
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2008

Software Obfuscation with Symmetric Cryptography Software Obfuscation with Symmetric Cryptography

Alan C. Lin

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Lin, Alan C., "Software Obfuscation with Symmetric Cryptography" (2008). Theses and Dissertations.
2754.
https://scholar.afit.edu/etd/2754

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholar.afit.edu%2Fetd%2F2754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2754?utm_source=scholar.afit.edu%2Fetd%2F2754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

SOFTWARE OBFUSCATION WITH

SYMMETRIC CRYPTOGRAPHY

THESIS

Alan C. Lin, First Lieutenant, USAF

AFIT/GCS/ENG/08-15

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the U.S.

Government.

AFIT/GCS/ENG/08-15

SOFTWARE OBFUSCATION WITH

SYMMETRIC CRYPTOGRAPHY

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

Alan C. Lin, BS

First Lieutenant, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/08-15

SOFTWARE OBFUSCATION WITH

SYMMETRIC CRYPTOGRAPHY

Alan C. Lin, BS

First Lieutenant, USAF

Approved:

_________/signed/____________________ ________
J. Todd McDonald, Lt Col, USAF (Chairman) Date

_________/signed/____________________ ________
Stuart Kurkowski, Lt Col, USAF (Member) Date

_________/signed/____________________ ________
Dr. Richard Raines (Member) Date

AFIT/GCS/ENG/08-15

Abstract

Software protection is of great interest to commercial industry. Millions of

dollars and years of research are invested in the development of proprietary algorithms

used in software programs. A reverse engineer that successfully reverses another

company‘s proprietary algorithms can develop a competing product to market in less time

and with less money. The threat is even greater in military applications where adversarial

reversers can use reverse engineering on unprotected military software to compromise

capabilities on the field or develop their own capabilities with significantly less

resources. Thus, it is vital to protect software, especially the software‘s sensitive internal

algorithms, from adversarial analysis.

Software protection through obfuscation is a relatively new research initiative.

The mathematical and security community have yet to agree upon a model to describe the

problem let alone the metrics used to evaluate the practical solutions proposed by

computer scientists. We propose evaluating solutions to obfuscation under the intent

protection model, a combination of white-box and black-box protection to reflect how

reverse engineers analyze programs using a combination white-box and black-box

attacks. In addition, we explore use of experimental methods and metrics in analogous

and more mature fields of study such as hardware circuits and cryptography. Finally, we

implement a solution under the intent protection model that demonstrates application of

the methods and evaluation using the metrics adapted from the aforementioned fields of

study to reflect the unique challenges in a software-only software protection technique.

iv

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Lt Col J.

Todd McDonald, for his guidance and support throughout the course of this thesis effort.

The insight and experience was certainly appreciated. I would also like to thank

AFRL/RYT and AFOSR for sponsoring our Program Encryption Group (PEG). I would

also like to acknowledge fellow PEG members, Maj Ken Norman and Capt Moses James,

for being a sounding board and a sanity check for my work.

Most importantly, I want to thank my loving, understanding, and patient wife for

her support throughout these past months at AFIT.

 Alan C. Lin

v

Table of Contents

Page

Abstract ..v

Acknowledgments.. iv

Table of Contents ...v

List of Figures ... vii

List of Tables ... ix

I. Introduction ...1

1.1 Background...2
1.2 Problem Under Investigation ..4
1.3 Scope and Methodology ...5

1.4 Assumptions and Limitations ...7
1.5 Preview ...7

II. Literature Review ..8

2.1 Chapter Overview ...8
2.2 Objectives of Software Protection ..8
2.3 Attacks on Software ...8
2.4 Data Cryptography and the Black-box Model..9
2.5 Software Obfuscation and the White-Box Model ..12

2.6 Theoretical Obfuscation and the Virtual Black-Box ..15
2. 6 Applications ...17

2.7 Software-based Protection ..20
2.8 Current Solutions ..22
2.9 Bridging Theory and Practice ...27

III. Methodology ..28

3. 1 Chapter Overview ..28
3.2 Problem Definition ...28

3.3 Alternate Obfuscation Model ...31

3. 4 Function Tables ...37

3.5 Function Composition with Function Tables ...39
3.6 Output Recovery ...43
3.7 Developing an Implementation ..48

vi

3.8 Approach ..49
3.9 System Boundaries ...51
3.10 Workload and Factors ...54
3.11 Metrics ..55
3.12 Parameters ..58
3.13 Evaluation Technique ...59
3.14 Experimental Design ..60
3.15 Chapter Summary ...61

IV. Analysis and Results ..62

4.1 Chapter Overview ...62
4.2 Results of Experimental Benchmark Programs ..62
4.3 Summary...73

V. Conclusions and Recommendations ..75

5.1 Chapter Overview ...75
5.2 Research Goals ...75

5.3 Conclusions of Research ..77
5.4 Significance of Research ..78
5.5 Recommendations for Future Research..78
5.6 Summary...79

Appendix A: Black-box Analysis of c17 Against Random Functions80

Appendix B: Black-box Analysis of y = a * b + c Against Random Functions84

Appendix C: Black-box Analysis of Fibonacci Against Random Functions88

Bibliography ..92

Vita ..96

vii

List of Figures

Page

Figure 1. American B-29 (left) and Soviet Tu-4 (right) .. 2

Figure 2. Basic Data Cryptography Model .. 10

Figure 3. Software Obfuscation Model .. 12

Figure 4. Program Encryption Model .. 15

Figure 5. Intent Protection Obfuscation Model ... 33

Figure 6. Data cryptography (left) and Intent Protection (right) 34

Figure 7. Obfuscation and Random Programs ... 36

Figure 8. A Generic Function and its Function Table Representation 37

Figure 9. Generic Function (left) and Generic Encryption Function (right) 38

Figure 10. Function composition of f and g where ym xn ... 40

Figure 11. Classical Client-server (top) and Partial Client-server (bottom) 44

Figure 12. Output Recovery for h(xm) = f(g(xm))= yp .. 45

Figure 13. Watermarking the Composite Function yp=f(g(xm)) with Watermark yn 45

Figure 14. System Under Test .. 53

Figure 15. Signature Collisions in 5-2-X ... 64

Figure 16. Signature Collision to Intermediate Node Size .. 65

Figure 17. Standard Deviations of All C17 Output Bits by Metric 67

Figure 18. Standard Deviations of All y = a * b + c Output Bits by Metric 67

Figure 19. Standard Deviations of All Fibonacci Output Bits by Metric 67

Figure 20. Standard Deviations of All AES Output Bits by Metric 68

viii

Figure 21. Approximate Entropy of AES and 5-128-X ... 70

Figure 22. Original Source Code of y = a * b + c ... 71

Figure 23. Decompiled Source Code by Jadclipse .. 71

Figure 24. Decompiled Source Code of CFT implementation .. 72

ix

List of Tables

Page

Table 1. Differences Between Confidentiality of Data and Execution 13

Table 2. Measures in Software Engineering and Cryptography 29

Table 3. List of Semantic Transformations and Sample Input and Output 41

Table 4. Pseudo-code for a Conventional and Unprotected Deterministic Function 48

Table 5. Possible Outcomes for System Services .. 54

Table 6. Benchmark Functions .. 55

Table 7. Statistical Test to Analyze Function Output .. 56

Table 8. Summary of Collberg and Others‘ Obfuscation Properties 58

Table 9. Non-unique Output Signature Characteristics of 1000 Random Functions 63

Table 10. Statistical Results of AES and a Random Program Set 69

1

SOFTWARE OBFUSCATION WITH

SYMMETRIC ENCRYPTION

I. Introduction

Information assurance is traditionally comprised of two components: network

security and operation system integrity. Software protection is intended to complement

this traditional viewpoint with an application-centric approach to protect Department of

Defense (DoD) software critical to national security. The goal of this research is to

improve protection of DoD scientific, engineering, and simulation software within their

normal operating environment while minimizing impact on code performance and

usability (Hughes and Stytz, 2003). This research attempts to provide a model and a

technique for software protection that produces quantifiable protection against reverse-

engineering analysis. The model and technique address unique difficulties in practical

implementation of software application protection with a software-only approach.

Methodology for this research adapts practices in functionally related fields such as data

cryptography and hardware circuit protection.

The purpose of this chapter is to outline the efforts of this software protection

research and will address the background, the investigated problem and the methodology.

This paper intends to support AFRL‘s Software Protection Initiative (AFRL/SPI) in

producing techniques that can measurably secure applications through integration with

critical software.

2

1.1 Background

 Reverse engineering is the process by which a fabricated product is deconstructed

to understand its design, architecture, and underlying technological properties (Eilam,

2005:xxiv). Historically, this process was successful in assimilating the technological

edge of an adversary. Famous and successful WWII examples include: American and

British Jerry cans from German gasoline cans, Soviet R-7 rockets from German V2

rockets, and Soviet Tupolev Tu-4 strategic bomber from American B-29s as seen in

Figure 1 (―Reverse,‖ 2007; ―B-29,‖ 2007; ―Tupolev,‖ 2007).

Figure 1. American B-29 (left) and Soviet Tu-4 (right)

In post-WWII events, the crash of an F-117A in 1999 during the Kosovo conflict

resulted in the capture of a second-generation stealth platform by the Yugoslavians, who

subsequently sold parts of the wreckage to the Russians (Richelson, 2001:62). While no

official reports indicate that the Russians have made significant use of the wreckage, it is

conceivable that the exploitation of F-117A technologies from the wreckage could be

used to advance anti-stealth technologies, or sold to nation-states aspiring to advance

their own stealth programs (Carlson, 1999). The crash of an US Navy EP-3 intelligence

aircraft off the coast of China in 2001 is another often cited example of where military

3

hardware was lost to foreign nation-states. In this instance, losing the hardware asset was

potentially less severe than losing the software installed on the platform; CNN reports

that the airplane‘s most sensitive components were the ―software and encryption devices

used for unscrambling military codes (―Plane,‖ 2001).‖

The old paradigm of software security is relatively weak. Previously, military

technology software required computational power available only on high performance

computing (HPC) assets that were safeguarded by export control laws. HPC trade

regulations, therefore, indirectly protected all of the state-of-the-art defense applications.

However, with the advancement of computer hardware technology, theft of software no

longer necessitates theft of corresponding hardware (Hughes and Stytz, 2007). As an

example, Xiaodong Meng, in 2006, pleaded guilty under espionage charges for exporting

Quantum3D proprietary software products to China, Thailand, and Malaysia (Department

of Justice, 2006); the international-trade restricted software products are exclusively used

to train US military fighter pilots (―U.S. Arms Software,‖ 2007).

As shown by the Meng incident, traditional information assurance protects the

data stored on the system and the data travelling on the network, but not the high-valued

applications that actually generate the data.

Many research areas credit software for achieving distinct technological

advancements; investments made by the DoD over the last three decades have yielded

technological advantages in electromagnetic modeling for radar signature predictions,

fluid dynamic simulations for aircraft testing, and many other critical fields. The lack of

quantifiable software protection mechanisms irresponsibly risks unauthorized

4

exploitation of high value applications and threaten to erode our technological advantage.

Without safeguards, adversaries can reverse our applications to develop countermeasures

to our weapons, save on research and development costs, and build more advanced

weapons (Hughes and Stytz, 2007).

Thus, in congruence with AFRL/SPI‘s mission statement, software technologies

critical to national defense must be protected from reverse-engineering (Hughes and

Stytz, 2007). The overall goal of this research is to develop an algorithm to protect

software from reverse-engineering attacks and select metrics and benchmarks to

quantifiably evaluate the developed algorithms. We examine the general software

protection problem, analyze current interpretations and models of the problem, and study

practical implementations of specific techniques. It is the intent of this research to

describe a model that accurately reflects the software protection problem and demonstrate

the quantifiable security of the proposed protection algorithm under the model using

benchmark programs.

1.2 Problem Under Investigation

AFRL/SPI identifies four main thrust areas for research in long-term application

security: algorithms, environments, benchmarks and metrics, and integration. Algorithms

research addresses the need for techniques that produce protected software. Software

environment research focuses on methods to protect software throughout its entire

development process. Benchmarks and metrics are necessary so for consistent and

accurate measurement of the potency and cost of proposed protection techniques.

Integration research focuses on efficient composition of both multiple application

5

security techniques and application security techniques with operation and network

security measures (Hughes and Stytz, 2007).

This research supports two of the four thrusts: developing an algorithm to secure

software and identifying metrics to stratify potency and cost. To satisfy these objectives,

a series of investigative tasks was completed. First, we studied current software

protection approaches for their merits and deficiencies, in addition to possible research

directions based on their results. Second, we conducted analysis on techniques in fields,

such as data cryptography and hardware anti-tampering, that share similar concerns

regarding information protection. Third, we examined the uniqueness of the software

operating environment to understand the specific challenges in a software-only solution.

Furthermore, by understanding the nuances of the software operating environment, we

can determine what approaches and techniques are feasibly adoptable or adaptable from

other environments to function within the software environment. Finally, we test

applications and evaluate them against developed criteria to examine efficacy of the new

technique upon implementation. Applying the algorithm to actual software code creates

a visual picture on the qualitative effectiveness and practicability of the model.

In summary, the delineated tasks approach the problem by looking outside the

software domain, defining the uniqueness of the domain, and translating the techniques to

work successfully back in the domain.

1.3 Scope and Methodology

Software protection is a broad topic covering a vast array of subjects including

error handling, buffer checking, and mature software engineering. This research focuses

6

on software protection as a means to prevent reverse-engineering of software algorithms.

This research intends to describe a model for evaluating software protection, select

metrics to evaluate security of within the model, develop benchmark programs to test

against the model and develop an applicable software protection technique. The

following research actions were required: review of established software protection

models and related information security disciplines in literature, development of a

protection algorithm, and demonstration of the developed algorithm using tools and

techniques openly available to reverse-engineers.

We selected the virtual black-box model (Barak and others, 2001:2) and the

obfuscating transform model (Collberg and others, 1997:2-7) as the two mainstream

models for application protection; the software protection community recognizes both

models as cornerstone works in this research topic. Of key interest are how each model

describes the problem, what solutions are provided under each model, and where

additional opportunities for refinement exist.

Data cryptography and hardware security, particularly field-programmable gate

arrays (FPGAs), were selected as related fields of study, primarily for their emphasis on

information security and analogous characteristics to the software protection problem.

We examine both research areas to ascertain how security is characterized, what

protective mechanisms are used, and how protective mechanisms function to secure

information from adversaries.

7

1.4 Assumptions and Limitations

The finite number of test scenarios and generated benchmark programs is a limit

on how well we can evaluate our proposed methodology. In addition, the obfuscation

algorithm‘s ―stamina‖ outside the established test environment remains to be validated by

the cryptographic community following extensive real world assessment. In addition,

known assumptions of the task include future validity of adapted techniques and

computational power based on historical growth trends.

1.5 Preview

Chapter II provides an overview of the current research trends in theoretical and

practical obfuscation. We also present terminology and key concepts commonly used

within the field of software protection. Chapter III details the methodology for

construction of the security model and protection technique in addition to the selection of

metrics and design of benchmarks. Chapter IV reports on the results of the metrics,

benchmarks, and techniques. In addition, we provide an objective evaluation of the

proposed protection algorithm‘s efficacy based upon predefined criteria established in

Chapter III. Chapter V summarizes the results of the research and highlights future

research areas such as domains outside the software environment that may be able to

benefit from this research.

