as well as the action. In the VRP problem there is only one agent

but it is not bound by time so it can act like multiple agents. Optimization occurs

on the weight of the arcs, or SO transitions, in both cases.

A VRP that is constrained to a given number of vehicles is NP-Complete. A TSP

has a complexity of O(1
2
(n−1)!). Given a large number of vehicles the VRP, which is

no more that a large number of TSPs, it approaches O(n!) or NP-Complete [57, 75].

The POMDP complexity is larger than both cases, because of its expanded action,

transaction, and reward sets. The complexity of the problem is loosely based on the

number of agents, n, and the action, m2 (movement in the map), and transaction

possibilities, tp, resulting in O(ntpm2
)

Given the higher complexity, a deterministic POMDP solution is intractable for

large n. With the combination of autonomous control structures, discussed in the

next section, swarming with SO rules lend themselves well to solving problems in a

dynamic, unknown environment. The ground work, for the emergent behaviors to be

applied to this problem, is presented in Section 2.2.1.

2.1.2 Interactive Partially Observable Markov Decision Process. A subset of

POMDP models focuses on the application of the Markov assumptions to independent

agents with independent actions. There are three approaches to this subset of the

model. The first defined by Bernstein [10], is the Decentralized POMDP. It specifically

articulates actions and Observation sets for each individual agent. The second by

Boutilier [12], called the Multiagent MDP, also specifically articulates the the set

of actions for all agents. The Interactive POMDP (I-POMDP) used by Doshi [30]
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specifically defines the state transitions of each agent based on the probability of the

interactions with other agents. This approach focuses the agent actions based on its

knowledge base and behavior set independent of the entirety of the domain.

Equation 3.8 shows the tuple defined by I-POMDP [30]. This approach focuses

on decoupling agents acting in the same environment by adding belief of the effects

of interaction to the state.

I − POMDPi = 〈ISi, A, Ti, Ωi, Ri〉 (2.2)

ISi defines the interactive effect of the agents on each others state through

ISi = S × Θj. In this the belief state of other agents Θj effecting the state derives

from Equation 2.3.

Θj = 〈bj, A, Ωj, Tj, Oj, Rj, OCj〉 (2.3)

Most of the pieces of this belief state derive from the POMDP but focus on the

agent j. The OCj outlines the optimum criterion for the agents. This representation

mirrors the actuality of the simulation and the stochastic nature of interaction and

transitions. Further description of the I-POMDP and the proof of its mapping is seen

in works by Doshi [30]. Through the POMDP the totality of the domain is represented

and the I-POMDP pulls out the domain model of the individual agent and ties the

two together.

2.2 Autonomous Control

Autonomous control of vehicles transcends medium and motive, from underwa-

ter exploration to ground based safety to airborne military, the spectrum is large. As

outlined in Figure 2.1, the levels of control vary as well. Despite all of these differences

there exists an underlying control structure that can be utilized. All of the proposals

in the following paragraph fall into level 7-10 of Figure 2.1.
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Automation
Level

1 The computer offers no assistance: human must 
take all decision and actions.

2 The computer offers a complete set of 
decision/action alternatives, or

3 narrows the selection down to a few, or
4 suggests one alternative, and
5 executes that suggestion if the human approves, or

6 allows the human a restricted time to veto before 
automatic execution, or

7 executes automatically, then necessarily informs 
humans, and

8 informs the human only if asked, or
9 informs the human only if it, the computer, 

decides to.
The computer decides everything and acts

 autonomously, ignoring the human.

Automation Description

10

Figure 2.1: Sheridan & Verplank (1978) Levels of Automation [72].

Gat [29] uses general approach focused on the most difficult aspect of au-

tonomous control, stimuli response. In order to accomplish quick response in a

dynamic environment, the system structure is decomposed into three parts. The

Controller focuses solely on immediate response with little state knowledge. The

Deliberator does all of the deliberate planning and the third communicates and coor-

dinates between the first two, the Sequencer. Figure 2.2 shows this structure that is

the widely accepted standard.

Figure 2.2: Gat Three Layer Architecture.

Rydsyk [66] uses a model that focuses on the level of knowledge: world states, lo-

cal states, vehicle states. Through this model, he successfully implements autonomous

UAV controls in a limited domain. Figure 2.3 shows his architecture.
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Figure 2.3: Rydsyk Three Layer Architecture.

Reynolds also [63] implements a structure to establish control for autonomous

agents. In his “game” hierarchy, he establishes a three level structure: Action Selec-

tion, Steering, and Locomotion. Figure 2.4 shows the form of which he succesfully

employs in game agents navigating game space.

Figure 2.4: Reynolds Three Layer Architecture.

Rosenblatt [64] proposes a system that again separates the vehicle control from

the learning, and is not so directly focused on the instantaneous response. His model

has a set of modes that manages weight values for several control modules in the

Arbiter. The values from the Mode Manager and the modules are used to calculate the

next step and are then sent to the agent Controller. Figure 2.5 shows the architecture

that he uses to develop successful ground based agents.

Autonomous Control in SO Environments In Swarmfare, [59] autonomous con-

trol is established through SO modelling. It combines the aforementioned structures

into the three tier structure similar to that illustrated in Figure 2.6. The simulation

revolves around the development of SO rules and the interplay of those rules. This
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Figure 2.5: Rosenblatt’s DAMN Architecture.

Figure 2.6: Three Layer SO system model [55].
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takes away from the criticality of the immediate response ability. In Swarmfare, a

three layer structure can be seen. The visualization represents the state of the swarm

in the world in the UAVs operator, arbitration and control happen internal to the

agent and the rules define reactive locomotion. That is mapped high to low as System

State (the Swarm), UAV Agent State (Behavior Archetypes (BA)), and Update Local

State through transition functions (SO rules). The first level maps the real world sys-

tem to a set of knowledge and operators, this layer is called the SO System modelling.

The second, transitory layer, consist of two co-dependent sub-layers. Translating the

SO system model mapping into computational terms is the first sub-layer and the

structure of the code from this architecture design is the second. Finally this design

is mapped to code in the implementation layer. In the following section the ideas

governing Self Organization are outlined and the specific rules used in Swarmfare are

articulated.

2.2.1 Self Organization. The definitions of Self Organization are as varied

as the people authoring them. Camazine defines Self Organization as [15]:

”. . . a process in which patterns at the global level of a system emerges
solely from numerous interactions among the lower-level components of the
system. Moreover, the rules specifying interactions among the system’s
components are executed using only local information, without reference
to the global pattern.”

Francis Heylighen sees SO as a sub-unit of his study in Cybernetics [34]:

”The spontaneous reduction of entropy in a dynamic system.”

Cottam is wary of over use of the term and offers this description of SO [23]:

”. . . transition from ’a set of components’ to ’a unified system’ is possi-
bly the most fascinating aspect of our natural environment, especially as
witnessed in the realm of (living) biological organisms This is, however,
rather a slippery subject, as many, if not most reported examples of ’self
organization’ are primarily ’investigator-organized’. The emergence of new
properties on changing level in a hierarchical assembly is often more at-
tributable to un-noticed inter-level transformation of pre-imposed rules or
initial experimental conditions than to self-organization.”
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Table 2.2: SO Table.

These definitions are placed side by side for comparison in Table 2.2.

In decomposing the definition, a SO system’s order emerges only through the

interaction of it agents. These systems are made up of a group of agents, usually re-

ferred to as a swarm. This swarm achieves a stable physical or biological structure that

produces a desired effect better than any single agent could achieve on its own [59].

This desired effect manifests itself through a positive feedback loop that perpetuates

not only the action, but also the existence of the system. Generally speaking, SO

evolves by the interaction of the agents based on their inherent properties, internal

knowledge base and the communication between agents.

Agents in SO systems can be described as automata [59]. Merriam Webster’s

defines an automaton as a “mechanism that is relatively self-operating.” [27] As part of

SO systems, all agents must be autonomous. Every agent must function completely on

its own. It must be able to make decisions, react to its environment and communicate

on its own. If the agent does not fulfill all of these requirements, the system is probably

not SO.

To be considered SO, it is only the agent’s interaction with other agents, the

environment, and other systems that creates organization. In most cases, when the

results of this interaction are viewed from a macroscopic level the order is revealed.

This order is a function of the simple rules inside the agent (or subsystems of agents)

working together to achieve an overall desired effect. The synergistic interplay between

these systems is what prompted Haken to coin the theory of Synergetics [32]. He
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defines the interdisciplinary idea of Synergetics when systems form, at a marcoscopic

level equilibrium, not at thermodynamic equilibrium, in an open system based on SO

characteristics. It is impossible to define Synergetics without Self-Organization and

vice versa.

Formation in SO systems is a bottom up process. The agents at the lower levels

interact to create the organization. The feedback, however, is at a higher level [23].

For instance, if a few birds suddenly fall out of formation in a flying V, the entire

flock feels the effects. The birds ahead and behind all feel increased drag, forcing the

formation to reorganize. Feedback at the global level is what reinforces operators and

parameters at the agent level to form the system’s structure.

2.2.2 Improperly defined SO. Sometimes systems are mistakenly defined as

SO. Listed here are several other strategies (with examples) that may be employed

to create organization in a system but not nesscarily SO [15]:

• Leadership/Hierarchies : Lion Prides

• Blueprints : Human Construction

• Recipes : Spider Webs

• Templates : Male Villager Weaverbird (uses its own body as a template when

constructing a nest) [42]

All of the strategies listed focus on the use of global knowledge by one or all

of the agents in the system. Any global knowledge of the environment or systems by

an agent disqualifies the system from the Self Organization classification. Again the

defining property of SO is the dynamic interaction of the agent level characteristics

and rules that result in emergent properties or behaviors [15].

2.2.3 SO System Strong Casting. Agents in real world SO systems find

themselves forcibly tied to a system once it has been created. In most cases the

cooperation of the agents in the system has a multiplying effect on the capabilities
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needed for survival of a single agent. A single agent is far more likely to be successful

as part of the system as opposed to going it alone. Of course, this phenomenon does

have its disadvantages. Being tied to a system, which exploits capabilities that are

drawn out at a global level, forces the system and the agent into a niche for survival.

Male fireflies for example use the aggregation of hundreds of flashes to communicate

during mating season. If the light flashes were gone, then the combined effectiveness

of the system would also disappear. If each agent had to fend for itself, the system

as a whole would terminate. This is strong casting, when agents in a system cannot

adapt to a change in the environment or system, because the system is evolved to fit a

niche. If a system were weak casting it would not force the focused development of a

subset of the agent’s operators, and thereby prevents the emergence of structure and

organization. The effects of casting can be applied when looking for forward mutation

of the system as well [35].

When agents are forced to accomplish the tasks because they are imperative

to the system’s survival, the agent has little flexibility to continue to evolve. This

essentially creates a glass ceiling for the agents’ capabilities. Interdependence causes

a “free lunch” syndrome [23], where the emerging patterns in the high layers remove

some of the autonomy for the agent.

2.2.4 Characteristics and Classification of SO Systems. The human mind,

attempts to find patterns and characteristics that help classify things in its envi-

ronment. Accordingly many characteristics have been developed to classify different

types of SO systems.

It has been surmised that SO occurs in all realms of science [35]. In physics the

phenomenon is pervasive from crystallization to sand wave patterns. In chemistry, SO

is formed in chemical reaction times and chemical structuring. There have been many

published works with biological examples ranging from bird formations to ant colonies

[15]. In human society, organization has permeated throughout population centers

usually unbeknownst to the inhabitants. John Holland claims that SO principles in
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economics and logistics are what keep cities running. [36] The range of applications

in scientific disciplines is seemingly unbounded, including the computational world.

Hierarchy Exploring the hierarchical structure of organization in a system helps

facilitate the way in which problems can be decomposed and solved using SO systems.

Hierarchy describes the level at which patterns/organization are observable in SO

systems: internal to an agent, sub-system, and global, shown in Table 2.3.

Internal Sub System Global
Intra-Agent Inter-Agent Inter-Agent

Visual Pattern 
(Geometric)

Immediate 
Response

Structures and 
Repeatable 
Behaviors

Temporary Temporary Long Term
Single Emergent 

Property
Single 

Emergent 
Property

Several 
Emergent 
Properties

Homogeneous Homogeneous Heterogeneous
Animal Coat 

Patterns
Ant Bridges Termite Mounds

Table 2.3: SO Classification Levels Characteristics (Smallest to Largest)

There are many examples of SO occurring internal to a single organism. Zebra

stripes are one notable example which is produced at a cellular level through chemical

interactions [15]. Other systems develop organization in a subset of a swarm. For

example, in the insect world, a bee hive’s response to aggression is not carried out

by a single agent or by the entire swarm, but by some subset of the entire swarm. A

large majority of SO systems, however, produce global organization through simple

interactions at the individual agent level. This type of interaction ranges in complexity

depending on the agent. It can range from simple mold colonies, shown in Figure 2.7

to the herding characteristics of large mammals. The slime mold’s sole emergent

property is the assembly of large numbers of agents for feeding. Ants or termite

swarms can have multiple emergent properties including feeding, construction, and

breeding. [15] Again, in global SO the agent does not have knowledge of the global

situation, only of its local surroundings. Global properties emerge independent of the
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agent’s knowledge. This first and most fundamental characteristic impacts how all of

the other characteristics affect the agent and its swarm SO behavior.

Figure 2.7: Mold Growth is defined by SO principles

Decision Making The rules of a system are based on its current state and the

introduction of stimuli from the environment or other agents in the swarm. The agent

or system is stable until it reaches a decision point. When it passes a threshold, an

agent modifies its behavior based on a drastic change in environment. The response at

these thresholds can follow several different predictability models. Many systems are

driven by a simple deterministic function. In this case, the response is predictable and

based linearly on the action of the adjacent agents. For example, in fish schools, shown

in Figure 2.8, the vector of an agent is defined by the adjacent agent’s vector [15].

Other systems take a stochastic approach where agents make decisions based on the

probability of a random variable. An example of this is illustrated in the ant world.

When an agent reaches a trail intersection, which pheromone trail they follow is based

on a random variable. This allows for variation in their foraging patterns. There are

several other possible variations on the predictability of the response but these are

the most common.

Heterogeneous vs. Homogeneous Swarms The appearance of different agents in

the same swarm can also affect the way that SO is achieved. The tradeoffs between ho-

mogeneous, all the same type agent, and heterogeneous, multiple agent types swarms
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Figure 2.8: Schooling fish (photograph provided by Brandon Cole [21])

are not always clear. In most cases in nature, a homogeneous group has a simpler

rule set, but at the same time, cannot accomplish as large a variety of tasks. The

complexity of heterogeneous swarms provides more capabilities with some costs, but

through the implementation of simple guiding rules, self organization is still relatively

easily accomplished. The most studied example of a heterogeneous swarm is the ant

hill. There are some species of ants that have a half dozen or more different subtypes.

Subtypes range from the well known foragers and queen to agents with very specific

jobs. The “majors” in ant hills are usually large with over grown mandibles and are

capable of suicidal attacks to any nest intruders [11,15]. The roles of the agents in a

heterogeneous swarm are extremely malleable. If a swarm loses most of its foraging

types, other types such as the “majors” can pickup that work until the forager levels

are replenished. This distribution of work is, in itself, SO and seems to develop given

the situation. Once again all of the organization in this system is a response on the

individual level to the state it perceives in order to form emergent system structure

or behaviors.

Motives Another defining characteristic of SO systems is the driving force for

the organization. Many groups of biological agents have developed SO properties

through applications that allowed the swarm to thrive. In many cases, the control

and exploitation of resources is at least one of the factors that drive SO. There are

many other motives for SO behavior including mating, defense, efficiency of move-
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ment, and communication [15]. Several SO systems seem to have multiple reasons

for their organization. Whether that is by design or is merely a side effect is difficult

to determine, because most systems can not be isolated for long enough times to

determine the origin of organization. The impetus for a system’s SO can, however,

be a helpful indicator when looking for a SO system to use as a biological model for

computational problems.

This list of characteristics includes only a few of the largest and most prevalent

of SO characteristics. As the knowledge base of SO systems increases, the need to

classify the system by different characteristics causes this list to grow.

2.2.5 Operators Introduced by Biological SO Agents. Biological SO systems

and swarms have many successful applications to computational models. High level

operators, which have manifested themselves in the biological world, can be mod-

elled and exploited in the computational world. The generic goal is to obtain an

understanding of how the biological agents interact in order to develop a tool box of

operators for solving computational problems.

Figure 2.9: Stigmergy (Ant wall construction) [15]
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Stigmergy Stigmergy is an operator that is pervasive in SO systems [15]. It

is defined as an action that is taken by one agent that indirectly communicates in-

formation to another agent. When a builder ant places a stone based on where the

last agent placed a stone, it is stigmergy. Over time the repetition of these actions

results in the construction of walls. Most SO systems use some kind of stigmergy, but

communication, through directed signals or contact, is also prevalent. The dynamic

between the two is very indicative of how a system is self-organized.

Figure 2.10: Pheromone Trail (Leaf Cutter Ants) [15]

Pheromone Trail The most well known SO operator is the ant pheromone trail

and a subset of stigmergy. In this system, the ant leaves a scent trail by rubbing its

lower abdomen against the ground as it returns from an active resource to its nest.

Over time, several agents repeat this operation. As the pheromone aggregates on that

trail other ants are assisted in navigation to the goal. This is similar to many other

animal scent markings which designate trials or territories. In the digital world there

are no chemical pheromones, but agents can explicitly communicate information on

successful paths. This operator has been extensively used in the computational world

for the Travelling Salesman Problem and other optimization problems. [11,59]

Clustering The clustering or classification of objects is developed by SO systems

to facilitate expeditious organization of its environment. It too is a specific stigmergy

operator. In ant colonies an individual agent can quickly determine and process

objects. Objects ranging from brood in different stages, to expired agents, to waste

or any other item seemingly out of place, can quickly be identified and moved to their

proper location [11]. This classification operator is highly desirable in computational

models. Humans also classify objects in order to gain a better understanding of their

environment.
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Figure 2.11: Evolution of Agent Hierarchy [76] (Red, Green, Blue - Highest to
lowest class)

Schooling Another common operator is relative vector matching, like schooling

of fish and flocks of birds which keeps large groups together through coordinated

movement. Given the inherent danger of close maneuvers in swarms, this operator is

extremely beneficial and has proven fairly easy to implement. Several models have

been created but the most prevalent one was created by Reynolds. Figure 2.12 shows

the three simple swarming rules: cohesion, collision avoidance (separation) and vector

matching (alignment) [62]. As the agent reacts to all three of these rules at once, it

quickly finds a balance of distance, speed, and direction that avoids collision and

departure from the swarm.

Reynolds developed extended models that allow for automaton reactive response

to environment stimulus. In his paper “Steering Behaviors For Autonomous Char-

acters,” [63] he addresses the broad scope of automaton behavior focused on agent

or swarm reaction to other outside agents. He developed the following capabilities

expanding on his three rules of cohesion, collision avoidance and vector matching:

seek and flee, pursuit, evasion, offset pursuit, arrival, obstacle avoidance, wander,

path following, wall following, containment, flow field following, unaligned collision

avoidance, flocking, and leader following [63]. Of these, three capabilities, seek and

flee, obstacle avoidance, and wander, form the building blocks for the remaining of
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Figure 2.12: Reynolds Swarming Parameters [62]

the capabilities.

Evolution of SO System Internal Hierarchy Another operator that is extremely

intriguing is the evolution of hierarchy amongst the agents of a system. In the summer

of 2006 Tsujiguchi and Odagaki [76] built a society from “equal” agents through a

challenge based process. When two agents would meet, they would ’fight’, compare

parameters, and the winner would gain a point, while the loser would lose a point

and move near the winner. Over time hierarchies and population centers started to

emerge. This could be useful in setting up ad-hoc networks, redundancy, or command,

by making the hierarchy self-adaptive given a change in the environment.
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This discussion is a survey of several prominent operators in order to establish a

fundamental understanding of how SO looks and operates. Most of them have useful

applications to UAVs and swarming simulations. A larger survey of SO operators is

discussed in Appendix A.

2.2.6 Existing Structure. As this research effort is an extension of previous

AFIT work, we briefly illustrate the existing structure [55]. Price’s [59] focus when

building the foundation of Swarmfare was to establish a solid Self Organizational

structure for the system while creating a simulation that could still reasonably emulate

UAV kinematics and communications. He developed this system as a distributed java

system, that uses Genetic Algorithm to accomplish weighting of the SO rule set.

Top-level SO model Although Price [59] used the term “High Level Design” to

mark the beginning of his mapping from real-world SO to the computational world,

the top level is still present. In the case of Swarmfare, the SO system model most

closely resembles a flock of birds. The basic structure derives from Reynolds [62].

This SO model provides a knowledge base and many operators, including inter-agent

detection, the three functions of flocking, cohesion, collision avoidance and vector

matching. Also, Price includes goal seeking, sensor interpretation, pheromone based

attack operators, and unidirectional interagent communication.

Behavior Archetypes When SO is applied to a system, rules must be combined

in order for an agent or computer to accomplish a coherent response. In the case

of Swarmfare, the system gathers these rules together to form Behavior Archetypes

(BA). Through these groupings the rules are weighted and applied to establish each

subsequent action. This is similar to the modes in Rosenblatt’s architecture Section

2.5. Through this open scheme of BAs, the system could theoretically be loaded

with many different schemas that would optimize the reaction to a situation at any

given point. For instance, currently there exists a BA focused on the rudimentary

accomplishment of searches. This BA allows for the maintenance of looser group

cohesion in order to maximize the swarm’s collective sensor footprint.

30



Figure 2.13: Reynolds second generational rules. Top: Wander, Middle: Obstacle
Avoid, Bottom: Seek and Flee. [63]

31



Rules Utilized Thus far in the Swarmfare simulation, the system combines 10

rules to define the BAs:

• Flat Align - vector align with neighbors

• Target Orbit - orbit target at safe distance

• Cluster range towards - cohesion

• Cluster range away - separation

• Attract - towards center of mass of all targets

• Weighted Attract - towards closest target

• Target Repel - repel if with 90

• Weighted Target Repel - repulsion based on proximity to target

• Evade - a priori collision detection and avoidance

• Obstacle Avoidance

The ten rules are derived from the two BAs, swarm and target interaction. The

swarm rules, flat align, separation, cohesion, obstacle avoidance and evade come from

Reynolds work [62, 63]. The target driven rules, attract (and weighted), repel (and

weighted), and orbit are derived. Attract and repel tries to form a balance of aggres-

sion and respect towards targets. The orbit stems from Lua’s work [47]. Of these each

one is weighted differently depending on the makeup defined by Behavior Archetypes

of the agent. Appendix C shows a more extensive description of the behavior set

from [59].

