
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Theses and Dissertations Student Graduate Works 

3-2008 

Network Visualization Design using Prefuse Visualization Network Visualization Design using Prefuse Visualization 

Framework Framework 

John Mark Belue 

Follow this and additional works at: https://scholar.afit.edu/etd 

 Part of the Digital Communications and Networking Commons 

Recommended Citation Recommended Citation 
Belue, John Mark, "Network Visualization Design using Prefuse Visualization Framework" (2008). Theses 
and Dissertations. 2745. 
https://scholar.afit.edu/etd/2745 

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been 
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more 
information, please contact AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2745?utm_source=scholar.afit.edu%2Fetd%2F2745&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


Network Visualization Design

using

Prefuse Visualization Toolkit

THESIS

J. Mark Belue, Captain, USAF

AFIT/GCS/ENG/08-03

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy of the United States Air Force, Department of Defense, or the United States
Government.



AFIT/GCS/ENG/08-03

Network Visualization Design

using

Prefuse Visualization Toolkit

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Computer Science)

J. Mark Belue, BS

Captain, USAF

March 2008

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GCS/ENG/08-03

Network Visualization Design

using

Prefuse Visualization Toolkit

J. Mark Belue, BS

Captain, USAF

Approved:

/signed/ 22 Feb 2008

Lt Col Stuart Kurkowski, PhD
(Chairman)

Date

/signed/ 22 Feb 2008

Dr. Kenneth M. Hopkinson (Member) Date

/signed/ 22 Feb 2008

Capt Ryan W. Thomas, PhD (Member) Date



AFIT/GCS/ENG/08-03

Abstract

Visualization of network simulation events or network visualization is an ef-

fective and low cost method to evaluate the health and status of a network and

analyze network designs, protocols, and network algorithms. This research designed

and developed a network event visualization framework using an open source general

visualization toolkit. This research achieved three major milestones during the de-

velopment of this framework: A robust network simulator trace file parser, multiple

network visualization layouts–including user-defined layouts, and precise visualization

timing controls and integrated display of network statistics. The parser architecture is

extensible to allow customization of simulator trace formats that are accepted by the

visualization framework. This design makes the framework capable of accepting trace

files from different network simulators and provides one common visualization testbed

to study network scenarios run on different simulators. Multiple network visualization

layouts are made possible using the prefuse visualization toolkit Layout class which

provides many different visualization layouts and is easily extensible to create new

Layout subclasses. Finally, precise timing controls give users better control for quicker

navigation to specific network events at any time. The toolkit design is readily ex-

tensible allowing developers to easily expand the framework to meet research-specific

visualization goals.

iv



Acknowledgements

I would first like to thank Josh Abernathy from Cedarville college for his contributions

towards building the network visualization framework and his extensive knowledge of

prefuse. Also my wife for her help and support and my lab mates who kept me sane

during the long hours of writing and coding. Finally, I would like to acknowledge

the great effort of my thesis advisor Lt Col Kurkowski who helped me organize my

writing and kept me believing all things were possible.

J. Mark Belue

v



Table of Contents
Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II. Network Simulation and Visualization . . . . . . . . . . . . . . . 4
2.1 Network Simulator Visualizations . . . . . . . . . . . . . 5

2.1.1 Nam . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 iNSpect . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 GTNets . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 OPNET . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . 10

2.2 Visualization Toolkits . . . . . . . . . . . . . . . . . . . 10
2.2.1 GUESS . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Osprey . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Qt . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Piccolo . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Prefuse . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Discussion . . . . . . . . . . . . . . . . . . . . . 16

III. Visualization Framework Design and Implementation . . . . . . . 19

3.1 Network Trace File . . . . . . . . . . . . . . . . . . . . . 20
3.2 Trace File Parser . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Initial Design . . . . . . . . . . . . . . . . . . . 21

3.2.2 Initial Design Problems . . . . . . . . . . . . . . 23

3.2.3 Final Design and Implementation . . . . . . . . 25

3.3 Network Event Animation . . . . . . . . . . . . . . . . . 26
3.3.1 Wired Networks . . . . . . . . . . . . . . . . . . 26
3.3.2 Wireless Networks . . . . . . . . . . . . . . . . 28

3.4 Visualization / Simulator Interaction . . . . . . . . . . . 33

3.5 Code Refactoring . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Extract Class [9] . . . . . . . . . . . . . . . . . 34

3.5.2 Replace Conditional with Polymorphism [9] . . 35

3.5.3 Extract Hierarchy [9] . . . . . . . . . . . . . . . 35

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



Page

IV. A Network Visualization Framework for Network Event Observa-
tion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Robust Parser Architecture . . . . . . . . . . . . . . . . 37
4.2 Multi-objective Dynamic Network Topology Layout . . . 40

4.2.1 Physical and Virtual Network Layout Design . . 42

4.2.2 Virtual Network Layout Example I: Wireless Net-
work Broadcast . . . . . . . . . . . . . . . . . . 43

4.2.3 Virtual Network Layout Example II: Wired Net-
work Link Break . . . . . . . . . . . . . . . . . 45

4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . 45
4.3 Analysis-based User Interface . . . . . . . . . . . . . . . 47

4.4 Testing and Validating the Visualization Framework . . 48

4.4.1 Wired packet queueing . . . . . . . . . . . . . . 49

4.4.2 Wireless node movement . . . . . . . . . . . . . 49
4.4.3 Wireless and wired network topology packet trace 53

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V. Contributions and Future Work . . . . . . . . . . . . . . . . . . 56
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1.1 Robust Framework Trace Parser . . . . . . . . . 56
5.1.2 Extensible Visualization Layout . . . . . . . . . 56

5.1.3 User Interface . . . . . . . . . . . . . . . . . . . 57
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Parser Enhancements . . . . . . . . . . . . . . . 58
5.2.2 Layout Enhancements . . . . . . . . . . . . . . 58

5.2.3 Network Simulator Interaction . . . . . . . . . . 61
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . 62

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



List of Figures
Figure Page

2.1 Nam Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 iNSpect visualization highlighting packet routing nodes: source

(blue), intermediate (yellow), destination (red or green) . . . . 7

2.3 GTNets visualizer showing wireless broadcast rings [39] . . . . 8

2.4 Modest GTNetS execution time increases as network scenarios

increase in size [33] . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Multiple wireless nodes and wireless packets in OPNET network

(broadcast range shown with large outer circles) . . . . . . . . 9

2.6 GUESS visualization illustrating command window, grouping,

and graph layout [1] . . . . . . . . . . . . . . . . . . . . . . . . 11

2.7 (a) Original graph visualization (b) resultant visualization after

text query [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Examples of Qt in Julius framework and Ball modelar . . . . . 13

2.9 PNode class hierarchy showing monolithic Piccolo toolkit design

[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Interactive graph expanded when users click on an entry [28] . 15

2.11 Interactive grid layout (called fisheye) where users click on a cell

to reveal more detailed information [3] . . . . . . . . . . . . . . 15

2.12 Prefuse toolkit with Model, View, and Controller highlighted 16

2.13 Prefuse TupleSet Hierarchy: Shows how prefuse organizes

collections of visual and data objects used to create a visualization 17

2.14 Prefuse Tuple Hierarchy: Shows how prefuse organizes indi-

vidual pieces of visualization data . . . . . . . . . . . . . . . . 17

3.1 The prefuse visualization toolkit. Lists of composable actions

filter abstract data into visualizable content and assign visual

properties (position, color, size, font, etc). Renderer modules,

provided on a per-item basis by a RendererFactory, draw the

VisualItem to construct interactive Displays. User interaction

can then trigger changes at any point in the toolkit [18]. . . . . 19

viii



Figure Page

3.2 NS-2 trace samples, showing two formats highlighting the differ-

ing locations of time and other tags . . . . . . . . . . . . . . . 20

3.3 Data Column Pattern . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Extension of prefuse DataParser and ParserFactory into net-

work visualization specific parsers and parser factories . . . . . 23

3.5 Creation of network visualization specific parsers ImageParser,

BandwidthParser, and IDParser . . . . . . . . . . . . . . . . . 24

3.6 Initial Parser Design . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Final Parser Design . . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Network Event Animation Design . . . . . . . . . . . . . . . . 27

3.9 Network Event Animation Screen shot . . . . . . . . . . . . . . 28

3.10 Node events inside a NS-2 trace for three different nodes initially

no node movement defined, but later node movement is specifi-

cally defined by the -u (x-coordinate velocity), -v (y-coordinate

velocity), -T (duration of movement) tags. layer . . . . . . . . 30

3.11 NodeParser parses node event trace lines and updates data fields

inside NodeMobilityManager. NodeLayout then accesses a set of

MobilityEntry objects inside NodeMobilityManagerto correctly

animate node movement. . . . . . . . . . . . . . . . . . . . . . 31

3.12 Wireless traces of four unique packetIDs . . . . . . . . . . . . . 32

3.13 Data Structure design for wireless traffic Map. The map stores

routes for wireless packets from source to destination for later

visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.14 Conditional Chain Example . . . . . . . . . . . . . . . . . . . . 35

4.1 Trace created by OPNET toolkit. Highlighted are the packet

event lines beginning with ’p’ and using the ’-e’ tag to denote a

send, receive, queue or drop packet event. Also, this trace uses

the ’-z’ tag to denote packet size. . . . . . . . . . . . . . . . . . 38

4.2 Framework visualization of OPNET simulation . . . . . . . . . 39

4.3 NamLine and OpNetLine subclass TraceLine. OpNetLine adds

functionality to TraceLine with new methods and method overrides–

allows TraceLine to handle network events in OPNET trace file. 40

ix



Figure Page

4.4 Layers of cyberspace situational awareness: This framework pro-

vides network architecture (physical and virtual) layers . . . . . 41

4.5 GeographicLayout and GroupedLayout class hierarchy. The

GeographicLayout and GroupedLayout classes extend Layout

and Activity to create customized visualization animation . . 42

4.6 NS-2 trace directing wireless broadcast from node 1 to nodes: 14,

6, 47, 40, 36, 12. As shown in Figure 4.7 . . . . . . . . . . . . . 43

4.7 Wireless packet broadcast using combination of force-directed

and grouped layout . . . . . . . . . . . . . . . . . . . . . . . . 44

4.8 Wired Network showing network topology animation in response

link status changes from up to down . . . . . . . . . . . . . . . 46

4.9 Prefuse visualization architecture for handling various visual-

ization control capabilities. SuperFocusControl is a new visual-

ization control added by this framework to custimize how focus

changes when users click on the visualization background. . . . 48

4.10 Network Visualization framework user-interface with visualiza-

tion controls highlighted . . . . . . . . . . . . . . . . . . . . . . 49

4.11 NS-2 trace file lines accounting for Figure 4.12 . . . . . . . . . 50

4.12 Nam and this framework’s visualization of wired packet traffic

with both visualizations paused at the same time . . . . . . . . 50

4.13 This visualization framework node movement animation com-

pared to Nam . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.14 This visualization framework node movement animation com-

pared to Nam (cont) . . . . . . . . . . . . . . . . . . . . . . . . 52

4.15 Wireless packet trace for wireless packet travelling from node 3

to 4 and finally node 2 . . . . . . . . . . . . . . . . . . . . . . . 53

4.16 This network visualization framework’s animation of wireless packet

moving from wireless node to wired network topology . . . . . 54

4.17 Nam’s network animation of wireless packet moving from wireless

node to wired network topology . . . . . . . . . . . . . . . . . 54

5.1 Potential real-world network scenario . . . . . . . . . . . . . . 59

x



Figure Page

5.2 Illustration of node statistics kept and displayed by this visual-

ization framework. . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Example of prefuse Action objects used to enlarge scrolled over

nodes and hight nodes sharing a link . . . . . . . . . . . . . . . 61

5.4 Diagram illustrating network simulator interaction goals. Di-

agram highlights feedback loop between Network Visualization

(this framework) and Network simulators via their respective

toolkits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

xi



Network Visualization Design

using

Prefuse Visualization Toolkit

I. Introduction

Throughout history, military operations have relied heavily on an accurate picture

of the battlespace. On land or at sea, early military operations used maps to

visualize ship locations, troop positions, and even different characteristics of the land.