8

II. Literature Review

2.1 Chapter Overview

This chapter examines research literature regarding information protection for

adapting security techniques in designing and evaluating a general, efficient, and

measurable software-only software protection method.

2.2 Objectives of Software Protection

The broad goal of software protection is to secure software or sensitive portions

of the software from unauthorized analysis and tampering. Common applications for

software protection exist in domains such as digital rights management (DRM),

embedded systems, cryptographic software and mobile agents. For clarification, software

protection is primarily concerned with confidentiality of software execution rather than

confidentiality of the executed data (Yasinsac and McDonald, 2007:8; Loureiro and

others, 2002:3).

2.3 Attacks on Software

In order to obtain these secrets from software, an adversary commonly employs

two forms of attacks on software: analysis and tampering. Software analysis is the most

crucial step to successful reverse engineering. Once an attacker understands how the

internal algorithms function, the attacker can develop countermeasures, strip the

algorithm for other programs, or extract information embedded in the algorithms,

depending on his intent.

9

Tampering is purposeful modification of the software‘s behavior. A common

example of tampering is applying a software patch to circumvent serial number copy

protection mechanisms. Though discussed as a separate form of attack, analysis and

tampering are closely related. At least a minimal amount of analysis is required prior to

tampering; otherwise, the tampering attempt would be a series of random changes and

unlikely to inflict the behavior desired by the adversary. Tampering is also commonly a

part of analysis. As an extension of the previous copy protection example, an attacker

can first perform an analysis on the serial number checker in order to build a patch to

bypass the protection mechanism. During the analysis, an attacker may inject malicious

code into the serial checker to better understand how it works through observation of its

altered behavioral patterns (Cappaert and others, 2004:2).

While we emphasize counter-analysis approach to software protection in this

research, we consider techniques regarding anti-tampering due to the tight coupling

between the two forms of attack. We also discuss general security models to better

understand the context in which the attacks operate.

2.4 Data Cryptography and the Black-box Model

Cryptography, the practice and study of hiding information, is a related field of

study that involves keeping secrets and is useful as a framework in illustrating the key

concepts of software protection.

In the basic cryptographic model, two parties, Alice and Bob, want to

communicate secretly with one another. In this model, Alice and Bob implicitly trust

each other and use a pre-shared key to encipher and decipher messages. Eve, an un-

10

trusted party, can observe and intercept any messages going between Alice and Bob as

pictured in Figure 2. For the purpose of consistency, Alice and Bob will always be

trusted parties while Eve will also always be a non-trusted party when illustrating

security concepts and models (―Alice and Bob,‖ 2007).

Figure 2. Basic Data Cryptography Model

This basic data cryptography model illustrates the concept of black-box security

because the security strength is derived from the secret key used in the cryptographic

primitive and not from hiding how the cryptographic primitive or how the underlying

algorithm works. Eve has access to the same cryptographic algorithms that Alice and

Bob uses to encrypt and decrypt the messages. However, without the secret key, Eve is

unable to decrypt any of the messages.

Because Eve has full access to the algorithm behind the cryptographic primitive,

she can conduct a black-box attack—a generation of any or all input/output (I/O) pairs.

Then using statistical analysis, such as a frequency, linear or differential analysis, she can

attempt to discern a predictable pattern between the input and output that may reveal

information about the key or message. Strong encryption algorithms are designed to

11

produce high entropy or randomness in the output to defeat statistical analysis (Preneel

and others, 2003:13). In addition, strong encryption algorithms are also designed to make

it too computationally expensive for Eve to enumerate all I/O pairs. Otherwise, it would

be possible for Eve to first generate all I/O pairs, create a lookup table (LUT) of all

possible I/O, and finally decrypt encoded messages from Alice or Bob against the LUT.

The reason it is not currently possible for Eve to build a single LUT for a strong

encryption scheme is because the computation needed to generate all I/O pairs is

currently infeasible. For instance, in the case of the Advanced Encryption Standard

(AES) which uses 128-bit keys and operates on messages in 128-bit blocks, generating

the LUT would require computation and storage of 1.4 * 1079 bits (2128 keys * 2128 blocks

* 128 bits/block) or 1.8 *1069 gigabytes (GB). The notable caveat to encryption strength

is that what may be strong presently may not always be strong; the Data Encryption

Standard (DES) was once considered strong, but has since been determined weak due to

improvements in hardware that make it possible to crack the key in hours (―Data

Encryption Standard,‖ 2007).

It is important to note that encryption strength is not dependent on the secrecy of

the algorithm. Cryptographic community approved algorithms such as AES have open-

source implementations and undergo a standardized evaluation process. This adheres to

one of Kerckhoff‘s cryptography principles where the strength of encryption should not

be based on the obscurity of the encryption algorithms or the lack of understanding in

how the algorithms operate (―Kerckhoff‘s principle,‖ 2007). The open-sourced nature of

cryptographic primitives also allows developers to implement the algorithms as designed

12

in any cryptosystem as a measure to prevent improper implementation from inadvertently

weakening the strength of the encryption algorithm.

2.5 Software Obfuscation and the White-Box Model

We make a few important observations about the black-box model that highlights

characteristics of the white-box security model and the associated challenges with respect

to software protection. The first observation is distinguishing what is secret and what the

secret protects. In data cryptography, the pre-shared key is the secret used to hide the

message as seemingly garbage data. In software protection, the software program or

more specifically, the algorithm is the secret. Thus, something must prevent Eve from

analyzing how the secret algorithm works. This leads to the second critical observation

that Alice and Bob, at the two ends of the encryption/decryption process, are both trusted

parties in data cryptography. In contrast, Alice must cooperate with Eve, the un-trusted

party in the software protection scenario. Figure 3 illustrates the relationship between

Alice and Eve in the standard software protection model to contrast their relationship in

the basic cryptography model shown in Figure 2.

Figure 3. Software Obfuscation Model

13

A third observation shows the significance of this fact. In the traditional

cryptographic model, Eve is not involved in the encryption and decryption process that

occurs at the ends of the secret sharing process; she is, therefore, never privy to the secret

that enables secure message transfer. Software protection, in contrast, requires her to

either implicitly or explicitly know the secret because the executable code is the secret

and she has the code. This yields yet another observation. An enciphered message

passed in the open is useless except to someone with the proper decryption key.

Software, however, must be at least interpretable by a compiler to execute; otherwise,

there would be no reason for Alice to give Eve the program if Eve could not execute it.

This, in turn, means that even after protection mechanisms are applied, the secret must

remain interpretable on Eve‘s machine.

Table 1 is a summary of the distinctions between confidentiality of data

(cryptography) and confidentiality of execution (software obfuscation). Of note, there

exists a distinction between program structure, typically the source code, and program

functionality, the algorithm‘s I/O. The distinctions between the data cryptography

security model section illustrate that software protection does not conform well to the

black-box security model alone.

Table 1. Differences Between Confidentiality of Data and Execution

Confidentiality Data Execution

Secret Object key program
Protected Object message program structure
Distributed or Public Object encrypted message program functionality
Actors privy to Secret Object Alice, Bob Alice
Actors accessing Protected Object Alice, Bob Eve
Actors denied Secret Object Eve Eve

14

Because Eve controls the operating environment of the software, the host

environment can be used against the mechanisms protecting the application. Chow and

others specifically states that in a white-box attack context, the adversary has three

capabilities. First, the cryptographic software shares a host with the fully-privileged

attack software with complete access to implementations of encryption algorithms.

Because the attack software has the maximum (―admin‖) privileges allowed on the host,

the target software cannot expect access rights within environment to offer any form of

protection from the attack software. Second, dynamic execution of the target program is

observable. This fact implies that Eve can monitor the execution of the target program‘s

individual instructions to learn each instruction‘s behavior. Closely tied is the third

capability where the adversary has complete view of the internal algorithm and can alter

it at will. Combined with the second capability, the adversary is thus able to see the

entire algorithm, run it line by line, and alter the instructions to analyze the target

program. This capability allows the aforementioned, tampering in the process analysis,

whereby Eve can inject code into the target program in order to gain understanding of

how the program works (Chow and others, 2002:4).

Noting these capabilities, it is possible to understand why symmetric pre-shared

key cryptographic primitives are strong in the black-box security model but vulnerable in

the white-box security model. An example of this fact is the program encryption

technique which encrypts a program and decrypts it during runtime. Once encrypted, the

original program is no longer an executable program and therefore requires decryption

prior to run-time. It follows that during execution, an unencrypted and thus, unprotected

15

version of the program will exist in memory on the host environment. Under the white-

box attack context, the unprotected version is subjected to analysis attacks on the host

memory. Therefore, an attacker can bypass the code encryption by performing run-time

analyses to directly observe or modify the unprotected code in memory as seen in Figure

4 (Collberg and others, 1997:5; Eilam, 2005:330).

Figure 4. Program Encryption Model

Because the program encryption technique does not hold under the white-box

security model, it is an insufficient means of software protection when used as the sole

defense mechanism. For clarification, we are interested in protection encryption

techniques that produce executable encrypted code in contrast to the approach in Figure 4

which produces non-executable encrypted code.

Giving the secret to the adversary is counter-intuitive to protecting it. Despite the

difficulties faced in the white-box model, the challenges of the white-box model are a

reality for software protection.

2.6 Theoretical Obfuscation and the Virtual Black-Box

In their seminal work on software obfuscation, Barak and others propose the

virtual-black box (VBB) obfuscation model to characterize software security in the

16

white-box model. VBB established three properties that laid the groundwork for most

theoretical discussions about software obfuscation. Critical to these properties is the

concept of the obfuscator (O), which accepts a program (P) such that a new obfuscated

program (O(P)) is generated. First, O(P) must produce the same output as P—this is

sometimes referred to as the function preserving property. Second, any computation by

O(P) is performed with efficiency consistent with oracle access to P—this requires O(P)

to run in the same computational time complexity, such as polynomial time, as P.

Finally, the structure of O(P) must not provide Eve any useful information about the

structure of P—this recognizes that software obfuscation is a white-box problem.

Informally, an O that achieves all three properties means that Eve cannot discover more

information from analyzing O(P) than from black-box analysis of P (Barak and others,

2001:2).

 In their work, however, they construct theoretical arguments that show that it may

be impossible to create a general purpose obfuscator that satisfies all three properties in

the VBB model. They construct their argument by creating an efficiently calculated

family of functions that provides more information about the function than just oracle

access to the original code. Their ―impossibility‖ results have spurned many research

directions under software protection. First, because the impossibility result only

precludes the existence of general obfuscators for all functions, there is a search for

obfuscate-able families of functions. Second, there is a search for alternate security

models that may better describe the software protection problem better than VBB. Barak

and others concede in their work that the three properties making up VBB may not be a

17

practical model (Barak and others, 2001:30; Hofheinz and others, 2007:218-222). New

models modify one of the three properties in VBB or attempt to define the maximum

obfuscation that can be achieved (Goldwasser and Rothblum, 2007:194). Other research

directions include specific obfuscation techniques that, despite the impossibility results,

are practically implementable as a means to slow down analysis attacks (Lynn and others,

2004:11).

2. 6 Applications

The following applications for software protection are presented to better

understand the white-box security model and the software protection problem as well as

motivation for this line of research. In addition, some applications illustrate why Alice

may want to coordinate with an un-trusted party, Eve.

2.6.1 Cryptographic Software.

Cryptographic primitives are designed to operate within the black-box attack

context and not the white-box attack context. This is a limitation in their use because the

user must be concerned with where their software is installed. For instance, it is unwise

to install unprotected cryptographic software on a random terminal because it could be

under adversarial control and thus have plain-view of the secret symmetric or asymmetric

keys entered into the software (Chow, 2002:252). If the cryptographic software could

prevent the secret keys used in encryption from observation in the malicious

environment, then users could perform secure message transfer in non-secure

environments.

18

2.6.2 E-Commerce.

E-commerce applications often embed cryptographic keys and are a specific

application of cryptographic software. More specifically, cryptography is used to ensure

privacy, confidentiality and overall security through means such as e-certificates and

digital signatures (Cappaert and others, 2004:31).

2.6.3 Digital Rights Management (DRM).

One of the biggest challenges with the prevalence and ease in spread of digital

data is tracking and receiving revenue from creative media shared on the internet.

Software protection measures are needed so that only those who have the rights to the

media would be able to use it. Because the possibility of transferring the media file to a

malicious buyer exists, software protection could help in deterring unauthorized

duplication from those that may have legitimately purchased the item. In addition,

specific protection techniques could watermark an item so that unauthorized copies are

traceable to a unique user in order for the intellectual property owner to pursue legal

action (―Digital Rights,‖ 2007).

2.6.4 Software Agents.

Software agents are an abstract concept to describe pieces of software that acts on

the behalf of the owner of the agent. There exists many possible uses for software agents

but the common thread in every instance is that the agents may ―travel‖ to potentially un-

trusted environments while carrying sensitive information about the owner in order to

perform its function. In this regard, the software protection allows the owner to deploy

19

his agents to perform their task without fear that his private information may be extracted

from them (―Software Agent,‖ 2007; Sander and Tschudin, 1998a:2).

2.6.4.1 Shopping/Auction Agents.

In the case of a shopping agent, the owner deploys the agent to vendors

but would not want any vendor to know the highest acceptable price would be for

an item. Protecting the embedded thresholds on the agent would prevent the

threat that a malicious vendor could artificially inflate the prices by extracting the

owner‘s highest acceptable price. Fundamentally, the vendor would always want

to know the buyer‘s strategy to produce the highest price acceptable by the buyer,

while the buyer has an incentive to keep his information private to obtain the best

price possible (Algesheimer and others, 2003:11).

2.6.4.1 Monitoring-and-Surveillance (MaS) Agents.

The typical use for a MaS agent is to observe and report on computing

equipment or services. If an attack on a Supervisory Control and Data

Acquisition (SCADA) system also compromised its monitoring MaS agent, it

could impair authorities from detecting and responding to the attack on the

SCADA system.

It is also possible to purposely deploy MaS agents to monitor adversarial

networks and collect intelligence. When used as an intelligence asset, it is

typically desirable that the agent not divulge the owner‘s identity in addition to

the type of information the agent was tasked to record. Furthermore, the owner

would want to prevent the adversary from learning how to create adversarial MaS

20

agents through reverse-engineering of any captured MaS agents (―Software

Agent,‖ 2007).

2.6.4 Embedded Systems.

 Embedded systems such as smart cards can benefit from software protection

because of their highly distributive nature and their use in commercial applications.

Smart cards often embed cryptographic keys but cannot afford the size increase in using

full hardware anti-tampering techniques.

 One notable hardware and DRM example is the Content Scramble System (CSS)

distributed with DVD-players, DVD-drives, and the DVDs. CSS keys protect DVDs as a

means to prevent unauthorized copying and distribution. Built-in CSS decryptors in

DVD-players and DVD-drives decrypt the content on the DVDs to play them. Thus, this

is a white-box security problem because the decryption mechanism and key are

distributed to potentially malicious users. One malicious user, in 1999, successfully

analyzed the CSS algorithm and produced a De-CSS algorithm, circumventing the

protection mechanism (―Content Scramble System,‖ 2007).