2.3 Other Simulators

In this section various works in UAV simulation are evaluated. The impetus

for evaluating UAV simulators is to choose the right tools to apply to UAV Swarm

Intelligence. A series of sub goals that must be addressed when evaluating these

systems includes:
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1. Swarm Behavior Characteristics Modelling Capabilities:

• Schooling (cohesion, collision avoidance, and vector matching)

• Behavior morphism

• Dynamic communication architecture

2. Modular Coded:

• Allows for insertion of new modules/capabilities

3. High Performance Computing Traits:

• Evolutionary Algorithms

• Multi-Objective analysis

4. Data Collection and Statistical Analysis

5. Plug and Play Kinematics

• The system needs a solid kinematics backbone (minimizing the effort needed

to create accuracy in this aspect)

6. Visualization

• 2D or 3D visualization (3-D preferred)

• High fidelity graphics are not necessary

in the following subsection, a list of simulators is briefly described in reference

to this list of goals. In Appendix B, a more through chart compares the simulators.

2.3.1 Languages. When establishing the right simulator to use for this type

of research, the language or backbone architecture involved can play an extremely

decisive role. The language must be able to do computing at a relatively quick pace

because the computations are extremely large. It must have a structure that allows

for control and manipulation of the low level system. As a juxtaposition the language
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must not be low level itself because more time would be spent setting up the problem

than building and testing the actual objectives.

MATLAB is able to accomplish the heavy mathematics to emulate real-world

UAV flight, but the overhead to run such a detailed analysis may not be worth the

effort for this type of research. The C family of languages is an attractive option

because of its ability to control low levels of the system. Some of the C type languages

make this rather difficult, but Java allows for access to those system level calls but

does not require the extensive programming to make them operate well. Very few

other languages currently offer any extensive knowledge base in the SO UAV research

area.

2.3.2 Candidates. Self Organization (SO) Simulators This group of simu-

lators is characterized by a focus on pure self organization. The majority have only

fundamental interactions rules from which the program/researcher can draw out self

organization. Overall the SO simulators capabilities are extremely similar. Advan-

tages as a set include: ease of use, plethora of examples, and conformity to SO ideals.

Disadvantages include: lack of UAV support, no high performance computing and

constraints on interagent communications.

The first of these SO simulators is SWarm Evaluation and Experimentation

Platform (SWEEP). It is one of the first generation SO simulators developed by Case

Western University. It has average modelling, graphics capabilities, and analysis

capabilities. It is open source Java. This simulator has been replaced by many of the

more robust SO simulators space.[9]

The next simulator is Multi-Agent Simulator Of Networks (MASON), devel-

oped at George Mason University. It has a large library of examples and has been

used across departments at that school, including economics and political science.

The analytical capabilities are a bit clumsy, it has no Multi-Objective Evolutionary

Algorithms (MOEA) capabilities, only basic visualization and very little control of

kinematics, but overall it is a good SO tool. [9]
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The SWARM code managed by the Sante Fe Institute is one of the most well

known simulators. Due to the open source nature of the Swarm software and its

support through SFI, it has the most robust modelling capabilities. The visualization

is only average, with basic kinematics and 2D or 3D rendering. Overall it is a very

capable simulator for all generic SWARM and SO functions. [9]

Recursive Porus Agent Simulation Toolkit (REPAST) built by Argonne National

Laboratory. is one of the best SO simulation tools. This particular tool has a large

library of existing code, good graphics, and average modelling capabilities and the best

analysis package, although it has never been used for in-depth UAV swarm simulation.

[9]

UAV Swarm Simulators This group tries to blend the UAV kinematics and

simulations with SO and swarm modelling. The difficulty is finding a balance between

the aforementioned objectives.

The MATLAB organization sponsors a project called MutliUAV. It is a basic

model that combines the basic kinematics with some swarm functionality. Its capabil-

ities were not fully flushed out because of its reliance on MATLAB licensed plug-ins

not held by AFIT. [3]

Another system called MultiUAV sponsored by Air Force Research Labs (AFRL)

is also a capable tool. It has an UAV support architecture that closely represents the

real world. It is also based in MATLAB. The controls, kinematics, and communi-

cations capabilities are packaged closely approximating the realities of current UAV

flight. At this time the simulator is capable of swarming 8 UAVs. The present swarm

capabilities diverge from some of the fundamentals of SO; primarily this is because it

forces top down swarm behavior as opposed to emergent SO properties. The agents in

this simulation do still act as a cohesive unit. The simulation is capable of producing

a 2D visualization with targets and some basic terrain. It is also capable of collecting

a reasonable amount of analytical data. Overall this simulator/modeler is very capa-

ble if given smooth scalability to over 8 UAVs is possible. The biggest disadvantage
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is its accuracy to SO. To program in SO capabilities at a high level, a tremendous

amount of effort must be made to understand and apply the lower level individual

UAV characteristics.

[7] Simulation by IcoSystems - the corporation headed by Eric Bonabeau - is

an older simulation. IcoSystems no longer supports it nor is it advertised on the

corporation’s website. AFRL used to work with it but they have not used it in their

research in several years so very little information about its capabilities exists. [10]

The most readily available simulator is SwarmFare developed in 2006 at the Air

Force Institute of Technology by Ian Price. Built in Java, the SwarmFare software

uses GA to accomplish swarm cohesion and basic search and destroy capabilities. The

software produces sequences given a bounded environment with targets. There is also

a visualization package that reads the output scripts. This script is a by-product

produced during the evolution of the chromosomes, from the GA. It can be used to

create a 2D animated display. The simulation is appealing because it is built to allow

the appropriate level of kinematics and communication without losing focus on the

true nature of the research - swarm SO. [6]

2.4 Parallel Computation

In order to execute the complex computing involved in MOEAs a high perfor-

mance computing framework should be used. Currently Swarmfare implements two

different parallel GA schema, farming and island models. In order to further paral-

lelize and thereby decrease the simulation time a Parallel Discrete Event Simulator

(PDES) could be used. Appendix B.2 shows several of the PDES’ available.

SPEEDES a PDES by Metron has been used by many past researchers at AFIT.

It is written in C. This system provides an event simulator construct that can accom-

plish distributed computing for multiple agents. To do this, each agent’s actions

can be computed independently and, if agents effect each other’s logical paths, the

SPEEDES environment can back track through saved states to recompute a new path.
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The capabilities of this tool is largely negated by the SwarmFare code’s capability to

accomplish its own parallel computing. [1] [6] The SPEEDES would be applied to

Swarmfare by parallelizing each action of each agent. Because of the constant interac-

tion of the agents this may not likely be an effective approach to reduce computation

time.

2.5 EA approaches

2.5.1 Why a GA? Correct application of search techniques find solutions in

the problem space that create functional swarms. Because of the size and complexity

of this problem domain stochastic search techniques must be utilized. There are three

main members of stochastic Evolutionary Algorithms class: Evolutionary Strategy,

Genetic Programming and Genetic Algorithms. In general all of these techniques take

a population, evaluate the individuals, evolve them through mutation operators, and

perform a selection on the next generation. EAs use simple primitive data structures

vector as chromosomes which provide the ability to guide searches and optimize so-

lutions. Evolutionary Strategy use a data structure of real value vectors and strategy

parameters. It relies heavily on an understanding of the phenotype space, which is not

present in this problem domain. Research in GPs, which use tree structures, showed

success in facilitating growth over structure control systems [8,50,58,83]. The initial

work of applying GAs to SO swarms proved successful in [59].

Other stochastic algorithms have been explored to solving this problem by

Nowak in [54]. Work using Ant Colony Optimization (ACO) only extends to the

routing of the agents and requires another control structure to facilitate the swarm-

ing and other behaviors [4]. It also shows an application where a Particle Swarm

Optimization (PSO) works on a similar data structure, however no works show suc-

cessful results in this problem domain [37, 56]. Finally, Artificial Immune Systems

(AIS) seems to fit better as a repair function than the results shown in autonomous

control work [43]. Because of the complexity of this domain deterministic solutions
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are unfeasible. Other stochastic biologically inspired systems have not performed well

for large dimensional search spaces.

For these reasons this paper expands the research into current problem by ex-

tending the GA domain into the Multi-Objective Optimization Problem (MOP) realm

and solving with a Multi-Objective Evolutionary Algorithm (MOEA)

2.5.2 Chromosome. First we must outline the data structure for the GA.

Formulation of the chromosomes derives from the objective functions. In order to

reach the objective of target engagement, the system must produce emergent behav-

iors that aggregate the capabilities of the UAV in a swarm. The EA must control and

integrate the SO rule sets to form this emergent behavior. Therefore the mapping

of the chromosomes relate to the control parameters or weighting of the rules sets.

Figure 5.4 shows the make up of the chromosome structure.

Figure 2.14: There is a connection weight for each sense for each behavior archetype.
These are followed by 12 genes which describe the weights and radii for the behavior
rules for each behavior archetype.

Control

Implementing the transactions defined by the behavior set in Section 2.2.6 re-

quires synergistic integration of those behaviors. Here behaviors are vector fields that

direct the agents movement, similar to that seen in [33]. The arbitration between

these behaviors needs to utilize the simplified state that the SO behaviors react to
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themselves. For this reason a simple multi-layer perception facilitates the differences

between the state sets. The control weightings for this structure are also included

with the behavior set weights in the chromosome shown in Figure 5.4. Here each

control weighting and corresponding behavior weight set form an adjacent sub-string

in the chromosomes.

Given the multiplicity of states in an environment, multiple sets of rules or

modes direct the swarm, shown in [59]. Therefore a control structure must be used to

change the mode. In this simulation environment a network of preceptrons senses the

current environment and does the arbitration between modes or Behavior Archetypes

(BA). These BAs allow the system to develop several sets dynamically of weightings

in order to react to different situations. For example a chromosome with three BAs

and 9 rules will have 42 alleles. Several of these sets form the full structure of the

chromosome.

Figure 5.4 shows the representation used. The chromosome values are used to

map the weightings of each rule. Note that the evolutionary operators work on the bit

level, so in order to translate the chromosome values Gray coding must be exploited.

With Gray code the system minimizes the effects of those operators, because the

change of a single bit will only change the value of that gene by one as well.

2.6 Background Summary

In the subsequent chapters of this thesis document these three areas, POMDP,

Autonomous Control, and GAs, are tied together seamlessly. In doing so the emergent

behaviors of a SO swarm created by the rule set engage targets in an autonomous

manner. We build on the SO sandbox first developed by Price in 2005-06 [59]. An

added Graphical User Interface, extended parallel schemes and redesigned implemen-

tation using software engineering principles allow for exploration of SO rule sets to

“optimize” target engagement effectiveness and improve computation efficiency.
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III. Problem Decomposition

This chapter defines the high level design starting with the problem domain and

mapping it to the algorithm domain. In order to accomplish this the generic

Partially Observable Markov Decision Process (POMDP) model must be adapted to

fit this problem domain. The focus of this POMDP mapping effort centers around the

more specific objectives related to optimized engagement with targets. The problem

domain maps to a SO decomposition and from that a set of SO rules are developed

that lead to the desired emergent behavior. In order to develop the needed con-

trol weightings for the control structure, all controlling parameters are mapped to a

chromosome and MOEA algorithm.

The structure of this section follows from the illustration of the problem do-

main to the approaches used to optimize in that space. This includes a verbose and

mathematical model of the problem domain along with discussion of verifiability and

validity of the system. The mapping of the problem domain is then translated to the

set of SO rules specific to target location and engagement. From that the emergent

control structure technique is described. This chapter concludes with the application

of the GA for optimization in this space.

3.1 Problem Domain

From the problem domain notionally described in the Chapters I and II, we de-

compose all aspects of the problem. We use the U-decomposition structure described

in [53]. The definition of the problem domain is described in detail. The step-down

approach structures the problem into subproblems leads to a set of operators. They

include the movement definition, the agent’s governing parameters, explanation of the

terms of the hostile environment, and all other constraints. As the structure is built

from the bottom up the system evolves into desired emergent behaviors. From this

structure the interaction of the GA with the SO is defined. The construction of the

appropriate GA is a result of that interaction analysis.
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3.1.1 Verbose Problem Description. The problem of effectively engaging

targets, given effective swarm capability, revolves around two main components. First,

the targets must be found. In modern conflict, the practice of predicting the general

area in which masses of force and targets are located is reasonably accurate. The exact

locations are more difficult to pinpoint. The second aspect, engagement of targets

once found, takes skill and coordination. The decomposition of these two points is

the focus of this section.

Getting to the Threat Area As noted, the location of Threat Areas (TA) is

assumed known. The first step is getting to those areas. The existing SO swarm

capabilities as defined by [59] create a dynamic swarm capable of moving through an

environment. The next step is adding a path that can work through a domain space

to relative TA follows. Once a path is established through the domain, the addition

of SO rules for migration [24], or path follow [63] accomplish this task. Once in the

target area the system can transition into the target engagement mode.

Choosing and Engaging Targets The introduction of targets dramatically changes

the desired behaviors of the swarm. Here the swarm must address the problem of tar-

get yield versus danger. Attaining this information requires localized reconnaissance.

Full mapping of the space surrounding the target minimizes the uncertainty of a deci-

sion process. Based on the gained knowledge of the TA the individual agents establish

target priorities and as the space changes due to loss of agents and targets so too does

the risk and reward of the remaining targets in the area. From that, the swarm en-

gages targets maximizing the success rate by assuring the targets are attacked with

adequate force. Bee swarms perform a similar reconnaissance and decision sequence

during the movement to new hive locations. [51, 71,79]

Target Engagement Techniques

Previously there were two approaches that could be used in the target engage-

ment and sequencing, those shown in Lua’s work [47] or modeling on current Tac-

tics, Techniques and Procedures (TTP). Lua’s work develops a scenario in which the
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agents line up circling a target and peel off to engage the target. This effectively

solves the problem of traffic in a localized area around the target and coordinates

movements locally. It, however, does not address the way in which targets are chosen

nor does it utilize all the Principles of War as outline in Air Force Doctrine Document

1 (AFDD1) [39]: Unity of Command, Objective, Offensive, Mass, Maneuver, Econ-

omy of Force, Security, Sunrise and Simplicity. In Lua, only Surprise and Objective

are developed.

TTPs present their own set of difficulties. Different units with different missions

develop different TTPs. TTPs do not transcend the the domain of war like the

principles, therefore are not agreed upon across units. Also, as war changes over

time so to do the TTPs. Finally working TTPs into an SO swarm would amount to

scripting. With SO emergent properties that give way to dynamic behaviors that can

react to any situation, these are much more applicable. For this reason we look into

target selection and engagement procedures as seen in the natural world.

3.1.2 Mapping to a POMDP. Mapping the UAV Swarm problem to a well

defined problem domain has two advantages. One, in the construction of the UAV

swarm domain the problem statement can be thoroughly instantiated. Two, standard

problems may have libraries of research techniques for solutions in a given domain.

For these reasons we map the verbose problem description to the problem domain of

POMDP.

The UAV problem mapping to the Partially Observable Markov Decision Pro-

cess (POMDP) domain requires explanation of several critical elements. First the

targets and UAV (or agents) have sensors and interact through basic nearest neigh-

bor communications, with epidemic transfer of information. As a result any agent

in the space has only limited knowledge of its circumstances. As the UAV agents

move through the space, engagement with the targets follows stochastic modelling

and allows for aggregation of forces. This creates a scenario where the domain space

changes rapidly and unpredictably. The agents are not able to predict the transition
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based on their action either. To reduce the confusion and computational complexity,

the Markov assumption is used. The system works on an abstracted state because

it does not have global knowledge or the inability to predict the results of any single

universal action. Such techniques in state abstraction have been used before in [65].

The family of Markovian Models contains four primary members, Hidden Markov

Models, Markov Decision Processes, Markov Chains and POMDPs. The UAV Swarm

problem domain has stochastic control over the transitions between states and does

not have global state visibility. For these reasons the problem domain falls under the

category of POMDPs, see 2.1, [45]. The expansive problem domain space of POMDPs

forces the reduction of the state into abstract pseudo-states. This facilitates ease of un-

derstanding to the developer. They also provide less computational complexity. Since

the problem has been described in words we extend the mapping of the specific UAV

Target engagement problem to a POMDP. This requires redefining and expounding

on the basic POMDP structures, from section 2.1, shown in Equation 3.1.

POMDP State

D(S,A, T ,O,R) (3.1)

State Equation 3.2 defines the state tuple for D:

S(υ, τ, ζ) (3.2)

Within each state S there exists a set of agents υ, set of targets τ and set of

obstacles ζ in the domain space.

Agent

The agent (UAVs) is defined by the tuple in Equation 3.3

υ(λυt, eυ, dυ) (3.3)
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Here the λυt defines the location and velocity vector, eυ is the engagement range

of agents. dυ is the detection range of agents. This state describes the agent from

the global view, the agent state itself as a local view is extended with the I-POMDP

model in transition section 3.1.2.

Target

Equation 3.4 defines the target (SAM site) sets:

τ(λτ , eυ, dυ) (3.4)

Again the λτ defines the location vector, eυ is the engagement range of targets,

and dυ is the detection range of agents.

Obstacle

Equation 3.5 defines the obstacle set:

ζ(λζ , sζ) (3.5)

Again the λτ defines the location vector and sζ defines repulsion field strength

of the obstacle.

Action

The action set is defined by the agents actions Equation 3.6:

{µA1 , . . . , µAn}εA(µ) (3.6)

The µAk
is the movement action of all agents taken in the domain. The null

action does not exist in the set as the agent must always be moving while in flight.

This also means velocity vector λ must not be 0. The set also includes other actions

such as, detect, engage, turning and others depending on the capabilities of the agents.

Transition Set
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The transition in the world domain is dependent on the independent agent action

and interactions. Therefore Equation 3.7 show the transition probability between

states.

T : P (s′) = P (s′, Υ, s)P (s) (3.7)

The probability of entrance into a new state P (s′) is dependent on the previous

state P (s) and the set of agent actions, Υ. The agent actions are defined by the set of

beliefs state transitions and the scope of the set defined by the following. The agents

local state and actions can be defined by the I-POMDP in Equation 3.8. Again, as

stated in Section 2.1.2, the purposed I-POMDP allows the agents to work separately

and interactively update the global state. (Note this is only an initial inclusion of the

I-POMDP model. Future work should capitalize on this model, using the construct

to further define the solution.)

Ii = {ISi, A, Ti, Ωi, Oi, Ri} (3.8)

The interactive state ISi depends on the state S and the belief that other agents

interact with that state, θj, using ISi = S × θj.

Individual Agent State

The state of the agents in the I-POMDP motivates a further description of the

agents. Looking from the agents perspective on the domain, many local knowledge

pieces are articulated. Equation 3.9 shows the pieces of the local knowledge need in

this sub-model.

S : υ(λυt, eυ, dυ, ηt, τυt, βt) (3.9)

The λυt defines the location and velocity vector from before, along with the

detection dυ and engagement eυ range. It also adds ηt as the neighborhood of agents,
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τυt as the set of targets currently known by the agent, and βt as the behavior set. All

of these aspects of the state are used in the development of the SO system.

Equation 3.10 [30] defines the set of agent actions Υ:

Υt → I{I1, . . . , Ii} (3.10)

thus, defining the new state from the transition of each agent which derives from

the interaction of the other agents.

Observations

Equation 3.11 represents the observations of the domain with the same depen-

dencies on the I-POMDPs from the transition set:

O : P (s′) = P (s′, Φ, s)P (s) (3.11)

The observations are taken from the set of observations Φ. The observation

function of each agent is defined by Equation 3.12

Oi : ISi × A× Ωi (3.12)

Where ISi is the agent state dependent on interaction, A is the action and Ωi

is the individual observation. From this the observation set is defined Φ : Oi.

Reward

Reward functions as a push back on the system to “optimize” the cooperative

control structure that reacts to an abstracted state. The reward policies that address

the state transitions come in the form of SO rules. The basics of this relationship are

shown in Figures 2.12, and 2.13. From the possible behaviors the effects of moving

through a hostile environment evolve emergent swarm behavior. The most important

reward/feedback comes in the form of survivability, ωj, making it through the envi-
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ronment without crashing or being eliminated. The second functions is the ability to

successfully engage targets and destroy them, κ. The objective values are returned

from the reward state-action pairs reflected in Equation 3.13 in reference to t time.

R(s, a, s′) → (ωjt, κt) (3.13)

Further development of the I-POMDP mathematical model would provide pre-

dictability in the effectiveness through a detailed system verification (proof) of per-

formance. At this point in the design process the system develops from the substates

of the model but it does not require full articulation of all the mathematic struc-

tures. Since the low-level sub-state design is done from an engineering perspective,

further mathematical decomposition does not directly effect the associated computa-

tional validation. For this reason the decomposition is continued from this level of

the model, which is only a reasonable representation of the Real-world.

3.1.3 Real-World vs. Simulation. Looking at the vastness of the problem

domain given the complexity in Section 2.1.1, finding policies that fully articulate the

space is infeasible. For this reason a look at the constraints of the problem and how

they approximated at the higher level gives insight to the true scope of the problem

domain in simulation. Many constraints exist on the agents traversing the real-world

domain. They include:

• Flight dynamics of the aircraft

• Physics constraints of not only the craft but munitions

• Sensors range constraints and noise

• Communications bandwidth constraints and unreliability

• Geographic incursion on flight, sensors, and communications

• Fog and Friction of battle
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All of these constraints create a scenario where relying on details of a state can

cause problems as they may be hidden. Upon those constraints, simulation world also

places its own set of constraints:

• Computational speed limits which restrict size and accuracy

• Memory constraints

• Simulation of communications links without utilizing unstable medium back-

bones

• Complexity of dynamics on the agents and target restricted to known compu-

tational models

• Scenario variability constricted to expert knowledge

As a result, the system and simulation can only function with a restricted

amount of validity compared to the real world. However in SO decomposition, the

systems are biologically inspired. This creates a juxtaposition between the human

need to thoroughly develop a state and reality of the level of states that are used

by the exemplar biological agents. With SO we tend to steer away from exact state

modelling and allow the system to abstract the states to the level needed for survival

and attack in the given domain.

