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Abstract

Current attempts to prolong the life of a robot on a single battery charge focus

on lowering the operating frequency of the onboard hardware, or allowing devices

to go to sleep during idle states. These techniques have much overhead and do not

come built in to the underlying robotic architecture. In this thesis, battery life is

greatly extended through development of a behavior-based power management sys-

tem, including a Markov decision process power planner, thereby allowing future

robots increased time to operate and loiter in their required domain. Behavior-based

power management examines sensors needed by the currently active behavior set and

powers down sensors not required. Additionally, predictive power planning is made

possible through modeling the domain as a Markov decision process in the Delibera-

tor. The planner creates a power policy that accounts for current and future power

requirements in stochastic domains. This provides the identification of the ability to

use lower-power consuming devices at the start of a goal sequence in order to save

power for the areas where higher-power consuming sensors might be needed. Power

savings are observed through four simulated robots—no power management, lenient

power management, strict power management, and predictive power management—in

two case studies: 1) Low sensor intensity environment where robots wander randomly

while avoiding obstacles and 2) High sensor intensity environment where robots are re-

quired to execute a series of tasks. Testing reveals that in a real life scenario involving

multiple goals with multiple sensors, the robot’s battery charge can be extended up

to 96% longer when using behavior-based power management with predictive power

planning over robots that only rely on traditional power management.
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Behavior-Based Power Management

In

Autonomous Mobile Robots

I. Introduction

Autonomous mobile robots are becoming more prevalent in today’s society. Since

the late 1960’s, much research has been devoted to the study of advanced

artificial intelligence techniques. It should come as no suprise that robots have been

“working” in factories building our automobiles for quite some time now. Robots are

now also becoming less of a character in a science fiction story and more of a reality.

Law enforcement agencies are making more frequent use of mobile robots to examine

potential bomb threats in crowded, populated areas [49]. The Department of Defense

is performing research into options for robots on the battlefield of the future. The use

of robots allows military commanders to subject a lifeless machine to risk rather than

a number of human lives [70]. Mobile robots are usually mankind’s first explorer into

a new world as well. NASA frequently sends robotic “explorers” onto the surfaces of

our neighboring planets [28].

All the advantages of mobile robots do come at a price, however. In order for

a robot to be truly effective, it needs to be free from an outside power source and

rely on its onboard batteries. Of course, the robot could also utilize an expensive

device for recharging its onboard batteries, such as an array of solar panels, but this

solution will not be practical for most applications on a realistic budget. A robot,

by its very nature, must accomplish its mission within the timeframe provided with

the amount of power in its batteries. Therefore, any mechanism that provides longer-

lasting batteries, or cuts down on the amount of power that the robot consumes will

enable the robot to last longer in the field and accomplish a wider array of tasks.
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This thesis presents a mechanism that extends onboard battery life by providing a

measure of power awareness coupled with each robotic behavior.

Behavior-based power management is achieved in a reactive robotic architecture

through the use of behavior representations. The representation of the current, active

behavior set encapsulates the sensors that are needed for each included behavior. By

traversing the tree of represented behaviors, it is possible to determine which onboard

sensors are not required. Any sensor not needed for the current, active set can then

be immediately be powered down. This power management scheme also provides a

low power mode once the power source falls below a certain threshold. In this mode,

high power consuming onboard devices are forced off in an effort to save enough

power to finish the current task or travel back to a recharge station. If the robot

has multiple sensors that provide similar functionality (e.g., a laser and sonar array

are both capable of range detection), the higher power consuming sensor would be

powered down in favor of the lower power consuming. Additionally, reasoning about

the problem domain as a Markov decision process (MDP) [52] in the highest layer

of the architecture creates a high level “power plan”. With this plan, a robot can,

for example, conserve power at the beginning of a task sequence by using low-power

consuming devices in anticipation for the end of the goal set where higher-power (and

hence, higher fidelity) sensors are required.

The remainder of this chapter presents a high-level outline of the information

that will be covered in this thesis including an overview of the specific problem state-

ment. Section 1.2 presents a general introduction to the main concepts that will be

necessary to comprehend during this research. The goal of this investigation is then

discussed. There are a few assumptions that must be made in order for this project

to function and these are covered in Section 1.4.

1.1 Problem Statement

There are existing techniques currently in use in the robotics and general elec-

tronics fields that provide some measure of power conservation. Certain modern

2



electronics can lower their operating frequency when it is detected that they are not

in heavy use. Lowering the operating frequency lowers the total power consumption,

and in real-time systems this savings has been shown to be 20% - 40% [51]. Other

devices can power down in to a “sleep mode” when it is determined that they are

idle. In this state, they use minimal power–only enough to run their systems until

they are needed to power back up to process information. Simunic [60] presents an

algorithm that causes components in a laptop computer to power down while idle

which realizes 58% less overall power consumption. In either of these power-saving

techniques, there must be a trade-off between how long the device must be inactive

to be considered idle, the frequency of idle states, and the amount of time needed

to transition between the sleep state and the active state. The transition between

states is not instantaneous. In systems were the device is used with regularity, the

sleep state criteria may have to be changed so that it does not power down every time

between use for a brief time when it is just going to power back up again momentarily.

Specifically, in the robotics domain, there have been efforts to save power by

careful choice of the robots traversed path. The motors that propel the robot around

the world are known to be heavy consumers of energy, so efficient path-planning

can provide a degree of energy efficiency. This entails the robot traveling at the most

efficient speed for the terrain, avoiding unnecessary direction changes and unnecessary

inclines. Mei [39] has found up to 51% energy savings in an open space while utilizing

efficient path planning and motor speeds. Again, this provides a measure of power

conservation, but robots that primarily loiter in one place for long periods of time

gain little from this technique.

This thesis seeks to fill a void in existing power savings techniques by imple-

menting a behavior-based power management system on an autonomous mobile robot.

The proposed system is coupled with the robot’s reactive behavior architecture, and

hence function seemlessly on any robot running it. It has the additional benefit of

being completely transparent to any existing power savings techniques used by the

3



robot, like those described previously. The following section provides a high-level

overview of the key concepts needed for understanding of this project.

1.2 Key Concepts

The behavior-based power management system is integrated into a reactive ar-

chitecture. Specifically, it is developed in a behavior-based reactive architecture using

the Unified Behavior Framework (UBF) [68]. The power management system is trans-

parent to any form of dynamic voltage scaling or other power saving technique already

in use by the system. The following subsections provide outlines of the concepts of

reactive architectures and power management techniques.

1.2.1 Reactive Architectures. Reactive architectures are typically described

as Sense, Act controllers [15]. This means the robot senses the outside world, and

passes that data to a reactive controller. The controller chooses an action based

on the parameters it sensed from the outside world. This system does not have a

formal method for planning. The robotic architecture that includes a formal method

is described in Section 2.1.1. Reactive architectures can be constructed with low-

level behaviors that react quickly to stimulus and higher-level behaviors that use the

lower-level’s reactions. This idea of layering behaviors in such a way where the lower

levels are completely independent of the higher allows the architecture to construct

complex behaviors using simple behaviors as building blocks. However, situations in

large, complex domains or where the robot is to perform a list of goals which would

require careful planning obviously are not advisable in a strictly reactive architecture.

Additionally, because reactive architectures typically contain a hardcoded library of

behaviors, it does not lend itself well to code reusability for the developer when

injecting the robot to a new domain. This means that reactive architecture-based

robots frequently function well only in a very specific type of domain.

The Unified Behavior Framework [68] combats the problem of code reuse and

robot adaptability in reactive architectures. The UBF specifies a certain way for

4



behaviors to be defined. These behaviors can then be grouped together to form a

composite behavior that selects or fuses the action or actions between the behaviors

through the use of an arbiter. This way, complex robot behavior can be created using

simple combinations of behaviors and arbiters. A robot built on this type of reactive

behavior-based architecture is much more robust and can function in a wide variety of

situations simply by modifying the composite behaviors or changing the arbitration

techniques. It does not require the developer to actually create new behaviors from

scratch and verify that they function correctly. The developer simply redefines new

composites based on behaviors that have already been tested and verified for correct

functionality.

The next step is for the behaviors in the architecture to be represented as ab-

stractions. This allows each behavior to be associated with a specific goal it can

accomplish, a precondition for execution and a postcondition that occurs after execu-

tion [21]. These behavior representations, with their respective goals and conditions,

allow a measure of planning to be added to the reactive architecture. The planning

and behavior representations provide a foundation for construction of a behavior-

based power management system.

1.2.2 Power Management Techniques. As stated in Section 1.1, there are

a number of techniques in use to conserve energy in robots or any other electronic

device, the simplest of which is to power down idle equipment [37] [60]. Complications

arise when determining when a device is considered idle or not. There is a fine line

to balance the power demands of the system with the overhead of actually powering

down devices when deciding they are idle. If the determination for idleness is made

too often, a device could be power cycled over a very brief period of time which, due to

power-up requirements being greater than operating power, cancels out the overhead

of actually powering down the device. Conversely, if the determination for an idle

device is not made frequently enough, very little power saving may occur since the

equipment will remain powered up.
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Similar to powering down an idle device is the concept of Dynamic Voltage

Scaling (DVS). Under DVS, devices that are idle or under light load can have their

operating frequency scaled down an appropriate amount [51]. Obviously, if the device

is not operating at a high frequency, the less power it will consume. Dynamic Voltage

Scaling assuages some of problems associated with putting devices in a sleep state. If

the device is only operating at a lower frequency instead of completely asleep, it can

still process data if unexpectedly presented with it immediately after determining it

was idle. It may also cost less to bring the device back up to full operating capacity

as opposed to waking up a device that has been powered down.

The problem of dynamically varying the operating voltage or powering down

a device can be solved by guaranteeing when a device is going to be idle. Further

power savings exist by predicting when power consumption will happen in a system,

given a set of goals to accomplish or a hierarchy of behaviors to execute. Utilizing a

representation of a currently active behavior that encapsulates the sensors required for

execution provide a guarantee of sensor idleness. The behavior-based power manager

examines all sensors that are required for an active behavior set and ensures they are

currently powered up. Similarly, all onboard devices that are not currently required

for behavior execution are immediately powered down with the guarantee they will

not be needed.

1.3 Research Goal

The goal of this research is to create a behavior-based power management sys-

tem. It is constructed on a reactive architecture and provides a guarantee that a

device on the robot is going to be idle. Through this guarantee, the robot is able

to completely power down onboard devices at certain times based on the behaviors

that are currently executing. This research also explores further power savings in

the prediction of system power consumption, given a set of goals to accomplish or a

hierarchy of behaviors to execute. This is made possible through the representations

of behaviors previously described and the construction of a “power planner” using a
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Markov decision process (MDP) planner in this domain with power consumption as a

cost. The power planner solves the MDP problem with the Stochastic Planning using

Decision Diagrams (SPUDD) open source toolkit [64], as detailed in Section 3.4.1.

1.4 Assumptions

It is not the purpose of this thesis to burden the user with a specific design

environment and executing on a specific hardware platform. This project should be

modular enough to be developed in any object-oriented programming language in any

developers environment. The architecture described herein should function correctly

on most robotic platforms; however, the platform must support software control over

power cycling of the onboard devices. The underlying principle that is of tantamount

importance to this project is that the robotic platform being developed on supports

the powering on and off of devices and sensors through software control. This is quite

easy in a simulation environment where everything exists in software, but becomes

a problem when executing on real, physical robots as not every device is capable of

immediately turning on and off via a software command.

1.5 Thesis Overview

This thesis has the following structure: Chapter I provides an introduction to

the problem domain and the specifications of the research goal. It also provides a

high-level summary of some of the broad topics needed for coverage of this nature.

Chapter II expresses the current state of the art in research into this problem. Specif-

ically, the chapter explains the varied robotic architectures and the use of power

savings techniques in electronic and robotic equipment. It also describes power man-

agement techniques used in wireless sensor networks and reviews common methods

of scheduling and planning methods. The detailed methodology for constructing a

behavior-based power management system is presented in Chapter III. This chapter

defines the baseline architecture, the design environment and the power management

architecture as well as the test plan. Chapter IV presents and analyzes the results of

7



testing the power management system when compared to robots without. The thesis

concludes with Chapter V which summarizes the research and results and guides the

reader toward future work in this area.
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II. Background

Effectively managing power consumption in any hardware or software system re-

quires many dissimilar components working together in harmony. A mobile,

autonomous platform like a robot further amplifies this challenge. A robot can easily

find itself in a situation where a human operator cannot physically reach it, which

would not be an ideal time for the robot to run out of power. The robotics domain

thus provides ample opportunity for strong power management techniques to be ex-

ploited. Current techniques for managing power usage in robotics, whether hardware-

or software-based, prove to be somewhat effective while still leaving room for improve-

ment.

This chapter provides a background on hierarchical, reactive, and hybrid robotic

architectures as well as the unified behavior framework. Following this is in explo-

ration of the current state of the art in power management solutions in robotics and

other domains with an overview of current hardware- and software-based power man-

agement techniques in robotics and wireless sensor networks. A brief discusson on

scheduling and planning algorithms is provided in Section 2.3.

2.1 Behavior-Based Robotic Architectures

This section describes the evolution of modern robots. Robots were first de-

signed in the 1960s with a strictly hierarchical architecture. This allowed the robot to

observe its domain, plan a course of action, and execute the action [48]. Later, in the

1980s, robots were developed as purely reactive entities that would execute a prede-

termined action given a specific stimulus [15]. This yielded a robot that could react

quicker in a dynamic environment because it eliminated the time-consuming planning

step. Next, researchers realized that some amount of planning is necessary for a robot

to function in the real world and be able to accomplish complex tasks, which lead

to the creation of the hybrid architecture [48]. This architecture allows a planning

phase to be interjected into the reactive structure when processing time permits. The

9



remainder of this section describes the specifics of these three behavior-based robotic

architectures.

