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Abstract

It should be no surprise that Department of Defense (DoD) and U.S. Air Force

(USAF) networks are the target of constant attack. As a result, network defense

remains a high priority for cyber warriors. On the technical side, trust issues for a

comprehensive end-to-end network defense solution are abundant and involve multiple

layers of complexity. The Air Force Research Labs (AFRL) is currently investigat-

ing the feasibility of a holistic approach to network defense, called Cybercraft. We

envision Cybercraft to be trusted computer entities that cooperate with other Cyber-

craft to provide autonomous and responsive network defense services. A top research

goal related to Cybercraft centers around how we may examine and ultimately prove

features related to this root of trust.

In this work, we investigate use-case scenarios for Cybercraft operation with a

view towards analyzing and expressing trust requirements inherent in the environ-

ment. Based on a limited subset of functional requirements for Cybercraft in terms of

their role, we consider how current trust models may be used to answer various ques-

tions of trust between components. We characterize generic model components that

assist in answering questions regarding Cybercraft trust and pose relevant comparison

criteria as evaluation points for various (existing) trust models. The contribution of

this research is a framework for comparing trust models that are applicable to similar

network-based architectures. Ultimately, we provide a reference evaluation framework

for how (current and future) trust models may be developed or integrated into the

Cybercraft architecture.
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Developing a Reference Framework

for Cybercraft Trust Evaluation

I. Introduction

The world is in the middle of the information age with almost anything easily

accessible through the Internet. Attackers are everywhere exploiting this wealth

of information and targeting U.S. military information systems. Working towards

combating these new threats, the USAF redefined its mission in 2005 to include

cyberspace - “deliver sovereign options for the defense of the United States of America

and its global interests - to fly and fight in Air, Space, and Cyberspace.” [9] The

strategic vision for Cyberspace as a warfighting domain was furthered by Secretary of

the Air Force Michael W. Wynne when he announced the creation of the Cyberspace

Command (AFCYBER) [13]. Focusing on science and technology issues related to

this domain, AFRL launched a research initiative geared to prepare for defense in this

critical realm of cyberspace, termed Cybercraft. Just as aircraft platforms operate in

air and carry a wide variety of payloads (bombs, missiles, electronic warfare pods,

precision guided munitions), the term Cybercraft reflects the idea of generic platforms

operating in cyberspace and executing a wide variety of payloads (patch verification,

router configuration information, INFOCON policy enforcement, etc.).

The likely Cybercraft architecture consists of a machine-installed platform that

executes mission-specific payloads: the platform represents a trusted component that

provides command, control, and communication of cyber capabilities on host nodes

while the payloads inherit trust from the platform and carry out various defensive

missions and goals. Network defenders will use this architecture to accomplish specific

tasks via single or multiple cooperating Cybercraft payloads. The architecture will

incorporate hybrid trusted hardware/software/firmware components in various levels

of interaction to support desired functionalities such as intrusion detection, anti-virus
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monitoring, network defense, and so forth. Cybercraft may eventually be deployed on

up to one million nodes in order to provide commanders with a root of trust related

to their high level strategic and operational network defense needs.

1.1 Research Motivation

1.1.1 Goals. The ability to model, measure, and verify the degree of trust a

commander may place in Cybercraft remains a crucial research question that must be

adequately characterized before this future architecture becomes a reality. Although

trust itself has a multitude of meanings, in this work we consider how to synthesize and

express the nature of trust in the future Cybercraft environment based on expected

operational requirements. We further characterize generic model components that

will help answer questions regarding Cybercraft trust and pose relevant comparison

criteria as evaluation points for various (existing) trust models. We also introduce a

novel approach to synthesize trust relationships iteratively based on use case analysis,

attack tree threat modeling and operational/mission level task breakdown.

1.2 Research Contribution

1.2.1 Requirements. We provide a unique and revolutionary approach to

requirements definition based on: use case analysis, attack/defense trees and mission

level task breakdown. Attack trees are a way to visualize attacks on our networks as

well as possible defense approaches to these attacks. A use case is typically described

as a text-based step-by-step breakdown of the interaction between a user and a system.

Mission level task breakdown is the process of splitting a high level goal into smaller,

more manageable pieces. Our initial set of requirements helps further the goal of

creating a Cybercraft prototype.

1.2.2 Reference Framework for Trust Evaluation. Our contribution to the

area of trust is creating a way to characterize generic model components to establish

trust boundaries within the Cybercraft domain. Given specific requirements specifi-

cation, we derive attributes and desired properties of trust models which articulate,

2



express, and evaluate commanders trust. We provide specific correlation between

abstract trust models and the Cybercraft trust problem related to specific system re-

quirements. Furthermore, we implement and analyze specific models to demonstrate

the utility of trust expression within the context of Cybercraft. Given three specific

trust models (hTrust, VTrust, P2P), we illustrate and analyze the nature of transitive

trust decisions reflected by components of the Cybercraft architecture. Finally, we

define a reference framework for evaluating existing and future trust models as well

as provide specific measures for analyzing transitive trust relationships in view of the

Cybercraft platform and its root of trust.

1.3 Thesis Organization

This document is divided into seven chapters. Chapter II presents Cybercraft

and trust issues in greater detail. Chapter III presents our approach to requirements

gathering using attack/defense trees, use cases and mission level task breakdown.

Chapter IV characterizes the trust models and further explains how to evaluate them.

Chapter V sets up the scenarios. Chapter VI walks through and analyzes the results

and Chapter VII summarizes our contributions and give recommendations for future

work.

Thesis Statement: This research examines the trust relationships throughout

the Cybercraft architecture and develops a clear way of gathering requirements by

using attack trees, use cases and mission level task breakdown.

Results: This research creates an initial set of requirements for the Cybercraft

Domain (Chapter III, Section 3.3). These requirements, along with three trust models

(hTrust, VTrust, P2P), create a reference framework for Cybercraft trust evaluation.

Analysis of the three trust models concludes no model rises above another and, as is,

none are suitable for potential use within the Cybercraft architecture.

This research first creates an initial set of requirements for the Cybercraft do-

main (Chapter III, Section 3.3). Next, we create a referece framework for trust

3



model evaluation with possible application to Cybercraft. Three models in particular

(hTrust, VTrust, P2P) were evaluated to create the reference framework (Chapter VI,

Section 6.3). Our analysis of the three models concludes that none, in their current

state, are applicable for Cybercraft. Using the reference framework as a guide for

trust model requirements, a combination of the best attributes of the three models is

a possibility.

4



II. Related Work

Defining trust is elusive as no one definition rises above another. One of the

reasons is that trust is more of a social issue as opposed to the technical view

many in the research community have.

Although trust is used everywhere, Gollmann argues that just using the word

(trust) in a system or project is dangerous because of its manifold and sometimes

contradictory meanings [10]. It is an overloaded term that hinders the clarity and

precision that is sought after in technical fields. Nonetheless, it expresses a quality

that military commanders make quite frequently: an objective dependability (whether

by mathematical proof or demonstrated testing) that a system will perform according

to its specifications, even though negative consequences can occur. Next, we dis-

cuss the specific ideas of trust that apply to Cybercraft in context to the envisioned

architecture.

2.1 Trust

Many authors have attempted to define trust. Gambetta [8] laid the founda-

tion for the definition of trust as a social concept that is subjective and context-

dependent. Cahill [4] elaborated further to add attributes such as self-preserving and

self-amplifying, among others. In more general terms, trust is defined as the measure

of trustworthiness that relies on whatever evidence is provided or implied [3]. Trust

plays a key role in system development and we consider it an essential concept.

To understand trust, many look at and try to mimic human trust [4, 5] and

consider three main delineations: initial trust, trust evolution, and trust delegation.

Initial trust is the first formation of trust between two entities and usually happens

through recommendations from other trusted entities. Trust evolution is the contin-

uation and self-adaptation of trust over time and allows for experience to affect the

trust relationship. Trust delegation occurs when an entity delegates a trust decision

to another trusted entity. In other trust domains [17], different terms express the

same basic concepts: experience (for evolution), knowledge (initial), recommenda-

5



tions (delegation). Once we assign a precise meaning and definition for trust, we in

essence form a model which may be exercised and evaluated given the assumptions

and boundaries of our system. It is essential that regardless of the model chosen, the

reason we want to use the model and our expectation of what it will provide must be

clearly defined.

2.2 Transitive Trust

We are especially interested in the idea of transitive trust for application to

Cybercraft. The goal is to have many Cybercraft working together in the same envi-

ronment to accomplish a set of goals. There will be times when Cybercraft A must

trust Cybercraft B with a trust decision on whether or not to interact with Cyber-

craft C. In a more general sense, two entities can have varying degrees of trust in

each other, within a specific context. An entity can trust an individual in multiple

contexts as well, each having a different value of trust. We can express transitive trust

as the resulting measure between an entity A and entity C based on the assumption

that entity A trusts entity B and entity B trusts entity C. Our interest in transitivity

permeates a basic desire for Cybercraft: the ability to take a locality of guaranteed

trust (established through hardware) and extend that trust to the execution of code

(via payloads) so that the resulting effects, collected data, sensing information, and

network operations are trusted as well. The other aspect of trust we must consider

deals with the multi-agent communication and cooperation needs that become evident

when considering a typical Cybercraft application involving multiple payloads oper-

ating across multiple platforms. Both of these application contexts have ramifications

for Cybercraft and our desire to express and measure commander-level trust.

2.3 Cybercraft

Phister et al. [15] pose the first conceptual use of Cybercraft as an autonomous,

intelligent agent that accomplishes military purposes across a wide variety of electronic-

based media. Envisioned as a cyber-vehicle that traverses through cyberspace, Cy-
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bercraft were seen as the future platform by which military operations would be

conducted in the cyber realm. AFRL enhanced these ideas [2] and developed plat-

form/payload architecture with certain target qualities. The Cybercraft platform,

for example, requires a long service life with large investment to support a variety

of missions and will be the subject of intense scrutiny to characterize attribution,

authentication, and reliability. The Cybercraft payload, likewise, supports rapid de-

velopment cycles, provides extensibility, and implements specific effects related to

defensive missions. The long service life of the platform allows for trust to be formed,

maintained, and reevaluated on a constant basis. As research has progressed, trust

and a self-protection guarantee for Cybercraft have emerged as a coherent study

area [11,14].

We can use a domain model to describe various relationships between entities

in a system. Figure 2.1 illustrates a rudimentary domain model for Cybercraft that

illustrates several concepts pertinent to trust expression and security. First of all, the

platform has a one-to-many relationship with prospective nodes, meaning that one

platform will be deployed per node and nodes represent a wide variety of IP-based

appliances such as workstations, routers, hand-held devices, or servers. Currently,

Cybercraft platforms will execute payloads to achieve or accomplish specific effects

and goals in support of operational/tactical missions. Platforms may communicate

with other platforms or allow inter-payload communication to accomplish their tasks.

Platforms (and thus payloads) may also use other tools or processes (virus checkers,

IDS, etc.), depending on the level of trust such tools may have. Though the entire

cyber environment is not represented, we can still visualize that nodes are connected

to other nodes via networks and are ultimately controlled by some underlying op-

erating system (OS). The specific relationship between the Cybercraft platform and

a deployment node is still under consideration, but the current direction assumes a

mixture of hardware and firmware that is independent of normal architectural layout.

The tentative domain model in Figure 2.1 reflects the complexity of the trust

evaluation process. Payloads are seen to inherit trust from the Cybercraft platform
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Figure 2.1: Conceptual Domain model for Cybercraft.

and each association represents a possible trust decision that requires evaluation.

There will have to be an initial trust value for a Cybercraft to trust the machine it

is loaded to. Computer networks are constantly changing and so as time goes on,

trust evolution and delegation will need to be addressed. As this domain model is

conceptual and by no means as extensive and complex as the Cybercraft domain,

it illustrates the need for a way to measure trust between all the interacting parts.

Thompson [20] demonstrated through a series of examples that it was impossible to

trust any code unless personally written. AFRL has an Anti-Tamper program, Soft-

ware Protection Initiative (AT/SPI) whose mission is ”to prevent the unauthorized

distribution and exploitation of application software critical to national security” [1].

Combining these techniques with trust model exploration will only enhance the goal

of trusted relationships for the Cybercraft architecture.

2.4 Establishing a Root of Trust

We define a fundamental aspect of trust in Cybercraft as the ability for a system

to behave as designed and intended. The notion of a root of trust based on hardware

that cannot change is not new - and in fact has been a prized goal for organizations
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such as the Trusted Computing Group (TCG) for quite some time [21]. TCG spec-

ifications provide a starting point for an open set of security related building blocks

that will associate trust with all aspects of computing to include storage, network-

ing, software, mobile devices, personal computers, and servers. Two serious concerns

for trusted computing standards such as those sponsored by TCG include the notion

that competition may be stifled or that manufacturers may implement their “trusted”

components incorrectly. In the context of Cybercraft, the former concern is not an

issue as the military environment provides the operational bounds and the latter con-

cern would need to be addressed adequately with any proposed Cybercraft platform

solution. Nonetheless, the movement towards implementable and procurable secure

hardware solutions in the commercial market provides perfect overlap with Cybercraft

goals to integrate such technology.

We may liken trust establishment in hardware, software, or even the network

itself to the establishment of trust with a service organization. TCG propose the use

of silicon-based components such as the Trusted Platform Module (TPM) as a source

of trusted storage where keys or passwords may be stored. At a minimum, we require

a boot-time process to ensure secure configuration of all further system activity in

order for the Cybercraft platform to establish the root of trust. We need to find trust

models to capture this Cybercraft aspect and models which exercise further transi-

tive relationships past the platform. Candidate trust models should also address the

possibility of physical compromise (capture and subjection of hardware/software to

adversarial activity) for either the platform or any possible payload. TCG already

distinguishes different roots of trust including measurement, storage, and reporting,

which find close corollary to proposed parts of the Cybercraft platform. In the trusted

computed realm, we consider attestation as the processes for guaranteeing the accu-

racy of information and the ability of a platform to vouch for the trustworthiness of

another platform. Attestation also provides a parallel notion for a major perceived

computing paradigm supported by the Cybercraft architecture involving multi-agent

cooperation between payloads accomplishing common tasks and goals.
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The root of trust established in hardware for the Cybercraft platform gives us

the basis for analyzing transitive trust decisions and gives us a framework to analyze

possible trust models. In order to address how we may integrate these models into

the development for Cybercraft, we begin with our approach for capturing functional

and non-functional requirements, which we discuss next.