Commanders used the maps to plan and carry out strategic strikes against enemy

positions. However, as time passed and technology improved so did the tools used to

create a picture of the battlespace. Sonar significantly improved the naval battlespace

picture by using sound waves to locate submarines buried deep in the sea, invisible to

the human eye. As military operations took to the skies, it was necessary to provide

an aerial battlespace picture. Technology aided this endeavor by combining radar

technology with a cathode-ray tube display to produce the first real-time picture of

airspace–the Plan Position Indicator [22]. This device oriented the radar signal source

at the center of the display with an extended line rotating around the signal source in

a sweeping motion. The radar display sweep was synchronized with the turning of the

physical radar scan. Aircraft detected by the physical radar scan appeared as lighted

dots on the display and their positions updated during each sweep. These early tools

filled the inherent need to see the battlespace picture visually and motivated future

battlespace visualization enhancements.

Military technology today has advanced beyond the early capabilities of maps,

sonar and radar. Today, commanders have battlespace pictures captured and trans-

ferred from around the world using different combinations of radar, sonar, GPS,

and satellite image systems. These tracking technologies are combined to produce

a battlespace visualization for land, sea, and air. However, bringing together a com-

1



prehensive visualization requires large and complex computer communication net-

works. Further increasing the demand for large communication networks, newly de-

veloped Unmanned Aerial Vehicles (UAVs) and Unmanned Combat Aerial Vehicles

(UCAVs) require networks with high capacity communication uplinks to fulfill their

missions [38]. Because UAVs/UCAVs rely heavily on computer communication net-

works to be successful, there is a greater requirement to monitor, design, and plan

these networks. Additionally, reliance on communication networks will only increase

as UAV/UCAV technology continues to expand and advance as the US and allies

develop new technologies like the Pegasus, X-45, Neuron and Phoenix [11].

Military networks continue to grow into a bigger part of the way we conduct war.

Future military in-theater communication will rely on mobile routers imbedded in a

variety of different places from devices carried by soldiers, to manned and unmanned

land, sea, and air based vehicles. Due to the mobile nature of these future networks,

connections between different nodes will sporadically be up and down. How networks

adapt to these changes is critical to overall network efficiency. Vital to guaranteeing

efficient network usage and effective command and control of military assets is a

central view of network events and activities.

Network visualization is crucial to understanding and effectively managing net-

work resources required during military land, sea, and air operations. Building a net-

work visualization framework capable of handling the large and complex computer,

and communication networks found today starts with a framework that can handle

simple network events. The easiest way to generate these simple network events is to

use the visualization framework to visualize network events from a network simulator.

However, many commonly used network simulators today already have accompanying

network visualization frameworks. Some of these visualization frameworks include:

Network Animator (Nam), interactive Network Simulator 2 protocol and environment

confirmation tool (iNSpect), Georgia Tech Network Simulator (GTNets) and the Op-

timized Network Evaluation Tools (OPNET). Although these visualizations illustrate

network events for their accompanying network simulator they motivate the develop-

2



ment of a new more universal visualization framework that provide better network

analysis tools. This research presents the design, implementation, and testing of a

new visualization framework to improve network visualization of wired, wireless, and

multi-hop wireless network scenarios and provide network analysis tools.

The new network visualization framework presented in this research extends the

widely used prefuse visualization toolkit [16]. A brief overview of different toolkits:

Guess, Osprey, Piccolo, Qt, and prefuse motivated the selection of prefuse as the

best suited for this framework. The new framework design provides trace file parsing

for trace files from Network Simulator-2 (NS-2). However, the framework includes a

file parser base class which users can easily extend or modify to create a trace file

parser for other network traces.

This research provides three major contributions with the new framework. First,

a trace file parser for NS-2 traces that is easily extensible to include traces in other

formats. Second, a multi-objective network topology visualization layout that can

also be easily extended to highlight specific user network behavior interests. Finally,

an analysis-based user interface to control the visualization. This research also tested

the network visualization framework functionality by comparing visualization output

to Nam.

The visualization framework provides: an easily extensible network trace parser

for accepting multiple trace file formats, multiple extensible network topology layouts,

and an analysis-based user interface. Future work will build upon the parser architec-

ture to handle different network trace formats from real-world networks. Additionally,

the flexible layout architecture will allow developers to customize the visualization to

commander preferences. The framework provides network event visualization with

the flexibility needed to visualize today’s large and complex networks.

3



II. Network Simulation and Visualization

Researchers use network simulator software suites to simulate network events.

To perform these simulations, users first choose a network simulator such as

Network Simulator-2 (NS-2), Optimized Network Evaluation Tools (OPNET), Geor-

gia Tech Network Simulator (GTNetS) Omnet++, or GloMoSim [5]. Second, they

create a network topology inside the simulator using the provided simulator interface.

Finally, they create a scenario for the simulator to run on the network topology. After

execution, the simulator provides a statistical report detailing how the network per-

formed during scenario execution. The simulator report is often lengthy, and locating

the pertinent information in the report can be difficult. Additionally, reports only

contain network performance statistics. It is very difficult to understand how the

network is working and evaluate network protocols without actually watching packet

routing. To eliminate the effort of finding information in reports and to facilitate

better network packet routing observation, researchers have developed software suites

to visualize network events run on a network simulator.

Visualization of network events is a crucial part of testing new network designs

and analyzing network efficiency. Network architects can design a network inside a

network simulator and then visualize how the network will perform under specific sce-

narios. A network visualization quickly reveals sources of network inefficiencies such

as: queuing delays, dropped packets, network congestion, and insufficient bandwidth.

Additionally, network visualizations provide protocol developers a powerful method

to quickly evaluate their protocols by visually analyzing network packet traffic. The

important role of network visualizations in designing networks and analyzing network

traffic warrants an evaluation of current network visualization suites

Network visualization suites include both separate programs designed to work

with a simulator and programs integrated into the network simulators. Four of these

visualization suites are: Nam, iNSpect, GTNetS, and OPNET. Nam visualizes net-

work events (packet flow, links, and queuing) on wired network topologies. The iN-

Spect program visualizes wireless-specific network events (packet hops, wireless node

4



links, and packet delivery success) [26]. Both Nam and iNSpect are network visual-

ization frameworks for NS-2. GTNets is a network simulator integrated with packet

level visualization and limited wireless support. OPNET shows network events for

both wired and wireless networks, but is a proprietary software platform for the OP-

NET simulator. Section 2.1 explores Nam, iNSpect, GTNetS, and OPNET in greater

detail.

The existence of several different visualizations and network simulators built

from the ground up for each simulator raises the questions: Can a single network

visualization framework be created to effectively visualize both wired and wireless

network simulator scenarios? What about network scenarios created in different

simulators (NS-2, OPNET, etc.)? This framework combines network simulator trace

data with a well-established visualization toolkit to create an efficient and robust

framework. This new visualization framework accurately animates network events

contained in a simulation trace file. A major decision during the design of the vi-

sualization frameowkr was selecting an existing visualization toolkit that encouraged

code reuse with loose coupling between the toolkit and the framework using it [13].

The analysis found in section 2.2 further discusses visualization toolkit selection.

2.1 Network Simulator Visualizations

2.1.1 Nam. When NS-2 executes a network scenario it produces a trace

file, containing network events that occurred during the scenario. Nam, a separate

program from NS-2, uses the NS-2 trace file to animate a visual representation of

the network events that occurred during the scenario. Combining NS-2 with Nam

users can define specific network scenarios and network events, run the scenarios in

NS-2, and then see the network events visualized as they are re-created in the Nam

window (see Figure 2.1(a)). Nam provides packet-level animation, protocol graphs,

traditional time-event plots of protocol actions and scenario editing capabilities to

NS-2 [7].

5



(a) Wired Network Nam Visualization
showing packet traffic, queued packets,
and dropped packets

(b) Wireless Network
Nam Visualization show-
ing broadcast rings

Figure 2.1: Nam Visualization

Originally built to support wired network visualization Nam has limited wireless

network animation capabilities. Nam visualizes wireless traffic as broadcast rings

moving outward originating from the center of wireless nodes (see Figure 2.1(b)).

Nam allows user interaction with the simulator through the scenario input facility, but

is limited to setting up network scenarios. The scenario input facility uses traditional

drawing approaches to add nodes, links, and protocol agents [7]. This user interaction

is limited to activities prior to scenario execution; Nam does not allow user interaction

while a scenario is running and does not facilitate two-way communication between

the visualization and the simulator.

Nam provides a good baseline for wired network event animation. Packet rout-

ing, queueing, and dropping are all visible and easily recognized. Nam visualization

of these network events makes network and protocol evaluation possible. However

wireless network event visualization shortfalls in Nam have opened the door for new

visualization frameworks that provided better wireless network event visualization.

2.1.2 iNSpect. The iNSpect program, a wireless network visualization tool

used with NS-2, tackles the wireless network visualization shortfalls left by NAM [26].

The tool shows various actions unique to wireless networks including: node move-

ment, packet routing, node broadcast radii, and geometric shape overlays to repre-

6



sent physical boundaries. The iNSpect program accurately visualizes how packets are

routed through a wireless network by generating arrows to indicate packets moving

from one node to another and color coding nodes to indicate source (blue), destination

(red or green), and path nodes (yellow) (see Figure 2.2).

Figure 2.2: iNSpect visualization highlighting packet routing nodes: source (blue),
intermediate (yellow), destination (red or green)

The iNSpect program is a definite improvement in wireless network event vi-

sualization over Nam. The program uses arrows and color coded nodes to highlight

packet routes which allows users to evaluate wireless network events and protocols.

However, illustrating packet transmission from one node to another with arrows is

less intuitive then simply animating packet movement between nodes. The iNSpect

program’s packet animation could be improved by showing packet traffic as it is shown

in wired network event animation, with small rectangles moving from node to node.

The program also requires NS-2 to produce larger trace files (almost a factor of 2)

than are required for Nam. A final drawback to the iNSpect program is that only

wireless network traffic is visualized. The iNSpect program’s visualization of wire-

less packet routing is a powerful tool, however, a framework that combines wireless

network traffic with intuitive network packet animation would be better.

7



Figure 2.3: GTNets visualizer showing wireless broadcast rings [39]

2.1.3 GTNets. Unlike Nam and iNSpect GTNetS combines a full-featured

network simulation environment with graphical viewing of the simulation topology .

The network simulation suite shows the network topology along with network traffic

(see Figure 2.3). GTNets also provides fine-grain control mechanisms whereby a net-

work trace file is created [14]. The source code for GTNets is freely available to all

users of the simulator / network visualization. By modifying the C++ code develop-

ers can tailor the simulator to meet their own needs. However, this give GTNets little

advantage over NS-2 which also makes source code freely available. Similar statistical

reports are available in GTNetS as those found in NS-2 [32]. The major advantage

of GTNetS over NS-2 is the ability to support large numbers of nodes and packet

traffic with only moderate increase in simulation time. Figure 2.4 shows GTNets

ability to handle large network topologies. Data contained in Figure 2.4 was obtained

from loggin a Department of Defense computer network while adding multimedia and

encrypted traffic [27]. GTNets creates a network simulation environment with both

a simulator and visualization integrated together. However, because the visualiza-

tion is packaged together with the simulator it is difficult to use the visualization

independently or as a means to visualize network scenarios run in other simulators.

