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Abstract

This thesis describes the development and evaluation of a novel system called

the Network Attack Characterization Tool (NACT). The NACT employs digital signal

processing to detect network intrusions, by exploiting the Lomb-Scargle periodogram

method to obtain a spectrum for sampled network traffic. The Lomb-Scargle method

for generating a periodogram allows for the processing of unevenly sampled network

data. This method for determining a periodogram has not yet been used for intrusion

detection. The spectrum is examined to determine if features exist above a significance

level chosen by the user. These features are considered an attack, triggering an alarm.

Two traffic statistics are used to construct the time series over which the peri-

odogram analysis is accomplished. These two statistics are packet inter-arrival time

and payload size. The traffic source for this research is the 1999 DARPA intrusion de-

tection data set developed by MIT Lincoln Laboratories. Three specific attacks from

this data set are examined; the Processtable attack, the Dictionary attack and the

Teardrop attack. Of the three attacks the NACT was able to detect the Processtable

attack with an accuracy of 100%. The Dictionary and Teardrop attacks were also

detected with 100% and 85% accuracies respectively. This success in detecting these

attacks establishes that digital signal processing methods can be a successful technique

for network intrusion detection.
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Digital Signal Processing

Leveraged for Intrusion Detection

I. Introduction

The Internet has revolutionized the way information and ideas are transmitted

around the world. This is information that we rely on to do business, and to protect

and run our country. With the rapid growth of this medium has come the rapid de-

velopment of attacks against systems designed to transmit that information. In order

to prevent this, system administrators are faced with the difficult task of defending

their networks against these attacks. To do this they employ tools and best practices

designed to mitigate these threats. One such tool is the network intrusion detection

system (NIDS), designed to alert the network administrators to the presence of an

attack.

NIDS tools range in complexity from simple pattern matching systems to com-

plex behavioral models [LPN]. In order to improve the accuracy of these systems,

new and perhaps non-traditional methods must be explored. Digital signal process-

ing techniques represent an avenue of detection not yet fully realized.

1.1 Objectives

This thesis focuses on an alternative means for network intrusion detection. In

order to make intrusion detection systems more accurate, and thereby more reliable,

it is necessary to explore methods for detection outside the traditional approaches. To

1



that end this research will establish digital signal processing as an additional technique

capable of detecting compute network attacks.

The tool developed in this research applies signal processing to obtain frequency

information from network traffic. This makes it possible for intrusion detection to

take place without prior knowledge of the attacks. This addresses a weakness in

current NIDS technology, which rely on up-to-date databases of attack signatures for

detection.

1.2 Implications

Digital signal processing applied to network intrusion detection provides another

tool in the arsenal for network defense. The addition of this method may be able to

increase the accuracy of current NIDS. This research demonstrates the feasibility of

this approach and provides a foundation for future work.

1.3 Preview

Chapter II presents background material important to the understanding of

future chapters. The methodology, or the approach to the problem, is covered in

Chapter III. Chapter IV presents the results of this research, including interpretation

of those results. Lastly, Chapter V restates the problem, identifies the contributions

made by the research and their significance, identifies directions for future research

and ends with a summary.

2



II. Literature Review

This chapter lays the foundations for the understanding of intrusion detection sys-

tems (IDS) specifically Network based Intrusion Detection Systems (NIDS), digital

signal processing (DSP) and some of the recent research in these fields.

Section 2.1 presents an overview of IDS discussing current IDS technology and

methods. Section 2.2 discusses the design of IP protocols as they relate to NIDS.

Section 2.3 provides a background on Bayesian statistics as they apply to false alarm

rates, as well as providing some research on human interaction with alarms from

similar fields. In Section 2.4, relevant topics in the field of DSP are discussed with

an emphasis on those techniques applied in this research. Section 2.5 discusses the

Defense Advanced Research Projects Agency (DARPA) intrusion detection data set,

and Section 2.6 covers the tools used in this effort. Finally, Section 2.7 focuses on

relevant, current research.

2.1 Intrusion Detection Systems

Amoroso defines intrusion detection as “...the process of identifying and respond-

ing to malicious activity targeted at computing and networking resources” [Amo98].

Malicious activity can then be classified as attempts to disrupt the three basic tenets

of computer security: confidentiality, integrity and availability [Esc98]. Activities of

malicious users typically fall into one or more of those categories, and it becomes the

responsibility of network and system administrators to prevent those breaches from

occurring. To do this they use many different tools, including intrusion detection

3



tools. Throughout this section the term attacker is used to reference a user that is

inside or outside the network with malicious intent.

Computer networks are vulnerable to a myriad of threats including, but not

limited to, pre-packaged or scripted attacks delivered by readily available tools such

as Metasploit, WinNuke and others [Ref08]. Some other vulnerabilities include denial

of service attacks that exploit the load balancing characteristics of different networks

and servers, as well as viruses and worms. Intrusion detection systems are designed

to sense when these threats occur so that a network administrator or, in some cases,

even the network itself can take defensive action.

Intrusion detection systems can be broadly classified into two different cate-

gories, anomaly detection and signature based detection [And80]. Most modern in-

trusion detection packages employ both of these techniques in order to strengthen the

system [ACF+00]. There are exceptions to these classifications [SGF+02]. However,

this section will differentiate only between these two groups.

2.1.1 Anomaly Based Intrusion Detection. Anomaly-based detection is

based on the premise that a computer system has a relatively normal set of be-

haviors. These behaviors might include browsing the Internet or the occasional file

download and printing. Anomaly-based detection establishes a normal profile for the

activity of a network and continuously compares that to what is actually occurring

on the network. It seeks to filter out ordinary results for network administrators, and

typically establishes a baseline from which deviations from ordinary behavior can be

4



measured [CRBM01]. Benefits to this type of system include the ability to detect at-

tacks that may not have a pre defined pattern or attacks that perhaps violate security

policy in a way that is difficult to define [Axe00a].

There are a number of approaches for achieving the goal of anomaly based

detection. One of these is data-mining or the compilation of all sorts of attack data

in the hopes of finding a pattern. Another is machine learning, which is a subset

of artificial intelligence. Yet another approach is Immunity-based detection which

approaches the problem of intrusion detection as if it were a disease being fought by

an artificial immune system. All of these approaches are being used to increase the

accuracy of NIDS [CRBM01].

Problems with this category of intrusion detection are high false alarm rates

due to the fact that some of the unique user traffic may not in fact be an intrusion.

This new and unique activity could represent a user with a different task or perhaps

a fresh project within the network. Since this traffic is outside the baseline, it would

be categorized as an intrusion, until a new baseline is established. The ramifications

of these false alarms are discussed further in Section 2.3.1. Anomaly-based detection

also tends to be computationally intensive, requiring the intrusion detection system to

process and store large amounts of data to maintain and compare against the baseline.

2.1.2 Signature-Based Intrusion Detection. Signature or misuse based in-

trusion detection relies on knowing what undesirable behavior looks like. This type

of detector looks for clues to behavior that the designers determine is consistent with

5



malicious intent [Axe00b]. This malicious behavior is cataloged and used to com-

pare against network behaviors during a period of time. One of the ways this can

be accomplished is through bit-by-bit comparison of the payloads against known at-

tack patterns or even filtering of the content for suspicious strings. For example

the sequence “9090909090” represents a no-operation sled; an IDS may look for this

pattern in a packet and filter it out [CRBM01]. Another example is filtering for char-

acter strings like “top-secret” or specific paths such as “/etc/shadow” where malicious

activity is likely to occur [Amo98].

Difficulties with this type of NIDS includes the requirement for a current database

of known attack signatures. Once this database is out of date, the NIDS will fail to

detect newer exploits. Attackers can also use inflexibility of the design as a weakness

by creating polymorphic code, which is code that changes the way it looks without

altering its function, thereby altering the signature of the attack [CRBM01]. There is

very little room in this design for errors or gaps, since the performance of the detector

is only as strong as the signatures it employs [Axe00b].