2.5 Cybercraft Requirements Distillation

One of the first steps in creating software is defining what it will be used for,

in other words, requirements. Current practices for software development include the

use of an iterative approach which assumes change and relies heavily on feedback, this

is the Object Oriented Analysis and Design (OOA/D) and Iterative Development pro-

cess. We apply the Iterative Development [12] as a model by which we can perform

iterative analysis and design for the Cybercraft architecture while collectively identi-

fying and refining requirements. While some aspects of the future Cybercraft vision

may still be in the realm of research and development, the basic requirements for the

system derive from a desire to provide comprehensive network defense services in a

holistic and secure manner. The requirements for such a system are enormous to say

the least and in order to know where to start, we begin with a general understanding

of network defense missions as they are currently conducted. However, in order to

capture the needs of a future system versus the closed context of current systems, we

seek to define the network defense role from a general application perspective. To ac-

complish this task we use distinct techniques in conjunction: attack/defense trees [6]

and use cases [12].

2.5.1 Attack / Defense Trees. If we had free reign to design a holistic

approach to network security, based on an extensible architecture that uses mission-

specific co-operating payloads, we may best discover the possible tasks of the payloads

by looking first at the possible ways our network is attacked. Attack trees provide a

textual and visual means to analyze such attacks upon a system and are useful tools to
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reason about system security. Figure 2 shows an example attack tree where the root

node is the attackers goal and the children nodes show means or ways the attacker

could accomplish an attack goal. The tree may have AND nodes which mean all child

nodes must be successful to achieve the main goal. Trees use OR nodes to represent

that only one of its child nodes need to succeed for its path to be successful [6].

Once we exhaustively consider how our networks may be attacked and document

those in the form of attack trees, we can then know best what a network defense

architecture should be doing in response. For Cybercraft, we apply this approach

iteratively by taking specific attacks and creating defense trees in response. Defense

trees outline the possible mitigating actions we may take in response. The defense

tree corresponds to the leaf nodes of the attack tree and provides us a task’ level

understanding of what needs to be done. The root node is the attackers goal and the

children nodes are means or ways the attacker could accomplish that goal. Figure 2.2

illustrates an example attack tree as dotted lines and in this case shows that a DDoS

attack may be defended against using firewall/switch/router ACLs or an intrusion

detection system (IDS). Figure 2.3 shows the difference between and AND and an

OR node. Though very high level and general in this example, we envision such

attack/defense tree modeling will provide a root level of understanding for possible

Cybercraft tasks.

Once attack/defense trees are developed, we take some small starting number

of trees/branches (our most important roles for example). We then analyze whether

those defensive roles are currently being done by a human, an existing tool, or both.

In some cases, there may be no (effective) current method that mitigates, detects, or

prevents certain attacks. This analysis method gives us a basis to determine whether

we want the Cybercraft platform/payload architecture to do a particular task, do a

current task better, or possibly automate an existing human-driven process. This

process gives us the chance to not only analyze how well (or not) we currently do

network defense, but also gives us the ability to look into future requirements without

limitation of what currently is possible.
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Figure 2.2: Attack tree created for an attack on network infrastructure.

Figure 2.3: Attack tree demonstrating and AND and OR node.

2.5.2 Use Cases. Once we determine defensive roles that are applicable

to Cybercraft, we utilize a standard means for capturing software requirements for

those roles: use cases. Use cases are textual means of describing the step-by-step

interaction between a user and a system. In the case of Cybercraft, we expect that text

stories, diagrams, and models will help us determine not only functional requirements

for payloads, but also non-functional requirements related to command and control,

visualization, and policy development. Because use cases are software methodology
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agnostic, they provide an ideal means to communicate requirements between users,

analysts, and designers. Use cases provide a concrete means to further determine the

nature and number of payloads that support a given defensive role or mission. They

also provide the ideal means to analyze the impact of transitive trust relationships in

a concrete manner.

Not only do Cybercraft requirements need to address how we intend to perform

network defense, they also need to uniformly address all possible avenues of vulnera-

bility. We see the nature of the trust question most clearly in this context as it forces

us to consider possible ways in which the actual Cybercraft may itself be subverted.

We use scenarios, dependencies, and any implementation assumptions as part

of the analysis process to help identify trust expressions (or questions) that should be

evaluated or answered. To aid in this process, we also apply the art of misuse cases to

the normal use case process. Misuse cases are simply step-by-step descriptions that

detail adversarial action and records how the system (should or should not) respond

accordingly. We expect this analysis to directly feed our requirements for trust model

expression and exercise.

The general template of a use case is shown in Table 2.1. For most of the

requirements, we will use brief use cases and thus have only line describing the action.

2.6 Trust Models

In order to address the issue of self protection and trust, we consider the unique

aspects of the Cybercraft architecture that need trust model expression and that are

revealed as part of the requirements analysis process. We consider several models

such as hTrust [5], VTrust [16, 17], and P2P [22]. hTrust , mimics the interactions

of humans trust and works well in mobile settings because of the minimal resource

demands. VTtrust , is a vector-based trust model. Trust interactions are represented

13



Table 2.1: Use case template [12].

Use Case Section Comment
Use Case Name Start with a verb
Scope The system under design
Level user-goal or sub-function
Primary Actor Calls on the system to deliver services
Stakeholders and Interests Who cares about this use case, and what do

they want?
Preconditions What must be true on start, and worth

telling the reader?
Success Guarantee What must be true on successful completion,

and worth telling the reader?
Main Success Scenario A typical, unconditional happy path scenario

of success
Extensions Alternate scenarios of success or failure
Special Requirements Related non-functional requirements
Technology and Data Variations List Varying I/O methods and data formats
Frequency of Occurrence Influences investigation, testing, and timing

of implementation
Miscellaneous Such as open issues

as relational entities translated to a central database. Peer-to-peer is a trust model

applied to peer-to-peer systems.

For each trust model, there are three components of trust: initial trust, trust

exchange, and trust evolution. Initial trust is the first formation of trust between

two agents. Trust exchange deals with the protocols and exchange of trust between

agents. Trust evolution is the continuation of trust over time. This allows for the

decay of knowledge that happens over time. Each trust model uses various words for

each of these trust ideas but essentially mean the same thing. Table 2.2 shows each

model with their terms.

2.6.1 hTrust. hTrust [5] is made up of three main parts: trust formation,

trust dissemination, and trust evolution. Trust formation is the initial trust before

an interaction occurs; creating a trusting environment that gives us a prediction of
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Table 2.2: A summary of similar trust ideas for each trust model

Trust Model Initial Trust Trust Exchange Trust Evolution
hTrust formation dissemination evolution
VTRUST knowledge experience recommended
P2P ratings generation ratings discovery ratings aggregation

trustworthiness. Trust dissemination uses a recommendation exchange protocol to

exchange trust opinions. The evolution of trust is the part that allows for a continuous

self-adaptation of trust.

2.6.1.1 Trust Formation. Trust formation is the initial trust before

an interaction occurs; creating a trusting environment that gives us a prediction of

trustworthiness. To create the initial trust between two agents (say agents a and b),

the aggregated trust information, recommendations, and trust formation function Υ

are all used.

The aggregated trust information is made up of a set of tuples, as shown in

equation 2.1.

[a, b, l, s, c, k, t] (2.1)

It is read as agent a trusts agent b at level l to do service s in context c. The trust

level l is a real value in the range of [-1,1], -1 being total distrust and 1 blind trust.

The degree of knowledge k allows for the distinction from unknown and dont trust

and ranges from [0,1] with 0 unknown and 1 perfect knowledge. Direct experiences

between agents increase the value of k. The last item, t, is a timestamp that allows

for the fact that knowledge decays with time.

Recommendations follow the same format as the aggregated trusted information

tuple with the addition of the recommenders private key. They are used to form initial

trust opinions and delegation, such as relying on third-party assessments. The format

is shown in equation 2.2
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[a, b, l, k, t]SKx (2.2)

The trust formation function Υ will return a predicted trust value or range to

base trust opinions upon and is used to predict the trustworthiness of a trustee.

2.6.1.2 Trust Dissemination. Trust dissemination uses a recommen-

dation exchange protocol to exchange trust opinions. Each agent carries a portfolio

of credentials in their local environment. A portfolio consists of a set of letters rep-

resenting the history of the agent. The letter is a tuple, following the same format

as recommendations. Agent a will form a trust opinion about agent b by using the

protocol. Below are the steps.

1. Agent a sends agent b a request for b’s portfolio of credentials

2. Agent b replies with a set of at most m letters of presentation

3. Trust formation function Υ forms a trust opinion about agent b based on the

information from the letters

4. Interaction between agents a and b may or may not take place depending on

the resulting trust value from trust formation function Υ

2.6.1.3 Trust Evolution. The evolution of trust is a fundamental con-

cept of any TMF and allows for a continuous self-adaptation of trust. The customizing

functions used for trust evolution are the aggregated function Φ and the tacit infor-

mation extraction function Ψ . Trust evolution also plays a role in catching malicious

agents.

The aggregation function Φ maintains information about the trustworthiness of

an agent as a service provider and is used to update the perceived trustworthiness of

trustee b when new direct experiences occur. The extraction function Ψ maintains

information about the trustworthiness of an agent as a recommender and is the sub-

jective part of the TMF. Recommendations are given different weight values using
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the extraction function and are based on how much trust we have in the agent the

recommendation came from.

Malicious agents will send bad information, spreading fake good recommen-

dations and fake bad recommendations. To help guard against this, a boundary

trustworthiness value η ∈ [-1,1] is defined for each agent so that when an agents

trustworthiness drops below η, the agent becomes suspect. When an agent becomes

suspect, all recommendations coming from that agent are discarded.

2.6.2 VTrust. The trust relationship in VTrust [16, 17] consists of a vector

with three components: experience, knowledge, and recommendation. Experience is

the number of events two agents share within a certain timeframe. Knowledge is

composed of direct knowledge and indirect knowledge. A recommendation uses a

recommendation value as its basis for trust. As well, neutrality is acceptable in this

model. Stevens [19] considers the application of trust vectors and their applicability

for Cybercraft fitness. Their analysis examines the use of Cybercraft payloads in

multi-agent information gathering roles where agents may have to evaluate informa-

tion from other agents. Such roles cover a large number of defense applications where

network sensing data are analyzed. Their conclusions show that a modified Trust

Vector model could meet the needs for expressing trust decay and transitive trust

decisions in the information retrieval context.

The trust relationship is calculated from three numeric values represented as a

decimal ranging from [-1, 1] ∪ ⊥. A negative value represents trust-negative, a positive

value represents trust-positive and a zero value is trust-neutral. Lack of value from

insufficient data is given by ⊥. This trust relationship is shown in equation 2.3

(A →c B)t = [AEc
B,A Kc

B,ψ Rc
B] (2.3)
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Experience is the number of events two agents share within a certain timeframe.

An event can be trust positive, trust negative, or trust neutral. Recent events are

given more weight.

Knowledge is composed of direct knowledge and indirect knowledge. Each com-

ponent of the trust model (experience, knowledge, and recommendation) is given two

values; one to represent direct and the other indirect knowledge. The knowledge pol-

icy computes the weight these values are given. Knowledge is gathered by summing

of the product of the two knowledge values.

A recommendation uses a recommendation value as its basis for trust. An agent

uses the level of trust ([-1,1]) to provide a weighed recommendation. This weight

multiplied with the former value will return the recommendation score for an agent.

The VTrust model allows for two agents coming up with different trust values

from the same input. This can happen when an agent gives different weight values

for each trust component (experience, knowledge, recommendation).

2.6.3 P2P. In peer-to-peer (P2P) systems, peers interact with unknown

peers without trusted third-parties. In P2P systems there is a frequent join and leave

of peers. Yu, et al. [22] present a distributed approach for P2P systems using repu-

tation mechanism for trust. Their approach uses polling algorithms and deals with

dishonest or unlreliable peers. Peers can be thought of as agents (from the previ-

ous models discussed). There are three reputation mechanisms: ratings generation,

ratings discovery, and ratings aggregation. Each are discussed below.

2.6.3.1 Ratings Generation. Ratings generation focuses on how to

aggregate ratings and is represented an interval from [0,1]. There are two different

types of ratings: service (reliability) and voting (credibility). Tying these words into

the other models, service is a service specific trust opinion and voting is a recommen-

dation trust opinion. A peer Pi wanting to evaluate the trustworthiness of peer Pj

has two options: using direct experience and recommendations. Direct experience is
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interaction between the two peers and recommendations come from others in the case

where Pi and Pj have no frequent interactions.

The two different types of ratings are local rating and aggregate rating. Local

rating is based on direct interaction and is generated every time an interaction takes

place between two peers, such as Pi and Pj. Aggregate rating combines the local

ratings (if there are any) with recommendations from other witnesses. This is used to

decide whether peer Pj is trustworthy and whether peer Pi will propagate the ratings

to others.

Reputation mechanisms, or aggregate ratings, help establish trust between peers

but direct interaction, or local rating, has more weight in the decision for Pi to trust

Pj. In the case that Pi and Pj have not interacted (no local ratings), if enough

recommendations have been received, interaction will occur.

2.6.3.2 Ratings Discovery. Ratings discovery uses the process of refer-

rals to find witnesses in an efficient manner. If a witness is found, the response is sent

in the reverse path of the request. A series of referrals makes a referral chain. This

can be thought of as transitive trust or chain trust, one of the key ides for Cybercraft.

The referral chain creates a trust graph that is kept in the peers’ local environment.