3.1.4 Abstracted State Architecture. The abstraction of states in highly

complex domains allows Self Organized systems to thrive. The greatest example of

this is the worker ant. When building an agent removes all extraneous state infor-

mation and considers only at the relevant local state. There is a rock in front of the

agent and it is not part of a wall, pick it up [15]. Once the ant bumps into a wall

it places the rock. That is the extent for that mechanism. It finds its way to a wall

via pheromone, that however is a separate mechanism. It too is simple, move along

an upward gradient of pheromone. If systems can decompose the state, simple sets

of rules can be formulated. This approach does require selection modes. The mode
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selection only requires basic state information at that level. The selection functions

similarly to the modes, the system functions efficiently on the abstracted state.

Application of this strategy comes into play during the decomposition of the

problem domain and emergent structure in not only the behaviors but the control

structure itself. To do this it requires the ‘U’-decomposition process as shown in [53].

With this approach it is not enough to simply decompose the problem into pieces

top-down, but the bottom up engineering of the supporting structure proves to be as

crucial. Taking a group of simple rules and applying them to a top-down structure

does not constitute SO engineering. For this reason all aspects of this system must be

approached in the same way. Figure 3.1 illustrates the ‘U’-decomposition technique.

Figure 3.1: ‘U’-decomposition technique

As a result of this design approach, coupled with an object oriented program,

the system develops a structure that has a “entangled hierarchy” with abstracted

states governing the inclusion of the rule sets. The state moves into the system

and is quickly reduced through compartmentalized rule sets. As a result, the state

information self organizes in such a way that only the applicable data sets are pulled
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together. Generalizing pieces of the state in this way allow the behaviors to act

dynamically on only the information they need.

In concert with this abstracted state the system develops dependencies that are

otherwise independent SO behaviors. An entangle hierarchy forms as a result of two

aspects: this abstracted state and inheritance issues between complex rules sets and

simple rules. This dependency on information and skill sets of other behaviors creates

synergistic effects on the global system, as seen in Figure 3.6. These two ideas must

be appropriately addressed when moving into the next phase of algorithm domain

definition.

3.2 Algorithm Domain - SO Rules

We continue the ‘U’-decomposition to develop specific SO rules, their emergent

structure, and the Genetic Algorithm (GA) for search to define policies that allow

successful traversal of the POMDP search space.

3.2.1 SO. The focused problem domain primarily addresses the interaction

between the targets and the agents. This is a sub set of actions and transitions.

Action sets take two forms, movement and engagement. Movement happens in

two abstracted states, when targets are detected and not detected. Equation 3.14

shows the set of movement actions.

{µAd
, µAnd

} ⊂ A(µ, ε) (3.14)

Where µAd
are actions during detection of targets and µAnd

are actions without

target detection. In the same way, Equation 3.15 shows the subset of engagement

actions in this abstracted state.

{εAd
, εAnd

} ⊂ A(µ, ε) (3.15)
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The transitions add one more set. The detected target set derives to a set of

reconnaissance and engage. Equation 3.16 represents the result on the transitions.

Vnn ∩ Vnd ∩ Vne ⊂ T (3.16)

Vnn shows the transition set without detection, Vnd dictates detection without

engagement, and Vne includes engagement. Although this seems more complex the

reduction of these states to abstract sets facilitates easier transition decisions.

Figure 3.2: Migration patterns relative to target areas.

Migration

The migration transition vector set only belongs to the non-engagement abstract

states Vmn ∩ Vmd. Figure 3.2 shows the pictorial definition of migration through

waypoints. To reiterate, the waypoints in this domain are not hard waypoints, but

rough estimates of the location of hostile forces.
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The swarm uses the waypoints to reach the approximate target area. To allow

migration to react dynamically, each agent decides which waypoint is closest and

moves toward it. As a result the swarm may split if two waypoints are equidistance

from the swarm. Restricting the agent to abstract state knowledge, this rule requires

the agents current location and a list of waypoint locations. Equation 3.17 shows the

extension of the states to include the waypoints.

S(υ, τ, ζ, χ) (3.17)

Localized Target Engagement (Bee-Inspired Attack)

LTE is where “the rubber meets the road” for target engagement. The intent

is to move past the benefits of a simple mass attack. We focus on the interaction

between the swarm, with its emergent behaviors, and the target sets. Optimizing in

this environment is a function of damage vs. causalities. In order to work and train

this system however more advanced scenario sets must be used to focus the efforts

of the algorithms used to address this MOP, shown in Chapter V. The first task

accomplishes the ’U’-Decomposition.

Mapping to Algorithm Domain

A subset of the problem domain is target engagement. For the purposes of this

research effort, agents reach the target engagement sub-state when the system detects

a target. Equation 3.18 defines the sub-state in terms of the POMDP state tuple.

D(S,A, T ,O,R)

∀Sευ(λυt, dυt, eυt, ηt, τυt, βt)

where τυt 6= ∅
(3.18)
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There are three subsets of states that follow: when the agent has only detected

a target, when the agent has the information to make a decision on target engagement

priorities, and finally the actual target engagement.

Mapping to SO rules This rule belongs to a subset of transitions, the detection

and engagement Ved ∩ Vee. A subrule takes control based on the knowledge over the

target area, explore, vote, attack, Vedx ∩ Vedv ∩ Veda . Abstracted states take over to

control the define the abstract state and allow for hand off to the subrules.

Figure 3.3: Migration patterns draw swarm to detection of target sets.

The exploration is shown in figure 3.3. First subrule calls for disengagement

from migration and then local reconnaissance for other targets that could aggregate

defenses. Communications allow distribution of state information as the agents move

around the target. This subrule is modelled on the Bee Exploration metric where

a set of bees look for a new hive location, each analyzing itself and providing the

information to several other local bees who in turn explore and analyze. [71]

Figure 3.4 shows the swarm decision process during exploration. Once all of

the local information is gathered each agent makes a decision on the most vulnerable
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Figure 3.4: Each agent based on the abstracted state defines the strength metric
that moves it towards the most vulnerable target.

target. This is based on the location and overlap. A vector draws the agent towards

the weakest. This Decision process is based on the bee hive selection model in [71,79].

The coordinated attack happens when through implicit communications the

threshold to engage successfully has been met. This is stems from to the 15 bee

threshold that Visscher shows in [79]. Once that threshold level is meet the swarm

knows to move, implicitly.

Figure 3.6 roughly shows the entangled hierarchy for the subset of rules related

to target engagement. In most cases the SO behavior interaction is straightforward,

several behaviors act as multipolar balancing forces to create a simply emergent be-

havior. This facilitates simple, emergent, state-action pair behavior.

Braitenburg [13] outlines layered computational cognition layers and develops

a simple agent only capable of the most fundamental of those layers. Research into

developing agents that accomplish high cognition on simple rules sets have created

a plethora of control structures that complicate states and require heavy iron (pow-

erful computers) to operate! With the SO decomposition the control structures are
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Figure 3.5: Attack is based on the number of agents in the swarm, the location of
the targets and the number agents ready to engage.

developed from the behaviors. This approach focuses on finding the crucial state infor-

mation and allowing the structure to form around the interplay of the behaviors and

that abstracted state. This gives way to an emergent structure that is system/agent

dependent.

Again, Figure 3.6 the basic behavior set at the lowest level. The resulting

structure, although not complicated in this simpler case, does result in an entangled

dependence on state and action set information. The result is a structure that forms

with low dependency on state and high levels of re-utilization of behavior information.

These two new behavior rules provide input in to the control and movement

of the UAVs in the form of a weighted vector. The weights of the vectors and a

several control parameters are added to the chromosome shown in 2.2.6. Also the

POMDP model description and decomposition ends here. At this level the abstract

states from the decomposition of the domain description are imbedded. As a result

any information needed from the model for control or structure utilizes the properties

of the operators from this level.
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Figure 3.6: Relationships based on the direct, indirect or abstracted state transla-
tion.

3.3 Algorithm Domain - Self Organized Genetic Algorithms

This section outlines the high level design of the GA that is used to optimize

the control, rule and parameter weights. The implementation in MOP space and the

requirement to focus further research motivates the development of this SOGA. SO

decomposition in this case forms around the known structure of the GA. The simple

operators of the GA are then developed using SO priciples.

In the natural world many systems develop through Self Organization(SO),

emergent properties as a result of localized agent interaction sans global knowl-

edge [15, 23, 35]. In DNA there is no global knowledge of the DNA structure from

the allele’s/nucleiotides perspective, however the nucleotides do interact controlled

by protiens and structure does emerge. Although no proof exists in biochemistry,

yet the possibility that these agents, alleles/nucleiotides, have properties similar to

other SO systems exists. This is the foundational impetus for Self Organized Genetic

Algorithms (SOGA)!

With SOGA whether or not SO happens in DNA matters not, the point is

bringing a tool in that has worked in other computational venues. Why SO? There

are three benefits using SO decomposition in computational problems: ease of imple-

mentation, lowered computations, and dynamic adaptation. Using SO implies finding

some set of behaviors from which a desirable structure emerges, if done properly these

behaviors should be easily coded. Lower computational cost stems all computations
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executing localized at the agent level and interaction and communications are also

very localized. Finally, dynamic response happens as emergent behaviors do not re-

strict the system to a script but instead are capable of quick response to unpredictable

stimulus through those rules.

What we are looking for in terms of an SOGA is the response to problems in

a dynamic nature enabling more versatility and universality. To do this we remove

some of the restrictions, problem specific constraint, niche operators, and parameter

tuning commonly used [20, 82]. We attempt to finally “bag that white rabbit” by

allowing the population to tell the algorithm what it needs. With higher population

commonality the algorithm senses building blocks/genes with successful values and

allows them to thrive while still varying aspects with lower known probabilities. When

the problem space is first being explored or in a state of high exploration the algorithm

responds by continued exploration. To do this we add an operator to sense the current

genotype space, act upon that information, and then explore the highly varied world

of recombination operators to find the appropriate application of that information.

Recombination has been the studied extensively spawning many different approaches

to satisfy different problem constraints.

Figure 3.7: Self Organized Genetic Algorithm SOGA

3.3.1 Genetic Distribution Collection. Figure 3.7 shows the required ad-

ditional operators and algorithm flow. The Calculate step determines the Genetic

57



Distribution Collection(GDC) in the population to help facilitate the sensing of the

exploit versus explore aspects of the rest of the algorithm. Information from the GDC

facilitates evolution rate updates. The recombination step is then modified to include

knowledge gathered from the GDC. The Correcting Allele Attraction (CAA) operator

also utilizes this information through probabilistic interpolation of the space. And

the selection operator utilizes a new crowding distance operator.

Figure 3.8: Genetic Distribution Collection GDC (Normalized Histogram)

Figure 3.8 shows the simple function of calculating the Genotype Distribution

Collection. It simply utilizes a data structure, Γ, similar to a chromosome to store the

highest likely value for an allele and the normalized histogram weight of that value.

This histogram gives a reading to the system of overall entropy defined by Equation

3.19

H = Kln(
1

p
) εp =

∑
wj (3.19)

and also the location of unstable alleles which is defined by equation 3.20:

S → wj (3.20)

wj is the weight of the allele defined by the number of corresponding allele values

in the population over the total size of the population.
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3.3.2 Crossover and Mutation. Initial application of the insight gained from

the GDC allows the formation of the mutation and crossover rates. By watching the

changes in the GDC from the last generation the system can determine the amount

of entropy in the population. With lower entropy the system continues to maintain

high levels of crossover and mutation. Of course with the higher entropy the sys-

tem has moved into the exploitation phase of the algorithm and does not require as

much variance in the chromosomes. Equations 3.21 and 3.22 represents the updating

function for the rates of mutation and crossover.

c =

∑chromolen

i=0 (Γi(t− 1)− Γi(t))

Γsize

(3.21)

m =

∑chromolen

i=0 (Γi(t− 1)− Γi(t))

Γsize

∗max((Γi(t− 1)− Γi(t)) (3.22)

3.3.3 Mitosis. The second operator change comes in the recombination

step. The system recognizes when good building blocks exist and attempts to per-

petuate their existence. As shown in Figure 3.9 the system analyzes the Γ level to

determine the strength of each allele in the crossover section. From that, the system

probabilistically chooses between mitosis, which facilitates exploitation, and meiosis,

which enables exploration, recombination based on a threshold $. If the normalized

summation of the alleles in the crossover section is above the threshold it chooses

mitosis on the higher gene based on that probability. The result is shown in the third

pair of chromosomes in Figure 3.9.

3.3.4 Correcting Allele Attraction. The CAA utilizes that same GDC in-

formation and exploits it to establish linkages between pairs or subset of disjoint

alleles. As in the modified crossover, this operator allows the system to focus on

high exploitation when the population is diverse and solution likely unknown while

exploiting known sets, building blocks, or linkages. Here Γ analyzes every allele, and

does a replacement based upon probability from equation CAA.
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Figure 3.9: Crossover using GDC Figure 3.8 to determine the probability of meiosis
and mitosis.

Pchange(x|γ) = Γwi
∗ (Wc −Wn) (3.23)

Here both Wc and Wn are the normalized summation of correct and incorrect

mappings, respectively, between Γv and ~at.

Figure 3.10: Changing the allele in red on the top chromosome through the weight-
ing of the the GDC figure 3.8 for this generation. The result of the GDC for correct
predictors (Wc) and non-correct predictors (Wn) is normalized and added. The prob-
ability of change is the product of incorrect prediction of the given allele and that
difference.

3.3.5 Relation to MOMGA. In the [78] the idea of Multi-Objective Messy

Genetic Algorithms (MOMGA) is introduced. With a MOMGA the algorithm searches

for building blocks that result in higher levels of fitness. These building blocks are

built off the schema. Understanding how to analyze the chromosome for building

blocks and which building blocks are good is difficult. We allow the selection oper-

ator to determine what is good. Through the schema theorem we know that good

building blocks perpetuate themselves over time. Looking at the make up of the
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population shows which pieces are increasing in occurrence, which given the selective

nature of GAs, implies the effectiveness of that building block. Γ provides all of this

information.

Looking at the entire chromosome through Γ allows the system to develop con-

nection throughout. This allows building blocks that are geographically separated.

Through the Markov assumption the system can adapt the building blocks to the

current populations. These dynamic capabilities allow for more effective utilization

of the building blocks.

3.3.6 Selection. Selection in the natural world stems from environmental

pressures. In order to continue to place pressure on the population, the algorithm

uses a form of elitism. SOGA utilizes the same fastnondominatedsort as NSGAII [26].

However, the crowding operator uses a self organized ranking structure, illustrated

in Figure 3.11. First the neighborhood gets defined dynamically by the size of the

current population space in all directions of every objective. Then the individuals that

qualify as neighbors use a SO ranking structure similar to that outlined in [76]. The

remaining positions in the child population are filled based on the ranking structure.

Initially this generates a distributed set of the less fit individuals in a rank. When

the higher ranks become more crowded the algorithm pushes the individuals towards

the less explored reaches of the front.

With the selection operator applying pressure, the crossover and mutation ex-

ploring and the CAA acting as a self correcting gyroscope. The system finds a balance

in exploitation and exploration. With the inclusion of both parent and child in the

selection population, the algorithm allows good material to be carried not only by the

genetic material but through experience of the old chromosomes as well.
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Figure 3.11: SO selection operator example. The inner circles are the individuals in
the population. the outer circles represent the neighborhood. The yellow individuals
are kept because of their rank, the red individuals have the highest levels in the SO
hierarchy and are also kept.

3.3.7 Bäck Notation. Bäck’s [7] notation serves as the foundation for the

derivation of the rest of the MOEA. This construct allows algorithm development to

be fully expanded and thoroughly vetted.

EA = (I, Φ, Ω, Ψ, s, ι, µ, λ) (3.24)

Very little of the construct changes for SOGA. Just a few of the operators must

be formally described.

ωΛεΩ � Λi ← GDC (3.25)

Γi defines the operator for collecting the histogram information from each allele

in each chromosome.

ωΘc : Iλ
1 + IΛ

2 → Iµ
12|Iµ

11 (3.26)

Equation 3.26 shows how the crossover can take the form of meiosis Iµ
11 or mitosis

Iµ
12.
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ωΘcm : Crate&Mrate ← GDC (3.27)

Equation 3.27 defines the adaptive rates of crossover and mutation as a function

of the GDC.

ωΘcaa : Iλ
CAA ← GDC (3.28)

Equation 3.28 also defines the CAA as a function of the GDC. And finally, the

selection operate shown in equation 3.29 results from the SO hierarchy.

ωΘεΩ � Si → (F1,H) → (irank, RSO) (3.29)

Fitness Function

In order to define the fitness function, we must first analyze the objective func-

tions. Attack UAV swarm focuses on destroying targets. Equation 3.30 defines values

based on successful engagement.

Dt = τdestroyed ∗ 100 + τdestruction ∗ 10 (3.30)

The second fitness function is the casualty rate, defined in Equation 3.31

Ct = νdamage ∗ 10 (3.31)

The damage received is multiplied by ten to keep it in scalar concert with the

damage inflicted. Complete destruction of an agent results in a score of 100.

Generate Population

In initialization each allele (bit) of the chromosomes gets chosen using a random

number generator. After five bits are set the gene gets placed on the chromosome.
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The process repeats for the length of the chromosome. If seed chromosomes exists,

they are added to the population otherwise every chromosome gets created through

this process.

I = Ax × AswhereAi ⇒ ωθi
= rand(bit) ∗ length gene (3.32)

Evaluation

To evaluate the fitness of this chromosome, a simulation of the given scenario

runs and returns the score. The damage inflicted and casualty information forms

from the statistics collected in each simulation. The result of the fitness function

calculation on this data determines the overall fitness.

Crossover and Mutation

Normal crossover and mutation rates and controls apply. The difference in this

implementation comes in what gets modified. In both instances an entire BA gets

modified. The complex form of the chromosome is particular to this problem domain.

This forces the evolutionary operators to specifically address the points at which

changes are made. In mutation, changes in alleles happens in a single BA with both

the control section and behavior section of the chromosome. In this design each part

of each BA mutates.

ωΘmc : Iλ → Iµ � m(BA)|c(BA) (3.33)

Selection

The algorithm uses elitist for generational selection. With the space as diverse

as it is and the population and reproduction operators facilitating high levels of ex-

ploration, elitist approach allows the algorithm to exploit the good genes. [59]

sΘs : (Iµ+λ → Iµ) (3.34)
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Allowing both parents Iλ and children Iµ to continue to the next generation.

The inclusion of a system entropy gage allows for appropriate application of evo-

lutionary pressures. The mutation and crossover methods address the issues inherent

to the structure of the control structure for these chromosomes. The Correcting Allele

Attraction attempts to find geographically separated building blocks. Finally a SO

hierarchal operator assists in the selection. This SOGA approach makes it possible

to fire and forget about the GA optimization aspect of this research tool.

3.4 Summary

This chapter form the top-down decomposition of the problem in the form of

the POMDP model. The problem domain focused on the target engagement aspects

of the domain. It then decomposed the problem and GA into small implementable

subsets. This laid the ground work for the implementation of each of the pieces.

The next chapter starts from the implementation and discusses the back half of the

’U’-decomposition.
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IV. SO Implementation and Structure Design

This chapter describes the data structures and algorithms of the implementation

and low-level design of the system. The definition of the derived SO rules

and their emergent structure are shown. Specifically, they focus on the low level

design and implementation for two new SO rules, using the new SO decomposition

techniques. Continuing the bottom up aspect of the SO ‘U’ decomposition from

Chapter III, that is followed by the description of the control new structure. The

outline for the algorithm implementation of SOGA and its emergent structure derives

the implementation environment. Finally the abstracted emergent structure is shown

completing ’U’-decomposition in both cases.

4.1 SO Rules for Target Engagement

At the intersection of the basic problem domain pieces with SO rule instantia-

tion, the real intricacies of the SO rule interaction and the resulting emergent behavior

start to form from the ‘U’ Decomposition. As such, both pieces are described. The

resulting macro-level structure can not be explicitly extended, as the formation of

the synergistic swarm is probabilistic and dependent on the application and scenario

definition. The intent of an SO system is to allow the agents to use simple rules that

build up synergistic behaviors that adapt to dynamic situations. For this reason the

precise response to a particular situation or the expanse of the domain of responses

can only be described abstractly.

4.1.1 Data Structure. The data structure for all of the behavior rules varies.

Table 4.1 shows the basic state utilized by the migration, Section 3.2.1, and Bee-

Inspired Attack, Section3.2.1, behaviors.

Notice the system does not store the entire scenario space. In all cases, however,

the system works with some subset or abstracted version of the UAV state. Key to this

data structure is the position, direction, bearing and force vectors, behavior matrix

(BAs), neighborhood agents, known target, waypoints and obstacle lists, target marks,
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Table 4.1: Abstract State Requirements
Migration Bee Attack

Current Position Current Position
Way-Point Set Target list and Positions

Way-Points Achieved Recon Points
Chosen Target
Neighbor votes

sensor, munitions, and communication ranges. Several methods beside nextposition()

and newdirection() exist as well: attack, update, noisy movement, and three sensor

weight calculators. In most cases only a very small subset of the UAV state is needed

in any behavior.

Algorithm 1 Migration Algorithm

1: procedure Migration
2: for i: 1 to length χ do
3: dνχ = χl − νl

4: if dνχ < dbest then
5: dbest = dνχ

6: end if
7: end for
8: getTransitionVectorχbest, ν
9: end procedure

4.1.2 Migration. Extending from Section 3.2.1 the migration rule imple-

ments the behavior to take any set of waypoints and move towards them. It acts as

another force on each agent that gets aggregated into the movement vector. Because

behavior is agent based, the situation could arise where a swarm separates dynam-

ically. In concert with the SO decomposition and the need for robustness, the low

level design must remain generic.

For the purposes of testing and developing the swarm capabilities inside this

simulation environment, migration is focused on simple tasks. Waypoints are set up

in the regions of the target areas. A simple algorithm determines at initialization of

the simulation, where clusters of targets lie. Waypoints are created at the center of
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mass of those targets. Then a probabilistic variance is applied producing a behavior

that does not draw the agents directly to the target each time.