2.1.1 Sense-Plan-Act Paradigm. As roboticists were developing the first

autonomous robots in the late 1960s, the predominant paradigm was a Sense-Plan-

Act (SPA) architecture [48]. This paradigm is characterized by the clear delineation

between the actions of the robot: sense, plan and act (Figure 2.1a). In the SPA

paradigm, the robot first senses the environment and develops a symbolic model to

define the world. After sensing is complete, the robot then plans the actions to be

taken in order to accomplish the tasks assigned. It is important to note that in the

hierarchical paradigm, while the robot is sensing it is not planning, and while it is

planning it is not sensing. Once the plan is developed, the next action to be executed

is sent to the actuators and the robot acts [48]. After the robot acts, it loops back to

the sensing phase where it observes the world again with the hopeful result that the

robot’s action had the desired effect. The process repeats until task completion.

It is easy to see that this particular robot architecture provides a straightforward

and orderly approach to developing autonomous robots. Robots were developed using

this architecture in real life situations to great success [47, 50]. However, the Sense-

Plan-Act paradigm’s shortfall is with real time reactions. The time it takes a robot

to plan out an action before acting is simply too long for many reactive behaviors.

A robot using the SPA paradigm in a highly dynamic domain can easily find the

state of the world quickly changed in the time it takes to decide what action to

take next–rendering the decision obsolete before it was even made. This lead to the

development of purely reactive architectures which remove the planning stage, thereby

creating robots with quick reaction times in forever-changing environments.

2.1.2 Reactive Paradigm. In the late 1980s, Brooks published his work

on the reactive paradigm [15]. His architecture for robotics took planning out of

the Sense-Plan-Act paradigm and replaced it with a reactive architecture of Sense

Then Act (Figure 2.1b). Brooks modeled his architecture on biological entities rather
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(a) Hierarchical
Architecture

(b) Reactive Architecture (c) Hybrid Architecture

Figure 2.1: Robotic Architectures

than high-level symbolic reasoning. He showed that living creatures can have simple

reflexive reactions and still accomplish complex tasks.

In the reactive paradigm, low-level behaviors are developed to provide quick

reactions to certain sensor inputs. For example, an initial behavior for a wheeled

robot might be to avoid colliding with obstacles. Another behavior can then be

added on top of the first, providing the robot with additional functionality. For

example, a behavior for the robot to drive around in a random pattern can be added.

These two behaviors would allow the robot to explore its surroundings while avoiding

collisions. As behaviors are created higher up in the behavior architecture, they can

inject information into the lower layers for them to act on without the lower layers

even aware that it is coming from a layer higher in the architecture. Brooks calls this

the Subsumption architecture [15].

The reactive paradigm proved to be quite robust and also quite prevalent through-

out the 1990s [48]. Careful selection of the behaviors underlying the layers caused a

robot to achieve a variety of complex tasks without an actual planning phase as in

the Sense-Plan-Act paradigm. However, robots developed with a reactive architecture

are hardwired for a specific domain and specific set of executable tasks. A reactive

robot cannot be easily removed from one domain by the developer and placed into

a new domain with new goals without greatly modifying the underlying behaviors.

Consequently, there are several behavior-based reactive control architectures, each of
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Figure 2.2: Unified Behavior Framework Architecture

which excel in a particular domain [8] [15] [18] [31] [34] [54]. This problem is assuaged

by the Unified Behavior Framework.

2.1.3 Unified Behavior Framework. The behavior-based robotic architecture

paradigms described thus far rely on a single behavior-based system that is hardcoded

during robot development. This results in a robot that is not as adept at cross-domain

execution, as its repertoire of actions to choose from is specifically tailored to the

initial domain and goal set. The robot is forced to conform to a single reaction-based

architecture which—while suitable in the initial domain—might not provide the action

needed in a new situation. Thus, several behavior-based reactive architectures have

been developed and proven to function successfully in their specific domains. The

Unified Behavior Framework (UBF) provides a means of selection between techniques

from varied behavior-based reactive architectures dynamically at execution time [68].

The UBF defines a standardized way of describing simple behaviors following

proper software engineering techniques [68]. Figure 2.2 shows how the controller

chooses between multiple behaviors inside a library in real-time since each behavior

is described in a similar fashion. As in the Reaction Action Packages described by

Firby [23], the UBF allows the controller more freedom in its action selection under
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any given situation presented through its sensors. Having multiple behaviors to select

an action from allows a robot utilizing the UBF to much more readily function in a

highly dynamic environment.

Additionally, the UBF presents a standardized way of describing arbiters for

any group of behaviors. This allows groups of complex composite behaviors to be

constructed out of relatively simple single behaviors. Arbiter design is completely

up to the designer, but they can use such functions as highest activation, where the

behavior with the highest utility value is executed, or utility fusion where each utility

value is weighted and a combination of behaviors or partial behaviors are executed [68].

The UBF, however, does not provide a formal method for an incorporated planner.

Planning is vital in domains that require multiple, complex, or temporally constrained

goals. However, the incorporation of a planner comes with the possibility of increased

time consumption.

The Unified Behavior Framework was further improved upon by abstracting

each behavior in a list of behaviors (or behavior library) into their components [21].

Each behavior is described by a set of goals it will accomplish, a set of precondi-

tions necessary before it can execute, a set of post conditions that behavior execution

causes, and a set of data required for the behavior to access. Since the behaviors are

now represented as abstractions, composite behaviors can be constructed dynamically

during execution. This provides a robot with many more behavior choices to accom-

plish its goals. As will be shown in Chapter III, this dynamic architecture provides

the groundwork for behavior-based resource management.

2.1.4 Hybrid Architectures. By the late 1990s, researchers realized that

reactive agents worked well in dynamic environments without long-term, complex

task planning and hierarchical agents worked well in static environments to capitalize

on their ability to plan. Neither paradigm was suited for an autonomous agent in the

real world where change can occur rapidly and tasks are complex.
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The solution was the hybrid architecture. The hybrid paradigm merges the best

of the hierarchical and reactive paradigms. Agents using the hybrid paradigm function

thus: Plan, then Sense and Act (Figure 2.1c). Essentially, the agent first plans out

the behaviors needed to accomplish a task, and then executes them in a reactive way.

It has the ability to process planning in parallel with reactive execution of current

tasks. The planner module can also interrupt the current execute to interject a new

behavior, if needed [48].

Virtually all autonomous vehicles have some form of one of the three architec-

tures described here as their underlying framework. These architectures allow robots

to flourish in dynamic or static environments and with complex or simple goals. These

architectures do not, however, provide any means of managing the robot’s power con-

sumption. This thesis presents an architecture that incorporates reliable power man-

agement for autonomous vehicles without sacrificing any of the advantages inherent

in the original architecture.

2.2 Review of Power Management Techniques

Autonomous mobile robots appear in a myriad of applications. A consumer

can purchase a reasonably “smart” autonomous vacuum cleaner for their home (Fig-

ure 2.3a) [29] or play with a robotic toy dog (Figure 2.3b) that reacts to the consumer’s

commands [63]. However, autonomous robotic vehicles have a critical dependency:

by their mobile nature, they cannot be tethered to a power source. Each robot must

rely on its own internal batteries and hence efficient power management becomes an

important design issue.

There are only a few approaches to power management currently employed in

mobile electronic equipment. This section presents a brief description and overview

of these techniques. Efficient use of limited battery energy can be hard-wired into

the design of the hardware as well as the design of the software [14]. Many of today’s

modern operating systems include provisions built-in for power management that the

robot can utilize [10]. There are also several process scheduling and voltage scaling
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(a) The Roomba Autonomous Vacuum
Cleaner

(b) Sony’s Aibo Robotic Dog

Figure 2.3: Two examples of robots available for consumers

algorithms in use to determine the most efficient way to execute programs [5] [6] [51].

The remainder of this section provides further details on the techniques mentioned.

2.2.1 Hardware Design. Processor speed and voltage demands are ever-

increasing while the physical size of the processor is ever-decreasing. As computer

processors get faster, their power requirements become the strongest limiting factor

in their future performance on a mobile platform such as a robot [66]. One possi-

bility to combatting this problem is to handle the power management at the level of

the chip design itself. As the processor is designed, efficient power management is

incorporated. Brooks [14] proposes the Wattch framework for exactly this purpose.

Wattch provides architecture designers with toolsets for use while designing the hard-

ware that allows for the testing and analyzing of power demands. The open source

toolset, SimpleScalar [59], simulates modern processors and is often used as a design

and debugging environment in research and industry [4] [16]. As such, Brooks mod-

ified SimpleScalar’s structure to include the Wattch framework. Brooks shows that

since the power usage is optimized at this low-level, early in the design of the system,

power efficiency is increased and initial architecture development time is decreased
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Figure 2.4: The circuitry behind D’Souza’s TerminatorBot, showing the spiral design
of the removable FPGA modules

since future redevelopments due to power issues are avoided. This allows the power

management to be handled at a level much lower than the Operating System kernel,

and reduces the OS requirements, allowing it to operate more efficiently.

2.2.2 Hardware Removal. While it is possible to save power through efficient

design of the chipset, sometimes it is more cost-effective to simply remove hardware

components that use too much power. A novel approach of a field programmable gate

array (FPGA)-based, resource constrained robot is outlined in D’Souza’s work [20].

D’Souza describes an FPGA-based Morphing Bus specifically used in small, about

3 - 5 inch diameter, robots which could also be scaled to use in larger applications.

Figure 2.4 depicts the concept of modular FPGA-based sensor packages that are

connected in a spiral, in series. His use of FPGAs in each module of the robot allows

the user to decide which sensor packages to connect to the system at execution time.

The user in the field could decide, for example, to connect an IR camera and a sonar

locator but leave disconnected the GPS receiver and laser range finder. This allows

the robot to save power by only using the components that are needed for the current

task with the obvious drawback of the user needing to physically connect or disconnect

the appropriate components.

2.2.3 Dynamic Power Management. Perhaps the most prevalent energy con-

servation technique is “turning off” power scavenging systems that are not needed.
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This technique of providing enough embedded systems to complete the task with the

minimum amount of power through eliminating temporarily unnecessary components

is calling dynamic power management (DPM) [10]. Consider a swarm of small, un-

manned aerial vehicles used for loitering and surveillance over a large area inhospitable

to humans (such as over a forest fire) [37]. Marinoni’s design for an embedded con-

troller for autonomous flight control incorporates the power requirements of each I/O

peripheral in the DPM algorithm. Most components on the vehicle can be turned on

or off through through a direct digital line which further decreases the energy needed

to power up or power down. A significant amount of the energy in Marinoni’s vehicles

is conserved through efficient management of the communication channel. Because

the vehicles travel in groups, there will always be some transmission and receipt of

messages between robots. However, as the vehicle loiters overhead it can power down

the radio module so as not to waste energy on idle listening. However, in Marinoni’s

design, the onboard devices’ power states as well as the internal CPU are controlled

through a separate microcontroller that takes into consideration the anticipated op-

erating frequency to execute the current task. This creates more overhead than a

strictly behavior-based system and does not provide a guarantee of device availability

at the correct time, nor device power down when truly idle. Efficient communication

protocol design also designates the power transmission value, and the retransmit time

to ensure packet collision avoidance and error-free transmissions with great efficiency.

Motorized hardware can use up to half of the energy in a robotic vehicle [40].

For example, the Pioneer 3DX robot by ActivMedia can use between 2.8 -10.6 Watts

just for turning the wheels to produce locomotion. Thus there is a large potential for

energy savings for efficient path planning and velocity control. Avoidance of frequent

speed changes and excessive milage beyond the direct route are two methods of DPM

to create efficiency in robotic kinematics [38].

Robots acting in a swarm or group present their own unique set of power man-

agement challenges. In a group environment, the energy efficiency of the group as

a whole, as well as each individual robot, must be taken into consideration. The
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initial deployment of the robotic swarm can play a large role in efficient power man-

agement [41]. Robots must deployed with enough density to cover the area needed,

while at the same time meeting timing requirements. Mei [41] shows that a proper

deployment technique of a swarm can cut power requirements for the group as a whole

by up to 32 percent.

2.2.3.1 Dynamic Voltage Scaling. Dynamic Voltage Scaling (DVS)

is another type of DPM found in a large number of today’s efficient power designs.

DVS is a way to dynamically raise or lower the voltage and/or operating frequency a

processor (i.e., alter its speed) in order to save power. This can make the processor

enter an ultra low power, or “sleep” state. Aydin [5] shows that real-time systems

are one area that DVS works particularly well. Typical variable voltage algorithms

use the worst-case execution time when determining the scheduling of processes in an

effort to use the minimum amount of voltage possible and still complete the processes

within the temporal constraints. Aydin took this one step further by introducing

a real time heuristic that constantly monitors actual CPU computation time and

adjusts voltage requirements. Further, a speculative component of the heuristic is

provided to predict when idle periods in the processor will occur. Using each of these

techniques as opposed to the static worst-case execution time algorithm can save an

average of 50 percent of the energy consumed [6].