2.6.3.3 Ratings Aggregation. There needs to be a way to distinguish

between reliable and deceptive or unreliable peers. Witnesses may not give true

information about other peers. This is called noisy ratings and has three variations:

complementary, exaggerated positive, and exaggerated negative. Malicious peers are

either individual or in a colluding group. Weighted majority techniques are used to

predict the trustworthiness of a given party. A peer will maintain a weight for the

credibility of each peer it requests a testimony from that gives an estimate of how

credible the peer thinks the witness is.
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2.7 Summary

Our goal for this research is to further the process of requirements gathering

using the tools of attack/defense trees and use/misuse cases. We discussed in this

chapter the basic ideas of trust, along with the need for transitive trust representation

for Cybercraft. Then we discussed the Cybercraft domain and what that entails

thusfar. Finally, we gave an overview of three trust models that have the potential

to be applied to Cybercraft to give a value to trust relationships. The next chapter

uses the tools to generate requirements for Cybercraft and Chapter IV goes over the

three trust models in greater detail.
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III. Cybercraft Requirements Development

Requirements’ gathering is a daunting, but needed task, especially for the ideas

and goals for Cybercraft. As mentioned in Chapter II, use cases and attack and

defense trees are used to flesh out some functional and non-functional requirements.

Using a strategic-operational-tactical view, we create probable Cybercraft missions

and/or payloads from each of the defense priorities. This chapter is laid out as

follows. The next section starts the process for hashing out requirements, followed

by a couple of examples of expanded use cases, and finally the chapter closes with a

summary of Cybercraft requirements.

3.1 Requirements gathering

Using the top ten defensive priorities1, we compile a list of brief use cases using

a strategic-operational-tactical mission level breakdown process. The defense priori-

ties expanded on are: attack detection, automated network vulnerability mitigation,

automated attack interdiction, network attack damage assessment, automated attack

reporting, and adversary identification 2. Use cases were created for each of these

defense priorities using a mision level task breakdown and are shown in Appendix A.

3.1.1 Attack Detection. The first defense priority is attack detection. The

ability to detect an attack before, during, or after, is crucial to keeping our networks

secure. USAF networks are constantly under attack and our network defenders must

be able to respond quickly.

Many items from can be implemented into a Cybercraft mission. Creating logs,

maintaining password policies, monitoring IP addresses, and monitoring ports are all

good candidates to become Cybercraft payloads or missions. The other items listed

could possibly still be done with Cybercraft payloads, but would need more of a

breakdown and thought put into them.

1Air Force ACC IO RAWG 2006
2This work was accomplished with the help of Mr. Lou Giannelli, Contractor, USAF ACC 83

NOS Det 3/SCN, Lead Network Defender
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With these use cases, we can create numerous attack/defense trees. Taking a

specific attack, a Code Red buffer overflow, we create a defense tree shown in Figure

3.1. The corresponding attack tree is shown in Figure 3.2. A Code Red buffer overflow

attack attempts to connect to TCP port 80, and once connected, sends a GET request

to exploit a buffer overflow 3.

Figure 3.1: A defense tree for detecting a Code Red buffer overflow attack.

3retrieved from http://www.cert.org/advisories/CA-2001-19.html
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Figure 3.2: An attack tree for a Code Red buffer overflow attack.

A defense tree is useful in determining what is being done now with current

tools, processes, or by human. Currently, traffic validation is done by tools and by

network defenders. There is no way to specify a list for a Cybercraft to look for all the

vulnerabilities and many are found by human analysis and piecing things together.

However, a Cybercraft could be tasked to isolate a specific network or workstation.

This could enhance the speed with which vulnerabilities can be exploited and the

window of vulnerability is drastically reduced. Finally, it is possible for a Cybercraft

to implement forensic guidelines if they were scrutinized.

Referencing the Code Red attack tree, there are certain generalizations. First,

a Cybercraft could dispatch a payload with AV software to detect these types of

known attacks. As well, Cybercraft could be more dynamic and react faster than AV

software if it is always running. AV software is supposed to detect known signatures
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of attacks, but only when it is running. A Cybercraft could be placed specifically to

detect these types of attacks 24/7.

3.1.2 Automated Network Vulnerability Mitigation. The second defense pri-

ority we use is automated network vulnerability mitigation. Although it is impossible

to automate human analysis, we can try to automate tasks that are repetitive and

require searching for specific known items.

Anything that requires monitoring or collecting data can be automated and are

potential for Cybercraft payloads. A payload could be used to parse data for specific

items of “interest”. These items would have to be enumerated by network defender

SME’s (subject matter expert). A point needs to be maide here that it is difficult to

automate the analysis of collected data. The ability of human analysis and interaction

cannot be replaced by any tool, no matter what it boasts.

Checking vulnerabilities is a good area for Cybercraft. A baseline of param-

eters can be set and a Cybercraft can notify the operator when a change occurrs.

An example is ensuring current USAF network policies are followed. Enforcing these

policies is another possible Cybercraft mission. TCNO’s (Time Compliance Network

Order), TCTO’s (Time Compliance Technical Order), and AFI’s (Air Force Instruc-

tions) contain many of these policies and procedures and can also be used to hash

out possible Cybercraft missions and payloads. The specifics of these documents are

beyond the scope of this thesis and will be published as an area of future research.

Automated patching is currently being done on USAF networks with Microsoft c©

SMS (System Management Server). There are many issues with the implementation

of SMS on USAF networks. Because of the varied networks and programs that are

mission essential that need specific OS’s there is often a large exemption list. An

exemption list includes workstations and possibly even entire networks exempt from

the automatic pushing of patches from SMS. This exemption list creates numerous

vulnerabilities on the network. This is where Cybercraft can come in. It has the
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potential to create new software or enhance the old not so functional software to

actually be beneficial and help ensure security for the network.

3.1.3 Automated Attack Interdiction. The next defense priority we use

is automated attack interdiction. We can’t stop enemies from trying to attack our

networks, but we can work to interdict and reflect the attacks. The use cases created

for this defense priority are shown in Appendix A.3.

If a device becomes suspect, a Cybercraft will be able to isolate the device in a

more timely and efficient manner and mitigate further devices from becoming suspect

than current tools and processes. This greatly enhances security for our networks as

we can respond at the speed of the network instead of at human speed. We envision

Cybercraft to be an autonomous agent, and thus be able to adapt to what is happening

to the network.

The corresponding attack and defense trees created for SQL inject attack are

shown in Figures 3.3 and 3.4 respectively. Figure 3.3, the defense tree, shows a

general sequence of events for detecting and mitigating a SQL injection attack. This

particular case is mainly done with analysis from network defenders. A possible

Cybercraft mission for this scenario is blocking the IP segments. A Cybercraft could

accomplish this much faster than the human process.

The attack tree, Figure 3.4, steps through a possible sequence an attacker could

use to accomplish a SQL inject attack. The main goal if this attack is to gain access

to unauthorized information by taking advantage of unfiltered user input. To protect

against these attacks, user input must be filtered and always checked before blindly

being used by the program.

3.1.4 Network Attack Damage Assessment. The next defense priority we

use is network attack damage assessment. It’s important to know the who, what,

when, where, and why of an attack, or at least as much information as you can. As
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Figure 3.3: A defense tree for detecting a SQL Inject attack.

the old saying goes, keep your enemies closer than your friends. The use cases created

for this defense priority are shown in Appendix A.4.

Standard desktop is a goal for USAF leaders that all workstations have the

same look and feel to them. At first glance, this would make security easier, but there

are always exceptions and keeping up with exceptions or an exemption list is always

hard to do. An exemption list means manually updating and patching. Since one of

the goals is to have a Cybercraft installed on every machine, it could take control of

keeping the computer up-to-date.

Currently, the HP Openview suite of network management products is used to

monitor and report on the health of the network. We do not envision Cybercraft to

take over all the responsibilities of network defense, as there are plenty of current

software/hardware solutions already in place (such as HP Openview). The goal of

Cybercraft is to supplement these current tools to enhance network security and

ensure we are protecting ourselves adequately.
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Figure 3.4: An attack tree for a SQL Intect attack.

3.1.5 Automated Attack Reporting. The next defense priority we use is

automated attack reporting. As well as knowing the who and why, it’s important to

keep track of items for future analysis to detect patterns. The use cases created for

this defense priority are shown in Appendix A.5.

Tracking incidents gives us documentation to compare and find patterns an

enemy is using. It will be difficult to place a specific role to Cybercraft for this

use case as this is mostly a network defender analysis role. If there is anything to

automate, Cybercraft would be a prime candidate.
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3.1.6 Adversary Identification. The last defense priority we use is adversary

identification. Going along with the last two defense priorities, knowing who your

enemies are is extremely important. The use cases created for this defense priority

are shown in Table A.6.

These use cases go hand-in-hand with the previous section. Along with anlayzing

data and detecting patterns, finding out the source of the attacks is very important.

Knowing what your enemy is up to can help predict a future attack and thus help

us prepare for the future predicted event far better than not knowing anything in

advance.

3.2 Expanded Use Cases

Our first scenario deals with anti-virus (AV) software and ensuring proper con-

figuration on all workstations on a network. We go through the scenario in Table 3.1.

Our next scenario deals with the firewall software and ensuring proper configuration.

We go through the scenario in Table 3.2. These are only two examples of hashing

out details and figuring out where we can use Cybercraft and deploy their payloads.

Ideally, we would create fully-dressed use cases for all the brief use cases mentioned

in this chapter. This is an area of future work.

3.3 Summary of Cybercraft Requirements

It is important to enumerate requirements of Cybercraft. We need to know

what we are expecting them to do before trying to implement anything. Below is a

summary of suggestions.

• Ensure secure condition on the node using integrity check

• Supplement SMS

• Port monitoring
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Table 3.1: Use case for ensuring AV is installed and up-to-date.

Use Case Name AV
Scope The network
Level Ensure AV software is installed and up-to-date on all

machines
Primary Actor Cybercraft
Stakeholders and Interests Network Defenders
Preconditions Network is operational, up-to-date,
Success Guarantee All machines have AV software loaded, operational, and

up-to-date
Main Success Scenario Cybercraft platform creates a payload to check AV soft-

ware on all machines in the network, if all machines have
operational AV that is up-to-date, the scenario is suc-
cessful

Extensions Cybercraft platform creates a payload to check AV soft-
ware on all machines in the network. Alternate scenar-
ios:

1. If there is no AV software, the Cybercraft platform
dispatches another payload to install AV software
on the machine in question

2. If there is AV software installed, but not updated,
the Cybercraft platform dispatches another pay-
load to obtain correct updates from approved sites

Frequency of Occurrence Daily
Miscellaneous Assumptions are that the Cybercraft payload and plat-

forms are trusted, the network is secure, all channels a
Cybercraft uses are secure

• Network monitoring

• Anomaly detection, send an alert if out of the ordinary

• Flagging an alert on outbound traffic when certain conditions are met

• Enforce TCNO/TCTO, AFI network operating procedures

• Parse raw data transcripts to help base technicians locate key elements 4

4For more information on this bullet, refer to Appendix B
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Table 3.2: Use case for ensuring firewall is installed and up-to-date.

Use Case Name Firewall
Scope The network
Level Ensure firewall software is installed and up-to-date
Primary Actor Cybercraft
Stakeholders and Interests Network Defenders
Preconditions Network is operational, up-to-date,
Success Guarantee All boundary devices have a firewall that is operational,

and up-to-date
Main Success Scenario Cybercraft platform creates a payload to ensure firewall

is installed. If up-to-date and configured properly, the
scenario is successful

Extensions Cybercraft platform creates a payload to check the sta-
tus of the firewall. Alternate scenarios:

1. If there is no firewall, the Cybercraft platform dis-
patches another payload to install a new firewall

2. If there is a firewall installed, but not updated, the
Cybercraft platform dispatches another payload to
obtain correct updates from approved sites and in-
stall them, if any

Frequency of Occurrence Daily
Miscellaneous Assumptions are that the Cybercraft payload and plat-

forms are trusted, the network is secure, all channels a
Cybercraft uses are secure
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IV. Trust Model Setup

For Cybercraft, we need a model to capture not only the subjectability of trust,

but the decision making, learning, and obeying aspects as well [7]. The decision

making process allows for trust delegation and when this should occur. Cybercraft

must know who is friendly to be able to interact and learn information from and be

able to delegate all authority and obey another with confidence. This chapter explains

each trust model in greater detail, examining the underlying mathematics that make

the models work.

4.1 hTrust

hTrust has three trust values: trust formation, trust dissemination, and trust

evolution (reference Chapter II). Stevens states [18] all Cybercraft platforms will go

through a formal verification but not all payloads will. Therefore, one can conclude

that certain payloads will have vastly different trust values. For reference, trust

information is kept as a set of tuples, shown below in Equation 4.1.

[a, b, l, s, c, k, t] (4.1)

The minimized tuple shown in Equation 4.2 is referenced henceforth and is read

agent a trusts agent b at level l , knowledge k at time t . l represents the level agent a

has in agent b and is represented as a range from [-1,1]. k is the degree of knowledge,

in other words, how much agent a knows about agent b, and is represented as a range

from [0,1].

[a, b, l, k, t] (4.2)

Trust formation and trust dissemination use trust formation function Υ. The

trust evolution phase uses the two other functions: the aggregation function Φ and

the tacit information extraction function Ψ.
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4.1.1 Trust Formation Function Υ. Equation 4.3 is the mapping of Equation

4.4. Υop is a trust prediction (range from [-1,1]) based on one trust opinion (or tuple).

O is the set of all trust opinions whereas ε is the set of all environments. Thus, Υop ,

shown in Equation 4.3 is read as the set of tuples in O map to the environment ε, in

the range [-1,1].

Equation 4.4 calculates the trust range using l , k , and t from a tuple. T and

η are parameters from the agents local environment. T is the time interval trust

information is gathered and η is a boundary value and agents aren’t trusted if their

trust opinions fall below η. Equation 4.4 is run on each tuple to achieve a trust value

range.

Υop : O → ε → [−1, 1]× [−1, 1] (4.3)

Υop[a, b, l, k, t]e = [max(−1, l− | l − f |), min(l+ | l − f |, 1)] (4.4)

f = l ∗ k ∗max

(
0,

T − (tnow − t)

T

)
(4.5)

Another range is calculated (Equation 4.7) from a set of m recommendations

received. Equations 4.8, 4.9 and 4.10 are used in Equation 4.7.