8



Figure 2.4: Modest GTNetS execution time increases as network scenarios increase
in size [33]

2.1.4 OPNET. OPNET combines a network event simulator with a network

event visualization for network packet events and node movement. The visualization

includes node broadcast rings, node movements, and animated packets moving across

wired links and wirelessly through user defined mediums. Although OPNET is a

powerful network simulator suite it’s proprietary implementation is significantly dif-

ficult to alter. Modifying OPNET’s code requires an extensive knowledge of how

the simulator works so that the right code is modified without corrupting OPNETs

current tools. Also, in order for changes to OPNETs core to helpful across the simu-

lator community, the changes must be implemented elegently so that they are easily

installed on other user’s OPNET suites. Figure 2.5 shows the OPNET visualization

for a wireless network topology scenario. OPNETS full feature set make it a very

attractive and potential candidate as a visualization tool, however, because it is pro-

prietary it’s usefulness is limited. The availability of open-source visualizations such

Figure 2.5: Multiple wireless nodes and wireless packets in OPNET network (broad-
cast range shown with large outer circles)

9



as Nam, GTNets, and the iNSpect has created a community that is not willing pur-

chase proprietary software suites and is looking for a robust truly open-source network

visualization framework.

2.1.5 Discussion. Nam and iNSpect are excellent compliments of one an-

other. Based on their usefulness in both wired and wireless network visualizations

the tools provide standards for what a network visualization should include. Addi-

tionally, the shortcomings of the visualizations give areas of improvement for future

network visualization development. GTNetS is specialized simulator for simulating

large network topologies. The simulator does a great job, but visualizing network

traffic on large networks has limited utility. OPNET provides an excellent tool set

for both network simulation and visualization. However much of the network simu-

lator community is looking for more robust truly open-source network visualization

solutions. This is shown by continued development and enhancement of existing open

source visualizations.

Drawing on the successes and shortcomings of NAM, iNSpect, GTNets, and

OPNET this research develops a new network visualization framework that visualizes

both wired and wireless network events including: traditional packet animation across

wired and wireless links, queue levels at each node, and dropped packets. Additionally,

this framework sill provide new and better tools for not only observing network events

but analyzing them. This research focuses on building these features to work with

NS-2 trace files. However, the created framework design will also allow traces from

other simulators to be visualized.

2.2 Visualization Toolkits

By using an existing visualization toolkit, the needed data structures commonly

used for visualizations are provided in a well-designed and efficient package. Visu-

alization toolkits facilitate quicker development of visualization framework features.

This research examines several different visualization toolkits to determine the utility

10



for using them in the creation of a network visualization framework. The basis for

toolkit utility is a collection of visualization functions, data structures, and organized

animation logic that can be used and re-used by the visualization framework [13].

2.2.1 GUESS. The GUESS visualization toolkit highlights some specific

aspects of graph visualization. Using the toolkit in a visualization gives users different

ways to interact with a graph. In addition to the toolkit’s graph visualization window

GUESS provides a command window where text commands are entered using tailor-

made command language (see Figure 2.6). These commands form the GUESS toolkit’s

visualization functions. Some of these functions include: altering layouts, graph-

based clustering, and node coloring [1]. GUESS also uses underlying data structures

and graph clustering functions from the JUNG [23] library. This library provides

intuitive classes for both drawing and organizing graph nodes and links. GUESS

animation logic is limited to features like force-directed layouts, panning, zooming,

and modifying highlights/grouping. No underlying animation logic is available where

actions can be defined by users to produce custom animations.

Figure 2.6: GUESS visualization illustrating command window, grouping, and
graph layout [1]

2.2.2 Osprey. The Osprey visualization toolkit is used to build graphical

representations of gene relationships [4]. The toolkit uses Java Standard Develop-

ment Kit, but does not build on any known helper libraries. Because gene data sets

11



can be quite large Osprey implements a text query feature which alters visualiza-

tions based on query results (see Figure 2.7). In addition to queries Osprey defines

numerous specific layout types to better organize data [30]. Research revealed little

about how Osprey organizes data structures internally; however, this could be in part

because the toolkit kit is proprietary and intimately connected with the BIOGrid [36]

database. Osprey references the database for gene interaction data to render visual-

izations. Animations in Osprey are limited to mouse-over pop-up windows and layout

modifications.

Figure 2.7: (a) Original graph visualization (b) resultant visualization after text
query [4]

2.2.3 Qt. This comprehensive development framework includes an extensive

array of features, capabilities and tools that enable development of high-performance,

cross-platform rich-client and server-side applications [37]. The framework also in-

cludes a rich set of visualization development tools for user interfaces, layout man-

agement, 3D graphics, and scalable vector graphics [37]. The framework is available

in both C++ and Java programming languages.

Research showed that most visualization frameworks using Qt employed the

toolkit for user interfaces [15] [21] [29]. In addition to providing good user interface

tools the toolkit allows users to use their own choice of graphical visualization toolkits

as illustrated by BALL [25] (used for molecular modeling) and JULIUS [24] (used for

medical imaging). However, all frameworks studied, except one, selected OpenGL as

12



their graphical visualization toolkit. This open-ended approach allows any visualiza-

tion toolkit to be used which translates to great flexibility for an interface specific

toolkit. Figure 2.8(a) shows the design of JULIUS and Qt widgets used to create the

user interface for Ball (see Figure 2.8(b)). These examples reinforce the main use of

Qt. Because of the emphasis on providing user interface tools Qt lacks the built in

logic for network event animations.

(a) Julius framework conceptual overview illus-
trating use of Qt for user interface [24]

(b) Screenshot from Ball molecular modelar
showing windows and widgets implemented with
Qt [25]

Figure 2.8: Examples of Qt in Julius framework and Ball modelar

2.2.4 Piccolo. Piccolo is a toolkit that supports the development of 2D

structured graphics programs, in general, and zoomable user interfaces, in particular.

The toolkit maintains a hierarchal structure of objects and cameras, which allows the

application developer to orient, group and manipulate objects in meaningful ways [20].

Piccolo uses a monolithic class hierarchy for organization of visualization information.

This design results in smaller number of classes, however, top-level classes become

13



large and more difficult for developers to understand [3]. This design is illustrated in

Figure 2.9 which show the base class PNode with no additional classes defining it’s

characteristics or behavior.

Figure 2.9: PNode class hierarchy showing monolithic Piccolo toolkit design [3]

The Piccolo visualization toolkit produces effective visualizations of data using

tree and fisheye layouts which are easily adapted to user data. The tree layout gives

users access to large amounts of hierarchal data, but presents it in a format which

allows them to focus on particular areas of interest (see Figure 2.10). Fisheye layout

gives user visibility to a large amount of data at a high level using a grid pattern.

When users select an area of interest the layout reveals more detail (see Figure 2.11).

The Piccolo toolkit includes numerous beneficial functions that are helpful for

visualizations. Piccolo also provides the necessary design and structure to support a

network visualization framework. These features, along with a structured approach to

adding custom animations, make Piccolo a good toolkit to use with the network visu-

alization framework. The only drawback of Piccolo is the monolithic design approach.

This approach creates large top-level classes. Expanding the framework then requires

sifting through lines and lines of code to add functionality to the major top-level

classes of the toolkit. Because it is anticipated that this framework will be expanded

through future research the monolithic Piccolo toolkit is less desirable.

14



Figure 2.10: Interactive graph expanded when users click on an entry [28]

Figure 2.11: Interactive grid layout (called fisheye) where users click on a cell to
reveal more detailed information [3]

2.2.5 Prefuse. Prefuse is an extensible software toolkit for helping soft-

ware developers create interactive information visualization applications using the

Java programming language. Prefuse simplifies the processes of data handling, rep-

resentation, and mapping to on-screen displays as well as crafting direct manipulation

interactions with the visualization [16]. The prefuse visualization toolkit is well de-

signed and supported. SourceForge.net hosts online support through a user forum

with a large number of prefuse developers including the toolkit’s author Jeffrey Heer.

The prefuse toolkit follows the model-view controller design pattern. The The

prefuse action, render, and display packages constitute the view and prefuse

control and data.query packages make-up the controller. Figure 2.12 shows a high

level view of the prefuse toolkit and highlights the model-view controller design

pattern elements. Prefuse organizes data structures into two main hierarchies: the

Tuple and TupleSet interfaces. From these two interfaces branch all the concrete

15



Figure 2.12: Prefuse toolkit with Model, View, and Controller highlighted

data structures (see Figure 2.14) and collections of data structures (see Figure 2.13)

that form the prefuse model

Prefuse provides a rich polylithic class hierarchy of data structures to de-

fine visualizations [17]. Prefuse data structures include the commonly used struc-

tures graphs, tables, edges and nodes. VisualGraph, VisualTable, and VisualItem

are superclasses of these data structures and contain important display information.

VisualGraph defines the topology of the network (nodes and edges) and VisualTable

holds a collection of VisualItem representing packets in the network. Modifying the

Visual objects creates a corresponding change in how the prefuse visualization toolkit

renders each object on screen.

2.2.6 Discussion. The visualization toolkits discussed in this section were

all developed for different reasons. The toolkits that best match the requirements for

a network event animation framework are Piccolo and prefuse. The other toolkits

provide the data structures and even the visualization functions needed, however what

they lack is the organized logic to create customized visual animations. Piccolo and

prefuse both provide these features.

Piccolo and prefuse visualization toolkits vary fundamentally in how they are

implemented. The Piccolo monolithic implementation creates top heavy bas classes

while the prefuse polylithic design distributes logic across different classes. The

16



Figure 2.13: Prefuse TupleSet Hierarchy: Shows how prefuse organizes collec-
tions of visual and data objects used to create a visualization

Figure 2.14: Prefuse Tuple Hierarchy: Shows how prefuse organizes individual
pieces of visualization data

17



multiple class approach of prefuse was a better fit for this development because the

polylithic class hierarchy allows for implementing different behaviors for the main

visual objects on screen: nodes, links, and packets. Specifically, nodes and links can

use the prefuse node and edge java interfaces and packets can use the generic prefuse

VisualItem interface. The node, link, and packet functionality could have simply

been added to the existing Piccolo classes, but this would have required additional

implementation not needed with the prefuse toolkit. Also, it is anticipated that

in the future additional visualization features will be added to this implementation.

Therefore, this research uses the prefuse visualization toolkit to create a new network

visualization framework.

18



III. Visualization Framework Design and Implementation

The design and implementation of this network visualization framework utilizes

the iterative process for software development applying design patterns where

applicable. This process also implements refactoring techniques to keep code imple-

mentation clean. The four major design challenges for this framework are: trace file

format, network simulator trace file parsing, wired/wireless network event animation,

and creating a visualization interface to alter network simulator parameters during

runtime.

Understanding the prefuse visualization toolkit design is crucial to addressing

the four major design challenges for the network visualization framework. Figure 3.1

illustrates how the prefuse toolkit performs data visualization. The toolkit design

is perfect for addressing the previously mentioned design challenges. Prefuse data

corresponds to a trace file. Prefuse filtering is accomplished through a file parser,

which parses data into the prefuse visual forms. The prefuse rendering and view

handles the challenge of animating network events. Finally, the user interacts with

the prefuse user interface controls to provide user interaction with the visualization.

Because prefuse addresses these challenges it is an excellent toolkit to extend into

this network visualization framework.

Figure 3.1: The prefuse visualization toolkit. Lists of composable actions filter ab-
stract data into visualizable content and assign visual properties (position, color, size,
font, etc). Renderer modules, provided on a per-item basis by a RendererFactory,
draw the VisualItem to construct interactive Displays. User interaction can then
trigger changes at any point in the toolkit [18].