The next step for Dynamic Voltage Scaling is to incorporate it directly with the

scheduler in a real-time operating system. This integration is critical since real-time

tasks are dependent upon temporal execution constraints as well as power require-

ments. Allowing the DVS scheduling algorithm to be integrated into the operating

system’s real-time scheduler has shown to improve energy efficiency almost to the

lowest theoretical energy consumption [51]. Pillai shows that the real-time DVS (RT-

DVS) algorithm has proven to save 20 - 40 percent of energy consumption in embedded

real-time systems. Testing of various versions of RT-DVS was performed by Kim in

a thorough, simulated environment, SimDVS [32]. Each RT-DVS algorithm was sub-
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jected to rigorous testing in the same domain to get an accurate measure of energy

efficiency comparisons. He shows that utilizing the best RT-DVS schemes result in

power consumption only an average of 9 - 12 percent above the theoretical minimum

power usage.

2.2.4 Wireless Sensor Networks. Wireless sensor networks are also a power-

constrained embedded system. They offer robust and fault-tolerant solutions to net-

working problems as varied as wildlife habitat monitoring to node localization [2] [19]

[22] [35]. Wireless sensor networks are usually implemented with swarms of small

microcontrollers coupled with a sensor package and/or a wireless communication de-

vice. The appeal for wireless sensor networks comes from the fact that they have

the potential to be spread out across a wide area and loiter for long periods of time.

However, this ability comes with a cost: the individual network nodes are useless once

their onboard battery is depleted [46]. Consequently, there have been many endeavors

into power management for wireless sensor networks.

Power savings can start at the lowest level of design—the physical layer [56].

This incorporates both the actual radio wave transmissions and the hardware needed.

Efficient design of a physical layer protocol for communication between wireless sensor

network nodes can provide power savings, for example through exploiting the cluster-

ing of individual nodes. Shih [56] shows that multiple nodes in a group can function

as a virtual single node. Information passed between each node in a cluster is redun-

dant and thus, data only needs to flow from one cluster to another. Hui [27] presents

a unique approach in which power management is achieved through a sentry-based

approach. Each node is grouped into a sentry/non-sentry status. The nodes that are

non-sentries are able to shut down until called back to service by the sentries. This

allows power savings for the group as a whole.

Additionally, not all media access control (MAC) protocols are as efficient as

others. Complex, handshake-based MAC protocols such as carrier sense multiple

access with collision avoidance (CSMA-CA) increases latency between transmissions
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with their additional computations over time or frequency division multiple access

(TDMA or FDMA) and hence use more power as well. In his article [71], Ye designs

a custom sensor-MAC (S-MAC) in order to save power and still retain some of the

benefits of a complex MAC such as CSMA-CA. S-MAC includes provisions for auto-

matic duty cycle with periodic sleeping and adaptive listening based on current traffic

flow. Overhearing avoidance and inter-node message passing are also implemented in

S-MAC.

The benefits of dynamic power management described in Section 2.2.3 can also

apply to wireless sensor networks. Specifically, Sinha [61] compares various DPM

algorithms, including utilizing dynamic voltage scaling, in a wireless sensor network

environment. The results show that using an execution rate for the microprocessor

timed the same as the overall average workload achieves the maximum power savings.

Parts of all the techniques previously described are captured by Zheng’s power

management scheme for wireless ad hoc networks [72]. This scheme achieves on-

demand power management by monitoring traffic flow and density. Each node can

observe traffic conditions and if no or limited traffic is flowing through it, the node

will power down and rely on the inherent redundancy of the wireless network to

maintain connectivity for the other nodes. As network management packets are sent

through the network, it can trigger the sleeping nodes back into service, since these

packets could signal a change in the network topology. Utilization of this framework

was shown to increase energy efficiency over standard ad hoc networks by a factor of

about 1:5.

Modern robots are designed with little to no inherent power management such

as the techniques described here. It is common for robot designers to rely on whatever

power management that might be built into each hardware component of the robot.

For example, the operating system of the robot might include provisions for Dy-

namic Voltage Scaling to allow idle hardware to power down to sleep mode. However,

the robot architecture itself does not include energy savings techniques such as dy-
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namic voltage scaling or dynamic power management. This thesis incorporates power

management directly into the robotic architecture by using a form of behavior-based

dynamic power management.

2.3 Scheduling and Planning Algorithms

A related topic to Dynamic Power Management is the balance between power

cost and sensor accuracy. Ideally, a sensor would have a very high fidelity with low

power cost, but in real life this is rarely the case. Trade-offs occur when developers

require a high resolution sensor for a long period of time—potentially draining the

power source before task completion. Similarly, dynamic voltage scaling algorithms

require specific details on when to increase or decrease the voltage to hardware.

In order for the dynamic power management and voltage scaling techniques de-

scribed in Section 2.2.3 to work efficiently, a reliable scheduling algorithm is needed.

If the processor enters its sleep mode too frequently and for short periods of time,

there will be higher energy costs to pay starting it back up [11]. Additionally, the

time wasted powering the processor down and back up unnecessarily could poten-

tially cause the processes to miss real-time timing constraints. Shin [57] introduces

low power fixed priority scheduling (LPFPS). LPFPS works by dividing the power

consumption problems into two cases: one case where all tasks have finished execut-

ing on the processor and one case where all but one process has finished executing

on the processor. In the first scenario, LPFPS powers down the processor into sleep

mode for a period of time slightly less than the amount of run time needed for the

top process on the list. It is slightly less time because there is a small amount of

overhead needed to bring the processor out of sleep mode. In the second case, the

processor’s speed can be controlled by DVS to allow the most energy efficient output

to execute the single task, and then power down into sleep mode in preparation for

the next incoming process.

Benini [11] proposes an alternative scheduling algorithm that abstracts the pro-

cess queue into a Markov, rather than the common heuristic, decision process. Using
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a Markov decision process (MDP) allows the scheduling problem to be treated as a

common stochastic optimization process. He goes on to show that this type of pol-

icy optimization problem can be solved exactly within the framework he described

in polynomial time. This does not mean that heuristic-based scheduling algorithms

do not show any promise. In fact, a heuristic-based real-time scheduler was shown

to work to great effect by Mejia-Alvarez [45]. He uses a rapidly executing scheduler

based on approximate solutions to the knapsack problem. This heuristic proved to

yield overall energy savings of approximately 25 - 30 percent.

Xian [69] further improved upon the real time Dynamic Voltage Scaling algo-

rithm. He shows that scheduling across multiple processors is made more efficient by

constructing probabilistic distributions of the worst case execution times of the tasks.

When tested on multimedia applications, stereovision calculations and synthetic al-

gorithms, his scheduling algorithm for multiple processors can show energy savings

from 19% - 30%.

It is important to note that these solutions focus on voltage scaling power man-

agement for the computer and while many robotic designs include a planner, the

robot’s planner does not incorporate power considerations like those described here.

Robotic planners are strictly goal and task-based. The stochasticity of a real-world

environment makes planning based on power requirements a nontrivial problem. How-

ever, utilization of an MDP planner to reason about the robot’s domain with sensor

power consumption is a potential solution.

2.3.1 Markov Decision Process. An MDP is expressed as a set of states,

actions, transitions between the two, and associated costs. Specifically, an MDP is

defined as the four-tuple, (S, A, P, R), where S is the set of states, A is the set of

actions, P is the probability that action a in state s at a certain time, t, will lead to

state s ′ at t+1, and R is the reward or cost associated with that transition [52]. The

MDP is solved by maximizing the overall reward or minimizing the overall cost. MDPs

assume that all information about past states are captured in the current state, which
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means that knowledge of the history of states is not needed to predict the future from

a single state. This is defined as the Markov assumption. Because MDPs make use of

the Markov assumption, they are used widely in the Artificial Intelligence community

for solving stochastic problems where the sequence of previous states will not effect

the current decision [12]. A Markov decision process will produce a policy that depicts

the optimum action to take at any given state. Planning with an MDP occurs when

the state-space and action-space is examined for the current state, and the action

producing the highest reward (or lowest cost) is chosen. Because the resultant policy

solves the MDP problem for the entire state- and action-space, an optimal action

selection is guaranteed. Solving an MDP and producing a policy graph can be done

with several, well-known algorithms such as linear programming, policy iteration,

and value iteration [33]. A python script to solve MDPs is included in Russell and

Norvig’s definitive Artificial Intelligence textbook [55], and several open source tools

have been developed to solve MDPs including SPUDD [64], and pomdp-solve [17].

The stochasticity of power planning leads to a MDP-type problem, as is shown in the

following chapters.

2.4 Summary

This chapter presented an introduction to the hierarchical, reactive and hybrid

robotic architectures as well as the Unified Behavior Framework and explained that

existing architectures do not have inherent power conservation techniques. State of

the art power management techniques for robots and wireless sensor networks were

also explored for their possible incorporation into a robotic architecture. This chapter

showed how careful hardware design and configuration can produce a more energy

efficient robot and how use of dynamic power management and voltage scaling can

help keep isolated robots and wireless sensor networks running longer on their limited

battery life. Planning and scheduling algorithms, specifically relating to DVS were

also discussed with their importance relating to real-time systems and the potential
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for inclusion into a robotic architecture. The next chapter outlines the proposed

robotic architecture that includes behavior-based power management.
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III. Methodology

The basic robotic architectures—hierarchical, reactive, and hybrid—are currently

prevalent in the research community and industry, and they do not have inher-

ent power management. To prolong robot functionality, proper power management

techniques should be included in a robotic architecture. The inherent nature of a

robot relying solely on its onboard battery demands that maximum energy efficiency

be obtained. It is easy for a robot to find itself in a physical location that a human

cannot reach when the battery dies. For example, all of NASA’s Mars rovers must

have a built in system for power management techniques although the rovers enjoy

the advantage of a rechargeable energy source [53]. However, various power manage-

ment techniques exist that can be employed in the baseline robotic architecture of

autonomous vehicles.

This chapter describes, in detail, the methodology for adding robust, tailorable

power management functionality to a behavior-based robotic architecture. Specifi-

cally, Section 3.1 presents the motivation and purpose of the project, followed by the

project design starting with the initial architecture. The specifications of the power

management architecture are presented in Section 3.4. The simulation environment

is then discussed and the chapter concludes with the testing strategy.

3.1 Purpose

The goal of this research is to provide a reliable, robust, and tailorable system

for managing the power and resource consumption of an autonomous mobile robot.

As shown in Chapter II, there are many available opportunities for power savings

in robotic systems. Many of the most modern robots rely on energy conservation

from techniques such as efficient path planning or well-scheduled motor power and

processor operating frequency and voltage [13] [42] [43] [44]. While energy conser-

vation algorithms such as these can produce significant power savings, there are still

disadvantages. For example, path planning-based power savings do not have much

effect on a robot that remains primarily motionless. A robot designed for high loiter
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times, such as those in a mobile wireless sensor network, still need other techniques

designed into their architecture to ensure their other, non motion-based abilities are

energy efficient. The same argument is true for robots relying on efficient scheduling

of the motor power commands and processor speed.

It is clear that another approach is needed to produce energy efficient robotic

systems. The ideal power management system would be built in to the robotic ar-

chitecture itself, be it reactive, deliberative or a hybrid. Further, it should function

regardless of the platform it is operating on, and be customizable enough so that a

developer can use it on any of their systems. Finally, it should ideally function “right

out of the box” meaning that the developer doesn’t have to spend man-hours tweak-

ing many parameters to ensure the maximum energy savings and should instead have

one or two options to choose from in order to function. The remainder of this chapter

goes into detail on just such a power management system.

3.2 Design Overview

This section presents the steps taken to design an efficient power management

system for autonomous mobile robots. A base robotic architecture is chosen to lay

the foundation for an energy efficient scheme. A suitable platform for modeling and

simulating is also chosen, as well as the testbed robotic platform. At each step of the

design process, the goals of reliable, robust and tailorable are maintained.

The power management solution itself consists of a novel behavior-based ap-

proach. This approach utilizes behavior representations that encapsulate (among

other critical information) the sensors required for behavior execution. Each time a

new behavior representation hierarchy is activated, a list of required devices is pro-

duced. The sensors that are not required are immediately powered down with a

guarantee they will not be needed. There is no calculation required for sensor idle

time or dynamically scaling the voltage to a specific operating frequency. In fact, the

voltage is scaled to zero for sensors that are not needed, creating maximum possible

energy savings. Additionally, the architecture enables a “critical power mode” when
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the onboard power source falls below a certain threshold. This mode causes the higher

power consuming devices to be powered down in favor of lower power consuming (at

the potential cost of decreased sensor resolution). This allows the robot to extend its

battery life in an attempt to execute a final task before battery depletion or to reach

a recharge station.

For the proposed power management system, it was decided to start with the

groundwork of a reactive robotic architecture. As shown in Section 2.1.2, the reactive

architecture provides a robot with reliable, stable repertoire of behaviors to select from

at execution time based on environmental inputs. Assuming the library of behaviors

is well-constructed, a reaction by the robot to almost any given outside stimulus

is guaranteed. Adding the Unified Behavior Framework [68] to the classic reactive

paradigm allows the robot to arbitrate between behaviors in its library and create

composites of combined behaviors which provide it with even further capabilities at

execution time. Finally, because the power management system functions according

to the data demands of any active behavior, the behavior abstractions provided by

Duffy [21] are used. This initial design infrastructure is further detailed in the next

section.

3.3 Initial Architecture

The power management system is built upon a starting substrate of the Unified

Behavior Framework coupled with behavior representations with dynamic goal pro-

cessing [21] [68]. One of the main advantages for using the UBF is the quick reaction

time of a Sense-Act architecture with the flexibility of composite behaviors formed

dynamically at run time. The UBF can also maintain a clear delineation between the

three layers in the architecture (Deliberator, Sequencer and Reactive Controller, as

defined in [24]) because arbitration of the composite behaviors occurs inside the con-

troller while the other two layers function independently. The strong encapsulation

of behaviors in the UBF is taken a step further with the addition of behavior repre-

sentations (or abstractions). The behavior representations enable a planner to search
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Figure 3.1: The initial architecture before the power management module is added.
Note the clear delineation between the three layers

a set of behavior post-conditions and construct a behavior hierarchy that completes

a given set of goals. Figure 3.1 illustrates the separation of the layers and the Uni-

fied Behavior Framework acting as the reactive controller. The following subsections

describe each layer in more detail.

