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Abstract 

Wireless military information systems require high reliability, which is difficult to 

achieve in adverse conditions.  To provide high reliability, one must overcome packet 

loss across multiple wireless hops.  Buffering packets in a lossy environment is well 

explored; however, the ability to selectively buffer TCP traffic across multiple lossy links 

is a new area of research.  This document seeks to explore the delivery of high priority 

traffic in a lossy environment and conclude that prioritized buffing can increase the 

probability that a high priority download will finish, where others will fail.   

It is shown that buffering provides six times the throughput in a network with 

each link experiencing 25% loss.  Prioritizing TCP packet flows provides a varied 

outcome, as it can not overcome the TCP mechanisms, when the packet loss recovery 

time is greater than the retransmission timeout event.  However, the future work in 

chapter 6 may provide roadmap to gaining control authority of the challenged network.  
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BUFFFERING PRIORITORIZED TCP TRAFFIC IN A HIGH PACKET LOSS 

NETWORK 
 
 

I.  Introduction 

Background 

Military communication or information systems are essential for wartime 

decisions.  When a military network is down, decisions to attack or defend are based 

solely on the most current information, which may be outdated.  For operational success, 

it is often crucial that information systems be available, that data be accurate, and provide 

timely delivery.  In a wired environment, with fixed network connections, these problems 

have largely been solved.  In the highly dynamic environment of military networks, with 

connections changing regularly, and operating in volatile environments, several unique 

networking problems become exposed.  Many different types of communication 

mediums are in use, from hardwired networks to laser communications.  In addition, links 

may exist from ground to aircraft, ground to satellite, ground to ground, aircraft to 

aircraft, and aircraft to satellite.  The majority of these systems rely on the Transmission 

Control Protocol (TCP) for reliable delivery of information.   

The assumptions which went into the development of TCP did not include high 

packet loss networks [4, 6, 11].  The development of wireless networking, and satellite 

networking highlighted the shortfalls of TCP in such an environment.  TCP provides 

reliable packet delivery from end-point to end-point in a dependable network and 

includes excellent throughput, fairness, and congestion control.  TCP assumes packet loss 
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results from congestion.  In a wired network, packet loss generally occurs when too much 

information is sent to the receiver, overloading the incoming buffer or queue.  The effect 

of overloading the queue is congestion.  However, loss in a wireless network often results 

from more than simple congestion.  Packets sent across a laser communications system 

may experience scintillation effects, or the loss of bits/packets due to atmospheric 

conditions such as dust or clouds which attenuate the power of the laser beam.  The link 

may alternate between being up or down very fast, and with a high bandwidth link, 

multiple packets maybe lost in the interim.  The packet loss is later sensed at the 

endpoints of the stream, through TCP mechanisms, which assume the loss is a result of 

congestion in the medium.  In reality, the utilization of the link may be very low.    

Some bit loss can be corrected in the physical layer through error correction 

schemes, but there are limitations.  Once the number of bit errors exceeds the ability of 

forward error correction, the complete packet is lost.  There are only two ways to recover 

lost packets.  If forward error correction is insufficient, the sender must transmit a 

duplicate packet.  This process is not a problem in a fixed, hardwired network with a 

small propagation delay.  However, a mobile wireless network may entail transmission 

through multiple lossy links, resulting in low probability of successful packet delivery.   

Retransmitting a lost packet all the way from the source can greatly increase the 

delay for that single packet.  For example, consider Figure 1.  Starting a time t0, a packet 

leaves the source.  Assume the packet is lost after being transmitted from the satellite.  At 

time t1, the lost packet should have arrived at the receiver.  At time t2 the 

acknowledgement didn’t arrive at the sender causing the sender to resend at time t3.  The 
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packet arrives at time t4.  If typical propagation time to a geosynchronous orbit is 125 

milliseconds, then the retransmitted packet will arrive at time t4 = 750 milliseconds 

(excluding additional transmission time and processing delays).  If the satellite could 

buffer the packet, the packet would arrive at time t2 = 500 milliseconds since the satellite 

discovered the loss and resent the packet.  Thus, Figure 1 illustrates a primary benefit of 

buffering packets.   

 

Figure 1.  Propagation Loss across a Satellite with and without Buffering 

Harmon’s [1] and Reynolds’ [3] research focused on reducing the effects of 

packet loss on TCP over multiple degraded links.  Their work, discussed in detail in 

Chapter 2, is the basis for the research presented here.  The basic approach is to store and 

forward TCP packets from router to router inside a challenged or high packet loss 

network.      

In typical routers, a packet arrives and is forwarded on a path to the next router 

with the intent of closing the distance from receiver to destination.  Routers are not 

Sender Satellite Receiver 

t0 

t1 

t2 

t3 

t4 

t5 

t2 

Without 

With 
 Buffering 
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responsible for reliable delivery of a packet.  Routers generally "fire and forget" packets, 

leaving packet tracking to the end-points, typically using TCP.  In a wired network, this 

technique alleviates the router from the significant processing overhead required to track 

packets and connections.  In a wireless environment, more packets are lost as a result of 

link failures, resulting in delay and retransmission from the source.  Reynolds and 

Harmon proposed buffering network packets on the routing devices, placing the burden 

of resending lost packets on the routing devices, and enjoying the benefits of lower delay 

and a reduction of retransmission load on the network.   

As an analogy, consider a packet as a package to be delivered.  A package sent via 

the US postal service is not necessarily tracked.  The sender’s package is placed in the 

mail and notification of delivery, if it happens at all, occurs when the receiver gets the 

package.  If the package is lost, then the sender may send another package.  Alternatively 

with tracking, each delivery point along the way accepts and takes responsibility for the 

package.  The analogy breaks down in that the postal service can not duplicate a lost 

package as may be done in a network, but they do know the last place it was scanned, and 

have a better chance of finding it.  In this latter case, the package is handled reliably 

between intermediate points.  The buffering technique of Harmon works in the same 

manner, keeping track of packets from point to point between wireless links.    

Harmon’s data showed that his technique decreases packet retransmissions from 

the source and decreases the download time of a single 20 MB file transfer.  The work 

also demonstrated that in high loss networks, such as with links with a 40 percent failure 

rate, TCP connections can still be maintained.  Without buffering, the TCP connection 
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fails.  The proxy router models improved throughput and packet delay, as two benefits 

were accomplished.  First, packets that were lost could be delivered closer to the point of 

failure.  Second, TCP congestion control mechanisms, such as triple duplicate 

acknowledgements, were not employed.  Timeouts were reduced as intermediate (proxy) 

routers could resend the packets.  This protocol showed a reduction in transfer times and 

an increase in utilization, which is the motivation for continued work in this area.  

Harmon also showed the effects of packet loss over a varied failure interval 

determined by a probability of failure.  The results provide insight into the timescales of 

TCP’s mechanisms, discussed more in Chapter 2. 

Problem Statement 

Given a challenged network, such as a laser communication system suffering 

scintillation effects, can strategically buffering prioritized flows increase the chances 

completing a download?  Increasing the ability to transfer information in a wireless or 

challenged network is an area the military urgently needs.  The need to be interconnected 

increases exponentially, as technology increases in the military.  To stay interconnected 

in a mobile environment, wireless technology is required.  Wireless technologies suffer 

from factors not prevalent in a wired environment.  This research is focused on solving 

the problem of lost data on interacting networks of wireless links.  The goal is to 

investigate the benefits of priority buffering, and understand the implications of buffering 

in a larger interacting network.  

Prioritization ought to improve the quality of service for critical information.  

Although this research only explores TCP transfers, prioritizing routing information as 
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critical may increase the capabilities of a mobile wireless network.  Prioritizing and 

buffering can decrease the power needed on a sensor network by sending data once and 

only once, and only buffering high priority data when necessary, such as when buffer 

space is available and links are degraded.  Prioritization provides a type of service level 

agreement.  

This work extends the work of Harmon [1] and Reynolds [3] into a larger, 

interacting network.  The improvement is modeling a proxy router with the ability to 

prioritize traffic flows based on a given priority.  Traffic generated using TCP is given 

equal treatment through a routing device, since routing devices do not route at the 

transport layer.  In Harmon’s model, TCP packets are stored on the proxy routers until 

the next proxy router or destination acknowledges the receipt of this packet.   

With this problem answered, this thesis concentrates on prioritizing individual 

TCP flows, and analyzing the results of delegating buffer space based on a given priority 

to a flow.  Packets arriving to a proxy router will be prioritized and will attain buffer 

space based on the priority of the flow, availability of space, and time of arrival.  The 

research is to demonstrate that in a degraded medium, a prioritized TCP flow given 

sufficient buffer space will be delivered more timely, and enjoy more throughput than a 

TCP flow with lower priority.  

 

Research Objectives 

The focus of this research is to model a medium to large network with multiple 

lossy links.  The network will have many client-server pairs sending various TCP data 
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transfers with varying levels of precedence.  The results obtained from such a network 

should provide insight into the value of augmenting a router with additional memory and 

processing power in order to obtain a desired outcome in lossy networks.  The results 

show whether the methods discussed provide a feasible solution to a challenged 

environment.  If prioritization provides an opportunity to increase the reliability and 

timeliness of a network, then the outcome of this work may lead to an implementation in 

the real world.  On the contrary, if prioritization fails to demonstrate or provide no further 

value to networking, then the reward is providing the knowledge to those in the industry 

to avoid the techniques presented. 

Investigative Questions 

There are many aspects of the research that are worth investigation.  Simulation 

time and memory will always set the limits of answers.  For this research, the most 

important question is whether or not strategically assigning buffer space to a prioritized 

stream of data will allow the higher priority information to be successfully delivered in 

the event the link is extremely poor.  As the outages are increased and packets are 

dropped, can buffering continue to keep a TCP connection alive and finish a high priority 

download?  

Methodology 

Building upon predecessors’ models, this research investigates the value of 

strategic buffering.  Using TCP aware link level buffering to increase the network 
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efficiency, we apportion limited memory based on given priorities.  The model is 

simulated on the OPNET 14.0 network simulation tool.     

Assumptions/Limitations 

This research assumes the use of the ubiquitous Transmission Control Protocol.  

While the congestion control mechanisms tend to thwart efforts to employ intermediate 

buffering, the benefits to enabling a buffering mechanism which can utilize TCP are 

diverse.  It is desired that the research not affect the ability, fairness and congestion 

mechanisms of TCP outside the challenged portions of the network.  TCP outside the 

controlled network must perform as advertised.  The changes to the routers in the 

controlled network must be invisible to the outside network, other than providing the 

perception of a more reliable network, albeit with some delay.   

The models provided created by Harmon [1] use the TCP sequence numbers to 

provide accountability between routers.  Hence, the routers will focus on the transport 

layer as the transport layer is responsible for the reliability of packet delivery.  Although 

there are techniques in this research that could be applied to lower levels, TCP, a 

transport layer protocol, is the focus of this research.   