2.7 Software-based Protection

We focus on software-based approaches in this research because, in general,

software-based techniques tend to be more compatible with existing systems. Since

software-based protection techniques are typically modifications to the original program

code, any hardware running the original code should also be able to run the software-

protected code. This flexibility, in turn, offers an added layer of protection through

frequent updates. In contrast, hardware techniques suffer from incompatibility with the

21

original operating platform thereby incurring relatively higher costs when implementing

protective mechanisms. Hardware characteristics such as power consumption and time

analysis may also leak information about the original system through side-channels

despite protective white-box measures (Cappaert and others, 2004:8).

It is useful, however, to examine traditional hardware protection approaches

because hardware are physical items that must also be protected in both black-box and

white-box attack contexts. An adversary could use a black-box approach and determine

how the circuit works or develop another circuit which mimics the behavior of observed

I/O-pairs (Christiansen, 2006:1). Anti-black-box methods are available to confuse the

I/O-pairs, but are viewable in the white-box context. As a physical item, physical

protection is an option in addition to the fact that hardware is more difficult to duplicate;

this is an important factor because the amount of resources available to an adversary such

as a college hacker, non-state actor, or nation-state intelligence agency can vary wildly.

Therefore, strong physical anti-tampering measures can make the adversary assess the

risk between conducting white-box attacks on the samples for information and destroying

the finite number of samples.

Duplication of non-protected software code, conversely, is usually easy and only

requires low-cost or even open-sourced tools. In addition, an adversary can safely tamper

software with the capability to repeatedly revert to a backup copy if the working copy

becomes unsalvageable. In summary, software-based protection must reflect the unique

challenges of the software environment (Cappaert and others, 2004:8-9).

22

2.8 Current Solutions

 We examine practical solutions and analyze their approach to the software

protection problem.

2.8.1 Client-Server.

The effect of using a client-server solution is to force the adversary into a black-

box attack context by storing a protected program on a protected server that is accessible

remotely by the client. Thus, the adversary can only feed input into the client and receive

output generated from the server. If the algorithm that needs protection is

computationally intensive, then the server must bear the computational load.

Improvements to this approach offload as much of the non-sensitive on the client side.

However, there is a limit to the amount of the processing of the protected function

computable on the client because removing access to the critical portion of the code is the

sole protective measure. In addition, there is a high reliance on the interactive

communication between the server and client that may not be possible or desirable for

certain applications such as intelligence MaS agents. The challenges presented in the

white-box attack context are averted because the fundamental concept in this security

technique is protection of the server rather than protection of the software (Cappaert and

others, 2004:10).

2.8.2 Code Encryption.

The white-box security model section, illustrated in Figure 4, shows how standard

data encryption schemes applied directly to code is typically insufficient as a software

protection. In a work on mobile agents, Sander and Tschudin propose a scheme that uses

23

homomorphic functions as a specific form of code encryption that may work in the white-

box attack context. However, few homomorphic functions exist and are themselves a

subject of research with few available implementations (Sander and Tschudin, 1998a:9-

10).

 2.8.3 Obfuscating Transforms.

Collberg and others‘ works are examples of research emphasizing implementable

techniques for obfuscation to provide practical levels of security. The basic appeal in

their work is that like data encryption, obfuscation is a process that delays the adversary

from achieving his goal (Collberg and others, 2002:738). Data encryption uses math and

complexity theory to estimate the theoretical maximum amount of time an adversary

would need to successfully conduct a brute-force attack, where an adversary generates all

possible combinations to decipher the hidden message. Brute-force attacks use the entire

input space and therefore guarantee success by definition. However, secure data

cryptographic schemes ensure that a full brute-force attack would take an unpractical

amount of time to complete with current computer processing capabilities. Effectively,

cryptography delays the adversary from knowing the encrypted information until it is of

negligible value or until newer technology and faster technology is available to execute

the brute-force attack. In either case, cryptography does not claim impregnability, but

merely a mathematically measured amount of delay. Similarly, Collberg and others

propose that given enough time, a competent reverse engineer can reverse any software

program (Collberg and others, 1997:1-29). According to their current works, however, it

is not possible to mathematically derive the amount of delay on analysis. Instead, their

24

foundational work on the taxonomy of obfuscation techniques focuses on classifying the

types of the obfuscating transform mechanisms and their relative security to each other.

A quality metric composed from four properties: obscurity, resilience, cost and stealth.

An abstract scale for each property provides a relative measure on the approximation of

strength of one technique against one other.

Generally, their proposed obfuscation techniques provide white-box protection

using conventionally poor software engineering techniques. Therefore, the metrics

proposed to measure obfuscation are derived from sound software engineering principles.

The quality of each technique is assessed according to four core properties (Collberg and

others, 1997:7).

2.8.3.1 Obscurity.

Obscurity is a measure of complexity or unintelligible-ness of P or

more importantly, O(P). This metric is conceded by the authors to be

vague since it is an attempt to quantify cognitive ability using the q-

property, a loosely defined property that makes O(P) more complex than

P. Thus, the reverse-engineering attempt of O(P) should be more time

consuming than reversing attempt of P if the q-property is greater in O(P)

(Collberg and others, 1997:7; 2002:4).

2.8.3.2 Resilience.

Resilience is similar to obscurity. While obscurity is based on

confusing a human‘s understanding of O(P), resilience is based on a

technique‘s ability to defeat automatic machine de-obfuscators. Because

25

de-obfuscators must first be programmed by a person, resilience is a

combined measurement of both the time it takes a programmer to

construct the de-obfuscator and the time it takes the de-obfuscator to

reduce the obscurity of O(P). A de-obfuscator‘s effort is often described

in classical complexity terms such as polynomial-time or exponential-time

(Collberg and others, 1997:8; 2002:4).

2.8.3.3 Cost.

Cost is the amount of execution-time and memory space incurred

by the obfuscation technique and often described in classical complexity

terms and bytes, respectively. If a technique is prohibitively expensive, it

would be of little practical value regardless of the increase in security

because O(P) may no longer meet non-security related criteria required in

P (Collberg and others, 1997:9; 2002:4).

2.8.3.4 Stealth.

Stealth is used in a special application of obfuscation for

watermarking. It is a property that measures the closeness in statistical

similarities between the original code in P and O(P). Software protection

techniques that use obfuscating transforms as a watermark would attempt

to increase this property to avoid detection (Collberg and others,

2002:738).

These four properties describe the obfuscating transform model because they were

conceived as ways to evaluate the various practical obfuscation implementations through

26

transformation of source code. Collberg and other‘s work falls short on meeting the

scrutiny of the cryptographic community but makes significant strides in achieving

positive results for obfuscation that are capable of practical implementation today

(Collberg and others, 2002:738).

2.8.4 Hardware Techniques.

Field-programmable gate arrays (FPGAs) blur the distinction between hardware

and software. FPGAs‘ logic are programmable post-production and have the advantage

of having shorter time-to-market costs due to lower non-recurring engineering costs and

easier patching of bug fixes. The white-box security model applies to FPGAs because

the FPGA can fall into adversarial hands. The logical programming of the FPGA is the

proprietary secret that must require protection and can be protected through software

protection means rather than through hardware anti-tampering measures alone (Vahid,

2007:106).

 Hardware has the advantage of being a physical device. AFRL/SPI has explored

solutions such as the embedding of a small explosive payload on top of FPGA boards that

upon tampering destroy the board. A software equivalent might be a malware or virus

embedded into the software that activates upon detection of a dissassember on debugger

on the host environment or upon knowing that it is running within a virtual machine

environment. This type of protection focuses therefore on breaking the specific analysis

tools rather than the adversary. While this is a valid approach and an active avenue of

research, it produces an arms race of techniques where analysis tools and anti-analysis

27

tool techniques are incrementally patched to compensate for new developments (Eilam,

2005:328-329; Travis, 2001).

2.9 Bridging Theory and Practice

This research attempts to model a software protection model that is practically

implementable with quantifiable metrics to bridge the gap between theoretical

obfuscation and practical implementation. Chapter III details the methodology used in

the proposed model‘s architecture and the experiments we performed to examine the

model.

28

III. Methodology

3. 1 Chapter Overview

This chapter describes the research experiments, beginning with presentation of

the research goal and approach. We describe the test boundaries and services followed

by the metrics we use to interpret the results of the experiments. Finally, we present the

experimental design to describe how the set of experiments answers questions posed in

the problem definition.

3.2 Problem Definition

Three attributes generally characterize software protection techniques: applicability,

efficiency, and security. The Holy Grail of software techniques would be one that is

general in application, secure in implementation, and efficient in execution. Thus far,

however, research in theoretical obfuscation has yielded positive results that are provably

secure but applicable for only specific functional families (Lynn and others, 2004:11).

Practical obfuscation approaches use software engineering metrics that are easily

applicable to existing software. Security metrics, however, remains a research area

because breaking software protection techniques is in part art and in part science.

Software engineering metrics were conceived as metrics to gauge the likelihood of

coding errors, not as security metrics. Thus, the software engineering derived metrics

and corresponding properties for evaluating software obfuscation are understandably

weaker than metrics used by traditional cryptographers in evaluating cryptographic

algorithms. This suggests obfuscation techniques with more generically quantifiable

29

metrics, independent of cognitive ability, would appeal to both experts in practical and

theoretical obfuscation. Table 2 presents software engineering metrics in white (Collberg

and others, 1997:8) and cryptographic metrics in grey for comparison (―National

Institute,‖ 2001). We note that the software engineering metrics are traditionally used to

assess program complexity where an increase in a metric indicates increased overall

complexity while the cryptography metrics are used to indicate the randomness of a bit

string produced by encryption algorithms or pseudo-random number generators. A bit

string with high randomness means that it is difficult to guess the outcome of a bit with

greater than 50% accuracy.

Table 2. Measures in Software Engineering and Cryptography

Metric Short description

Program Length Number of operators and operands in P
Cyclomatic Complexity Number of predicates in functions
Nesting Complexity Number of nesting level of conditionals
Data Flow Complexity Number of inter-basic block variables
Fan-in/out Complexity Number of formal parameters and/or global variables
Data Structure Complexity Number of fields, size, type of static data structures
Object-Orientated Complexity Number of depth, inheritance, methods, coupling
Frequency Proportion of 0‘s and 1‘s
Frequency Within a Block Proportion of 0‘s and 1‘s within multiple sequences
Longest Runs of 1’s in a Block Length of uninterrupted sequence of 1‘s
Runs of 0’s and 1’s Number of uninterrupted runs of 0‘s and 1‘s
Cumulative Sum Sum of partial sequences after mapping (0,1) to (-1,1)
Random Excursions Number of cumulative sum cycles with 0 sum
Random Excursions Variant Number of sums within cumulative sum cycles

This research proposes a software-only approach using compositional function

tables (CFT) and embedded symmetric key cryptography to produce functional entropy

on a small scale for the protection of deterministic functions. Functional tables are the

30

perfect white-box because only the input/output pairs are made available. Thus, a

function table provides just the black-box information. By replacing a deterministic

function with a function table, we strip the structural implementation of the function to

prevent white-box analysis by the adversary.

The objective of this research is to examine the effectiveness of symmetric key

cryptography and CFTs as a software-only protection technique. Of primary interest is

how well this approach quantifies obfuscation strength with measures and metrics

consistent with ones used in traditional data cryptography. In addition, this research

proposes a set of benchmark programs to demonstrate this approach and may be useful in

determining effectiveness of current and future obfuscation techniques. Finally, we

evaluate the generality and efficiency of the CFT approach.

We select Java programs and methods to implement our experiments because

decompiled Java code of unprotected functions is very similar to the original Java source

code providing a greater contrast between decompilations of protected and unprotected

code. Compiled Java code is also more understandable because it compiles into a well-

documented bytecode format which retains internal symbolic information, such as class

names, that help the adversary and Java de-compilers, such as Mocha, reconstruct the

original source code and logic. In contrast, C/C++ code compiles into microprocessor

instructions that contain less information about the original code and therefore gives less

information to an adversary. Popular C/C++ reverse-engineering tools, such as OllyDbg

and IdaPro, are dissassmblers which generates the assembly level instructions, rather than

the original source code making qualitative comparison against original source code more

31

difficult. Furthermore, Java is a popular choice for web applications that often execute

on un-trusted environments. For these reasons, we chose Java as the language to

implement this research‘s experiments (Travis, 2000; Torri and others, 2007).

3.3 Alternate Obfuscation Model

The VBB model indisputably describes the ideal criteria for software obfuscation.

However, theoretical research has shown that this ideal model is impractical. Therefore,

an alternative model is necessary to describe a set of obfuscation criteria that does not

lead to the same impossibility results produced by Barak and others.

The three criteria established by the VBB model state that an obfuscated version

must preserve functionality of the original, perform in equivalent time to the original, and

reveal no information about the original that cannot be obtained by having only black-

box access to the original. This research examines a model that removes the first

criterion: function preservation. Removing this criterion is clearly a weakening of the

VBB model, but in turn shelters this new model from the established impossibility

results. Of note, this alternate model clearly distinguishes between the structure of

program (white-box information) and the function of the program (black-box

information) to reflect our observations in Table 1 where we identified differences

between the data cryptography model and the general software obfuscation model.

McDonald and Yasinsac propose that obfuscation, at best, protects the structure, protects

the functional relationship, or protects both naming this the intent protection model

(McDonald and Yasinsac, 2007:2-3).

32

Other research works also support black-box protection of the function output as a

means to obfuscate the white-box structure. Sander and Tschudin propose a protocol for

computing with encrypted functions (CEF) under the premise that reversing the

underlying proprietary functions generally more useful than full reversal of the program

(Sander and Tschudin, 1998b:2). Loureiro and others uses a Boolean equation set

representation of the function table approach with the McEliece asymmetric

cryptographic algorithm which encrypts the output as an obfuscation technique (Loureiro

and others, 2002:4). Chow and others also use combinations of function tables to

integrate their white-box version of the AES algorithm to protect other functions (Chow

and others, 2002:252). These works all emphasize the need to modify the functionality of

the original function as part of an obfuscation technique. We noted that the output is

unusable until it is converted back to some usable form, which is usually done on a

trusted environment. Figure 5 graphically illustrates this intent protection model for

comparison with the VBB standard obfuscation model in Figure 3 and the standard

cryptography model in Figure 2.

While it appears that this is the client-server model, there is a key distinction.

Traditional client-server hides the proprietary algorithm on the server side forcing the

server to bear the computational load. In contrast, the objective of the partial client-

server model is to safely offload the computational load onto the client. For example, a

MaS agent, such as the ones described in the previous chapter, can perform secure

computations within an un-trusted execution environment and then send information back

to the issuer.

33

Figure 5. Intent Protection Obfuscation Model

 Intent protection weakens the first criterion (functional preservation) of the VBB

model. However, by providing functional confidentiality, it may be possible to

strengthen protection overall through the third VBB criterion (structural confidentiality).

Because VBB requires functional preservation, analysis of black-box information in the

original and obfuscated version of the function may allow the adversary to extrapolate the

white-box information. This is acceptable, though unintuitive, in the VBB model,

especially when we know that adversaries use a combination of black-box and white-box

attacks. Conversely, if it is acceptable within an obfuscation model to change the

functionality of the obfuscated program, then it is possible to apply techniques that

prevent deduction of white-box information through black-box analysis.