2.1.3 Modeling Intrusion Detection. Denning’s model of an intrusion detec-

tion system [Den87] lays the framework for the understanding of how these systems

are implemented. This model is designed to help quantify a system that had the

desirable properties of a low false alarm rate and a high probability of detection.

Denning’s model is a “rule-based pattern matching system” [Den87] that outlines the

components necessary for the implementation of a real-time intrusion detection sys-
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tem. The subject and object system put forth by Denning is the basis for how rules

are written for an IDS. Denning’s model marks the beginning of intrusion detection

as it is implemented in today’s systems. Her theoretical Intrusion Detection Expert

System (IDES) exists, in some form or another, in almost every operational IDS to-

day. Figure 2.1 represents a basic outline of the major components combined to make

an effective IDS.

Figure 2.1: Illustration of the basic data flow through an IDS.

2.2 Networking Protocols

Since most all Internet Protocol (IP) packets must contain the same information

and are arranged in much the same way, it becomes more evident how useful informa-

tion can be extracted from them without knowing or caring what the entire message

contains. Section 2.2.1 discusses how an IP packet is organized and the benefits of

that deliberate organization. Section 2.2.2 discusses how those packets fit into the

bigger picture of network devices across the Internet.
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2.2.1 Packet Design. Internet communication is defined in a number of

publications called Request for Comments (RFC). RFC 791 governs the construction

of packets for Internet Protocol Version 4 (IPv4), which is the most widely used

version. Internet Protocol Version 6 has been in the works for a number of years and

promises to come into effect soon changing the design of the basic packet, but keeping

the same structured qualities.

Figure 2.2 illustrates the information contained in an IP packet as well as how

it is arranged. The packet is noticeably well structured allowing for different fields to

be easily examined or compared. There is a great deal of research being accomplished

on efficient and fast algorithms for the inspection of large amounts of IP traffic. Baker

and Prasanna propose efficient means for implementing this inspection process onto

field programmable gate arrays (FPGA) [BP05]. All of this is designed to make

looking at the increasing amounts of data, upwards of 10 Gb/s, feasible. This speed

is critical to the timely detection and correction of security threats that may take

only a fraction of a second to compromise important data.

Figure 2.2: Makeup of an IP packet. [Pos81]
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There are a plethora of useful statistics to be found not only in the construction

and content of the packets themselves, but in how those packets are traveling through

the network. Packet inter-arrival times, packet sizes, payload sizes and the payload

itself are only some of the many statistics available for analysis.

2.2.2 Layered Network Architecture. The layered approach to network ar-

chitecture is a way to abstract away some of the complexities involved in connecting

many different types of computer systems. The model presented by Kurose and Ross

for this layering is included in Figure 2.3, and illustrates the five layers. The appli-

cation, transport, network, link and physical layers will not be explored individually,

however, it is useful to note how they relate to one another.

Figure 2.3: Internet protocol stack. [KR05]

These layers allow network designers and programmers to modify sections of

the network architecture without affecting the other layers. For instance the physical

layer is responsible for transmitting the electrical impulses across the wire. The link
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layer which sits above the physical layer, does not know how those impulses get onto

the wire. The link layer, does not need to know this information to function; it simply

sends the bits down to the physical layer to be sent. In turn, the network layer does

not need to know how the link layer forms the bits, it simply passes the information

down. Figure 2.4 illustrates how a message “M” is wrapped and passed down the

layers in order to travel across the network [KR05]. The message is successively

encapsulated by a series of headers. Each individual header contains the information

needed for the message to be interpreted by that layer. As the message progresses

through the different layers it accumulates all the information it needs to be routed

correctly across the network to it’s destination host and process.

Figure 2.4: How the Internet protocol stack is used across
multiple networked connections. [KR05]

The NIDS fits into this architecture by monitoring the traffic coming across

the wire at the physical layer. This allows each packet to be examined using either

signature or anomaly based methods for detection [Esc98].
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2.3 Bayesian Statistics

This section discusses Bayes theorem and how it motivates research into more

accurate intrusion detection systems. Bayes theorem relates the conditional and

marginal probabilities of the events A and B [MA03]. Conditional probability is

the probability of the occurrence of some event A given that some event B did or did

not occur. The marginal probability is the probability of event A occurring, without

regard to whether or not B occurs.

Bayes Theorem is

P (A | B) =
P (A) · P (B | A)

P (B)
(2.1)

where P (A) is the marginal probability of event A, P (B | A) is the conditional

probability of event B given A, and P (B) is the marginal probability of event B.

Accounting for all the possible outcomes yields

P (Aj)B =
P (Aj) · P (B | Aj)∑n
i=1 P (Ai) · P (B | Ai)

(2.2)

This becomes useful for IDS through the following example taken from Axels-

son’s examination of the Base-Rate Fallacy and it’s applications to Intrusion Detec-

tion [Axe00a]. First is the discussion of an intuitive example, continuing on to an

example with specific IDS ramifications.
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Axelsson invokes the image of a patient visiting his doctor. The doctor admin-

isters a test that is 99% accurate, meaning that when the test was administered to a

group where everyone had the disease, the test reported that they were sick 99% of

the time. So it follows that when the test is administered to a group where no one

has the disease, the test would indicate that they were not sick 99% of the time as

well. Upon visiting the doctor to receive the results, the patient learns that the test

did in fact indicate he had the disease; however, the doctor informs the patient that

there is still good news. That news is that the rate of incidence for the disease within

the population is only 1
10,000

.

Applying 2.2 to the example yields

P (S|R) =
P (S) · P (R|S)

P (S) · P (R|S) + P (¬S) · P (R|¬S)
. (2.3)

where S indicates sick, ¬S indicates not sick, R indicates a positive test result (in-

dicating the disease) and ¬R indicates a negative result. Substituting for the values

referenced in the example leads to

P (S|R) =
1

10000
· 0.99

1
10000

· 0.99 + (1− 1
10000

) · 0.01
= 0.00980... ≈ 1%. (2.4)

So the chance of actually having the disease is approximately 1%, despite the

positive test result. This leaves the patient with a considerably better chance of not

having the disease, even though the test was positive and accurate 99% of the time.
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This is all due to the rate of incidence in the population being small as compared to

the accuracy of the test.

Figure 2.5 illustrates the medical testing example. This representation makes

it easier to see how the relative size of the region encompassing the positive test and

not being sick (R & ¬ S) is much larger than that of the region covering a positive

test result and actually being sick (R & S). This larger region can also be described

as the region encompassing false alarms.

Figure 2.5: Venn diagram illustrating the medical test exam-
ple, not to scale. [Axe00a]

This example can be extended to network monitoring activities by simply chang-

ing some of the participants. The patient becomes a computer on the network to be

defended, the test is a NIDS, and the disease is an attack. Even if the detection system

is 99% accurate, the sheer volume of traffic combined with the relatively low amount

of attacks makes the rate at which a false alarm is reported higher than expected. It
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follows then, that in order to reduce the false alarms, the accuracy of the detection

system must be increased. This research proposes a tool to accomplish that goal.

2.3.1 False Alarms. One of the primary difficulties associated with the

design of any system is interfacing that system with it’s human operators. Figures of

merit for an IDS can be measured using metrics for effectiveness, efficiency, ease of

use, security, and interpretability [Axe00a]. An effective NIDS must address each of

these metrics. However, without human interaction, the NIDS provides only another

data point. The system and network administrators must interpret and take action

based on the information. So in order for the user to trust the system, the NIDS

needs to provide a reasonably low level of false alarms.

Accuracy, along with rates of true and false positive allow for the analysis

of overall performance along with the performance against specific attacks. Equa-

tions 2.5, 2.6 and 2.7 are all used to calculate those metrics.