Another key point is to apply the buffering in a multiple lossy links or challenged 

environment with multiple routing devices.  Most of the protocols in Chapter 2, such as 

Snoop TCP, discuss an implementation from the last hardwired link to an endpoint over a 

single lossy link.  For this implementation, there are multiple hops with multiple lossy 

links. 
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Implications 

Hiding network loss in the link layer could impact other functions in the network.  

Buffering and prioritization must therefore be approached with caution so as not to affect 

the fairness or congestion mechanisms.  A problem such as channel capture, where one 

device dominates the medium, could reduce throughput for all other devices, reducing the 

greater good for the network.  Link layer buffering may also increase flooding of the 

network, wastefully sending the same packets over and over. 

Some internet security protocols encapsulate the TCP layer, thereby encrypting 

the TCP information.  The TCP aware link layer buffing protocol discussed here will not 

work with security protocols that encrypt TCP information.  It is presumed that this 

protocol can be employed on IP protocols, with some additional development beyond the 

scope of this research. 



 

II. Literature Review 

Chapter Overview 

The purpose of this chapter is to discuss relevant research.  The first part of this 

chapter discusses the research and techniques employed by the networking community 

which led to the model built by Harmon.  The second part of this chapter discusses in 

detail the research done at AFIT by Reynolds [3] and Harmon [1].  Their research is the 

baseline for the work presented.  This chapter should provide the reader with better 

understanding of the present model.  

Terms Defined  

 Many of the research papers discussed in this chapter define the same ideas with 

different terms.  For the reader’s benefit the related terms are defined here for quick 

reference.   

 Acknowledgements, (ACK, ACKs) are TCP generated responses for the successful 

reception of a packet of information.  ACKs arriving at the sender provide TCP the 

feedback loop to ensure reliability in the transport layer. 

 AckPings and Persist Requests (PR) are terms to describe the proxy router’s 

special packets for discovering lost ACKs.  In a degraded link, packet loss includes the 

acknowledgements, so a proxy router will ask its neighboring proxy if it sent an IACK 

already.  If it did, it will respond with an AckPingResponse or Persist Response.   
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 Challenged Environment is a network with multiple hops each having degraded 

links connecting them.  Challenged environments may be mobile networks, wireless 

fixed networks, or satellite networks. 

 Challenged Links, Degraded Links, Lossy Links, and Link-Winking all describe 

packet loss on a link.  There are discussions of the ability of links to fail and recover in 

nanoseconds.  Link recovery may be a predetermined interval of time which some argue 

invalidates the result of prior research.  The overall intent, whether or not a link can 

recover in nanoseconds, is the loss of packets.  Packet loss due to bit errors, forward error 

correction (FEC) failure, or scintillation effects is the focus of this research. 

 Flows are single TCP connections from client to server over a single port.  Flows 

consist of the connections handshaking, acknowledgement and data packets.   

A hop or node defines a smart network device such as a switch or router proxy 

router that accepts a complete packet, determines a path or output for the packet and 

forwards the packet.  

 Intermediate Acknowledgements or Local Acknowledgements (IACK, LACKS) 

are similar to ACKS but they acknowledge a packet has been accepted by an 

intermediary device.   

 Link Winkers or Packet Discarders destroy packets that are transmitted across the 

link when the link is considered down.  Configuring IP clouds packet discard ratio will 

produce similar results, but the IP cloud does not allow a start and finish time.  

 Proxy Routers, intermediate nodes, and strategic buffers all describe a router with 

the ability to store packets. 
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 A collection of node pair names for traffic generation and collection are scattered 

throughout.  The terms server, sender, source all refer to the traffic generator and the 

terms client, receiver, destination all refer to the traffic collector.   

Description 

Transmission Control Protocol  

 RFC 675 “Specifications of Internet TCP” is dated as December 1974.  Although 

networking has changed significantly since that date, the basic operation of TCP remains 

unchanged.  The Transmission Control Protocol provides a connection oriented, reliable, 

byte stream service to the application layer.  The term connection oriented means the two 

applications using TCP, such as a client-server, must establish a TCP connection with 

each other before they can exchange data [1].  After the three way handshake shown in 

Figure 2, the server sends data and the client responds with acknowledgements for the 

data. 

  

Figure 2.  TCP Connection Establishment 
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This is the vanilla TCP framework, but additional mechanisms were added to TCP as 

more networks were joined to overcome channel capture, fairness, and congestion.  This 

led to the many ‘flavors’ of TCP such as Reno, Vegas, Tahoe, etc.   

In a wired environment, packet loss due to physical damage or power failures is 

<<1 %.  Therefore, lost packets are indicators of congestion in a wired environment [1].  

Congestion is the arrival of packets at a device at a faster rate than the device can process 

them.  Generally speaking, routing devices typically have a queue for incoming packets.  

The size of the queue and the processing abilities of the router determine how fast 

packets can arrive at the device.  If the rate of packet arrivals exceeds the service rate, the 

queue fills up.  All packets arriving to a full queue are lost.  

There are two indications of congestion in a network, a timeout event and 

duplicate acknowledgements [1].  TCP has a Retransmission Timeout (RTO) event which 

is based on the Round Trip Time (RTT) and a smoothing algorithm from end to end.  At 

the senders end, if an acknowledgement takes longer than the RTO, a duplicate packet is 

sent and the RTO is reset and multiplied by an exponential backoff.  The exponential 

backoff provides additional time for the receiver to acknowledge the receipt of the 

duplicate packet.   

 At the receivers end, if a packet is lost or out of order, the receiver sends a 

duplicate acknowledgement.  This alerts the sender that either a packet is lost or out of 

order.  In the latter case, out of order packets are immediately acknowledged by the 

receiver since the missing segment may be lost and the transport layer can not deliver 

packets to the application layer unless the packets are in order.  Packets aren’t guaranteed 
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to cross the network in order so the sender waits until it receives three duplicate 

acknowledgements for the same segment before resending a lost packet.  This avoids 

sending redundant packets when the packet arrived out of order.   

  There are numerous papers [8, 11, 12, 10] on reliable transport protocols in 

degraded operating environments.  A degraded, lossy, or challenged network discussed in 

this thesis is one that suffers intermittent packet loss due to the environment or mobility.  

These challenged networks are using protocols designed for wired links in the early 80's.  

These protocols have been tuned for traditional networks made up of wired links and 

stationary hosts [4].  Typical probability of bit error in a hardwired system is 10-8-10-12 

whereas losses in a wireless system are 1 in 10-3-10-6 [8].  The Transmission Control 

Protocol was designed to treat intermittent failures as network congestion.  For a router to 

truly lose a packet in a wired network, the router’s incoming buffer or queue must be 

filled and unable to handle the incoming request.  When buffer overflow occurs, TCP was 

designed to back-off or return to a slow-start state to avoid adding additional congestion.  

This mechanism creates numerous problems when employed on a wireless network.  The 

following paragraphs will discuss the related work on challenge networks.  

Relevant Research 

Improving TCP Performance  

There are two fundamental approaches to improving TCP performance in a 

challenged network.  The first approach hides non-congestion related losses from the 

TCP sender, and therefore requires no endpoint modifications.  The second approach is to 

make the sender aware of the non congestion related losses [11].  This approach requires 
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the endpoint to be modified to accept explicit notifications.  Again, the objective of this 

research is to operate without changing TCP at the endpoints, so the first approach is 

modeled.  Work in [11] additionally classifies each scheme can into three sub groups.  

These are: an end-to-end philosophy, split-connection proposals and link-layer proposals.  

The end-to-end philosophy attempts to make the TCP sender handle losses through 

explicit loss notifications, or through selective acknowledgements (SACKs).  The split 

connection philosophy hides the losses by creating multiple individual connections.  A 

base station at the edge of the challenged network creates a TCP connection with the 

sender, and in-turn creates another connection across the challenged link.  The last 

philosophy [11] discusses is a link layer solution.  The link layer resends lost segments 

locally using acknowledgements, and may use forward error correction (FEC) to recover 

packet losses.  This philosophy hides losses from the TCP, but may not be able to hide all 

losses.  Work in [11] evaluates many of these techniques in combinations to gain insight 

on the benefits of each and is highly recommended reading for further understanding.  

The model presented in this thesis hides the non-congestion losses from TCP.  However 

it doesn’t fall directly into the three sub groups discussed by [11].  The model uses the 

transport layer header to control acknowledgements and data resends at the link-layer.  

This categorizes it as a TCP aware link-layer recovery mechanism.  The technique is 

similar to link-layer recovery, but link-layer recovery discussed in [11] doesn’t 

distinguish TCP flows and doesn’t provide in-order delivery of the packets. 

 All the techniques discussed are labeled as Protocol Enhancing Proxies (PEPs).  

PEPs as discussed in RFC 3135 are highly discouraged because they may interfere with 
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the original intentions of the protocol, such as fairness of the shared link.  However, in 

limited circumstances, such as discussed in Chapter 1, military networks may be an 

appropriate environment for PEPs because of the unique circumstances.  Deployed 

military networks do not operate in a service provider capacity.  Military networks are 

generally located on the edge of large networks and are mostly sovereign.  

DTN Protocol 

 Closely related research at Berkeley by Fall [7] discuses Delay Tolerant 

Networking (DTN) which specifically avoids PEPs.  The concept is to create a gateway 

responsible for a region.  Traffic passing through the region is treated in a manner similar 

to Simple Mail Transfer Protocol (SMTP).  In SMTP, a message is sent from mail server 

to mail server until it reaches the server responsible for the recipient.  The recipient mail 

server takes responsibility for the message and the sender is relieved of further duties.  

The DTN is a similar concept that uses application layer processes to accept 

responsibility for a region or from hop-to-hop.  DTNs guarantee delivery and reduce 

traffic as retransmissions over multiple hops are eliminated.  DTN is a concept which 

specifically avoided PEPs as discussed in RFC 3135.  This concept works when emphasis 

is on the reliable delivery, and the DTN concept is very close to the research presented 

here.  However, as mentioned in the limitations, this model can not change TCP.  DTNs 

also present the same issues when sending large files across our packet dropping medium.  

As DTN is an application layer, the underlying transport protocol will still be TCP.  The 

benefit of DTN is similar to the research done by Harmon [1].  The difference is that the 

proxy routers provide a packet level guarantee of delivery from hop-to-hop, instead of 
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accepting a complete file.  DTN also creates a limitation as the complete file would have 

to be received, to ensure it wasn’t corrupted before it is resent.  This would increase the 

size of the buffer or memory needed.  DTN works regionally so if there are numerous 

challenged links between regions, the problem still exists.  