3.3.1 Deliberator. The deliberator, or planner, is the top-most layer in the

architecture. The deliberator constructs a hierarchy of goals and passes it down to the

next layer. Figure 3.1 also depicts the deliberator as the Keydriver. This is because

the system allows for keyboard control of the robot, as well as goal planning. This

provides the ability for the user to enter specific keyboard commands during execution

as well as the execution of abstract goals. The deliberator compiles the entered goals

into a goal set for later processing in the sequencer layer.

Upon startup of the system, the deliberator creates an initial goal that becomes

the default goal for the robot to execute when no other goal set is active. A com-

mon default goal is zero forward and angular velocities. This is quite useful so that
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the robot does not immediately power up and drive off in persuit of another goal.

The initial goal is passed down the architecture to the sequencer. Subsection 3.3.2

explains events at the lower layer. After passing the initial goal to the sequencer,

the deliberator waits for keyboard commands from the user. The user at this time

has a number of options. They can drive the robot manually or place the robot into

one of many operational modes (for example, wander the room or drive to a specific

coordinate). The user may also enter one or more pre-programmed goals. This is

perhaps the most interesting aspect of the behavior representation architecture put

forth in [21]. Each goal the user enters is combined into a set of goals for sequential

execution. In this manner, the robot can be instructed to travel to a specific grid co-

ordinate, then search for a specific colored object, pick it up, travel to a different grid

coordinate, set the object down, then wander the room while waiting for additional

commands. Because it is constructed modularly, the user can enter almost limitless

combinations of goals into a goalset, each of which can be further customized during

the development phase.

3.3.2 Sequencer. The sequencer resides in the middle of the three layers. It

receives goals or goalsets from the deliberator and constructs a hierarchy of behav-

iors for the controller to execute. In Figure 3.1, the sequencer is referred to as the

BehaviorExecutive. This is because the sequencer acts as the interface between the

behavior library and the UBF in the controller layer.

The controller layer expects to receive a single behavior to execute. Because

of the encapsulation of behaviors allowed by using the UBF, this single behavior can

actually be a series of behaviors that are combined into a composite behavior through

the use of an arbiter. From the controller’s point of view, however, a composite

behavior is still just a single behavior with one Action command to execute. The

top priority of the BehaviorExecutive (or sequencer) is to send the active behavior

set to the controller to meet the current goal. There is idle processing time after

the behavior is passed down, so the sequencer can process the current goalset to
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develop plans to meet them. The BehaviorExecutive uses partial order planning

techniques [9] to examine the list of current goals and construct a hierarchy of plans

which in turn becomes a hierarchy of behaviors. In this way, the BehaviorExecutive

can also determine if the list of goals has no possible plan to solve them if, for example,

preconditions cannot be met. If the BehaviorExecutive did find a plan for the current

goal, the behavior hierarchy is passed down to the Unified Behavior Framework inside

the controller.

3.3.3 Controller. The lowest layer in the architecture is that of the con-

troller. This is where an action is generated from the current active behavior and

translated into actual, physical motor commands. This makes the reactive controller

perhaps the most straightforward of the three layers. If the controller is passed a

composite of multiple arbitrated behaviors, it only generates a single action to exe-

cute out of the group. This action could be chosen through arbitration as simple as

highest activation, where the behavior in the composite that votes the highest gets

to generate the action. The controller may also generate an action through a utility

fusion arbiter [54], whereby each behavior in the composite calculates a vote based

on an expected outcome of its action and the action with the highest expected utility

value is selected. As the action is being executed, the sequencer can preempt with a

new set of behaviors, and the planner can preempt the sequencer with a new set of

goals. The process then repeats to completion.

The foundation that the power management module will be built in has been

described. As shown, it is a well-constructed, modular design that supports inter-

operability between its components. The power management pieces will fit inside

as another module. The coupling of the power management system to the initial

architecture is detailed in the following section.
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3.4 Power Management Architecture

The power management architecture described herein functions using a few basic

principles. First, as demonstrated in Section 2.2, there are already energy efficient

techniques currently used in the industry that focus on the design or operating speed

of the hardware, and the ability of voltage scaling to put idle equipment to low-power

“sleep” mode. Therefore, these techniques can still be used while the behavior-based

power management system is functioning. That is, this thesis proposes a system of

power management that runs concurrently with existing energy efficiency algorithms.

Second, the act of coupling the power management to the encapsulated behaviors has

the potential to grant a degree of power predictiveness to the system. For example, the

list of sequential goals the planner passes down to the sequencer can be associated not

only to behaviors that enable those goals, but also to identify power requirements that

can meet those goals. This way, the planner can “predict” that low power consuming

sensors be used at the start of plan, in preparation for high-power demands that

will occur at the end of the plan. This is accomplished by modeling the domain

as a Markov decision process in the deliberator and using the resulting policy to

determine the optimal power status of the sensors at any given time. Finally, the

behavior-based power management system should be device independent and simple

to configure. As long as the hardware functions with the initial reactive architecture,

the power management system should be seemless and transparent to the robot. With

these principles, a system can be created to maximize energy efficiency on a multitude

of platforms with a myriad of hardware configurations.

Behavior-based power management differs from the traditional power manage-

ment techniques described in Section 2.2 in that if the current active behavior does

not use a particular sensor, it is immediately shut down resulting in zero power usage.

This technique does not rely on a time period for the sensor to be idle before powering

down, nor does it have a “low power” consuming state. The sensor is simply rendered

inoperable as if it were disconnected from the power source. Upon activation of a new
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behavior that requires that particular sensor, the sensor is powered up and functions

as normal until no longer required.

The resource management module keeps track of the current status of each

hardware device. This status is an internal representation, only accessible to the

resource manager. A sensor device is considered AVAILABLE if the sensor is currently

subscribed, (i.e., powered on) and data is being collected from it. A sensor device is

changed to status ACCESSIBLE if the device is not currently subscribed (i.e., powered

down), but it can be subscribed to if a new behavior requires that sensor’s data.

Finally, a device is considered UNAVAILABLE when it is not currently subscribed,

nor will it be allowed to ever be subscribed barring a change in the current power

status. The reason for the distinction between ACCESSIBLE and UNAVAILABLE

involving sensors that are powered down is that if the power source falls below a

certain threshold, the resource manager will prevent access to devices that consume

large amounts of power in an effort to extend battery life far enough for the robot to,

for example, travel back to a recharging station.

The resource management system described in this section was designed and

tested using a network proxy interface to connect to a simulated robot provided

by the Player/Stage open source develop tool set. (The specifics of the interface

communication and robot simulation of Player/Stage are presented in Section 3.5). As

such, the simulated robot does not actually power up and down its sensors. Instead,

this thesis makes use of Player-defined status called “subscribed”. When a Player

connection is initialized to a device client, the sensor must be subscribed so that

Player can utilize the sensor’s data. In the Stage environment, the act of subscription

essentially causes the sensor to “turn on” and unsubscription to “turn off”. It is

important to note that on a real, physical robot, subscribing and unsubscribing to

the sensors will, depending on the specific hardware, not actually power up or down

the device. It will only cause the communication link to be up or down. As stated

in the assumptions, this system relies on hardware that can be powered up or down

through software. The Player interface already has a built in hook for device power, so
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it should be a trivial matter to switch from subscriptions to actual power commands

to turn sensors on and off.

Reducing power consumption based on active behaviors is made possible largely

in part through the architecture developed by Duffy [21] and explained in Section 3.3.

The creation of representations for each behavior allows the encapsulation of not

only pre- and post-conditions but also sensors required for activation. This makes it

possible for the incorporation of a power management module into the architecture

that checks required sensors for current (or active) and future behaviors and adjusts

running sensors as necessary. In addition, because the architecture essentially trans-

forms a list of goals into a hierarchy of behaviors, some measure of predictive power

management is possible, while being constructed on top of the reactive three layer

architecture previously described. Figure 3.2 depicts an overview of the new archi-

tecture, with the Resource Management module added in. The specifications of this

behavior-based power management system are provided in the following subsections.

3.4.1 Deliberator. The addition of resource management to the initial ar-

chitecture described previously in Section 3.3 provides added functionality to the

Keydriver class. The keydriver inside the deliberator layer still generates a list of

goals to be achieved. This can again be through user input at runtime, or goals that

are preprogrammed into the system to run sequentially at startup. However, since

the system now has a degree of control over the power consumption, the deliberator

has the option of sending various power requirements down to the sequencer along

with the set of goals. Figure 3.3 depicts the program flow in the deliberator layer.

The deliberator has optional commands to send to the sequencer that specify sensors

to turn on and off, besides those that the resource manager selects on its own.

Passing power commands from the higher, planning layer provides the system a

degree of predictive power management, as the deliberator has a broad, overarching

plan of all the goals that need to be accomplished, while the sequencer (detailed in the

next subsection) focuses only on the immediate task. For example, the user entering
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Figure 3.2: The three layer architecture with power management included. Power
management occurs in the sequencer, parallel with the BehaviorExecutive. A top level
Planning and Reasoning class is added to handle communication from the Deliberator
to the BehaviorExecutive and Resource Manager.

Figure 3.3: Detail of the Deliberator layer. User commands are received from outside,
goal sets and power commands are sent down to the Sequencer.
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a sequence of goals may have first-hand knowledge about the tasks to be completed

and knows that the final tasks in the goal set require high precision, i.e., requires the

laser for object detection. In this case, the user can enter power commands into the

keydriver during runtime that forces the laser to power down until the high-precision

task is to be executed, at which point the user enters the power commands to bring

the laser back up. This example, however, is dependant upon the user’s first-hand

knowledge and in no way incorporates a software-based power planner.

To verify predictive power planning without a user’s first hand knowledge of the

goal sequence, this thesis makes use of a Markov decision process planner to model

the domain. This domain includes a model for high- and low-power consuming sen-

sors as well as tasks that require a high fidelity sensor over a low. The policy graph

produced when the MDP plan is solved shows the best action to take at any given

state that balances the power consumption with the sensor resolution. There are

already open source tools available to solve MDP problems with well-known tech-

niques such as linear programming, value iteration, or policy iteration [17] [55] [64].

In this project, a decision diagram-based toolkit, Stochastic Planning using Decision

Diagrams (SPUDD), is utilized [64]. SPUDD solves MDP problems using the value

iteration technique on algebraic decision diagrams (ADDs) [7]. ADDs are an exten-

sion of binary decision trees that allow for multiple-valued terminal nodes, instead of

binary values, which lead to policy graphs depicted as functions of state variables.

This creates compact diagrams that are grouped by states with equal variables which

are quickly solved [26].

The testing domain is represented in SPUDD through a domain file, included

in Appendix A. The MDP representation of the domain includes simulated power

consumption for the sensors, sensor accuracy, and tasks that require high or low res-

olution sensors. First, since the MDP four-tuple, (S, A, P, R), includes an associated

reward, r, for the selected action taking the system from state, s, to s ′, power con-

sumption is expressed as a negative reward. The policy graph of the MDP maximizes

the reward, so the actions will trend toward the lower-cost sensors (without other
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influences like sensor accuracy, or required fidelity). The sensor accuracy is modeled

in the MDP planner by varying the probability of the transition from one state to

the next between the laser- and sonar-based actions. Having a higher probability of

success causes the actions in the policy graph to trend toward the laser-based actions,

provided the reward will offset the cost. Finally, tasks requiring a certain fidelity of

the sensor are also modeled through varying the probability in the transition from

one state to the next. For example, if the probability of success to move from a

low-fidelity state to a high fidelity state when using the sonar is smaller than when

using the laser, the policy graph will trend towards actions using the higher resolu-

tion sensor, provided the reward is great enough. This process of rewards/costs and

probabilities of success provide the balance between power consumption and sensor

resolution in the MDP planner.

3.4.2 Sequencer. The majority of the resource manager’s processing takes

place in the sequencer layer. In the initial architecture, the sequencing layer gener-

ates behavior hierarchies from the list of goals provided by the deliberator. In order

to add power management, the sequencer is broken into two parts, with a top-level

Planning and Reasoning module to handle proper information flow from the delib-

erator, as shown in Figure 3.4. The first part, BehaviorExecutive, has a few minor

changes from the initial architecture. Because the BehaviorExecutive is now gener-

ating behavior hierarchies in a system that may have limitations placed on its sensor

availability, the BehaviorExecutive queries the ResourceManager during behavior hi-

erarchy generation. The resource manager, in turn, provides the availability of each

behavior in the hierarchy that is currently being generated based on current sensor

statuses. Thus, when the BehaviorExecutive sends an active behavior down to the

Controller layer, the behavior will be guaranteed (barring any unforeseen hardware

malfunctions) to have the appropriate sensor data available to it since the resource

manager was already queried during behavior generation and ensured the sensors are

available.
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Figure 3.4: Detail of the Sequencer layer. High-level goal sets are received from
the Deliberator, goals are processed in the BehaviorExecutive, power commands in
the Resource Manager. The Resource Manager passes available behaviors to the
BehaviorExecutive which sends the current active behavior to the Controller and
Resource Manager.