19



3.1 Network Trace File

The network visualization framework requires a trace file produced by the net-

work or network simulator to visualize network events. The initial, and majority, of

simulator traces used for this research came from NS-2. GTNetS produces a trace

file, however, this file is primarily used to record network statistics, not unique net-

work events [33]. OPNET uses it’s own network visualizer and therefore does not,

by default, produce a trace file. However, OPNET can be configured to produce a

trace file of network events according to a specified format. Because NS-2 produces

trace files with the needed network event information this research focuses initially

on parsing trace files from NS-2 and later extend to other formats.

3.2 Trace File Parser

NS-2 can produce produce a trace file during a network simulation in several

different formats. This research initially focuses on NS-2 traces use by Nam. These

traces follow certain format conventions, but can still have subtle variations based on

user configuration of NS-2 [8]. Figure 3.2 shows an example of and NS-2 trace that

could be visualized by Nam.

Figure 3.2: NS-2 trace samples, showing two formats highlighting the differing
locations of time and other tags

Each line in the Figure 3.2 is a network event. The first character in each line

classifies it as a node, link, or packet network event (column 1). Within each network

event line are tags denoted by the ‘-’ character followed by a letter; these tags specify

information about a network event. Common to all network events is the time event

20



tag, denoted as ‘-t’ (see Figure 3.2), indicating when an event occurred. The time

event tag illustrates one of the differences in the two trace files. In Trace 1 the tag is

consistently in column 2, but in Trace 2 the location of the tag varies between three

different columns (see Figure 3.2).

The major difference between the two trace files is the packet network event

lines. The events differ greatly because Trace 1 tells us more about packet events

than Trace 2. The table below lists tags corresponding to packet event NS-2 trace

lines.

Nam Visualization Packet Events

+ Packet is queued in a node

– Packet is dequeued from a node

h Packet begins transmission across a link

r Packet is received by another node

d Packet is dropped from node queue (queue overflow)

[8]

Trace 2 does not describe packet queuing or dequeueing, but only describes

packets being sent and received. Additionally, Trace 2 defines another network event

tag ‘-e’ (Trace 2: column two). Following the tag are the character ‘s’ or ‘r’ indicating

a packet was sent or received. The two different trace files illustrate the challenge of

creating a trace file parser capable of parsing NS-2 trace files with subtle differences

in tag placement and meaning.

3.2.1 Initial Design. The network visualization trace file parser communi-

cates directly with the prefuse visualization toolkit. This communication uses the

Data column pattern implemented in the prefuse toolkit [2]. Figure 3.3 illustrates

the data column pattern. Collections of columns compose a table. and when a column

is added to a table the ColumnFactory creates the column in the table and returns

a reference to that column. A Table is used to obtain a reference to a given column.

When a value in a column is altered the columnChanged method is invoked and tables

that share that column are notified of column changes.

21



Figure 3.3: Data Column Pattern

The network visualization trace file parser uses references to three prefuse ta-

bles each holding network node, link, and packet information respectively. Each row in

a prefuse Table object corresponds to a single item to be visualized, a VisualItem

object. A column, however, corresponds to a specific data attribute for a collec-

tion of similar VisualItem objects displayed by the visualization. Column objects in

prefuse Table objects must be assigned, at creation, a specific type and value. To

assist with Column type and value assignment prefuse uses a ParserFactory object

to sort incoming visualization data into specific types (Integer, Double, Float, String,

etc.). ParserFactory sorting is a two-step process. First, the ParserFactory sam-

ple method is called to decide the correct type of the string input and second, the

getParser method is called which returns a specific parser for the input type. The re-

turned parser provides the necessary information to store value and type information

into a prefuse Column object; and even create a Column object when necessary.

The data parsing process described above utilizes the factory method pat-

tern and the observer pattern. The factory method pattern is used in both the

ColumnFactory and ParserFactory. ColumnFactory uses the create method to in-

stantiate a concrete product which is a subclass of Column. ParserFactory does the

same with the getParser method which returns a DataParser subclass [13]. Finally,

the observer pattern is used by Table implementing the ColumnListener interface.

This interface defines the columnChanged method allowing a Table to notify other

Table objects that share this column [2].

22



Figure 3.4: Extension of prefuse DataParser and ParserFactory into network
visualization specific parsers and parser factories

The trace file parser design extends the relationship between the prefuse Parser

Factory and ColumnFactory to handle the specific needs of parsing network events.

Figure 3.4 shows the extension of the prefuse ParserFactory into specific Parser

Factory subclasses for different possible network events. This design separates code

between the different network events allowing each implementation to tailor the way

it parses information. Each network event specific ParserFactory uses an array of

node, edge, or packet parsers, extending the DataParser interface, to parse their re-

spective relevant data from the trace file. Additionally, the node, edge, and parser

factories retain the elements of the prefuse ParserFactory making them capable of

parsing types (Integer, Double, String, etc..). This design follows the factory pattern

design pattern where DataParser serves as the interface but instantiation is left to

the subclasses (line, node, edge, packet ParserFactory) subclasses [12]. This design

is show in Figure 3.5.

3.2.2 Initial Design Problems. The initial file parser design built an archi-

tecture that extended the prefuse ParserFactory to create specific parser factories

23



Figure 3.5: Creation of network visualization specific parsers ImageParser,
BandwidthParser, and IDParser

and separate parser objects extending the prefuse DataParser interface (Figure 3.4).

This design gave users the ability to create, modify, and extend parser classes and

created parser factories based on information found in a specific trace file (see Fig-

ure 3.5). The initial parser design also created a class hierarchy that utilized polymor-

phic method invocation to parse each trace file line. Polymorphic methods allowed

line parsing to proceed under different criteria as specified by different user-defined

parser objects. This robust parser architecture provided the ability to add new pars-

ing criteria by simply inserting new parser classes into the class hierarchy as shown in

Figure 3.5. Extending the DataParser interface allowed the framework to function

the same way no matter how the parser objects actually parsed the lines. These de-

sign decisions were a good mix of using existing code from the prefuse toolkit and

giving flexibility to the user to extend prefuse’s parsing capabilities according to the

trace file.

The design, however, created undesired side effects. The parser hierarchy and

associated helper classes produced extra coupling to prefuse data structures storing

visualization information. Figure 3.6 illustrates the high coupling centered around

the EdgeTableManager class (similar results were found in NodeTableManager). In

addition to the increased coupling further exploration into the trace files used revealed

24



Figure 3.6: Initial Parser Design

relatively few subtle changes between traces. This discovery along with the high

coupling of the initial design motivates a more simple parser design.

3.2.3 Final Design and Implementation. The final parser design builds

on the initial design, but effectively reduces the coupling in a simple elegant design

(see Figure 3.7). The design replaces the old NetVizParserFactory hierarchy (see

Figure 3.4) with one ParserFactory. This change creates one consolidated location

for specifying parser criteria, making parsing changes simple and straightforward.

In addition to the ParserFactory the concrete products are limited to only node,

edge, and packet parser objects. Finally, the Parser abstract class handles updates

to the visualization through the node, edge, and packet parser objects. This design

establishes parser as the central manager for updates to different objects held in the

prefuse visualization framework.

25



Figure 3.7: Final Parser Design

3.3 Network Event Animation

Chapter 2 discussed the common data types used in the prefuse visualiza-

tion framework (see Figure 2.13 and Figure 2.14). However, equally important to

defining visualization data types is having a framework to handle the display and

animation of data as it changes throughout the visualization. The final network event

animation uses implementation from both prefuse and new code written. The initial

implementation displayed and animated prefuse VisualItem data types to visualize

NS-2 trace files simulating network events for a wired network. However, the final

implementation includes visualization of wireless network events.

3.3.1 Wired Networks. Figure 3.8 shows the network event animation de-

sign. Central to the design are the NetVizDisplay and VisualizationControl ob-

jects. Both objects handle separate portions of the network event animation.

The VisualizationControl object handles the majority of the network-specific

visualization logic. Two main threads assist with this implementation:

26



Figure 3.8: Network Event Animation Design

‘netviz animation’ and ‘netviz simulationClock’. The ‘netviz animation’ thread reads

a line from the trace file, parses it into the Visualization object, and updates

the layout of all node and packet VisualItem objects in the visualization. The

‘netviz simulationClock’ keeps track of the virtual clock in the visualization. This

clock is displayed on screen during the visualization and must remain synchronized

with network events as read from the trace file. Additionally, the thread coordinates

user interaction with the on screen timer bar (see Figure 3.9) to ensure the visualiza-

tion remains synchronized with the virtual timer.

The NetVizDisplay object interacts directly with the prefuse Visualization

object and the VisualizationControl object to display the visualization of net-

work events. NetVizDisplay creates the Visualzation object which creates the

‘prefuse ActivityManager’ thread. This thread constantly checks the prefuse Activity

Map for Activity objects defining actions to be displayed in the visualization. In addi-

tion to creating this thread NetVizDisplay defines node, link, and packet DrawActions

and loads them into the prefuse ActivityMap. The defined node, link and packet

DrawActions render visualization information to the screen when notified by the

ActivityManager.

VisualizationControl and NetVizDisplay work together to animate packets

moving across links from node to node (see Figure 3.9). This animation is accom-

27



Figure 3.9: Network Event Animation Screen shot

plished with both the update method in PacketLayout and the PacketDrawAction

method in PacketDrawAction (see Figure 3.8). PacketLayout defines which Visual

Item packets need new x,y coordinates and assigns new coordinates, which the Packet

DrawAction renders to the screen. The result is a design that effectively leverages the

VisualItem and ActivityManager objects inside prefuse to create a network event

animation.

3.3.2 Wireless Networks. Visualizing wireless network packet transmission

is different from wired network packet transmission in two ways. First, wireless nodes

often move while transmitting and receiving data. Second, the very nature of wire-

less packet transmission is fundamentally different than wired transmission. A wired

packet is directed to the next node hop on the link. However, wireless packet trans-

missions (from nodes with omnidirectional antennas) are not constrained to one next

hop on their path. Wireless packets are broadcast and can be received by many differ-

ent nodes. Nodes that receive the broadcast can ignore it, process the packet, or relay

the packet to surrounding nodes. This understanding of wireless packet traffic raises

the question: How do we visualize wireless traffic? An important consideration when

28



answering this question is how much detail to show [19]. Accurate visualizations of

transmission energy rings disseminating from a node quickly becomes confusing and

does not highlight a packet’s route movement from source to destination. However,

the nature of wireless broadcasts does not allow a packet’s final destination to be

known at the time of initial packet broadcast. Despite these challenges this research

creates an accurate wireless network visualization which addresses node movement

and packet transmission, using the following techniques.

3.3.2.1 Node movement. Node movement is critical for effective net-

work visualization observation and analysis. Increased use of mobile nodes in networks

warrant the need to accurately show mobile node movement. Visualizing node move-

ment is an important part of understanding why a network is performing the way it is.

Mobile nodes present network performance challenges not encountered in traditional

wired networks. First, node movement can cause network reliability to degrade. As

nodes move farther away signals can degrade or be obstructed which, depending on

the node, can have effects that ripple through the entire network. Second, node move-

ment can result in complete loss of the node due to compromise, destruction, or node

defect. Without node position the correct recourse cannot be taken. Finally, there is

little point in a network visualization if the picture is inaccurate–physically moving

nodes simply must move within the visualization. These factors establish accurate

node movement as an essential part of a network visualization framework.

The network visualization requires that node movement information be given

in the trace file using the defined tags -u (x-coordinate velocity), -v (y-coordinate

velocity), -T (duration of movement) [8]. The tags must be placed inside node event

lines in the file, therefore every node movement must correspond to a specific node

event. Figure 3.10 shows a trace file segment highlighting three nodes. Initially the

nodes are given no movement by setting velocity and duration of movement tags to

zero. Later in the trace, however, these nodes are assigned node movement with

specific node speed, direction, and duration of movement (see Figure 3.10.