True Positive Rate =
True Postives

True Positives + True Negatives
(2.5)

False Positive Rate =
False Positives

False Positives + True Negatives
(2.6)

Accuracy =
True Positives + True Negatives

Positives + Negatives
(2.7)
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True positive rate is the rate at which the system successfully detects a target.

False positive rate is the opposite of true positive rate and is the rate at which the

system generates an alarm when nothing is there, also known as the false alarm rate.

Accuracy is a way of quantifying how close the system comes to correctly detecting

every event; a perfect system would achieve 100% accuracy. These measures are all

useful in measuring overall system performance.

2.4 Digital Signal Processing (DSP)

Roberts describes a signal as “...any time-varying physical phenomenon which

is intended to convey information” [Rob04] and by that definition network traffic

constitutes a signal. DSP techniques can therefore be applied to network traffic. The

difficulty here is defining where exactly that signal exists, since information exists in

a binary state, unlike radio signals that vary across a spectrum. In order to create

a signal from network traffic, various parameters such as packet inter-arrival times,

packet sizes and even packet destinations can be chosen to create a time varying

signal. For instance the time the packet arrived would be plotted on the x-axis and

the size of the payload would be represented on the y-axis, creating a signal that

varies over time.

DSP techniques, specifically the discrete fourier transform (DFT), break sig-

nals into multiple overlapping sinusoidal components, allowing for an analysis of the

segments of the signal. Figure 2.6 illustrates how a DFT allows the signal to be rep-

resented as a waveform in the time domain (upper signals) and as a spectrum (lower

15



signals). This reveals information about the signal that is not readily available using

simple visual inspection techniques.

Figure 2.6: Examples of signals represented in the time (up-
per) and frequency domain (lower). [Rob04]

DFT techniques have been used successfully to search large quantities of time-

series data, such as electrocardiographic signals, for similarities [YLAA00]. This re-

search is relevant for a number of reasons. First, it uses DFT techniques in computer

databases, which dovetails nicely with the idea of network traffic statistics presum-

ably buffered in the same sort of database. Secondly, this technique searches for

similarities, making it useful for comparisons against known patterns of network traf-

fic. As shown in Figure 2.7, despite the discrete nature of the signal, useful frequency

information is still obtained from the data stream.

Research in a similar field has been done to isolate similarities and points of

interest in electrocardiographic signals [CFPCAGN02]. This research outlines meth-

ods for searching large amounts of continuous data, not unlike network statistics, for

interesting features. Automating this search allows doctors to maximize their time for

diagnosis, removing the need to sift through large amounts of data. Extending that

idea to network traffic analysis would allow the network administrator to take the
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Figure 2.7: This illustrates how DFT techniques can trans-
form even binary data. [Rob04]

place of the physician, using the algorithm to remove the tedium of sifting manually

through large amounts of network data. This is not to say that there are no current

methods to automate the task of sifting through the network data, however, there are

few methods using DSP techniques.

2.4.1 Periodogram. One of the unique problems faced while using DSP

techniques to process network traffic data is that the traffic data is not uniformly

sampled. A uniformly sampled data set is characterized by values existing at known

intervals over a sampled period. For instance a sine wave might be sampled at 100

Hz or 100 times/second, so the sampled values would exist in the data set at uniform
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intervals of 1/100 of a second. The difficulty with network traffic is that the sample

exists whenever the packet arrives, leaving potentially large gaps in the data.

Unfortunately, these large gaps make processing the data with traditional DSP

techniques unwieldy and often inaccurate. The discrete fourier transform, discussed

in Section 2.4, relies on the sampled data values existing at a known rate. This does

not occur in the network traffic data sets, forcing manipulation of the data in one of

several alternative ways. Analysis can be accomplished by stitching zeros in between

the sampled values, providing a sample at known intervals. Another option is to

approach the data analysis using a different technique.

Stitching zero’s in between the sampled values can lead to errors and bias in

the data [PCJ+02]. Another drawback to this approach is that with a network data

set consisting of minutes or hours of data, a file that was originally kilobytes in size

quickly balloons to gigabytes making the files too large to compute in a reasonable

amount of time using Fourier Transform techniques.

The Lomb-Scargle method for computing a periodogram offers a number of

benefits over padding the data with zero’s. The Lomb-Scargle method only computes

the frequency content at measured values, removing the possible error introduced by

interpolation. The Lomb-Scargle periodogram is equivalent to least-squares fitting a

sinusoid of frequency ω to the given unevenly spaced data [Lom76]. The least-squares

fitting is a method for linear regression where the sum of the squared residuals is

minimized. The fundamental equation for the Lomb-Scargle Periodogram is
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PN(ω) ≡ 1

2σ2
{ [ΣN(hn − h̄) cos ω(tn − τ)]2

ΣN cos2 ω(tn − τ)
+

[ΣN(hn − h̄) sin ω(tn − τ)]2

ΣN sin2 ω(tn − τ)
} (2.8)

where the N data points are unevenly sampled events at times ti arranged as hi ≡ h(ti),

i = 0, ..., N − 1. The mean (h̄) and variance (σ2) are calculated as

h̄ ≡ 1

N

N−1∑
i=0

hi (2.9)

σ2 ≡ 1

N − 1

N−1∑
i=0

(hi − h̄)2 (2.10)

tan(2ωτ) =

∑
j sin 2ωτj∑
j cos 2ωτj

(2.11)

Equation 2.8 then renders the Lomb-Scargle normalized periodogram where

spectral power is a function of angular frequency. The relationship ω ≡ 2πf > 0

allows the conversion into Hz.

Additionally, because the Lomb-Scargle method produces a PN(ω) that is nor-

mally distributed [Pre02,Lom76] it is possible to calculate the probability that a peak

frequency value is above a given significance level. This is leveraged in

P (> z) ≈ Me−z (2.12)
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where M is the number of frequencies calculated. This leaves z, which is the spectral

power for a chosen frequency. Solving for z gives the algorithm the ability to determine

which, if any, frequencies contain significant information that might possibly indicate

an attack.
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Figure 2.8: Demonstration of the Lomb-Scargle periodogram.

A Lomb-Scargle periodogram is illustrated in Figure 2.8, where the top panel

indicates the raw signal to be sampled. This particular signal is a 130 Hz sin wave of

amplitude 2. The second panel illustrates 150 samples taken at random times between

0 and 1 second. The samples are then analyzed using the Lomb-Scargle periodogram
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method, with a regression being performed on each whole frequency from 1 Hz to 200

Hz. Stated another way, the calculation performed a least squares regression at every

frequency from 1 Hz to 200 Hz. The third panel illustrates the periodogram which

contains the results from the least-squares fitting, showing a distinct peak at 130 Hz,

as expected. The fourth and final panel demonstrates the power of Equation 2.12,

illustrating the significance of each peak in the periodogram. The significance is akin

to a p-value, where a lower number indicates greater confidence that the value in

question did not occur randomly. The p-value for 130Hz approaches zero, indicating

a high level of confidence in the 130Hz signal contained in the data. The Matlab code

used to generate Figure 2.8 is contained in Appendix A.3.

2.5 DARPA Intrusion Detection Data Set

The Defense Advanced Research Projects Agency (DARPA) conducted a sim-

ulation of a medium sized military installation, with the intent of using the cap-

tured data with embedded attacks to test Intrusion Detection Systems [Lab99]. Some

200 instances of 58 different attacks were used to test the intrusion detection sys-

tems [LHF+00a]. The test, conducted in 1999, remains one of the best documented

sources of network attack traffic.

Drawbacks to using this dataset include the age of the data and the fact that

the traffic is simulated and not actual traffic [Mch00]. Despite these drawbacks there

are few other alternatives that offer the same level of documentation and scrutiny

that the DARPA data set provides.
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2.6 Tools

This section is intended to familiarize the reader with some of the tools used to

accomplish this research. Included below are brief overviews of the Wireshark network

capture tool in Section 2.6.1 and the Matlab computing environment in Section 2.6.2.