Snoop Protocol 

The Snoop Protocol [4] paper is closely related to the work of Harmon.  Snoop 

works by caching or buffing packets at a fixed host and has the capability to resend these 

packets if the mobile host doesn’t receive them.  Snoop accomplishes this by altering the 

fixed host protocol to capture acknowledgements from the mobile host.  Capturing 

acknowledgements allows the fixed host to resend the packets before the sender times 

out.  Additionally if a sender receives more than three acknowledgements for the same 

packet, TCP will reduce its output in half.  Snoop alleviates this congestion control 

mechanism, allowing TCP to continue sending at the current rate.  TCP will also time out 

if no acknowledgements are received.  Snoop can handle a smaller time out window than 

TCP and will retransmit to the mobile host multiple times before the sender times out.  

This increases the efficiency of the network, since a time out event causes TCP to return 

to a slow-start state.  However, Snoop’s design, as discussed in [4], works from the last 

fixed station to the mobile host.  Snoop is a last mile scenario which leaves a big hole in 

our wireless networks which may stream through a multitude of challenged links.   

Indirect TCP 

Indirect TCP (iTCP) [17] is another alternative closely related to this work.  iTCP 

creates a separate TCP session between the wired link and each individual wireless hop.  
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Since each individual connection over the wireless hops uses TCP, they can fail and 

cause the original sender to stall.  Each wireless hop creates a TCP connection.  Inherent 

issues with this protocol include acknowledgements being sent back to the sender before 

the data packets actually reach the destination.  This violates the semantics of the TCP 

acknowledgements [11]. 

Split TCP 

Like iTCP, Split TCP [20] creates individual TCP connections from router to 

router.  It buffers packets on proxy routers and forwards them at the rate of 

acknowledgements from the recipient of the packets.  Packets are cleared from the buffer 

when an ACK is received from the destination.  From what is proposed, it appears that 

the end-point TCP is not changed.  However, the paper discussed the source sending data 

at the rate of receiving LACKs.  To understand and act on the LACK, one of two 

methods must be employed.  One scenario is the LACKs are no different then ACKs and 

the source acts upon them moving the send window ahead.  In this case the semantics 

discuss in iTCP are violated, a packet is ACKed before it reached the destination.  The 

second scenario is the LACKs are differentiable from ACKs, which means the end point 

TCP must be changed to accommodate the LACKs.  End-point changes are outside the 

constraints placed on this research.   

Split TCP is the first model that discusses a TCP solution over multiple 

challenged links.  Split TCP is the closest protocol to the model derived in this research.  

Harmon’s model created a reliable delivery from router to router but does not require 

transport layer connections between devices like Split TCP requires.  
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Reynolds Model 

Reynolds’ [3] research focused on the transport layer TCP buffering.  In his 

model, intermediate nodes or routers had buffering capabilities.  The routers are located 

close to the challenged or ‘winking links.’  Packets sent across the network are buffered 

in the router and the router acknowledges the packets by sending an intermediate 

acknowledgement (IACK) to the TCP source.  Packets lost on the challenged link are 

resent, from the first unacknowledged packet to the last buffered.  When the packets are 

received by another buffering router an IACK is sent back and the acknowledge packets 

are removed from the buffer.  When the packets are received at the destination, the TCP 

acknowledgement (ACK) is sent back clearing all the buffers and advances the TCP 

window of the source.   

An IACK is similar to a TCP ACK in that it tells the TCP connection that the 

packet has been received, but it doesn’t allow the TCP window to move.  Instead an 

IACK informs the TCP source that the packet is buffered and not to resend the packet.  

An IACK can manipulate the window size making TCP send additional packets to be 

buffered.  Reynolds model accomplishes three goals.  First, it decreases the number of 

duplicate packets, freeing the link to be used for transmission of new packets.  Second, it 

moves the packet closer to the point of failure, so the propagation, transmission, queuing 

delays, and processing delays incur from sending a packet from the source are eliminated.  

Third, his buffering scheme reduces the back-offs incurred by TCP when packet loss is 

confused with packet congestion, thereby increasing the throughput of the flow.   
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The principle constraints of this thesis are broken when TCP is modified.  

Reynolds’ work included modifying TCP protocol to understand the IACK.  His version 

of TCP also allowed the IACK to increase the window size.  These methods require all 

end points to modify the TCP.  Harmon [1] incorporates the buffering ideas along with 

the IACK, but only the routers understand the IACK not the endpoints.  The techniques 

of hiding the network losses by buffering and providing the reliable handoff of packets 

between routers is the basis for Harmon’s model. 

Harmon’s Model  

Harmon’s work [1] is a TCP aware link layer protocol, specifically designed to 

increase TCP performance and enhance the reliability and end-to-end delay without 

disturbing the protocols in the external systems.  The capabilities of link proxies are to 

store and forward packets and retransmit the packets locally if lost.  Proxy routers must 

have fast memory and be capable of processing acknowledgements and retransmission 

requests.   

TCP expects the packets to be acknowledged within one round trip time plus an 

offset.  If the ACK is late, the source will automatically send a duplicate packet.  This 

effect is a retransmission timeout (RTO).  The second mechanism that causes a resend is 

the triple duplicate acknowledgment (TDA).  In the link proxy router concept, the proxy 

routers have two mechanisms to counter the RTOs and TDAs.  The first is an event timer 

which works similarly to the RTO.  The event timer is an RTO for the intermediate link 

between to proxy routers.  This RTT is much smaller than the TCP RTO; therefore the 

proxy router event timer is smaller and may send the packet multiple times before the 
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TCP RTO event.  These event timers are waiting for an IACK from the adjacent router, if 

one is not received within the event, the packet is resent.  The second mechanism is the 

ability to act on TCP ACKs.  If a proxy receives a duplicate ACK for a packet buffered 

on the router, it will resend the packet immediately.  Since the proxy routers are closer to 

the destination than the source, a triple duplicate acknowledgement is less likely.   

Acting upon the duplicate acknowledgements and local resends creates a three 

fold benefit as explained in Reynolds’ [3] model.  First, local resends reduce the traffic 

across the good links by resending the packet closest to the point of failure.  Second, local 

resend allows the mediums not affected to use the bandwidth to send new packets.  Third, 

it allows TCP to maintain it present throughput by avoiding a third duplicate 

acknowledgement.   

TCP ACKs are sent for packets that reached the destination successfully.  The 

acknowledgement for that packet must be handled by each proxy to clear the buffer of 

that packet, making room for additional packets.  The proxy routers set timers for the 

ACKs, and if the timers expire they resend the buffered packets, to avoid a RTO at the 

source.  Harmon’s model maintains state information for each flow passing through the 

proxy router.  A flow is defined as a TCP source destination pair distinguished by a 4-

tuple (Source IP address & port, Destination IP address & port).  In a large network, 

maintaining a list of every flow, packet, and sequence number is extremely taxing on a 

processor.  In a fixed network millions of flows may be happening at the same time.  This 

research assumes that proxy routers will not be used in fixed environment with millions 

of customers. 
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Maintaining the TCP flow connection record is quite intricate.  Each connection 

record must contain the 4-tuple, sequence numbers, sequence number gaps, ACKs, 

IACKs, memory allocate, and memory used.  The structures necessary to track the flows 

adds processing time and memory requirements.  The limitation of additional memory 

creates constraints on the simulation software discuss in more detail in Chapter 3.     

Summary 

This chapter covered the background information necessary to understand the 

choices for the model.  The next chapter will discuss the optimizations made to Harmon’s 

model, and the methodology of creating a priority based buffering system.  



 

III. Designing the Model 

Chapter Overview 

The purpose of this chapter is to discuss pertinent information on the model.  How 

the model was employed in the network is discussed in Chapter 4.  There are many 

intricate details provided about the OPNET model developed by Harmon discussed in 

Chapter 2 and in greater detail in [1].  Between the time Harmon finished his research 

and this research began, Matt Weeks [23] took on the project to refactor the code.  Most 

of the code was externalized from OPNET and some additional features are discussed 

below, which are relevant to the reader as they change the operation and process flow. 

OPNET 14.0 

OPNET simulates packet transmission through data structures which hold 

information such as the headers, amount of data in the packet, and time stamps.  It is 

important to understand that the connection record is only a pointer to the memory 

structure.  Experiments proceed decoupled from real time.  To keep the experiments 

simple and predictable, processing times such as memory access were not incorporated 

into the model.   

The wall clock time or real time it takes to simulate a discrete event in OPNET 

can vary greatly.  Since the software is simulating multiple events happening at the same 

time, the simulation time does not increment until all events scheduled for that time are 

completed.  Smaller network simulations might simulate weeks of network traffic in 20 

minutes of wall clock time.  More intricate models might require hours of real time to 
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simulate seconds of network traffic.  One advantage of using simulation software is the 

ability to send only pointers, and not the actual data.  Mathematical models can 

statistically derive the time it takes for a single packet to traverse the network with out 

sending it.  When the number of events needed to simulate the model outweighs the 

advantage of not sending the actual packets, the wall clock time increases.     

Additional factors such as model design can cause the simulator to spend much of 

its time handling interrupt timers.  In the packet discarder model discussed later, the 

algorithm randomly determines if the link is up or down during an interval.  At large 

intervals of 100 milliseconds, this effect does not impose much of a penalty, around 1000 

determinations per second of simulation time.  As the intervals are shortened to 1 

microsecond the penalty grows very large.  For every second of simulation time, 1 

million determinations are required.  As the number of discarders in the network grows, 

the simulation software carries a large processing penalty.  The packet discarder is a 

simple example that can be calculated before design, but some design implementations 

are not obvious until after simulation.  The processing penalties are typically due to the 

inherent design of the simulation software, usually not known to the designer until after a 

problem occurs.    

As found during some simulations, physical memory constrains the ability to 

model large networks in a discrete environment.  One network with 30 client-server pairs 

and 15 routers running the buffering protocol consistently failed as a result of exceeding 

available memory allowed by the operating system.  This is a valid constraint that needs 

more investigation beyond the scope of this thesis.  Optimizations were added to the link 
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layer buffering design to accommodate the issues presented, but these limitations still 

constrain the size of the network.    

Model Implementation Overview 

The proxy router was created from an OPNET ethernet4_slip8_gateway model.  

The ethernet4_slip8_gateway is a generic router model supplied by the simulation 

software with 8 point-to-point protocol connections and 4 Ethernet connections.   

 

Figure 3.  Proxy Router Node Model 

  Proxy routers use the generic router with the addition of the four proxy process 

models, a memory manager and four outgoing queues shown in Figure 3.  The proxy 

25 



 

process model intercepts all incoming packets and acts only on two protocols, TCP and 

Proxy.  All other protocols are simply forwarded after being inspected.  

Newly arriving TCP data packets are forwarded to the IP layer for processing.  

All buffering is accomplished on the outgoing link.  When a new packet is received by 

the proxy process model from the IP layer, a record identified by the 4-tuple is created.  