37



The second part of the sequencing layer is the resource manager module. The

resource manager module handles a few important functions. First, upon system

start up and initialization, the resource manager uses the client libraries in Player

to make initial connections to all the hardware on the robot. This configures the

sensor data input for the robot’s internal State reference and allows the sensors to

be subscribed or unsubscribed by the resource manager. After successful connection

to the sensor device, the internal sensor state is set to AVAILABLE, meaning it is

currently subscribed (or powered on) and transferring data. Next, after initialization

the resource manager proceeds to an endless loop where it waits to handle hardware

changes. If a power requirement is passed down from the deliberator, it will be acted

on in this loop. For example, the deliberator can send a request to toggle a particular

sensor, such as the laser, on or off. The resource manager then checks to see if the laser

is currently subscribed and transmitting data (i.e., the internal status is AVAILABLE)

or not subscribed but ACCESSIBLE. If so, the resource manager will unsubscribe

from the laser, rendering it inoperable, and change the status to UNAVAILABLE,

meaning it is no longer transmitting data and cannot be resubscribed if a subsequent

active behavior requires it. If, at the time of receiving a request to activate a sensor,

it is already unsubscribed and the status UNAVAILABLE, meaning it will not be

resubscribed even if a behavior requires it, then that sensor will be changed to status

ACCESSIBLE. Future behaviors could, therefore, use its data. Through this action

of toggling devices, the deliberator imparts a form of control on the power usage of

the system since it is requiring certain sensors to be up or down, regardless of what

the active behaviors require.

The next major function the resource manager performs is managing the current

available behaviors. As previously stated, while generating a behavior hierarchy, the

BehaviorExecutive queries the resource manager for all available behaviors. During

this query, the BehaviorExecutive passes the resource manager a pointer to a set of

behaviors. The resource manager steps through the behaviors and checks to see if the

required sensors for the particular behavior are AVAILABLE (currently subscribed)
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or ACCESSIBLE (not currently subscribed, but are allowed to be subscribed). The

behaviors with required sensors that are AVAILABLE or ACCESSIBLE then become

“usable” sensors with which the BehaviorExecutive can use to construct behavior

hierarchies.

Once the BehaviorExecutive has constructed a behavior hierarchy of usable

behaviors, it becomes the active set of behaviors. The BehaviorExecutive then sends

a message to the resource manager, passing it a representation of the current active

behavior set. The resource manager uses this list of required sensors and ensures that

all of the corresponding system devices are set to AVAILABLE since the behaviors

will need their data. Additionally, the remaining system devices that are not in the

list of required sensors are unsubscribed (which can be thought of as “powered down”)

and the status changed to ACCESSIBLE, since they may be powered back up in a

subsequent active behavior set.

The remaining function of the resource manager is to monitor the status of the

power supply. During system initialization, if the Player server successfully connects

to a power device interface on the robot, the resource manager monitors the actual

battery charge levels provided the power source has the capability of software moni-

toring as detailed in the assumptions (Section 1.4). However, Stage does not include

a power interface for its simulated robots. (Actually, Stage does include a power

interface, but it does not discharge based on robot usage. It simply always returns

12 volts). Therefore, when connected to Stage, as in during this project’s develop-

ment, a simulated battery is used. The simulated battery is discharged every time the

C programming thread is activated. In this implementation, the thread sleeps for one

millisecond. Every millisecond, the resource manager polls the system’s devices and

for each that is currently subscribed (i.e., powered up and running) one milliseconds

worth of power usage is discharged from the simulated battery. The simulated battery

in this thesis includes discharge amounts for a color pan-tilt-zoom camera (blobfinder),

laser range finder, sonar ranger array, mechanical gripper, bumpers, drive motors and

onboard microcontroller and computer.

39



Table 3.1: The amount of power consumed for each device. The first five devices are
adjusted by a margin of error to simulate non-linear, real life power consumption. The
motor’s power is between the two values depending on the robot’s current velocity,
and the onboard microcontroller and PC is a random amount between the two values.

Device Power (watts) Discharge (units/ms) Error
Laser 20 0.1667 -20%

Blobfinder 12 0.1000 -20%
Gripper 10 0.0833 -20%
Sonar 0.7 0.0058 +/- 10%

Bumpers 0.25 0.0021 +/- 10%
Motors 0.19–13.29 0.0016–0.1108 –

Controller/PC 12.6–19.6 0.1050–0.1633 –

The energy discharge amounts were determined through either current research

or hardware specifications for products commonly used in robotics applications. Spe-

cific hardware discharge amounts are as follows: The blobfinder is modeled after

the Sony EVI-D70 pan-tilt-zoom camera system, which has a maximum power con-

sumption of 12 watts [62]. The simulated laser range finder is modeled on the SICK

LMS-200 which has an average power consumption of 20 watts [58]. Mei [40] finds

that the sonar array in a Pioneer robot consumes approximately 0.7 watts of power.

A mechanical servo-gripper sold by Applied Robotics [3] serves as the model for the

simulated gripper’s 10 watts of power consumption. The bumpers consume virtually

negligible amounts of power since they are simply microswitches that wait to be acti-

vated. The ten bumpers commonly found on a Pioneer robot consume approximately

25mW each. These devices are then adjusted with a small amount of error that the

developer can customize. This is to account for the fact that the discharge amounts

are approximations of what would actually be found in real life power consumption.

In this project, the error is set either to +/- 10%, which means that the actual amount

discharged is a random value inbetween +/- 10% of the specified power consumption,

or to -20% for the devices that have a maximum power usage listed, to prevent them

from discharging potentially 10% over their specified maximum amount. The drive

motors, microcontroller and onboard computer are not subject to the user-specified er-

ror. In the case of the drive motors, the power consumption is calculated based on the
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current velocity of the robot, which Mei [40] shows to be approximately 0.19+13.1v,

where v is the robot’s current velocity in meters per second. The onboard microcon-

troller and computer are discharged as a random value between 12.6 and 19.6 watts,

as specified in [40]. All power consumption amounts are summarized in Table 3.1.

The resource manager monitors the battery—either physical or simulated—and

causes the system to enter a critical power state once the battery falls below a user-

specified threshold. This threshold can be adjusted, depending on the application.

Developers may want the robot to function normally all the way until a battery is

completely discharged and so may set the threshold at zero (i.e., zero percent of

maximum battery capacity, or a dead battery). Initial testing for this project will

start with a threshold of 5% initial battery charge, however a range of thresholds are

tried. Once the power source falls below this threshold, the robot enters critical power

mode. In this mode, the sensors that consume the most power are immediately turned

off (for this thesis, unsubscribed) and their internal status is set to UNAVAILABLE

so that they will not be resubscribed. The sensors that turn off in critical power

mode are also customizable. The developer may want only the laser turned off due

to its high power consumption. Another choice is to turn off every device except

the sonar array so that the robot will halt its current action upon entering critical

power mode and only drive back to a homebase to recharge, using its sonar array to

avoid colliding with objects. In testing the behavior-based power management system

described here, the laser and blobfinder were turned off in critical power mode since

they are the two average highest-power consuming devices at 20 watts and 12 watts,

respectively. This also leaves the sonar array operational in case the robot needs to

complete a task involving object avoidance, and the gripper in case the robot is in

the act of picking an object up or setting it down.

Upon termination of sensors in the critical power mode, a hardware change

flag is tripped. This alerts the BehaviorExecutive that it may have to re-plan its

hierarchy of behaviors in order to complete the current set of goals. For example, if

the current active behavior is to track a certain object and it uses the laser to do
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so, it will have to re-plan once the laser is unsubscribed in critical power mode. If

there is not a replacement behavior in the library that uses a different sensor (e.g.,

the sonar array) the robot may not be able to fulfill the goals sent to it through

the deliberator. It is up to the developer to determine what to do in the situation

where a goal cannot be completed. They may decide to skip the goal and move to

the next, but often subsequent goals may only be completed once the previous goal

is met. Or they may decide to force the robot to travel back to its starting location,

although this can be risky if all of its object avoidance behaviors have been eliminated

through the termination of sensors in critical power mode. In the testing, the robot

simply halts when a goal cannot be reached, because the test cases have temporal

constraints that require goals to be completed in order. Temporal constraints are a

common occurrence in dynamic real-life environments. Once the BehaviorExecutive

does re-plan the behavior hierarchy, it is again passed to the resource manager to

ensure the appropriate sensors are still available, even in critical power mode. The

current active behavior set is then passed to the controller as normal.

3.4.3 Controller. The lowest level in the architecture does not change with

the addition of resource management. It still receives the current active behavior set

from the BehaviorExecutive in the sequencer. The Unified Behavior Framework in

the controller generates a recommended action for each behavior through the use of

an arbiter. The recommended action is executed and acted on the motor and device

commands which in turn affect the outside world.

The behavior-based resource management system is designed to be flexible and

user-programmable to meet a multitude of requirements put forth by each user. It

is hoped that use of the system conserves power in a robot, especially in situations

where the robot lingers in one spot for long periods, with little movement or sensor

interaction. The next sections describe the simulation environment and outline the

procedure used in this thesis for testing the power management system.
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3.5 Design Environment

The power management system defined in this thesis is designed to function on

any mobile robot running this architecture. This may require some extra development

prior to execution, but the software architecture has enough inherent modularity that

multiple hardware configurations should not be too difficult to implement. During

the initial development of the system, it is not feasible to develop, test and configure

power management on every possible combination of physical hardware. This makes

a software simulation environment particularly useful during the design and develop-

ment phase. Specifically, this project makes use of the Player/Stage robot simulation

environment [65].

The Player project is a device independent client/server package that provides

connections to robot hardware through network sockets. It is highly configurable,

and allows great flexibility in controller design. The Player server is executed on any

machine that has network communication to the robot hardware, and connects to

the device clients. Since the control of the clients is handled through network socket

commands, any computer programming language that supports socket connections

may be used to interface with the robots [25]. The power management system of this

thesis makes use of the C programming language for this purpose.

Stage is a two dimensional multi robot simulation environment. Figure 3.5

shows a screenshot of the simulated environment during execution. Stage has an-

imations for most sensors including the target range of the sonars, what the color

blobfinder currently has in view, the sweep of the laser range finder and the status of

the bumpers. Stage also provides simulated sensors and robotic devices for connec-

tion to a Player server. This allows tools to be developed for robot hardware without

actually having access to the physical equipment. Stage provides models of the most

frequently used robot sensors and devices. Many developers even find that tools and

algorithms developed through the connection to Stage require very little modification

when connected to the real, physical robot [30] [36] [67]. Thus, the use of the Player
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Figure 3.5: Screenshot from Stage simulation environment. The robot on the left is
equipped with a gripper and is currently sensing with a sonar array. It detects a block
in its blobfinder. The robot on the right does not have a gripper, but is sensing with
its 180-degree laser range finder and detects a different block in its blobfinder.

and Stage combination leverages rapid prototyping and development even when access

to the required hardware is prevented.

As explained in Section 1.4, the power management system described herein

requires access to sensors with the capability of being powered up and down through

software control. Additionally, while the proposed power management system will

function on a robot (real or simulated) with any classification of sensing hardware,

the greatest gains in energy efficiency may be found in robots with many types of

sensors. That is, a robot with only an onboard sonar ranging array will not have

as high a power savings as that of a robot with a sonar ranging array, a laser range

finder, color blobfinder and mechanical gripper.

Therefore, this thesis uses the Player server to control the connections to the

Stage robot simulator. This allows the developer to focus on the power management

algorithm and not the development of physical hardware that meets the requirements

in the Assumptions. Additionally, Stage provides simulations of a greater range of

sensing hardware than the developer could readily and physically access. It is in this
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simulation environment that the design and implementation of the power management

system takes place. The details of this architecture are provided in the next section.

3.6 Testing Plan

To ensure the behavior-based resource management’s functionality, thorough

testing must be performed. As stated in Section 3.5, all testing was accomplished in

the Stage simulation environment [65]. This thesis uses a simulated Pioneer P2-AT8

robot [1] which provides the advantages of having hardware and sensor devices readily

accessible and configurable, a quick setup and restart time, and easily reproducible

testing conditions. The simulation environment required the use of a simulated bat-

tery described in Section 3.4.2. Since the battery is simulated and in a simulated

environment, testing should not have to run the full 2-3 real-time hours necessary to

deplete an average battery in a Pioneer P2-AT8.

There are several situations that must be tested to verify that all aspects of the

power management system are fully functional. First, the resource manager must be

able to shut down (i.e., unsubscribe) a given sensor when prompted by the deliberator.

This also means the resource manager must be able to bring the sensor back up (i.e.,

resubscribe) if prompted by the deliberator. This ensures the deliberator can exert

its control over the power consumption of the robot and possibly allow a measure

of predictive power planning for the system. Next, the resource manager must be

able to determine the sensors not in use by the current active behavior and turn

them off correctly. This is the basis of the behavior-based power management system

and as such is quite vital. Finally, the resource manager must be able to force the

BehaviorExecutive to re-plan the current behavior hierarchy if a sensor is shut down

that was required. For example, when entering critical power mode. This will validate

that the resource manager can exert its control over the behaviors that activate.

In order to obtain quantifiable measurements on actual power savings achieved

through the use of behavior-based power management, two case studies are consid-

ered in the simulation environment previously described. Because it is a simulated
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environment, the robots are guaranteed to be exact copies of each other. They are,

in fact, simulated Pioneer P2-AT8 robots with onboard sonar ranger arrays, laser

range finders, color pan-tilt-zoom blobfinders, mechanical grippers, and bumpers. In

the first case study, the robots are tested with an active behavior that only wan-

ders around the room in a random pattern. It also provides object avoidance, either

through sonar or laser readings. This test is meant to not be very sensor reading-

intensive and provide more of a base line of power usage under a light load. The

wander behavior is tested on a robot with no power management, a robot with power

management that allows any sensor to be used until critical power mode, and a robot

with more strict power management that only allows lower-powered sensors to be

used unless the behavior specifically requires a higher-powered (and usually higher

fidelity) sensor. These three trials should give a good indication of maximum power

usage, medium or what is probably the more common power usage, and minimum

power usage.