29



Figure 3.10: Node events inside a NS-2 trace for three different nodes initially no
node movement defined, but later node movement is specifically defined by the -u
(x-coordinate velocity), -v (y-coordinate velocity), -T (duration of movement) tags.
layer

Node movement information is parsed out of the NS-2 trace file into a new

objects called MobilityEntry. Each of these objects correspond to specific node

movement, because many specific node movements may occur within a trace file

all MobilityEntry objects are managed by by the NodeMobilityManager. The

NodeMobilityManager object is added to NodeLayout to update node position each

time the NodeLayout update method is called by the ‘netviz animation’ thread (see

Figure 3.8). Inside the NodeLayout object the current simulation time is used with

the specific node movement information inside MobilityEntry objects to calculate

the correct position of the node at the current time. This implementation follows

closely the implementation used to produce packet animation with PacketLayout

discussed previously. Based on node movement information held in MobilityEntry

objects the ‘netviz animation’ thread updates node position to create node movement.

Figure 3.11 shows the network visualization framework design for implementing node

movement.

3.3.2.2 Wireless packet transmission. In order to understand the dif-

ficulties of visualizing wireless network events Figure 3.12 shows four specific wireless

traces illustrating the problem of wireless traffic visualization. Each sample trace con-

tains network events for a unique packet shown by the id number following the ’-i’ tag

in each sample. 3.12(d) shows a major deviation from wired packet traffic. Instead

of specifying the destination after the ’-d’ tag a ’-1’ indicates the packet is broadcast

from node two. 3.12(b) illustrates packet traffic moving from wired links to a wireless

link. The first receive clearly shows the source as one and the destination as two.

30



Figure 3.11: NodeParser parses node event trace lines and updates data fields inside
NodeMobilityManager. NodeLayout then accesses a set of MobilityEntry objects
inside NodeMobilityManagerto correctly animate node movement.

However, the second receive is at node three without a previous send event. 3.12(c)

shows wireless- node-to-wireless-node packet transmission. Here a queue, dequeue,

and send event from node four are followed immediately by a queue event at node

three, indicating a receive event at node three without a receive event entry in the

trace file. Finally, 3.12(d) shows a queue, dequeue, and send event from node one

followed by a receive event at node two. This trace sample contrasts 3.12(c) which

does not include a receive event. Because of the ambiguous nature of NS-2 trace files

for wireless packet events this network visualization framework pre-processes trace

file data. By pre-processing trace data users can visualize wired and wireless network

traffic accurately and without confusing wireless broadcast rings. It also gives users

the ability to visually track packets from source to destination.

3.3.2.3 Trace file pre-process methodology. Nam network visualiza-

tions show animated wireless transmission energy rings to denote a wireless trans-

31



(a) Wireless packet events queue, dequeue, and
send where the -d tag does NOT indicate the
packet’s final destination

(b) Packet received at node two, then received
at node tree without wireless broadcast

(c) Wireless packet broadcast from node four,
but no receive event at node three only a queue
event

(d) Wireless broadcast from node one, then re-
ceive event at node two with -s tag two rather
than one

Figure 3.12: Wireless traces of four unique packetIDs

mission. A trace file send event with destination tag ‘-d -1’ indicates the node and

the time a wireless broadcast occurs. However, the information needed to visualize

wireless packet transmission as packets moving from node to node is not contained in

this one line as shown in Figure 3.12. This information is only contained in later lines

in the trace file when the packet’s ID shows up in a receive event. There is no way to

begin animation of a wireless packet at the time of the send event. In order to know

both from where a packet is sent as well as where it is going, many trace line events

must be considered. This requires the visualization framework to pre-process trace

files, calculate a wireless packet source and destination(s), and store the information

so the ‘netviz animation’ thread can know the packet destination(s) when is begins

animating a wireless broadcast.

32



The visualization framework uses a map-like data structure to store needed trace

data during the read-ahead. Figure 3.13 shows the basic design of the data structure.

The outer map uses each broadcasting node throughout the trace as keys. These keys

map to an inner map where each packetID is used as a key for a set of destination

node IDs. This structure is necessary to allow nodes to broadcast multiple times to

multiple destinations—all wireless network traffic possibilities.

Figure 3.13: Data Structure design for wireless traffic Map. The map stores routes
for wireless packets from source to destination for later visualization

3.4 Visualization / Simulator Interaction

Design concepts discussed to this point, do not address interaction with the

simulator. Establishing a communication link with an external simulator and pass-

ing new trace information to the visualization parser through the link is a major

implementation challenge. The following outlines a design for this implementation.

33



The Gateway pattern provides a simple and effective template to access external

resources and is a good fit to access an external network simulator [10]. The initial

design creates the VisualizationGateway and SimulatorGateway classes to han-

dle communication with the simulator. The VisualizationGateway encapsulates all

functions the network simulator will call to effect the Visualization. These methods

primarily involve transmitting new trace data. The SimulatorGateway encapsulates

all methods the visualization will call to effect the simulator. The methods notify

the simulator of user interaction with the visualization (taking down links, moving

nodes, etc.) that will effect the results of the simulation. Critical to the success

of the Gateway pattern implementation are simulator utilities currently being de-

veloped by members of the AFIT hybrid communication team. These utilities will

accept visualization input, alter the simulation and return the new trace through the

SimulatorGateway.

3.5 Code Refactoring

Refactoring is the process of changing a software system in such a way that it

does not alter the external behavior of the code yet improves its internal structure [9].

This research included three major refactorings: First, the extract class refactoring

removed many similar methods from the large TraceReader class into a new NamLine

class. Second, a conditional chain used for parsing was replaced by parser subclasses

using polymorphic calls to parse strings differently. Finally, extract hierarchy refac-

toring was implemented as a side-effect of applying the two previously mentioned

refactorings.

3.5.1 Extract Class [9]. The initial network visualization implementation

used the class TraceReader to handle connecting, parsing, sorting, and loading infor-

mation into the vizualization tables. This implementation created what the authors

of [9] call ‘bad smells in code’. One such smell was a large TraceReader class. The

NamLine class removed ‘helper’ methods methods for extracting information from a

34



new trace string created in TraceReader. Additionally, it created a more object-

oriented design placing all methods relating to extracting trace information in one

place.

3.5.2 Replace Conditional with Polymorphism [9]. Another ‘code smell’ in

the code was conditional chains. One such chain is shown in Figure 3.14. The Parser

implementation shown in Figure 3.7 replaces the conditional chain with polymorphic

calls to the Parser subclasses NodeParser, EdgeParser, and PacketParser. Again,

this design reduced the size of TraceReader, but it also made the code easier to

extend as new parsers need only extend Parser. Figure 3.14 shows the polymorphic

parse call.

Figure 3.14: Conditional Chain Example

3.5.3 Extract Hierarchy [9]. The hierachy that facilitates the polymorphic

method parse also creates the extract hierarchy refactoring. As with Design Patterns

certain refactorings seam to occur automatically as a result of implmenting others.

Software development is naturally prone to errors. Refactoring can significantly reduce

errors during software development and produce more maintainable code. [31].

35



3.6 Discussion

The network visualization framework discussed above creates an intriguing new

way to study wired and wireless networks. Research on network protocols and network

design will be aided by the ability to see wireless network traffic and communicate

with network simulators. Additionally, because this framework is built on the prefuse

visualization toolkit new animations can be added through new prefuse Action ob-

jects. The network visualization framework provides new visualization capabilities

and a good design for future development.

36



IV. A Network Visualization Framework for Network Event

Observation and Analysis

This research produced a network visualization framework that advances network

event analysis capabilities. The new framework includes the architecture nec-

essary to parse NS-2 trace files, but can be expanded to parse trace files from other

simulators. This capability allows the framework to visualize network scenarios run

on different simulators and compare the results. Another framework capability is the

robust and easily extensible design used to layout the network topology and animate

network events within the visualization. This design gives developers the ability to

define custom network topology layouts and network event animations to highlight

specific analysis objectives. The framework empowers the visualization with precise

user interface controls including: zooming, panning, node highlighting, and visualiza-

tion timing controls. Finally, the visualization shows promise towards allowing users

to alter a network simulator scenario (e.g., toggle node or link status between up and

down) by interacting with the visualization.

Visualizations, by their very nature, are difficult to test. This research tested

numerous visualization scenarios by visual inspection. The testing was done by visu-

alizing a network scenario, or trace file, in Nam and comparing the resultant visual-

ization with the same trace file visualized by this framework. The network scenario

trace files used during framework testing demonstrate important network event visu-

alization capabilities.

4.1 Robust Parser Architecture

Creating a robust parser architecture for parsing network simulator trace files

requires some knowledge of how trace the file data is organized. Therefore, this

framework starts with four basic trace file parsing assumptions. First, trace file data

is organized by individual network events and each network event corresponds to a line

in the network simulator trace file. Second, each network event line in the trace file

is marked as a node, link, or packet event. Third, after the network event identifier

37



the remainder of the network event line is composed of identifier tags and data.

Finally, all network event lines are in chronological order as they occurred during the

simulation. Based on these assumptions this framework has created the TraceLine

abstract class. This class accepts a String trace line event and provides methods to

return common trace line event tags contained in the String. This effectively saves

each trace line event as a String and then parses the string to retrieve specific data

corresponding to trace line event tags. Classes extending TraceLine override and

supplement the TraceLine base methods to produce new parser functionality and

create the capability to accept multiple trace file formats.

TraceLine implementation uses a Java Map with parameterized types String

and Object to organize the mapping of trace line tags to their corresponding data.

By using a general map data structure no assumptions are made about specific tag

names or data types. Trace event line parsing and tag data retrieval from TraceLine

subclasses is completely customizable by overriding the parse method and adding

or overriding data retrieval methods. The TraceLine abstract class implementation

makes multiple trace file parsing a simple matter of extending Tracline.

Utilizing the toolkit developed by Mark Coyne for OPNET and the TraceLine

abstract class this framework visualizes an OPNET network simulator scenario [6].

Figure 4.1 shows the trace file produced by OPNET that follows this framework’s

parsing criteria explained earlier. However, trace tags used in Figure 4.1 slightly

differs from what was used in previous trace files reviewed in this framework research.

Despite these differences the framework parser is able to easily adapt to the changes

Figure 4.1: Trace created by OPNET toolkit. Highlighted are the packet event
lines beginning with ’p’ and using the ’-e’ tag to denote a send, receive, queue or drop
packet event. Also, this trace uses the ’-z’ tag to denote packet size.

38



Figure 4.2: Framework visualization of OPNET simulation

needed to parse the OPNET trace file. Figure 4.2 shows the simple OPNET trace

using this network visualization framework.

This framework extended TraceLine for two different network event line traces.

NamLine extends TraceLine to parse network event lines from NS-2 trace files. OpNetLine

extends TraceLine to parse network events recorded from a scenario run in OPNET.

Listing IV.1 below shows the conditional logic used to determine which subclass of

TraceLine will be used based the trace file extension.

Listing 4.0:

if ( fileExtension . equals ("nam" ) )

nextLine = new NamLine ( fileIn . readLine ( ) ) ;

else

nextLine = new OpNetLine ( fileIn . readLine ( ) ) ;

The NextLine object is of type TraceLine and according to the conditional logic is

instantiated as either a NamLine or a OpNetLine based on whether the trace file is

Nam or OPNET. The conditional logic in Listing IV.1 can be extending as needed to

accommodate additional trace file formats. Once the correct TraceLine subclass is

instantiated the developer can add specific parsing logic as needed by the new subclass

in order to parse the simulator trace line.