The proxy process model then sends a request packet to the memory pool manager 

requesting buffer space for the packet.  The memory pool manager processes the request, 

and sends a response packet back with the amount of memory allocated.  The proxy 

process model then records the amount of memory allocated by the memory manager and 

the amount this segment needs.  The packet is forwarded and an IACK is sent to the 

preceding node.   

The model checks for a connection record before creating one.  If a connection 

record for a flow already exists, and memory is available, then incoming packets are 

stored without contacting the memory manager.  However, the memory manager keeps a 

separate record of the memory allocated and memory used for each link.  An external 

function updates the memory used in the manager’s table.  The drawback to this design is 

trying to keep parallel list structures.  If the memory manager’s record is not an accurate 

reflection of the proxy’s record then buffer space is wasted.  If the records do not mirror 

each other, then unexpected results such as null pointer events occur.  The choice to have 

an external function update the memory manager alleviated additional notification 

packets from being sent from the proxy process model to the manager for every stored 

26 



 

and deleted packet.  This reduced the complexity of the manager’s process model and 

reduced simulation time.  

Harmon’s [1] memory pool manager process model gave every request 10 packets 

of buffer space if memory space was available.  This process reduced the number of 

request packets sent to the manager.  When the 10 allocated packets are filled the proxy 

process model sends another request packet.  If memory is available then the manager 

responds with another 10 packet allocation.  This methodology can be an advantage or 

disadvantage.  Since the memory is limited, the strategic buffering plan needs to be 

greedy with the memory it allocates.  Further investigation showed that the flows were 

not using the 10 allocated buffer spaces, and the memory manager was quickly running 

out of free memory.  The new default memory allocation standard is 2 packets, matching 

the number of outstanding packets in TCP slow start.  If additional space is needed, then 

2 more (2920 bytes) are allocated.  The shortcoming is the additional time required to 

send and process requests for more space when the priority algorithm is employed.  

Acknowledgements arriving from the port receiver are intercepted by the proxy 

process model.  The 4-tuple is examined along with the sequence number, ACK number 

and the date length.  This information is used to look up buffered packets.  If the 

acknowledgement is for more than one packet, then all packets acknowledged are 

removed from connection record.  

New Options 

Weeks added a new queue to the outgoing stream along with a new selective 

intermediate ACK (SIACK).  As discussed in Chapter 2, out-of-order packets cause the 
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receiver to immediately send a duplicate acknowledgement for the missing segment.  For 

each additional out-of-order packet, the receiver sends a duplicate acknowledgement for 

the missing packet.  Three out of order packets causes a TDA.  To avoid a TDA, when a 

proxy detects a missing packet, it immediately sends the preceding proxy a SIACK.  The 

preceding proxy can then reorder the outgoing packets in the queue to send the missing 

packet without delay.  The receiving proxy places the missing segment in the queue in 

sorted order allowing the flow to be transmitted in order.  

The second addition is an option for asymmetric links.  In a real network, the path 

the data packets traverse is not necessarily the path on which the acknowledgements 

return.  Asymmetry creates an issue if the proxy routers do not receive the ACK for the 

packets buffered.  Harmon’s model uses the ACKs to clear the buffer of the very last 

proxy closest to the receiver.  If the proxy does not receive the ACK, it will continue to 

resend the packets.  To alleviate this situation, timers and a ‘buffer downstream’ option 

was added.  There is a timer for each flow and if no ACKs or data packets are detected it 

is assumed the connection timed out.  The buffer downstream option allows the routers at 

the edges of the network to adapt.  The buffer downstream option turns off the proxy 

protocol going to the outside network or to any device.  The algorithm detects if the next 

hop isn’t a proxy by setting a timer and waiting for IACKs.  If after a reasonable amount 

of time, IACKs are not received, or if an ACK is received before an IACK then the buffer 

downstream option is turned off.  This achieves two benefits.  First it stops sending 

duplicate packets from the challenged network to an outside network which can not 

IACK.  The transmission and propagation delay to the receiver may be long enough for 
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the last proxy to flood the network with duplicate packets.  The second benefit is to save 

buffer space, if the next hop can not IACK, buffering at the edge is moot.  The buffer at 

the end node would become extremely large.  If properly placed in the network, the last 

proxy should be connected to a fixed environment.  In this research, the last proxy model 

will send intermediate acknowledgements to the previous proxy in the challenged 

network.  This process will clear the previous buffer.  Again, this option achieves the 

objective of not affecting the outside network, with transmission of unnecessary duplicate 

packets.  

Small Network Anomalies 

After exercising the OPNET model in a network with two paths from source to 

destination, multiple anomalies were observed.  The models were placed in a simple 

example shown in Figure 4.   

 

Figure 4.  Clouds Used For Packet Loss 
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Open Shortest Path First (OSPF) and Routing Information Protocol (RIP) are employed 

to build the routing tables.  Ip_clouds, an OPNET provided model, were implemented to 

simulate the propagation delay and packet discarding ratio.  An ip_cloud is a router with 

the ability to set, among other parameters, a fixed amount of packet latency, and an 

average discard ratio.  Increasing packet discard ratio beyond 15% in the ip_clouds 

defeated routing table updates.  Therefore without routes, TCP could not establish a 

connection.  The basic ip_cloud for OPNET does not provide an option for setting the 

time at which it begins to drop packets.  Hence, it is impossible to exercise higher drop 

ratio scenarios using the ip_cloud construct.  Therefore, instead of the ip_cloud, a custom 

packet discarder is used.  Configuring the packet discarder to begin dropping packets at 

180 seconds allowed sufficient time for the routing tables to update. 

A second experiment exercised the effect of breaking FTP transfer in midstream.  

The usefulness of this simple example is the ability to simulate the asymmetric options 

added by Weeks.  Two paths were constructed with exactly the same bandwidth, except 

than an additional hop was added in the lower link, giving the top link a shorter path.  

During the simulation another anomaly presented itself which led to a small change in the 

OSPF settings.  The model is presented in Figure 5.  All links between routers are good 

links with no loss, except for the link between short path router 2 and short path router 4.  

The FTP transfer was disrupted by severing the top link between routers 2 and 4 about 

halfway through the FTP transfer to force a routing table update.  Unfortunately, the 

OSPF timers were set to determine a ‘dead link’ after 55 seconds.  The FTP transfer 

failed, long before the routing table updated.  To fix this problem OSPF timers were 
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reduced to determine a ‘dead link’ in 6 seconds.  Setting the timers this low in a real 

network would generate excessive routing update packets (OSPF hello packets) between 

adjacent routers, but it provided a method to validate the asymmetric feature.  

 

Figure 5.  OPNET Project Using OSPF 

After the top link is severed and the routing tables are updated, the first TCP 

action is a RTO on the server.  The server sends the next unacknowledged packet to the 

client.  The client already received this packet and sent the acknowledgement on the old 

link where it is still buffered on proxy short path router 2.  This packet is rejected by the 

client and a new acknowledgement is sent, requesting new data with a sequence number 

two packets greater along the bottom path.  Since this acknowledgement’s sequence 

number was higher then the all the packets the bottom path observed, it was ignored.  The 

server received this acknowledgment, and adjusted the TCP window sending the next 
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packet.  Unfortunately, on the proxy routers, the RTO data packet is stored, along with 

the new packets, with a gap of two packets or 2920 bytes.  This anomaly caused the 

extreme growth of packets on the buffer, as they need an IACK for the missing packets to 

clear the buffer.  On a single run, the buffer maximum size was granted at 10,000 packets 

per proxy router.  At the end of the simulation, 8000 packets were buffered on long path 

proxy routers.  This crucial abnormality caused a major change in the model.  If buffer 

space is limited then useless packet storage is counterproductive to the object of this 

research.  

 The receiver advertises the maximum window size to the sender when a 

connection is made, and adjustments are sent on subsequent acknowledgements 

dependent on the receiver’s ability to process packets.  In the OPNET model the 

maximum window size is set at 65536 bytes, or ~44 packets.  This number is based on 

the 16 bits in the TCP header.  The maximum window size determines the number of 

outstanding segments or the maximum number of packets in flight.  Applying the 

windows scaling option defined in RFC 1323 allows more then 65536 bytes, but for 

simplicity in the OPNET coding, the maximum window size is fixed at 65536 bytes or 44 

packets.   

The 45th packet to arrive on the buffer informs the proxy that the lowest packet 

on the buffer is already acknowledged by the receiver.  This proposal is guaranteed, 

otherwise the sender’s window could not move. 
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Figure 6.  Revolving Buffer Example 

For simplicity, assume that the max window size is five packets, reference Figure 

6.  The proxy’s buffer then only allocates space for exactly 5 packets per TCP 

connection.  The server is sending 11 packets to the client, with a proxy router device in 

between buffering the packets.  When packet four arrives at the receiver, an 

acknowledgement for packet four is sent back to the sender.  If this acknowledgement is 

not seen by the proxy, but still accepted by the sender, then the sender’s TCP window 

moves forward and the next five packets are available for delivery.  Since the window is 

controlled by TCP, the ninth packet delivery acknowledges the forth packet.  The model 
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now incorporates a revolving buffer where the 50th packet causes the first packet in the 

flow to be destroyed.  50 packets were chosen to provide protection in case the segments 

are not 1460 bytes in size.  Using the sequence numbers, data length and max window 

size is truly needed to calculate the actual amount of buffer space per flow in bytes.  

Incorporating this in an OPNET model became too cumbersome, so for implementation 

50 packets provided enough buffer for analysis.  For the simulations, the TCP segments 

are normally 1460 bytes in data length except for the acknowledgements.  Fragmented 

packets are not handled by the model because the proxy routers would need to reassemble 

fragmented packets before they could be resent.  This is beyond the scope of this project 

due to complexity of the OPNET model. 

Packet Discarder Modification 

The packet discarder developed by Reynolds [3] and Harmon [1] provided a 

deterministic packet dropping link.  Their packet discarder uses a set interval and a 

uniform distribution to determine if the link is up or down.  Reynolds research needed a 

deterministic interval as he attempted to estimate the link up time.  The goal was to 

strategically calculate when the link was up.    

Harmon’s model incorporated the same algorithm to study the effects of TCP 

congestion mechanisms over set intervals and probability of failures.  Since this research 

is focusing on the buffer management scheme and the prioritization of flows, a change to 

the packet discarder was necessary.  The interval needed to be an exponential distribution 

to provide a realistic time between failures, and a realistic length of failures.  The 

exponential distribution models a continuous time between changes in state, which fits 
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best when describing intermittent packet loss on the link.  Again it is expressed that this 

degradation in the link is not equivalent to a link failure.  The wireless links modeled may 

intermittently drop bits or packets depending on the interference, but the link itself is not 

broken.   