The second case study occurs in the same environment with the same robots, but

the robots instead are given a broader task to achieve, i.e., simulated trash collection,

instead of the single wander behavior. From their starting location, the robots must

travel approximately 15 meters while avoiding obstacles, then wander while searching

for a yellow object in the color blobfinder. The object is three meters away and the

robot will already be facing towards it. The robot must then move to and pick up the

yellow block and drive about 9 meters in the direction of its starting point where it

will set the yellow block down. Next the robot will drive 8.5 meters to a new location,

then turn in place until a cyan block appears in its color blobfinder. The robot will

drive approximately 6 meters to the cyan block and pick it up after which it will

proceed another 6 meters away and set the block down. At this point, the robot will

start to wander the world randomly while avoiding obstacles until its battery dies.

Figure 3.6 depicts the domain in which this case study takes place, including the

static obstacles and the objects that will be picked up.
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Figure 3.6: A screenshot of the domain in which the robot executes the garbage
collection set of goals. The robot starts at A and objects required for pickup are
marked B, all other objects and robots are static obstacles.

This domain is modeled in the MDP power planner as a group of six areas—

start, zoneA, destA, zoneB, destB, and end—that the robot can travel through. The

goal of the robot is to travel to each of the zones, scan for and pick up the block

located there, take it to the corresponding destination, and travel to the end location

after both blocks have been moved. The robot can travel from one location to the

next, as depicted in the directed graph of Figure 3.7. Additionally, zoneB, destB, and

the end locations are all simulated as “difficult terrain” in which the laser range finder

is much more effective than the sonar. (Instead of difficult terrain, this might also be

considered a location where the garbage to pick up is so small, the increased resolution

of laser is necessary). This difficulty is represented through the use of probabilities

of success. The laser and sonar devices have baseline probabilities of success of 0.9

and 0.8, respectively. This represents the laser’s increased accuracy over the sonar

in general movement. This increase in accuracy is coupled with an increase in cost,

however. Specifically, the laser and sonar are modeled in SPUDD with costs of 4.0

and 1.0, respectively. This represents the extra power needed to use the laser over
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Figure 3.7: Robot location-space as depicted in SPUDD domain. The robot can only
move from connected locations in the directions of the arrows. The shaded areas
represent “difficult terrain” where the laser range finder is much more effective than
the sonar.

the sonar. In the difficult terrain areas, the probabilities of success for the laser and

sonar are adjusted to 0.9 and 0.3, respectively. This models the laser range finder as

a much better choice to use in difficult areas, even at the higher cost.

This case study is meant to give an indication of a real-life scenario, such as

garbage collection, where robots are doing more than just wandering. It is more

sensor-intensive than the first case study. This case study is executed on a robot with

no power management, a robot with power management that allows any sensor to

be used until critical power mode, and a robot with more strict power management

that only allows lower-powered sensors to be used unless the behavior specifically

requires a higher-powered sensor. Additionally, this case study examines predictive

power management in a scenario such as trash collection. Using the Markov decision

processed-based planner and SPUDD domain described in Section 3.4.1, two “plans”

of sensor usage are developed and executed. The first plan is developed without a

power cost for each sensor, while the second plan incorporates the different power

costs. The robots using planned power usage are then tested with and without a
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critical power threshold. Each of these two case studies require a test where the robot

has no power management. The following subsection describes how this is possible in

the behavior-based power management system.

3.6.1 No Power Management. In situations where the developer needs

the robot to disable power management features, they need only to change a single

value in the source code from true to false. Once power management is disabled,

the robot will function with all sensors subscribed (i.e., powered on and transmit-

ting data). Also, the power source, either real or simulated, is no longer monitored

to check for the critical power state. Finally, when power management is disabled

the robot still responds to commands from the deliberator to toggle sensor devices

similar to what is described in Section 3.4.2. However, without power management

there is no need for the internal sensor states of AVAILABLE, ACCESSIBLE, and

UNAVAILABLE. Therefore, the request from the deliberator to toggle a device sim-

ply subscribes (powers up) or unsubscribes (powers down) the device. Without power

management enabled, toggling the devices on and off is mostly used for testing and

debugging, but the functionality is present.

3.7 Summary

This chapter presented the methodology behind implementing a behavior-based

power management system. It was shown that the purpose for such a system is to

fill a void in the robotics community that can potentially save onboard battery con-

sumption and thus prolong the untethered life of the robot. The overall design of

the system was outlined, followed by a detailed description of the initial architecture

that the power management system was constructed on. The environment for simula-

tion was explained along with a brief explanation of the benefits of simulation versus

a physical robot. The power management specifications were listed included design

for the deliberator, sequencer and controller layers of the architecture. Finally, the

chapter concludes with the definition of a testing plan that will show the energy effi-
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ciency gains through the use of the behavior-based power management system. The

following chapter will present the results of the testing and analyze them for potential

insight to the problem statement.
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IV. Results

This chapter presents and analyzes the results obtained through experimentation

of the behavior-based power management system. Using the testing plan out-

lined in Section 3.6, testing and debugging was performed with the goal of verifying

system functionality and gathering quantifiable statistics on potential power savings.

The first experiment verifies the power management system via proof of concepts.

The measurement of potential power savings is determined through the use of two

case studies. The first case study executes a low sensor intensity behavior on a robot

that wanders randomly around a room. The second case study is a higher sensor

intensity set of behaviors that has a robot performing various tasks in an enclosed

environment. Results of both case studies are presented at the end of their respective

sections. The chapter concludes with a summary of all the findings and overview of

total power savings in a robot.

4.1 Functionality

There are three main areas of system functionality that must be verified that

they are in working order. As explained in Section 3.6, the power management system

must be able to handle device controls when prompted by the deliberator. This means

when the deliberator passes down a command, e.g., turn off sonar, the power manager

must successfully execute it. This ensures that any power planning that takes place

in the deliberator for the purpose of predicting overall power usage can exert control

on the resource manager in the sequencer layer.

This concept is verified through the use of the keydriver in the deliberator layer,

as described in Section 3.4.1. The keydriver accepts keyboard input from the user

of the system. One of the commands that the keydriver has configured is to toggle

specific devices on or off. Therefore, as the system is running, one keypress causes

the deliberator to issue a command to toggle a sensor, which the resource manager

receives. The resource manager then immediately causes the sensor to power off, in

the case where it is currently subscribed and transmitting data. This then verifies
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that the deliberator can exert control over which sensors and devices are powered up

or down.

The next piece of system functionality to test is whether the resource manager

correctly determines the sensors required for the current active behavior set and power

down sensors that are not required. This ability forms the basis of the behavior-based

power management system since the goal is to shut down any sensors not currently

in use. This functionality is tested through the use of behavior representations as

described in Section 3.4.2. Specifically, when the BehaviorExecutive in the sequencer

layer has constructed a hierarchy of behaviors that fulfills a goal set, it sends a rep-

resentation of the current active behavior to the resource manager. The behavior

representation includes definitions for goals that each behavior can accomplish, pre-

conditions necessary for execution, postconditions that occur after execution, and

most importantly, the sensors required for it generate an action. Using this informa-

tion, the resource manager steps through all behaviors in the current active behavior

set and compiles a list of all the sensors required for execution. After the list is

gathered, the resource manager checks the current internal status representations and

ensures that all required sensors are either status AVAILABLE or ACCESSIBLE.

Recall that in status UNAVAILABLE, the sensor is not to be used for any reason.

Using these steps, a known behavior set, such as wander while avoiding objects, can

be passed to the resource manager and the resulting sensor statuses can be checked.

In this example, it is known that the behavior set, “wander while avoiding objects,”

requires a sonar range finder. After the set is passed to the resource manager, the

sonar should be AVAILABLE and the remaining sensors are ACCESSIBLE (unless

there is mechanical failure or it entered low power mode, in which one or more sensor

would be UNAVAILABLE).

The final system functionality check is to test whether the resource manager

can force the BehaviorExecutive to plan the current behavior set again because of a

hardware change. This is vital once sensors start shutting down e.g., for low power

mode. If the current active behavior set requires the laser and the robot enters low
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power mode where the laser is powered down, the robot has the potential to fail since

it is not be able to access the data it needs (i.e., the laser). Ensuring this functionality

is slightly more complex. When the BehaviorExecutive gets the signal that a piece

of hardware has changed, it requires an alternate plan to be possible. That is, if the

BehaviorExecutive makes the plan to use the laser to check for obstacle avoidance and

the laser is later shut down, there must be another behavior in the library that the

BehaviorExecutive can make use of when replanning. For development of this thesis,

the only way these other behaviors were possible was through switching between the

laser and the sonar. There were no other devices on the test robot that provided

similar input to allow for context switching. For example, the blobfinder could not

replace the gripper or the bumper could not replace the laser. However, the laser and

sonar are both range finders and can be used in similar manners. The main difference

between the two is the laser offers higher fidelity but much higher power consumption

over the sonar. Therefore, it was required to develop both sonar-based and laser-based

behaviors. Once this is accomplished, sensors can be shut down during execution and

the behavior of the robot observed. For example, if the laser is shut down while the

robot is wandering and avoiding objects, the robot should seemlessly shut down the

laser, switch to the sonar and continue wandering while avoiding obstacles with the

possibility of colliding with small objects due to decreased sensor fidelity.

The functionality of the behavior-based power management system is further

tested through obtaining quantifiable measurements of power savings. During these

experiments, certain parameters are kept constant. These parameters are specified in

the following section, after which the two case studies are detailed.

4.2 Testing Parameters

There are several parameters of the power manager that can be adjusted by the

developer to suit a specific domain or goal requirement. These are parameters such

as the critical power threshold, error in the device power consumption, and actual,

measured device power consumption. The following case studies model experiments
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Table 4.1: The amount of power consumed for each device. The first five devices are
adjusted by a margin of error to simulate non-linear, real life power consumption. The
motor’s power is between the two values depending on the robot’s current velocity,
and the onboard microcontroller and PC is a random amount between the two values.

Device Power (watts) Discharge (units/ms) Error
Laser 20 0.1667 -20%

Blobfinder 12 0.1000 -20%
Gripper 10 0.0833 -20%
Sonar 0.7 0.0058 +/- 10%

Bumpers 0.25 0.0021 +/- 10%
Motors 0.19–13.29 0.0016–0.1108 –

Controller/PC 12.6–19.6 0.1050–0.1633 –

performed on robots with identical equipment so the actual, measured device power

consumption will be kept constant between all robots. These values were stated in

Section 3.4.2 and are summarized in Table 4.1. The first five devices are adjusted

by an amount of error to simulate power consumption readings that would occur

on a real-life sensor. This error amount is developer-specified, and in this project

it is kept a constant 10%. Manufacturer’s product specifications list the maximum

power consumption (not an average) of a device, so in the cases where this value was

used, the amount discharged is a random value between -20% and the stated amount

whereas the other devices are discharged by a random value between +/- 10% the

stated amount.

The developer can also customize at what threshold the robot enters critical

power mode. This adjustment potentially has a large effect on robot’s actions once

the battery has little charge left. If this threshold is set to 0%, the robot will never

enter critical power mode and high power consuming sensors are able to completely

deplete the battery. However, if the threshold is set to 15%, then the last 15% of

battery capacity is spent on lower power consuming devices which could potentially

allow the robot to complete additional tasks (albeit with lower fidelity sensors), or

return to a recharging station. Therefore, each of the case studies will include trials

with the threshold set at varying degrees, from 0% to 15%.
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Finally, the developer can choose to what extent critical power mode effects

operational sensors. In some scenarios, a low power battery may only trigger the

powering down of the laser, for example. In other scenarios it may be prudent to

power down every device except the bumpers and rely on “bump and turn” navigation

to get the robot to return safely to a location. The sensors that are powered down in

critical power mode are highly dependant on the current domain and goal set. In these

experiments, the laser and blobfinder will be powered down in critical power mode.

These are the two highest power consuming sensors and this choice should return high

power savings. The next highest power consuming sensor, the gripper, is left powered

on in case the robot is holding an object or about to pick up an object upon entering

critical power mode. Leaving the grippers activated lets the robot complete these

additional tasks in critical power mode. (Also recall that even though the gripper is

left active in critical power mode, its 10W is only consumed if the gripper is in the act

of gripping). Lastly, switching off the laser allows the robot to switch to sonar-based

behaviors instead and complete additional goals.

4.3 Case Study I - Low Sensor Intensity

This first case study identifies a baseline of power consumption for the system

when running three different power configurations. In this study, the load on the

sensors is light. That is, not many sensors are required for the overall behavior set,

so not much power will be consumed. This scenario runs a behavior set that causes

the robot to wander around a room randomly while avoiding contact with objects.

An example behavior hierarchy for this task is depicted in Figure 4.1. This hierarchy

requires either a laser or a sonar to acquire the ranges to any object around the robot

and no other sensors, hence the low sensor intensity heading. This case study is exe-

cuted on a robot with no power management, a robot with lenient power management

where the laser (a high power consuming sensor) is used from the start until low power

mode, and a robot with strict power management where the sonar is used from the

start since the robot does not require the higher fidelity of a laser. Predictive power
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Figure 4.1: An example behavior hierarchy that executes random movement while
avoiding obstacles.

planning is not a noteworthy test in this case study, as the robot is only executing

one behavior and hence only uses one sensor package. Figure 4.2 shows the trails that

result from an example robot wandering in this scenario. All three robots start at the

position marked 1 on the map and the trials are run separately. Because these simu-

lations are executed in the Stage environment, there is no power proxy for the Player

server to connect to. Therefore, the simulated battery, as described in Section 3.4.2

is monitored. The total initial battery charge is determined somewhat arbitrarily in

that it should provide a long enough test to see results, but for practicality should

not last 2-3 real time hours. The actual capacity of the battery is irrelevant since

all measurements are calculated based on percentage of total charge, however it was

set to 500 units. Every one second of real time execution, the system outputs the

current battery charge percentage to a text file for later extraction of measurements.