2.6.1 Wireshark. Wireshark is a network capture and analysis tool devel-

oped originally as Ethereal [Com08]. The tool allows for the easy capture of network

traffic along with the display and filtering of that capture traffic. For this research

Wireshark is used to open, display and filter the captured traffic from the DARPA

data set. Wireshark, 0.99.6a, is the version used to complete this study.

2.6.2 Matlab. Matlab is a high performance numerical computing envi-

ronment based on matrices. Produced by The Mathworks, this program is used to

compute and display the periodogram results. The built in graphics processing ability

make it a natural choice for this research. Matlab version 7.4.0.287 is used for this

research.

2.7 Relevant Research

Network defense is becoming an increasingly important field of research. With

this increased focus on security there are many unique developments in the field of

network intrusion detection. Sections 2.7.1 and 2.7.2 discuss developments relevant

to the frequency-based approach taken in this research.
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2.7.1 Frequency-Based Intrusion Detection. Mian Zhou and Sheau-Dong

Lang were able to demonstrate the appearance of features corresponding to attacks

in the spectra of network traffic data [ZLC+03]. Their IDS is outlined conceptually in

Figure 2.9, and took as input network traffic captured in the 1999 DARPA intrusion

detection evaluation data set [Lab99].

Figure 2.9: This diagram describes the conceptual approach
for frequency-based intrusion detection. [ZLC+03]

The simulation traffic was parsed to include only the nodes of interest, this

allowed the traffic to be replayed using the OPNET simulator. The ProcessTable

attack was chosen as the attack of interest. The authors were then able to analyze the

variance in packet size, using that metric to gain further insight into the nature of the

attack. Connections between the victim and the potential attackers with sufficiently

low variance were tagged for further inspection. These connections were then analyzed

using a traditional DFT, the resulting spectrum was then interpreted visually for

unique features such as spikes. The authors were able to demonstrate that these spikes
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in the frequency domain, illustrated in Figure 2.10, corresponded to the connections

representing the attacks.

Figure 2.10: Frequency patterns for the detection of the Pro-
cessTable attack. [ZLC+03]

Connections 0 and 1 in Figure 2.10, represent connections of interest. Zhou

and Lang were able to show that these connections represented both an attack and a

network probe, both of which represent events worth knowing about. This research

was able to demonstrate the merit of using DSP techniques to analyze network traffic.

This method for frequency-based intrusion detection is limited by its implemen-

tation within the OPNET simulation environment. The network architecture must

be known well enough to represent it within the simulator, and the traffic must be

parsed to allow for the OPNET simulation engine to read it. In addition to using

OPNET, this approach uses the DFT algorithm to obtain the spectrum for the data.

This method requires evenly sampled data, and can be time consuming to compute.
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2.7.2 Signal Processing Techniques Used for Wireless Traffic Analysis. Par-

tridge, et al. [PCJ+02], developed a method for the analysis of wireless data traffic

using the Lomb-Scargle periodogram. Their method centers around modeling the

network as observed from a network tap. A network tap is essentially a network hub

allowing the monitoring device, usually an Intrusion Detection System (IDS) of some

sort, to capture all of the traffic flowing across a link. These devices are necessary in

switched networks where traffic destined for a specific IP address would not normally

be visible on an adjacent link because the switch can intelligently route packets across

the correct wires.

The research took encrypted wireless traffic, observed as if through a network

tap, and was able to determine some characteristics of the networks in question. This

was accomplished despite the encryption of the network, which typically obfuscates

packet information normally used to determine this information. Researchers were

able to calculate round trip times of the TCP connections as well as routing in-

formation using coherence analysis [PCJ+02]. Routing information is of particular

value when dealing with wireless networks as this can lend valuable insight into their

operation, active nodes, and weaknesses.

Partridge chose the Lomb-Scargle periodogram for the analysis of the network

traffic for many of the same reasons outlined in Section 2.4. The data used for this

effort was accumulated using the ns-2 network simulator and a simulated network

containing four nodes. The network tap was only able to hear transmissions originat-

ing at two of the four nodes. Despite this configuration and the network encryption,
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the periodograms obtained using the Lomb-Scargle method show peaks for each of

the traffic flows within the network.

2.8 Summary

Contained in this chapter are discussions of material relevant to the understand-

ing of the subsequent chapters. Of particular interest were the discussions of Intrusion

Detection Systems in general contained in Section 2.1, and the discussion of Digital

Signal Processing contained in Section 2.4.
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III. Methodology

3.1 Problem Definition

3.1.1 Goals and Hypothesis. This research establishes the usefulness of

DSP techniques in the realm of network intrusion detection. Current technology ap-

plies signature and anomaly based techniques against network traffic which results in

unacceptably high false alarm rates when faced with new and unique threats render-

ing the systems unreliable [LHF+00b]. DSP techniques, when added to the existing

framework, may be able to increase the accuracy of these systems. The methodol-

ogy that follows shows that DSP techniques, specifically the measurement of packet

inter-arrival times along with payload size, are useful statistics for network intrusion

detection.

Packet inter-arrival times along with payload sizes and other statistics contain

features in their frequency patterns that distinguish attack traffic from normal traffic.

These features represent signals within the sampled data, signals that this research

uses to successfully detect network intrusions.

3.1.2 Approach. The approach to this problem is unique in that transform-

ing the network traffic into a different domain is not something that has been widely

accomplished in this field. However this method of signal transformation has been

well defined for many years, and now can be used in a different area. The initial

difficulty of using DSP techniques on network data is the construction of a time series

signal on which to perform the DFT algorithm. It is the construction of this time
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series using the correct statistics that holds the key to generating a useful signal to

analyze.

The 1999 DARPA data set containing simulated intrusion traffic at a DOD

installation is well documented [Lab99]. DSP techniques, specifically the discrete

Lomb-Scargle periodogram, are applied to this data. Zhou and Lang accomplished

a similar study using packet inter-arrival time and the discrete fourier transform

(DFT) [ZLC+03]. This research expands on Zhou and Lang and applies the Lomb-

Scargle periodogram against time series data derived from both packet inter-arrival

time and payload size.

Once the data has been transformed into the frequency domain, the periodogram

is examined for features differentiating the selected traffic from normal traffic. If the

periodogram does contain a feature or a spike in power, the selected traffic is said

to contain an attack. These attack detections are then compared to the data set

documentation to determine whether or not the detection was accurate.

3.2 System Boundaries

The system under test is the intrusion detection system proposed by Zhou and

Lang and modified for this research. This system is described in Figure 3.1. Where

the input to the system is the raw TCPDUMP data for any captured network traffic.

In this case the data is obtained from the DARPA intrusion detection evaluation

data set [Lab99]. The components of the system are the script designed to parse

individual connections out of the much larger data set, the Lomb-Scargle algorithm
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itself and the signal probability calculation. The component under test is the signal

probability calculation tool used to classify the individual frequency patterns as benign

or malicious. The system then outputs a classification of the traffic in question as

either traffic that is believed to be attack based or traffic that does not have attack

characteristics.

Figure 3.1: System under test.

This system is limited in the sense that it requires a well documented workload in

order to produce the performance metrics. While any TCPDUMP traffic is accepted

by the system, not knowing if that traffic contained attacks yields unverifiable results

from the system. Another workload restriction is knowledge of the sampled network’s

topology. In the case of a well documented network, the target IP addresses are easy

to obtain for the initial scripting. If the traffic is not well documented, it becomes
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difficult for the system to narrow the scope of the traffic to a point at which it could

perform the analysis.