To incorporate the change, the interval used by Harmon is used as the mean of the 

exponential distribution.  The probability of failure is still a uniform distribution.  When 

the packet discarder is initialized it is set to start at a specific time in the simulation.  This 

allows time for the network to build the routing tables.  The first exponential interval is 

chosen at the start time.  The uniform distribution determines whether the packets will be 

dropped or forwarded during the interval.  An interrupt is set, and the simulation will 

return to repeat the process when the interrupt occurs.  This new technique provided an 

increase in efficiency of the model, since the number of interrupts is reduced.   

Proxy Model Development 

 The process models are well described in [1].  Changes made to the process 

models were necessary to incorporate the recovery of memory when the flows were not 

using it, as well as the ability to recover from the loss of a proxy.  
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Figure 7.  Proxy Process Model 
 

In Figure 7, two new loop-backs are connected to the await response state.  The loop-

backs are manager deallocation and manager reply.  The manager deallocation became 

necessary when the proxy request buffer space from the manager and the manager needs 

to reclaim memory from the same proxy before allocating.  When the deallocation 

message arrived, at the proxy waiting for a manager response the proxy handled the 

deallocation, but returned to the wait state without storing the packet.  This error only 
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happens when the requesting proxy has to deallocate, before it is granted space.  The 

second loopback keeps the proxy in the await response state when a packet arrives before 

the manager response is received.  Since the manager can not send a forced response, 

other events can happen during the response time.  It is a drawback of the model, as 

incoming packets can not be serviced while the proxy is waiting for the response.  To 

determine the number of occurrences, a counter was added to monitor the number of 

unhandled packets.  On average, 20-30 packets were forwarded without being handled 

during an entire run.  These packets could be IACKs, ACKs, data packets, or virtually 

any IP traffic.  If the proxy misses an ACK or IACK, the next IACK will clear the buffer 

of the missed packet.  If the proxy misses a data packet, then it will be forwarded without 

buffering.  The preceding proxy router will automatically resend the data packet if the 

packet is not IACKed.  In either case the buffering protocol will eventually reconcile the 

missing packets.  Therefore, 30 packets forwarded without buffering does not warrant a 

rewrite of the code.  

Memory Manager 

 The router has a single entity responsible for buffer management called the 

Memory Manager.  The design decision to have a single entity control the buffer space is 

discussed in [1].  Primarily, the manager needs to control the distribution of memory 

across all links.  There are four proxy process models on links 8, 9, 10, and 11.  Memory 

is distributed on a first come first served bases.  Harmon’s [1] manager deallocates 

memory when updates are sent from the proxy to the manager.  Changes were necessary 

to reclaim memory when higher priority flows arrive.  Reclaiming memory from a link 
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required the manager to send a packet with connections identifying information.  If a 

proxy is in the await response state, then it handles the deallocation and returns to the 

await state.  If the proxy is in the wait state, it will enter the manager msg state, 

deallocate the memory, and return to the wait state.   

 The proxy sends update packets to the manager immediately after the queue is 

emptied.  The proxy update packet allows the memory to be redistributed to other flows, 

whether higher or lower priority.  Letting each flow keep the allocated memory instead of 

returning it to the manager, actually performed better for each individual flow.  The 

buffer space was available reducing the number of requests and contention.  This process 

increased the efficiency of the manager.  The drawback is that high priority flows 

retained unused memory, and the lower priority flows received no memory; thereby 

reducing the system to buffer space versus the number of flows.  Decidedly, the unused 

memory should be returned to the free memory giving all priorities an equal chance until 

the memory is exhausted again. 

Memory Scheme 

 Some of the characteristics of the memory manager required changes to 

incorporate the prioritization buffering scheme.  The original manager handled requests 

by allocating 10 packets to each request until the free memory was exhausted.  On a 

single outgoing link with two or three flows, every flow received at least 10 packets.  The 

networks exercised in this thesis have more than one outgoing link buffering packets to 

create contention for the memory.  They are also handling 88 flows, which would quickly 
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deplete the free memory.  Specific project models are discussed in Chapter 4, the 

following paragraphs will discuss the changes in the memory allocation.   

There are 11 priority levels created for the experiments.  The priorities are 1 being 

the highest priority and 10 being the lowest priority.  Priority 0 is the control group for 

the experiment.  The proxy never requests memory for priority 0 flows.  Priority 0 will 

provide a comparison in the experiment to determine if priority buffering provides an 

advantage to no buffering.  The other 10 levels of priorities provide a sanity check against 

pure chance.    

Decisions on how to allocate memory to priorities is derived from a min-max 

algorithm.  The manager searches for the minimum priority with at least one packet space 

to reclaim.  When memory is depleted, the manager reviews the link records to find 

which flow has the lowest priority out of the 4 links.  Additionally, the flow must have 

memory to de-allocate.  Simply searching for the lowest priority without regard to 

memory allocated caused the manager to return with no memory to reclaim.    

The notion of deleting a complete flow from a buffer took consideration.  Since 

the flow is a lower priority, the higher priority flow should get the memory.  It was 

debated on how to reclaim the memory.  If a single packet is reclaimed from a lower 

priority should the first or last packet be removed?  Either one could be vital, as neither 

have been IACKed.  Assuming none of the packets reached the next proxy, there are two 

outcomes.  If the first packet on the queue is removed, the oldest one, and it has not 

reached the next proxy, then the rest of the packets can not be delivered until the gap is 

filled.  The proxy can not send the packets out-of-order or else they will cause a TDA.  
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Since the proxy IACKed this packet, the preceding proxy has most likely deleted the 

packet.  The only way to fill the gap is to create an ACK for the previous packet, or wait 

for a TDA or RTO. 

If selecting the last or newest packet on the queue, the older packets can be sent 

but the lost packet will be acknowledged three times at the sender before it can be resent 

again causing a TDA, or worst case an RTO.  Both of these solutions cause the sender to 

reduce the congestion window, which in this scenario is an advantage to priority 

buffering.  If the goal is to get the high priorities through a degraded medium, triggering a 

TDA or RTO is advantageous to the high priorities.  Deleting a single packet from the 

queue requires extensive coding to update acknowledgements, sequence numbers and 

numerous other variables.  With the intricacies of deleting a single packet, and knowing 

the flow will lose throughput anyway, it was more beneficial to delete all buffered 

packets from the flow and return all but two packet spaces to the free memory.  The two 

spaces are granted to the requesting priority. 

If a single flow is granted two packet spaces it will most likely request more space 

in the near future.  Two packets are granted to the high priority flow and the rest are 

returned to the free memory.  This procedure reduces the search time if the memory 

reclaimed is greater than two.  The disadvantage is a lower priority requesting the space 

again causing the process to repeat.  Since the free memory is only given out in quantities 

of 2, the lower priority will not grow as fast as the high priority when taking into account 

the TDA or RTO which will reduce the throughput.   
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When equal priorities contend for space it is granted a first come first serve basis.  

It would be illogical to force an equal priority to reduce its throughput and suffer a TDA.  

The manager can search across multiple links to find the lowest priority.  Equal low 

priorities on two separate links are resolved by taking the flow with the most allocated 

memory.  The reasoning is similar to reclaiming all the memory, if a flow is going to 

suffer a TDA, then the maximum benefit should be gained.   

Creating Priorities 

 Considerations for prioritizing included adding bits to packets, setting flags in the 

TCP header, and adding information to the data of the TCP segment.  All of these designs 

required changes in OPNET‘s TCP module.  Changes to TCP were excluded, so the next 

option was to use existing information.  The reasoning for not changing the TCP module 

is to limit the possibility of inducing artificial gains.  The only information the buffing 

protocol is aware of is in the TCP header.  Logically, the most efficient way to create a 

priority is using the information available such as port number. 

 Table 1.  Priorities by Port Number 

Priority Ports Priority Ports 
1 1000-1010 7 7000-7010 
2 2000-2010 8 8000-8010 
3 3000-3010 9 9000-9010 
4 4000-4010 10 10000-10010 
5 5000-5010 0 All Other Ports
6 6000-6010   

 

The port number was chosen to define a priority.  There are 65,536 different port 

numbers available.  The priorities are determined by taking the modulus of the port 
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number subtracting it if falls between 0 and 10.  The remainder is then divided by 1000 

giving the priority.  There are 11 available ports for each priority but this is easy to 

expand.  The priorities are listed in Table 1.  Choosing the port number as the priority 

indicator was a matter of simplistic design.  

To generate the traffic in the Harmon model an application process model created 

a File Transfer Protocol (FTP) connection.  A 20 MB file download is simulated.  

Configuring the FTP application to use a specific port is difficult and could change the 

TCP module to implement.  Instead, for this research, a task configuration node is added 

to the project for manual task configuration.  Each task has 11 phases, priorities 0-10 and 

all are configured to begin at the same time.  A task differs from the FTP application in 

that the number of packets for the request and response are configurable.  After a TCP 

connection is established, a single request packet spawns a configurable response of 

packets.  The phase definition also allows the port number of the destination to be set for 

each priority.  Disadvantages to this design happen when repeating the task.  If the 

previous task does not close the TCP port, then the phase will fail stating the port is 

already in use.      

Summary 

This chapter described the model developed to simulate a realistic TCP aware link 

layer buffing device.  This chapter reviewed the model implementation and the logic 

behind the model detail.  Chapter 4 discusses the methodology of network design.   



 

IV. Methodology 

 

Chapter Overview  

 This chapter provides the details of the development of the network model and the 

experimental design.  Following that is a discussion on the factors, parameters, and 

measurements used in the analysis of results in Chapter 5.  

Simulation  

As mentioned previously, the simulation tool used to implement the model is 

OPNET 14.0.  The model is partly coded in OPNET and partly in external code, which 

allows for troubleshooting in Microsoft Visual Studio.  In Visual Studio, breakpoints can 

be set and each method can be verified for proper operation during the running of the 

simulation in OPNET.  Visual Studio provided direct access to the variables and 

structures which led to the changes discussed in Chapter 3.  

Many small simulations were designed to test the model and to confirm proper 

operation.  Although the networks presented in this chapter can not exercise every aspect, 

flavor of TCP, or attribute available in the simulation software, the experiments are 

designed to test the operation of the model and analyze the benefit of prioritizing buffered 

traffic.  Time constraints limited the number of experiments; hence, many factors that are 

just as important in choosing to buffer network traffic were omitted.  Presented in this 

chapter is a thorough review of a small scope of properties, with areas of future work 

presented in Chapter 5.  
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System Under Test 

 The simulation model constraints listed here focus the experiments to a specific 

set of characteristics.  As stated in the constraints in Chapter 1, the model can not change 

the TCP software in the end point systems.  OPNET offers a suite of configurable TCP 

versions.  Therefore, one simulation challenge is determining what TCP settings should 

be used in the end points to reflect typical systems.  All TCP versions contain the basic 

functionalities found in [6].  The differences represent optimizations and how they are 

affected by congestion mechanisms and throughput.  The scope of this research was not 

to determine the specific TCP version that worked the best.  However, the research can 

not ignore specific parameters which impede network performance when buffering is 

employed or the parameters which impede the buffering protocol.   