We thus revisit data cryptographic techniques since their primary function

prevents black-box analysis. We note that any encryption of the output is still in a white-

box attackable environment and thus methods for white-box encryption require

34

examination. Figure 6 illustrates the data cryptographic model on the left with the intent

protection model on the right for comparison.

Figure 6. Data cryptography (left) and Intent Protection (right)

 As stated previously, we divide a function into its functional behavior and its

structure. While an encryption only makes the output appear as random output, we

postulate that an obfuscator must also protect the white-box information. We could

achieve this by either removing structural information or by emulating structural

randomness. Thus, this research examines the input/output produced by random

programs for comparison with similar sized functions to gain understanding on the

relationship between the randomness in a program structure with the randomness in the

output. To the best knowledge of this research, the relationship between random

structures and corresponding output characteristics is unknown. If obfuscation is

analogous to cryptography, then we can make the same analytical comparisons on the

output. For instance, in order to gauge how well an encryption produces a pseudo-

random output, it must exhibit characteristics comparable to a truly random sequence.

The National Institute of Standards and Technology (NIST) published a list of established

35

metrics that can empirically determine how closely a sequence exhibits randomness

(―National Institute,‖ 2001). Methods to accurately assess the level of randomness of

function or program structure are, at this point, unknown and a reason why it is difficult

to practically evaluate practical obfuscation techniques under VBB model‘s security test

posed by the third criterion.

This research postulates that any program generated by randomly selecting bit

manipulations between the input and output is a random program. Specific

implementation details on how this research creates random programs are in the

experimental section. By creating randomly generated programs, it is possible to

examine their output using statistical measures. If random programs generate non-

random output, then it is possible that obfuscation through randomization of structure is

sufficient because the output does not correlate strongly to the structure. An indicator of

this would be a large set of random programs that produce the same output pattern. If

random programs tend to generate random output, then any program, original or

obfuscated, that does not produce random output may indicate that a strong relationship

between black-box patterns and white-box structure exists. Therefore, even if

randomness is induced into the structure, it may never be sufficiently enough due to the

predictability of the output. Security then requires a mechanism to produce randomness

in the output which intent protection model supports (Hofheinz and others, 2007:17;

Algesheimer and others, 2003:5).

Figure 7 illustrates the comparisons made in this research under the intent

protection model relative to the comparisons made in the VBB model. In summary, the

36

obfuscation community has yet to agree on how to make structure comparisons for white-

box security. Without consensus on the structural security measure, it is difficult for

practical obfuscation techniques to claim meeting the VBB security test as shown by the

leftmost arrow. Thus, we propose the random program model, where O(P) is made to

functionally and structurally resemble random programs (PR), as a derivation of the

random oracle model in cryptography (Bellare and Rogaway, 1995). Constructing PR

serves as an intermediate step in understanding and evaluating function structure and

output patterns. We can use the results to develop techniques so that O(P) exhibits both

functional and structural characteristics of PR.

Figure 7. Obfuscation and Random Programs

Canetti and others prove in their work that work that techniques secure in the random

based methodology may be insecure in implementation. However, we note that the

cryptographic community uses the random oracle because the standard cryptography

model based solely on complexity measures is difficult to prove. Therefore, our appeal to

randomness is primarily to establish a sanity check on obfuscation approaches, as

37

recommended by Canetti and others in their conclusions, in absence of a stronger security

model (Canetti and others, 2006).

3. 4 Function Tables

We examine the removal of white-box information as an obfuscation measure.

For this approach, a function table, which is a list of input/output mappings, is used.

Every deterministic algorithm produces a function table. As stated previously, a function

table hides all white-box information making it a perfect white-box.

Correspondingly, a function table is also an atomic function; it is not possible to

observe, insert, divide or otherwise tamper with the instructions that generate the

input/output pairs within the function (Yasinsac and McDonald, 2007:2-10). This

concept is illustrated in Figure 8 using a generic function, f: {0,1}
x
 {0,1}

y where xn

inputs map to yn outputs.

Figure 8. A Generic Function and its Function Table Representation

We note that an infinite amount of functions can produce the same function table.

For instance, the same table is produced by the deterministic function, f(2x), is the same

as f(x+x) and f(x<<1). However, it is not possible to tell from the function table alone

38

whether we used an addition, multiplication, or left shift operation in this simple

example.

A generic encryption function, E, is also a function that takes an input and

generates an output. Only a few characteristics distinguish an encryption function from a

generic function. First, encryption functions have the property where the input and

output generated are the same size. Second, the relationship of input and output for a

particular encryption is identified by an key, {0,1}
k. The relationship between f, E, x, y

and k are shown in Figure 9.

Figure 9. Generic Function (left) and Generic Encryption Function (right)

The output of a strong cryptographic function is designed to exhibit randomness

such that it is not possible to guess the output from previous input or input patterns.

Thus, the functional table of an encryption function operates like a random oracle—a

black-box that responds with a uniformly random response. Because a truly random

oracle only exists as a theoretical mathematical construct, an encryption function is

actually generating pseudo-randomness.

39

 Strong cryptographic algorithms, such as AES, must exhibit sufficient empirical

randomness in the output to make it resistant to linear or differential analysis attacks. We

note that empirical security does not offer perfect secrecy such as a one-time pad

(―National Institute,‖ 2001; Jorstad, 1997). However, it is of sufficient practical strength

that the National Security Agency (NSA) approved the AES algorithm for encrypting

documents up to Secret classification. The randomness, or more accurately, pseudo-

randomness is predictable only by knowing the cryptographic algorithm and the secret

shared key. Due to the atomic property of function tables, all cryptographic

implementation details, such as the secret key, are embedded within the table. Therefore,

the adversary cannot view the key nor extract it through static or dynamic analysis once

we make the table. For clarification, we list k with xn in Figure 9 because it is a required

input for the encryption function to generate yn. Once we construct the table, however, an

encryption function table would only include xn and yn.

A non-extractable key has significant security implications because it is now

possible for symmetric key cryptographic primitives to securely operate in malicious

environments. Thus, this research proposes to use atomic properties of the function table

to white-box protect cryptographic primitives.

3.5 Function Composition with Function Tables

Functional composition, (f o g) or f(g(x)), is also an atomic operation. Because

the composition of two atomic functions is also an atomic function, it is not possible to

find a seam between the two composed functions. We expect this because the seam is an

implementation detail inherently hidden within the produced function table. As a result,

40

a composite function table (CFT) protects the white-box information from each

component functions in addition to the seam between them.

Composition on two functions is possible if the output of the first function is a

subset of the input of the second function. Figure 10 is an illustration of a composite

function of f and g. We see that the CFT of (f o g) masks f and g’s individual

input/output relationship; xm thus directly relates to yn with the intermediate information,

ym and xn, embedded in the CFT.

Figure 10. Function composition of f and g where ym xn

Without the intermediate information, it is difficult for an adversary to divide the

table back into separate tables for f and g. To break apart the composition, he must

compute all function tables equivalent to the input/output-size of the CFT; this is a super-

exponential process. While not prohibitive for small inputs such as n=16 where nn
 = 264,

it is computationally infeasible for larger inputs such as when n>32 and where nn
>=2160.

Even for smaller inputs, the adversary must test combinations of generated function

tables which is an n-factorial process (Yasinsac and McDonald, 2007:10).

3.5.1 Function + Encryption (F+E) Function Table.

 The atomic properties of CFTs are the fundamental basis for our approach of

securing a generic deterministic function, f, with an encryption function, E.

Encryption is essentially a recoverable semantic translation of some input. We

use an one-bit input, one-bit output function to illustrate the CFT approach. There are

41

exactly four semantic transformations, or behaviors, available to a function that operates

on one bit which we list in Table 3. Within the table, we use a Boolean gate as the

encryption function with another single bit as the key.

Table 3. List of Semantic Transformations and Sample Input and Output

Semantic Transformations Candidate Encryption x y

1. Preserve the input y = OR(x, 0) 0, 1, 1, 0 0, 1, 1, 0
2. Flip the input y = XOR(x, 1) 0, 1, 1, 0 1, 0, 0, 1
3. Flip 1‘s, preserve 0‘s y = AND(x, 0) 0, 1, 1, 0 0, 0, 0, 0
4. Flip 0‘s, preserve 1‘s y = OR(x, 1) 0, 1, 1, 0 1, 1, 1, 1

The choice between the first and second semantic transformation is the best

obfuscation possible for this trivial one-bit case because the adversary has, at best, a 50%

chance of guessing whether we used the first or second transformation. The third and

fourth semantic transformations are unsuitable candidates as an encryption function

because they produce irrecoverable output. We note that the candidate encryptions in

Table 3 are not the only possible implementation of the semantic transformation; an

infinite number of functions can produce the same transformation. In summary, by

selecting and composing a function table with an encryption table, the produced (f E)

CFT embeds within it, the input/output of f, the input/output of E, the k used in E, and the

seam between f and E.

Popular encryptions, such as DES and AES, are recoverable semantic

transformations whose behavior and recoverability is determined by the key and mode of

operation. We chose electronic code book (ECB) as the mode of operation due to the

necessity in enumerating input/output pairs for the encryption function table.

42

The primary weakness of ECB is that it does not hide patterns; identical plaintext

blocks encrypt into identical ciphertext blocks. However, other modes of operation such

as cipher-block chaining (CBC), cipher feedback mode (CFB) and others require the

cryptographic primitive to have sense of causality; to generate the current ciphertext

block requires information from a previous iteration. In other cases, a keystream,

generated from the original key is used instead of the key for every new block of

ciphertext. In either instance, the resulting functional tables would be super-exponential

because all sequences need enumeration and mapping in order to fully construct the table.

A single functional table can encapsulate the input/output mapping for an ECB operating

encryption more compactly than for any other mode of operation (―Block Cipher,‖ 2007).

To compensate for the leakage of input patterns, we suggest using padding

schemes on the output of the first function before composing it with the second function.

The most essential requirement for padding is that the receiver can distinguish the

padding from the cipher text. Since decryption functional tables are a mirror of the

encryption tables, any padding can satisfy this basic requirement because the padding that

was included in the encryption table is reflected in the decryption table. We examine

secure padding, such as RSA-OAEP (Optimal Asymmetric Encryption padding) designed

to achieve statistically distributed 2n output. We note, however, that we use random

bijection tables rather than the RSA-OAEP to provide padding in this research so we

have control over the size of the input and output space which may be smaller than the

padding provided RSA-OAEP. Patterns in functional output carried through by the

encryption algorithm in ECB is thus masked by the padding forcing the adversary to

43

perform the super-exponential enumeration black-box attack plus the factorial process for

combining function tables.

ECB has another weakness; it does not provide means for data integrity

protection. This means that it is possible for an adversary to conduct replay attacks

where the adversary interrupts the normal input process by inserting an input recorded

previously. Though we note this is problematic for communication protocols, our current

focus is using the encryption to protect the structure and functionality of the first function

in the CFT, rather than protecting the system against communication protocol attacks.

3.6 Output Recovery

A decryption table is simply a reverse lookup of the encryption table and

automatically created upon creation of the encryption table which is an exponential

process. Because we perform decryption on the trusted side in the intent protection

model, decryption does not need to be in the form of a function table because as long as

the symmetric key is known, we can use a standard decryption primitive. This allows an

issuer to distribute an obfuscated program using CFT and let a different trusted source

receive and use the encrypted information without sending the entire enumerated table.

This is beneficial if the bandwidth restricts sending the encryption table which may be of

significant size.

It is important to note that the primary purpose of this approach is to allow secure

computation on remote applications. Figure 11 illustrates how intent protection by partial

client-server is distinct from the classical client-server model. The classical client-server

model achieves function protection by removing all sensitive calculations from the

44

remote application and running them only within a trusted environment that in turn places

the burden of computation completely on the server side.

We can either directly decrypt and use the output or send it back to the remote

application as necessary. However, if the output is passed directly back to an un-trusted

user, an adversary could again have access to the original black-box information that was

intent protected. In cases where the output needs to be used directly by the un-trusted

user, the protected function must also be represented by a composition where h(x) =

f(g(x)). We gain the most benefit if the computation for g is much greater than f because

g is the portion of the function distributed as seen in Figure 12. In this configuration, the

adversary has the output of the original function but does not have the full white-box

structure of h with just (g o E).

Figure 11. Classical Client-server (top) and Partial Client-server (bottom)

45

Figure 12. Output Recovery for h(xm) = f(g(xm))= yp

Implementation by partial client-server incurs bandwidth requirements that may

become a bottleneck. However, this deployment does illustrate how it is potentially

possible to securely offload intensive process to the remote applications. To eliminate

the bandwidth bottleneck, it is possible to use two functional compositions in conjunction

to produce a watermark that identifies the author of the function. This method also

requires that the protected function is divisible into a function composition. However,

because the malicious hose performs the entire computational load, the computational

complexity differences between g and f are not significant factors in contrast to the partial

client-server implementation. Figure 13 illustrates how atomic and individually useless

functional tables can be used to secure a function, f(g(x)), and produce a unique

watermark through symmetric keys.

Figure 13. Watermarking the Composite Function yp=f(g(xm)) with Watermark yn

46

In this configuration, functions f, g, Ek, and Dk, are secure through functional

composition and generates the desired output without needing to contact a trusted source.

Atomic properties of function composition protect the embedded keys in Ek, and Dk. The

watermark at yn, is a reproducible set of pseudorandom sequences generated with E and k.

Even though it is observable by the adversary, the xm/yn and yn/yp input/output pairs do

not reveal structural information about the individual functions f and g. Thus, even if the

adversary knew that AES was the encryption algorithm used, he is forced to enumerate

2128 function tables for each key. It would be statistically improbable, given the

empirically random pattern, for the adversary to find another function that generates the

exact same pattern of randomness despite knowing that a theoretical infinite number of

functions produce the same function table.

Software watermarking, like obfuscation, is a new research subject. Thomborson

defines three aspects of a watermarking system. First, there must be an embedder to

embed the watermark into the program. Second, an extractor must be available to extract

the watermark from the program. Finally, an attack set must be constructed to understand

ways an attack can modify the watermarked program; an attack set is the set of all attacks

where the attacker can disable the extractor from removing the watermark (Thomborson,

2007).

For CFTs, the embedder and extractor is the E, D pair which is easily composed

or removed from the protected function. The attack set is more difficult to model because

various ways exist for the adversary can attack this scheme. Adding or deleting entries

from the CFTs would not effectively destroy the watermark because the watermarking set

47

of sequences would still exist in the maliciously modified program. Composing another

function before the encryption CFT or after the decryption CFT would yield the

adversary an altered program that retains the watermark of the original. Composing

tables after the encryption CFT or before the decryption CFT would break the

watermarking sequence, but most likely break the functionality as well because the

adversary does not know f and g.

It would be statistically improbable, due to the empirical randomness generated

by the cryptographic algorithm, for the adversary to effectively tamper with the logic by

replacing just one of the functional tables. However, since this research works with

programs and functions of enumerate-able size, it is possible to replace the entire

structure of the two CFTS with a single LUT thereby removing all structural and

intermediary white-box information which includes the watermark.