Four trials are performed with each of the robots using power management, with their

critical power thresholds set to 0%, 5%, 10%, and 15% of initial battery charge. The

statistics from all trial runs are examined in the following subsection.

4.3.1 Results - Case Study I. It should come as no suprise that the robot not

using behavior-based power management uses considerably more power that the two
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Figure 4.2: A screenshot of the Stage environment showing the robot wandering
randomly around the room. The robot starts at 1 and follows the path shown.

that do. This is particularly true in these simulated robots over physical robots since

the simulated robots are equipped with lasers, sonars, grippers, bumpers, and color

blobfinders all of which consume power while the robot is powered on. A specialized

physical robot may be equipped in a similar fashion, but it may be more common to

see a robot equipped for a specific purpose and only have one or two sensors burning

energy. Figure 4.3 and Table 4.2 show how long each robot lasted before its battery

reached zero percent of charge. Notice the robot with no power management had

a fully depleted battery in 81 seconds, the robot with lenient power management

depleted its battery in 125–140 seconds, depending on the critical power threshold,

and the robot with strict power management depleted its battery in an average 232

seconds. Figure 4.4 details the area of the graph where the robots with lenient power

management pass into critical power mode. Where low power mode did not activate

(i.e., 0% threshold), the battery depleted at 125 seconds. Using critical power mode

at 5% of initial battery charge allowed the robot to function an additional 6 seconds
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Figure 4.3: The results from three trials of a random wander behavior. The first is
with no power management, the next group are trials with power management that
uses the laser until critical power mode. The last group uses power management with
the sonar throughout.
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Figure 4.4: The four trials using lenient power management with critical power thresh-
olds set to 0%, 5%, 10%, and 15% and the times they deplete their batteries.

which yielded a 5% increase in the overall lifetime of the battery. Increasing the

critical threshold further increased the lifetime of the battery in a linear relationship.

This is because the robot is only wandering using the laser to detect objects—no other

sensors are running. Once critical power mode is entered, the laser shuts off and the

sonars power up, but there are still no other sensors running. Therefore, once in

critical power mode—no matter what the threshold—the robots behave exactly like

using strict power management. When compared to no power management at all, the

robot with lenient power management and a 5% threshold had a 62% increase of time

before battery depletion. Finally, the robots with strict power management did not

rely on the critical power threshold. They are already restricted in the use of sensors,

so critical power mode imposes no further limits. However, strict power management

created a 77% increase in lifespan over lenient power management (with 5% threshold)

and a huge 186% increase in battery lifetime over no power management. These energy

savings are caused by not powering any sensors that are not required by the tested
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Table 4.2: The amount of time, in seconds, to deplete the battery in each power
management mode, with each critical threshold while executing the wander behavior
as in Case Study I.

Threshold 0% 5% 10% 15%
No P.M. 81 – – –

Lenient P.M. 125 131 136 140
Strict P.M. 231 231 231 233

behavior set, and by using a lower power consuming sensor where possible–in this

case, a sonar range finder over a laser.

4.4 Case Study II - High Sensor Intensity

This second case study examines power consumption rates in a scenario more

like what might be seen in a real world situation. The load on the sensors is high, since

many more sensors will be used at various times while the robots execute a complex

set of goals. Figure 4.6 shows the trails that result from an example robot executing

this case study. The robot starts at the spot marked 1 and travels approximately 15

meters while avoiding obstacles to the spot marked 2. The robot then wanders while

looking for a yellow object in the color blobfinder. The object is at the spot marked

3 and the robot will already be facing towards it. It will pick up the yellow block

and drive about 9 meters back towards its starting point where it will set the yellow

block down at the position marked 4. Next the robot will drive 8.5 meters through a

high-fidelity sensor area to a new location at 5, then turn in place until a cyan block

appears in its color blobfinder. The robot will drive approximately 6 meters, again

through a high fidelity sensor area, to the cyan block at position 6, and pick it up. The

robot then proceeds another 6 meters away through a high-fidelity area and sets the

block down at position 7. The robot then begins to wander the world randomly while

avoiding obstacles and using a high fidelity sensor until its battery dies. This case

study requires the use of a blobfinder, mechanical gripper, and range finder—either

laser or sonar. The high fidelity areas are meant to represent either difficult terrain

or very small objects to pick up that would require the increased resolution offered
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Figure 4.5: A screenshot of the SPUDD interface used to trace through a policy
graph. Here, it shows to take the laserMoveZoneB action when the robot is currently
at DestA with one block at the goal.

by the laser as opposed to the sonar. The sonar might still be able to accomplish the

task, but with very low probability.

This case study is again executed on a robot with no power management, a

robot with lenient power management where the laser is used from the start until

low power mode, and a robot with strict power management where the sonar is used

from the start since the robot does not require the higher fidelity of a laser. Each of

the power managed robots has four trials, with the critical power thresholds set to

0%, 5%, 10%, and 15%. The varied sensor requirements of this case study allow the

predictive power management to also be tested. The domain is modeled and solved

using SPUDD for two cases as described in Section 3.4.1 using the definition file in

Appendix A. The first case predicts power usage if the power cost of each sensor

does not matter, and the second case models the increased power cost of the laser

over the sonar. This produces a policy graph of expected rewards/costs for each case

that can either be traced through to the specific state and action needed, or it can

be queried using SPUDDs user interface as shown in Figure 4.5. Either method of

using the policy graph produces the next action for the robot to take, given the input

state. During the experiment, the power management system does not communicate

directly with SPUDD, so each change in action or behavior is manually entered in the

correct sequence. This is possible since the Deliberator’s keydriver allows for “on the

fly” changes in power requirements, as described in Section 3.4.1.
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Figure 4.6: A screenshot of the Stage environment showing the robot executing the
test plan. The robot starts at 1 and ends at 7 before wandering the domain.

Because each of these simulations are executed in the Stage environment, there

is again no power proxy for connection to the Player server. Therefore, the simulated

battery, as described in Section 3.4.2 is monitored, just like in Case Study I. Again,

the starting capacity is determined somewhat arbitrarily, however comparisons are

all percentage-based. The battery’s capacity, at 1,000 units, is large enough that

the robot with no power management will be able to complete the series of goals

and not last for 2–3 real-time hours for convenience. Every one second of real time

execution, the system outputs the current battery charge percentage to a text file for

later extraction of measurements.

Using the Stage simulation environment also does not allow true stochasticity

with the sensors. For example, there is no error on the sonar range readings in

Stage, whereas real life sonar sensors tend to be much less accurate. Therefore, the

sections of the test domain that are difficult for low-fidelity sensors are considered to

be impassable for sonar-based behaviors. That is, the robot simulates bumping into

a wall, getting stuck in mud, or some other calamity. The statistics from all trial runs

are examined in the following subsection.
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Figure 4.7: The results from four trials of a test sequence of goals. The first is with no
power management, the next group is a trial with power management that uses the
laser until critical power mode, which is the same as the plan from the predictive power
planner when sensor power is not considered. The third group uses predictive power
management, including sensor power cost, which forces laser use in the latter half of
the test. The last group uses strict power management with the sonar throughout
which does not complete the simulation.
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4.4.1 Results - Case Study II. It should again come as no suprise that the

robot not using behavior-based power management uses considerably more power than

those that do. Figure 4.7 and Table 4.3 show how long each robot lasted before its

battery reached zero percent of charge. Notice the robot with no power management

had a fully depleted battery in 158 seconds. The robot using a predictive power plan

that does not incorporate sensor power cost is exactly the same as a lenient power

managed robot. That is, the power plan policy shows the laser as the optimum sensor

to use in all situations since it has a higher probability of successful readings over

the sonar. These robots that used the laser over the sonar depleted their batteries in

230, 238, 251, and 262 seconds, depending on the critical threshold. The trials with

predictive power management including sensor power cost depleted their batteries in

269, 279, 301, and 309 seconds, depending on the critical threshold. The robot using

strict power management is simulated to have hit a wall after dropping the first piece

of trash since strictly using a sonar in this domain has a high probability of failure

after traveling through zone A. Therefore, the robot with strict power management

did not finish the simulation.

Figure 4.8 expands the area of the graph where the lenient and predictive power

managed robots enter critical power mode. Where the critical threshold was set to

0% (i.e., critical power mode was never activated), the battery is depleted at 230 and

269 seconds for lenient and predictive power management, respectively. Predictive

power management therefore provides a 17% increase in battery lifespan. Activating

critical power mode at 5% of initial battery charge allowed the robot to function

an additional 8 seconds for lenient power management and 10 seconds for predictive

power management, which means predictive power management again yields a 17%

increase in battery lifetime over lenient. These increases are linear due to the fact at

this point in the robot’s operation it is only wandering and using the laser (i.e., both

plans are the same and no other sensors are powered on). Once critical power mode

is activated, the laser is powered off and the sonars are turned on, after which the

robot operates just like using strict power management. However, it is noteworthy
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Figure 4.8: The four trials each using lenient and predictive power management with
critical power thresholds set to 0%, 5%, 10%, and 15% and the times they deplete
their batteries.

that the robot with lenient power management and a 5% critical threshold had a 51%

increase in time before battery depletion over no power management, and predictive

power management at a 5% threshold was rewarded with a 77% increase in battery

lifetime over no power management. Real life scenarios are more likely to encounter

situations where high fidelity sensors are required, combined with periods of low

fidelity sensor use to conserve battery charge. Therefore, the comparison of lenient

power management, where the high power consuming sensors are used, to predictive

power management, where low power consuming sensors are used in places where high

resolution is not required is the most significant.

Lastly, except for the strict power management, the simulated robots completed

the set of goals in approximately 150 seconds. After 150 seconds in Figure 4.7, the

robots enter wander mode which creates a power consumption curve that is very linear

and not noteworthy. Figure 4.9 shows a close up of the graph where the robots are
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Table 4.3: The amount of time, in seconds, to deplete the battery in each power
management mode, with each critical threshold while executing a list of goals as in
Case Study II.

Threshold 0% 5% 10% 15%
No P.M. 158 – – –

Lenient P.M. 230 238 251 262
Predictive P.M. 269 279 301 309

Strict P.M. – – – –

Figure 4.9: A close up of all robots during execution of the set of goals. Except for the
strict power management, they complete the task list in approximately 150 seconds,
after which the robots wander the domain.
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actually executing the list of goals, prior to entering wander mode. This graph shows

that using predictive power management yields a 55% increase in remaining battery

charge after task completion over lenient power management, and a 860% increase

in remaining battery charge over no power management. This is achieved by using

the predictive power plan that the MDP power planner produces. In this domain,

maximum utility is found by using the sonar in the first collection and the laser in

the second. Also shown in Figure 4.9 are the sections of time where greater power

is consumed by all robots, especially the high-power consuming set of grippers at 40

seconds and 108 seconds. The following section summarizes the results as a whole

and presents some interpretation to their significance.

4.5 Summary

The results from the two case studies show that significant power savings can

occur by utilizing behavior-based power management. The greatest savings occur

when using strict power management over no power management at all in the low

sensor intensity behavior. This makes sense because the robot with power manage-

ment will keep all its unnecessary sensors turned off, and in this scenario that only

requires a range finder, which means all other sensors are off the entire time. The

second case study more closely emulates a set of goals that might occur in real-life.

Here, the strict power management shows an increase of 168% in the robot battery’s

lifetime over no power management at all. This number is slightly lower than the

first case study, since the complex nature of the required goals cause the robot to use

some of its higher-powered sensors. The robot without power management already

has these sensors turned on, so the comparative savings drop slightly. These results

affirm an important step in allowing robots to last longer when untethered from a

static, ground-based power source. The following chapter summarizes the project in

its entirety and suggests the next direction for research in this field.
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V. Conclusions

Energy efficiency is of paramount importance in mobile autonomous robots and

vehicles. Electronic systems that rely solely on their onboard batteries do best

with maximum time out “in the field” before needing to recharge. The longer au-

tonomous vehicles can last before recharging, the more potential they carry for ex-

ecuting tasks. This thesis demonstrated a novel approach to decreasing power con-

sumption in mobile robots and vehicles. This chapter summarizes the project in its

entirety first by reiterating the results. Section 5.3 provides vectors for continuing

research in this area, followed by the final remarks.

5.1 Summary

The development of the behavior-based power management system fills a void in

the robotics world where lack of solid, well-defined energy efficient practises are preva-

lent. To this point, most power management in robotics was handled by dynamically

altering the operating frequency and voltage of the onboard operating system, al-

lowing idle hardware to enter “sleep” mode, or use other techniques built into the

software operating system running on the robot [6] [10] [51] [37]. These systems are

not inherently built into the control architecture of the robot; rather, they exist in the

operating system and device software running on the robot. Besides an efficient way

to drive the robot’s motors or plan an efficient path through terrain [40] [38], there

has not been a system that focuses on saving power built directly into the underlying

robotic architecture.