3.3 System Services

This Network Attack Characterization Tool receives a file containing TCP-

DUMP data from a network capture program. After obtaining that data, the user

chooses an IP address whose connections are of interest. The target address for this

study is for the computer under attack. This allows the system to trim the network

traffic to only inbound and outbound connections from that specific address. This

is accomplished in order to simulate a monitor residing on the link attached to the

target computer, much the same way as a firewall might be placed in line to protect

a computer. This placement is illustrated in Figure 3.2.

Figure 3.2: Placement of the Monitoring System.
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Once the traffic has been culled, a time series is constructed using packet arrival

times as well as the selected traffic characteristic. The traffic characteristic for this

study includes packet inter-arrival time along with payload size. This information

creates the time series over which the Lomb-Scargle algorithm is run. The Lomb-

Scargle algorithm is run over a user-defined time window, allowing for a variable

resolution to be achieved. Once the periodogram has been generated for the time

series, (2.12) is applied generating significance levels for the detected frequencies.

These significance levels in the frequency pattern determine whether or not that traffic

contains an attack.

Once the NACT has analyzed the selected traffic, the system is able to generate

metrics based on the known characteristics of the TCPDUMP data set. False positive,

true positive and accuracy rates are used to determine the performance of the tool.

The performance in detecting attacks can then be compared to existing NIDS tools

to determine if in fact this type of detection technique is worth pursuing.

3.4 Workload

The workload for this study is the 1999 DARPA intrusion detection evaluation

study data set. The data was collected based on a simulation of network traffic at a

DOD installation of medium size. The traffic was simulated with known embedded

attacks along with background traffic. The simulated traffic was then captured and

input into various intrusion detection systems to determine their effectiveness against

embedded attacks.
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The advantage of this data set is that the attacks are known and well docu-

mented with respect to connections, ports, and target IP addresses. This allows for

the ease of verification of the experimental setup. This data set has also been used in

previous studies, allowing for the validation of results [ZLC+03].

The disadvantages of this workload include age, this data set is over 7 years

old. The data is based on a capture of simulated traffic, and unfortunately DARPA

has not completely documented their configurations, making the simulation of the

network difficult [Mch00].

From this workload, specific attacks were chosen over which to run the NACT.

These attacks fall generally into the (DoS) category of attack types. This type of

attack usually seeks to overwhelm its target, typically causing it to be unresponsive

or slow. The specific attacks chosen for analysis are discussed further in Section 4.2.

3.5 Performance Metrics

The Network Attack Characterization Tool’s performance is judged on accurate

detection of attack traffic. This accuracy is determined using the truth data from the

supplied workload. System outputs are compared against the known content of the

workload and this data is used to generate rates of false positive, true positive and

accuracy. Quality of the traffic characteristic can then be measured using rates of

false positive and true positive, or simply put, how often the system was correct or

incorrect in detecting attack traffic.
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3.6 Parameters

3.6.1 System Parameters. The first system parameter involves parsing the

incoming data based on connections. This defines the scope of the traffic the system

is processing, and can thereby reduce the amount of noise input into the system. The

system view can be limited to a single link, thereby only allowing traffic destined for

a target personal computer (PC) to pass into the system. The decision could also be

made to look at the aggregate traffic, presenting a picture of all the packets traveling

across a link.

Another system parameter is the selection of a traffic characteristic with which

to build the time series. Some examples of relevant characteristics are packet inter-

arrival times, payload sizes and message fragmentation. Selection of characteristics

that lend insight into attack traffic will greatly increase the effectiveness of the network

attack characterization tool.

The time duration over which the Lomb-Scargle algorithm is run composes

another system parameter. Since the choice of a time interval can dramatically affect

what information is presented in the frequency domain, this parameter must be chosen

carefully. Too large a time duration can cloud the data with unnecessary noise, and

too small a time duration may fail to cover the duration of an attack.

The final system parameter is the signal threshold, or the significance level at

which an attack is said to have occurred. The Lomb-Scargle algorithm allows, by

virtue of its normal distribution, the calculation of the significance of signals present
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in the sampled data. The signal threshold is set so that only signals of a certain

significance are labeled as attacks.

3.6.2 Workload Parameters. The workload for the network attack charac-

terization tool is the TCPDUMP data input into the system. The parameters for this

workload are limited to what traffic is presented to the system. This traffic may or

may not contain attacks, it may contain multiple attacks, and it may contain multiple

concurrent attacks. For the purpose of this study the well defined TCPDUMP data

from the 1999 DARPA data set is used. This data set contains known attacks at

known times allowing for the system outputs to be verified.

TCPDUMP data containing no attack traffic is used to determine a system

baseline. Traffic from the DARPA data set documented as containing no attacks is

used for this purpose. This information is used to set the signal threshold to its initial

level for the pilot studies.

3.7 Factors

The first factor to be varied for this study is the time duration over which the

Lomb-Scargle algorithm is computed. This duration could range anywhere from the

total time of the simulated data, to millisecond slices of that data. For this research,

the time duration for the data is set to the total duration of the chosen attack. The

attack duration is determined from the data set documentation. This allows for the

complete analysis of all the possible features contained within the attack.
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The other factor for this study is the signal threshold. The initial threshold

value is determined after pilot studies are accomplished to establish a baseline for

normal traffic. These pilot studies showed that a high degree of significance for a

chosen signal is 0.001 or 0.1%. So a signal found to have a greater significance, or a

value of less than 0.001 triggers an alarm.

3.8 Evaluation Technique

Evaluation of this method is accomplished using analysis of the simulated TCP-

DUMP traffic contained in the DARPA data set. Since the traffic is simulated the

results of this study will not extend directly to actual network traffic. However, the

data is based on actual attack instances, providing confidence in the results. Simu-

lated data is chosen as the best documented data available. Analysis of this simulation

data provides a more easily controlled environment than measured data.

The experimental configuration begins with the selection of the workload data

set. In this case the DARPA data set TCPDUMP file is chosen. Based on what is

known about the specifics of the data set, an IP address for the computer in question

is chosen. This computer is the target of a specific attack or attacks at known times.

These times are recorded as truth data for producing performance metrics.

Once the IP address is found, the TCPDUMP file is parsed to create a time

series containing packet arrival times, along with the payload size. This time series

is cut to include only the attack traffic. This cut traffic is then submitted to the
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Lomb-Scargle algorithm. The Matlab signal processing toolbox is used to compute

the periodogram along with the significance levels.

The output of the Lomb-Scargle algorithm contains the frequency domain rep-

resentation of the power spectral density of the time series data. This frequency

representation is then analyzed to determine whether or not it contains any signals

above the threshold. If features above the threshold are found, the traffic is flagged

as containing an attack.

Once the traffic classification has been made, performance metrics are calculated

by determining the rates of false positive and true positive. The performance of that

configuration is then recorded, and modifications to the factors are performed in order

to obtain the best performance of the system.

Validation of the simulation results are accomplished by duplicating experiments

from the Zhou and Lang study [ZLC+03], and comparing results from their DFT based

analysis.

3.9 Experimental Design

This study is conducted using a full factorial experimental design. Pilot studies

are performed to determine initial attack signal characteristics. Once relevant char-

acteristics have been identified, levels are chosen over which to perform the analysis.

System performance is determined for each run of the experiment, and these

performances are in turn used to make adjustments to the attack signal characteristics.

This results in a final system configuration with the best possible detection rate.
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3.10 Methodology Summary

This study intends to determine what traffic characteristics are valid markers for

network intrusion detection. It accomplishes this goal by selecting two characteristics,

specifically, packet inter-arrival time and payload size. The study then uses those

statistics to create a signal to analyze.

This signal analysis is performed using DSP techniques, specifically the Lomb-

Scargle algorithm for generating a periodogram. This transformation technique takes

the time series data and represents it in the frequency domain. Once the data has

been transformed into this domain it can be further analyzed. This analysis consists

of searching the periodogram for certain signals above a significance level. If a signal

is found, the traffic is considered to contain an attack.