Algorithm 1 in 4.1.2 matches what is illustrated in Figure 3.2. For any given

agent the closet waypoint defines the output vector. The normalized vector integrates

in with the other behaviors.

4.1.3 Bee Attack. From Section 3.2.1 three aspects or phases of localized

attack must be addressed. Once the agent acquires a target through communications

with another agent or detection from its own sensors, it immediately changes to

reconnaissance mode. After the agent enters reconnaissance mode it constantly checks

if it has enough the information to analyze the target area. (Note: the system does

not attempt to analyze the target each iteration). During the analysis phase the set

of known targets are chosen based on strength and yield. Finally the agents line up

to engage the targets; agents communicate their chosen target to its neighbors and

only proceed when the conditions are favorable. As each of these pieces are formed,

the control structure for this more difficult sequential behavior emerges. Figure 4.1

shows the Bee attack state diagram.

Figure 4.1: The state diagram for the Bee Attack showing the data flow and state
changes.

Target Acquisition In target acquisition the assumption is that sensors, com-

munication lines, and target recognition capablities are all functioning properly. The

agent has a running set of all known targets and updates the states of the targets
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through sensor readings and communication with neighbor agents. The list of tar-

gets includes local targets and those found by agents in other parts of the space and

communicated through the network.

Local Target Area Recon The intent of this behavior revolves around getting

enough information of the local area, around the target, to make an educated decision

on target strike sets. This is closely modelled after the bee nest discovery in [71].

Dozens of bees are sent out to accomplish independent reconnaissance of nesting

locations. Possible hive locations are judged on size, shape and location, taking into

account weather, food source, and protection. Overtime interagent communication

attracts bee to better hives. Once a threshold is met, the swarm moves into the new

hive location. Another alternative to this implementation is the use of ant pheromone

trails. Implementation of this would only lead agents to a target but not show any

discretion in terms of target classification. A similar insect the Wasp has as attack

focuses on single agent attack and retrieval, not applicable to this domain.

The algorithm focuses on the simple task of exploring the area. The agents

keep no information, extraneous to the viability of the target, about the area being

explored. This amounts to only adjacent target locations. With independent agents

taking independent surveys, the system as a whole utilizes statistics to accurately

survey the target area.

Algorithm 2 Target Recon Algorithm

1: procedure RecceTargetArea
2: if (targetList = null and recceFlag = null) then
3: SaveState(position, heading)
4: throwRecceFlag
5: end if
6: if !TargetList.contains(currentTarget) then
7: TargetList.add(currentTarget)
8: end if
9: orbit(closestTarget)

10: end procedure
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Algorithm 2 in 4.1.3 represents the bee inspired reconnaissance rule. The agent

uses simple triggers to determine if it requires reconnaissance. Saving the state in

line 3 allows each agent to determine if it has completed the loop around the target

area and returned to its original spot. Observe that the orbit function derives from

the other target orbit behavior, Figure 4.2 shows two UAVs orbit in reconnaissance

mode. This minimizes computation and creates interdependence on the same sensor

weight data.

Figure 4.2: Two UAVs in local reconnaissance mode. The lines extending from the
blue agents are instantaneous heading vectors.

Target Analysis To reiterate, the target analysis happens in a self organized

manner, maintaining agent independence. Bee’s give us no inspiration on this aspect

of the attack. Instead we draw from Sun Tzu [77]:

Military tactics are like unto water; for water in its natural course runs
away from high places and hastens downwards.

So in war, the way is to avoid what is strong and to strike at what is weak.
[Like water, taking the line of least resistance.]

Water shapes its course according to the nature of the ground over which
it flows; the soldier works out his victory in relation to the foe whom he
is facing.

Therefore, just as water retains no constant shape, so in warfare there are
no constant conditions.
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To summarize this Sun Tzu passage, we need to apply the greatest amount of

our force at the enemies weakest point. In AFDD-1 [39] one of the key principles

of war is mass, which focuses on applying the appropriate amount of force to key

objectives. Judging that proves relatively easy. With the gained understanding of

the target area, the next step of evaluation focuses on the known target threats. The

system needs to work on simplified states. The only aspect of state being evaluated

is the position and engagement ring of known targets, shown in equation 4.1.

(λτ , ∗, eτ , ∗, ∗) ⊂ τ (4.1)

This equation defines the subset of targets used during the target area anal-

ysis. Notice the substates of the targets are only dependent on the location λ and

engagement ring e. Again the system focuses on the minimum amount of state.

Algorithm 3 Target Analysis Algorithm

1: procedure analyzeTargetArea
2: if recceFlag then
3: if recceComplete then
4: resetRecceFlag
5: analyzeFoundTargets
6: StoreVotingTarget
7: end if
8: end if
9: end procedure

Algorithm 4 in 4.1.3 shows the basics of the target analysis. Note only when in

reconnaissance mode does the system analyze the target in line 4. Algorithm 4.1.3

shows how the agent chooses the weakest target. The system gathers each target’s

aggregated defensive effectiveness in the set. Then it finds the subset of targets with

the weakest defensive posture. If there is more than one weakest target the closest

target to that agents is chosen.

Target Engagement After surveying the area and voting on the target, the swarm

must carefully coordinate the attack. In order to do this each agent determines if
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Algorithm 4 Target Vote Algorithm

1: procedure analyzeTargetSet
2: for all known targets do
3: DetermineOverlappingEngagementRings
4: end for
5: determineTargetsWithLeastOverlap
6: ChooseClosestTarget
7: end procedure

there are enough other agents to attack. It is possible to do this through implicit

communication by observing the number of vehicles localized around the target, or

through explicit communications, with a broadcast of the vote. If a quorum is reached

the agents attack.

In this design the agents can poll the vote from their neighborhood. Given

the constraints of the simulation this proved to be the best option. To optimize the

threshold of the number of agents needed to attack, that value is also included in

the chromosome for optimization. When optimizing this threshold value the range is

constrained by equation 4.2.

ατ = ((αc + αave)/γr) ∗ νnsize
(4.2)

The attack threshold ατ is defined by the current parameter value αc, parameter

value average αmax (making a positive value), the genotype maximum, and the number

of agents in the local sub-swarm. This allowed two things, scalability and versatility.

As the sizes of the simulations change the agents are not stuck to an abstract threshold.

Also if the sub swarms change in make up, the system can respond with a modified

threshold.

The actual attack polling takes from the same state information that is used by

the migration rule. A waypoint amounts to the actual target position. This becomes

the abstracted state during the target to agent interaction.
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Algorithm 5 Target Engagement Algorithm

1: procedure moveTowardsTarget
2: findVectorToTarget()
3: getVotingNeighborhood()
4: if distToTarget < engagementRange | numberVotes > CP1 then
5: returnV ector = towardsWaypoint()
6: else
7: returnV ector = targetOrbit()
8: end if
9: end procedure

Algorithm 5 in 4.1.3 shows the process of engaging a target after an agent has

voted. In line four the algorithm allows the agent to engage the target if it is already

engaged or the number of votes meets the threshold. This is important because the

number of voting agents during attack could decrease, and the response without the

attacking check would push the agents back out to orbit.

This rule draws from two other rules. The towardsWaypoint() in line 5 uses the

target as the waypoint. In the same way if the agent is waiting for the proper number

of votes it moves into the target orbit rule defined by Lau [47].

That the state has been decomposed and translated into rules, in accordance

with the ’U’-decomposition approach to SO, emergent structure in the system ap-

pears. Figure 3.6 in Section 3.2.1 shows the entangled hierarchy of state and rules

structure. The interdependence and re-utilization allows for synergistic effects, a re-

duced abstract state, and minimized computational needs.

4.1.4 Abstracted States and Emergent Entangle Hierarchies. Using this

decomposition technique, however, does not give us a linear architecture. Instead

as a result we see a generic structure shown in Figure 4.3. The hierarchy of control

emerges from the entangled hierarchy of the state relations at the simulation, swarm

and rule/behaviors level. Pulling together SO in biological agents appear much the

same way, the reaction to any particular situation does not have a definitive hierarchy
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but results from the agents ability to focus on the proper level of abstracted state given

a situation.

4.1.5 Emergent Control Structure. The system needs a control structure

that mediates the set of Behavior Archetypes. In order to address the complex entan-

gled hierarchies introduced by the emergent structure in SO and dynamic nature of

the environment the design of a control structure is particularly crucial. The required

characteristics include the ability to handle dynamic domains, search the rugged so-

lutions spaces created by the entangled structures, and develop multidimensional

partitioning shapes.

Figure 4.3: Relationships based on the direct, indirect or abstracted state transla-
tion for SO.

To address these issues, the system allows an emergent structure to form with

the basic form shown in Figure 4.3. Figure 4.3 illustrates that the information and

algorithmic dependencies are not strictly linear but develop based on minimization of

computational and informational complex between related states. The connection of

abstracted UAV state to the environment state presents an entrance point for control

of the UAV’s BA . Following along the same lines as earlier approaches (Sections 4.1.3

and 3.2.1) the abstracted state must be formed in such a way that systems only take
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relevant information. Of course this is only a subset of the information in that state,

that which is perceivable by the agent.

The previous work [59] used a controller that was based in Neural Networks (NN)

. Choosing the BA in this setting, presents a problem because the space is extremely

dynamic. In order to be effective NN need extensive and robust sample sets [68]. This

is not always available in a probabilistic environment. In response to this phenomena,

a control approach that chooses between BAs that can handle unknown states is

crucial. For the solution, we borrow from the Evolutionary Computation Arena.

Differential Evolution (DE) attempts to mitigate the problem inherent in a dynamic

search space as articulated in Sections 2.1.1 and III, [1, 2].

Using a DE-type approach requires definition of both the data structure and the

algorithm. Here the data structure comes from the abstracted state, represented by

the sensor inputs. In this implementation the system uses: UAV density, Waypoint

and Target proximities. Each one of these state descriptive readings corresponds to a

point for each BA. They also have a weighting associated, according to their influence

strength. Figure 4.5 shows the inputs readings with the corresponding data structure.

The first set of numbers in the BA is the point of origin and the second is the weighting

influence.

Figure 4.4: Shows the sensor reading and the corresponding BA origin points and
weight vectors.
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This allows that system to respond to the state space. In essence it creates a

sphere of influence, in the abstracted state space, on which a given BA works. Figure

4.5 illustrates this for two inputs.

Figure 4.5: Three BA origin points and their influence hyper-ellipsoids

The algorithm itself is quite simple. The sensor inputs are matched against each

of the BAs points of origin. In doing so the fitness of each BA is measured by the

weighted Euclidean distance shown in Equation 4.3.

F =

√
∑ I2

k −BA2
k

BAwk

(4.3)

The square root, of the sum, of the input sensor values squared, Ik, minus

the BA optimized values squared, BAk, all divide by the corresponding weighting

value BAwk gives the fitness of that BA corresponding to that given abstracted state.

Figure 4.6 shows an example of the calculations.

DE GA Operator In keeping with the intent of DE, the GA includes a DE type

operator [28]. The operator includes crossover of the control vectors in a given solution

with that of a control structure of a chromosome on the non-dominated front. In this

way the control vectors move towards known better solutions.
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Figure 4.6: Example of the DE Matrix Matching using weighted Euclidean distance.

4.2 SO Genetic Algorithm

At the implementation layer of the GA, from Section 3.3, the SO rules structure

and the optimization tool are independent with the only commonality in the data

structure. The chromosome serves as the interface for any control parameters that

need optimization. The specific definition of the algorithm and implementation details

of SOGA also utilize the ‘U’-decomposition. Structure is given by the formal definition

of a GA by Bäck’s formal GA structure, which provides a solid stepping off point

for further development. However the interplay between the operators spawns an

emergent structure all of its own, shown in Figure 4.7.

Figure 4.7: Relationships based on the direct, indirect or abstracted state trans-
lation for SOGA. Blue dashed lines show direct state abstraction. Red dotted lines
show implicit states derivation.
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Many of the operators draw state information from the GDC. The GDC and

crowding operator, which choose representatives from heavy population areas, use an

abstracted population state. Finally the Correcting Allele operator derives state from

the other two mutation operators.

4.2.1 Data Structure. The GA works on the data structure designed by [59]

and slightly modified for the new controller shown in section 4.1.5. In Low-Level

design each allele is a bit, 5 bits from a gene and the number of genes is dependent

on the number of rules, BAs, and other weighting parameters. Modification of the

chromosome only happens at the bit level. Grey encoding is used to translate the

alleles to the usable genes, as integers. This minimizes the change to the phenotype

as all mutation and crossover occur at the genotype, bit level.

4.2.2 Standard Algorithm Format. As a result of the changes shown in 3.3,

Algorithm 6 extends the generic GA Algorithm from [7]. This includes the introduc-

tion of three new operators: the Γ in GDC, modified recombination and CAA steps,

along with the self adapting mutation rates.

Algorithm 6 SOGA

1: procedure GA
2: t := 0;
3: generate P (0) := {~a1(0), ...,~aµ(0)} ∈ Iµ;
4: evaluate P (0) : Φ(~a1(0)), ..., Φ(~aµ(0));
5: while (ι(P (t) 6= true) do
6: for i: 1 to length ~a do
7: GDC : Γ =

∑
j

~aij/j

8: end for
9: recombine: P ′(t) := rΘrΓr(P (t));

10: CAA: P ′′(t) := rΓr(P
′(t));

11: mutate: P ′′′(t) := rΘr(P
′′(t));

12: evaluate: P ′′′(t) : Φ(~a′′′1 (t)), ..., Φ(~a′′′µ (t));
13: select : P (t + 1) = sΘs(P

′′(t) ∪Q);
14: t := t + 1;
15: end while
16: end procedure

78



The formal version of the SO GA algorithm shown in Algorithm 6 translate to

the more readable version shown in Algorithm 7. Notice Algorithms 8 and 9 further

articulate the nonDominatedSortSelection operator shown in line 15.

Algorithm 7 SOGA Simplified

1: procedure GA
2: initializeGenerations
3: generateRandomPopulation
4: evaluatePopulation
5: while !numberOfGeneration do
6: gatherPopulationEntropyInfo
7: if mitosisProb then
8: mitosisCrossover
9: else

10: meiosisCrossover
11: end if
12: mutate: P ′′′(t) := rΘr(P

′′(t));
13: Correcting Allele Operator
14: evaluatePopulation
15: nonDominatedSortSelection
16: selfAdaptiveRateUpdate
17: nextGeneration
18: end while
19: end procedure

Algorithm 8 is the selection operator algorithm. The selection operator uses

the fastNonDominatedSort from NSGA-II [25] to define the fronts of the population.

This is used, as opposed to other MOP sorting functions, because of its speed and

simplicity. In order to reduce parameter tuning and allow the system to self adapt it

uses the new crowding operator, illustrated in Algorithm 9.

To design the system for self-adapt in the population centers, there are sev-

eral preparatory steps. From the population size and span of the population (height

and width distance between the outlining individuals) the system determines the

neighborhoods size. Each individual then uses its neighborhood size to determine its

neighbors. The emergent hierarchy is forced through “individual battles” with each

neighbor. The strength of each individual is determined by the number of dominat-

ing fitness functions and its current rank. The winner of the battle is determined
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Algorithm 8 SO Selection Operator

1: procedure Selection Operator
2: while newpop size + rank size < selection size do
3: Newpop add(rank(i))
4: i + +;
5: end while
6: sortedrank = SOCrowdingOperator(rank(i))
7: while newpop size < selection size do
8: Newpop add(sortedrank(i).(j))
9: j + +;

10: if j > rank(i) size then
11: j = 0; i + +;
12: sortedrank = SOCrowdingOperator(rank(i))
13: end if
14: end while
15: end procedure

probabilistically and then given an upgrade in rank. Overtime the rankings produce

a hierarchy. That hierarchy is used to determine the representative sub population.

Algorithm 9 SO crowding Operator

1: procedure Selection Operator
2: for ind: individuals do
3: t := 0;
4: Set Neighborhood[] → Euclidean(popheightxpopwidth)/popsize
5: rank[] = 1
6: for i: 1 to Number Neighbors do
7: count = 0
8: for j: 1 to Number Objectives do
9: if current[1] > neighbor fitness[i] then

10: count + +;
11: end if
12: end for
13: check = 1/(1 + e(count+(rankcur−ranki))

14: if (check > rank) then
15: rank + +;
16: end if
17: end for
18: end for
19: ranknew = rank/numFights
20: end procedure
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4.2.3 Application to SO UAV Swarms. As a reiteration, the SOGA intends

to optimize the control structures for the SO rule sets. With this implementation the

focus of all of the testing and evaluation can be focused on the development of rules

sets and the associated entangled hierarchy.

Chromosomes

As a continuation of the previous work [59], rules sets are mapped to the chromo-

somes in a similar fashion. Specific to the migration rule only the relative weighting

is added to the chromosome. In the bee attack, the weight and the agent attack

threshold are optimization parameters.

Fitness Function

For this exercise, the fitness functions are the described through simulation and

plugged into Algorithm 4.2.2. Equation 3.30 defines function F1 and Equation 3.31

defines function F2.

F1 = Dt = τdestroyed ∗ 100 + τdestruction ∗ 10 (4.4)

F2 = Ct = νdamage ∗ 10 (4.5)

4.3 Implementation into Code

Implementation approach attempts to maintain good software engineering prin-

ciples (as outlined in [49]), minimize computational complexity, required resources,

and approach the programming with the same SO mind-set as the design. In its

original state the design of the program was near monolithic, with rampant entangled

dependency, and difficult to follow designs and algorithms. Part of the intent with

this research effort is to create a system more independent that could be cross-utilized

in many other problem domains.
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In order to increase the reusability of the code, there is many endeavors to

decouple most of the software package. The focus is to also allow the simulation,

Genetic Algorithm and UAV controls structures to perform independently. In order

to do this, many separate packages were created. This created seven separate cores:

the core mathematics and communication section, the GA backbone, the distribut-

ed/parrellel package, the UAV control, the behavior sets, the visualizations and the

file management section.

Because the code amounts to well over ten thousands of lines, it is not included,

but can be found at \\FS−afit−29\Enstudents\engstudents\ Lamont Students.

Appendices D and E shows the implementation of the Bee Attack Behavior and DE

controller. There is also a user manual and package documentation that outlines

usage, design, and known issues, found at the same location.

4.3.1 SO Implemented. Because SO decomposition focuses on decompos-

ing the problem into small pieces, it fits with an OO based programming languages

like Java. In the attached code (Appendices D, E ) notice the compartmentalization

of the code allowing for ease of understanding and reuse. Algorithm 4.1.3 matches

the recceTargetArea() method. As do Algorithms 4, 5, and 6 with methods ana-

lyzeTargetArea(), moveTowardsTarget(), and getVotingNeighborhood(). The entire

bee-attack class matches well with the design with a few modifications to deal with

the simulation environment as opposed real world communications.

4.3.2 Environment. The software itself is java based. The JDK is java

development kit 1.6.0 03. The SDK Eclispe 3.2.2 is used for writing and packaging

the software. All run on a Intel Xeon(TM) CPU 2.80Ghz dual core with 2.00 GB of

RAM.

The testing itself is conducted on the AFIT High Performance Clusters, as out-

lined in table 4.3.2.
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Name Network Processor Processor CPU # CPUs #nodes

Type (GHz) Mem (GB) Node

Tahoe GigE Opteron 248 2.2 4 2 64

Provo GigE Opteron 248 2.2 4 2 16

Banff GigE Xeon 3 2 2 8

All of the clusters are Gigabit Ethernet with a crossbar switch.

4.4 Chapter Summary

This chapter discusses the low level design and implementation of the two target

engagement rules with algorithm definition. The chapter shows the emergent entan-

gled hierarchy of rules and the implementation of a dynamics synergistic controller.

The structure of SOGA algorithm is described. This indicated that the emergent

entangled hierarchy only depends on the operators and their interaction, independent

from the lowest level implementation. Each of the SOGA operators are shown in

standard algorithm format. Finally, the application and optimization of the new SO

rule set to SOGA is shown. Each of these four aspects of the design, migration, bee

inspired attack, DE Controller and SOGA are tested as described in the next Chapter.
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V. Design of Experiments

This Chapter defines the experiments needed to support the validity of each of

the major objectives of research. Focusing initially on comparisons to known

benchmarks, primarily from [59]. As the system is extended the pieces build succes-

sively upon the validation of the previous step. Various scenarios are used to validate

the distributed entangled architecture. It starts by laying out a full testing schedule.

Then the description of the SOGA and new behaviors and emergent control structures

is outlined. Finally the introduction of a new set of attack specific tests are reviewed.

5.0.1 Computational Experimental Development. In order to address the

complex question of which the MOEA and non-deterministic control sets perform the

best we turn to Barr [9]. There are four questions that are raised:

• What is the best solution found? (Effectiveness)

• How long does it take to determine the best solution? (Efficiency)

• How quickly does the algorithm find a good solution? (Efficiency)

• How robust is the method? (Effectiveness)

The answer for the first question, when analyzing an MOEA, comes in the form

of a Pareto Front [20]. This is the set of solutions that represent the trade-offs in

the objective set. The objectives in our problem domain are minimized casualties

and maximized damage, as a result the PF is two dimensional, see Chapter III. Al-

though effectiveness is important the second question is more relative. Any EA, or

non-deterministic optimizer, produces results orders of magnitudes quicker than its

linear search counterparts [16]. Time comparison amongst EAs is more a factor of

probabilistic nature of the solution space, parameters and tolerances than capacity.

Given that the solution space and computational complexity are O(ntpm2
) and the

system uses a polynomial non-deterministic algorithm to optimize the best solution

may not be found. Finding “good” solutions is what non-deterministic solvers do.

Finding good solutions may not vary much among the investigated approaches, em-

pirical data did not show large differences in the run time of the algorithms. Also,
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after a small number of generations the algorithm may lose it effectiveness, because

of the complexity and probabilistic nature of any single scenario. In order to ad-

dress a variety of increasingly difficult scenarios are utilized for testing. The result of

which should not effect the feasibility of the solutions. The final question, robustness,

is an important test in this case as one desires solutions that allow for successful

employment in unknown and dynamic situations.

For these reasons we focus the testing of question one related directly to the

capabilities of the multi-objective genetic algorithms. The second point of interest,

question four focuses on the output of the control set developed. This is evaluated

through statistical analysis and visualizations. Each of these aspects is evaluated in

every aspect of the simulation.