39



This design uses TraceLine to define core methods used to obtain information

from the network event trace lines, but allows NamLine and OpNetLine subclasses

to supplement and override methods as necessary . Figure 4.3 illustrates methods

overriden by OpNetLine to retrieve specific information the logged OPNET network

events.

Figure 4.3: NamLine and OpNetLine subclass TraceLine. OpNetLine adds func-
tionality to TraceLine with new methods and method overrides–allows TraceLine

to handle network events in OPNET trace file.

The file parser built for this network visualization framework creates an excel-

lent foundation for future research and collaboration. The capability brings network

simulator research one step closer to comparing executed network simulator scenarios

in a common visualization environment. A comparison that would provide better

understanding on how simulators differ and how those differences can effect network

event simulation. Additionally, network simulator performance could be seamlessly

analyzed and compared from one simulator to another.

4.2 Multi-objective Dynamic Network Topology Layout

This research designed and implemented a network visualization framework to

assist network observation and analysis. When implementing a network visualization

framework a major concern is how to visualize the network topology. An obvious an-

swer to this question is to arrange network nodes and links as close to their physical

arrangement as possible. However, sometimes a physical layout does not provide suffi-

40



Figure 4.4: Layers of cyberspace situational awareness: This framework provides
network architecture (physical and virtual) layers

cient information about how the network is working or the network protocol/problem

being studied. Nodes can appear on top of each other and packets can quickly be-

come congested and blur together. For these reasons, a physical network layout is not

always best for analyzing and observing network events.

This framework provides the capability to easily alter visualization of network

topology and network events. This capability employed on a real network would

greatly increases network situational awareness. Network situational awareness is a

big part of cyberspace situational awareness and the Center for Cyberspace Research

at the Air Force Institute of Technology highlighted cyberspace situational awareness

as an important area for future research [35]. Additionally, the center defines eight

layers of interest regarding cyberspace situational awareness including physical net-

work architecture and virtual network architecture (see Figure 4.4). This research

seeks to advance cyberspace situational awareness up the hierarchy in Figure 4.4 with

a framework designed to allow visualization customization for network topology and

network events. Furthermore, this research presents two network simulator scenarios

to show how altering network visualization of topology and network events increases

cyberspace situational awareness.

In chapter III this research described specific layouts for nodes and packets.

However, these layouts did not extend the prefuse layout class. These layouts instead

41



Figure 4.5: GeographicLayout and GroupedLayout class hierarchy. The
GeographicLayout and GroupedLayout classes extend Layout and Activity to cre-
ate customized visualization animation

provided update methods called during the ‘netviz anmiation’ thread. This research

also defines two different layouts which extend the prefuse Layout class. These two

layouts create a physical and virtual view of the network visualization and contribute

to two layers of cyberspace situational awareness in Figure 4.4.

4.2.1 Physical and Virtual Network Layout Design. Prefuse provides an

excellent toolkit architecture for supporting different user-defined visualization lay-

outs. This framework leverages the prefuse toolkit architecture to define two differ-

ent network topology layouts. First, a physical layout which draws networks of nodes

on a grid using the x,y coordinates found in trace file node event lines. Second, a vir-

tual grouped layout which organizes nodes together based on links that exists between

the nodes. Nodes that share higher bandwidth links are pulled closer together and

nodes that share lower bandwidth links appear farther apart. These two layouts ap-

pear in the framework implementation as GeographicLayout and GroupedLayout

respectively. Figure 4.5 shows the class hierarchy of these two classes. Because

GroupedLayout inherits from prefuse ForceDirectedLayout, nodes without links

continue to move farther and farther apart. The class hierarchy in Figure 4.5 also

illustrates how any subclass of Layout is also a subclass of Activity. This is im-

portant because as an Activity object Layout objects are added to the prefuse

ActivityManager and used to to create visualization animation. Therefore, by us-

ing the prefuse class hierarchy design, new Layout subclasses automatically effect

42



visualization animation. This design gives developers a simple way to change how net-

work events are animated. The next two sections highlight specific network simulator

scenarios that utilize GroupedLayout to visually highlight specific network events.

4.2.2 Virtual Network Layout Example I: Wireless Network Broadcast. Ef-

fectively visualizing network events requires the visualization logic to create a picture

where users can quickly and accurately understand what is happening in the network.

Wireless networks is a difficult venue fill this requirement. This is because wireless

packets are often broadcast to multiple nodes and without link lines highlighting a

packets path it is difficult to know a packets final destination. Tracing wireless packet

routes becomes even more difficult as more and more wireless nodes broadcast and

the areas around nodes becomes more and more congested with packet traffic.

This framework overcomes these challenges by using GroupedLayout. Using

GroupedLayout a network of many nodes groups together based on node communica-

tion. Nodes that broadcast to one another group together to make packet destinations

obvious. Figure 4.6 shows a wireless trace file excerpt with one hop event followed

by six receive events, each at different nodes. Tracking these packets could be dif-

Figure 4.6: NS-2 trace directing wireless broadcast from node 1 to nodes: 14, 6,
47, 40, 36, 12. As shown in Figure 4.7

ficult in a physical network layout, especially if the nodes were far apart or packet

traffic was high. However, Figure 4.7 illustrates how this visualization framework’s

GroupedLayout emphasizes wireless packet destinations making them easier to track.

Also, by quickly highlighting packet destinations additional network conditions may

become apparent such as: defective nodes, compromised nodes, and nodes that are

obstructed from sent packet transmissions.

43



(a) Collection of 50 wireless nodes visualized
using force-directed layout prior to any packet
broadcasts at time zero

(b) Identical network at the same time zoomed
in using prefuse toolkit zoom feature

(c) Packet broadcast from node 1: grouped layout causes nodes receiving packets to move closer to
node 1

Figure 4.7: Wireless packet broadcast using combination of force-directed and
grouped layout

44



4.2.3 Virtual Network Layout Example II: Wired Network Link Break.

The prefuse toolkit GroupedLayout object also effectively highlights other network

events. The GroupedLayout object defines network nodes that repel one another and

network links that pull nodes together. This scenario creates a network layout ani-

mation that highlights network link breaks by radically changing network topology.

This behavior assists users by more effectively drawing attention to a broken link.

Figure 4.8 illustrates this behavior by highlighting specific times during the network

event visualization scenario. 4.8(a) shows the network visualization at time 1.02 sec-

onds. At this point all network links are up, however, the red arrow points to the

link between 4 and 5 which is about to change from up status to down status. 4.8(b)

shows that node 4 has significantly changed position in the network as a result of the

down link between 4 and 5. The circle in 4.8(b) indicates that the link between 4 and

5 will soon be brought back up and the red arrow highlights the link between 3 and 6

which will go down. 4.8(c), again, highlights the radical changes in appearance to the

network as link status changes. The circle in 4.8(c) indicates that the link between 3

and 6 will soon change to up status. 4.8(d) highlights the network with all links up

and appears the same as the original network in 4.8(a).

4.2.4 Discussion. The prefuse toolkit’s design allows developers to define

specific Layout objects to customize how a visualization appears on screen. This ca-

pability is a crucial part of creating an effective network event visualization because

it combines the components of physical network architecture with virtual network ar-

chitecture to enhance cyberspace situational awareness. This capability allows visu-

alization’s to highlight specific network events of importance to network visualization

users. In subsection 4.2.2 and subsection 4.2.3 two examples of extending Layout to

highlight network events were shown. These examples used GroupedLayout to help

users trace wireless packets and track link status. These two examples establish the

effectiveness of prefuse toolkit Layout objects.

45



(a) Wired network topology–arrows point out
network links that will go down

(b) Altered network topology–arrow points to
link that will go down and oval shows links that
will go up

(c) New network topology–arrow points to link
currently carrying packets which will go down,
oval show link currently not visible that will go
up

(d) Original network topology restored

Figure 4.8: Wired Network showing network topology animation in response link
status changes from up to down

46



4.3 Analysis-based User Interface

Building an effective network visualization framework requires a user interface

that gives users the ability to alter specific visualization characteristics. The frame-

work created through this research uses the prefuse visualization toolkit to provide

many commonly used visualization capabilities. The prefuse design not only contains

many commonly used visualization capabilities, but also allows for easy extension of

existing prefuse classes into user defined classes. Some of the prefuse visualiza-

tion toolkit capabilities include: panning, zooming, drag control, and focus control.

By capturing these prefuse capabilities in a network event visualization framework

this research contributes a new approach for developing network event visualization

software.

Figure 4.9 shows the prefuse visualization toolkit design for handling various

visualization controls as described previously (see PanControl, AbstractZoomControl,

DragControl, and FocusControl). One of the major benefits of the prefuse visual-

ization toolkit is that when the toolkit design is understood it is easy to add additional

functionality. An example of this is shown in Figure 4.9 by extending FocusControl

with SuperFocusControl. This action overrides itemKeyPressed, itemClicked, and

mouseClicked methods to redefine how the visualization assigns focus when the user

clicks on the visualization background. SuperFocusControl changes visualization fo-

cus to nothing when the user clicks on the background; a more intuitive result then

keeping the focus the same. Extending prefuse base classes, like FocusControl, and

overriding certain methods demonstrates an elegent way to enhance and customize

visualization behavior.

Other helpful user interface capabilities included in this visualization framework

are: fast-forward/rewind, pause, jump slider, and user-input jump. Again, these

controls assist the user during analysis of network events during the visualization.

Many of these features are included with Nam, however, the user-input jump is a new

feature not included in Nam. Figure 4.10 illustrates these different user interfaces.

47



Figure 4.9: Prefuse visualization architecture for handling various visualization
control capabilities. SuperFocusControl is a new visualization control added by
this framework to custimize how focus changes when users click on the visualization
background.

4.4 Testing and Validating the Visualization Framework

The previous examples of wireless node broadcasts and a disabled network links

demonstrate some of this frameworks features. The two network visualization ex-

amples illustrate the visualizations capability to show wireless and wired topologies,

wired packet traffic, wireless broadcasts, disabled links, and dropped packets. This

section further verifies this framework’s capability to visualize network events from

a trace file by showing: packet movement (including queueing) in different network

topologies and wireless node movement.

48



Figure 4.10: Network Visualization framework user-interface with visualization con-
trols highlighted

4.4.1 Wired packet queueing. Figure 4.11 and Figure 4.12 illustrate distinct

capabilities of this visualization framework. 4.11(a) shows extracted lines from a

Nam trace accounting for packet sends and packet queues. 4.11(b) shows extracted

lines from the same Nam trace accounting for packet dequeues. The dequeues in

4.11(b) are significant because in the Figure 4.12 screenshots these dequeues have

not yet occurred. Figure 4.12 shows Nam and this visualization framework paused at

the same time during their visualizations. At this point in time all queued packets in

4.11(b) are visible in the two screenshots and appear as they should in the node queues.

Therefore, Figure 4.12 verifies wired packet queueing for this framework because it

matches the Nam visualization. Additionally, the packet traffic in Figure 4.12 is

identical between Nam and this framework which verifies wired packet transmissions.

4.4.2 Wireless node movement. Figure 4.7 showed a wireless network topol-

ogy using the force-directed layout. However, this visualization framework can also

show the same network topology using node x,y coordinates specified in the trace

file. The frameowork layout that provides this capability is GeographicLayout (see

Figure 4.5. Combining the GeographicLayout with the node mobility data struc-

49



(a) Nam trace file lines for packet hops and
enqueues accounting for packets seen in 4.12(a)
and 4.12(b)

(b) NS-2 trace file lines for packet dequeues ac-
counting for queued packets seen in 4.12(a) and
4.12(b)

Figure 4.11: NS-2 trace file lines accounting for Figure 4.12

(a) Nam screenshot showing wired packet an-
imation and queueing

(b) Network Visualization screenshot showing
wired packet animation and queueing

Figure 4.12: Nam and this framework’s visualization of wired packet traffic with
both visualizations paused at the same time

ture discussed in chapter III (see Figure 3.11) this framework creates node movement

animation. This section establishes node movement animation accuracy for the visu-

alization framework by tracing node movement during network event visualization.