 The final project used the default TCP settings supplied by OPNET.  The two 

changes used for all experiment scenarios are the maximum receive window size and the 

maximum acknowledgement response time.  The default OPNET setting for the 

maximum receive window size is 8760 bytes, or 6 packets assuming 1460 bytes per 

packet.  To exercise the revolving buffer, the default settings were changed to allow 44 

packets in flight.  The maximum time for a receiver to respond with an acknowledgement 

was reduced from 200 milliseconds to 1 millisecond.  The buffering protocol uses the 

acknowledgement to clear the buffer and a local retransmission timeout (RTO) to resend 

buffered packets waiting for acknowledgements.  The default setting of 200 milliseconds 

increased the number of resends from the proxy to the receiver.  In an actual network the 

client may be far away, through many fixed networks.  This would increase the RTO for 
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the last proxy router, and therefore decrease the number of packet resends.  In the 

simulations the client was directly connected to the proxy router.  

Factors 

 The factors listed in Table 2 were specifically chosen after numerous designs 

were tested and implemented.  Proxy buffering may present a benefit over a lossy 

network, but may impede TCP operation in a good network.  To qualify an answer, many 

scenarios are necessary.  Proxy buffering should provide a benefit not only to a small 

download size at low packet loss, but to a medium download size with high packet loss.  

Full factorial experiments were run with 30 different seeds, giving 540 experiments.  

Note that the priorities must be run at the same time to compete for the buffer space.  

Priority 0 is a control group which is simply forwarded without buffering.  This provides 

a baseline in each experiment. 

Table 2.  Factors 

Factors Levels Description 
Proxy Buffering 2  Enabled Disabled 

Packet Discarding 3 No Loss Low Loss 5% High Loss 25% 
Failure Intervals 1 Exponential with 80 milliseconds mean 
Priority Levels 11 Priority 0 – 10 
Message size 3 Small 

(100 KB) 
Exponentially Varied  

(mean of 512KB)  
Medium  
(1 MB) 

Seed 30 Multiple Random Variables 
 

 Message sizes are set by changing the number of response packets.  (All packets 

are 1024 Bytes in data length.)  The message size is chosen from an exponential 

distribution with a mean of 500 packets.  Varying the download size is necessary to 

ensure that the packet sizes are not a factor in determining priorities.  Larger downloads 
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tend to gain higher throughput in low loss environments, where the smaller downloads 

complete quickly in the presence of high bandwidth. 

 When the simulation is exercised, all downloads begin at the same time to create 

competition for the buffer space and throughput.  The tasks are set to repeat, with a 

constant delay between repetitions.  The delay reduces the probability that a client will 

connect to a server on a port in use and cause a failure of two downloads.  When an open 

command is received on a port already in use, a reset is sent to the download in progress 

destroying it.  The client sending the open command does not receive a syn-ack and 

therefore after three attempts fails to complete.   

Parameters & Measurements 

 The extensive abilities of simulation software can impede modeling.  Missing 

parameters can affect the simulation and cause misleading results.  Parameters for the 

OPNET TCP version are default parameters except for the two discussed above, unless 

otherwise noted.  Building the simulated network required considerable tuning to provide 

enough competing traffic to demonstrate prioritized flows without exceeding the memory 

constraints of the hardware.  These considerations guided the choices for link rate and 

buffer size.  The link rate choice is a T-3 rate of 44.7 Mbps.  This rate provided enough 

bandwidth to reach a steady state of 44 packets in flight.  It permitted the download to 

complete in reasonable simulation and wall clock time.    

The total buffer size per proxy router was set at 250 packets.  The amount of used 

memory during the preliminary experiments rarely grew above 500 packets, so 250 

packets (365 KB) was chosen to create a limited repository of available storage space.  
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Contention for memory space is required for a priority buffering scheme to operate.  

Table 3 summarizes the scenario parameters.  

Table 3.  Scenario Parameters 

Parameter Setting 
Buffer Size (per Proxy Router) 250 
Link Rate T-3 (44.7 Mbps) 
Number of Flows > 90 
Propagation Delay Distance Base (<4 ms from end to end) 

 

The statistics collected for determining the value of priority buffering is a 

combination of multiple results.  The statistics listed in Table 4 give a description of the 

measurements of interest.   

Table 4.  Measurements 

Measurement Description Units 
Task Response Time Time from connection 

establishment until the final 
packet is received at the client 

Seconds 

Throughput Amount of traffic or packets 
traversing a particular link in 
a single direction  

Bits per second or 
packets per second 

Utilization Proportion of link usage 
versus link capacity 

Percentage 0-100% 

Congestion Window Size The boundary for the number 
of outstanding bytes 1

 

Bytes 

Number of Completed 
Downloads 

The total times a single 
priority is downloaded per 
simulation period 

Number 

 

                                                 

1 Although the congestion window size is the upper bound of the number of outstanding bytes, the true 

number of outstanding bytes is the minimum of the congestion window and the maximum receive window. 
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The task response time is a measurement from the time the TCP connection is made and 

first request packet is sent until the last response packet is accepted at the destination.  

Task response time alone would not provide a good measurement of the prioritization 

since the last packet in a high priority download may be lost.  When the last packet is 

lost, the high priority’s task response time may be worse then a low priority based on 

probability.  Averages of the task response time are reliant on the number of downloads 

and the actual time of completion.  All downloads begin at the same time, increasing the 

delay in the system.  The task response time increases proportional to the amount of 

traffic in the system.  Therefore, additional downloads increase the task response time 

average.  

 Throughput is the measurement of bytes per second and in this research the 

measurement is taken as the traffic enters the client.  Every client represents a single 

priority and all the TCP traffic is sent to one of the clients.  The total throughput for the 

network includes other traffic such as routing information IACKS and ACKS.  However 

that traffic is small in comparison to the actual file size traffic.  The throughput prediction 

is that higher priorities should have the highest throughput, as they experience less loss.  

The number of high priority flows on a given link, the number of failures, and the number 

of hops all influence the throughput.  These affect the RTT, and are inversely 

proportional to throughput.  Lastly, the number of downloads can artificially increase the 

throughput for a client as there may be numerous concurrent downloads across multiple 

servers.  
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Network Modeling 

In modeling the network it is essential to avoid misrepresenting results.  Careful 

consideration to alleviate false results is presented here.  Any network bottlenecks present 

preferential treatment to link or flows.  Maximum utilization in the network may 

misrepresent the flow’s throughput.  Multiple independent runs confirmed having all the 

high priorities located together caused the reduction in a flow’s throughput.  Thus, the 

network was designed to distribute priorities.  Ultimately, the priorities still must compete 

with each other for buffer space, so they still shared a common link in the central router 

shown in Figure 8. 

 

Figure 8.  Final Scenario Design 

Randomness in task execution order becomes vital.  All the tasks begin at the same time, 

but they should be random.  However, the simulation software must have some order in 
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which to queue up the events, which may impose an undesired structure on the order.  

Design challenges limited the clients from each owning multiple priorities and instead 

each client is a priority.  For randomness, the servers from which the clients download 

are chosen at random, and all servers can provide all priorities.  Connection for a specific 

priority can be diverted to another server if a server is busy.    

 



 

IV. Analysis and Results 

Chapter Overview 

This chapter reveals the outcomes of the simulations along with the knowledge 

gained from the analysis of the results.  In this chapter, the investigative questions are 

answered, and the data gathered during the simulation is presented for the reader’s 

assessment.  

Experimental Questions  

The goal of the research presented here is to find the answers to the experimental 

questions.  The experiments test the additional features implemented in the model and 

their affect on the network.  The changes should not induce a negative effect on the 

network.  The effects of prioritizing network traffic are explored, including potential 

benefits, and provide answers to the following experimental questions. 

Experimental questions: 

1. What are the overall effects of prioritized buffering on the network? 

2. Does limiting the number of buffered packets to 44 reduce or limit the 

throughput of the link? 

3. Do the algorithms for determining a priority’s buffer space favor higher 

priorities? 

4. How does link layer buffering react to routing changes? 

5. Does an exponential packet discarding interval distribution provide a 

realistic degraded environment? 
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6. If buffering conceals the actual congestion, what is the overall effect on 

the fairness in the absence of loss? 

Results 

Analyzing the results in Figure 9 indicate there is an observable throughput 

benefit to larger files.  Large files have the ability to gain momentum, or the ability to 

gain higher throughput over time.  This effect is accomplished in three ways: decreasing 

the RTT, increasing the congestion window size, and increasing the number of incoming 

acknowledgements.  The RTT in this scenario has a fixed minimum, but may increase as 

a result of packet loss and subsequent recovery.  Since the packets are buffered, if they 

are delivered in such a manner to avoid an RTO, then the RTT may slightly increase.  

The congestion control window is an indicator of momentum, but the measurement is 

throughput, and after the maximum receive window is reached flow control limits the 

packets in flight.  Each incoming acknowledgement received without an RTO or triple 

duplicate acknowledgement increments the sliding window.  The rate of incoming ACKs 

determines the rate at which the sliding window moves.  This rate is the momentum of 

the throughput.  When an RTO event occurs, the window is stopped, and the process 

begins again in a slow start state which takes time to reach the high momentum. 

 Smaller files lack the ability to gain momentum because they are completed 

before they reach the congestion avoidance phase.  The smaller files used in the 

experiment are 100 KB.  Analysis indicates they easily complete before reaching the 44 

packet window.  The medium files are 1 MB in size or 1000 packets, and have the ability 

to reach the theoretical maximum throughput before completion.  The varied file size is 

52 



 

an exponentially distributed file size with a mean of 512 KB.  The results in Figure 9 

provide the throughputs for large, varied and small files. 

 

Figure 9.  File Size Average Throughput Comparison with No Loss, Buffering Off 
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Figure 10.  25 Percent Loss, Priority Buffering Off, Large File size 

Figure 10 shows the average throughput for all 11 clients, in a network with 25% 

loss per link, 1 MB file size and buffering off.  The average throughput peaks at 55 Kbps, 

and the stead state mean is 13.5 Kbps.  In comparison, Figure 11 illustrates the same 

parameters with buffering on.  The average throughput peak of the traffic is 500 Kbps, 

and the steady state mean is 80 Kbps.  It is noted that priority zero is not buffered 

therefore it is excluded from the steady state mean.  The average steady state throughput 

is 6 times greater when buffering is applied.   

What is significant to priority buffering is that priority 7 has claimed the 

momentum and is above the throughput for the other clients in steady state.  In Figure 11, 

the final average throughputs of priorities, in descending order, are: 7, 6, 3, 9, 1, 8, 5, 10, 

54 



 

2, 4, 0. If priority 1 is the most important why doesn’t it have the greatest average 

throughput?  The problem is priority 1 is not utilizing the buffer space.  Even though it 

has space available to it but because it suffered packet loss, or real congestion at the first 

router, it is not building enough momentum use the buffer space which could be allocated 

to it.    