First the backbone of the GA are validated against the bitGA used by Price [59]

and then NSGAII [25] is used to validate successful application to the MOP domain.

Testing of SOGA is compared against the performance of the established MOEA,

NSGAII. Each of the additional target engagement rules sets are validated through

similar comparison and visualization. Finally the optimization of the overall behaviors

sets and improved control structure are tested and “optimized”. All aspects of the

testing are illustrated in Table 5.1. Here questions objectives 1, 2, 3, 4, 5, 6, and 7

all address Barr’s first question and objectives 2, 5, 7, and 8 address Barr’s fourth

question.

5.1 Testing Statistics

For the purposes of being statistically sound the testing ratio for the simulations

follows the Central Limit Theorem [44]. For this reason any testing the need to be

validated through the CLT has a population of 30 or more. In statistically evaluating

the results two issues must be addressed. First their is no assurance that the data is

a normal distribution, so to show independence of the populations a Kruskal-Wallis

test is used. Secondly the best solutions are not known, so there is no PFtrue. That
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Table 5.1: Testing Outline
Objective
Number

Section Testing Initiative

1 SOGA Validation against bitGA
2 ” Statistical equivalence with NSGAII
3 Migration Statistical dominance of previous behavior set
4 Bee Attack Validity in problem domain
5 ” Statistical dominance of previous BS with Mi-

gration
6 DE Control

Structure
Validity in problem domain

7 ” Statistical dominance of Neural Networks
8 ” Enhanced operation in new Attack Optimiza-

tion Framework

means all indicators of dominance not utilize a known front. Hypervolume and epsilon

indicators were chose from the list of possible indicators in [19] for this reason.

5.2 SOGA

The experimentation focuses on comparison of the SOGA implementation, from

Section 3.3, to the original GA implementation found in [59]. The objective is to

validate that the SOGA algorithm works as well as known robust MOEAs, for example

NSGAII, without parameter tuning. Objectives 1 and 2 are from table 5.1. For

this reason the system reutilizes a lot of the information gained from the previous

work [59]. Heterogenous swarms were shown to be more effective. For the validation

of the new MOGA, the experiments utilizes previous heterogeneous swarm testing

scenarios setup as a benchmark [59]. Also defined where the optimal swarm sizes in

this domain to be between 10 and 30 UAVs .

Given this basic parameter set, SOGA accomplishes the same set of tests. NS-

GAII also attempts to optimize in this domain. These two approaches are then

compared to the bitGA results.
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Figure 5.1: Single Objective Mean and Best score over 60 generations with a pop-
ulation of 100 for five iterations with 50 simulations for each fitness calculation. Ver-
tical lines mark changes in the scheduled scenario. Mean score standard deviation is
indicated by the intervals [59].

5.2.1 Metrics. This aspect of the testing provides “optimization” curves

for the success of the swarm in a given environment. The comparison of the GA

uses the optimization graph shown in Figure 5.1. Note the original implementation

only optimizes on one variable, however there are two variables for comparison. The

damage rate inflicted by the swarm and the casualty levels are not directly dependent

variables. Translating the optimization rates takes insight to the problem domain and

can be further understood through the visualization. In the visualization the swarm

needs to exhibit behaviors of more defined attacks, reduced collisions, and optimized

intra-swarm movement.

Price’s work [59] did not include the effects of lost agents. The inclusion of the

factor of safety to the agents draws that fitness function lower in range. These results

in Figure 6.6 show similar trends as Price’s work [59] shown in Figure 5.1. The benefit

of the Multi-Objective Optimization Problem (MOP) is seen in the later generations.

As the scenarios get harder the gene takes less time to reach convergence. This can

be attributed to the higher strength of the genes (building blocks) at the beginning of
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Figure 5.2: In this graph bitGA ran 5 iterations of 30 simulations per fitness function
over 50 generations with a population of 100 individuals. Six scenario files are used
that increased the difficulty of the evaluation.

those scenarios. Because of the added complexity with this new fitness function more

thorough testing is needed to establish fully optimized solutions. This augmented

fitness function provides better insight to MOP formation.

Between the two MOEAs several more comparisons are possible. The popu-

lations are compared using the Kruskal Wallis P-Values (KW-P), ε-indicator, and

HyperVolume. The KW P-values given the significance of a population without mak-

ing the assumption that the distributions are normal. The two indicators measure

MOEA effectiveness without having a the best known Pareto Front. This series of
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statistical analysis shows the difference and indicate the strength of the better solu-

tions.

5.2.2 Simulation Environment. In all of the simulations used during opti-

mization testing, the problem domain remains relatively similar. The basic dimensions

are 800km x 800km, keeping the simulations the same size for benchmarking. There

are no obstacles in the domain. The ratio of UAVs to targets are at 10:3. If an agents

leaves the simulation environment it can not return and is considered dead. Targets

do not move. Figure 5.3 shows, generically, the simulation landscape. In Figure 5.3

blue are representative of agents and red of targets. The circle describe the notional

detection and engagement ranges around bother targets and UAVs. The weights show

the strength of the associate agent and the radial line on the UAV agents show the

movement direction.

Agent Setup Agents differ slightly in heterogeneous swarms. The kinematics of

the agents have all the same since fidelity in this stimulation. This does not warrant

more exacting physics models because the implementations here are not geared to any

specific hardware. The agents are all loosely based on the model of a reaper UAV [59].

Table 5.2 shows the original specifications of the agents. Note there is a difference

between the UAV (sensor agents) and UCAVs (attack agents) which theoretically use

the same airframe but differ in payload packages.

Table 5.2: Original Agent Parameter Settings
Parameter Value

Max Velocity .07716 km
sec

Hit Points 10

Max Damage 1 point
sec

Communication Range 1.5Km UCAV (10km UAV)
Detection Range 1.5Km UCAV (10km UAV)

Engagement Range 1 Km UCAV (none for UAV)
Behavior Archetypes 3

Table 5.3 shows the behavior set used during all three testing stages in this

section.
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Table 5.3: Original Agent Behavior Set
Behavior Rule

Flat Align
Cohesion
Repulsion

Weighted Target Orbit
Weighted Target Attract

Flat Target Align
Weighted Target Repel

Flat Target Repel
Evade

Avoid Obstacle

Target Setup The target parameters stay static throughout the simulations. The

targets draw from the same object set in implementation as the agents but do not

move and have different detection and engagement rings. Table 5.4 shows the set up

used for the targets. This simulates ground based SAM sites.

Table 5.4: Original Target Parameter Settings
Parameter Value

Max Velocity 0
Hit Points 10

Max Damage 1 point
sec

Communication Range 10Km
Detection Range 10Km

Engagement Range 2 Km

Table 5.5: Genetic Algorithm Testing Structure
Parameter Value

Sims per Eval 30
Generations 60

Generations per Epoch 10
Runs of full set of Gens 5

Population Size 60-100

5.2.3 GA Setup. The chromosome described in section 2.5.2 maps the values

to the control arbiter for the BAs. The remaining chromosome represents the control
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weightings of the rules themselves. Each chromosome gets evaluated 30/times on the

same scenario, with slight variations in location and starting headings of agents and

targets (location only). Each generation carries between 60-100 chromosomes. The

system runs through 60/generations with a change in the simulation scenario at the

epoch of every 10th generation. Empirical analysis indicates that the system starts

to converge within 5-6 generations. The increased difficult after 10 generation allows

the system to optimize in more difficult scenarios without strong casting the controls

before moving on to a more difficult scenario. These sixty generations are run 5

times to establish an average for each generation and comparison to the other MOGA

approaches. The system uses 5 iterations to balance between computational time and

statistical accuracy. With the addition of a variance calculation it is reasonable to

assume an understanding of the systems behavior has been reached when the variance

is small. Table 5.5 outlines the structure of the GA parameters.

BitGA The parameters for the bitGA are from Price’s [59] benchmark work.

These are the same parameters used during the augmented fitness function test. Table

5.6 shows the parameters used.

Table 5.6: bitGA Testing Parameters
Parameter Value

Population 100
Preserve Pop 60

Crossover Rate .1
Mutation Rate 1

Cr

Mutation Neighborhood .05

NSGAII Table 5.7 presents the parameter values used. Through empirical test-

ing the best parameter values are narrowed to a small window. The variance of

results in this window do not show significance therefore average values are used to

run NSGA-II optimization.

SOGA Table 5.8 shows the parameter set used for the SOGA testing. The

population sizes are trivial, but the use of a small random population every generation

does improve performance by continually injecting exploration data. The crossover
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Table 5.7: NSGA-II Testing Parameters
Parameter Value

Population 80
Preserve Pop 40

Crossover Rate .1
Mutation Rate 1

Cr

Mutation Neighborhood .05

rate is self adaptive and defines the mutation rate. The mutation neighborhood is self

adaptive as well.

Table 5.8: SOGA Testing Parameters
Parameter Value

Population 65
Preserve Pop 30
Random Pop 5

Crossover Rate SA
Mutation Rate 1

Cr

Mutation Neighborhood SA
CAA rate Mnr

With this testing structure and parameter set the system facilitates analysis

between the Genetic Algorithms and validation of the SOGA.

5.3 Migration

This phase tests the addition outlined in Section 3.2.1, migration to chosen way-

points. From objectives 3 in table 5.1, testing has two thrusts: validate that the rules

set is working properly and its addition to the overall system performance. The first

thrust is accomplished through visualization after the system has been “optimized”

in the second thrust.

Testing involved “optimizing” with the same behavior set as the previous test

set, Table 5.3, with added migration. Table 5.9 shows the new behavior set. It uses

the same GA parameters as in Table 5.8. The analysis of the results focus on the scope

of the created chromosomes and the statistical significance of the original population
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and the population with the added behavior, outlined in both Section 5.2.1 and testing

metrics.

Table 5.9: Agent Behavior Set w/ Migration
Behavior Rule

Flat Align
Cohesion
Repulsion

Weighted Target Orbit
Weighted Target Attract

Flat Target Attract
Weighted Target Repel

Flat Target Repel
Evade

Avoid Obstacle
Migration

5.4 Bee Inspired Attack

Testing the new bio-inspired attack behavior sets requires a similar approach.

Objectives 4 and 5 from table 5.1 are used. Due to the entangled hierarchy, outlined in

Section 3.2.1, however, each of the sub-behavior rules must be observed individually.

Table 5.10 shows the set of behaviors for this section of testing. Again the GA

uses the same parameters as in Table 5.8. Note the sub-behaviors of Bee Attack,

indicating the entangled hierarchy present in a bee attack behavior rule set. With the

inclusion of the Bee Attack the system favored the passive mode, because reaching

ideal conditions for this type of attack is difficult. This reiterates the need for a more

adaptive controller.

Metrics The same metrics, MOEA indicators and P-Tests, areused to deter-

mine the dominance of the different configurations Section 5.2.1, also quantifies the

improvement from the added rules sets and resulting emergent behavior functionality.
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Table 5.10: Agent Behavior Set w/ Bee Attack
Behavior Rule

Flat Align
Cohesion
Repulsion

Weighted Target Attract
Weighted Target Repel

Flat Target Repel
Evade

Migration
Bee Attack

Target Recon (Target Orbit)
Target Set Analysis and Engagement

Target engagement(Flat Attract)
Avoid Obstacle

5.5 Control and Attack Optimization

To facilitate benchmarking for the control mechanism, basic testing utilizes the

same test beds as the previous testing steps, Section 5.2.1. Objectives 6, 7 and 8

from Table 5.1 are addressed. The new control structure is intended to increase the

systems ability to work in more dynamic spaces. The normal testing structure only

begins to exercise that ability. For this reason the next phase of testing focuses on

the probabilistic and dynamic nature of more complex target sets.

5.5.1 Simulation Environment. The simulation environment is similar to

the previous tests. A few things have been change in the agent/target setup and the

scenarios.

Targets The target themselves are still stationary but a lot more variability is

added to each targets capabilities in order to create more difficult and complex attack

situations. Table 5.11 shows the new target parameter ranges.

Agents In order to keep the agents on a similar “playing field” the parameters

are changed slightly. Table 5.11 shows the new agent parameter ranges. This affords

the agents the opportunity to detect the targets before being attacked by them, in
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Table 5.11: New Target Parameter Settings
Parameter Value

Max Velocity 0
Hit Points 10

Max Damage 1 point
sec

Communication Range 3.0 - 10.0Km
Detection Range 3.0-10.0Km

Engagement Range 1.5-3.5 Km

most cases. This is crucial with the engagement strength of the targets outweighing

the agents!

Table 5.12: Original Agent Parameter Settings
Parameter Value

Max Velocity .07716 km
sec

Hit Points 10

Max Damage 1 point
sec

Communication Range 2.5Km UCAV (10km UAV)
Detection Range 2.5Km UCAV (10km UAV)

Engagement Range 1.5 Km UCAV (none for UAV)
Behavior Archetypes 3

The agents also choose from new sensor inputs. The previous sensor set included

only the swarm density information and the closest target. Here the closest target,

waypoint, swarm density, and number of votes for a target are used. This gives the

agents the ability to react to many different phases of the attacking sequence.

5.5.2 Scenario Sets. The major changes in scenarios relate to the scenario

types. The agents are presented with sets of targets that are more diverse and in

most cases more “powerful”! The different aspects for which the system tests the

agent control structures includes:

• Stronger engagement rings (Overpowering)

• Overlapping targets (Aggregated)

• Groups with increasing individual strength (Building)
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• Geographically separated groups (Separate)

• Target Fronts (IADS)

The intent with the first scenario type, Overpowering, is to provide the agent

with targets in which the engagement rings outweigh their own detection ranges.

Figure 5.5 shows an example of such a testing scenario.

Building on that the next scenario, Aggregated, set utilizes several overlapping

targets and sets of different target numbers and strengths. Figure 5.6 shows a scenario

with three sets of targets each with its own orientation and strengths.

In the next scenario, Building, the targets in the groups grow in strength, like

those shown in Figure 5.7.

In this next scenario, Separate, the targets are grouped but the detection rings

do not overlap the others location. Once the system has learned to work with multiple

sets, changing the configuration warrants a change in the known abstracted state

space. Figure 5.8 shows these separated target groups.

The final new testing scenario, IADS, pits the agents against lines of targets.

The intent is to simulate an Integrated Air Defence System(IADS) array. In many

cases Aerial Vehicles engage ground targets such as SAM or Radar sites. This tends

to be the most difficult and dangerous mission. Figure 5.9 shows a basic IADS setup

that reflects one that would be found at the edge of a sovereign air space.

Finally the agents are run against the 6th and most difficult, generic scenario

from the original batch again. This allows for application of the trained system

in a nonspecific environment. This test also facilitates comparison for the knowledge

base. With this set the agents controls are put through their paces without specifically

iterating every scenario.

5.6 Chapter Summary

The intent with testing the architecture is to validate all four of the major

sub-sets of the research: the GA (SOGA), the behaviors (Migration and Bee In-
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spired Attack), and the controller (DE-inspired controller). Each of these sets of tests

utilized several methods for analytical comparison: visualization, MOEA indicators

(Hypervolume and epsilon), and a Kruskal-Wallis independence test. The testing of

objectives 1, 2, 3, 4, 5, 6, and 7 all address Barr’s first question and objectives 2,

5, 7, and 8 address Barr’s fourth question, thoroughly. The methodical approach to

testing used in this section is aimed at creating stable, trustable results in a system

UAV swarm that works in dynamic environments with stochastic results and emergent

behaviors.
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Figure 5.3: This figure gives the basic idea of the initial setup of a simulation.
The cluster of points on the left, in blue, are the UAVS, with associated, movement
vectors, engagement and detection rings shown. In red the targets are shown with
target strength, detection and engagement rings shown around as well.
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Figure 5.4: There is a connection weight for each sense for each behavior archetype.
These are followed by 12 genes which describe the weights and radii for the behavior
rules for each behavior archetype.

Figure 5.5: Example strong stand-alone targets.
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Figure 5.6: Example scenario with several sets of differing overlapping aggregated
target strengths.

Figure 5.7: Example of groups of growing strength.
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Figure 5.8: Example of separated groups.
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Figure 5.9: Example of IADS front scenario.
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VI. Analysis of Results

Analysis of the testing data flows from the design of experiments in Section V.

Various Tables and graphs are presented with statistical analysis that indicate

a very successful development of UAV swarm combat behavior using the prescribed

architecture. Table 6.1 shows the testing schedule and results summary. Sections

in this chapter that discuss the results are also indicated. Overall the experiments

completed the assigned tasks, which are “optimized” for successful engagement in

target environments. In general, the computational system creates a more effective

behavior and out performed the original configuration [59]. As outlined in Table

6.1, this chapter starts with a short discussion of the SOGA development. Once the

validity of SOGA is established, results from each of the additions to the controls and

behaviors of UAVs is articulated. Finally the performance of the resulting system and

the original configuration is evaluated.

Table 6.1: Results Schedule
Objective
Number

Section Testing Initiative Results

1 SOGA Validation against bitGA Derived - Section 6.1.3
2 ” Statistical equivalence wtih

NSGAII
Achieved - Section 6.1.3

3 Migration Statistical dominance over
previous behavior set

Achieved - Section 6.2

4 Bee Attack Validity in problem domain Visualization - Section 6.3.1
5 ” Statistical dominance of

previous BS with Migration
Achieved - Section 6.3.2

6 DE Control
Structure

Validity in problem domain Achieved - Section 6.4.1

7 ” Statistical dominance over
Neural Networks

Not Achieved - Section 6.4.1

8 ” Enhanced operation in
new Attack Optimization
Framework

Achieved 6.4.2
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6.1 MOEA

The results from the initial set of tests indicate the effectiveness of the SOGA

algorithm. The NSGA-II data servers as the benchmark MOEA for the development

of SOGA feasibility. A Monte Carlo approach illustrates the scope of the domain. The

data from the augmented BitGA shows the relationship between the single objective

and multi-objective domains.

6.1.1 NSGA-II. Figure 6.1 shows the carry over population λ for the “full”

run of the system over the course of 5 iterations of 60 generations. The changes in

shape show the changes between each scenario file. For each of the scenarios the

population pushes to the edges of the PFknown.

Figure 6.1: In this graph NSGA-II ran 5 iterations of 30 simulations per fitness
function over 60 generations with a population of 40 individuals. Six scenario files
are used that increased the difficulty of the evaluation.
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The learning rates, shown in Figure 6.2, indicated the movement of the solutions

towards the fronts of the solution space. The standard deviations grow as the scenario

files get more difficult.

Figure 6.2: Mean and Best score by 40 generation with 60 populations for five
iterations with 30 simulations for all runs. Vertical lines mark changes in the scheduled
scenario. Mean score standard deviation is indicated by the intervals

6.1.2 SOGA. Figure 6.3 represents the SOGA population the same way as

in Figure 6.1. The population shows fairly even distribution over the PFknown.

The learning rates, shown in Figure 6.4, for SOGA are similar the previous

works. The standard deviations are not as large but still increase in the more difficult

scenarios.

6.1.3 Comparison of SOGA Against Benchmarks. Monte Carlo Figure 6.5

shows a Monte Carlo simulation for the easiest scenario. Note the population includes

only the top 20 of 40 random selected Monte Carlo simulation points. The objective

of this figure is to compare, visually, that the NSGA-II and SOGA algorithms achieve
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Figure 6.3: In this graph SOGA ran 5 iterations of 30 simulations per fitness
function over 60 generations with a population of 40 individuals. Six scenario files
are used that increased the difficulty of the evaluation.
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Figure 6.4: Mean and Best score by 60 generation with 40 populations for five
iterations with 30 simulations for all runs. Vertical lines mark changes in the scheduled
scenario. Mean score standard deviation is indicated by the intervals
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better known Pareto front solutions than a random simulation. When compared with

Figures 6.1 and 6.3 it is seen that the Monte Carlo does create solutions that are near

the PFknown. Upon inspection of the graphs, the center of mass of the Monte Carlo

population, however, falls behind the other two algorithms. This shows the pressure

and manipulation of the NSGA-II and SOGA algorithms force the front toward better

solutions.

Figure 6.5: Monte Carlo simulation with selection of the best population 30 gener-
ations with 60 population.

Bit GA

The MOEA solutions are compared to the previous objective space shown in

Figure 6.6. There exist no direct correlation between single dimensional solutions

and vectors in multi-objective space. Figures 6.2 and 6.4, however, clearly illustrate

higher destruction levels in the final scenarios, using the MOP approach. This is only

one indicator of the increased strengths, more are shown in the next section.

Single Scenario Learning
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Figure 6.6: In this graph bitGA ran 5 iterations of 5 simulations per fitness function
over 50 generations with a population of 100 individuals. Six scenario files are used
that increased the difficulty of the evaluation.
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Figures 6.7 and 6.8, are another indication of the strength of a MOEA im-

plementation. This shows the ability of the MOEA to find solutions in the harder

scenarios, because they do not require the stepwise approach of increasing strength

scenarios. This shortfall in the original implementation of bitGA was noted in [59]. In

this test the population grew on a single difficult scenario file, as opposed to growing

the population through increasingly more difficult scenarios (as shown in [59]), with

the same effectiveness.

Figure 6.7: This graph shows the population for both GAs run 60 generations with
30 simulations per fitness function over a population of 80 individuals on the 4th
scenario.

SOGA vs. NSGAII

The testing over all six scenario files paints a clearer picture. Figure 6.9 com-

pares PFknown of the algorithms. Sets of similar points show the difference in the

two algorithms on each scenario. Upon inspection there is a noted difference in the

results favoring SOGA.

Table 6.2 compares the results of every generation over every iteration for each

scenario file on each objective using the Kruskal-Wallis test. A p-value of less than 0.05
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Figure 6.8: This graph shows the learning curves for both GAs run 60 generations
with 30 simulations per fitness function over a population of 80 individuals on the 4th
scenario.

Figure 6.9: This graph compares the PFknown of scenarios. NSGA-II shown with
solid lines and SOGA shown with dashed lines. Each scenario level has the same
point symbol for both.
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indicates a false null hypothesis, so all of the indicated distributions with significance

show that the SOGA population has better values.