Υrec : ℘(O) → ε → [−1, 1]× [−1, 1] (4.6)

Υrec[{oi | i ∈ [1,m]}]e = [llow, lhigh] (4.7)

llow =

∑
i{π1(Υop[oi]e) ∗ qi | qi > η}∑

i(qi | qi > η)
, lhigh =

∑
i{π2(Υop[oi]e) ∗ qi | qi > η}∑

i(qi | qi > η)
(4.8)
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π1(l1, l2) = l1, π2(l1, l2) = l2 (4.9)

qi = max(η, l
′
i ∗ k

′
i ∗max

(
0,

T − (tnow − t
′
i)

T

)
) (4.10)

Equation 4.11 is the mapping of trust formation function Υ. The set of all

tuples O crossed with the set of all recommendations ℘(O) maps to the environment

ε which produces the result of a trust value range from [-1,1] × [-1,1].

Υ : O × ℘(O) → ε → [−1, 1]× [−1, 1] (4.11)

Υ[(o,O)]e = h1(Υop[(o)]e, Υrec[O]e) (4.12)

The customizing function, h1 (Equation 4.13), is applied to the range produced

from the function Υ and the final result is a prediction of trustworthiness between

two agents a and b. The application chooses a value from this range to use as a trust

prediction.

h1 = ([l1, l2], [l
′
1, l

′
2]) =[h2([l1, l2])− | h2([l1, l2])− h2([l

′
1, l

′
2]) |,

h2([l1, l2])+ | h2([l1, l2])− h2([l
′
1, l

′
2]) |]

(4.13)

h2(l1, l2) = w1 ∗ l1 + w2 ∗ l2 (4.14)

4.1.2 Aggregation Function Φ. The aggregation function Φ is used to update

an agent’s local environment when a new direct experience occurs. It is composed of

three equations. The first equation (4.15), shows the mapping. A range from [-1,1]

crossed with the set of all recommendations maps to the environment.
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Φ : [−1, 1]× ℘(O) → ε (4.15)

Equation 4.16 is the first of two formal definitions for aggregated function Φ.

It describes the case where agent a’s local environment is updated from a new direct

experience with agent b. Customizing function, h4 (Equation 4.19), combines the

three trust opinions (agent a’s old trust opinion about agent b, the trust opinion just

received about agent b from the new experience, and the newly updated trust opinion

using the new recommendations) to create the new trust opinion a will carry about b

in its local environment.

Weights are used in Equation 4.19 to weight the different values of l. l1 is the

trustworthiness of b from the recent interaction, l2 is the opinion previously held by a

and l3 is b’s expected trust value based on the recent experience. Depending on which

one is valued over the other will determine the value of each weight. For example, if

I have a friend for many years whom I place a lot of trust in and a recent experience

with her is not good, her previous experience with me will weigh more than the most

recent experience. Tying this example to Equation 4.19, w1 = 1, w2 = 0, and w3 =

0 to say that I trust past experiences more than most recent and perceived from the

most recent. But, if I only recently met this same friend, the most recent experience

is going to weigh more because there isn’t much past data to compare against. Thus,

w1 = 1, w2 = 1, and w3 = 0 which will change trust opinions fairly quickly because

we are taking into account two of the three trust opinions.

Φ[l̃, O]e = e \{[a, b, l, k, t]} ∪ {[a, b, l
′
, k

′
, t
′
]} | o = lookup(b, e) = [a, b, l, k, t]

∧ l
′
= h4(l̃, l, h2(Υrec[O]e)) ∧ k

′
= min(k + kmin, 1) ∧ t

′
= tnow

(4.16)

The second definition of aggregated function Φ is Equation 4.17. Equation 4.17

considers the case where a trust opinion updates soley based on recommendations and

no interaction between agents a and b occured. This trust opinion is calculated from
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l (old trust opinion from a) and h2(Υrec[O]e). k is not updated as knowledge is only

received from direct experiences 5.

Φ[ε,O]e = e \{[a, b, l, k, t]} ∪ {[a, b, l
′
, k

′
, t
′
]} | o = lookup(b, e) = [a, b, l, k, t] ∧

l
′
= h4(ε, l, h2(Υrec[O]e)) ∧ k

′
= k ∧ t

′
= max(t, max({πtime(oi), oi ∈ O}))

(4.17)

h3 : [−1, 1]× [−1, 1] → {−1, 1} (4.18)

h4(l1, l2, l3) =
w1 ∗ l1 + w2 ∗ l2 + w3 ∗ l3

w1 + w2 + w3

(4.19)

4.1.3 Tacit Information Extraction Function Ψ. The tacit information ex-

traction function Ψ is used to weigh recommendations differently when an agent must

make a trust decision with no previous direct experiences and can only rely on recom-

mendations. For example, agent a might have a higher trust value for agent b than

agent c and thus agent b will have a higher weight value placed on his recommenda-

tions.

Equation 4.15 is the mapping of tacit information extraction function. A range

from [-1,1] crossed with the set of all recommendations maps to the environment and

the new value then maps to the environment.

Ψ : [−1, 1]× ℘(O) → ε → ε (4.20)

The Trust Management Framework (TMF) maintains a set of tuples for each

agent as a recommender, which is referred to as tacit information. The tacit in-

formation extraction function Ψ updates this information after an interaction using

5If the knowledge component is able to be transitively updated in this equation, chain trust will
work for this model. Reference the results in Chapter VI
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Equation 4.21. The tacit information tuple is updated based upon the perceived trust-

worthiness of a recent interaction between agents a and b and the recommendation

about b from a recommender.

Ψ[l̃, O]e = e \{ri = lookup(i, e) = [a, i, li, ki, ti],∀oi ∈ O} ∪ {r′i = [a, i, l
′
i, k

′
i, ti], ∀oi ∈ O} |

k
′
i = min(ki + kmin, 1) ∧ l

′
i =





max(−1, h5(li, δli)) if δli > δmax

min(h5(li, δli), 1) if δli ≤ δmax

,

δli =| l′ − h2(li− | πl(oi)− πl(oi) ∗ T − (tnow − ti)
T

|,

li+ | πl(oi)− πl(oi) ∗ T − (tnow − ti)
T

|) |

(4.21)

The customizing Function h5 (4.22), creates a new trust value l
′
i based on the

agents past trustworthiness and a discrepancy. If the discrepancy of opinions is lower

than the tolerance parameter, then trustworthiness is increased. If the discrepancy is

higher, the trustworthiness is decreased. Another possibility is weighing the past and

the new recommendation equally, thus the last equation (where n is not a factor at

all). The tolerance parameter decides what an agent will select for a recommender.

The lower the tolerance, the more restrictive the agent is in selecting recommenders.

h5 : li =
n ∗ li + 2−δli

2

n + 1
, OR li =

n ∗ li − 2−δli
2

n + 1
,

OR li =
li + 2−δli

2

n + 1
, where n =

ki

kmin

(4.22)

Table 4.1 is an agents local environment. T represents the time interval when

interactions are observed. tnow is the current time the trust value is calculated. t is

the trust value from the tuple being used to calculate the trust opinion and η is a

boundary value in the range of [-1,1] that represents the cutoff of whether an agent

trusts another agent below a certain value.

36



Table 4.1: Agent a ′s Local Environment [5].

Data
Aggregated Trust Information [a, x , l , k , t ]
Tacit Information [a, x , l , k , t ]
Portfolio of Credentials [x, a, l, k, t]SKx

Parameters
Time Interval of Relevant Observations T
Maximum Tolerate Discrepancy of Opinions δmax

Single Increment of Knowledge kmin

Minimum Trust Level η
Customizing Functions

Given two trust ranges, compute a trust
range (used by Υ)

h1

Given a trust range, compute a trust opinion
(used by Υ)

h2

Given a trust range, decide whether the pre-
diction is precise enough (used by the recom-
mendations exchange protocol)

h3

Given three trust opinions, compute a new
one (used by Φ)

h4

Given a trust opinion and a discrepancy,
compute a new trust opinion (used by Ψ)

h5

4.2 VTrust

VTrust is composed of three components: experience, knowledge, and recom-

mendation. Equation 4.23 represents the vector. AEc
B is the magnitude of A’s ex-

perience about B in context c, AKc
B is A’s knowledge and ΨRc

B is the affect of B ’s

recommendations to A. Each of these three values fall in a range from [-1,1] ∪ ⊥
where no knowledge is represented by ⊥.

(A → B)t = [AEc
B,A Kc

B,Ψ Rc
B] (4.23)

4.2.1 Experience. Experience is the number of events between two agents

A and B within a specific time frame [t0, tn]. Steven’s work [18, 19] concluded that
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keeping between 9 to 10 intervals is sufficient for Cybercraft, depending on storage

and how much granularity is needed. Equation 4.24 gives the value for experience .

wi is a non-negative weight and Ii is the sum of all values of events (trust-positive,

trust-negative, trust-neutral).

AEc
B =

∑n
i=1 wiIi∑n
i=1 ni

(4.24)

wi =
i

S
, where S =

n(n + 1)

2
(4.25)

4.2.2 Knowledge. The knowledge component is composed of two parts:

direct knowledge and indirect knowledge. Equation 4.26 gives the knowledge compo-

nent. d and r are in the range [-1,1] ∪{⊥}, represent direct and indirect knowledge,

respectively, and wd + wr = 1.

AKc
B =





d, ifr =⊥

r, ifd =⊥

wd · d + wr · r, ifd 6=⊥, r 6=⊥

⊥, ifd = r =⊥

(4.26)

4.2.3 Recommendation. The recommendation is calculated using a rec-

ommendation value and the level of trust the agent has in the recommender. The

recommendation value represents the level of trust an agent A has for a recommender

agent B. The equation for a recommendation is 4.27.

ΨRc
B =

∑n
j=1(v(A → j)N

t ) · Vj∑n
j=1(v(A → j)N

t )
(4.27)

Ψ is a group of n recommenders and v(A → j)N
t is a trust value from the jth

recommender and Vj is the recommender’s recommendation value.
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4.2.4 Normalization Policy. The normalization policy takes into affect the

different weights a trustor may assign during trust evaluation. It is represented as a

vector and the breakdown is displayed in Equation 4.28. Trust changes and decays

with time and thus Equation 4.29 represents the time affected vector.

(A → B)N
t = W ¯ (A → B)t

= [We,Wk,Wr]¯ [AEc
B,A Kc

B,Ψ Rc
B]

= [We ·A Ec
B, Wk ·A Kc

B,Wr ·Ψ Rc
B]

= [AÊc
B,A K̂c

B,Ψ R̂c
B]

(4.28)

(A → B)N
tn =





[AÊc
B,A K̂c

B,Ψ R̂c
B] if tn = 0

[v(T̂ )
3 , v(T̂ )

3 , v(T̂ )
3 ] if tn 6= 0 and AÊc

B =A K̂c
B =Ψ R̂c

B =⊥

α · [AÊc
B,A K̂c

B,Ψ R̂c
B] + β · [v(T̂ )

3 , v(T̂ )
3 , v(T̂ )

3 ]

if tn 6= 0 and at least one of

AÊc
B,A K̂c

B,Ψ R̂c
B 6= ⊥

(4.29)

Trust values are calculated using Equation 4.30.

v(A → B)N
t =A Êc

B +A K̂c
B +Ψ R̂c

B (4.30)

4.3 P2P

P2P’s three main components are: ratings generation, ratings discovery, and

ratings aggregation.

4.3.1 Ratings Generation. The two types of ratings are local and aggregate

ratings. Local ratings are a series of probabilistic ratings Sij = {s1
ij, s

2
ij, . . . , s

h
ij}, 0 ≤
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sk
ij ≤ 1, h is bounded by the allowed history H. Therefore the local rating can be

obtained by using simple averaging or exponential averaging. Equation 4.31 shows

the simple averaging and Equation 4.32 shows exponential averaging. Aggregate

ratings combine the local ratings with those of any witnesses (recommenders). This

rating determines trustworthiness. The equations for aggregate ratings are shown in

Equations 4.25 and 4.34.

Equation 4.31 adds up all the ratings from 0 to h and divides by the total

number, h to get an average value.

R(Pi, Pj) =





∑h
k=1 sij/h h 6= 0

0 h = 0

(4.31)

For Equation 4.32, γ determines the weights given to the most recent observa-

tions. γ ranges from (0 < γ < 1) and the larger the value the faster past observations

are forgotten. The difference between the two occurs when there are malicious peers

and simple averaging will give a value under the true value.

R(Pi, Pj) =





γ[sh
ij + . . . + (1− γ)hs1

ij] h 6= 0

0 h = 0

(4.32)

Pi uses Equation 4.25 to get an aggregate rating value about Pj. {W1, . . . , WL}
are a group of witnesses for peer Pj and R(Wk, Pj) is the local rating. wk is a weight

assigned to testify against the credibility of the recommender (witness). P , Equation

4.33, is a prediction from all the testimonies used to calculate the aggregate rating

towards peer Pj, Equation 4.34.

P =





∑L
k=1 wk ∗R(Wk, Pj)/L L 6= 0

0.5 L = 0

(4.33)
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η is peer Pi’s confidence in its local rating about peer Pj where η = h/H and L

is the number of witnesses Pi found. When Pj is new, the trust rating is 0.5 because

it was found that it is more advantageous to trust new peers in a p2p system as there

aren’t many malicious peers.

T (Pi, Pj) =





ηR(Pi, Pj) + (1− η)P L 6= 0

0.5 L = 0

(4.34)

4.3.2 Ratings Discovery. Ratings discovery uses a trust graph to get referrals

from other peers. The trust graph (Pr, Pg,P,R) is a directed graph composed of

referral chains of Pr requesting information on Pg. P is a set of peers {P1, . . . , Pn}
and R is a set of referrals {r1, . . . , rn}. An example trust graph is shown in Figure

4.1.

Figure 4.1: An example of a trust graph from [22].

P0 is trying to evaluate the trustworthiness of P8. P4 and P7 are witnesses (or

recommenders) for P8. The requesting peer is black, queried peers are gray, and those

that have not been queried are white.
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4.3.3 Ratings Aggregation. Ratings aggregation deals with incorrect ratings,

noisy ratings, that distort the true ratings of peers. Equation 4.35 defines the three

types of noisy ratings: complementary, exaggerated positive and exaggerated negative.