 

 

Figure 11.  11 Priorities at 25 Percent Loss, Priority Buffering On, Large File Size  
 

 When priority buffering is applied to a low-loss situation, there exist the 

potential for one TCP connection to gain momentum and saturate the link.  Figure 12 

illustrates a case with buffering on, using the congestion window as an indicator.  This 
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chart was developed by taking the top 10 maximum congestion window sizes for a single 

router.  In Figure 12, the connection from Server 3 to Client 5 has a maximum congestion 

window 100 times larger then the next closest maximum, noting that the scale is 

logarithmic.  The average congestion window size in Server 4 to Client 0 is sufficiently 

lower than the rest of the averages suggesting that the incoming link to the “Router-

Clients 0, 5, 7” saturated by the client 5 connection.  When this occurs, real congestion 

losses cause Client 0 to lose throughput.  As indicated by the average over the total 

download, the Server 4 - Client 0 connection had one packet in flight on average.  

 

Figure 12.  No Loss, a Large Files size, and Priority Buffering On, Logarithmic scale 
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Figure 13 shows the same experiment with buffering off; noting it is not a logarithmic 

scale.  The congestion windows all share equitable maximum and average congestion 

window sizes.  As shown in Figure 14, the throughput for both of the experiments 

indicates buffering provides unfairness.  Client 5 has a higher average throughput in both 

experiments.  The average throughput for Client 0 and Client 7 is significantly lower 

when buffering is applied.  The priority buffering allowed Client 5 to gain momentum 

and flood the link, leaving less throughput for Client 0 and Client 7. 

 

 

Figure 13.  No Loss, a Large Files size, and Priority Buffering Off 
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Figure 14.  Average Throughput Buffering On an Off in No-loss Environment 
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Investigative Questions Answered 

Question 1.  What are the overall effects of prioritized buffering on the network?  

Priority buffering provides a significant factor of six increase in average throughput.  

What it’s missing is the guarantee to bolster the high priorities over the low ones.  The 

system can not predict the packet recovery time so it still suffers RTOs.  Buffing provides 

a reliable delivery of packets in the degraded network.  In a 25% loss environment 

buffering provides four times the throughput versus not buffering.  While prioritizing 

flows can not increase the throughput of a higher priority it does provide an increase in 

throughput when the priority gains the momentum necessary to use the buffer space 

provided to it.  Control of the intricate timing necessary to implement a fully operational 

prioritized buffer provides the potential for additional research.   

Question 2.  Does limiting the number of buffered packets to 44 reduce or limit 

the throughput of the link?  The amount of buffer space needed for the experiments run 

was always less than 500 packets per router.  The maximum amount of outstanding 

packets for any one flow is 44.  The average number of packets need per flow depends on 

the momentum.  

 The experiments reached a maximum of 99% utility of the links provided, and 

the buffer allocated per flow never filled the 50 packet capacity, which it shouldn’t since 

the maximum receive window is set to 44 packets.  The RTT for the IACKs is much 
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smaller then the actual data packets so the IACKs from proxy to proxy immediately clear 

the buffer before they have time to grow.  

Question 3.  Do the contention algorithms for determining a priority’s buffer 

space favor higher priorities?  Priority 1 flows are always granted space in the buffer.  

Priority 10 flows are always the first to be removed from the buffer.  This effect creates a 

hidden benefit to the priority 1 flow by forcing a congestion event on the priority 10 

reducing the throughput of 10.  Priorities such as 4, 5, and 6 receive buffer space and are 

not affected by the prioritization unless a very small limit, around 150KB, is placed on 

the overall buffer size.   

There may be additional benefits of reordering the outgoing packets to send the 

high priorities first.  This modification would be an intricate design where packets enter 

on two different links are handled by precedence and not on a first come first serve basis.  

Additional design changes may extract the high priorities from the incoming queue first 

but this presents unique and undiscovered problems.  

Question 4.  How does link layer buffering react to routing changes?  To 

investigate this question, a scenario was created to change the route from client to server 

during a FTP download as discussed in Chapter 3, shown in Figure 5.  The addition of the 

revolving buffer fixed the gap problem and the FTP download was completed.  The 

routing required the OSPF ‘dead-link’ to be reduced an unrealistic value.  The buffers 

that are disconnected from the flow are able to clear the buffers after a predetermined 

time.  
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Question 5.  Do changes the packet discarding interval to an exponential 

distribution provide a realistic degraded environment?  The packet discarder or link 

winker created for previous research worked on a fixed interval size.  Downtime will 

always be a multiple of the fixed interval.  For this research, the interval is varied to 

mimic a real network experiencing scintillation effects, or interference.  The interval of 

80 milliseconds was chosen to be magnitudes greater then the RTT time between routers 

and greater then the end-to-end delay.  The discarding times are exponentially distributed, 

providing many small intervals and a few large intervals.  The original packet discarder 

may have provided a predictable throughput, which TCP adapted to compensate for the 

loss in the RTO smoothing algorithm.  

Question 6.  If buffering conceals the actual congestion, what is the overall effect 

on the fairness in the absence of loss?  Buffering minimizes packet loss in a degraded 

environment but it also hides packet loss in a low-loss environment.   This becomes 

apparent when looking at the congestion window size.  The amount of outstanding 

packets, or packets in flight, is the minimum of the congestion window or maximum 

receive window.  The congestion window growth is a good indicator of fairness when 

multiple flows are sharing the same link.  If all downloads begin at the same time, have 

the same delays, and experience no loss then they should all have an equal share of the 

link.  If all windows grow at the same rate then they are each receiving 

acknowledgements at the same rate.  As indicated in Figure 12, the congestion window of 

the Server 3-Client 5 connection is well above the rest.  Turning the buffers off and 

running the same experiment showed the equality of the congestion windows average and 
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maximum.  Congestion window growth without bound is indicative of zero loss, which is 

the goal of buffering the packets.  The number of connections in the experiment remains 

the same, but there are more connections with low throughput while a few connections 

are clearly gaining an unfair share of throughput.   

Summary 

This chapter reveals facts about priority based buffering using a link layer TCP 

aware protocol.   The analysis of the results shows a benefit to the higher priority flows, 

if the flows are not affected by a retransmission timeout (RTO).  Once the throughput is 

reduced, the benefit of buffering diminishes.  Priority based buffering provides a clear 

answer to link layer buffering in large capacity networks where the overhead of buffering 

every TCP packet would not be feasible.  In this case, a small percentage of traffic with a 

priority could be buffered while all other TCP traffic is transmitted without buffering.  

Chapter 6 provides a look at future work that may benefit from this protocol.



 

V.  Conclusions and Recommendations 

Chapter Overview 

Chapter 5 presents the conclusions drawn from analysis of the Chapter 4 results.  

The research presented here revealed interesting challenges that lie ahead in the field of 

link layer buffering.  There are still hurdles to overcome, however, priority buffering is 

feasible and provides an intermediate fix to TCP in a wireless domain.  Last, 

recommendations are presented for future work in this area.    

Conclusions of Research 

There are differing opinions on the worth of network buffering [7, 11].  Opposing 

views to link-layer buffering discuss the overhead required for processing, storage, and 

memory access outweighing the benefits of buffering.  These views place emphasis on 

changing the TCP end-points to control the flow, so the user has the control authority of 

the TCP.  Further research describes TCP as misbehaving in a wireless environment.  

This work concludes that TCP is behaving appropriately, and it is the challenged network 

which requires improvements to increase the performance. It is the authors’ perspective 

that the challenged network is causing the degradation, and requires adaptable controls to 

reduce loss and present a transparent medium to the end-points.   

This research provides a clear understanding of the benefits and drawbacks of a 

priority based buffering system.  Under some conditions, buffering without prioritization 

provides a four fold increase in network throughput in a degraded network. Prioritization 

of the traffic is still missing the key control element that is necessary to maintain a steady 

state condition.  That key element is the ability to predict and control flow rates.  This 
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element must be able to adapt to network outages and predict an amount of delay to 

induce to smooth the retransmission time out algorithm.  As long as a packet loss 

recovery time is greater than the retransmission timer, the throughput will be reduced 

multiplicatively.     

Military networks are designed to be robust and redundant, and in the presence of 

adversity, buffering may provide increases in throughput, utilization, and connection 

ability.  The challenge is to condition the buffer so it predicts the nature of the packet loss 

and provides a steady state RTT for the end-point server.   

Prioritization of packet flows provides a boost to the higher priorities.  As seen in 

Chapter 4, priority based buffering relies on factors such as the connection establishment, 

throughput, packet loss recovery, and the specific packets lost.  TCP does not provide a 

steady flow of packets when retransmission timeouts occur.  When a single flow’s traffic 

is reduced, it no longer has a buffering advantage.  The prioritized buffering protocol 

favors the flow with the most throughputs, unless the buffer space is limited.  If the flow 

does not ask for buffer space it will be given to the flows with a need.  This effect limits 

the ability prioritization, and therefore is an area of future research.   

Limiting the buffer space per flow showed that 44 packets are sufficient when 

windows scaling is not employed.   Windows scaling can have up to 1 GB of data in 

flight which would need at a maximum 735K packet spaces per flow.   Determining the 

buffer space may prove to be a tough challenge, as generating enough traffic in a 

simulation to fill 1GB of data per flow may not be feasible. 
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Significance of Research 

This research provides a means to improve the performance of challenged 

networks.  As military systems incorporate more technology, the ability to create a 

system of systems relies heavily on the line of communication.  As more complexity, or 

more entities are added to the system the more throughput and reliability is required.    

The research presented here is significant in that it explores an intermediate fix to a 

protocol that needs redesigned to encompass a network loss.  Since employing a new 

wireless TCP design is not feasible at this time, buffering provides a workaround until 

that day.  Prioritization is an addition to buffering that limits the amount of memory and 

processing delays required to buffer every packet in a degraded network. 

The research explored the ability of a TCP-aware priority based buffering 

protocol, and revealed the benefits and implications of employing such a network.  There 

are numerous factors to consider when designing such a system and this document 

provides a roadmap to fulfilling that goal.  The findings in this document provide a 

stepping stone to the next iteration of link layer buffering.  The ideas discussed in the 

future work section will enlighten one to the possibilities of increasing the capabilities of 

a degraded network without disturbing the TCP structures in use.   