Figure 4.13 shows this framework and Nam animating the same trace file with screen-

shots taken from both visualizations at the same time.

50



(a) Framework node movement at time = .1215 (b) Nam node movement at time = .1200

(c) Framework node movement at time = 1.3696 (d) Nam node movement at time =
1.364135

(e) Framework node movement at time = 3.197 (f) Nam node movement at time =
3.197813

Figure 4.13: This visualization framework node movement animation compared to
Nam

51



(a) Framework node movement at time = 5.38308 (b) Nam node movement at time =
5.383154

(c) Framework node movement at time = 7.24195 (d) Nam node movement at time =
7.241950

(e) Framework node movement at time = 10.34585 (f) Nam node movement at time =
10.331570

Figure 4.14: This visualization framework node movement animation compared to
Nam (cont)

52



Figure 4.15: Wireless packet trace for wireless packet travelling from node 3 to 4
and finally node 2

4.4.3 Wireless and wired network topology packet trace. Visual inspection of

wireless traffic reveals an interesting differences between this visualization framework

and Nam. Figure 4.15 defines network packet traffic for packet ID 64 originating at

node 3. Packet 64 is first sent to node 4 and then from node 4 it is sent to node

2. Figure 4.16 shows these two packet transmissions visualized by this framework.

Figure 4.16(a) shows the first wireless transmission for packet 64 from node 3 to node

4. Figure 4.16(b) shows the second wireless transmission from node 4 to node 2. The

visualization screenshots in Figure 4.16 verify that this framework accurately shows

wireless packet broadcasts for packet 64. However, running the same trace file in

Nam highlights inaccuracies in the visualization. Figure 4.17(a) shows the wireless

packet moving between nodes 3 and 4 and Figure 4.17(b) shows the packet moving

between nodes 4 and 2. Figure 4.17(b) clearly shows a packet in route to node 4,

however, Figure 4.17(b) also shows that the same packet is actually broadcast from

node 4 before the enroute packet from node 3 actually arrives. Figure 4.17 points out

a wireless packet visualization error with Nam wireless packet animation. Packet 64

is not correctly visualized and does not accurately reflect the behavior defined by the

the trace shown in Figure 4.15.

4.5 Discussion

The examples in this section illustrate the capabilities of this visualization frame-

work. The framework is extensible and allows multiple trace file formats to be parsed

and visualized. This capability will invite new levels of analysis across different net-

work simulators–providing a common visualization framework to analyze differences

53



(a) Packet 64 transmission from node 3 and re-
ceived by node 4

(b) Packet 64 transmission from node 4 to node
2

Figure 4.16: This network visualization framework’s animation of wireless packet
moving from wireless node to wired network topology

(a) Nam screenshot showing packet animation
from node 3 to node 4

(b) Nam packet animation showing packet 64
transmitted to node 2 from node 4 before packet
64 is received by node 4

Figure 4.17: Nam’s network animation of wireless packet moving from wireless node
to wired network topology

54



in simulators. Also the new framework gives users enhanced user-interface controls

which give user precise visualization control. The extensible network topology layouts

give users the ability to define how network events are visualized. This ability puts

users in command of what network event information is relevant and allows them to

remove irrelevant information from the visualization through new prefuse Layout

development. The visualization framework steps forward with these new capabilities

and contributes to future network research and analysis.

55



V. Contributions and Future Work

This research claims three main contributions which advance network visualiza-

tion. First, a robust trace file parser design extensible to accept multiple trace

formats. Second, a robust network visualization layout design which includes several

different layouts and is also extensible to include custom user-defined layouts. Third,

precise visualization timing controls to quickly show network status and events at a

specific time. Through these contributions this research has produced a network visu-

alization framework that is capable of parsing network simulator trace files to produce

a network event visualization. The framework will assist future users as they analyze

network performance and evaluate network protocols and routing algorithms on both

simulators and real networks. These contributions will also enhance cyberspace situ-

ational awareness which continues to grow into a bigger and bigger part of Air Force

operations. Future work on this framework will enhance file parsing, visualization

layouts, and allow real-time interaction with network simulators.

5.1 Contributions

5.1.1 Robust Framework Trace Parser. This research showed that the parser

designed in chapter III and implemented in this framework is extensible to accept dif-

ferent trace file formats. As illustrated in chapter IV this capability highlights how the

framework was extended to parse and visualize a trace from OPNET. This capability

gives network simulator users a universal visualization platform for simulator traces

provided the trace conforms to the specifications outlined in chapter IV. In addition

to providing a robust parser this framework also highlighted errors in Nam (see chap-

ter IV Figure 4.17). By correctly parsing network event trace lines this framework

accurately animates wireless network packet events. Multi-trace acceptance and ac-

curate wireless packet event animation contribute to this framework’s advancement

of network visualization.

5.1.2 Extensible Visualization Layout. In subsection 4.2.2 this research

presented and example of using GroupedLayout to highlight network link breaks.

56



This section presents a possible real-world scenario to emphasize the possible impact

a network link going down. Additionally, this section highlights how by using this

framework with the GroupLayout commanders can receive early warning of upcoming

information loss.

Figure 5.1 illustrates a possible real-world scenario for monitoring a military

network. Figure 5.1 shows visualization screenshots that illustrate what is happening

in the network. This network scenario focuses on the UAV node to highlight frame-

work capabilities. Figure 5.1(a) shows the initial network with all links up and the

UAV communication with the satellite. In Figure 5.1(b) the link between the satellite

and the UAV goes down and the UAV has to re-route traffic through the aircraft

carrier. Figure 5.1(c) shows the result of this UAV traffic re-routing as the queue on

the aircraft carrier begins to spike from the increased network traffic.

This scenario illustrates the power of this visualization framework. First, the

link break dramatically altered the network topology and aligned the UAV more with

the carrier than with the satellite. Second, the visualization shows the aircraft carriers

queue spike indicating that the traffic load is too great and eventually information

will be lost. In a real-world scenario these two factors would alert network analysts

to inform commanders of the potential information loss and evasive action could

be taken. This possible scenario shows how this network visualization framework

provides vital network situational awareness.

5.1.3 User Interface. This framework employs a precise user-interface to

assist users while navigating through a network visualization. Key to efficient analysis

are precise timing controls. These controls allow the user to quickly jump to a specific

time without having to use fast forward or rewind features which commonly result

and overshooting the desired time period. Additionally node statistics are given

when a user clicks on a desired node. Figure 5.2 illustrates this feature by showing

packet receives, drops, and receive/drop percentages. These features give the user the

57



control and information needed to perform network performance analysis at a higher

level than other network visualizations.

5.2 Future Work

The three major contributions of this research already show promise for im-

provement which is exciting because it validates the importance of the robust design

used to create the contributions. Future framework iterations will build on this ro-

bust design. Parser enhancement will better organize code to facilitate robust creation

of trace file parsers. Layout enhancements will better visualize large wired network

topologies. Finally, using the methodology discussed in chapter III and the OPNET

toolkit developed by Mark Coyne [6] this visualization will interact real-time with the

OPNET simulator.

5.2.1 Parser Enhancements. Additional research is needed for using net-

work simulator trace files in a network visualization. This research used 16 different

traces to examine network visualization performance. One of these traces was from

OPNET, but the rest were from NS-2. The visualization could be greatly benefited

by examining more traces from different simulators to establish the framework as a

robust network visualization framework.

Currently framework implementation creates TraceLine subclasses using a chain

of conditional logic which tests which subclass is needed. A better design would re-

place this logic with a TraceLine factory. The factory would hold all the logic to

determine the TraceLine subclass needed to parse network events into the prefuse

visualization data structures. Also, by centralizing TraceLine subclass creation into

a factory developer parser modifications would be more intuitive.

5.2.2 Layout Enhancements. Currently this visualization framework has

two separate layouts: GeographicLayout and GroupedLayout. However, large net-

work topology trace files that do not specify node location and have nodes that are

58



(a) Real-world network scenario. Here the UAV is communicat-
ing via satellite

(b) UAV to satellite link goes down and UAV begins to commu-
nicate with the aircraft carrier

(c) As a direct result of increased traffic from the UAV the aircraft
carrier’s packet queue begins to fill up

Figure 5.1: Potential real-world network scenario

59



Figure 5.2: Illustration of node statistics kept and displayed by this visualization
framework.

intricately connected with one another present a visualization challenge. Figure 5.3

represents such a network. The network represents distribution substations for a

power grid and is part of the research conducted by Gregory Roberts, a student at

the Air Force Institute of Technology [34]. The networks Gregory Roberts is studying

present a visualization challenge because they are large with intricately connected

nodes. Even this framework does little to improve visualization by spreading out

network nodes with the GroupedLayout (see Figure 5.3). This network topology il-

lustrates the need for a new layout which spreads the nodes out using GroupedLayout,

but then allows users to edit individual node location by dragging nodes to a new

position as can be done when using GeographicLayout. A possible approach for cre-

ating this new layout is to extend GroupedLayout and make the new class only move

the nodes for a short period of time and then revert back to an anchored layout where

nodes only move if they are dragged to new locations.

Because this framework builds on the robust prefuse visualization toolkit there

are many options to enhance network visualization animation and layouts based on

user needs. The polylithic design of prefuse spreads out toolkit functionality across

different classes which creates an object-oriented developer friendly implementation

environment. Using the prefuse Action class is one way to define specific behavior

60



Figure 5.3: Example of prefuse Action objects used to enlarge scrolled over nodes
and hight nodes sharing a link

for specific VisualItem objects. Figure 5.3 shows two examples of custom Action

objects defined to alter the appearance of network nodes. One Action increases node

size when a user scrolls over a node and the other colors neighbor nodes sharing a link

with the node. These are only two examples of using the prefuse Action objects

to enhance the network visualization. Future development will continue to customize

network visualizations using not only the Action object but Layout, Control, and

others.

Extending Layout, Action, and Control to enhance visualizations will continue

to be a part of any framework that utilizes the prefuse toolkit. The classes in this

toolkit are designed with that very purpose in mind. The examples listed in this

section are only some of the changes that will be made to this framework in the

future as it continues to grow into a more effective network visualization framework.

5.2.3 Network Simulator Interaction. A major emphasis of network visual-

ization research is to provide a network visualization that can interact with a network

simulator to alter network events at runtime. Figure 5.4 shows a design for this

interaction. Creating this kind of visualization requires, at least at some level, an

understanding of how network simulators work internally. Additionally, the visual-

61



ization must be equipped to communicate with the network simulator. This research

provided a design for this communication, however, the actual implementation re-

mains incomplete. Implementing and testing simulation to visualization interaction

remains as an area of future work for this network visualization framework.

[6]

Figure 5.4: Diagram illustrating network simulator interaction goals. Diagram
highlights feedback loop between Network Visualization (this framework) and Net-
work simulators via their respective toolkits

5.2.4 Discussion. Because the framework is still in developmental stages,

some errors exist in the implementation. One of these problems is out of sync node

movement from the trace being visualized. This anomaly is avoidable by not using the

jump or slider functionality of the user-interface, however this limits the usefulness of

the visualization for analysis of network events.

62



Despite these anomalies this research provides an effective framework capable of

accurately visualizing network events from a network simulator trace file. The parser

framework design facilitates parsing trace files with different formats. Additional

features of the framework include two different network layouts that can highlight

network event trace data in dramatically different ways. The layout design is in-

cluded in this research to illustrate how future work can create new layout designs to

highlight user-specific network trace events. This network visualization contributes

these features towards advancing network visualization and network event analysis

and provides a solid framework base for future development.