Once this determination has been made, that information is compared with what

is known about the original data. In this case the original data is well documented,

allowing for further analysis. Metrics for performance are determined based on the

systems accuracy in classifying the traffic, and the experiment is repeated against

multiple attacks to determine performance.
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IV. Analysis and Results

This chapter outlines the procedures used to establish that digital signal processing

is capable of intrusion detection. This process begins with how the network traffic is

parsed to isolate attacks in Section 4.1. Section 4.2 discusses which attacks showed

characteristics worth analyzing. The results of the Periodogram analysis are con-

tained in Section 4.3; this section demonstrates that the chosen network traces did in

fact contain enough frequency information to detect attacks. Finally, overall system

performance is discussed in Section 4.4.

4.1 Data Preparation

The network trace data used to accomplish this research was obtained through

the Massachusetts Institute of Technology’s (MIT) Lincoln Laboratory website [Ref01].

This network data is organized by weeks. Weeks one, two and three contain training

data for the test while weeks four and five contain the simulated attack data. This

simulated attack data is used to construct the different time series and complete the

analysis.

The network trace files are further broken down into days, with each day lasting

from about 0800 to 0600 the following morning. The traffic is separated into two

sections with traffic captured outside the firewall and inside the firewall being stored

in separate files. For the purpose of this research, only the traffic allowed through

the firewall was examined. This corresponds to a network architecture with the NIDS
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system located behind the firewall. This may have excluded some attacks or pieces

of attacks, and might represent an avenue for future research to consider.

Each day network traffic is stored in a zipped archive, ranging in size from 80

MB-200 MB. The files are stored as a TCPDUMP output file. These files are the

output of a program, also called TCPDUMP, designed by the Lawrence Berkeley

National Laboratory (LBNL). These capture files preserve the information in every

packet that traveled through the network, making it possible to analyze their contents

and timing.

Once the capture file is unpacked another tool called Wireshark, described more

in Section 2.6.1, is used to view the data and ultimately isolate the traffic of inter-

est [Com08]. For the purposes of this research, Wireshark’s filtering ability is used to

target specific IP addresses and times, in order to isolate the desired attacks. This

allows the display of all connections inbound and outbound to the victim PC and

the corresponding traffic. That traffic is then used to construct the time-series for

analysis. Further filtering of the traffic provides an individual time series for each

connection to the victim PC during the attack; these individual time series are the

object of further periodogram analysis. The time series data is then output from

Wireshark into a text file in the standard Wireshark output format.

Before the time series can be analyzed they must first be parsed. This parsing

strips the unnecessary information from the file and organizes the data into columns

containing pertinent information. Parsing the files allows for easier import into the
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Matlab program for further analysis. The file is organized into columns where the

first column is packet number, the second is arrival time, third is the IP address of the

source computer, fourth is the inter-arrival time and fifth is the payload size. This is

accomplished by way of a small C++ program executed on the command line. It is

provided in Appendix B along with sample inputs and outputs.

After the time series has been generated, the files are then input into Mat-

lab where the networklomb.m file is run against both statistics. This file outputs

three graphical representations of the data, a mapping of the chosen statistic versus

time (top), the Lomb-Periodogram output itself (middle) and the significance levels

mapped versus frequency (bottom). The networklomb.m file is the heart of the Net-

work Attack Characterization Tool. Along with the graphical output, the program

makes a simple determination of whether or not a time series contains an attack. This

output is determined by looking to see if any frequency in the periodogram over 5 Hz

exists with significance greater than 0.001. If such a frequency is present, the alarm is

set to true as an indication of an attack. Frequency content below 5 Hz was discarded

because pilot studies showed a great deal of noise below that level. A significance

level of 0.001 was chosen to represent a high degree of confidence. Future work may

find that altering this significance level may tune the NACT, increasing or decreasing

its sensitivity as discussed in Chapter V.
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4.2 Attack Types

The attacks used to validate the use of DSP techniques for intrusion detection

were extracted from the DARPA data set [Lab99]. Generally the attacks that demon-

strated the highest level of frequency content were those that fell into the Denial of

Service (DoS) category of attacks. This type of attack lends itself to frequency de-

tection because it typically involves a larger number of packets and at some level is

trying to overload the abilities of the target computer. This large number of packets

offers greater amounts of data over which to run the algorithm, offering the benefit

of higher confidence in the results. The DoS attacks targeted are the Processtable

attack and the Teardrop attack.

4.2.1 ProcessTable Attack. The ProcessTable attack makes use of a vulnera-

bility typically found on Unix/Linux machines where, if a service is mis-configured or

simply vulnerable, will spawn a new process every time a user requests a connection.

Most systems have a limit to how many processes might be started by users on the

systems; however, since most services run as root this safeguard is often bypassed.

Therefore the ProcessTable attack requests hundreds of connections with a service

in the hopes of filling the victim’s process table to the point where it can no longer

answer new requests.

4.2.2 Dictionary Attack. The Dictionary attack is another attack that has

good frequency characteristics, however, it is different than the previous attack in

that it is not intended to be a DoS type attack. The Dictionary attack is simply an
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attempt to remotely guess the passwords on a target system [Ref01]. It does this

through repeated attempts to log in with different user names and passwords. This

attack lends itself to frequency detection because it typically sends out a fixed number

of attempts with a fixed delay between attempts.

4.2.3 Teardrop Attack. The Teardrop attack is another DoS type attack.

This exploit uses some operating systems inability to re-assemble fragmented packets

sent to them, causing the server to fail. This attack is the shortest attack, lasting

only several seconds, making it difficult to obtain much frequency information from

the connection.

4.3 Detection Results

Outlined here are some of the findings demonstrating the DSP technique used

in this research; complete results are listed in Appendix C. For all three of the attacks

listed in Section 4.2, two types of periodogram analysis are accomplished, one against

the inter-arrival time of the packets and another against the payload size of those

same packets. This results in two alarms, a timing alarm and a payload alarm. The

timing alarm is set to true if the time series, using the inter-arrival statistic, triggers

an alarm, and the payload alarm is set to true if its time series triggers an alarm.

4.3.1 Processtable Attack Results. The Processtable attack demonstrated

the highest degree of success using this detection technique. Tables 4.1 and 4.2 include

the connection listing for two separate instances of the attack against the same victim.
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The connection column lists the IP address of the incoming connections while the

packets column lists the total number of packets in the captured time series. These

time series are constructed using all the packets traveling to and from the source

and victim computer for the duration of the attack. The timing and payload alarm

columns are indications of whether the Network Attack Characterization Tool flagged

an attack versus the final column which is an indication of which connection actually

contained the attack.

Table 4.1: Summary for ProcessTable Attack against 172.16.113.50, 31 March

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.10 76 False False False
172.16.112.20 905 False True False
172.16.112.149 158 False False False
172.16.113.84 319 False False False
172.16.113.204 104 False False False
172.16.114.148 324 False False False
172.16.114.207 465 False False False
172.16.118.60 782 True False True
194.7.248.153 611 False False False
195.115.218.108 968 False False False

Table 4.2: Summary for ProcessTable Attack against 172.16.113.50, 7 March

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.10 30 False False False
172.16.112.20 837 False True False
172.16.112.50 62 False False False
172.16.112.100 37 False False False
172.16.114.50 55 False False False
172.16.117.52 1871 True False True
196.227.033.189 1705 False False False

Further inspection of Tables 4.1 and 4.2 show that the attack was successfully

detected through the observation of the packet inter-arrival time and that there were
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no false alarms. The payload statistic was not as successful; it failed to detect either

attack and generated one false alarm in both cases. Figures 4.1, 4.2, 4.3 and 4.4

illustrate the results of the Network Attack Characterization Tool graphical output.
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Figure 4.1: Processtable Attack Source=172.16.118.60, Inter-Arrival: Alarm True
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Figure 4.2: Processtable Attack Source=172.16.118.60, Payload: Alarm False
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Figure 4.3: Processtable Attack Source=172.16.117.52, Inter-Arrival: Alarm True
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Figure 4.4: Processtable Attack Source=172.16.117.52, Payload: Alarm False

In Figure 4.1, the frequency features of the attack that are noticeable in the

middle panel are much more pronounced than those in the same panel in Figure 4.3.