Objective Objective
Scenario Damage Casualties

1 .4647 .9168
2 .1172 .1172
3 .0494* .9168
4 .3472 .754
5 .6015 .4647
6 .4647 .0758

Table 6.2: Kruskal-Wallis P-Value SOGA vs NSGA-II
* - in most cases SOGA outperforms NSGA-II in this case it is significant

Both of the MOEA indicators show in Tables 6.3 and 6.4 show the same trends.

SOGA does reach points not generated by NSGA-II, in some instances. In general,

however, these two indicators show the slight dominance of SOGA.

Scenario SOGA-NSGAII NSGAII-SOGA

1 0 15.6
2 0 3.3
3 6.3 7.3
4 10.6 10.6
5 18.4 95
6 16.3 25.3

Table 6.3: ε-Indicator for SOGA/NSGAII

Hypervolume calculations use the reference point of (0,200). In all scenarios

there are twenty UAVs (x 10 scaling) which is why 200 was used. Zero damage is

the minimum value of that objective. As a result the Hypervolume calculations agree

with what visual inspection of Figure 6.9 indicates, in most case SOGA dominates,

but is inconclusive overall.

All of the indicators, statistical tests and analysis show that optimization by

SOGA is not statistically different from those produced by NSGA-II. This meets the

testing objective number 2. It also means that this GA without parameter tuning
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Scenario SOGA NSGAII

1 39871.552 33257.4
2 39334.54 38049.22
3 34729.26 33712.61
4 26172.31 23443.28
5 22354.73 15276.4
6 34132.44 31301.71

Table 6.4: Hypervolume for SOGA/NSGAII

can perform as well as one of the known standards in this domain. The rest of the

research builds on this fact.

6.2 Migration

The objective for migration is to improve performance over the previous behav-

ior set, Section 6.1.3. For this reason, the results for migration are gathered in the

same way as the SOGA results in the previous section. Comparison of the optimiza-

tion (or “learning”) rates and populations are performed through the graphical and

statistical analysis.

Figure 6.10 shows populations for all of the six scenarios. The population forms

in a similar manner as the previous tests. To differentiate the two setups, analysis of

the population PFknown and population distribution are used.

The optimization curves, in Figure 6.11, look similar to those in the previous

test, Figure 6.4. Looking at generations 50 and on allows for comparison of the final

state of the system. Although the best performances are approximatively equal to

the averages, they out perform the previous ones by a small margin, shown in further

analysis.

Graphical analysis of the population is depicted in Figure 6.12. The original

setup and that with migration added are compared through PFknown for each sce-

nario. In almost every case the PFknown for the migration setup moves further to

the lower left of the graph. Statistical analysis of these fronts is again done with

113



Figure 6.10: In this graph SOGA, using the base rules and Migration, ran 5 itera-
tions of 30 simulations per fitness function over 60 generations with a population of 60
individuals. Six scenario files are used that increased the difficulty of the evaluation.
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Figure 6.11: The base rules set are used with the Migration rules added. Mean and
Best score by 60 generation with 60 populations for five iterations with 30 simulations
for all runs. Vertical lines mark changes in the scheduled scenario. Mean score
standard deviation is indicated by the intervals.
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Hypervolume and ε-Indicator metrics. Table 6.5 shows the hypervolume calculations

for this comparison. In 4 of the six cases the Hypervolume of the migration exceeds

the first, including the last scenario. This is an indication of dominance.

Figure 6.12: This graph compares the PFknown of scenarios. SOGA using the add
migration rule is shown with solid lines and SOGA shown with dashed lines. Each
scenario level has the same point symbol for both.

Scenario SOGA SOGA w/ Mig

1 39871.522 38915.92
2 39334.54 39336.21
3 34729.26 36665.88
4 26172.31 24528.69
5 22354.73 21254.46
6 34132.44 34917.4

Table 6.5: Hypervolume for Migration Test

The ε-Indicator shows the system relatively even through the first several sce-

narios, however, in Scenario 6 the migration including setup has a superior value. The

graph, in Figure 6.12, shows that most of the dominance in the original setup is on

the side of minimized causalities. In almost all cases the migration extends towards

the ends of the damage range. This makes sense because this implementation of mi-
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gration is geared towards getting the agents to the target area, thus large damage and

large causalities.

Scenario SOGA-W/Mig W/Mig-SOGA

1 9.6 3.3
2 4 0
3 7 5
4 9.6 5.3
5 97 84.3
6 39.3 43.3

Table 6.6: ε-Indicator for Migration Test

Table 6.7 show the Kruskal-Wallis analysis of the optimization rates. The ob-

jective of this analysis is to show the difference in the means of each epoch or scenario

for the two test sets. This result shows significance in the population distribution

beyond just the best solutions found. In 8 of 12 cases the distributions passed the .05

p-value indicating a false null hypothesis. This means that migrations populations

are statistically different, and through inspection better, than the previous setup.

Objective Objective
Scenario Damage Casualties

1 .1890 .0659
2 .0010 .0877
3 .9476* .0010
4 .0010 0010
5 .0010 .0001
6 .0010 .0010

Table 6.7: Kruskal-Wallis P-Value on Migration

After visual inspection, statistical analysis migration is shown to improve the

performance of the system. Although there are some outliers in the previous setup

that are more optimized for minimized causalities, the intended increase in damage

emerged.
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6.3 Bee Attack Structure

The testing of the Bee Attack algorithm structure is more involved that the

previous behavior. The behavior itself is non-trivial so validation in the domain and

statistical dominance over the previous configuration are both investigated. Several

steps of the behavior are explored specifically. With this behavior set the intended

behavior emerges but there are also other unintended emergent behaviors discuss. The

statistical analysis of the validated behavior is shown using the previous techniques.

6.3.1 Behavior Validity. Validation of each aspect of the Bee-inspired At-

tack comes from inspection of the visualization. There are three aspects of the be-

havior: Target Reconnaissance, Target Choice and Threshold based attack. Figure

4.2 shows the behavior performing the first aspect. Table 6.8 shows the before and

after animations of a swarm making a common decision on the target selection, after

full reconnaissance was accomplished. (This is validated by low level analysis of the

state throughout the sequence.) Note in the right diagram the swarm is completing

its second pass and in the left diagram each agent has decided to engage.

Finally, if the system finds itself in a position where it does not have enough

agents to successfully attack it maintains a stand off range. Figure 6.13 shows two

agents (1 UAV, 1 UCAV) who have broken from the swarm as the rest of their sub-

swarm has died. They continue to stay out of range of the targets. This is because

the control set thresholds indicate the engagement would not be successful.

Several other emergent behaviors are observed as well. Analysis of individuals

in the population has turned the intended attack against itself. For instance, several

control sets use a negative weighting on the initial attraction to the target in order

to avoid the target more effectively. This forms a passive swarm that favors the

lower right of fitness functions in the population. There are also situations were the

threshold got so high that the agents went into orbit outside the targets effective

engagement radius.
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Table 6.8: The swarm before and after target decision.
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Figure 6.13: A UAV and a UCAV do not have the fire power to attack the targets,
as defined by the control threshold. For this reason the are circling the adjacent
targets in the set.

Other attack behaviors also emerged. The swarm capitalized on the difference of

the control structures between the UAVs and UCAVs (each has their own set of BAs).

In one case the UAVs would circle the target on opposite sides in reconnaissance mode

and the swarm cohesion drew the UCAVs directly between them and engaged. Several

unexpected behaviors like this emerged as the system “optimized” the controls over

the solution space.

6.3.2 Incremental Test. Several figures and tables show the statistical dom-

inance of the control sets with the Bee-Inspired attack behavior set included. Figure

6.14 shows the population of 30 individuals that are chosen for the next generation

in the Bee-Inspired Attack configuration described in Section 5.4. Upon inspection

the systems seems to optimize much more congruently and focuses toward the front.

(Note the overlapping population for the first scenarios, this did not happen in previ-

ous tests. also, Scenario six did not match because it had twice as many targets and

agents as the previous 5.)
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Figure 6.14: In this graph SOGA, using the base rules, Migration and Bee attack,
ran 5 iterations of 30 simulations per fitness function over 60 generations with a
population of 70 individuals. Six scenario files are used that increased the difficulty
of the evaluation.
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Figure 6.15 shows the optimization rates of the system over the 60 generations.

Two things are worth noting in this graph. First the average damage is about 1/3

better than the previous test and the causalities are slightly better. Second, the

variances shown are much smaller even later in the test.

Figure 6.15: The base rules set are used with the Migration and Bee Attack rules
added. Mean and Best score by 60 generation with 70 populations for five iterations
with 30 simulations for all runs. Vertical lines mark changes in the scheduled scenario.
Mean score standard deviation is indicated by the intervals.

Figure 6.16 indicates PFknown of each scenario for the setup with migration

and the setup including both migration and Bee-Inspired attack. Their is a noticeable

difference in the two sets. In several of the cases the Bee-Inspired attack set completely

dominates the previous version.

Table 6.9 confirms what is initially seen in the front comparisons in Figure 6.16.

In all but one case the Hypervolumes of the front have superior values to the previous

setup. Especially note worthy is the 30+% jump in the final scenario.

The ε-Indicator paints the same story. Especially when analyzed in combination

with Figure 6.16. All of the error indications for the Bee-Inspired Behavior come
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Figure 6.16: This graph compares the PFknown of scenarios. SOGA using the
add migration rule is shown with solid lines and SOGA with Bee Attack shown with
dashed lines. Each scenario level has the same point symbol for both.

Scenario SOGA w/Bee SOGA w/ Mig

1 37193.39 38915.92
2 35796.68 39336.21
3 31480.9 36665.88
4 28310.08 24528.69
5 26385.31 21254.46
6 47407.84 34917.4

Table 6.9: Hypervolume analysis for Bee Inspired Attack Test
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from the movement of the front towards the bottom left. The few sizable errors in

the migration column come from heavy damage heavy loss ratios. The Bee-Attack

is meant to combat this and therefore tends toward safer attack situations with less

casualty to damage ratios.

Scenario SOGA W/Bee - W/Mig W/Mig-W/Bee

1 10.3 15.6
2 70.3 8.3
3 97.3 31.6
4 38.6 4.6
5 23.3 0.6
6 56.6 12

Table 6.10: ε-Indicator for Bee Inspired Attack Test

Table 6.11 shows the independence of the populations. In 7 of 12 situations

the populations are shown independent by falsification of the null hypothesis on a

.05 p-value test. The remaining p-values favor the new attack setup but do not show

significance.

Objective Objective
Scenario Damage Casualties

1 .2265 .4306
2 .2371 .0488
3 .0010 .7628
4 .3578 .0010
5 .0010 .0010
6 .0010 .0010

Table 6.11: Kruskal-Wallis P-Value with Bee Attack

Analyzing the population produced during the tests with the Bee-Inspired At-

tack versus the previous test paints the clearest picture. The population is focused

around the front. Every indicator and statistical analysis done on these tests confirm

this finding. With the intended emergent capability and those unintend, this behavior

set has completed objectives 4 & 5 and shown a dramatic increase in effectiveness.
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6.4 Control and Attack Optimization

There are two aspects to the discussion of control and attack optimization re-

sults. One compares the effectiveness of the controller to the previous work. The other

presentation groups all of the testing together to show the successful advancement of

the computational UAV simulation system.

6.4.1 DE-Inspired Controller. The intent of introducing the DE-inspired

controller is to find a more effective and flexible arbitrator than the Neural Netwrok

implementation [59], that could operate in a dynamic space. The tests for this first

section are described in Section 5.5.

Figure 6.18 shows the population of the system after the introduction of the

new controller. Worth of note in this figure is the distribution of the population. In

Figure 6.14 the system focused heavily on the middle of the front. In this instance,

however, the population covers a broader spectrum of the front.

Once again the trends shown in Figure 6.18 are similar to those in Figure 6.15.

The learning curves improve in each epoch. The standard deviations show a similar

distribution of the population.

The comparisons of the fronts in Figure 6.19 show that the results with the DE

controller are again similar. The population spreads about the fronts in a similar

manner. In every epoch the front pushes to the same reachs of the damage objective

versus causalities. It appears that the previous testing without the new controller

does perform slightly better.

Tables 6.12, 6.13, and 6.14 all indicate the same trend. In the Kruskal-Wallis

tests the p-values favor the DE in some cases but mostly are neutral or favor the

previous controller.

According to the statistical analysis in Tables 6.12, 6.13, and 6.14, the systems

are relatively similar, if not, they favor the NN controller. This is not alarming. Neural

Networks are reasonably good, [67] at learning environments with which they are
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Figure 6.17: In this graph SOGA with all rules and the DE controller, ran 5 itera-
tions of 30 simulations per fitness function over 60 generations with a population of 70
individuals. Six scenario files are used that increased the difficulty of the evaluation.

Scenario SOGA w/Bee SOGA w/ DE

1 37193.39 35392.07
2 35796.68 34955.38
3 31480.9 31943.61
4 28310.08 27198.79
5 26385.31 24310.57
6 47407.84 42899.3

Table 6.12: Hypervolume for DE

Scenario SOGA W/Bee - W/DE W/DE-W/Bee

1 6 .6
2 8 1.6
3 0 8.3
4 5.3 0.3
5 4.3 0.6
6 25.3 0

Table 6.13: ε-indicator for DE
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Figure 6.18: All rules and the DE controller. Mean and Best score by 60 generation
with 70 populations for five iterations with 30 simulations for all runs. Vertical lines
mark changes in the scheduled scenario. Mean score standard deviation is indicated
by the intervals.

Figure 6.19: This graph compares the PFknown of scenarios. SOGA with Bee
Attack shown with dashed lines and the addition of the DE controller shown in solid
lines. Each scenario level has the same point symbol for both.
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Objective Objective
Scenario Damage Casualties

1 .2265* .4306
2 .2371* .0488
3 .0010* .7628
4 .34578 .0010
5 .0010 .0010
6 .0010 .0010

Table 6.14: Kruskal-Wallis P-Value with DE
* - These three p-values favor the new controller setup.

familiar and/or are not dynamic in nature. For this reason the DE-Inpired controller

is favored and is used in the next phase of test. The ability of the DE controller to

respond to information outside what it has seen is its strength, still performed well.

6.4.2 Attack Scenarios. To test the new controller, the attack scenario

set with strong target sets is used. The controller allows for easy inclusion of new

behavior types. An increase in BAs simply means an increase in the number of foci

that control and move about the abstract state space. Addition of more foci increases

the controllers ability to map the space more accurately. For this reason, these tests

increased the number of BAs. Six BAs are used to give enough foci to cover the

expected abstract states based on expert knowledge.

Figure 6.20 appears much different than its predecessors as presented in Figures

6.20 and 6.14. With 9 scenarios being tested, only one of which overlaps with the

previous tests, pulling out individual scenario populations proves more difficult. The

population near the top in pink squares is the 6th Scenario for the previous tests. The

PFknown is illustrated by the green line of circles. In comparison to the previous

6th scenario populations this population covers a large space with a more distributed

front. It is also pushed about 100 points in damage, or another full target forward.

The optimization curves in Figure 6.21 show learning throughout the testing.

The increase variances come from two factors. First, with more BAs there are more
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Figure 6.20: In this graph SOGA with all rules and the DE controller, ran 5 it-
erations of 30 simulations per fitness function over 60 generations with a population
of 60 individuals. Nine scenario files were used that increased the difficulty of the
evaluation.
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ways to accomplish the same tasks. Like nature, with added difficulty comes more

entropy. Meaning, weaknesses are exploited by the difficult target sets.

Figure 6.21: Here the all rules and the DE controller. Mean and Best score by
60 generation with 60 populations for five iterations with 30 simulations for all runs.
Vertical lines mark changes in the scheduled scenario. Mean score standard deviation
is indicated by the intervals.

Figure 6.22 represents the results from the last test and the previous two test’s

6th Scenario front side by side. Note the increase in the damage. Also interesting to

note is the shape and placement of the curve. Both tests with the new controller create

a fuller front. The relative slope of the curves is also interesting; a more aggressive

slope indicates that solutions with less causalities inflict more damage. The increase

in the casualty to damage ratio is crucial!

Table 6.15 compresses the data seen in the previous tables into one (because

there is only one scenario to compare). In all cases the increase number of BAs and

testing through the attack scenarios improves on the previous DE-inspire controllers

marks. In the bottom right corner the 99.3 is the ε-Indicator dominance of the new
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Figure 6.22: This graph compares the PFknown of scenarios.

controller over the old. The value of 14.3 is the opposite, which stems from a more

cautious configuration in the bottom right of Figure 6.22.

Type Before After No Advanced
Control

P-value (obj 1) - 0.1484 (.0010 best) -
P-value (obj 2) - .0010 - (.0761 best) -
Hypervolume 42899.3 55061.76 47407.84
Epsilon 18.3 48.3 99.3 (14.3)

Table 6.15: Statistical Comparison of Advanced Setup on Two Scenario Sets

Figure 6.23 compares the final statistics of the system with the original. The

blue diamond line to the far left shows the growth. The achieved successes in attack

are notable. The top damage number moved from 280 (or just shy of 3 targets) to

430 (or solidly over 4 targets of 6). [59] showed approximately 2/3 success in target

kill as well, but the system did not consider casuality rates. Upon visual inspection

the difference is notable. Agents rarely colloid or fly out of the target area with the

MOEA implementation and improved controls.
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Figure 6.23: This graph compares the PFknown of scenarios.

Table 6.16 shows the statistical analysis of the fronts and populations. The p-

values leave no room for doubt in the independence of populations! The hypervolume

increase is approximately 70% as well. The final front also dominates the previous

two fronts with an error of over 100 points. The 54.6 error indicator in the final

front represents the previous tests ability to find a solution that accomplishes nothing

without causalities.

Type NSGA-II SOGA Advanced
Control &
Behavior

P-value (obj 1) 0.0002 0.0002 -
P-value (obj 2) 0.0002 0.0003 -
Hypervolume 31301.71 34132.44 55061.76
Epsilon 130.6 170 54.6 (both)

Table 6.16: Statistical Comparison of Original and Advanced Setups

This section discusses the results associated with Objectives 6, 7, and 8. Al-

though statistical dominance is not achieved in Objective 7 this is not a problem. The
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flexibility of the new controller is evident in the increased performance when the BAs

numbers were changed. Overall the test showed that this step in the iterative process

of optimized effectiveness workedas desired.

6.5 Chapter Summary

The results and analysis of the research effort follow the design of experiments

as discussed in Chapter V. Table 6.1 presents the testing schedule. Section 6.4.2, in

this chapter outlines the final results, indicating marked gains, increased damage by

75% and decreased casualties by 15%. The single objective model failed to provide

acceptable and understandable results. Overall the testing sequence accomplished its

objective. It showed very successful results in solution optimization.
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VII. Conclusions

This summarizes the integration of the problem statement, the objectives outlined

to address the problem, recaps the successes of the investigation, and suggests

future research in continuing this very successful investigation.

The results from this research generated significant strides in the area of au-

tonomous UAV swarm control:

• The development of a new abstract UAV swarm control model that flows

from a Markov model, the POMDP. Using this innovative model, a new prob-

lem domain iterative decomposition technique evolves the required UAV

agent rule sets.

• With this decomposition, single-level UAV flight behaviors and new multi-

level bio-inspired attack behaviors are instantiated. Thus with evolutionary

computation, a generalized entangled computational cooperative control

hierarchy is constructed providing the desired emergent combined UAV behav-

iors. This evolved architecture abstraction is a paradigm shift in cooperative

autonomous UAV control.

• Validation of this innovative approach through the continuing development of

an extensive software simulation, animation and statistical analysis

indicates that such a self-organized autonomous swarm of UAV agents can per-

formed desired operations in a dynamic environment.

The following sections briefly discuss these contributions through the research

objectives.

7.1 Develop Model

The first objective outlined in Section 1.2.1 requires a model that could describe

the abstract UAV swarm problem domain. After considerable searching and evalua-

tion, the Markov Model, POMDP, is selected as discussed in Section 3.1.2. Although

not a perfect Model, POMDP is chosen because in our problem domain the entire
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state space is not known and the affects of the transition actions are not known. Thus,

the tuple D(S, A, T, O,R) serves as the basis for developing the whole state model

(see Section 3.1.2).

With this abstraction, a non-deterministic approach using Biologically Inspired

Self Organizing systems is developed. A new decomposition method allows desired

behaviors to emerge. This new technique is called the ‘U’-decomposition. It focuses

on decomposing the problem domain into basic pieces that could be handled by basic

rule sets. The structure then ties the rules sets in an entangled hierarchy, from which

the UAV swarm behavior emerges. This does take careful crafting. When accom-

plished correctly creates a system that evolves ways to get things done dynamically,

instead of through an explicit a priori instantiation. As such it represents a very lim-

ited view of the human mind’s entangled dynamic control hierarchies which attempts

to generate efficient and effective problem solutions. For this research the modeling

technique focuses on UAV swarm implementation in a computation target engage-

ment simulation environment. The design process initially decomposes the problem

objectives into two sub objectives, getting to the target and optimizing the target

engagement. The first is relatively easily implemented through a behavior called

migration. The second needed further decomposition which results in a three step

process: target reconnaissance, target analysis, and threshold based target engage-

ment. All three are accomplished autonomously and the aggregation of the agents

in the swarm reflects the desired behavior effect (see Section 3.1.2). Overall this

approach and decomposition technique provides very fruitful results. The rules are

simple, easily implementable, and work in a dynamic environment. It relies on non-

deterministic aspects and therefore has its disadvantages in human understanding of

the explicit underlying processing, however, this is acceptable in such a convoluted

computational domain.
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7.2 Integrate Attack Behaviors and Entangled Hierarchy

The next objective (Section 1.2.1) is to integrate the new behavior constructs

into the existing swarm simulation and animation [59]. Software engineering principles

are not only applied in order to allow for replacement and modification of independent

pieces of the software, but the entire software simulation package is restructured for

ease of modification. Once accomplished the addition of a Self Organizing Genetic

Algorithm facilitated testing of all further additions without detailed consideration

with parameter values. The behavior sets are those of the original UAV package [59] in

order to decouple the behaviors, controller and UAV. The addition of the migration

behavior fits easily into the new construct. The advanced attack behavior (Bee-

Inspired Attack) required definition of a sub-controller based on abstracted state.

This sub-controller integrated several other behaviors into the advanced attack; a

multi-level behavior formulation. This multi-level behavior modeling approach should

generate more complex entangled cooperative control hierarchies that reflect not only

effective performance but efficient operation.