α ranges from (0 < α < 1) and represents the exaggerated coefficient, s is the true

rating and s
′
is the distorted rating. Equation 4.36 allows for the weighting of different

witnesses, depending on how much a peer trusts another.

s
′
=





1− s complementary

α + s− αs exaggerated positive

s− αs/(1− α) exaggerated negative

(4.35)

θ = 1− (1− β) | R(Wk, Pj)− s | (4.36)
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V. Experimental Methodology

The last chapter walked through gathering some functional and non-functional

requirements for Cybercraft as well as exploring two use cases used to examine

potential real-life scenarios Cybercraft might be exposed to. Requirements gathering

is now applied to the trust models to give a self-defense guarantee and commander’s

trust evaluation/expression for Cybercraft. To do this, we use three specific trust

models: hTrust, VTrust and P2P. The trust models give a mathematical approach

to gauge the trustworthiness of interacting entities and allow for precisely evaluating

security assumptions, attacks, and risks within the Cybercraft architecture. A math-

ematical approach gives understanding for transitive trust and root of trust questions

specific to Cybercraft missions.

The focus of this chapter is to set up two scenarios for Cybercraft architecture

exploration. The first scenario deals with transitive and root of trust questions and

the second scenario uses the first use case of updating anti-virus software from Chap-

ter III to analyze and investigate trust relationships for a potential real-life scenario

for Cybercraft. The goal of these scenarios is to define the trust relationships within

the Cybercraft domain (reference Figure 2.1). Defining these relationships will help

establish what type of model is needed to give value to the trust relationships ex-

pressed in Cybercraft. For each scenario, there is an initial set of dummy values to

create and populate the trust management framework for the trust models. An area

for future research is defining the separate components that make up the Cybercraft

domain and placing appropriate values to each. In the Cybercraft domain model, the

lines represent a trust value. This trust value is created with trust models. The two

scenarios are set up with three trust models: hTrust, VTrust, and P2P.

Certain characteristics must be true in order for us to use a trust model. A

model should be able to form, maintain, and evolve trust opinions between entities.

Quality of service (QoS) requirements are essential as they decide whether interaction

or transactions will take place between interacting entities. There might not be a

globally available infrastructure to interact with and a model should account for this
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as well. Interacting entities should be dynamic and anonymous. Finally, a model

should incorporate human trust decision, be subjective and highly customizable.

The rest of the chapter is laid out as follows. Scenario one is discussed first in

section 5.1, followed by scenario two in section 5.2.

5.1 Scenario One: Transitive Trust Between Entities

The goal of this scenario is to find out how far transitive trust can go. An

example is a → b → c → d → e which is read a trusts b who trusts c who trusts d

who trusts e and therefore a trusts e. We want to see how far this trust chain can go

before it falls apart. Next we walk through each trust model and how to set up all

the values and formulas for this scenario.

There are two types of transitive trust: agent to agent (which Stevens did [18]

and the root of trust. The root of trust is the one we are most interested in. We want

to know if the root of trust in the Cybercraft, or was it the OS, transfers to other

parts of the system.

5.1.1 hTrust. For hTrust, we have to set up each agents local environment.

Table 5.1 represents the local environment for all agents a - e.

5.1.2 VTrust. For VTrust, we only use the recommendation component for

scenario one. The values of experience and knowledge do not count as the weight to

create the normalized vectors cancels them out. We break down this scenario into

several cases. Case one will use the initial data setup shown in Table 5.3. Recom-

mendation values are set to 0.9 and steady throughout a chain of 26 agents.
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Table 5.1: Local Environment in scenario one - hTrust.

b’s data c’s data d’s data
Aggregated Trust In-
formation

[b, a, 0.3, 0.3, 4] [c, b, 0.3, 0.3, 4] [d, c, 0.3, 0.3, 4]

[b, c, 0.3, 0.3, 4] [c, d, 0.3, 0.3, 4] [d, e, 0.3, 0.3, 4]
Tacit Information [b, a, 0.4, 0.3, 4] [c, b, 0.4, 0.3, 4] [d, c, 0.4, 0.3, 4]

[b, c, 0.4, 0.3, 4] [c, d, 0.4, 0.3, 4] [d, e, 0.4, 0.3, 4]
Portfolio of Credentals [a, b, 0.3, 0.3, 4]SKa [b, c, 0.3, 0.3, 4]SKb

[c, d, 0.3, 0.3, 4]SKc

[c, b, 0.3, 0.3, 4]SKc [d, c, 0.3, 0.3, 4]SKd
[e, d, 0.3, 0.3, 4]SKe

a’s data e’s data
Aggregated Trust In-
formation

[a, b, 0.3, 0.3, 4] [e, d, 0.3, 0.3, 4]

Tacit Information [a, b, 0.4, 0.3, 4] [e, d, 0.4, 0.3, 4]
Portfolio of Creden-
tials

[b, a, 0.3, 0.3, 4]SKb
[d, e, 0.3, 0.3, 4]SKd

Table 5.2: Initial parameters for all entities in scenario one - hTrust.

Parameters
T 2 minutes
δmax 0.8
kmin 0.1
η 0

Customizing Functions

h1 (l
′
1, l

′
2)

h2 w1 = 0, w2 = 1
h3 0, if l1 < 0 and l2 > 0

1 otherwise
h4 w1 = 1, w2 = 1, w3 = 0

h5 li =
n∗li+ 2−δli

2

n+1
if δli > li

li =
n∗li− 2−δli

2

n+1
if δli < li

Table 5.4 are the weights given to each component of the vector (A → B)N
t ,

where We +Wk +Wr = 1. For this experiment, we only consider recommendations as

we are trying to gauge how well VTrust deals with transitive trust and how far down

the chain we can go.
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Table 5.3: Beginning parameters in scenario one, case one - VTrust.

Trustor Initial Recommendation Values
(A → B)N

t 0.9
(B → C)N

t 0.9
(C → D)N

t 0.9
...

...
(X → Y )N

t 0.9
(Y → Z)N

t 0.9

Table 5.4: Weighting of vector values, scenario one - VTrust.

Weight Values
We 0
Wk 0
Wr 1

Stevens thesis [18] proved that going through a chain of 5 agents with a recom-

mendation value of 0.9 for each link (A → B) results in a final trust value of 0.59049.

In the experiments we will test different values to better evaluate what a typical sce-

nario for a Cybercraft will be. Table 5.5 shows the walk through the trust chain and

resulting values.

Table 5.5: Results from chain of 5, scenario one - VTrust.

Recommendation Chain
A → C 0.81
A → D 0.73
A → E 0.6561
A → F 0.59049

Case two puts a little bit more realistic values to start. Table 5.6 shows the initial

values. Each agent represents a part of the Cybercraft domain. Agent A represents

a Cybercraft platform, agent B is a payload, agent C represents an OS, agent D the

network, agent E a different OS, agent F a payload on this separate machine and
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agent G is the locally installed Cybercraft platform. If a payload goes through a

formal verification, it follows that the platform and payload will have complete trust

and knowledge between each other.

Table 5.6: Beginning parameters in scenario one, case two - VTrust.

Trustor Initial Recommendation Values
(A → B)N

t 1.0
(B → C)N

t 0.8
(C → D)N

t 0.2
(D → E)N

t 0.2
(E → F )N

t 0.8
(F → G)N

t 1.0

5.1.3 P2P. The P2P model uses certain assumptions on the system. First,

there are numerous peers entering and leaving all the time and second, malicious

peers are rare in this type of system. For the first scenario, trust chaining, certain

parameters need to be defined and set. Table 5.7 shows the parameters and values

given for this scenario. The bound of referral chain’s length (D, the ** value in the

table) is what is being evaluated in this scenario and thus is not set. The setup is

similar to the two previous models. Peer P1 trusts peer P2 at 0.9, peer P2 trusts P3

at 0.9, and so on. For case two, P2P uses the same values as shown in Table 5.6.

5.2 Scenario Two: Anti-virus Update

Scenario two uses the fully dressed use case from Chapter III, section 3.2, that

deals with AV software. There are three cases: main successful scenario, AV is not
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Table 5.7: Parameters in scenario one - P2P.

Symbol Value Description
h 1 Number of latest interactions
H 10 Bound of allowed history
D ** Bound of referral chain’s length
B 2 Branching factor
α 0.1 Exaggeration coefficient
β 0.5 Constant
γ 0.5 Averaging constant
θ - Update factor in Equation 4.36
η h/H Confidence about local ratings
σi 0.5 Threshold of referral generation
ωi 0.5 Threshold of trust

Table 5.8: Beginning values in scenario one - P2P.

Symbol Value Description
R(W1, P6) 0.9 Local rating of witness W1 for peer P6

wi 1 Weight for the credibility of witness W1

η 0.1 -

installed, and AV is not updated. Each model uses a set of dummy variables to start

with. An assumption we use is payloads cannot talk to each other. They must go

through the Cybercraft platform and the platform will talk to the other payload. The

general agents are defined in Table 5.9.

Table 5.9: General agent setup for all trust models, scenario two.

Agent Value
A Cybercraft platform
B Cybercraft payload check
C Cybercraft payload update
D Cybercraft payload install
E OS
F Network
G AV software on OS (agent E)
H Update place
I AV software from network
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Case one: Cybercraft platform creates a payload, ‘payload check’, to check if

there is AV software loaded on the machine and, if so, is up-to-date. The payload must

interact with the OS to inquire about AV software. The OS queries its applications

and responds to the payload that yes, there is indeed AV software loaded. The payload

then queries the AV software to ensure it is up-to-date. AV software responds that

everything is good to go. Finally, the payload reports back to the Cybercraft platform

that AV software is installed and up-to-date on this particular OS.

Case two: Cybercraft platform creates a payload, ‘payload check’, to check if

there is AV software loaded on the machine, and, if so, is up-to-date. The payload

interacts with the OS to inquire about the AV software. The OS queries its appli-

cations and find there is no AV software loaded and reports these findings back to

the payload. The payload reports to the Cybercraft platform there is no AV software

loaded on this OS. The Cybercraft platform creates a new payload, ‘payload install’,

to go find the AV software. The new payload must interact with the OS and network

to get to the AV software that is on the network. Once the payload gets the AV soft-

ware, it interacts with the OS to install the AV software. Once installed, the payload

(install) reports back to the Cybercraft platform that AV software is installed. The

Cybercraft platform then dispatches the previous payload (check) to ensure the newly

installed AV software is up-to-date. The payload interacts with the OS again to query

the AV software. The AV software responds to the payload everything is up-to-date.

The payload (check) reports to the Cybercraft platform everything is up-to-date for

the AV software on this particular machine OS.

Case three: Cybercraft platform creates a payload, ‘payload check’, to check if

there is AV software loaded on the machine, and, if so, is up-to-date. The payload

interacts with the OS to inquire about the AV software. The OS queries its applica-

tions and responds to the payload there is AV software loaded. The payload queries

the AV software to ensure it is up-to-date. The AV software responds that no, it is

not up-to-date. The payload then reports to the Cybercraft platform that the AV

software loaded on the OS is not up-to-date. The Cybercraft platform creates a new
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payload, ‘payload update’, to update the AV software. The new payload must inter-

act with the OS and network to get to the AV software update on the network. Once

the payload gets the AV update , it interacts with the OS to install the update. Once

the update is installed, the payload (update) reports back to the Cybercraft platform

that AV software is up-to-date.

Certain assumptions were made for this scenario. The first is that all parts

of the system are secure and trustworthy (not malicious). Network, OS, Cybercraft

platform and agent. Next, all trust interactions result in a good trust value. Lastly,

the goal of the scenario is to evaluate the resulting values of trust between each of

the three models.

5.2.1 hTrust. For hTrust, there is an initial set of tuples for the agents that

know about each other. Walking through the cases, we figure out where all those

equations fit in. Each agent wanting to talk to another agent it does not know about

must run the recommendation protocol (reference Chapter II, Section 2.6.1.2), which

uses the trust formation function Υ (Equation 4.12) to create a trust prediction. For

the sake of these cases, we always choose the middle value. After the interaction,

tuples are exchanged between the two agents and each runs the aggregation function

Φ (reference Equation 4.16) to update their tuples in their local environment, if any.

Then, the requesting agent, the trustor, will run the tacit information extraction

function Ψ (reference Equation 4.21) to update the recommendation value of the

agent that recommended the trustee.

The parameters are similar as in scenario one, except a few minor changes,

shown in Table 5.10. The weights for the customizing function, h2 are both 0.5 as

we want to consider trust reflexivity and trust transitivity. Everything else is left the

same as from scenario one. The next sections go through the data setup for each case

in scenario two for hTrust.

The trust values were chosen for each agent as close to what a real scenario

would look like. For example, the Cybercraft platform, agent a, will trust a payload
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explicitly if it has been formally verified and that platform created it. The Cybercraft

payload check (agent b) has a trust level of 1 and knowledge 1, but the Cybercraft

payloads update and install (c and d) have a trust level of 0.5 (knowledge still 1 because

the Cybercraft platform created them) because these payloads will be interacting with

other parts of the system and therefore will have a lower initial trust value. The OS

(agent e) will have full trust and knowledge of items currently installed on it, such as

the AV software (agent g). The OS does not directly correspond with the Cybercraft

platform (agent a), and therefore does not have full trust in it, as well as the network.

Table 5.10: Initial parameters for all entities in scenario two.

Parameters
T 2 minutes
δmax 0.8
kmin 0.1
η 0

Customizing Functions

h1 l
′
1, l

′
2)

h2 w1 = 0.5, w2 = 0.5
h3 0, if l1 < 0 and l2 > 0

1 otherwise
h4 w1 = 1, w2 = 1, w3 = 0

h5 li =
n∗li+ 2−δli

2

n+1
if δli > li

li =
n∗li− 2−δli

2

n+1
if δli < li

5.2.1.1 Case One. Case one uses agents a, b, e and g. Time starts at

t = 10 at the beginning of the scenario to account for the generation of trust through

time. Table 5.11 shows the local environment of all the agents.