Recommendations for Future Research 

TCP provides a difficult task of timing the link’s downtime.   More work in TCP 

congestion control timing is necessary to compliment this research.  The link’s downtime 

provides a crucial role in throughput of the high priority traffic.  As shown in the results 

of Chapter 4, when the packet loss and recovery take longer then RTO the benefit of 
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buffering is lost.  The next iteration of this research should build upon the ideas presented 

and incorporate some type of link downtime prediction software.  If the proxy router can 

predict or calculate the link’s downtime then packets departing on this link can be 

delayed.  This delay will produce a larger RTT which is used to calculate the RTO.    

A controller of the packet flow through degraded network is necessary to decrease 

the packet loss and increase the overall throughput.  The controller needs the ability to 

measure network outages and predict future delays.   

Since buffering is providing the reliability in the system, the second path of this 

work would incorporate the User Datagram Protocol (UDP).  UDP has no congestion 

mechanism to overcome, and reliability is built into the priority buffering protocol.  TCP 

limits the traffic when affected by adverse conditions, where UDP will continuously 

provide the throughput under any conditions.  Two challenges with UDP will be 

overcoming the throughput of UDP and requesting packets lost outside the system.  UDP 

is limited only in the processor’s ability to generate the traffic and the bandwidth imposed 

by the link.   If the UDP end-points are outside the system then providing a way to resend 

missing packets is a difficult task which will take some consideration.  There are 

applications that provide piecemeal tracking, such as bit torrent, which would allow the 

end-point to determine the missing data and resend just that particular segment.    
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Summary 

The research presented here provides a preliminary look at priority buffering of 

traffic in a challenged network.   The analysis shows that given a network with high 

packet loss, prioritized traffic can be favored over low precedence as long as the 

throughput of the flow is not disturbed.   For buffer prioritization protocol to work the 

traffic generator can not be impeded by congestion control mechanism.  Congestion 

control in a wireless network provides still an interesting problem; however, with the 

knowledge gained in this thesis there may be an answer to increasing throughput in a 

challenged network.  

 



 

Bibliography 

1. Harmon, D.F., Overcoming TCP Degradation in the Presence of Multiple 
Intermittent Link Failures Utilizing Intermediate Buffering, in Department of 
Electrical and Computer Engineering. 2007, Air Force Institute of Technology: 
Wright-Patterson AFB. 

2. Stevens, W.R., TCP/IP Illustrated Volume 1, August 2004 - 25th Printing: Addison 
Wesley, Reading MA. 

3. Reynolds, M.B., Mitigating TCP Degradation Over Intermittent Link Failures Using 
Intermediate Buffers, in Department of Electrical and Computer Engineering.  2006, 
Air Force Institute of Technology: Wright-Patterson AFB. 

4. Balakrishnan, H., et al., Improving TCI/IP Performance over Wireless Networks, in 
Proceedings of the 1st annual international conference on Mobile computing and 
networking.  1995, ACM Press: Berkeley, California, United States. 

5. Mathis, Matthew, et al., The Macroscopic Behavior of the TCP Congestion 
Avoidance Algorithm, Computer Communication Review, volume 27, number 3 July 
1997 

6. Postel, J., IETF RFC 793: Transmission Control Protocol. September 1981. 

7. Fall, K. A Delay-Tolerant Network Architecture for Challenged Internets, 
SIGCOMM’03, Aug 25-29, 2003, Karlsruhe, Germany 

8. Fieger, A., Zitterbart, M., Transport Protocols over Wireless Links, ISCC '97: 
Proceedings of the 2nd IEEE Symposium on Computers and Communications 

9. Hacker, T., Nobel, B., Athey, B., Improving Throughput and Maintaining Fairness 
using Parallel TCP,INFOCOM 2004, 23rd Annual Joint Conference of the IEEE 
Computer and Communications Societies 

10. Buchholez, G., Ziegler, T., Do T.,  TCP-ELN: On the Protocol Aspects and 
Performance of Explicit Loss Notification for TCP over Wireless Networks, 1st 
International conference on Wireless Internet, WICON 2005 

11. Balakrishnan, H., et al., A Comparison of Mechanisms for Improving TCP 
performance over Wireless Links, ACM SIGCOMM ‘96, Stanford, CA, August 1996 

12. Scott, J., Mapp, G., Link Layer-Based TCP Optimisation for Disconnecting Networks, 
ACM SIGCOMM Computer Communication Review, Vol 33, Num 5, October 2003 

68 



 

69 

13. Habib, A., Bhargava, B., Fahmy, S., A Round Trip Time and Time-out Aware Traffic 
Conditioner for Differentiated Services Networks, Proc. IEEE International 
Conference on Communication (ICC), New York, April 2002 

14. Chiueh, T., Prashant P.,  Cache Memory Design for Network Processors, HPCS'00 
Conference Proceedings, 2000 

15. Miyake, Y. et al.,  Acceleration of TCP Throughput over Satellite-base Internet 
Access using TCP Gateway, Computers and communications, 2000, Proceedings 
ISCC 2000, 5th Symposium 

16. Khan, F., et al., Link Layer Buffer Size Distributions for HTTP and FTP Applications 
I an IS-2000 System, Vehicular Technology Conference, 2000 IEEE VTS-Fall VTC 
2000, 52nd Vol 2. 

17. Bakre, A., Badrinath, B., I-TCP: Indirect TCP for Mobile Host, In Proc. 15th 
International Conf. on Distributed Computing Systems (ICDCS), May 1995 

18. Batra, S., Chu, Y., Bai, Y., Packet Buffer Management for a High-Speed Network 
Interface Card, Computer Communications and Networks, 2007, ICCCN 2007, 
Proceedings of 16th International Conference 

19. Fall, K., Floyd, S., Simulation-based Comparisons of Tahoe, Reno, and SACK TCP, 
Computer Communication Review, vol. 26, pp. 5--21, July 1996 

20. Kopparty, S., et al, Split TCP for Mobile Ad Hoc Network, Proceedings of IEEE 
GLOBECOM, Taipei 2002 

21. Robertazzi, T., Computer Networks and Systems Queuing Theory and Performance 
Evaluation,  3rd Edition, Springer, New York, 2000 

22. Kurose, J.,  Ross, K., Computer Networking, A Top Down Approach Featuring 
the Internet 3rd Edition , Pearson Education, Inc.,  2005 

23. Weeks, M., Student Intern, Southwestern Ohio Council for Higher Education, 
Dayton OH. Personal Interviews.  Sept 2007 – Feb 2008  

24. Border, J. et al., IETF RFC 3135: Performance Enhancing Proxies Intended to 
Mitigate Link-Related Degradations, 2001 

 



 

Vita  

 

Kevin J. Savidge was born and raised in Bellmawr, New Jersey and entered the 

military in 1994.  After basic he attended technical training in electronic and switching 

systems in Keesler AFB Mississippi.  After which, he was stationed at Offutt AFB 

Nebraska, and worked on secure networks.  He attended classes at University of 

Nebraska at Omaha, and earned an Associates Degree through the Community College of 

the Air Force.  He was selected for Airman Education and Commissioning Program and 

attained a Bachelor of Science in Electrical Engineer and Computer Engineering from 

North Carolina State University specializing in embedded systems and networking.  After 

commissioning as a Second Lieutenant, he was stationed at Tinker AFB, Oklahoma in the 

B-1 avionics engineering department. After being promoted to First Lieutenant, he was 

selected to attend the Air Force Institute of Technology where he was promoted to 

Captain and pursed his Masters of Science in Computer Engineering with Networking 

specialization.  Upon graduation he will be assigned to AFOTEC at Nellis AFB, Nevada.

70 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other 
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information 
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other 
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

27-03-2008 
2. REPORT TYPE  

Master’s Thesis  
3. DATES COVERED (From – To) 

Aug 2006 – March 2008 
4.  TITLE AND SUBTITLE 
 
Priority Based Buffering over Multiple Lossy Links Using 
TCP Aware Link Layer Buffering 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 
Savidge, Kevin J., Captain, USAF 

5d.  PROJECT NUMBER 
   ENG 08-175 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 
  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/EN) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
     AFIT/GCE/ENG/08-10 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Office of Scientific Research 
Bonneau,  Robert J AFRL/AFOSR 
875 N Randolph Street 
Ste 325 Rm 3112 
Arlington, VA 22203-1768 
(703) 696-6565 (DSN : 426-6207), e-mail : robert.bonneau@afosr.af.mil 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
 
11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
       
        APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

 
13. SUPPLEMENTARY NOTES  
 
 

14. ABSTRACT      Wireless military information systems require high reliability, which is difficult to 
achieve in adverse conditions.  To provide high reliability one must overcome packet loss across 
multiple wireless hops.  Buffering packets in a lossy environment is well explored; however, the 
ability to selectively buffer TCP traffic across multiple lossy links is a new area of research.  This 
document seeks to explore the delivery of high priority traffic in a lossy environment and 
conclude that prioritized buffing can increase the probability that a high priority download will 
finish, where others will fail.   
     It is shown that buffering provides six times the throughput in a network with each link 
experiencing 25% loss.  Prioritizing TCP packet flows provides a varied outcome, as it can not 
overcome the TCP mechanisms, when the packet loss recovery time is greater than the 
retransmission timeout event.  However, the future work in chapter 6 may provide roadmap to 
gaining control authority of the challenged network.  
  
15. SUBJECT TERMS 
      TCP, Priority Buffering, Mobile Networks, Link Layer Buffering 

16. SECURITY CLASSIFICATION 
OF: 

17. LIMITATION 
OF  
     ABSTRACT 
 
 

UU 

18. 
NUMBER  
      OF 
      PAGES 
 

82 

19a.  NAME OF RESPONSIBLE PERSON 
Scott R. Graham, Maj, USAF (ENG) 

a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 
U 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-6565, ext 4918 
(sgraham@afit.edu)

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18



 

 

 


	Priority Based Buffering over Multiple Lossy Links Using TCP Aware Layer Buffering
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	I.  Introduction
	Background
	Problem Statement
	Research Objectives
	Investigative Questions
	Methodology
	Assumptions/Limitations
	Implications

	II. Literature Review
	Chapter Overview
	Terms Defined 
	Description
	Transmission Control Protocol 

	Relevant Research
	Improving TCP Performance 
	DTN Protocol
	Snoop Protocol
	Indirect TCP
	Split TCP
	Reynolds Model
	Harmon’s Model 

	Summary

	III. Designing the Model
	Chapter Overview
	OPNET 14.0
	Model Implementation Overview
	Small Network Anomalies
	Packet Discarder Modification
	Proxy Model Development
	Memory Manager
	Memory Scheme
	Creating Priorities
	Summary

	IV. Methodology
	Chapter Overview 
	Simulation 
	System Under Test
	Factors
	Parameters & Measurements
	Network Modeling
	Chapter Overview
	Experimental Questions 
	Results
	Investigative Questions Answered
	Summary

	V.  Conclusions and Recommendations
	Chapter Overview
	Conclusions of Research
	Significance of Research
	Recommendations for Future Research
	Summary

	Bibliography
	Vita 