An alternative to the function table is its representation as a set of Boolean

equations. Boolean equations sets (BES) are also two dimensional representation of

input and output that reveals no structural information. For small input ranges, it may

also be feasible to logically reduce the CFT into a BES by using the Quine-McCluskey or

Espresso algorithms. By providing only the minimized equations, we force the adversary

to conduct an n input-sized black-box attack to recover the functional table. However, a

black-box attack is only O(2n) complexity where Quine-McCluskey is O(3n/n) meaning

the issuer does significantly more work compared to the amount of work required to undo

the protective measure (―Quine,‖ 2007). Though computationally costly for the issuer,

BES configurations remain an option when constructing two dimensional structures for a

48

function. Table 4 illustrates a pseudo-coded Java method represented as an equivalent

functional table and BES.

Table 4. Pseudo-code for a Conventional and Unprotected Deterministic Function

public genericFunc(int a) {

 ….

 int result = operations with a

 return result;

}

public genericFunc (int a) {

 return lookupTable(a);

}

lookupTable = [# # # … #]

public genericFunc(int a) {

 result[0] = (a[1] & a[2]) …

 result[1] = (a[0] & a[3])…

 …

 return result;

}

In the implementation where we deploy an encryption and decryption CFT

accessible to the adversary, using BES representations of each would require the

adversary to perform two black-box attacks which measurably delays the adversary‘s

ability to destroy the watermark by replacing the encryption and decryption BES with

one LUT. The logic minimization problem is NP-hard, but this limitation should not be

prohibitive because we intend this approach for functions with small or bounded inputs

(―Quine,‖ 2007).

3.7 Developing an Implementation

Generating function tables from an atomic function requires an enumeration of

the desired range of inputs to obtain the I/O pair. This is an exponential process, but only

needs to be done once and done on high-end machines operating in trusted environments.

Because the function tables are direct lookups, we can optimize performance for

the specific environment such as mobile applications that may have limited processing

power. Applications commonly used function tables for mathematical functions such as

sine or co-sine when computational capabilities to calculate floating point operations

were unavailable (―Lookup,‖ 2007). However, the trade-off comes in storage; the size of

49

the function table is (2n *m / 8) bytes of memory where n is the number of inputs and m is

the output size in bits. For even 24-bit inputs, full enumeration and storage would require

268 MB. If an AES encryption is used, any table encapsulating just 21-bits of input

would require approximately 4 GB since each output is 128-bits. Exponential memory

requirements is a factor to consider if the end application using function tables must be

deployed via networks with limited bandwidth.

One benefits of using LUT as an implementation is the understandability of its

structure. As long as we populate the table with the correct values, table look ups are

very low in complexity according to the software engineering metrics in Table 2. Thus,

by using software engineering metrics, the CFT approach rates very low in security when

an attack is theoretically n-factorial in computational complexity. A measurably secure

approach that is low in software complexity is desirable because an issuer can focus on

maintaining the complete program rather than the producing errors when adding in the

obfuscation mechanism.

3.8 Approach

 We first examine the black-box characteristics of random programs. We emulate

random programs by generating combinational circuits with random structure following

the example set forth by the IEEE International Symposium on Circuits and Systems 85

(ISCAS-85) benchmark suite. The circuits in ISCAS-85 deliberately provide

confidentiality and abstraction of high-level structural design or random circuit logic

(Hansen and others, 1999:72). We use combinational circuits as an abstraction of

random programs because they are deterministic in nature and provide visually

50

understandable intermediate structural information. Structural randomness is achieved by

using a seeded random number generator that selects two random node points within the

circuit and connects them using a randomly selected two-input gate. We use six gates,

known as the circuit‘s basis, to construct our random circuits: AND, OR, XOR, NAND,

NOR, and NXOR, each with different I/O characteristics. It is possible to specify the

number of input bits and the number of output bits in the random program generator

(RPG) so we can compare the I/O characteristics to non-random programs of equal size.

Analysis of the black-box characteristics are selected metrics from the NIST suite

of metrics to evaluate pseudo-random number generators. We examine each bit of the

output as a random string output. The rationale behind this decision is that if it is

possible to correctly guess every output bit, then it is possible to correctly guess the

output. We selected metrics that did not require minimum bit string lengths. Because the

output sequence affects some metrics and the output sequence is directly dependent on

the input pattern sequence, we use two input different sequences for each set of input.

First, we used a standard binary counter in big-endian order. We then converted this

pattern into gray-code as a second input pattern so we could observe the avalanche or

diffusion effect of a single input bit.

This research then examines the applicability, efficiency and security of CFT as a

software-only software protection method. First, we explore the applicability by

replacing Java methods with function table implementations. Efficiency is a qualitative

measurement of the performance of the replacement and the memory space ratio

compared to the original. Finally, security is quantitatively measured by evaluating the

51

randomness of the output in the obfuscated version compared the un-obfuscated version.

In addition, we compare decompiled functions of the original program against

decompiled functions of the obfuscated versions using three open-sourced Java

decompilers in a qualitative analysis of security.

 Our hypothesis is that random programs generate random output. Therefore, the

intent protection model is necessary because structural randomness is insufficient.

Furthermore, CFTs using symmetric key encryption tables can be effective at white-

boxing and black-boxing bounded input-size functions. Each implementation, however,

will be computationally expensive to generate because full enumeration of the function

input space is necessary. A mitigating factor is that we only need to compute encryption

function tables once and we can reuse the encryption tables to protect different functions.

3.9 System Boundaries

 Since the goal of this research is to examine obfuscation under the intent

protection model, the obvious system boundary consists of the components needed to

create and evaluate obfuscated functions. This system, the Encrypted Program

Generation Engine (EPGE) has two parts because intent protection models obfuscation as

two parts, white-box protection and black-box protection.

 The first part of system generates random circuits to emulate random program

structure using the aforementioned six gate circuit basis. We verify uniqueness of the

generated programs using a CRC32 hash. For clarification, we consider symmetrical

circuits unique using this method. For example, an AND gate connecting node one and

node two is considered distinct from an AND gate connecting node two and node one

52

even though they would generate the same results. This was a design decision made so

that uniqueness of a circuit could be quickly determined using the hash checker. For this

research, the RPG used is currently implemented in C++ which generates BENCH circuit

files that are then interpreted and translated into a Java object for analysis by the EPGE.

The EPGE then runs a black-box attack using the binary counter sequence and the gray-

coded binary counter sequence. Results from the two operations are analyzed using

seven statistical measures adapted from the NIST pseudo-random number generator test.

We then perform the same set of analysis on any deterministic function of bounded input

size implemented within the EPGE to obtain black-box characteristics of the function.

 The second part of the system constructs CFT obfuscated versions of functions

implemented within the EPGE. Ideally, the EPGE should be able to read a Java class file

that contains the high-level source code of a deterministic function and build a

corresponding CFT version in high-level source for replacement in the original. Due to

time constraints for this research however, a deterministic function must be built within

the EPGE package. Since the goal in this part is to quantitatively examine function

algorithms through a Java decompiler, manually importing algorithms in the EPGE

should still adequately provide the observable results for white-box security comparison.

For encryption, we use an open-sourced implementation of the AES algorithm and verify

its functionality using the KeySBox Know Answer Test Values (Bassham, 2002). In

addition, the EPGE is capable of generating BES equivalent of a function table using the

Quine-McCluskey algorithm. We select the Quine-McCluskey algorithm because we

know the algorithm‘s complexity (―Quine,‖ 2007). While we do not use it directly as a

53

security mechanism, it is a component can be used to generate an obfuscation

implementation.

 Thus, the main component under test is the EPGE since it is the component that

generates the random programs, generates CFT obfuscated programs, and performs

black-box and white-box analysis. Additional component consists of the Java compiler,

the Java virtual machine, and hardware, such as the CPU and memory running the virtual

machine.

 We note that the source code of the pre-obfuscated function is an input to the

EPGE and therefore not considered as part of the system under test (SUT). The EPGE

could obfuscate a function‘s function table if it was available which means that the source

of the function does not influence design of the engine. We illustrate the complete SUT

in Figure 14.

Figure 14. System Under Test

Fa
ct

o
rs

 &
 W

o
rk

lo
ad

s Static Parameters

• Hardware

• Java compiler

• Operating system

• Java Virtual
Machine (JVM)

Dynamic Parameters

• Benchmark
functions

• Random program
configuration

Sy
st

em
 U

n
d

er
 T

es
t

EPGE

• Random Program
Generator

• Statistical Analysis
Methods

• CFT Generator

• Hardware

M
et

ri
cs

Black-Box

• Statistical analysis

• Complexity

White-Box

• Observed
Complexity

Side-Channel

• Performance

• Cost

54

The main block contains the EPGE, the Java compiler and JVM, and the hardware

components. We show the changing factors and workloads as inputs on the left while the

outputs are the metrics for the SUT which appear on the right of the main SUT block.

3.9.1 System Services

The EPGE takes a source-level function and generates a set of random programs

with equal input/output size. We perform statistical analysis on the output of the original

function and the output of the random program set. We list in Table 5 the possible

outcomes.

Table 5. Possible Outcomes for System Services

Result Random Program Set Original Function

1 Statistically random output bits Statistically random output bits
2 Statistically random output bits Statistically non-random output bits
3 Statistically non-random output bits Statistically random output bits
4 Statistically non-random output bits Statistically non-random output bits

We select an AES key and compose it with the output of the original function to

produce a CFT. We then perform statistical analysis on the CFT.

3.10 Workload and Factors

 As stated in the problem definition, a benchmark suite of programs does not yet

exist for software obfuscation. Previous and concurrent work performed by the Program

Encryption Group (PEG) uses the ISCAS-85 circuit library in BENCH format. For

continuity and compatibility with ongoing experiments, this research includes a function

that reads in a bench circuit file and reproduces its input and output pattern. It also works

in tandem with the RPG to construct random structure in BENCH format using two-input

gates.

55

Because most ISACAS 85 circuits are too large to enumerate within the resources

available to this research, additional benchmark programs of deterministic functions are

proposed. Simple equations, such as y = a * b + c, trigonometric functions, such as y =

cos(x), and the Fibonacci sequence are considered because they can be bounded in input-

size and were used in related research works focused on confidentiality of execution

(Christiansen and others, 2006:2; Torri and others, 2007; ―Lookup,‖ 2007). Table 6

summarizes the workload factors as well as the reason for their selection as benchmark

functions.

Table 6. Benchmark Functions

Program Reason for selection as benchmarks

y = a * b + c • integer computation
• simple arithmetic
• divisible into f1 and f2

y = cos(x) • periodic output pattern
• floating point arithmetic
• historically represented as table lookups
• often used in digital processing algorithms

Fibonacci • recursive or iterative function
• expands quickly

ISCAS 85 circuits • hardware analogy

3.11 Metrics

 3.11.1 Black-box Metrics.

Black-box metrics were adapted from a NIST test suite for pseudo-random

number generators. For clarification, we consider each output bit as a generator of a bit

string and use statistical analysis to determine if patterns exist for each bit enabling the

adversary to guess subsequent bits within the bit string.

56

We list in Table 7 the statistical tests used in this research and a summarized

explanation for each test (―National Institute,‖ 2007). We recognize there are existing

test suites such as JDieHard, NESSIE, and the one provided by the NIST; however, these

suites were designed for random program generators and some tests required minimum

bit string lengths of 10,000 bits or greater. Thus, we had to selectively implement tests

that could provide results on much smaller bit string lengths due to our experimental

benchmarks that have a relatively smaller input space.

Table 7. Statistical Test to Analyze Function Output

Test Explanation

Frequency (Sequence) Ratio of 1‘s to 0‘s produced in an output bit
Frequency (Output) Ratio of 1‘s to 0‘s produced by all output bits
Longest runs of 1‘s Longest uninterrupted sequence of 1‘s
Number of 1‘s runs Number of runs with uninterrupted sequence of 1‘s
Maximum excursion Greatest distance from zero achieved when each output resulting

in 0 or 1 is mapped to -1 and 1 respectively and the output‘s bit

string is summed.
Excursion states Size of the set of distances from zero achieved when each output

resulting in 0 or 1 is mapped to -1 and 1 respectively and the
output‘s bit string is summed.

Zero excursion cycles Number of zero excursion cycles. A cycle the summation of the
outputs to an m-th bit and back to the origin when each output
bit resulting in 0 or 1 is mapped to -1 and 1 respectively; m is
increased incrementally until it reaches the end of the bit string.

Approximate entropy Percentage of output bits flipped when a single input bit is
flipped; used when gray-code input is used.

3.11.2 White-box Metrics.

 Metrics to evaluate the randomness of a structure is the subject on concurrent

research within the PEG research group. Because the proposed approach removes the

program structure by converting a function into a two dimensional representation, this

57

research can subjectively examine the structural obfuscation of using CFT using various

Java decompilers. We derive quantitative security measures from the steps that an

adversary needs to perform to break apart the CFT along with the computational

complexity associated with each step, as stated in section 3.5; the theoretical maximum

security according to computational complexity is directly correlated to input size.

 3.11.3 Side-channel Metrics.

 Performance and memory costs are important because they determine the

practicality of the obfuscation. We measure performance as execution time in seconds

and measure cost in terms of memory size in bits. These metrics are common, non-

subjective, and understandable within the computer science. Because cost of the CFT

implementation is very different from the time it takes to generate a CFT

implementation, a developer must decide whether generation costs should factor into the

cost of obfuscation. For consistency, we only consider the memory cost of the deployed

obfuscation and the performance running the obfuscated function when evaluating an

obfuscated program. We note that multiple obfuscations of different functions will cost

less to generate because the paired encryption table only needs to be generated once.

Thus, future obfuscations of functions with the same bounded input-size incur

incrementally less generation costs because we can pair it with any pre-enumerated

encryption table.

We compare the above metrics against the four properties of an obfuscation

proposed by Collberg and others‘ work summarized in Table 8 (Collberg and others,

2004:738).

58

Table 8. Summary of Collberg and Others’ Obfuscation Properties

Properties Explanation

Potency Difficulty in understanding the obfuscated code
Resilience Difficulty in automating a tool to de-obfuscate obfuscated code

Cost Penalty in execution time/memory space incurred by obfuscated code
Stealth Statistical similarity of obfuscated code compared to pre-obfuscated code

Quality = (Potency, Resilience, Cost, Stealth)

In using CFT, potency and resilience should be a direct correlation to the time

required for an adversary to conduct a brute-force attack on the function table of n-size

input disassociating security metrics from cognitive ability. We do not emphasize stealth

in our approach because security should not be dependent on obscurity (―Kerckhoff‘s

principle,‖ 2007), even in the watermarking configuration. We postulate that CFT‘s

stealth is directly related to the number of lookup operations that are done within non-

sensitive portions of the code because CFT operations are lookup operations; the lookup

operations may be file accesses or array searches depending on the final implementation

of the CFT.

3.12 Parameters

 Because the EPGE provides metrics for the CFT obfuscated function in relation to

the original function, the hardware that executes both functions must remain constant

across all experiments. The experimental system is an Intel M 1.73 GHz processor, with

1.5 gigabytes of RAM running Windows XP Tablet Edition. The operating system is

important because it is not possible to control task scheduling which affects performance

metrics; thus, we repeat experiments and average results to minimize the variability

59

caused by the operating system. We use the Java 5.0 compiler; this is also important

because we perform analysis on the bytecode code produced by the compiler.

3.13 Evaluation Technique

 We divide security achieved through CFT into white-box and black-box security.