5.2.1.2 Case Two. Case two uses agents a, b, d, e, f and i. Time starts

at t = 10 at the beginning of the scenario to account for the generation of trust

through time. Table 5.12 displays the agents’ local environment.
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Table 5.11: Local environment for scenario two, case one - hTrust.

a’s data e’s data
Aggregated Trust Information [a, b, 1, 1, 10] [e, a, 0.8, 0.8, 10]

[a, e, 0.7, 0.5, 10] [e, g, 1, 1, 10]
Tacit Information [a, b, 0.8, 1, 10] [e, a, 0.8, 0.8, 10]

[a, e, 0.5, 0.5, 10] [e, g, 1, 1, 10]
Portfolio of Credentials [b, a, 1, 1, 10]SKb

[a, e, 0.7, 0.5, 10]SKa

[e, a, 0.8, 0.8, 10]SKe [g, e, 1, 1, 10]SKg

b’s data g’s data
Aggregated Trust Information [b, a, 1, 1, 10] [g, e, 1, 1, 10]
Tacit Information [b, a, 1, 1, 10] [g, e, 1, 1, 10]
Portfolio of Credentials [a, b, 1, 1, 10]SKa [e, g, 1, 1, 10]SKe

Table 5.12: Local environment for scenario two, case two - hTrust.

a’s data e’s data f ’s data
Aggregated Trust
Information

[a, b, 1, 1, 10] [e, a, 0.8, 0.8, 10] [f, e, 0.8, 0.8, 10]

[a, d, 0.5, 1, 10] [e, f, 0.8, 0.8, 10] [f, i, 0.8, 0.8, 10]
[a, e, 0.75, 0.5, 10]

Tacit Information [a, b, 0.8, 1, 10] [e, a, 0.8, 0.8, 10] [f, e, 0.8, 0.8, 10]
[a, d, 0.5, 1, 10] [e, f, 0.8, 0.8, 10] [f, i, 0.8, 0.8, 10]
[a, e, 0.5, 0.5, 10]

Portfolio of Cre-
dentials

[b, a, 1, 1, 10]SKb
[a, e, 0.7, 0.5, 10]SKa [e, f, 0.8, 0.8, 10]SKe

[d, a, 1, 1, 10]SKd
[f, e, 0.8, 0.8, 10]SKf

[i, f, 0.8, 0.8, 10]SKi

[e, a, 0.8, 0.8, 10]SKe

b’s data d’s data i’s data
Aggregated Trust
Information

[b, a, 1, 1, 10] [d, a, 1, 1, 10] [i, f, 0.8, 0.8, 10]

Tacit Information [b, a, 1, 1, 10] [d, a, 1, 1, 10] [i, f, 0.8, 0.8, 10]
Portfolio of Cre-
dentials

[a, b, 1, 1, 10]SKa [a, d, 0.5, 1, 10]SKa [f, i, 0.8, 0.8, 10]SKf

5.2.1.3 Case Three. Case three uses agents a, b, c, e, f, g and h. Time

starts at t = 10 at the beginning of the scenario to account for the generation of trust

through time. Table 5.13 is the local environment for the agents.
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Table 5.13: Local environment for scenario two, case three - hTrust.

a’s data e’s data f ’s data
Aggregated Trust
Information

[a, b, 1, 1, 10] [e, a, 0.8, 0.8, 10] [f, e, 0.8, 0.8, 10]

[a, c, 1, 1, 10] [e, f, 0.8, 0.8, 10] [f, h, 0.8, 0.8, 10]
[a, e, 0.7, 0.5, 10] [e, g, 1, 1, 10]

Tacit Information [a, b, 0.8, 1, 10] [e, a, 0.8, 0.8, 10] [f, e, 0.8, 0.8, 10]
[a, c, 0.9, 1, 10] [e, f, 0.8, 0.8, 10] [f, h, 0.8, 0.8, 10]
[a, e, 0.5, 0.5, 10] [e, g, 1, 1, 10]

Portfolio of Cre-
dentials

[b, a, 1, 1, 10]SKb
[a, e, 0.7, 0.5, 10]SKa [e, f, 0.8, 0.8, 10]SKe

[c, a, 1, 1, 10]SKc [f, e, 0.8, 0.8, 10]SKf
[h, f, 0.8, 0.8, 10]SKh

[e, a, 0.8, 0.8, 10]SKe [g, e, 1, 1, 10]SKg

b’s data c’s data g’s data
Aggregated Trust
Information

[b, a, 1, 1, 10] [c, a, 1, 1, 10] [g, e, 1, 1, 10]

Tacit Information [b, a, 1, 1, 10] [c, a, 1, 1, 10] [g, e, 1, 1, 10]
Portfolio of Cre-
dentials

[a, b, 1, 1, 10]SKa [a, c, 1, 1, 10]SKa [e, g, 1, 1, 10]SKe

h’s data
Aggregated Trust
Information

[h, f, 0.8, 0.8, 10]

Tacit Information [h, f, 0.8, 0.8, 10]
Portfolio of Cre-
dentials

[f, h, 0.8, 0.8, 10]SKf

5.2.2 VTrust. VTrust differs from hTrust in that the trust vectors are not

updated after each interaction, but from a series of events. The experience component

is computed by taking a series of events, broken into time intervals, and giving a weight

value to each set. The time interval set for this case is ti = 2. [t0, t1] represents one

interval. There was no initial setting to the vectors for this scenario. Parameters for

case two are shown in table 5.14.
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Table 5.14: Parameters for VTrust, scenario two.

Parameters
dkw Direct knowledge weight
ikw Indirect knowledge weight
Ew Experience component weight
Kw Knowledge component weight
Rw Recommendation component weight
d Direct knowledge value
r Indirect knowledge value

5.2.2.1 Case One. Case one uses agents A,B, E and G. Time starts

at t = 0 at the beginning of the scenario to account for the generation of trust through

time. Table 5.15 is the local environment for the agents.

Table 5.15: Local environment in scenario two, case one - VTrust.

A’s environment B’s environment
A−B B − A B − E B −G

dkw 1 dkw 1 dkw 0.7 dkw 0.7
ikw 0 ikw 0 ikw 0.3 ikw 0.3
Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5
Kw 0.5 Kw 0.5 Kw 0.3 Kw 0.3
Rw 0 Rw 0 Rw 0.2 Rw 0.2
d 1 d 0.3 d 0.3 d 1
r 0 r 0 r 0.7 r 0.6

E’s environment G’s environment
E −B E −G G−B G− E

dkw 0.7 dkw 1 dkw 0.7 dkw 1
ikw 0.3 ikw 0 ikw 0.3 ikw 0
Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5
Kw 0.3 Kw 0.5 Kw 0.3 Kw 0.5
Rw 0.2 Rw 0 Rw 0.2 Rw 0
d 0.3 d 1 d 0.3 d 1
r 0.7 r 0 r 0.7 r 0
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5.2.2.2 Case Two. Case two uses agents A,B, D,E, F and I. Time

starts at t = 0 at the beginning of the scenario to account for the generation of trust

through time. Table 5.16 is the agents’ local environment.

5.2.2.3 Case Three. Case three uses agents A, B, C, E, F, G and H.

Time starts at t = 0 at the beginning of the scenario to account for the generation of

trust through time. Table 5.17 is the local environment of the agents.

Table 5.17: Local environment in scenario two, case three - VTrust.

C’s environment

C − A C − E C − F C −H C −G

dkw 1 dkw 0.7 dkw 0.7 dkw 0.7 dkw 0.7

ikw 0 ikw 0.3 ikw 0.3 ikw 0.3 ikw 0.3

Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5

Kw 0.5 Kw 0.3 Kw 0.3 Kw 0.3 Kw 0.3

Rw 0 Rw 0.2 Rw 0.2 Rw 0.2 Rw 0.2

d 1 d 0.3 d 0.3 d 0.3 d 0.3

r 0 r 0.7 r 0.5 r 0.6 r 0.6

A’s environment B’s environment

A−B A− C B − E B − A B −G

dkw 1 dkw 1 dkw 0.7 dkw 1 dkw 0.7

ikw 0 ikw 0 ikw 0.3 ikw 0 ikw 0.3

Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5

Kw 0.5 Kw 0.5 Kw 0.3 Kw 0.5 Kw 0.3

Rw 0 Rw 0 Rw 0.2 Rw 0 Rw 0.2

continued on next page
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Table 5.16: Local environment in scenario two, case two - VTrust.

A’s environment B’s environment
A−B A−D B − E B − A

dkw 1 dkw 1 dkw 0.7 dkw 1
ikw 0 ikw 0 ikw 0.3 ikw 0
Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5
Kw 0.5 Kw 0.5 Kw 0.3 Kw 0.5
Rw 0 Rw 0 Rw 0.2 Rw 0
d 1 d 1 d 0.3 d 1
r 0 r 0 r 0.7 r 0

D’s environment
D − A D − E D − F D − I

dkw 1 dkw 0.7 dkw 0.7 dkw 0.7
ikw 0 ikw 0.3 ikw 0.3 ikw 0.3
Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5
Kw 0.5 Kw 0.3 Kw 0.3 Kw 0.3
Rw 0 Rw 0.2 Rw 0.2 Rw 0.2
d 1 d 0.3 d 0.3 d 0.3
r 0 r 0.7 r 0.5 r 0.6

E’s environment F ’s environment
E −B E −D F −D F − I

dkw 0.7 dkw 0.7 dkw 0.7 dkw 1
ikw 0.3 ikw 0.3 ikw 0.3 ikw 0
Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5
Kw 0.3 Kw 0.3 Kw 0.3 Kw 0.5
Rw 0.2 Rw 0.2 Rw 0.2 Rw 0
d 0.3 d 0.3 d 0.3 d 1
r 0.7 r 0.7 r 0.8 r 0

I’s environment
I −D I − F

dkw 0.7 dkw 1
ikw 0.3 ikw 0
Ew 0.5 Ew 0.5
Kw 0.3 Kw 0.5
Rw 0.2 Rw 0
d 0.3 d 1
r 0.8 r 0

continued from previous page

d 1 d 1 d 0.3 d 1 d 0.3

continued on next page
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continued from previous page

r 0 r 0 r 0.7 r 0 r 0.6

H’s environment F ’s environment

H − C H − F F − E F −H F − C

dkw 0.7 dkw 1 dkw 01 dkw 1 dkw 0.7

ikw 0.3 ikw 0 ikw 0 ikw 0 ikw 0.3

Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5

Kw 0.3 Kw 0.5 Kw 0.5 Kw 0.5 Kw 0.3

Rw 0.2 Rw 0 Rw 0 Rw 0 Rw 0.2

d 0.3 d 1 d 1 d 1 d 0.3

r 0.8 r 0 r 0 r 0 r 0.8

E’s environment

E −B E −G E − C E − F

dkw 0.7 dkw 1 dkw 0.7 dkw 1

ikw 0.3 ikw 0 ikw 0.3 ikw 0

Ew 0.5 Ew 0.5 Ew 0.5 Ew 0.5

Kw 0.3 Kw 0.5 Kw 0.3 Kw 0.5

Rw 0.2 Rw 0 Rw 0.2 Rw 0

d 0.3 d 1 d 0.3 d 1

r 0.7 r 1 r 0.7 r 1

G’s environment

G− E G−B G− C

dkw 01 dkw 0.7 dkw 0.7

ikw 0 ikw 0.3 ikw 0.3

Ew 0.5 Ew 0.5 Ew 0.5

Kw 0.5 Kw 0.3 Kw 0.3

continued on next page
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Rw 0 Rw 0.2 Rw 0.2

d 1 d 0.3 d 0.3

r 0 r 0.7 r 0.7

5.2.3 P2P. The parameters are very similar to those of scenario one. Table

5.18 shows the parameters and values given for this scenario.

Table 5.18: Parameters for the P2P model, scenario one.

Symbol Value Description
β 0.5 Constant
θ - Update factor in Equation 4.36
η .5 Confidence about local ratings

5.2.3.1 Case One. Case one uses agents Pa, Pb, Pe and Pg. Time starts

at t = 0 at the beginning of the scenario to account for the generation of trust through

time. The only initial values of this scenario are the fact that Pa and Pb, and Pe and

Pg have a direct knowledge of 1 for each other.

5.2.3.2 Case Two. Case two uses agents Pa, Pb, Pd, Pe, Pf , and Pi.

Time starts at t = 0 at the beginning of the scenario to account for the generation of

trust through time. The only initial values of this scenario are the fact that Pa and

Pb, Pa and Pd, Pe and Pf , and Pe and Pi have a direct knowledge of 1 for each other.

5.2.3.3 Case Three. Case three uses peers Pa, Pb, Pc, Pe, Pf , Pg and Ph.

Time starts at t = 0 at the beginning of the scenario to account for the generation of

trust through time. The only initial values of this scenario are the fact that Pa and

Pb, Pa and Pc, Pe and Pf , Pf and Ph, and Pe and Pg have a direct knowledge of 1 for

each other.
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VI. Analysis and Results

This chapter covers the results of the scenarios from each of the three models.

Scenario one examined two variations of transitive trust: agent to agent and

the root of trust. Scenaro two used the AV use case from chapter III, section 3.2.

Scenario one results are discussed in section 6.1 and scenario two results are discussed

in section 6.2.

6.1 Scenario One: Transitive Trust

6.1.1 Analysis. The two types of transitive trust analyzed are agent to agent

and the root of trust. Stevens [18] work focused mainly on transitive trust between

agents.

6.1.2 Results. We breakout the results of scenario one based on our three

candidate trust models. We discuss hTrust first, then VTrust, and conclude with P2P

analysis.

6.1.2.1 hTrust. The results show that the chain trust from a → b →
c → d → e falls apart after c. hTrust has no transitivity of trust. Agent a receives

a recommendation from b about c and a’s knowledge of c is set to 0. To continue

with the chain, there must be some sort of interaction between a and c for a to have

knowledge about c as a recommender. A way for things to work would be for the

knowledge component to be transitive just as the trust value is. Case two was not

evaluated because of the results from case one.