The frequency spikes occur roughly every 25 Hz in Figure 4.1. A greater amount of

noise is present in 4.3 which seems cloud the significance levels. The spikes in the

frequency pattern are quantified using their significance level. This is shown by the

strongest significance levels approaching zero in the bottom panel.

The performance of the NACT against the Processtable attack was determined

using the equations from Section 2.3.1, calculated across both instances of the attack.

The true positive rate for the timing alarm was 100% as compared to a false positive

rate of 0%. This led to an overall accuracy of 100%, achieved without knowing any
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of the specifics of the attack other than over what period it occurred. Conversely, the

payload alarm had a true positive rate of 0% and a false positive rate of 13%, leaving

an accuracy of 80%. This result seems counterintuitive, since the payload statistic

failed to detect the attack at all. However, the accuracy still remains high because of

the relatively small number of traces combined with the few false alarms.

4.3.2 Dictionary Attack Results. This section contains the results for the

Dictionary attack. Unfortunately, this attack was launched only once in the data set

making it difficult to draw any conclusions about future instances. Here again the

inter-arrival time showed the greatest success, detecting the attack with zero false

alarms as shown in Table 4.3. The Payload alarm was also unsuccessful again, failing

to detect the attack at all and producing one false alarm.

Table 4.3: Summary for Dictionary Attack against 172.16.114.50

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.20 228 False False False
172.16.112.50 764 False False False
172.16.113.50 289 False False False
172.16.113.105 156 False False False
172.16.114.169 128 False False False
172.16.118.10 3438 True False True
195.115.218.108 2094 False True False

Figures 4.5 and 4.6 illustrate the attack connection, where the timing alarm

in Figure 4.5 was true, indicating an attack. The features in this attack are not as

pronounced as those in the processtable attack, however, they do translate into strong

significance levels.
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Figure 4.5: Dictionary Attack Source=172.16.118.10, Inter-Arrival: Alarm True
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Figure 4.6: Dictionary Attack Source=172.16.118.10, Payload: Alarm False
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The NACT performance against the dictionary attack is summarized here. For

the timing alarm, the accuracy was again 100%, and for the payload alarm the true

positive rate was 0% with a false positive rate of 16%, leaving an accuracy of about

71%. It is worth noting that in Figure 4.4.6 the payload alarm significance comes

very close to accurately detecting the attack; this is indicated by the significance line

coming very close to zero near 200 Hz in the bottom panel.

4.3.3 Teardrop Attack. The Teardrop attack is the shortest attack examined

and the NACT achieved mixed results while attempting to detect it. Tables 4.4 and 4.5

indicate that the tool was successful only one time in detecting the attack despite the

two instances in the data set. There were, however, no false alarms issued by either

statistic.

Table 4.4: Summary for Teardrop Attack against 172.16.114.50, 6 April

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.10 17 False False False
172.16.114.148 24 False False False
206.48.44.50 493 False False False
207.230.54.203 90 True False True

Table 4.5: Summary for Teardrop Attack against 172.16.114.50, 8 April

Connection Packets Timing Alarm Payload Alarm Attack
135.16.216.191 14 False False False
172.16.113.105 41 False False False
199.227.99.125 20 False False True

Figures 4.7 and 4.8 demonstrate just how small the attack is with only 90 packets

over which to run the analysis. It takes a strong embedded signal to trigger the alarm

with this few packets to construct the time series. The top panel in Figure 4.7
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illustrates the time series created by the inter-arrival times in the attack traffic. The

horizontal lines indicate a consistency in the data, this consistency is mirrored in the

second panel of that same figure where spikes in the spectrum are visible.
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Figure 4.7: Teardrop Attack Source=207.230.54.203, Inter-Arrival: Alarm True
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Figure 4.8: Teardrop Attack Source=207.230.54.203, Payload: Alarm False

The attack in Figure 4.9 is shorter still, probably making the difference in miss-

ing the attack. Features similar to that in Figure 4.7 are present in Figure 4.9. These

peaks in frequency, found in the middle panel of both figures, occur at 50 Hz and

150 Hz. Unfortunately, because of the low packet count, the significance level never

reaches 0.001 in Figure 4.9. This is explained after examining (2.12) in where M

varies based on the number of frequencies calculated by the periodogram algorithm.

This in turn depends on how many data points exist in the time series of interest.

Fewer sampled packets makes it more difficult to be certain of an embedded signal.
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Figure 4.9: Teardrop Attack Source=199.227.99.125, Inter-Arrival: Alarm False
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Figure 4.10: Teardrop Attack Source=199.227.99.125, Payload: Alarm False
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NACT performance against the teardrop attack is a bit misleading, due mostly

to the small number of connections examined. For the timing alarm, the true positive

rate was 50% and the false positive rate was 0%, since there were no false positives.

The accuracy for the timing alarm against the teardrop attack was 85%. For the

payload alarm the true positive and false positive rates were both 0%, since no alarms

were raised. The accuracy turned out to be only slightly lower than the timing alarm

at 71%.

4.4 System Performance

Overall performance of this system is measured by the ability of the NACT

to successfully detect attacks. In this case, the performance is measured across all

three types of attacks to include all instances. This was accomplished by totalling

the true and false positive rates along with the true and false negative rates for both

timing and payload. For the timing alarm the NACT had an overall true positive

rate of 80%, a false positive rate of 0% and an overall accuracy of 96%. The payload

alarm had a true positive rate of 0% as it never accurately identified an attack, a false

positive rate of 11% and an overall accuracy of 74%. These results are summarized

in Table 4.6.

53



Table 4.6: Combined Results for All Attacks

Attack/Statistic True Pos. True Neg. False Pos. False Neg. Accuracy

Processtable/Timing 2 15 0 0 100%
Processtable/Payload 0 13 2 2 80%
Dictionary/Timing 1 6 0 0 100%
Dictionary/Payload 0 5 1 1 71%
Teardrop/Timing 1 5 0 1 85%
Teardrop/Payload 0 5 0 2 71%

Total/Timing 4 26 0 1 96%
Total/Payload 0 23 3 5 74%

These measures for system performance are only intended to compare the two

alarms and demonstrate that detection is possible with frequency analysis. The ac-

curacy and rates of true and false positive are significantly biased by the low number

of trials run, this makes it difficult to compare the accuracy of the NACT to other

NIDS. The results are, however, useful in tuning the NACT along with future intru-

sion detection systems. For instance it seems that using payload size as a statistic

may not be an avenue worth pursuing in future iterations of the system.

4.5 Results Summary

Section 4.1 outlined the process through which the data flowed in order to ac-

complish the analysis, ending with the networklomb.m Matlab file which produces the

ultimate results. The attacks over which the analysis was performed were discussed in

Section 4.2. Periodogram results were listed in Section 4.3, with the most successful

detection occurring over the Processtable attack. Complete results, including all sum-

mary graphs, are contained in Appendix C. Finally the overall system performance
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was discussed in Section 4.4. This chapter served as the foundation for the assertion

that DSP techniques can be leveraged for network intrusion detection.
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V. Conclusions

5.1 Problem Restatement and Conclusions

The stated goal for this research effort is to establish that digital signal process-

ing (DSP) techniques can be leveraged for use in network intrusion detection. Current

intrusion detection techniques employ many different strategies in order to success-

fully detect attacks against their networks. Most of these strategies require some

knowledge of the attack, typically in the form of a signature or behavior pattern.