CFT obfuscated functions are decompiled with Jadeclipse, JDec, and JODE to compare

the original function against the obfuscated function. This step provides a subjective

measure of white-box security or how well CFT ―confuses‖ someone using standard

packages of these readily available open source tools. We select three open source Java

decompliers; though their main function is decompilation, each has distinguishing

features. Jadeclipse1 is available as a packaged plug-in for the Eclipse Java development

environment. JODE2 is available both as an applet and console application. JDec3 has an

easy-to-use graphical user interface. The first and most notable Java decompiler,

Mocha4, was not used because it has not been updated to decompile recent changes in

Java class files.

We assess black-box security by the same statistical random measures used in

evaluating the output of random programs. It is difficult to otherwise evaluate security

efficacy other than this manner because CFT abstracts all other implementation detail

specifically to force the adversary to do computationally expensive brute-force attacks.

Using a ―red-team‖ of skilled reverse-engineers would provide much better evaluation of

1 http://jadclipse.sourceforge.net/
2 http://jode.sourceforge.net/
3 http://jdec.sourceforge.net/
4 http://www.brouhaha.com/~eric/software/mocha/

http://jadclipse.sourceforge.net/
http://jode.sourceforge.net/
http://jdec.sourceforge.net/
http://www.brouhaha.com/~eric/software/mocha/

60

the CFT approach; this evaluation approach is unfeasible due to the limited time and

resources available for this research.

We use direct measurement of execution time because it is the most

understandable metric for computer programs; we collect this measurement using the

Eclipse Test and Performance Tool Platform (TPTP) profiling tool5. Finer

measurements, such as calculating instructions per clock cycle, are difficult due to non-

standard processor instruction sets, pipelining, caching and operating system tasking

order. In addition, computer scientists and cryptographers generally use theoretical

complexity metrics to describe algorithms in a hardware platform independent notation.

File size is also a well understood metric and we use the standard file explorer on

the Microsoft Windows XP installed on a NTFS file-system partition.

3.14 Experimental Design

 The EPGE performs the experimental design on the benchmark programs. In the

steps outlined in the approach section, we compare the output of the original function the

RPG set of functions with equal input/output size for black-box analysis. Since most of

the benchmark functions are not actually BENCH circuits, we used a constant

intermediate size as a parameter in the RPG. For each random program set, we generate

1,000 unique circuits to provide output for comparison by statistical analysis. We then

perform statistical analysis on AES ciphers with 1000 different keys to verify the effect

of encryption on functional output bits.

5 http://www.eclipse.org/tptp/

http://www.eclipse.org/tptp/

61

 3.15 Chapter Summary

This research examines intent protection as an alternate obfuscation model to

VBB deemed ideal but impractical for practical obfuscators. Intent protection makes a

clear distinction between a program‘s white-box structure and black-box functionality;

this makes it possible to evaluate these two facets of a program separately. Using

pseudo-random number generators and encryption as an analogy to obfuscation, this

research applies security metrics independent of human cognitive ability. We propose

function tables and compositions of function tables with symmetric key encryption tables

as an obfuscation approach to completely mask white-box structure. Encryption

algorithms provide resistance to linear and differential analysis on the output of the

function. We keep the hardware, operating system, and compliers constant in the SUT to

reduce variability in factors generating the metrics. After collecting the metrics, we can

use the data to justify further development of this approach. This chapter presents an

alternate model for evaluating obfuscation, the creation of the CFT implementation, the

security principles for its design, and the experiments to examine CFT as a software-only

software protection technique.

62

IV. Analysis and Results

4.1 Chapter Overview

This chapter discusses the results of the experiments described in Chapter III. We

use statistical data analysis to measure the output generated by randomly generated bench

circuit functions, benchmark functions, and functions composed with an AES encryption.

Additionally, we use three open-sourced Java decompilers to observe the effect of CFTs

on the Java class files from compiled benchmark functions. Our observations

qualitatively measure the CFT‘s protection strength and propose improvements to this

approach.

4.2 Results of Experimental Benchmark Programs

4.2.1 Quantitative Analysis of Black-box Data.

 We analyze the sets of 1,000 randomly generated BENCH circuits with the

statistical tests listed in Table 7. We use the input/output sizes of the benchmark

programs listed in Table 6 as parameters for the RPG. Because the impact of the internal

structure is currently unknown, we set the parameter for the number of intermediate

nodes to 100, 300 and 500. For the circuit c17, we generated an additional random

program set with six intermediate nodes to match the original circuit description.

 First, we conduct an analysis on the collective random function output. Each

function produces an output signature which is the output sequence of the function based

on an input sequence. The total possible number of unique signatures is (2𝑜𝑢𝑡)(2𝑖𝑛)

63

where out is the number of output bits and in is the number of input bits. We check the

output signatures of the random function sets for uniqueness using a CRC32 checksum.

 Numbers within sets of identical output signature are an indicator of functional

equivalency and structural diversity. For a set of randomly generated programs to

produce large sets of non-unique output signatures, it may be a signature that exhibits

weak correlation between structural pattern and output signature. If we intend to

obfuscation white-box information by emulating randomly constructed circuits, then

signatures with a large number of candidate structures are good candidates for

obfuscation. In practical terms, it means that we can swap the structure of one member

within the set with another member in the same set. This obfuscates the original structure

because we produced the alternate structural logic randomly without any knowledge of

the original structure and therefore the replacement structure cannot leak information

about the original structure.

 Random function sets of 5-2-6 and 5-2-100 yielded 125 and 71 functions that

produced non-unique output signatures respectively presented in Table 9. The other

random function sets did not produce any duplicate output signatures.

Table 9. Non-unique Output Signature Characteristics of 1000 Random Functions

5-2-6 5-2-100
Set size of identical

output signatures

Number of

Sets

Set size of identical

output signatures

Number of

Sets

2 32 2 7

3 2 11 1

4 8 12 1

5 1 16 1

9 2 18 1

64

 We expected fully unique signatures for even the small input and output

parameters because 432 unique signatures are possible. For a set of 1,000 random

functions to exhibit signature collisions may indicate that structural diversity is great for

smaller input/output parameters. We observe that the intermediate node is a factor in

producing signature collisions. Increasing intermediate node size causes a drop in

collision frequency but an increase in collision concentration where the chance of

collision is less likely, but in the case of collision, the collision set tends to be greater in

size. We graph our observations regarding intermediate node size and signature

collisions in Therefore, obfuscation of a complete white-box structure may be more

effective with partial obfuscations of smaller input/output size with a large intermediate

node size so there are several candidates for replacement.

Figure 15. Signature Collisions in 5-2-X

65

Figure 16. Signature Collision to Intermediate Node Size

We then perform analysis on each individual benchmark program and

corresponding function set. For clarity, we display only the gray code input sequence in

the following tables. It is important to note that metrics on run lengths and excursion

states are dependent on input sequence. In addition, using gray code input provides the

avalanche metric for comparison between the benchmark output and random function

output. We recognize that there are many there are many possible sequences that exist

where we flip only one input bit. We use the gray code as an exploratory technique to

observe the avalanche affect of input bits; the avalanche effect on output bits for

cryptographic ciphers should be observable using gray code input. We verify by using a

black-box analysis of the output from 1,000 AES encryption output tables using a gray

code input sequence. Tables illustrating the results of the statistical analysis comparing

benchmark and respective input/output size random functions are found in the Appendix;

the result of each test by output bit is provided so that the distinction between benchmark

125

66
61

34

0

20

40

60

80

100

120

140

N
u

m
b

e
r

o
f

C
o

lli
si

o
n

s

Intermediate Nodes

Collisions vs. Intermediate Nodes

5-2-6

5-2-100

5-2-300

5-2-500

66

and random functions can be visualized. We use averaging across the 1,000 random

functions on each output bit to provide a result. The experiments provide a picture of the

expected values of the seven statistical tests for a randomly generated program of a

certain input/output size. From the results of this experiment, it appears that random

functions generate consistent results for each output bit across all tests which can be

contrasted against the output bit behavior in the benchmark functions.

In Figure 17, Figure 18, and Figure 19, we graph the standard deviation for all bits

in the output by test for some of the benchmark functions and their respective random

program set. For these graphs, we included the binary counter sequence. We observe

disparity in results; random program sets produce significantly less diversity in their

output bits than the benchmarks as shown by the flat lines generated by the random

program sets in the three figures. We note that our two input sequences produced similar

results.

Within this limited set of benchmarks, it appears that the number of excursion

states is the biggest indicator of an unprotected benchmark function versus the set of

random functions while the number of zero cycles tends to be a poor indicator. In

addition, this black-box analysis on deviation from expected randomness values lets us

know which statistical test best isolates non-random behaving bits in the output. We can

then target the control flow of the bits that do not exhibit random behavior with structural

randomness. This information is useful in cases where we cannot use black-box

protection and the security must rely only on white-box structural entropy.

67

Figure 17. Standard Deviations of All C17 Output Bits by Metric

Figure 18. Standard Deviations of All y = a * b + c Output Bits by Metric

Figure 19. Standard Deviations of All Fibonacci Output Bits by Metric

0.00

2.00

4.00

6.00

% of 1's Longest 1's Runs Excursions from
Zero

Zero Cycles Excursion States Runs of 1's

c17 (GC) 5-2-6 (GC) 5-2-100 (GC) 5-2-300 (GC) 5-2-500 (GC)

c17 (CTR) 5-2-6 (CTR) 5-2-100 (CTR) 5-2-300 (CTR) 5-2-500 (CTR)

0.00

500.00

1000.00

1500.00

% of 1's Longest 1's
Runs

Excursions
from Zero

Zero Cycles Excusion
States

Runs of 1's

y = a * b + c (GC) 12-8-100 (GC) 12-8-300 (GC) 12-8-500 (GC)

y = a * b + c (CTR) 12-8-100 (CTR) 12-8-300 (CTR) 12-8-500 (CTR)

0.00
1.00
2.00
3.00
4.00
5.00

% of 1's Longest 1's
Runs

Excursions
from Zero

Zero Cycles Excusion States Runs of 1's

Fibonacci (GC) 4-12-100 (GC) 4-12-300 (GC) 4-12-500 (GC)

Fibonacci (CTR) 4-12-100 (CTR) 4-12-300 (CTR) 4-12-500 (CTR)

68

We conducted a statistical analysis of AES encryption with 1,000 keys and equal

input size of five bits to examine the feasibility of protecting a c17 circuit from the

ISCAS-85 circuit library with AES. The standard deviations between AES and the

random program set for each metric, shown in Figure 20. Standard Deviations of All

AES Output Bits by Metric was significantly closer to zero than any other experimental

function.

Figure 20. Standard Deviations of All AES Output Bits by Metric

The averages and standard deviations can also be found in Table 10; per bit

graphs are not included because it is difficult to clearly represent all 128-bits graphically.

We note that we adjusted the random program set parameter from 100 and 300 to 500 and

1000 in order to accommodate the significantly larger output size in AES. Different

results between the AES and random program set produce approximately the same

results. The metrics provided by these random sets are valuable because the results for

these metrics are unknown for random program structure. Thus, these metrics provide a

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

% of 1's Longest 1's
Runs

Excursions
from Zero

Zero Cycles Excursion
States

Runs of 1's

AES 5-128-1000 (GC) 5-128-500 (GC)

69

comparison point for functions that may have the parameters such as input size, output

size, or intermediary node size.

Table 10. Statistical Results of AES and a Random Program Set

Function % of
1's

Longest 1's
Runs

Excur. from
Zero

Zero
Cycles

Excur.
States

Runs of
1's

AES avg 0.50 4.00 6.62 0.69 8.96 8.25

AES std dev 0.00 0.00 0.09 0.03 0.12 0.08

5-128-500 avg 0.50 8.05 18.34 1.23 19.51 4.55

5-128-500 std dev 0.01 0.35 0.32 0.09 0.29 0.09

5-128-1000 avg 0.50 7.95 18.35 1.12 19.51 4.60

5-128-1000 std dev 0.01 0.30 0.29 0.09 0.26 0.09

We note that the metrics did not change significantly between the 500 and 1000

internal node set or random functions indicating that intermediate node size may not be a

significant factor on the randomness of individual output bits. This was also true for the

benchmark programs even though we did produce a small percentage of signature

collisions in the 5-2-X set of experiments. Standard deviations also remained small

though we note that the standard deviations of the two random set in our 5-2-X with AES

experiments mirrored each other which could indicate that our RPG construction is a

factor. No functions within the two 5-128-X sets shared the same output signature.

In addition, the test verified that the 1,000 AES keys produced 50% approximate

entropy on the output as expected when we use gray code input. We note that the

unprotected benchmark functions on average produce only 26% approximate entropy.

This means that a change in a single input bit has significantly less impact, or more

specifically, less of an avalanche effect on the output bits of randomly generated circuits.

Therefore, our results indicate that structural entropy alone does not, on average, produce

70

the same black-box entropy as cryptographic functions. We are interested in the

approximate entropy results specifically because the greater entropy tends to hinder

black-box analysis. We graph our results in Figure 21. The first column is our

verification of approximate entropy on AES, followed by the approximate entropy

observed in our randomly generated sets. We obtained the fourth column results by using

an AES encryption table to protect the output of the c17 circuit. This did not increase

approximate entropy because ECB does not hide output patterns. We achieved

approximate entropy results similar to AES when we applied two different padding

schemes to diffuse the output space prior to applying the AES encryption, as shown in the

last two columns.

Figure 21. Approximate Entropy of AES and 5-128-X

4.2.2 Qualitative Analysis of White-box Data.

 None of the Java decompilers had any difficulty creating source code from

unprotected and CFT protected code. We expected this because CFT was a technique

used to remove the structural information rather breaking the tools‘ decompilation

0.50

0.26 0.26 0.26

0.50 0.50

0.00

0.10

0.20

0.30

0.40

0.50

0.60

AES 5-128-500 (GC) 5-128-1000 (GC) c17 no pad c17 CTR pad c17 INPUT pad

71

process. The common denominator between the original source and the results provided

by all the decompilers is the removal of comments. Figure 22 shows the original

unobfuscated Java source code for one of the benchmark functions for contrast with

Figure 23. JODE and JDEC provided the same results. Figure 24 is the decompiled

source by Jadclipse on a CFT implemented c17 benchmark function. The CFT code is

simple in software engineering complexity and the function becomes a file access in this

particular implementation.

Figure 22. Original Source Code of y = a * b + c

Figure 23. Decompiled Source Code by Jadclipse

72

Figure 24. Decompiled Source Code of CFT implementation

 4.2.3 Analysis of Side-Channel Data.

 CFT is not fixed to an implementation because the security concept is to prevent

adversary analysis by flattening of functional structure to two-dimensions. Because this

research implemented the CFT using text files, the protected programs took longer to run

due to frequent file accesses; the disk accesses incurred cost penalty in performance time

because disk access operations are slower than the operations in the benchmark programs

which did not require significant processing power.

 In complexity terms, a lookup operation in the encryption table is constant time,

O(1) making CFT very scalable. Constant time is achievable because every entry is the

same size and we can provide the entries, input order sorted, so that an index search is

possible. We can use the original cryptographic primitive to decrypt and recover the

output and we know that the cryptographic primitive runs in polynomial time. If we use

the function table for decryption, we could first apply sorting to the output table and then

use a binary search to achieve O(nlogn) performance. We cannot use the same indexing

method as the encryption table because the ciphertexts sparsely populate too large a

range.