6.1.2.2 VTrust. For case one, setting all values to 0.9 for recommen-

dations, agent’s A−Z create a chain that, with the range from [0,1], still does not go

to 0. This is an unrealistic scenario as there is a very small chance there will be a set

of agents that have a chain with a recommendation value of 0.9 for every chain. The

results are shown in Figure 6.1 and show that even through 26 agents, the trust value
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is not negative and not quite 0 (0.0646). There is a 0.75 difference in the beginning

value and last trust recommendation.

Figure 6.1: Results for trust chaining agents A− Z - VTrust.

The second case uses more realistic values mapping to a possible Cybercraft

domain and trys to more accurately predict the environment a Cybercraft will be

in. The results, from Figure 6.2, show trust degrades much faster. It only takes

two recommendations before the value drops 0.6 points, which is very significant,

especially within the range ∈ [0,1].

6.1.2.3 P2P. The P2P model shows that there is a high limit (un-

known as of yet) for trust chaining. Because of the way a P2P system is setup, peers

trust until proven otherwise. Therefore the trust chain resulting from peer Pi attempt-

ing to interact with peer Pj, can be very long. Pi uses the witness(es) that attest to

Pj. The chain is used to find these witnesses and nothing more. The witnesses’ (Wk)

local rating for Pj is used, along with a weighting of the trust Pi has in Wk (set to

1 if Pi has never interacted with Wk before) to get a predicted trust value. If this

value is above a certain threshold, ω, then peer Pi will interact with Pj and update
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Figure 6.2: Results for trust chaining agents A−G - VTrust.

its information. For our first scenario, we used a value of 0.9. This yielded a final

trust value of 0.81, with a threshold of 0.5. Therefore, peer Pi will interact with peer

Pj. A summary of the results is shown in Table 6.1. Changing the beginning value

will not affect the resulting trust value in a significant way

Table 6.1: Results from the P2P model, scenario one, case one.

Recommendation Chain Results
P1 → P6 0.81

Case two uses the same values as VTrust in scenario one, case two. Peer P1

wishes to interact with peer P7 and the resulting trust value is 0.05. The reson for

this is because of the value P6 → P7 = 0.1. Thus, peer P1 uses that value as a starting

point. The results are shown in Table 6.2.
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Table 6.2: Results from the P2P model, scenario one, case two.

Recommendation Chain Results
P1 → P6 0.05

6.2 Scenario Two: Anti-virus Update

6.2.1 Analysis. The goal for scenario two was to implement one of the

fully-dressed use cases from Chapter III, specifically the one dealing with AV update.

6.2.2 Results. The results for case one, two and three are shown in Figures

6.3, 6.4 and 6.5. The graph shows the agent interactions on the x-axis. It is read

agent a trusts agent b (a − b). The y-axis is the resulting trust value at the end of

the scenario. The results are similar through all three cases. The numbers are very

similar between each model and agent. The difference comes in where hTrust has a

1 value throughout the entire scenario. hTrust therefore does not allow for the factor

of time decay. The other two models factored that in and thus their numbers are

lower for those agent trust relationships. Another observation is hTrust generally has

a lower trust value for certain agents (ones that didn’t start with a 1 value) than the

other two models VTrust and P2P.

For hTrust, time started at t = 10, increased in increments of 2, and ended at t

= 16. The interactions for case one, in order, were a−b, b−e, e−g, g−e, e−b, b−a.

Agents b− g and e− g did not exchange any sort of recommendations and thus their

tacit information tuples were not updated. The results from show that with somewhat

realistic values, trust will not degrade too fast to a point where the model becomes

useless. A case for future work is to run scenarios adjusting all the parameters (such

as the customizing functions h1 − h4, η, etc.). For case two, time started at t = 10,

increased in increments of 2, and ended at t = 22. The interactions, in order, were

a−b, b−e, e−b, b−a, a−d, d−e, d−f, d−i, i−d, d−e, d−a, a−b, b−i, i−b, b−a.

Agents e− f and f − i did not exchange any sort of recommendations and thus their

tacit information tuples were not updated. For case three time started at t = 10,
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increased in increments of 2, and ended at t = 20. The interactions, in order, were

a− b, b− e, e− g, e− b, b− a, a− c, c− e, c− f, c− h, h− c, c− e, c− a, a− c.

Agents e− g and f − h did not exchange any sort of recommendations and thus their

tacit information tuples were not updated.

VTrust calculates the value of trust over a period of time as opposed to after

each interaction (such as hTrust). For this scenario, all interactions were recorded,

then a final trust value was created. The P2P model calcutes trust values after each

interaction.

Figure 6.3: Results for Scenario Two, Case One.

6.3 Reference Framework

A proponent of hTrust is the various parameters and customizing functions.

These elements allow for a better evaluation of trust. The problem with hTrust is the

model breaks down after only one recommendation. hTrust does not in its current

state allow for the degredation of trust over time. Cybercraft are going to need to have
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Figure 6.4: Results for Scenario Two, Case Two.

Figure 6.5: Results for Scenario Two, Case Three.
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numerous chains. VTrust allows for trust chaining but does not have a framework to

implement the model and seems to be a piecemeal of components to create a value.

P2P allows for a long chain of trust but with the assumption to trust a peer until it is

proven malicious will not work for Cybercraft. The opposite is true, Cybercraft must

be less trusting of new peers. Another thought is P2P only allows for an interval of

[0,1]. This is not adequate to represent a full range of trust values. Recommend a

range of [-1,1] such as that of hTrust.

None of these models taken as-is will work for Cybercraft. With some modifi-

cations, a combination of the best of all three, or even a new model, is a possibility.

Table 6.3: Reference Framework.

hTrust VTrust P2P
Able to form, maintain, and evolve
trust opinions

Yes Yes Yes

Incorporates QoS Yes Yes Yes
Human tailored Yes No No
Subjective Yes Yes Yes
Highly customizable Yes No Yes
Allows for transitive trust No Yes Yes
Dynamic trust changing Yes Yes Yes
Minimal resource demands Yes Yes Yes
Ability to catch malicious agents Yes Yes Yes
Allow for degredation of trust over time No Yes Yes
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VII. Conclusions and Future Work

Trust expression in the Cybercraft domain centers around several key relation-

ships: platform to payload, platform to platform, platform to node, and payload

to payload. There are obviously many others to consider. Our continuing work con-

siders which, if any, of the current trust models best express proof that trust transfers

from the root of trust in the payload to other components in the system.

There are many unknowns still to be captured and analyzed for Cybercraft. The

goal for this research effort is not a network defense band aid for USAF networks,

but rather a means to focus thinking about future threats and capabilities. In this

paper, we discuss various means of capturing requirements, specifically using the

software engineering techniques of use cases, threat modeling, and attack trees. As

well, the main research question of trust was discussed. We expound briefly possible

trust models such as hTrust and VTrust that may provide a good fit for Cybercraft.

Future work in this are includes iterative requirements exposition for Cybercraft and

enumeration of trust relationships within the Cybercraft domain.

7.1 Future Work

Cybercraft is a new idea for the future of our network defense and has many

unknowns still. The following section discusses various work that will help further

the goal of implementing Cybercraft to protect our defense networks.

7.1.1 Requirements. TCNO’s and TCTO’s are an excellent source for gath-

ering future requirements. These documents contain the daily guidelines for our

current network and should be used in helping define what our future network will be

like. Another area in requirements gathering is using the brief use cases from chap-

ter III and creating fully-dressed use cases. Once these use cases are created, trust

model application is the next step. Addressing and evaluating the current state of

our network defense is important to ensure we address any deficiencies there might

be.
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7.1.2 Trust. The many components that make up the Cybercraft domain

will have values to represent trust. Future work can decide what value to give a trusted

vendor versus unknown vendors or vendors that did not go through a screening process

(formal verification). As well as vendors, USAF networks extensively use third party

software, such as A/V software, firewall, etc. There needs to be a way to place a value

of trust in these components. Communication lines must be secure and trusted as

well and given a trust value. One idea for placing initial trust values is if the product

offered goes through a formal verification process, then the trust value is 1, if not,

it could be 0 or possibly lower, even to -1. More trust models need to be evaluated

to further define the reference framework for the Cybercraft domain. Evaluating the

models using the same scenarios and adjusting the parameters will help pin down

what values are realistic for those variables.
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Appendix A. Operational-Tactical/Mission Breakdown

The following tables are the result of the requirements analysis from Chapter III.

The analysis of these tables are included in Chapter III.

Table A.2 shows the brief use cases created for the defense priority of automated

attack interdiction from Chapter III.

Table A.1: Attack Detection operational-tactical/mission break-
down.

Strategic goal: Attack Detection
Operational Tactical Mission
Detect Insider Threat Monitor access Ensure access is as limited as possible

Ensure a “need to know”
Log individual access to highly sensi-
tive items
Ensure clearances are up-to-date
Examine physical security to devices
(server farm, unattended computers,
wiring closets, etc.)
Maintain password policies
Deactivate access immediately after
termination
Monitor and respond to suspicious be-
havior
Record user access 24X7

Detect physical threat Monitor access Log individual access to highly sensi-
tive items
Examine physical security to devices
(server farm, unattended computers,
wiring closets, etc.)

Detect computer attack Determine source of
attack

Monitor incoming IP addresses

Monitor incoming/outgoing ports
Monitor high activity sources

Detection analysis Detect anomalies Analyze base traffic for XX months
Compare incidents over XX amount of
time
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Table A.2: Automated Network Vulnerability Mitigation operational-

tactical/mission breakdown.

Strategic goal: Automated Network Vulnerability Mitigation

Operational Tactical Mission

Detect and mitigate

Denial of Service

(DDoS) attacks

Monitor collective

network resource

utilization and deny

attempts to usurp

XX% utilization

Monitor CPU historical usage

Monitor server storage growth

Monitor router/switch activity

Monitor/analyze base incoming net-

work activity

Ensure global parameters are set cor-

rectly

Collect and analyze data on network

performance

Monitor overall network status, check

for anomalies

Monitor specific base network status

(i.e., a specific base, unit, or squadron)

Daily/weekly sched-

uled maintenance

Log system crashes

Ensure regular backups are occurring

Use tools to detect configuration

changes

continued on next page
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continued from previous page

Strategic goal: Automated Network Vulnerability Mitigation

Operational Tactical Mission

Ensure all patches are up to date on

routers, switches, workstations, etc.

System defragmentation

Scheduled outage/downtime

Check vulnerabilities Ensure global parameters are set cor-

rectly

Ensure proper configuration of server,

workstation, peripherals, communica-

tions devices, and OS/application soft-

ware

Ensure network redundancy

Ensure ”hot swap” devices are available

Enable router filtering of known DDoS

attacks

Ensure workstations,

network devices are

up-to-date

Automated patching Ensure SMS is enabled

Ensure minimal exemption list
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Table A.3: Automated Attack Interdiction operational-
tactical/mission breakdown.

Strategic goal: Automated Attack Interdiction
Operational Tactical Mission
Detect network attack Detect and mitigate

base external network
resources

Monitor log files

Block specific IP segments attack is
coming from
Ensure router/switch ACL’s are up-to-
date
Cut off from network compromised de-
vices

detect and mitigate
base internal network
resources

Monitor log files

Ensure all patches are up-to-date
Automatic blocking Block ports Start blocking a ”suspect” port when

traffic reaches XX% utilization
Block unused ports
Allow only certain traffic on ports well
known for attacks

Active deception Redirection Redirect to honeypots
Documentation Logs Monitor logs

Detect anomalies

Table A.4: Network Attack Damage Assessment operational-
tactical/mission breakdown.

Strategic goal: Network Attack Damage Assessment
Operational Tactical Mission
Determine network baseline Monitor network Log network traffic for XX months to

create baseline
Create baseline ACL’s for routers and
switches
Implement standard desktop
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Table A.5: Automated Attack Reporting operational-
tactical/mission breakdown.

Strategic goal: Automated Attack Reporting
Operational Tactical Mission
Documentation Track incidents

Table A.6: Adversary Identification operational-tactical/mission
breakdown.

Strategic goal: Adversary Identification
Operational Tactical Mission

Track IP addresses/segments of known
attacks
Analyze logs for trends
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Appendix B. MFR 2008-01-17

This is a MFR from Mr. Lou Giannelli, INOSE East Det 3. We conducted weekly

meetings to hash out some possible Cybercraft missions using attack/defense

trees. This MFR is a result of a few examples Mr. Giannelli brought up during one

of our meetings.

Subject: Cybercraft Suggestions

Submitted by: Lou Giannelli, INOSC East Det 3

Date: 17 Jan, 2008

B.1 Background

As a sub product of the weekly session interaction where Defenders have provided

Capt Hunt with defense and attack tree scenarios, it has become apparent that the

Defenders can also provide suggestions for Cybercraft capabilities. This MFR docu-

ments two suggestions presented to Capt Hunt on today’s session. These suggestions

represent possible solutions to mitigate two recurrent problems.

B.2 Problem 1

Defenders routinely provide base technicians with technical details regarding sus-

picious/malicious network connections. The said details are provided as raw data

transcripts in ASCII format. The average technician customarily is not prepared to

identify key elements necessary to identify and validate questionable connections.

Suggested solution 1. To study the feasibility of enabling Cybercraft with a parsing

subroutine capable of enabling base technicians with a search utility to locate these

key elements in a raw data transcript in ASCII format.

B.3 Problem 2

There are recurrent violations to current AFI and TCNO policy. The violations

originate on base internal users circumventing sercurity policies.
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Suggested solution 2. To study the feasibility of enabling Cybercraft with a logi-

cal subroutine capable of flagging an alert on outbound connections using the listed

services when a set of conditions are met.

This suggestion envisions Cybercraft enabled with a logical subroutine capable of

examining the 3-way handshake sequence on packets with destination port 21, and

a destination IP different than the authorized sites. Cybercraft will flag connections

meeting these criteria with an alert.
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Appendix C. Results

This appendix includes all the results from the scenarios in Chapter VI.

Table C.1: Results from a chain of 26 agents.