As a result of the complexity of the emerging structure from the advanced at-

tack behaviors a new controller is need to be implemented. The new controller (ar-

biter) is required to operate in a dynamic environment and over come the current

artificial Neural Network’s in-ability to understand and operate on information not

previously available. With this implementation an increase in BA and sensor informa-

tion is also possible. The result of this integration formed a software package that is

decoupled, reusable, and well engineered. Separate packages for the GA, Controller,

Agents, and Behaviors make it very usable for continued development. The added

controller and behavior sets are also very effective at ”optimizing” target engagement.

This modeling approach is critical not only to autonomous self-organized swarm

structuring, but to the abstract analysis of any agent system behavior. With evolu-

tionary computation, a generalized entangled computational cooperative control hi-

erarchy has been constructed that can provide the desired emergent combined agent
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behaviors. This evolved architecture abstraction is a paradigm shift in cooperative

autonomous agent control.

7.3 Validate Model

The final objective of this research is to validate the created model through

statistical analysis and evaluation (Section 1.2.1). This is accomplished through an

iterative process whereby each test is built on the results of the last. Three types

of information are analyzed: optimization rates, population characteristics, and vi-

sualization through simulation. The initial aspect of the testing and validation is

accomplished with the new algorithm, the SOGA. After comparing it to the known

single objective and a Monte Carlo Simulation, it is tested against a known MOEA,

NSGA-II. SOGA outperforms the first two, and is not statistical significant, according

to a Kruskal-Wallis test, with the population from NSGA-II (Section 6.1.3). The de-

sign intent is to create a GA that could run in the computational environment and not

require constant parameter tuning. The testing of this implementation validates that

intent. Several behaviors are tested against the original behavior set from [54] using

the new SOGA. In both cases, migration and advanced attack, the system statistically

outperformed its predecessor in both damage and casualties. Comparison with the

original behavior set as evolved by SOGA showed PFknown dominance, marking the

new behaviors as valid as well (Section 6.1.3).

The system “optimizes” the target engagement environment through several

steps. Addition of a new controller, the DE-Inspired controller, is only as good as the

previous implementation, in the benchmark tests. However, the ability for the new

controller to operate in more dynamic environment makes it much more attractive.

Tested with the new attack scenarios. the increased number of BAs the con-

troller really took flight. Analysis between the previous tests and attack optimized

tests shows a significant difference, statistically, in the population (Section 6.4.2).

Finally, comparison of the last set of data obtained with all the new elements and

the specific attack scenarios showed the most remarkable results. There is a 50%
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increase in effective damage between the solutions found in the original configuration,

using NSGA-II or SOGA, and final configuration. The average damage on the last

generation has increased by 75% while the causalities are decreased by 15%. Overall

capabilities of the SO designed swarms has improved dramatically through increased

ability to inflict damage with lowered casuality rate.

7.4 Future Work

The results of this research is of course not currently deployment capable for

physical low-cost effective UAVs. Setting aside the lack of detailed sensor and com-

munication capabilities, the research thus far has explored only some aspects of self-

organized (SO) control. The swarm however has dynamic swarm formation, waypoint

navigation, and approaches to successfully engaging a target. But this is not the full

set of tools needed to feasibly be deployable. Thus, future efforts should include a

variety of developments:

Generally

• Include a broader set of successful, but different role capabilities in the form of

bio-inspired and other behavior sets in Swarmware.

• Include more distributed computation and data storage techniques, for target

recognition and distributed processing (efficiency) - Extended testing to exploit

increased efficiency.

• Apply our UAV modeling principles, decomposition and design constructs to

other POMDP problem domains (cybercraft, robo-insects, and other hardware

and software agent systems).

• Movement of the modelling principles to other domains (cybercraft, robo-insects,

and other hardware and software agent systems).

• Continue to develop the entangled architecture with multi-level behaviors struc-

tures.
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• Development of internal system subcomponents for any computerized system.

• Continuing evolution of SO based ’U’-Decomposition principles.

• Add to simulations, precise models of sensors and communication protocols as

well as dynamic cooperative control equations.

• From the model and Swarmware simulation results, apply the bio-inspired coop-

erative control concepts to the AFIT Advanced Navigation Technology (ANT)

Center small aircraft and flight test.

Specifically

The development of entangled cooperative control techniques is in its infancy

and has considerable development before its full capabilities would be revealed. UAV

swarms models and the current implementation improvements can be made:

• Add movement in 3D space; 6 degrees of freedom dynamic model (> 25cm,

Macro-level < 10cm (insects?), micro-level; DARPA micro UAVs < 1cm).

• In addition to the target damage and UAV casuality multiobjectives include

UAV energy minimization and probability of target damage.

• Apply Swarmware to the AFIT 3D UAV Path Planning, Scheduling and ani-

mation simulation.

• Enhance visualization tools that better model in 3D (Open Dynamics Engine).

• Refine other attack bio-inspired strategies such as found in other insects, animals

and birds of prey and integrate behavior into 2D Swarmfare and 3D simulator.

• Behavior optimization in other sub-problem domains or roles (CAS, EW, ISR,

CAP...).

• With our current UAV emergent behavior of formation control, target reconnais-

sance, target analysis, and threshold based target engagement, target attack,

obstacle and collision avoidance, include target movement and tracking and

possibility target recognition techniques.
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With the inclusion of other UAV behaviors, testing would be more extensive

providing a better platform for UAV cooperative control analysis. A similar set of be-

haviors could be trained on each desired role and then the Behavior Archetypes (BAs)

could be combined. It would also be possible to have dynamic behavior sets defined

at runtime. (Although the GA should negate any unneeded behaviors currently it

would allow the user a clearer understanding.)

Most importantly any future research should continue to extend the ideas of

Self-Organization decomposition. Remaining unchained to the more deterministic,

discrete layered approach is critical to system performance.

Research on effectively abstracting the ideas of emergent SO structure, abstract

state description, and minimization of information complexity. Such a construct re-

quires each sub-struct to be treated as an agent and taking in account the information

complexity needed to communicate state transitions in the emergent control struc-

tures. The development of such techniques is in its infancy and has a lot of grow

pains before its full capabilities should reveal themselves.

7.5 Summary

This research investigation set out to improve on the contemporary body of

knowledge on autonomous control of UAV swarming vehicles. An innovative self-

organized autonomous swarm model of UAVs is developed. The computational im-

plementation of this bio-inspired model performs desired operations in a dynamic

environment. The specific implementation in the Swarmfare simulation system has

increased dramatically in effectiveness in the target engagement problem domain.

More importantly the research effort encompasses generic methods to decompose a

problem domain that exploits the SO design employing an efficient and effective en-

tangled hierarchy. This way of approaching the autonomous control should not con-

strain a designer’s ideas. Therefore, more dynamic situations and environments can

be skillfully navigated by the SO agents without explicit instantiation. In summary,

this research effort is just one of the initial steps that could lead to a more effective
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implementation of swarms that one day would become a formidable replacement for

man-in-the-loop systems.
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Appendix A. SO Abstract Model Types

AMT
Species /     Sub-

species Operator
Parameter / 

Sensor
Condition / 

Knowledge Base AF Uses Rules Remarks

Path Solver Molds Chemical induced movement cAMP sensor
internal and external cAMP 

levels Movement pg 104-105 (1)

Massing Bark Beetle

Pheromone production, 
autonomous movement 

(larvae Density) pheromone (chemical)
Pheromone 

concentration/gradient Massing
dispersion, time, distance based pg 

132 (1)
possible mass of attacks 

applications

Synchronization Firefly
light, locomotion, timing 

mechanism visual pulse time constant Communication undefined pg 151-155 (1)
synchronization of timing sources 

or mass of attacks applications

Construction Termites
retrieval & placement dirt, 

path follow pheromone (chemical) queen attributes unknown pg 392 (1)

Construction Wasp Nest construction touch/visual
Foundational structure, # 

adjacent cell walls unknown pg 430-432

Dominance / 
Hierarchy Wasp Challenge touch Force, Rank Structuring 460-461 (1) (Tsu)

Foraging Bee Dance, Foraging visual dance rhythm IR
based on number of foragers and 

dance length 207-208 (1)
transfer of data and resource re-

supply point

Cluster control Bee Swarm Thermoregulation heat
temperature range, radius, 

density unknown
separation and movement 

inward/outward 294-297 (1)

Classification Bee Hive Honeycomb fill structure visual
oviposition, fill rates, 

depletion rates Classification pg 331 (1)

Foraging Ant
foraging, marking, feeding, 

path following pheromone (chemical)
chemical production,  

pheromone interpretation path to target

number of travelers, length, chemical 
deposit strength, time 229,232-

234,239-241 (1)

Offensive Mass  Ant Raiding
foraging, marking, Carrying 

prey, path following pheromone (chemical)
crowding, pheromone 
product/interpretation Military Mass pg 269-274 (1)

 Multiple speeds, raid size OM: 
100Ks

Construction Ant Nest carrying, pushing, deposit Touch (Pheromone 2nd)
structure resistance, brood 

size/location Building or classifying Pg 356-360(1)
distribution of pheromones around 

brood 

Path Solver Ant
 locomotion, path laying, path 

following pheromone (chemical)
Pheromone 

concentration/gradient unknown pg 1 (2) Leafcutter

Classification Ant Nest Brood and corpse pickup, drop adjacent items, threshold unk Pg 152(2)

Construction Ant Weaver chaining, weaving touch
larva silk weaving, agent 

bridge construction unknown pg 1 (2)

Schooling Fish
locomotion, predator, 

schooling visual, lateral line Adjacent agent information defense/ swarming
proximity, repulsion, matching and 

search; pg 180-181 (1) Swarming, obstacle gradients

morphology Ant
task distribution has a high 

plasticity varied agent based UAV swarms
sub species allow for more specific 

task application 

Multiple species (minor or 
minims, medium workers, sub-

majors, major)

Abstract Model Types (AMT)

Figure A.1: SO Abstract Model Type Table
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Appendix B. Simulators Comparision

Name
MATLAB 
Multi UAV MultiUAV SwarmFare Simulation

UAV 
Simulator MVCS MUSE RMUS SWEEP SWARM MASON REPAST

Maker MATLAB AFRL
Ian Price 
(AFIT) IcoSystems 

Team 
Australia Raytheon MetaVR

Australian 
Centre for 

Field 
Robotics

Case 
Western

Sante Fe 
Inst GMU

SourceFor
ge

Platform Matlab (MS) Matlab (MS) Java (MS) MS unk Java (MS) unk
SimComp
iler (UAV) Java

C (Java 
capable) Java Java

Focus
UAV Swarm  

Control
UAV Swarm  

Control
UAV Swarm 

Control
Swarm 

Simulation

UAV 
training, 

research, 
and ops

Multi-
Disimilar 

UAV control UAV training

UAV 
experime

nts
Generic 

SO
Generic 

SO
Generic 

SO
Generic 

SO
Swarm 
Control 

Capability
Primary 
purpose Capable

Primary 
Purpose unk none Unlikely N/A exists Capable Capable Capable Capable

Modularity highly highly Moderate unk unk unk Distributed High Highly
Existing 
Swarm 

Attributes * Cohesion

Cohesion 
(search and 

Destroy) unk none none N/A some

no 
inherent 

UAV
no inherent 

UAV
no inherent 

UAV
no inherent 

UAV

Attainable

Internet 
Download 

(not Received Local unk FMS Gov contract Gov contract FMS
OpenSour

ce
OpenSour

ce
OpenSourc

e
OpenSour

ce
Support Email Local Good Moderate overseas email email overseas wikiSwarm wikiSwarm wikiSwarm

Analysis 
Capablities A H A A A N/A N/A A N/A H A H

Visualization unk A (2D) A (2D) H (2D) A (3D) A(3d) H (3D) H(3D) A (2D)
H (2D or 

3D) M (2D) A (2D)
Enviroment unk V, T V, T V, T V V E, V V, T, E V V V, T V

Agent S, C S, C S, C S S S S, C S S S S

Notes

Needs 
MATLAB 

Plugin 
License Working

No Long in 
use by 
AFRL

H - High, A - average, L - Low
V - Vehicle, T - Target, E -Terrain
S - Sensor, C - Communications

UAV Simulators
Multiple UAV Sims UAV Control Sims SWARM Sims

Figure B.1: UAV Simulator Comparison [6, 31,38,46,48,59–61,81]
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GloMoSIM both y y C FD - - - - - y y y y u
HLA - - y - - - - - - - - y y - -

SPEEDES both l y C++ OO - y - - - y y y - O y
PARASOL both b y C++ u u u y y u y y y u O y
JSDESlib both u l Java OO - - - - - y y y l u y

DSIM both y l C++ u u y - - - - y y - O -
SPaDES both y y Java OO - - - y - y y y y O y

Win- Windows Platforms; Java- Java Virtual Machine Plaftorms; Lin: Linux Platforms
l: supported but limited; b: beta stage; y: supported in full
u: unknown
-: not supported
OO: Object Oriented; FD: functional decomposition
Both: Windows and Linux

Figure B.2: Parallel Discrete Event Simulator Comparison [22]
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Appendix C. Existing Behaviors Rules

Excerpt from Price [59]

C.1 Rule Equations

There are ten different rules governing the way a UAV moves. Each of these

rules is mathematically defined in the following subsections and depicted graphically.

C.1.1 Rule 1: Alignment. A particular UAV tries to match directions for

its velocity with all other UAVs. This is expressed in the following definition where

UR1 is the value of rule 1 with respect to U . This rule is essentially the same as that

used by Reynolds [62].

UR1 =

|N |∑
i=0

Ni.D

|N | (C.1)

Other examined forms for this rule include a distance weighted alignment as

shown in Equation (C.2). The unweighted version was determined to be less compu-

tationally intensive since it required less divisions while resulting in similar behaviors.

UR1 =

|N |∑
i=0

Ni.D

dist(U.P,Ni.P )

|N | (C.2)

The the unweighted alignment behavior can be seen in figure (C.1). Basically,

this particular rule causes UAVs that can see each other to fly in the same direction.

This behavior is effective for making formations fly in the same direction.

C.1.2 Rule 2: Target Orbit. This rule provides a behavior causing UAVs

to circle around a target at a safe distance. This is performed by first calculating

directions that run perpendicular to the line between U and the target. Then, the

perpendicular direction that is closest to U ’s current direction is selected. Determina-
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Figure C.1: Field plot for alignment rule. UAVs at (420, 380), (400, 440), (400,
480), (400, 520) with individual velocities indicated by their direction line. Plot
assumes a sensor radius of 30km

tion of perpendiculars is performed for each target that U sees. The resulting selected

perpendiculars are summed for each target that U is more than 70% sensor range

distant. The reason for the effective range for orbits is simple: if a UAV gets too close

to a target and engaged, it might as well attack that target rather than simply circle

around it. This rule is inspired by Lua [47].

The perpendicular bearings are determined by the following Equations (C.3)

and (C.4):

d1(U.P, t.P ) = (t.Py − U.Py, U.Px − t.Px) (C.3)

d2(U.P, t.P ) = (U.Py − t.Py, t.Px − U.Px) (C.4)
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Once the perpendiculars are calculated, the particular one closest to the current

velocity is selected. This particular selection is performed in Equation (C.5).

Orbit(U.P, U.D, t.P ) =


 d1(U.P, t.P ) dist(d1(U.P, t.P ), U.D) < dist(d2(U.P, t.P ), U.D)

d2(U.P, t.P ) otherwise


 (C.5)

The preferred orbiting directions for each known target are then summed for

each target that is more than 70% distant. This is accomplished in Equation (C.6).

The reason this rule is applicable at a 70% distance is to facilitate cooperative function

with behavior rules that cause flat target attraction and flat target repulsion. When

these rules are combined, they can cause the UAVs to enter into stable orbits around

a particular target. This combination of rules can be seen in Figure (C.2). When

combined, these rules cause UAVs to

UR2 =

|T̂ |∑
i=0


 Orbit(U.P, U.D, t.Pi) dist(U.P, t.Pi) ≥ .7U.Sr

{0, 0} otherwise


 (C.6)

The results of this rule can be seen in figure (C.3). Clearly, when examining

Figure (C.3), this rule causes a UAV to prefer to orbit around a target at a safe

distance.

C.1.3 Rule 3: Cohesion. UAVs are attracted towards each other if the

distance between them is greater than a certain range. The influence of attraction

towards each UAV is based upon the distance UAV U is from a specified percentage

of U ’s sensor value, r1. This rule is inspired by both Reynolds [62] and Kadrovich

[40]. Additionally, this particular version has shown usefulness in previous work [59].

Equation (C.7) demonstrates how this rule is computed.
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Figure C.2: Field plot for combining orbiting, flat target attraction, and flat target
repulsion. UAVs at (380, 400) and (420, 400). There is a target at (400, 400). Plot
assumes a sensor radius of 10km and a velocity of (0,1). Plot also assumes that the
UAV for which the plot is drawn is traveling (0,1).

UR3 =

|N|∑

i=0

(Ni.P − U.P )(dist(U.P, Ni.P )− U.BA.r1 ∗ U.Sr)


 0 dist(U.P, Ni.P ) ≤ U.BA.r1 ∗ U.Sr

1 otherwise




|N | (C.7)

In Kadrovich’s work, this rule and a separation rule were combined into a single

rule. In this work, the individual rules were kept separate to enable alterations to

the cohesive and separation rules independently. Rather than use the cohesion and

separation equation designed by Kadrovich [40], these different aspects are separated
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Figure C.3: Field plot for orbiting rule. UAVs at (420, 380), (400, 440), (400, 480),
(400, 520) with individual velocities indicated by their direction line. Plot assumes a
sensor radius of 30km and a velocity of (0,1).

to allow more flexible behavior evolution. The results of this rule can be seen in figure

(C.4). In allowing separate weights for cohesion and separation independently, each

particular rule can be independently addressed by the genetic algorithm. That is to

say, the individual affects of cohesion or separation can be changed without necessarily

changing the other.

As demonstrated in Figure (C.4), this behavior results in UAVs preferring to

stay within a specified distance with other allied UAVs. This particular behavior rule

has promise in preventing UAV formations from spreading out too far.
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Figure C.4: Field plot for cohesion rule. UAVs at (420, 380), (400, 440), (400, 480),
(400, 520) with individual velocities indicated by their direction line. Plot assumes a
sensor radius of 30km and radius of 15km.

C.1.4 Rule 4: Separation. If UAV U is too close to other UAVs, then there

is a weight based repulsion similar to cohesion. The influence of repulsion is based

upon how much closer other UAVs are to U past a specified range, U.Sr ∗ U.BA.r2.

This, too, was inspired by Kadrovich [40]. Equation (C.8) demonstrates how the

separation rule is computed.

UR4 =

|N|∑

i=0

(U.P −Ni.P )(U.BA.r2 ∗ U.Sr − dist(U.P, Ni.P ))


 1 dist(U.P, Ni.P ) < U.BA.r2 ∗ U.Sr

0 otherwise




|N | (C.8)
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The results of this rule can be seen in figure (C.5). Like the behavior for the

cohesion rule, separation has a threshold of operation. Unlike cohesion, separation

causes the UAVs to maintain a minimal distance to other UAVs. This means that

separation has promise as a rule that can expand the sizes of UAV formations. Figure

(C.5) demonstrates the effects of this rule.

Figure C.5: Field plot for separation rule. UAVs at (420, 380), (400, 440), (400,
480), (400, 520) with individual velocities indicated by their direction line. Plot
assumes a sensor radius of 30km and radius of 15km.

C.1.5 Rule 5: Weighted Target Attraction. UAVs are attracted to targets

based upon the distance to said target. That is, UAVs proceed towards closer targets

rather than further away targets.
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UR5 =




|T̂ |∑
i=0

Ti.P − U.P

dist(U.P, Ti.P )5

|T̂ | |T̂ | > 0
|N |∑
i=0

Ni.p(Ni.P − U.P )

dist(U.P, Ni.P )
|N | otherwise




(C.9)

Experimentation in [59] demonstrated the need for a weighted version of target

attraction. The purpose for the weighted component is to cause the UAVs to proceed

towards specific targets rather than towards the center of a target formation. Un-

weighted target attraction behaviors cause UAVs to move towards the target center

of mass. This behavior is not detrimental when a UAV encounters a single target

- the center of mass is that target. However, when multiple targets are known to

exist, the target center of mass is between the targets and in a place at which the

UAV may not be able to actually attack. For this reason, the behavior rule used for

target attacking must provide some way to break the multi-target detection deadlock.

The approach taken here is that the UAV attacks the closer target. Other weighting

schemes may be of more use with other simulations. However, since the targets are

homogeneous, they are all equal with respect to system performance. The preference

towards attacking closer targets with this rule can be seen in Figure (C.6)

C.1.6 Rule 6: Flat Target Repulsion. UAVs are repelled from targets if

they are within a 90% of their sensor range. The repulsion effect is uniform across all

visible targets. The range prior to activation is geared to allow this rule to operation in

conjunction to the target orbiting rule. Flat target repulsion is calculated in Equations

(C.10).

UR6 =

|T̂ |∑

i=0

(U.P − Ti.P )


 1 dist(U.P, Ti.P ) < .9U.Sr ∨ dist(U.P, Ti.P ) < Ti.Ar

0 otherwise




|T̂ | (C.10)
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Figure C.6: Field plot for weighted target attraction rule. Targets at (360, 360),
(400, 450), (500, 270). Plot assumes a sensor radius of 30km.

The purpose of the 90% range before execution is to allow UAVs to observe tar-

gets without necessarily being repulsed by them. This specific range effect is intended

to allow this rule to operate in conjunction with the orbiting and flat target attraction

rules as seen in Figure (C.2). A graphical representation of this rule operation can

be seen in figure (C.7).

C.1.7 Rule 7: Weighted Target Repulsion. Each UAV is repelled from

targets if they are within a particular range. The amount of repulsion for each UAV

is based upon how close each UAV is to each target. UAVs are more repelled from
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Figure C.7: Field plot for target repulsion rule. Targets at (360, 360), (400, 450),
(500, 270). Plot assumes a sensor radius of 30km.

close targets than they are targets that are far away. Equation (C.11) demonstrates

how this behavior rule is calculated.