 We found the file sizes consistent to our estimates of 2n * m bits where n is the

number of input bits and m is the number of output bits. We note that a side effect in our

73

implementation under the NTFS file system test environment is that Windows file

explorer reports a difference between the actual file size and the size the file takes on the

disk.

 For BES representations of CFTs, we found early in our experiments that storing

the BES as a file take much more memory space than the CFT in our implementation.

For a BES, we cannot estimate the length or the number of prime implicate for each

output bit. However, we are attempting to achieve random output so we expect each

output bit to produce significantly long Boolean equations making textual representation

very inefficient. We do not propose BES implementation as a text file; we generate it as

a blueprint for a minimized sum-of-products two-dimensional gate structure that can be

then implemented as code. We implement BES textually mainly to examine this

structure generation for future experimentation. In terms of performance, BES runs with

complexity O(n) where n is the number of output bits because each output bit has its own

Boolean equation that runs in constant time.

4.3 Summary

 The research shows that random programs can be a comparison tool for intent

protected obfuscation techniques such as CFT. While there is yet to be a set of agreed

upon metrics to compare program structure, there are metrics in use that analyzes

function output. The results shown in this chapter show that programs with randomly

generated structure produce randomness across the output bits. The randomness closely

equals that of AES, a strong encryption algorithm. In the same way that functional

randomness produces output that is hard to discern a pattern, structural randomness may

74

produce program structure that is difficult to analyze. Thus, if it becomes possible to

accurately assess structural randomness, it will be possible for an obfuscation to be intent

protected by creating an obfuscated version of a function that is both structurally random

and functionally random. In the absence of such metrics, this research uses CFT with

symmetric encryption to remove the structural details of a program while creating

measurably random output as an obfuscation technique.

75

V. Conclusions and Recommendations

5.1 Chapter Overview

This chapter reviews the main research goals outlined in Chapter I with the

corresponding findings of this research. For each goal, we briefly summarize the relevant

results and conclusions. We propose recommendations for future research and

enhancements as well.

5.2 Research Goals

 5.2.1 Describe an Alternate Model for Software Obfuscation.

 This research describes an alternate model for obfuscation and its possible

applicability. Its authors and the theoretical obfuscation community, in general, accept

the original VBB model, to be a non-pragmatic model for building obfuscation tools.

The intent protection model proposes removal of the function preservation property as a

modification to the VBB model. This research investigates the problem where black-box

information may provide reverse engineers information to reconstruct a protected

function‘s white-box information suggesting that masking a function‘s input and output

relationship is critical to protecting the function.

 5.2.2 Describe an Implementable Obfuscation Algorithm.

 Every deterministic function generates a function table which describes the

function in a two-level representation that removes all white-box information. We select

the AES symmetric key cryptographic primitive to black-box protect deterministic

functions due to their strength to key length ratio and understandability when operating in

76

ECB. We provide motivation where the applicability of function tables are within the

confines of bounded input size and deterministic algorithms.

 5.2.3 Quantitatively Assess Obfuscation Quality with Non-cognition Metrics.

 By dropping the function preserving property from the VBB model in the intent

protection model, we can use cryptographic metrics, such various statistical analyses of

function outputs, in lieu of cognition and psychology-based metrics. Comparisons

between original functions and randomized functions of the same characteristics show

that the black-box information can leak information about the program without white-box

analysis. Random program set and output bits of the AES algorithm both produce output

bits that are statistically random; a CFT that composes the function with an AES function

table can emulate similar output results in addition to removal of structural information

thereby giving the adversary as limited information as possible for analysis. CFT is also

understandable and low in software engineering complexity.

 5.2.4 Qualitatively Assess Obfuscation Quality with Reverse-engineering Tools.

 The function table and composite function table approach is very effective against

Java decompilers such as Jadclipse, JODE, and JDEC. As expected, a table

representation flattens the function into a LUT, leaking no white-box information other

than the fact that we used an LUT in the software-only environment despite using an

information laden bytecode language. Function table also flattens the run time

characteristics thereby reducing the side-channel information that may inadvertently leak

details about white-box structure.

77

5.3 Conclusions of Research

 Software obfuscation is a difficult problem and we concede that a single perfect

solution to secure all programs does not exist. An agreed upon set of metrics and

benchmarks are needed to evaluate various proposed techniques in software protection

research.

 This research advocates the use of the intent protection model to evaluate

software obfuscation in place of the idealistic VBB model. Under intent protection, it is

possible to use separate but established black-box metrics to accurately define security

strength of obfuscation so that we can achieve practical obfuscation with provable

security measures. Applying symmetric cryptographic principles to obfuscation reduces

the dependency on using software engineering metrics that were not intended for use as a

security metric. Using function tables is a technique that heavily favors security and

performance over applicability in the obfuscation trade-off of applicability, efficiency,

and security. By converting all deterministic functions to a two-dimensional

representation, we protect the white-box information from analysis. We note that we do

gain some applicability in that it is easier to determine a function‘s input/output size than

it is to find if the function is part of a family that can be obfuscated in other theoretical

models. We also note that the CFT approach benefits developers, such as nation states,

who can leverage their asymmetrically vaster computing resources to create protected

functions of larger sizes or to break the protection under the CFT technique more quickly.

78

5.4 Significance of Research

The limitation of the functional table approach is the treatment of all programs as

deterministic functions and the severe bound on input sizes. It is noted however, that this

technique was intended to serve as a demonstration platform for the intent protection

model and identify the tools to evaluate both black-box and white-box security for Java

programs. This research directly supports PEG‘s obfuscation research by first identifying

the tools to evaluate output entropy and then designing the benchmarks programs for

testing in the software domain. Furthermore, this research has demonstrated metrics to

functionally evaluate random programs which benefit concurrent PEG research in

evaluating the structure of random programs.

5.5 Recommendations for Future Research

Our intent was to use functional tables as a software-only solution for a software

problem. It is foreseeable that this approach would be adaptable in the hardware domain

due to the prevalence of FPGAs and their inherent LUT structure where it is possible to

replicate an n input size combinational circuit with an n address-input memory (Valhid,

2007:106). In addition, because hardware can concurrently compute at the bit level, the

same computation can be executed hundreds or thousands of times faster in comparison

to a microprocessor. However, it is noted that white-box information such as hardware

characteristics not present in the software environment may be leaked through the

functional table implementation and thus deserve further investigation.

79

5.6 Summary

This research shows that intent protection model is a viable alternative to the

VBB obfuscation model. The proposed function table approach is a provably secure

technique that we can evaluate with established cryptographic metrics. It is also

understandable in approach and implementation. While the approach imposes

restrictions on the applicability to certain programs, function tables serve as a foundation

to bridge the theoretical obfuscation research and the practical obfuscators. A complete

obfuscation based on both output entropy and structural entropy may provide a multi-

tiered defense against reverse engineer targeting sensitive military software.

80

Appendix A: Black-box Analysis of c17 Against Random Functions

bit1 bit0

c17 0.56 0.56

5-2-6 (GC) 0.50 0.50

5-2-100 (GC) 0.51 0.49

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

P
e

rc
e

n
ta

ge
 o

f
1

's
 p

e
r

o
u

tp
u

t
b

it

Frequency (Sequence)

bit1 bit0

c17 16.00 8.00

5-2-6 (GC) 8.00 8.00

5-2-100 (GC) 8.00 8.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Le
n

gh
th

 o
f

1
's

 s
e

q
u

e
n

ce

Longest Runs of 1's

81

bit1 bit0

c17 8.00 6.00

5-2-6 (GC) 13.98 14.52

5-2-100 (GC) 17.86 18.31

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

G
re

at
e

st
 d

is
ta

n
ce

 f
ro

m
 z

e
ro

Maximum Excursion

bit1 bit0

c17 0.00 2.00

5-2-6 (GC) 3.66 3.34

5-2-100 (GC) 1.61 1.48

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

N
u

m
b

e
r

o
f

cy
cl

e
s

Zero Excursion Cycles

82

bit1 bit0

c17 17.00 9.00

5-2-6 (GC) 15.23 16.25

5-2-100 (GC) 19.04 19.51

0.00

5.00

10.00

15.00

20.00

25.00

Ex
cu

rs
io

n
s

st
at

e
s

se
t

si
ze

Excursion States

bit1 bit0

c17 2.00 7.00

5-2-6 (GC) 4.00 4.66

5-2-100 (GC) 4.56 4.42

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

R
u

n
s

Number of 1's Runs

83

% of 1's in output

c17 0.56

5-2-6 (GC) 0.50

5-2-100 (GC) 0.50

0.46

0.47

0.48

0.49
0.50

0.51

0.52
0.53

0.54

0.55

0.56

0.57

P
e

rc
e

n
ta

ge
 o

f
1

's
 in

 o
u

tp
u

t
Frequency (Output)

Approx. Entropy

c17 0.29

5-2-6 (GC) 0.26

5-2-100 (GC) 0.26

0.24

0.25

0.26

0.27

0.28

0.29

0.30

P
e

rc
e

n
ta

ge
 o

f
fl

ip
p

e
d

 o
u

tp
u

t
b

it
s

Approximate Entropy

84

Appendix B: Black-box Analysis of y = a * b + c Against Random Functions

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

y = a * b + c 0.14 0.29 0.38 0.45 0.50 0.50 0.50 0.50

12-8-100 (GC) 0.50 0.50 0.49 0.50 0.50 0.49 0.49 0.50

0.00

0.10

0.20

0.30

0.40

0.50

0.60

P
e

rc
e

n
ta

ge
 o

f
1

's
 p

e
r

o
u

tp
u

t
b

it

Frequency (Sequence)

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

y = a * b + c 120.00 146.00 112.00 40.00 16.00 8.00 4.00 2.00

12-8-100 (GC) 412.00 372.00 358.00 394.00 423.00 385.00 377.00 406.00

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

Le
n

gh
th

 o
f

1
's

 s
e

q
u

e
n

ce

Longest Runs of 1's

85

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

y = a * b + c 2914.00 1822.00 1008.00 400.00 8.00 4.00 2.00 1.00

12-8-100 (GC) 1934.30 2017.15 1916.16 1922.20 1984.88 1970.65 1954.32 1990.77

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

G
re

at
e

st
 d

is
ta

n
ce

 f
ro

m
 z

e
ro

Maximum Excursion

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

y = a * b + c 0.00 0.00 0.00 0.00 24.00 576.00 1024.00 2048.00

12-8-100 (GC) 99.25 81.72 91.12 86.94 60.65 73.37 79.70 81.89

0.00

500.00

1000.00

1500.00

2000.00

2500.00

N
u

m
b

e
r

o
f

cy
cl

e
s

Zero Excursion Cycles

86

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

y = a * b + c 2914.00 1822.00 1008.00 400.00 17.00 9.00 5.00 3.00

12-8-100 (GC) 1959.92 2039.65 1940.46 1947.60 2007.24 1994.87 1976.48 2010.42

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

Ex
cu

rs
io

n
s

st
at

e
s

se
t

si
ze

Excursion States

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

y = a * b + c 16.00 46.00 116.00 244.00 456.00 624.00 816.00 1056.00

12-8-100 (GC) 365.04 357.00 390.00 371.76 351.68 367.55 377.22 372.68

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

R
u

n
s

Number of 1's Runs

87

% of 1's in output

y = a * b + c 0.41

12-8-100 (GC) 0.50

0.00

0.10

0.20

0.30

0.40

0.50

0.60

P
e

rc
e

n
ta

ge
 o

f
1

's
 in

 o
u

tp
u

t
Frequency (Output)

Approx. Entropy

y = a * b + c 0.21

12-8-100 (GC) 0.18

0.17

0.17

0.18

0.18

0.19

0.19

0.20

0.20

0.21

0.21

P
e

rc
e

n
ta

ge
 o

f
fl

ip
p

e
d

 o
u

tp
u

t
b

it
s

Approximate Entropy

88

Appendix C: Black-box Analysis of Fibonacci Against Random Functions

bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Fibonacci 0.00 0.00 0.06 0.06 0.13 0.25 0.31 0.31 0.31 0.25 0.31 0.63

4-12-100 (GC) 0.49 0.49 0.50 0.51 0.49 0.50 0.50 0.49 0.50 0.51 0.51 0.51

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

P
e

rc
e

n
ta

ge
 o

f
1

's
 p

e
r

o
u

tp
u

t
b

it

Frequency (Sequence)

bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Fibonacci 0.00 0.00 1.00 1.00 2.00 3.00 4.00 3.00 2.00 2.00 1.00 3.00

4-12-100 (GC) 5.00 4.00 5.00 5.00 4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Le
n

gh
th

 o
f

1
's

 s
e

q
u

e
n

ce

Longest Runs of 1's

89

bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Fibonacci 16.0 16.0 14.0 14.0 12.0 9.00 9.00 9.00 6.00 9.00 6.00 4.00

4-12-100 (GC) 9.50 9.29 9.58 9.74 9.58 9.51 9.43 9.44 9.44 9.50 9.70 9.57

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

G
re

at
e

st
 d

is
ta

n
ce

 f
ro

m
 z

e
ro

Maximum Excursion

bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Fibonacci 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

4-12-100 (GC) 1.05 1.16 1.04 1.04 1.00 1.00 1.07 1.06 1.04 1.00 0.94 1.03

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

N
u

m
b

e
r

o
f

cy
cl

e
s

Zero Excursion Cycles

90

bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Fibonacci 16.0 16.0 14.0 14.0 12.0 9.00 9.00 9.00 6.00 9.00 6.00 6.00

4-12-100 (GC) 10.5 10.2 10.5 10.7 10.5 10.4 10.3 10.4 10.4 10.4 10.6 10.5

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Ex
cu

rs
io

n
s

st
at

e
s

se
t

si
ze

Excursion States

bit11 bit10 bit9 bit8 bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Fibonacci 0.00 0.00 1.00 1.00 1.00 2.00 2.00 3.00 4.00 3.00 5.00 6.00

4-12-100 (GC) 2.50 2.57 2.45 2.45 2.45 2.49 2.56 2.54 2.55 2.52 2.47 2.52

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

R
u

n
s

Number of 1's Runs

91

% of 1's in output

Fibonacci 0.22

4-12-100 (GC) 0.50

0.00

0.10

0.20

0.30

0.40

0.50

0.60

P
e

rc
e

n
ta

ge
 o

f
1

's
 in

 o
u

tp
u

t
Frequency (Output)

Approx. Entropy

Fibonacci 0.29

4-12-100 (GC) 0.27

0.25

0.26

0.26

0.27

0.27

0.28

0.28

0.29

0.29

0.30

0.30

P
e

rc
e

n
ta

ge
 o

f
fl

ip
p

e
d

 o
u

tp
u

t
b

it
s

Approximate Entropy

92

Bibliography

―Alice and Bob,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Alice_and_Bob 12 December 2007.

Algesheimer, Joy, Christian Cachin, Jan Camenisch, and Gunter Karjoth, G.

―Cryptographic Security for Mobile Code,‖ Security and Privacy, 2001, IEEE
2001:2-11 (14 May 2001).

Barak, Boaz, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil

Vadhan, and Ke Yang. ―On the (Im)possibility of Obfuscating Programs,‖

Electronic Colloquium on Computational Complexity, 57: 1-42 (August 2001).

Bassham, Lawrence E. ―The Advanced Encryption Standard Algorithm Validation Suite

(AESAVS),‖ http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf 15
November 2002.