The behavior-based power management system with predictive power planning

is made possible by the development of abstract behavior representations in the se-

quencer layer [21]. These representations, coupled with their definitions of goals

met, preconditions, postconditions, and required sensors, make it possible for the se-

quencer’s resource manager to take control of all the robot’s hardware (assuming the

hardware allows software control, as in Section 1.4). The power management system

further ensures that only the sensors currently in use by the active behavior are the
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only ones actually powered on (Section 4.1). This system, while perhaps simple in con-

cept, has not been executed in any great extent since each traditional behavior-based

reactive architecture is tailored for the specific environment or goal the developer

has in mind. The system described herein is robust and tailorable enough so that a

developer can, with very slight modifications, use this in a wide variety of situations.

This power management system is flexible and also designed to be transparent

to other power management schemes that may be in use. It is true, there are other

versions of energy efficient algorithms in use. The behavior-based power management

system will work seemlessly on top of any that might also be used since the hard-

ware and software behind the system remains unchanged. That is, whatever system

may have already been developed on that platform will still function as designed.

The power management system described in this project was shown to provide great

benefits. These are summarized in the following section.

5.2 Results

Results from testing the behavior-based power management system show that

significant power savings are possible. The greatest savings occur when using the

lowest power consuming sensors in a low sensor intensity plan, provided the plan does

not strictly require sensors of higher power and hence higher fidelity. In situations

where the robot wanders randomly in an environment, and does not process great

quantities of data with its other sensors, there is great potential for power savings with

the behavior-based algorithm described in this thesis. However, even if the robot is

required to perform complex goal sets with multiple sensors required at many different

times, there is still potential for massive power savings. In fact, this research found up

to 96% additional battery life can be had in a robot that uses behavior-based power

management. Further, when using a power plan with no sensor power cost, or when

strictly using the laser, a 46%–66% increase in battery life is realized over no power

management, depending on the threshold of critical power mode. Most importantly,

predictive power management that includes the power cost of the sensors, shows an
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increase in battery lifetime of 70%–96% over no power management at all, depending

on the threshold of critical power mode.

These results show significant progress towards longer-lasting battery life in

today’s robotic endeavors. Robots developed under this architecture have a possibility

for approximately 50%–96% longer times away from their human handlers and out in

the world. This provides developers with robots that have significantly longer loiter

times. For example, if the robots are used to setup a wireless sensor network, they

can travel out to their node’s destination and remain on station for a significantly

longer period of time on a single battery charge before they must be either replaced

or travel back to the base station for recharging. Other applications for future work

are described in the next section.

5.3 Future Work

While behavior-based power management provides a great step in longer-lasting

batteries on robots, there is always room for more savings given that a battery is by

its nature a finite device. One such place for improvement is making the deliberator

more efficient. As the deliberator, or planner, has global knowledge of the tasks to be

performed by the robot, it could have a sense of the overall power consumption for the

robot, more so than the Markov decision process modeled in this thesis. This is where

a high-efficiency, real-time predictive power planner could be utilized. The deliberator

can perform cost-benefit analysis of the current set of goals and determine the most

efficient way to balance the power requirements with the fidelity requirements of the

system, during execution.

Similarly, this power management system will have to be performed in real

time. The only way to guarantee real time is through a real time operating system.

Executing behavior-based power management in a real time operating environment

will be met with its own unique set of problems and challenges. However, certain

situations, like those of critical infrastructure or high availability require the use of

70



true real time systems. If these types of systems are present in robotics, they will also

need maximum energy efficiency to be effective.

Finally, the behavior-based power management system could go one step farther

and adjust which sensors are currently powered up based on the operating frequency

of the hardware as well as the current active behavior. For example, if a robot is

wandering and avoiding objects, it will need a range finder, either laser or sonar.

However, if that robot is moving at a very slow crawl it will not need to use the

ranger constantly. Perhaps only one reading per second would be enough. Similarly,

if the robot is moving at 1m/s it might need the constant readings that a laser or

sonar provides. However, if the robot is in a mostly empty environment, it may be

able to further decrease the rate of sensing in order to make the battery last just

enough longer to reach a recharging station, for example.

5.4 Final Remarks

Autonomous mobile robots are becoming more and more prevalent in various

parts of the industry. NASA frequently sends robots to explore our astral neighbors.

Law enforcement often uses robots to examine suspicious packages where it would be

risky to send a human. The military is exploring uses for robots on the battlefield by

detecting mines, carrying casualties off the front lines, searching for chemical weapons

or performing forward reconnaissance. Robots are frequently placed into situations

where a human life would be put in danger. The longer a robot can last in these

situations before a battery needs recharging means the more humans that don’t have

to risk their lives. This thesis provides one small step in that direction by introducing

a new approach to more energy efficient robots.
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Appendix A. Domain for SPUDD

////////////////////////////////////////////////////////////////////

// Trash Collecting Robot

//

// robot travels to different areas (A and B)

// picks up the block in each area,

// takes the block to the proper destination in each area

// then ends in a final area (wandering)

// Robot has some freedom of choice for which area to go to next.

// Blocks can be "scanned" and "picked up" inside Zones.

// Blocks are dropped in Dest’s.

// The laser is more reliable to go from one area to the next

// Only certain locations can be traveled to from others:

// start -> all locations ZoneA -> DestA

// DestA -> ZoneB ZoneB -> DestB

// DestB -> ZoneA, End End -> End

// The laser is much more reliable in "difficult areas"

// Difficult areas are: ZoneB, DestB, End

/////////////////////////////////////////////////////////////////////

(variables

// hasBlock: which block is the robot holding?

(hasBlock blockA blockB no)

// seesBlock: which block can the robot see?

(seesBlock blockA blockB no)

// blockAtGoal: which block is at its goal?

(blockAtGoal oneBlock twoBlocks none)

(l start zoneA destA zoneB destB end) // l: the robot’s location

)
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// do nothing - not sure why you’d want to do this

action nothing

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

l (SAMEl)

endaction

///////////////////////////////////////

// All the laser-based move actions

///////////////////////////////////////

action laserMoveZoneA

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//laser is more accurate,

//so probability is higher of reaching the next area

l (l (start (0.1 0.9 0.0 0.0 0.0 0.0))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.9 0.0 0.0 0.1 0.0))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (4.0)

endaction

action laserMoveDestA

hasBlock (SAMEhasBlock)
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seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//laser is more accurate,

//so probability is higher of reaching the next area

l (l (start (0.1 0.0 0.9 0.0 0.0 0.0))

(zoneA (0.0 0.1 0.9 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.0 0.0 0.0 1.0 0.0))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (4.0)

endaction

action laserMoveZoneB

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//laser is more accurate,

//so probability is higher of reaching the next area

l (l (start (0.1 0.0 0.0 0.9 0.0 0.0))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 0.1 0.9 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.0 0.0 0.0 1.0 0.0))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (4.0)

endaction

action laserMoveDestB
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hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//laser is more accurate,

//so probability is higher of reaching the next area

l (l (start (0.1 0.0 0.0 0.0 0.9 0.0))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 0.1 0.9 0.0))

(destB (0.0 0.0 0.0 0.0 1.0 0.0))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (4.0)

endaction

action laserMoveEnd

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//laser is more accurate,

//so probability is higher of reaching the next area

l (l (start (0.1 0.0 0.0 0.0 0.0 0.9))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.0 0.0 0.0 0.1 0.9))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (4.0)

endaction
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////////////////////////////////

// sonar-based move actions

////////////////////////////////

action sonarMoveZoneA

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//sonar not very accurate,

//so larger chance of not making it to next area

l (l (start (0.2 0.8 0.0 0.0 0.0 0.0))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.8 0.0 0.0 0.2 0.0))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (1.0)

endaction

action sonarMoveDestA

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//sonar not very accurate,

//so larger chance of not making it to next area

l (l (start (0.2 0.0 0.8 0.0 0.0 0.0))

(zoneA (0.0 0.2 0.8 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.0 0.0 0.0 1.0 0.0))
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(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (1.0)

endaction

action sonarMoveZoneB

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//sonar not very accurate,

//so larger chance of not making it to next area

l (l (start (0.7 0.0 0.0 0.3 0.0 0.0))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 0.7 0.3 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.0 0.0 0.0 1.0 0.0))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (1.0)

endaction

action sonarMoveDestB

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//sonar not very accurate,

//so larger chance of not making it to next area

l (l (start (0.7 0.0 0.0 0.0 0.3 0.0))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 0.7 0.3 0.0))
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(destB (0.0 0.0 0.0 0.0 1.0 0.0))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (1.0)

endaction

action sonarMoveEnd

hasBlock (SAMEhasBlock)

seesBlock (SAMEseesBlock)

blockAtGoal (SAMEblockAtGoal)

//sonar not very accurate,

//so larger chance of not making it to next area

l (l (start (0.7 0.0 0.0 0.0 0.0 0.3))

(zoneA (0.0 1.0 0.0 0.0 0.0 0.0))

(destA (0.0 0.0 1.0 0.0 0.0 0.0))

(zoneB (0.0 0.0 0.0 1.0 0.0 0.0))

(destB (0.0 0.0 0.0 0.0 0.7 0.3))

(end (0.0 0.0 0.0 0.0 0.0 1.0)))

cost (1.0)

endaction

////////////////////////////////////////////

//scan for a block - only works in zones

/////////////////////////////////////////////

action scan

hasBlock (SAMEhasBlock)

seesBlock (seesBlock (blockA (l (start (0.0 0.0 1.0))

(zoneA (1.0 0.0 0.0))

(destA (0.0 0.0 1.0))

(zoneB (0.0 1.0 0.0))
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(destB (0.0 0.0 1.0))

(end (0.0 0.0 1.0))))

(blockB (l (start (0.0 0.0 1.0))

(zoneA (1.0 0.0 0.0))

(destA (0.0 0.0 1.0))

(zoneB (0.0 1.0 0.0))

(destB (0.0 0.0 1.0))

(end (0.0 0.0 1.0))))

(no (l (start (0.0 0.0 1.0))

(zoneA (1.0 0.0 0.0))

(destA (0.0 0.0 1.0))

(zoneB (0.0 1.0 0.0))

(destB (0.0 0.0 1.0))

(end (0.0 0.0 1.0)))))

blockAtGoal (SAMEblockAtGoal)

l (SAMEl) //don’t move while scanning

endaction

/////////////////////////////////////////////

//pickup the block that it currently scans

/////////////////////////////////////////////

action pickup

hasBlock (hasBlock (blockA (seesBlock (blockA (1.0 0.0 0.0))

(blockB (0.0 1.0 0.0))

(no (0.0 0.0 1.0))))

(blockB (seesBlock (blockA (1.0 0.0 0.0))

(blockB (0.0 1.0 0.0))

(no (0.0 0.0 1.0))))

(no (seesBlock (blockA (1.0 0.0 0.0))
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(blockB (0.0 1.0 0.0))

(no (0.0 0.0 1.0)))))

seesBlock (SAMEseesBlock) //keep picked up block in viewfinder

blockAtGoal (SAMEblockAtGoal)

l (SAMEl)

endaction

/////////////////////////////////////////////////

//drop block, update which blocks are at goals

// only works at dest’s

/////////////////////////////////////////////////

action drop

//only able to drop blocks in certain locations

hasBlock (hasBlock (blockA (l (start (1.0 0.0 0.0))

(zoneA (1.0 0.0 0.0))

(destA (0.0 0.0 1.0))

(zoneB (1.0 0.0 0.0))

(destB (1.0 0.0 0.0))

(end (1.0 0.0 0.0))))

(blockB (l (start (0.0 1.0 0.0))

(zoneA (0.0 1.0 0.0))

(destA (0.0 1.0 0.0))

(zoneB (0.0 1.0 0.0))

(destB (0.0 0.0 1.0))

(end (0.0 1.0 0.0))))

(no (0.0 0.0 1.0)))

//no longer see block in viewfinder

seesBlock (seesBlock (blockA (0.0 0.0 1.0))

(blockB (0.0 0.0 1.0))
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(no (0.0 0.0 1.0)))

//which block at the goal is dependent upon which is in the gripper

blockAtGoal (blockAtGoal (oneBlock (hasBlock

(blockA (l (start (0.0 0.0 1.0))

(zoneA (0.0 0.0 1.0))

(destA (1.0 0.0 0.0))

(zoneB (0.0 0.0 1.0))

(destB (0.0 0.0 1.0))

(end (0.0 0.0 1.0))))

(blockB (l (start (0.0 0.0 1.0))

(zoneA (0.0 0.0 1.0))

(destA (0.0 0.0 1.0))

(zoneB (0.0 0.0 1.0))

(destB (0.0 1.0 0.0))

(end (0.0 0.0 1.0))))

(no (0.0 0.0 1.0))))

(twoBlocks (hasBlock (blockA (0.0 1.0 0.0))

(blockB (0.0 1.0 0.0))

(no (0.0 0.0 1.0))))

(none (hasBlock (blockA (l (start (0.0 0.0 1.0))

(zoneA (0.0 0.0 1.0))

(destA (1.0 0.0 0.0))

(zoneB (0.0 0.0 1.0))

(destB (0.0 0.0 1.0))

(end (0.0 0.0 1.0))))

(blockB (l (start (0.0 0.0 1.0))

(zoneA (0.0 0.0 1.0))

(destA (0.0 0.0 1.0))

(zoneB (0.0 0.0 1.0))
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(destB (1.0 0.0 0.0))

(end (0.0 0.0 1.0))))

(no (0.0 0.0 1.0)))))

l (SAMEl)

endaction

//overall reward function

reward [+ (l (start (0.0))

(zoneA (0.0))

(destA (0.0))

(zoneB (0.0))

(destB (0.0))

(end (2.0)))

(blockAtGoal (oneBlock (1.0))

(twoBlocks (5.0))

(none (0.0)))]

discount 0.900000

tolerance 0.1
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