UR7 =

|T̂ |∑

i=0




(U.P−Ti.P )
(U.BA.r3∗U.Sr−dist(U.P,Ti.P )).2 |T̂ | > 0 ∧ dist(U.P, Ti.P ) < U.BA.r3 ∗ U.Sr∧

U.BA.r3 ∗ U.Sr > Ti.Ar

(U.P−Ti.P )
(Ti.Ar−dist(U.P,Ti.P )).2 |T̂ | > 0 ∧ dist(U.P, Ti.P ) < Ti.Ar

0 otherwise




|t̂|
(C.11)
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This particular rule is distance weighted to cause the UAVs to be more repulsed

by individual targets rather than the center of a target formation. The difference

here is that repulsion from the target center of mass may cause a UAV to enter into a

different target’s engagement range rather than safely avoid the targets. A graphical

representation of this rule operation can be seen in figure (C.8).

Figure C.8: Field plot for weighted target repulsion rule. Targets at (360, 360),
(400, 450), (500, 270). Plot assumes a sensor radius of 30km and threshold radius of
15km.

C.1.8 Rule 8: Flat Attraction. UAVs proceed towards the center of mass

for all known targets while they are outside of a given range with the target. This

center mass is not necessarily close to any particular target. This rule, calculated
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in Equation (C.12) is intended to keep the UAVs within a distance to the targets

without creating a situation of undo risk.

UR8 =




|T̂ |∑
i=0

Ti.P − U.P |T̂ | > 0 ∧ dist(U.P, Ti.P ) ≥ .8U.Sr

|N |∑
i=0

(Ni.P − U.P ) otherwise




(C.12)

This rule is intended to cause UAVs to stop searching when they locate a target

and stay within a 80% sensor range distance to a target to facilitate coordinated

attacks. Like the constant weighting provided to the orbiting and flat target repulsion

rules, the 80% range is intended to create a maximal range of minimum range of

operation. Additionally, the constant weighting, set as it is, can combined with target

orbiting and flat repulsion to create very stable safe orbits around a target as seen in

Figure (C.2). A graphical representation of the flat attraction rule can be seen in

figure (C.9).

C.1.9 Rule 9: Evasion. UAVs move away from each other if their next

positions are too close. In this case, too close is determined to be 3 times the size

of UAVs. This rule is inspired by Crowther [24]. However, unlike his definition, this

particular implementation has application in all directions rather than simply in front

of the UAV. This rule greatly increases the survivability of UAVs during simulation

by causing them to avoid situations in which UAVs come too close.

The distance between the UAVs is calculated and truncated to a minimum value

of one in Equation (C.13). This supports multiplicative weights later in Equation

(C.15).

nDist(U.P, P ) =


 dist(U.P, P ) dist(U.P, P ) > 1

1 otherwise


 (C.13)
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Figure C.9: Field plot for weighted target repulsion rule. Targets at (360, 360),
(400, 450), (500, 270) and UAVs at (320. 360) and (400, 490). Plot assumes a sensor
radius of 30km.

Next, projected future distance is computed based upon current direction and

position. This important calculation, performed in Equation (C.14), is used to de-

termine if the evasion rule is activated in Equation (C.15).

fDist(U, T ) = dist(U.P + U.D, T.P + T.D) (C.14)

Finally, the combined close proximity repulsion are summed for each known

UAV. In summing the individual evasion values for each UAV, a vector describing the

safest direction to evade towards is generation in Equation (C.15).
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UR9 =

|N |∑

i=0




nDist(U.P,Ni.P )
3∗Size (U.P −Ni.P ) fDist(U,Ni) < 3 ∗ Size∧

fDist(U,Ni) < nDist(U.P, Ni.P ) | >
0 otherwise




|N | (C.15)

The design decision to implement 360 degree applicability rather than simply

within a frontal angle like Crowther’s implementation was due to a couple of reasons.

First of which, checking within specific angles requires more computation. Secondly,

the intended visual system for the UAVs already examines 360 degrees and is therefore

not limited to a range within visual capabilities. Lastly, by allowing a large range

of applicable directions, both involved UAVs can take action to avoid a catastrophic

impact. By only applying evasion to the frontal visual range like in [24], only the

UAVs which detect possible impacts in the frontal range take action.

Additionally, the activation of this rule upon future state positions prevents too

close positions in the future rather than present. If the rule were triggered by current

proximities, then it may already be too late to prevent a collision!

C.1.10 Rule 10: Obstacle Avoidance. UAVs are repelled from obstacles

based on two factors: whether the UAV’s direction intersects the obstacle and prox-

imity to the obstacle. Obstacle Avoidance causes the UAV to move in a direction

parallel to the obstacle if the UAV’s course intersects it. The weight of this direction

parallelization is based upon how sharply the UAV intersectst the obstacle. If the an-

gle is sharp, then parallization is minimal. Contrary to the parallization, each UAV

is repulsed from an obstacle if it is closer than half its sensor range.

The distance between a UAV and an object are computed based upon the closest

point between that UAV and the object. This is either an end point or the intersection

of a perpendicular line from the UAV to the object. The distance weighting between
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the UAV and its proximity is computed by comparison to the sensor range and the

distance to the closest point on the target. This is accomplished in Equation (C.16).

d(U,O) = U.Sr − dist(U.P,OU .Cp) (C.16)

Additionally, the sum of all distances between the UAV and known obstacles is

calculated in Equation (C.17). This is done to aid in a distance based waiting for

the total behavior in Equation (C.21).

distSum =

|O|∑
i=0

d(U,Oi) (C.17)

UR10part1 =




OV ect(Oi, U)∠(U.D−U.P )+∠(Oi.Cp−U.P )
90 ∠(U.D − U.P ) + ∠(Oi.Cp− U.P ) < 90

∧Oi.Cp = inter(U,Oi) ∧Oi.Line

0 otherwise




(C.18)

OV ect(O, U) =




O.P1 −O.P2 ∠(U.D − U.P ) + ∠(O.P1 −O.P2) <

∠(U.D − U.P ) + 〈(O.P2 −O.P1)

O.P2 −O.P1 otherwise


 (C.19)

UR10part2 =


 −U.Sr−dist(U.P,Oi.Cp)

U.Sr (Oi.Cp− U.P ) dist(U.P, Oi.Cp) < U.Sr/2

0 otherwise


 (C.20)

UR10 =

|Ô|∑
i=0

UR10,part1 + UR10,part2

distSum
d(U,Oi)

(C.21)

A graphical depiction of this rule’s effect is in figure (C.10). For the most part,

this rule keeps UAVs safe by providing a repulsion. As UAVs get closer to an obstacle,

this rule provides a way in which the UAVs avoid hitting the object.
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Figure C.10: Field plot for obstacle avoidance. Obstacles are randomly generated.
Plot assumes a sensor radius of 30km and velocity of (0,1).

C.1.11 Rule Summation and Normalization. The way in which the rules

are combined is significant. This is because it changes the influence each behavioral

rule bears upon the final direction a UAV takes. In this investigation, the rules

are weighted by the behavioral archetype values and summed. With respect to the

safety rules, evasion and obstacle avoidance, their weights are hard-coded at twice the

maximal weight for normal rules. Equation (C.22) demonstrates how the rules are

combined.

U.Dnew = (
8∑

i=1

URi

U.BA.Wi

URi
.length

) + (
10∑
i=9

URi

2

URi
.length

) (C.22)
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Equation (C.22) demonstrates how the various behavior rules are combined.

This is accomplished through a weighted summation. Within the first summation, the

first 8 behavior rules are combined. These rules are allowed to evolve within the sys-

tem. Additionally, the values derived from each rule are normalized to a unit vector.

This is performed so that the results of all rules, when combined with their behavior

archetype weight fall within a [0.0...1.0] interval. The second summation functions

similarly to the first. It addresses behavior rules 9 and 10 which are important for

UAV safety. These rules are normalized to a vector of length 2. This is done to allot

more behavioral influence, regardless of evolutionary attributes, to the safety rules.

Other potential ways to combined the rules include just adding their weighted

components without normalizing the rule based upon its length. When the rules are

summed without prior normalization, rules with longer vector results have undo in-

fluence upon the UAVs next behavior. That is to say, if a particular rule returns a

direction vector that is much larger than the others, then it has potentially unwar-

ranted influence upon the system. Without early normalization, the rules with longer

resulting vectors tend to overwhelm the more subtle rules.
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Appendix D. Bee Attack Code

package swf.uav.Behaviors;

import java.util.ArrayList;

import swf.core.MathVector;

import swf.core.StaticValues;

//import swf.fileMan.logFileTester;

import swf.uav.NeighborhoodAgent;

import swf.uav.NeighborhoodTarget;

import swf.uav.UAV;

/**

* This method uses the three step process that bees use to choose a new hive.

* First recon, second recruit, third threshold choose. Inspiration from

* Visscher’s paper entitled "Choosing a home: how the scouts in a honey bee

* swarm perceive the completion of their group decision making"

*

* @author dnowak

*

*/

public class BeeAttack extends BehaviorTemplate {

boolean votedFlag = false;

// private logFileTester log = new logFileTester("tracker.txt");

UAV closestTarget = UAVLink;

162



/**

* the contstruct for the attack sequence

*

* @param uav

*/

public BeeAttack(UAV uav) {

super(uav);

numberInputWeights = 2;

}

/*

* (non-Javadoc) If the poisition in the attack holder from UAV is UAVs

* position then the agent is in a state without a current target If the

* choosenTarget is empty the behavior does not have enough information to

* make a deicision It needs to do more Recce otherwise Move torawrds

* intended target

*

* @see swf.uav.Behaviors.BehaviorTemplate#calculateVector()

*/

@SuppressWarnings("static-access")

@Override

protected MathVector calculateVector() {

initializeBeeAttack();

analyzeTargetArea();

if (choosenTarget == null) {

returnVector = recceTargetArea();

} else {

163



returnVector = moveTorwardsTarget();

}

return returnVector;

}

@SuppressWarnings("static-access")

private void initializeBeeAttack() {

if (!(choosenTarget == null) && !choosenTarget.isAlive()) {

choosenTarget = null;

}

if (choosenTarget == null) {

votedFlag = false;

}

if (choosenTarget != null){

}

// set the subcontroller wieght to the ratio of the sub swarm size

subControllerWeight = ((subControllerWeight + 17) / 34)

* UAVLink.getNeighbors().size();

// search for the closest target

double bestDist = Double.MAX_VALUE;

for (NeighborhoodTarget workTarget : UAVLink.getNeighborTargets()) {

UAV tempTarget = workTarget.getTarget();

double testDist = tempTarget.getDistanceTo(UAVLink);

if (testDist < bestDist && tempTarget.isAlive()) {

closestTarget = tempTarget;

bestDist = testDist;
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}

}

if(UAVLink.equals(closestTarget) ||(UAVLink.getNeighborTargets().equals(null))){

UAVLink.setRecceFlag(false);

UAVLink.setReconKeyPost(new MathVector[2]);

}

}

/**

* Look at all of the targets in the list, find the closest and continue a

* recce loop around it -- in theory it should bounce from target to target

* if the engagement rings intersect

*

* @return MathVector - un-normalize heading vector

*/

@SuppressWarnings("static-access")

private MathVector recceTargetArea() {

MathVector recceVector = new MathVector(StaticValues

.getDomainDimension());

// save the position and direction and move into recce state

if (!closestTarget.equals(UAVLink) && !UAVLink.isRecceFlag()) {

MathVector[] reconKeyPost = new MathVector[2];

reconKeyPost[0] = new MathVector();

reconKeyPost[0] = UAVLink.getPosition();
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reconKeyPost[1] = new MathVector();

reconKeyPost[1] = UAVLink.getDirection();

UAVLink.setReconKeyPost(reconKeyPost);

UAVLink.setRecceFlag(true);

}

// move towards target if it slips outside of sensor range

MathVector recceMoveCheck = (closestTarget.getPosition().sub(UAVLink.getPosition()));

if (recceMoveCheck.getLength() > UAVLink.getSensorRange()){

recceVector = recceMoveCheck;

} else {

// sets the orbit as the closest target or none if it is itself

recceVector = WeightTargetOrbit.helperOrbit(UAVLink, closestTarget);

}

if(!UAVLink.isTarget()&& !UAVLink.equals(closestTarget)){

@SuppressWarnings("unused")

double dirctTo = closestTarget.getPosition().sub(UAVLink.getPosition()).findAngle();

}

return recceVector;

}

/**

*

* looks to see if the UAV has reached its initial target detection point It

* is known at the original spot after moving around the target area if
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* three things are true: Original position in the sensor The direction is

* within 45* of the original direction and Original position in front

*/

@SuppressWarnings("static-access")

private void analyzeTargetArea() {

// add voted flag

if (UAVLink.isRecceFlag()) {

double diffDir = ((Double) UAVLink.getDirection().sub(

UAVLink.getReconKeyPost()[1]).getLength()).doubleValue();

diffDir = Math.abs(diffDir);

double diffPos = ((Double) UAVLink.getPosition().sub(

UAVLink.getReconKeyPost()[0]).getLength()).doubleValue();

diffPos = Math.abs(diffPos);

double directionTo = (UAVLink.getReconKeyPost()[0].sub(UAVLink

.getPosition())).findAngle()

- UAVLink.getDirection().findAngle();

directionTo = Math.abs(directionTo);

if (diffPos < UAVLink.getSensorRange() && diffDir < 45.0

&& (directionTo >= 300 | directionTo <= 60)) {

UAVLink.setReconKeyPost(null);

UAVLink.setRecceFlag(false);

UAV workingTarget = analyzeTargetSet();

choosenTarget = workingTarget;

}

}

}

/**

* looks at the current information of the target area and determines the
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* most oppurtune target

*

* @return UAV

*/

private UAV analyzeTargetSet() {

UAV votedTarget = null;

ArrayList<UAV> tempTargetList = new ArrayList<UAV>();

double bestDist = Double.MAX_VALUE;

double leastOverlap = Integer.MAX_VALUE;

// count the number of overlapping engagement rings

for (NeighborhoodTarget workTarget : UAVLink.getNeighborTargets()) {

UAV tempTarget = workTarget.getTarget();

int tempOverlap = getOverlappingEngagement(tempTarget);

if (tempOverlap < leastOverlap) {

tempTargetList.clear();

tempTargetList.add(tempTarget);

} else if (tempOverlap == leastOverlap) {

tempTargetList.add(tempTarget);

}

}

// choose the closets of the weakest targets

if (tempTargetList.size() > 0) {

for (UAV tempTarget2 : tempTargetList) {

double workDist = ((Double) tempTarget2.getPosition().sub(

UAVLink.getPosition()).getLength()).doubleValue();

if (bestDist > workDist) {

votedTarget = tempTarget2;
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}

}

}

return votedTarget;

}

/**

* @param tempTarget

* @return in - number of overlapping engagement rings on that target

*/

private int getOverlappingEngagement(UAV tempTarget) {

int returnNum = 0;

for (NeighborhoodTarget workTarget : UAVLink.getNeighborTargets()) {

UAV tempTargetNeighbor = workTarget.getTarget();

double distTo = ((Double) tempTargetNeighbor.getPosition().sub(

tempTarget.getPosition()).getLength()).doubleValue();

if (distTo < tempTargetNeighbor.getSensorRange()) {

returnNum++;

}

}

return returnNum;

}

/**

* If given the clearance to move towards a target Goes towards if the

* attack numbers are approipriate or loiters at perimeter waiting for other

* to join attack

*

* @return MathVector
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*/

@SuppressWarnings("static-access")

private MathVector moveTorwardsTarget() {

MathVector direction = choosenTarget.getPosition().sub(

UAVLink.getPosition());

double dist = direction.getLength();

int numberVoted = getVotingNeighbor(choosenTarget);

if ((UAVLink.getAttackRange() > dist)

|| (numberVoted > subControllerWeight)) {

returnVector = direction;

} else {

returnVector = WeightTargetOrbit

.helperOrbit(UAVLink, choosenTarget);

}

return returnVector;

}

/**

* Looks at the neighborhood and determines who else is attacking the same

* target and returns the count.

*

* @return int - number of agents attack same target

*/

private int getVotingNeighbor(UAV choosenTarget) {

int returnCtr = 0;

for (NeighborhoodAgent workingAgent : UAVLink.getNeighbors()) {

if (workingAgent.getAgent().getVoted() == choosenTarget) {
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returnCtr++;

}

}

return returnCtr;

}

}
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Appendix E. Differential Evolution Controller

package swf.uav.control;

import java.util.BitSet;

import java.util.Vector;

import swf.core.DataBlackboard;

import swf.core.MathVector;

import swf.core.StaticValues;

/**

* This class attempts to replace the NN control that orginially existed in the

* simulation. As a result there is artifact code.

*

* The actual control attempts to determine based on sensory information the

* abstract state. The process is similar to DE but used in the input spaces as

* opposed to the solution spaces. As such the position and second order

* variables of the state are controlled and optimized by the GA. (similar to

* the NN implementation)

*

* All inputs of sensory information must be normalized.

*

* @author dnowak

*

*/

public class BehaviorMatrixDE extends BehaviorMatrix {

private double randomFactor = .5;
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int returnState = 0;

/**

* @param in

* @param genes

*/

public BehaviorMatrixDE(double[] in, BitSet genes) {

super(in, genes);

}

/**

* Arifact code (non-Javadoc)

*

* @see swf.uav.control.BehaviorMatrix#nextStateD(double, double, double[])

*/

@Override

public int nextStateD(double s1, double s2, double[] s3) {

return returnState;

}

/**

* Arifact code (non-Javadoc)

*

* @see swf.uav.control.BehaviorMatrix#nextStateP(double, double, double[])

*/

@Override

public int nextStateP(double s1, double s2, double[] s3) {
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int tempNextD = nextStateD(s1, s2, s3);

if (Math.abs(DataBlackboard.rand.nextDouble()) > randomFactor) {

tempNextD = DataBlackboard.rand.nextInt(StaticValues

.getNumbBuckets());

}

returnState = tempNextD;

return returnState;

}

/**

* this implemenation looks at only the weight euclidean distance

* which is more precise than the coverage approach

* (non-Javadoc)

*

* @see swf.uav.control.BehaviorMatrix#nextStateP(double[])

*/

@Override

public int nextStateP(double[] inputSensors) {

int tempNextD = nextStateD(inputSensors);

// randomize

if (Math.abs(DataBlackboard.rand.nextDouble()) > randomFactor) {

tempNextD = DataBlackboard.rand.nextInt(StaticValues

.getNumbBuckets());
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}

returnState = tempNextD;

return returnState;

}

/**

* This implemenation looks at only the weight euclidean distance

* which is more precise than the coverage approach

* (non-Javadoc)

*

* @see swf.uav.control.BehaviorMatrix#nextStateD(double[])

*/

@Override

public int nextStateD(double[] inputSensors) {

return getBestBA( inputSensors);

}

/**

* Chooses that BA from all the behaviors

* @param inputSensors

* @return int

*/

private int getBestBA(double[] inputSensors) {

int numbSens = StaticValues.getNumbSenses();

int numBucks = StaticValues.getNumbBuckets();

// build MathVector for sensor inputs

MathVector inputSensorMV = new MathVector(inputSensors);
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double bestBA = Double.MAX_VALUE;

int keeper = 0;

// loop through all of the buckets

for (int testBA =0; testBA < numBucks; testBA++) {

double[] tempbaVal = new double[numbSens / 2];

double[] tempbaWeights = new double[numbSens / 2];

int placeHold = testBA * numBucks;

int ctr = 0;

// build array of doubles for that BA control weights

for (int workNum = placeHold; workNum < placeHold + (numbSens); workNum+=2) {

tempbaVal[ctr] = componentWeights[workNum];

tempbaWeights[ctr] = componentWeights[workNum+1];

ctr++;

}

// build math vector from that list

MathVector bAvalues = new MathVector(tempbaVal);

MathVector weightVec = new MathVector(tempbaWeights);

// get distance

double testReading = inputSensorMV.weightEuclideanDist(bAvalues, weightVec);

// test distance best

if (testReading < bestBA) {

bestBA = testReading;

keeper = testBA;

}

}
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return keeper;

}

/**

* takes all the normalize sensor inputs and expands them out to the size of

* the optimization controls in the BA as governed by the number of bits in

* the genotype

*

* @param inputSensors

* @return double[]

*/

@SuppressWarnings("unused")

private double[] scaleSensorInputs(double[] inputSensors) {

int inputDomainSize = ((Double) Math.pow(2, StaticValues

.getNumbBuckets())).intValue();

for (double workingInput : inputSensors) {

workingInput = (workingInput * inputDomainSize)

- (inputDomainSize / 2);

}

return inputSensors;

}

/**

* returns the winning behavior by chosing from the set of behaviors

* in the winner vector

* @param winner

* @param inputSensors
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* @return int

*/

@SuppressWarnings("unused")

private int getBestBA(Vector<Integer> winner, double[] inputSensors) {

int numbSens = StaticValues.getNumbSenses();

int numBucks = StaticValues.getNumbBuckets();

// build MathVector for sensor inputs

MathVector inputSensorMV = new MathVector(inputSensors);

double bestBA = Double.MAX_VALUE;

int keeper = 0;

// test each BA against the inputs

for (int testBA : winner) {

double[] tempbaVal = new double[numbSens / 2];

int placeHold = testBA * numBucks;

int ctr = 0;

// build array of doubles for that BA control weights

for (int workNum = placeHold; workNum < placeHold + (numbSens / 2); workNum++) {

tempbaVal[ctr] = componentWeights[workNum];

ctr++;

}

// build math vector from that list

MathVector bAvalues = new MathVector(tempbaVal);

// get distance

double testReading = inputSensorMV.euclideanDist(bAvalues);

// test distance best

if (testReading < bestBA) {
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bestBA = testReading;

keeper = testBA;

}

}

return keeper;

}

/**

* Check to see if that BA cover the input state

*

* @param i

* @param inputSensors

* @return boolean

*/

@SuppressWarnings("unused")

private boolean checkBucket(int i, double[] inputSensors) {

int tracker = 0;

// int numSense = StaticValues.getNumbSenses();

for (double workingValue : inputSensors) {

int workingConVal = tracker;

if (!(workingValue < componentWeights[workingConVal]

+ componentWeights[workingConVal + 1])

|| !(workingValue > componentWeights[workingConVal]

- componentWeights[workingConVal + 1])) {

return false;

}

tracker += 2;

}
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return true;

}

}
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