―Block Cipher Modes of Operation,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation 12 Aug 2007.

 Bellare, Mihir and Phillip Rogaway, "Random Oracles are Practical: A Paradigm for

Designing Efficient Protocols."
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/2104/http:zSzzSz
wwwcsif.cs.ucdavis.eduzSz~rogawayzSzpaperszSzoracle.pdf/bellare95random.pdf
14 February 1995.

―B-29 Superfortress,‖ Excerpt from unpublished article. n. pag.

http://commons.wikimedia.org/wiki/B-29_Superfortress 12 August 2007.

Canetti, Ran, Oded Goldreich, and Shai Halevi. ―The Random Oracle Methodology,

Revisited,‖ http://arxiv.org/PS_cache/cs/pdf/0010/0010019v1.pdf 17 May 2006.

Cappaert, Jan, Brecht Wyseur, and Bart Preneel. ―Software Security Techniques.‖

COSIC Internal Report. http://www.cosic.esat.kuleuven.be/publications/article-
554.pdf October 2004.

Carlson, Bruce. Director of Operational Requirements, USAF. ―Stealth Fighters,‖ News

Transcript. 20 April 1999.
http://www.defenselink.mil/utility/printitem.aspx?print=http://www.defenselink.mil/t
ranscripts/transcript.aspx?transcriptid=597 16 Aug 2007.

Chow, Stanley, Phil Eisen, Harold Johnson and Paul van Oorschot. ―White-Box

Cryptography and an AES Implementation,‖ Record of the 9th Annual Workshop on

Selected Areas in Cryptography, LNCS 2595: 250-270 (March 2002).

http://en.wikipedia.org/wiki/Alice_and_Bob
http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/2104/http:zSzzSzwwwcsif.cs.ucdavis.eduzSz~rogawayzSzpaperszSzoracle.pdf/bellare95random.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/2104/http:zSzzSzwwwcsif.cs.ucdavis.eduzSz~rogawayzSzpaperszSzoracle.pdf/bellare95random.pdf
http://commons.wikimedia.org/wiki/B-29_Superfortress
http://arxiv.org/PS_cache/cs/pdf/0010/0010019v1.pdf
http://www.cosic.esat.kuleuven.be/publications/article-554.pdf
http://www.cosic.esat.kuleuven.be/publications/article-554.pdf
http://www.defenselink.mil/utility/printitem.aspx?print=http://www.defenselink.mil/transcripts/transcript.aspx?transcriptid=597
http://www.defenselink.mil/utility/printitem.aspx?print=http://www.defenselink.mil/transcripts/transcript.aspx?transcriptid=597

93

Christiansen, Bradley D., Yong C. Kim, Robert W. Bennington and Christopher J.
Ristich. ―Decoy Circuits for FPGA Design Protection,‖ Field Programmable

Technology 2006, 10.1109: 373-376 (December 2006).

Collberg, Christian S., Clark Thomborson and Douglas Low. ―A Taxonomy of

Obfuscating Transforms,‖ Technical Report 148, Department of Computer Science,

University of Auckland, 148: 1-36 (July 1997).

Collberg, Christian S. and Clark Thomborson. ―Watermarking, Tamper-Proofing, and

Obfuscation—Tools for Software Protection,‖ IEEE Transactions on Software

Engineering, 28.8: 735-746 (August 2002).

―Content Scramble System,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Content_Scramble_System 12 August 2007.

―Data Encryption Standard,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Data_Encryption_Standard 12 August 2007.

Department of Justice. Former Chinese National Charged with Stealing Military

Application Trade Secrets From Silicon Valley Firm to Benefit Governments of

Thailand, Malaysia, and China. 14 December 2006
http://www.usdoj.gov/usao/can/2006/2006_12_14_meng.indictment.press.html
16 August 2007.

―Digital Rights Management,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Digital_rights_management 12 August 2007.

Eilam, Eldad. Reversing: Secrets of Reverse Engineering. Indianapolis: Wiley

Publishing, 2005.

Goldwasser, Shafi and Guy N. Rothblum. ―On Best-Possible Obfuscation,‖ Lecture

Notes in Computer Science, 4392: 194-213 (May 2007).

Hofheinz, Dennis, John Malone-Lee, and Martijin Stam. ―Obfuscation for Cryptographic

Purposes,‖ Lecture Notes in Computer Science, 4392: 214-232 (May 2007).

Hohenberger, Susan and Guy N. Rothblum. ―Securely Obfuscating Re-Encryption,‖

http://www.cs.jhu.edu/~susan/papers/HRSV07.pdf (14 February 2007).

Hughes, Jeff, and Martin R. Stytz. ―Advancing Software Security—The Software

Protection Initiative,‖

http://www.preemptive.com/documentation/SPI_software_Protection_Initative.pdf 1
September 2007.

http://en.wikipedia.org/wiki/Content_Scramble_System
http://en.wikipedia.org/wiki/Data_Encryption_Standard
http://www.usdoj.gov/usao/can/2006/2006_12_14_meng.indictment.press.html
http://en.wikipedia.org/wiki/Digital_rights_management
http://www.cs.jhu.edu/~susan/papers/HRSV07.pdf
http://www.preemptive.com/documentation/SPI_software_Protection_Initative.pdf

94

Jorstad, Norman D. ―Cryptographic Algorithm Metrics,‖

http://csrc.nist.gov/nissc/1997/proceedings/128.pdf (07 October 1997).

Loureiro, Sergio, Laurent Bussard, and Yves Roudier. ―Extending Tamper-Proof

Hardware Security to Untrusted Execution Environments,‖ Proceedings of the 5th

conference on Smart Card Research and Advanced Application Conference. 5:1-12
http://www.eurecom.fr/~nsteam/Papers/cardis02.pdf November 2002.

―Kerchkhoff‘s Principle,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Kerckhoffs'_principle 10 July 2007.

National Institute of Standards and Technology. A Statistical Test Suite for the

Validation of Random Number Generators and Pseudo Random Number Generators

for Cryptographic Applications. NIST Special Publication 800-22. Gaithersburg
MD, 15 May 2001 http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-
22b.pdf.

McDonald, J. Todd and Alec Yasinsac. "Applications for Provably Secure Intent

Protection with Bounded Input-Size Programs," Availability, Reliability and

Security, 2007. ARES 2007. The Second International Conference on , pp.286-293,
10-13 April 2007
http://ieeexplore.ieee.org/iel5/4159773/4159774/04159815.pdf?tp=&isnumber=4159
774&arnumber=4159815.

―Plane Called an ‗Electronic Vacuum Cleaner‘ on Routine Mission,‖ CNN, 3 April 2001

http://www.archives.cnn.com/2001/US/04/03/plane.mission/index.html 16 August
2007.

Preneel, B., A. Biryukov, E. Oswald, B. Van Rompay, L. Granboulan, E. Dottax, S.

Murphy, A. Dent, J. White, M. Dichtl, S. Pyka, M. Schafheutle, P. Serf, E. Biham, E.
Barkan, O. Dunkelman, J.-J. Quisquarter, M. Ciet, F. Sica, L. Knudsen, M. Parker,
and H. Raddum. ―NESSIE Security Report Version 2.0,‖

https://www.cosic.esat.kuleuven.be/nessie/deliverables/D20-v2.pdf (19 February
2003).

―Quine-McCluskey Algorithm,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Quine-McCluskey_algorithm 12 Aug 2007.

―Reverse Engineering,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Reverse_engineering 10 July 2007.

Richelson, Jeffery T. ―When Secrets Crash,‖ Air Force Magazine, 7.01:58+ (July 2001).

http://www.afa.org/magazine/july2001/0701crash.pdf 16 August 2007.

http://csrc.nist.gov/nissc/1997/proceedings/128.pdf
http://www.eurecom.fr/~nsteam/Papers/cardis02.pdf
http://en.wikipedia.org/wiki/Kerckhoffs'_principle
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22b.pdf
http://ieeexplore.ieee.org/iel5/4159773/4159774/04159815.pdf?tp=&isnumber=4159774&arnumber=4159815
http://ieeexplore.ieee.org/iel5/4159773/4159774/04159815.pdf?tp=&isnumber=4159774&arnumber=4159815
http://www.archives.cnn.com/2001/US/04/03/plane.mission/index.html
https://www.cosic.esat.kuleuven.be/nessie/deliverables/D20-v2.pdf
http://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
http://en.wikipedia.org/wiki/Reverse_engineering
http://www.afa.org/magazine/july2001/0701crash.pdf

95

Sander, Thomas and Christian F. Tschudin. ―Protecting Mobile Agents Against

Malicious Hosts,‖

http://citeseer.ist.psu.edu/cache/papers/cs/16015/http:zSzzSzwww.icsi.berkeley.eduz
Sz~tschudinzSzpszSzma-security.pdf/sander98protecting.pdf February 1998.

Sander, Thomas and Christian F. Tschudin. ―On Software Protection Via Function

Hiding,‖

http://citeseer.ist.psu.edu/cache/papers/cs/14081/http:zSzzSzwww.informatik.uni-
stuttgart.dezSzipvrzSzvszSzpersonenzSz..zSzlehrezSzws9899zSzvorlesungenzSzM
AzSzSanTsc98.pdf/sander98software.pdf December 1998.

―Software Agent,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Software_agent 12 Aug 2007.

Thomborson, Clark. A Class handout. ―Methods for Software Protection,‖

http://www.cs.auckland.ac.nz/~cthombor/Pubs/TC/SWprot7Apr07.ppt 07 April 07.

Torri, Stephen, John A. Hamilton Jr., Derek Sanders, and Gordon Evans. ―A Primer on

Java Obfuscation,‖

http://www.stsc.hill.af.mil/crosstalk/2007/12/0712TorriSandersHamiltonEvans.html
December 2007.

Travis, Greg. ―How to Lock Down Your Java Code (Or Open Up Someone Else‘s),‖

http://www.ibm.com/developerworks/java/library/j-obfus/?loc=tstheme 01 May
2001.

―Tupolev Tu-4,‖ Excerpt from unpublished article. n. pag.

http://en.wikipedia.org/wiki/Tupolev_Tu-4 12 Aug 2007.

―U.S. Arms Software Export Guilty Plea Marks First,‖ Reuters, 2 August 2007

http://www.reuters.com/articlePrint?articleId=USN0246288320070802 16 August
2007.

Vahid, Frank. ―It‘s Time to Stop Calling Circuits ‗Hardware‘,‖ Computer 40.9:106-108.

http://ieeexplore.ieee.org/iel5/2/4302594/04302628.pdf?arnumber=4302628&htry=4
September 2007.

http://citeseer.ist.psu.edu/cache/papers/cs/16015/http:zSzzSzwww.icsi.berkeley.eduzSz~tschudinzSzpszSzma-security.pdf/sander98protecting.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/16015/http:zSzzSzwww.icsi.berkeley.eduzSz~tschudinzSzpszSzma-security.pdf/sander98protecting.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/14081/http:zSzzSzwww.informatik.uni-stuttgart.dezSzipvrzSzvszSzpersonenzSz..zSzlehrezSzws9899zSzvorlesungenzSzMAzSzSanTsc98.pdf/sander98software.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/14081/http:zSzzSzwww.informatik.uni-stuttgart.dezSzipvrzSzvszSzpersonenzSz..zSzlehrezSzws9899zSzvorlesungenzSzMAzSzSanTsc98.pdf/sander98software.pdf
http://citeseer.ist.psu.edu/cache/papers/cs/14081/http:zSzzSzwww.informatik.uni-stuttgart.dezSzipvrzSzvszSzpersonenzSz..zSzlehrezSzws9899zSzvorlesungenzSzMAzSzSanTsc98.pdf/sander98software.pdf
http://en.wikipedia.org/wiki/Software_agent
http://www.cs.auckland.ac.nz/~cthombor/Pubs/TC/SWprot7Apr07.ppt
http://www.stsc.hill.af.mil/crosstalk/2007/12/0712TorriSandersHamiltonEvans.html%20December%202007
http://www.stsc.hill.af.mil/crosstalk/2007/12/0712TorriSandersHamiltonEvans.html%20December%202007
http://www.ibm.com/developerworks/java/library/j-obfus/?loc=tstheme
http://en.wikipedia.org/wiki/Tupolev_Tu-4
http://www.reuters.com/articlePrint?articleId=USN0246288320070802
http://ieeexplore.ieee.org/iel5/2/4302594/04302628.pdf?arnumber=4302628&htry=4

96

Vita

1Lt Alan C. Lin graduated from John P. Stevens High School in Edison, New

Jersey. He entered undergraduate studies at Rutgers University‘s School of Engineering

in Piscataway, New Jersey where he graduated with a Bachelors of Science degree in

Computer Engineering in January 2004. He was commissioned through Officer Training

School at Maxwell AFB in April 2004.

His first assignment was at Hanscom AFB as a developmental engineer working

on basic research for biometric security at Air Force Research Laboratory, Sensors

Directorate, Electro-Optics Branch, in April 2004. In August 2006, he entered the

Graduate School of Engineering and Management, Air Force Institute of Technology.

Upon graduation, he will be assigned to Los Angeles AFB, Space and Missile Systems

Center, Concept Engineering Branch.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

27-03-2008
2. REPORT TYPE

Master‘s Thesis
3. DATES COVERED (From – To)

June 2007 – March 2008
4. TITLE AND SUBTITLE

Software Obfuscation with Symmetric Cryptography

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Lin, Alan C., 1Lt, USAF

5d. PROJECT NUMBER

08-183
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/08-15

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Dr. Robert L. Herklotz
Program Manager: Security and Information Operations
Air Force Office of Scientific Research
Suite 325, Room 3112
875 N. Randolph Street
Arlington, VA 22203-1768
email- robert.herklotz@afosr.af.mil
(703) 696-6565 fax (703) 696-8450

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 Software protection is of great interest to commercial industry. Millions of dollars and years of research are invested in the
development of proprietary algorithms used in software programs. A reverse engineer that successfully reverses another company’s
proprietary algorithms can develop a competing product to market in less time and with less money. The threat is even greater in
military applications where adversarial reversers can use reverse engineering on unprotected military software to compromise
capabilities on the field or develop their own capabilities with significantly less resources. Thus, it is vital to protect software,
especially the software’s sensitive internal algorithms, from adversarial analysis.
 Software protection through obfuscation is a relatively new research initiative. The mathematical and security community have
yet to agree upon a model to describe the problem let alone the metrics used to evaluate the practical solutions proposed by
computer scientists. We propose evaluating solutions to obfuscation under the intent protection model, a combination of white-box
and black-box protection to reflect how reverse engineers analyze programs using a combination white-box and black-box attacks.
In addition, we explore use of experimental methods and metrics in analogous and more mature fields of study such as hardware
circuits and cryptography. Finally, we implement a solution under the intent protection model that demonstrates application of the
methods and evaluation using the metrics adapted from the aforementioned fields of study to reflect the unique challenges in a
software-only software protection technique.

15. SUBJECT TERMS

Software metrics, cryptography, information assurance, software tools

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION
OF ABSTRACT

UU

18.NUMBER
 OF
 PAGES

108

19a. NAME OF RESPONSIBLE PERSON

J. Todd McDonald, Lt Col, USAF

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, ext 4639
(Jeffrey.McDonald@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Software Obfuscation with Symmetric Cryptography
	Recommended Citation

	software obfuscation with symmetric cryptography