5.3 Conclusion

This research has studied several different existing network visualization soft-

ware and data visualization toolkits. This study resulted in questions about current

network visualization software, data visualization toolkits, and how they could be

combined to created a more robust and effective network visualization. As a direct

result of these questions this research has created a network visualization framework

using the prefuse toolkit. This framework meets the standards of existing network

visualization frameworks in some cases and in others exceeds them. This framework

excels with robust network simulator trace filing parsing, extensible network visual-

ization layouts, and precise visualization timing controls. This network visualization

framework advances network visualization standards and provides capabilities for fu-

ture advancement.

63



Bibliography

1. Adar, Eytan. “GUESS: a language and interface for graph exploration”. CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in computing systems,
791–800. ACM Press, New York, NY, USA, 2006. ISBN 1-59593-372-7.

2. Agrawala, Maneesh. “Software Design Patterns for Information Visualization”.
IEEE Transactions on Visualization and Computer Graphics, 12(5):853–860,
2006. ISSN 1077-2626. Student Member-Jeffrey Heer.

3. Bederson, Benjamin B., Jesse Grosjean, and Jon Meyer. “Toolkit Design for
Interactive Structured Graphics”. IEEE Trans. Softw. Eng., 30(8):535–546, 2004.
ISSN 0098-5589.

4. Breitkreutz, B. J., C. Stark, and M. Tyers. “Osprey: a network visu-
alization system.” Genome Biol, 4(3), 2003. ISSN 1465-6914. URL
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve\&db=
pubmed\&dopt=Abstract\&list uids=12620107.

5. Cabrera, A. Trivino and E. Casilari. “Network Simulator: A Learning Tool for
Wireless Technologies”. Current Developments in Technology-Assisted Education,
3:1979–1983, 2006.

6. Coyne, Mark E., 2nd Lieutenant USAF. Hot Swapping Protocol Implementations
in the OPNET Modeler Development Environment. Master’s thesis, Air Force
Institute of Technology, March 2008.

7. Estrin, Deborah, Mark Handley, John Heidemann, Steven McCanne, Ya Xu, and
Haobo Yu. “Network Visualization with Nam, the VINT Network Animator”.
Computer, 33(11):63–68, 2000. ISSN 0018-9162.

8. Fall, K. and K. Varadhan. “The NS Manual (Formerly NS Notes and Documen-
tation”, 2002. URL citeseer.ist.psu.edu/article/fall03ns.html.

9. Fowler, Martin. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999. ISBN 0-201-48567-2.

10. Fowler, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002. ISBN 0321127420.

11. Fredrick, Missy. “Growing Use of UAVs Strains Bandwidth”, July 2006. URL
http://www.space.com/spacenews/archive06/Uav 071706.html. February 5,
2008.

12. Freeman, Eric, Elisabeth Freeman, Kathy Sierra, and Bert Bates. Head First
Design Patterns. O’Reilly, 2004.

64

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12620107�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12620107�
citeseer.ist.psu.edu/article/fall03ns.html�
http://www.space.com/spacenews/archive06/Uav_071706.html�


13. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlisside. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Massachusetts, 1995.

14. ‘Georgia Institute of Technology’. “GTNets”. URL http://www.ece.gatech.

edu/research/labs/MANIACS/GTNetS/. February 5, 2008.

15. Griebsch, Jan, Oliver Arafat, and Wolfram Koska. “xAnVi - An Extensible Visu-
alization and Analysis Framework”. IV ’06: Proceedings of the conference on In-
formation Visualization, 45–52. IEEE Computer Society, Washington, DC, USA,
2006. ISBN 0-7695-2602-0.

16. Heer, Jeffrey, October 2007. URL http://www.prefuse.org/. February 5, 2008.

17. Heer, Jeffrey. “Prefuse”, September 2007. URL http://www.infovis-wiki.

net/index.php?title=Prefuse. February 5, 2008.

18. Heer, Jeffrey, Stuart K. Card, and James A. Landay. “prefuse: a toolkit for inter-
active information visualization”. CHI ’05: Proceeding of the SIGCHI conference
on Human factors in computing systems, 421–430. ACM Press, New York, NY,
USA, 2005. ISBN 1581139985. URL http://portal.acm.org/citation.cfm?

id=1055031.

19. Heidemann, J., N. Bulusu, J. Elson, C. Intanagonwiwat, K. Lan, Y. Xu, W. Ye,
D. Estrin, and R. Govindan. “Effects of detail in wireless network simulation”,
2001. URL citeseer.ist.psu.edu/heidemann00effects.html.

20. ‘Human-Computer Interaction Lab’. “Piccolo Toolkit”. URL http://www.cs.

umd.edu/hcil/jazz/. February 5, 2008.

21. Iragne, Florian, Macha Nikolski, Bertrand Mathieu, David Auber, and David
Sherman. “ProViz: protein interaction visualization and exploration”. Bioinfor-
matics, 21(2):272–274, 2005. ISSN 1367-4803.

22. James, R.J. “A history of radar”. IEE Review, 35(9):343–349, 5 Oct 1989. ISSN
0953-5683.

23. ‘JUNG: Java Universal Network/Graph Framework’. URL http://jung.

sourceforge.net/. February 5, 2008.

24. Keeve, Erwin, Thomas Jansen, Zdzislaw Krol, Lutz Ritter, and Bartosz von
Rymon-Lipinski. “JULIUS - An Extendable Software Framework for Surgi-
cal Planning”. Caesar, Berlin, Germany, 2001. URL http://www.caesar.de/

fileadmin/user upload/ssl/Publications/C01-6.pdf.

25. Kohlbacher O, Lenhof HP. “BALL–rapid software prototyping in computa-
tional molecular biology”. URL http://www.billingpreis.mpg.de/hbp00/

kohlbacher.pdf.

26. Kurkowski, Stuart, Tracy Camp, and Michael Colagrosso. “A Visualization and
Animation Tool for NS-2 Wireless Simulations: iNSpect”. URL citeseer.ist.

psu.edu/kurkowski04visualization.html.

65

http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/�
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/�
http://www.prefuse.org/�
http://www.infovis-wiki.net/index.php?title=Prefuse�
http://www.infovis-wiki.net/index.php?title=Prefuse�
http://portal.acm.org/citation.cfm?id=1055031�
http://portal.acm.org/citation.cfm?id=1055031�
citeseer.ist.psu.edu/heidemann00effects.html�
http://www.cs.umd.edu/hcil/jazz/�
http://www.cs.umd.edu/hcil/jazz/�
http://jung.sourceforge.net/�
http://jung.sourceforge.net/�
http://www.caesar.de/fileadmin/user_upload/ssl/Publications/C01-6.pdf�
http://www.caesar.de/fileadmin/user_upload/ssl/Publications/C01-6.pdf�
http://www.billingpreis.mpg.de/hbp00/kohlbacher.pdf�
http://www.billingpreis.mpg.de/hbp00/kohlbacher.pdf�
citeseer.ist.psu.edu/kurkowski04visualization.html�
citeseer.ist.psu.edu/kurkowski04visualization.html�


27. Larish, G.; Nguyen P.; Legaspi A., B.; Riley. “Quality of service analysis using the
Georgia Tech network simulator”. Military Communications Conference, 2005.
MILCOM 2005. IEEE, 2649–2654 Vol. 4, 17-20 Oct. 2005.

28. Lee, Bongshin, Cynthia S. Parr, Catherine Plaisant, Benjamin B. Bederson,
Vladislav D. Veksler, Wayne D. Gray, and Christopher Kotfila. “TreePlus: In-
teractive Exploration of Networks with Enhanced Tree Layouts”. IEEE Trans-
actions on Visualization and Computer Graphics, 12(6):1414–1426, 2006. ISSN
1077-2626.

29. Onut, Iosif-Viorel, Bin Zhu, and Ali A. Ghorbani. “A novel visualization technique
for network anomaly detection”. PST, 167–174. 2004.

30. ‘Osprey Network Visualization System Reference Manual Version 1.2.0’. URL
http://biodata.mshri.on.ca/osprey/OspreyHelp/index.html. February 5,
2008.

31. Poole, Charles J. and Allen Higgins. “Extreme Maintenance”. ICSM ’01: Proceed-
ings of the IEEE International Conference on Software Maintenance (ICSM’01),
301. IEEE Computer Society, Washington, DC, USA, 2001. ISBN 0-7695-1189-9.

32. Riley, George F. “Using the Georgia Tech Network Simulator”. URL http:

//www.ece.gatech.edu/research/labs/MANIACS/GTNetS/docs/gtnets.pdf.

33. Riley, George F. “The Georgia Tech Network Simulator”. MoMeTools ’03: Pro-
ceedings of the ACM SIGCOMM workshop on Models, methods and tools for
reproducible network research, 5–12. ACM, New York, NY, USA, 2003. ISBN
1-58113-748-8.

34. Roberts, Gregory R., Captain USAF. Evaluating Security and Quality of Service
Considerations in Critical Infrastructure Communication Networks. Master’s the-
sis, Air Force Institute of Technology, March 2008.

35. Shaw, Al, Robert Mills, Barry Mullins, and Kenneth Hopkinson. “A Multilayer
Graph Approach to Correlating Network Events with Operational Mission Im-
pact”, June 2007.

36. Stark, Chris, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton
Breitkreutz, and Mike Tyers. “BioGRID: a general repository for interaction
datasets”. Nucleic Acids Research, 34(Database-Issue):535–539, 2006.

37. Trolltech. “Qt: Cross-Platform Rich Client Development Framework”, 2008. URL
http://trolltech.com/products/qt. Online. Internet. Site accessed February
5, 2008.

38. Wilson, Clay. “Network Centric Warefare: Background and Oversight Issues for
Congress”. Congressional Research Service, June 2004.

39. Zhang, Xin and George F. Riley. “Bluetooth Simulations for Wireless Sensor Net-
works Using GTNetS”. MASCOTS ’04: Proceedings of the The IEEE Computer

66

http://biodata.mshri.on.ca/osprey/OspreyHelp/index.html�
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/docs/gtnets.pdf�
http://www.ece.gatech.edu/research/labs/MANIACS/GTNetS/docs/gtnets.pdf�
http://trolltech.com/products/qt�


Society’s 12th Annual International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunications Systems (MASCOTS’04), 375–382.
IEEE Computer Society, Washington, DC, USA, 2004. ISBN 0-7695-2251-3.

67



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2008 Master’s Thesis May 2006 — Mar 2008

Network Visualization Design
using

Prefuse Visualization Framework

JON # 08-175

J. Mark Belue, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management AFIT/EN
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCS/ENG/08-03

AFOSR/NM
ATTN: David Luginbuhl
875 N. Randolph, Ste.325, Rm. 3112
Arlington Virginia, 22203
DSN: 426-6207
email: david.luginbuhl@afosr.af.mil

Approval for public release; distribution is unlimited.

Visualization of network simulation events or network visualization is an effective and low cost method to evaluate the
health and status of a network and analyze network designs, protocols, and network algorithms. This research designed
and developed a network event visualization framework using an open source general visualization toolkit. This research
achieved three major milestones during the development of this framework: A robust network simulator trace file parser,
multiple network visualization layouts–including user-defined layouts, and precise visualization timing controls and
integrated display of network statistics.The toolkit design is readily extensible allowing developers to easily expand the
framework to meet research-specific visualization goals.

Network, Visualization, Network Simulator, Network Visualization

U U U UU 80

Lt Col Stuart Kurkowski, PhD

(937) 785–3636, ext 7228; e-mail: stuart.kurkowski@afit.edu


	Network Visualization Design using Prefuse Visualization Framework
	Recommended Citation

	tmp.1584733716.pdf.wH2CG