Recommendation Chain Results
A → C 0.81 A → M 0.2824 A → W 0.0985
A → D 0.729 A → N 0.2542 A → X 0.0886
A → E 0.6561 A → O 0.2288 A → Y 0.0798
A → F 0.59059 A → P 0.2059 A → Z 0.0718
A → G 0.5314 A → Q 0.1853
A → H 0.4783 A → R 0.1668
A → I 0.4305 A → S 0.1501
A → J 0.3874 A → T 0.1351
A → K 0.3487 A → U 0.1216
A → L 0.3138 A → V 0.1094

Table C.2: Results from a more realistic Cybercraft environment.

Recommendation Chain Results
A → C 0.80
A → D 0.16
A → E 0.032
A → F 0.0256
A → G 0.0256
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Table C.3: Final Data for scenario two, case one - hTrust.

a’s data
Aggregated Trust Information [a, b, 1, 1, 16]
Tacit Information [a, b, 1, 1, 10]
Portfolio of Credentials [b, a, 1, 1, 16]SKb

b’s data
Aggregated Trust Information [b, a, 1, 1, 16]

[b, e, 0.34, 0.1, 12]
[b, g, 0.25, 0.1, 14]

Tacit Information [b, a, 1, 0.97, 12]
[b, e, 0.83, 0.1, 14]

Portfolio of Credentials [a, b, 1, 1, 16]SKa

[e, b, 0.4, 0.1, 12]SKe

[g, b, 0.4, 0.1, 14]SKg

e’s data
Aggregated Trust Information [e, g, 1, 1, 12]

[e, b, 0.4, 0.1, 12]
Tacit Information [e, g, 0.97, 1, 12]
Portfolio of Credentials [g, e, 1, 1, 12]SKg

[b, e, 0.34, 0.1, 12]SKb

g’s data
Aggregated Trust Information [g, e, 0.97, 1, 12]

[g, b, 0.4, 0.1, 14]
Tacit Information [g, e, 1, 1, 12]
Portfolio of Credentials [e, g, 1, 1, 10]SKe

[b, g, 0.25, 0.1, 14]SKb
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Table C.4: Final Data for scenario two, case two - hTrust.

a’s data b’s data d’s data
Aggregated Trust Informa-
tion

[a, b, 1, 1, 22] [b, a, 1, 1, 22] [d, a, 1, 1, 20]

[a, d, 0.65, 1, 20] [b, e, 0.34, 0.1, 12] [d, e, 0.34, 0.2, 18]
[b, i, 0.13, 0.1, 22] [d, i, 0.25, 0.1, 18]

[d, f, 0.25, 0.1, 16]
Tacit Information [a, b, 1, 1, 10] [b, a, 0.97, 1, 12] [d, a, 0.99, 1, 14]

[a, d, 0.5, 1, 10] [d, e, 0.75, 0.1, 16]
[d, e, 0.75, 0.1, 18]

Portfolio of Credentials [b, a, 1, 1, 22]SKb
[a, b, 1, 1, 22]SKa [a, d, 0.65, 1, 20]SKa

[d, a, 1, 1, 20]SKd
[e, b, 0.4, 0.1, 12]SKe [e, d, 0.4, 0.2, 18]SKe

[i, b, 0.4, 0.1, 22]SKi
[i, d, 0.4, 0.1, 18]SKi

[f, d, 0.4, 0.1, 16]SKf

e’s data f ’s data i’s data
Aggregated Trust Informa-
tion

[e, b, 0.4, 0.1, 12] [f, d, 0.4, 0.1, 16] [i, b, 0.4, 0.1, 12]

[e, d, 0.4, 0.2, 18] [i, d, 0.4, 0.1, 18]
[e, i, 0.25, 0.1, 18] [i, e, 0.4, 0.1, 18]

Tacit Information [e, g, 0.97, 1, 12] [f, e, 1, 1, 12]
Portfolio of Credentials [b, e, 0.34, 0.1, 12]SKb

[d, f, 0.25, 0.1, 16]SKe [b, i, 0.13, 0.1, 22]SKb

[d, e, 0.25, 0.1, 18]SKd
[d, i, 0.25, 0.1, 18]SKd

[i, e, 0.25, 0.1, 18]SKi
[e, i, 0.25, 0.1, 18]SKe
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Table C.5: Final Data for scenario two, case three - hTrust.

a’s data b’s data c’s data
Aggregated Trust Informa-
tion

[a, b, 1, 1, 22] [b, a, 1, 1, 12] [c, a, 1, 1, 20]

[a, d, 0.65, 1, 20] [b, e, 0.34, 0.1, 12] [c, e, 0.34, 0.1, 14]
[c, f, 0.25, 0.1, 16]
[c, g, 0.25, 0.1, 20]
[c, h, 0.25, 0.1, 18]

Tacit Information [a, b, 1, 1, 12] [b, a, 0.97, 1, 12] [c, a, 0.99, 1, 14]
[a, c, 1, 1, 20] [c, e, 0.75, 0.1, 16]

[c, f, 0.75, 0.1, 18]
Portfolio of Credentials [b, a, 1, 1, 12]SKb

[a, b, 1, 1, 12]SKa [a, c, 1, 1, 20]SKa

[c, a, 1, 1, 20]SKc [e, b, 0.4, 0.1, 12]SKe [e, c, 0.4, 0.1, 14]SKe

[f, c, 0.4, 0.1, 16]SKf

[g, c, 0.4, 0.1, 20]SKg

[h, c, 0.4, 0.1, 18]SKg

e’s data f ’s data g’s data
Aggregated Trust Informa-
tion

[e, b, 0.4, 0.1, 12] [f, c, 0.4, 0.1, 16] [g, c, 0.4, 0.1, 20]

[e, c, 0.4, 0.1, 14] [g, e, 1, 1, 12]
[e, g, 1, 1, 12]

Tacit Information [e, g, 0.97, 1, 12] [f, e, 1, 1, 12]
Portfolio of Credentials [b, e, 0.34, 0.1, 12]SKb

[c, f, 0.25, 0.1, 16]SKc [c, g, 0.25, 0.1, 20]SKc

[c, e, 0.34, 0.1, 14]SKc [e, c, 0.4, 0.1, 14]SKe

[g, e, 1, 1, 12]SKg

h’s data
Aggregated Trust Informa-
tion

[h, c, 0.4, 0.1, 18]

Tacit Information (none)
Portfolio of Credentials [c, h, 0.25, 0.1, 18]SKc
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Table C.6: Final data for scenario two, case one - VTrust.

A’s data
(A → B) [0.33, 0.5, 0.0]
Trust value 0.83

B’s data
(B → A) [0.33, 0.5, 0.0]
Trust value 0.83
(B → E) [0.25, 0.13, 0.14]
Trust value 0.52
(B → G) [0.17, 0.12, 0.2]
Trust value 0.48

E’s data
(E → B) [0.25, 0.13, 0.2]
Trust value 0.58
(E → G) [0.5, 0.5, 0.0]
Trust value 1

G’s data
(G → B) [0.17, 0.13, 0.14]
Trust value 0.43
(G → E) [0.17, 0.5, 0.0]
Trust value 0.67
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Table C.7: Final data for scenario two, case two - VTrust.

A’s data B’s data
(A → B) [0.25, 0.5, 0.0] (B → A) [0.25, 0.5, 0.0]
Trust value 0.75 Trust value 0.75
(A → D) [0.13, 0.5, 0.0] (B → E) [0.15, 0.13, 0.14]
Trust value 0.63 Trust value 0.42

F ’s data I’s data
(F → D) [0.05, 0.14, 0.16] (I → D) [0.08, 0.14, 0.16]
Trust value 0.35 Trust value 0.37
(F → I) [0.05, 0.5, 0.0] (I → F ) [0.05, 0.5, 0.0]
Trust value 0.55 Trust value 0.55

D’s data E’s data
(D → A) [0.13, 0.5, 0.0] (E → B) [0.13, 0.13, 0.2]
Trust value 0.63 Trust value 0.45
(D → E) [0.13, 0.13, 0.14] (E → D) [0.13, 0.13, 0.2]
Trust value 0.39 Trust value 0.45
(D → F ) [0.5, 0.11, 0.15]
Trust value 0.31
(D → I) [0.08, 0.12, 0.16]
Trust value 0.35
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Table C.8: Final data for scenario two, case three - VTrust.

A’s data C’s data
(A → B) [0.13, 0.5, 0.0] (C → A) [0.21, 0.5, 0.0]
Trust value 0.63 Trust value 0.71
(A → C) [0.21, 0.5, 0.0] (C → E) [0.21, 0.13, 0.14]
Trust value 0.71 Trust value 0.47

B’s data
(B → A) [0.13, 0.5, 0.0] (C → F ) [0.13, 0.11, 0.16]
Trust value 0.63 Trust value 0.39
(B → E) [0.04, 0.13, 0.14] (C → H) [0.13, 0.12, 0.16]
Trust value 0.31 Trust value 0.4
(B → G) [0.04, 0.12, 0.2] (C → G) [0.13, 0.12, 0.0]
Trust value 0.36 Trust value 0.44

F ’s data G’s data
(F → E) [0.08, 0.5, 0.0] (G → E) [0.17, 0.5, 0.0]
Trust value 0.58 Trust value 0.67
(F → H) [0.13, 0.5, 0.0] (G → B) [0.04, 0.13, 0.14]
Trust value 0.63 Trust value 0.31
(F → C) [0.13, 0.14, 0.15] (G → C) [0.13, 0.13, 0.14]
Trust value 0.41 Trust value 0.39

E’s data H’s data
(E → B) [0.04, 0.13, 0.2] (H → F ) [0.13, 0.5, 0.0]
Trust value 0.37 Trust value 0.63
(E → G) [0.17, 0.5, 0.2] (H → C) [0.13, 0.14, 0.16]
Trust value 0.67 Trust value 0.42
(E → C) [0.21, 0.13, 0.2]
Trust value 0.53
(E → F ) [0.08, 0.5, 0.0]
Trust value 0.58

81



Table C.9: Final data for scenario two, case one - P2P.

Pe’s data Pg’s data
Pe − Pb R(Pe, Pb) 0.0 Pg − Pe R(Pg, Pe) 1.0

T (Pe, Pb) 0.67 T (Pg, Pe) 0.75
Pe − Pg R(Pe, Pg) 1.0 Pg − Pb R(Pg, Pb) 0.0

T (Pe, Pg) 0.75 T (Pg, Pb) 0.37
Pb’s data Pa’s data

Pb − Pa R(Pb, Pa) 1.0 Pa − Pb R(Pa, Pb) 1.0
T (Pb, Pa) 0.75 T (Pa, Pb) 0.75

Pb − Pe R(Pb, Pe) 0.0
T (Pb, Pe) 0.33

Pb − Pg R(Pb, Pg) 0.0
T (Pb, Pg) 0.4

Table C.10: Final data for scenario two, case two - P2P.

Pa’s data Pb’s data
Pa − Pb R(Pa, Pb) 1.0 Pb − Pa R(Pb, Pa) 1.0

T (Pa, Pb) 0.75 T (Pb, Pa) 0.75
Pa − Pd R(Pa, Pd) 1.0 Pb − Pe R(Pb, Pe) 0.0

T (Pa, Pd) 0.75 T (Pb, Pe) 0.33
Pe’s data Pf ’s data

Pe − Pb R(Pe, Pb) 0.0 Pf − Pd R(Pf , Pd) 0.0
T (Pe, Pb) 0.33 T (Pf , Pd) 0.37

Pe − Pd R(Pe, Pd) 0.0 Pf − Pi R(Pf , Pi) 1.0
T (Pe, Pd) 0.33 T (Pf , Pi) 0.75

Pd’s data Pi’s data
Pd − Pa R(Pd, Pa) 1.0 Pi − Pd R(Pi, Pd) 0.0

T (Pd, Pa) 0.75 T (Pi, Pd) 0.37
Pd − Pe R(Pd, Pe) 0.0 Pi − Pf R(Pi, Pf ) 1.0

T (Pd, Pe) 0.33 T (Pi, Pf ) 0.75
Pd − Pf R(Pd, Pf ) 0.0

T (Pd, Pf ) 0.34
Pd − Pi R(Pd, Pi) 0.0

T (Pd, Pi) 0.36
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Table C.11: Final data for scenario two, case three - P2P.

Pa’s data Ph’s data
Pa − Pb R(Pa, Pb) 1.0 Ph − Pf R(Ph, Pf ) 1.0

T (Pa, Pb) 0.75 T (Ph, Pf ) 0.75
Pa − Pc R(Pa, Pc) 1.0 Ph − Pc R(Ph, Pc) 0.0

T (Pa, Pc) 0.75 T (Ph, Pc) 0.37
Pb’s data Pf ’s data

Pb − Pa R(Pb, Pa) 1.0 Pf − Pe R(Pf , Pe) 1.0
T (Pb, Pa) 0.75 T (Pf , Pe) 0.75

Pb − Pe R(Pb, Pe) 0.0 Pf − Ph R(Pf , Ph) 1.0
T (Pb, Pe) 0.33 T (Pf , Ph) 0.75

Pb − Pg R(Pb, Pg) 0.0 Pf − Pc R(Pf , Pc) 0.0
T (Pb, Pg) 0.33 T (Pf , Pc) 0.37

Pc’s data Pe’s data
Pc − Pa R(Pc, Pa) 1.0 Pe − Pb R(Pe, Pb) 0.0

T (Pc, Pa) 0.75 T (Pe, Pb) 0.33
Pc − Pe R(Pc, Pe) 0.0 Pe − Pg R(Pe, Pg) 1.0

T (Pc, Pe) 0.33 T (Pe, Pg) 0.75
Pc − Pf R(Pc, Pf ) 0.0 Pe − Pc R(Pe, Pc) 0.0

T (Pc, Pf ) 0.32 T (Pe, Pc) 0.23
Pc − Ph R(Pc, Ph) 0.0 Pe − Pf R(Pe, Pf ) 1.0

T (Pc, Ph) 0.33 T (Pe, Pf ) 0.75
Pc − Pg R(Pc, Pg) 0.0

T (Pc, Pg) 0.4
Pg’s data

Pg − Pe R(Pg, Pe) 1.0
T (Pg, Pe) 0.75

Pg − Pb R(Pg, Pb) 0.0
T (Pg, Pb) 0.33

Pg − Pc R(Pg, Pc) 0.0
T (Pg, Pc) 0.37
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