Chapter IV demonstrates that through the use of the Network Attack Charac-

terization Tool (NACT), some of these attacks are detected using DSP techniques.

The technique specific to this research is the Lomb-Scargle periodogram, a method

for obtaining the spectrum of unevenly sampled data [Pre02]. Once this spectrum is

obtained the significance of features within the spectrum is used to trigger an alarm.

The NACT was approximately 96% accurate against the Processtable, Dic-

tionary and Teardrop attacks; when using the inter-arrival time of the packets to

construct the time series of interest. This indicates that using DSP techniques to

detect network intrusions can be successful. A weakness of these results, however, is

that the attacks chosen for analysis were attacks known to contain large amounts of

structured traffic. Attacks that make use of less traffic are much more difficult for the

system to detect.
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5.2 Contributions and Significance

The main contribution of this research effort is the demonstration of a successful

detection tool constructed using digital signal processing techniques. This technique

for network intrusion detection represents an alternate means of detecting attack traf-

fic. This approach is not intended to replace current NIDS equipment or techniques,

but rather to augment those systems in order to increase their accuracy.

5.3 Directions for Future Research

In the process of accomplishing this research, a number of avenues for future

research were discovered. The two statistics sampled to construct the time series were

only a few of many other options. Some others could include packet fragmentation,

protocol type, and port numbers. Any of these other statistics, or combinations of

those statistics, may hold further insight into different attacks. The statistics used

in this research could be merged, forming a hybrid time series over which to perform

the same type of analysis.

The significance threshold at which an attack is triggered was not varied for

this research. Future work may find that tuning this value increases or decreases the

sensitivity of the detector. Along with this threshold value there was the frequency

cutoff of 5 Hz; this number was chosen after several test runs. It may be worth

exploring over which values the tool is most successful. Future research may find that

successful attack detections occur only within a certain frequency range. Limiting

this range may in fact limit false alarms, and increase accuracy.
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Finally, a much more exhaustive test is needed. What was accomplished in this

thesis was only meant to provide impetus for further research. The few attacks that

were chosen are only a sliver of the threats available, and further testing is the only

way to determine the ultimate usefulness of the NACT.

5.4 Summary

This work demonstrates an intrusion detection tool employing digital signal

processing to detect network intrusions. The NACT employs the Lomb-Scargle peri-

odogram method to obtain a spectrum for the sampled network traffic. Any features

that exist in the spectrum above a significance level are considered an attack, trigger-

ing an alarm.

Two traffic statistics were used to test the ability of the NACT to accurately

detect intrusions. The statistics were packet inter-arrival time and payload size. De-

tection using inter-arrival time achieved an accuracy of 96%, while using the payload

statistic never actually detected an attack. These results demonstrate that digital

signal processing techniques can be used to detect network intrusions.
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Appendix A. Matlab Code

This appendix includes the implementation of three important Matlab files referenced

throughout this research.

A.1 Lomb-Scargle Periodogram Implementation in Matlab

Listing A.1: Matlab implementation of the Lomb-Scargle periodogram method.
This file is called by both subsequent files in this appendix.
(appendix1/lomb.m)

1 %

% [Pn , Prob] = lomb(t, y, freq)

%

% Uses Lomb ’s method to compute normalized

% periodogram values "Pn" as a function of

6 % supplied vector of frequencies "freq" for

% input vectors "t" (time) and "y" (observations).

% Also returned is probability "Prob" of same

% length as Pn (and freq) that the null hypothesis

% is valid.

11 %

% Caveat: x and y must be the same length.

%

%

% Authors: This implementation was designed for the "12.747:

16 % Modeling , Data Analysis and Numerical Techniques for Geochemistry"

% course at the Woods Hole Oceanographic Institution.

%

% Changelog: Created by the authors circa Fall 1996

% Modified Jan 2008 - additional comments and formatting

21 % changes were made by 1Lt Theodore Erickson , USAF

%

function [Pn , Prob] = lomb(t, y, freq)

26 %

% check inputs:

% throw error if t and y are not the same length

if length(t) ~= length(y); error(’t and y not same length ’);

exit; end;

31
%

% subtract mean , compute variance , initialize Pn

z = y - mean(y);

var = std(y);

36 N=length(freq);

Pn=zeros(size(freq));

%

% Execute main loop for all frequencies

41 for i=1: length(freq)

w=2*pi*freq(i);

if w > 0

twt = 2*w*t;

tau = atan2(sum(sin(twt)),sum(cos(twt)))/2/w;

46 wtmt = w*(t - tau);

Pn(i) = (sum(z.*cos(wtmt)).^2)/sum(cos(wtmt).^2) + ...

(sum(z.*sin(wtmt)).^2)/sum(sin(wtmt).^2);
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else

Pn(i) = (sum(z.*t).^2)/sum(t.^2);

51 end

end

%

% and normalize by variance , compute probabilities

56 Pn=Pn/2/var .^2;

Prob = 1-(1-exp(-Pn)).^N;

for i=1: length(Pn) % accomodate possible roundoff error

if Prob(i) < .001

Prob(i) = N*exp(-Pn(i));

61 end

end

A.2 Periodogram Analysis using Matlab

Listing A.2: Matlab implementation of periodogram analysis using the Lomb-
Scargle Periodogram. This file is the heart of the NACT.
(appendix1/networklomb.m)

1 %

% networklomb(fileToRead1 ,column)

%

% column 4 contains inter arrival time and column 5 contains

% payload sizes

6 %

% This program calls lomb.m

%

% Authors: This implementation was designed for the "12.747:

% Modeling , Data Analysis and Numerical Techniques for Geochemistry"

11 % course at the Woods Hole Oceanographic Institution. Adapted from

% the algorithm found in the text "Numerical Recipes in C++"

%

% Changelog: Created by the authors circa Fall 1996

% Modified Jan 2008 - additional comments and formatting

16 % changes were made by 1Lt Theodore Erickson , USAF

%

function networklomb(fileToRead1 ,column)

21 %import data from the text file

inputdata = importdata(fileToRead1);

t = inputdata (:,2);

y = inputdata (:,column);

26

% plot the data

subplot (311);

plot(t,y,’*’);

31 xlabel(’Time (sec)’);

ylabel(’Observation ’);

title(’Input Data’,’fontweight ’,’b’)

%first create a vector of frequency bins

36 f=[0:.1:200];

%now compute the lomb periodogram

[Pn Prob]=lomb(t,y,f);

%plot the periodogram

41 subplot (312)

h=plot(f,Pn,’r’);

xlabel(’Frequency (Hz)’);
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ylabel(’Normalized PSD’);

title(’Lomb Periodogram ’,’fontweight ’,’b’);

46
%plot the signficance levels

subplot (313)

h=plot(f,Prob ,’r’);

xlabel(’Frequency (Hz)’);

51 ylabel(’Significance ’);

title(’Significance ’,’fontweight ’,’b’);

%

% then sort for smallest values first

% (ie. those points least likely to be random)

56 %

[p,ind]=sort(Prob);

most=ind (1:2000); % all the values

attack =[f(most)’ Pn(most)’ Prob(most) ’];

61 % Test to see if any of the probabilities above 5Hz contain a

% significance less that .001, if so output a true indicator

indicator = 0;

for k=1:2000

66 if ((f(k) >=5.0) && (Prob(k) <=0.001))

indicator =1;

end

end

%attack

71 indicator

A.3 Lomb-Scargle Periodogram Demonstration Implemented in Matlab

Listing A.3: Matlab implementation of the Lomb-Scargle periodogram demonstra-
tion included in Chapter II.
(appendix1/lombtestthesis.m)
% Tests the Lomb Periodogram algorithm and plots results

%

% Authors: This implementation was designed for the "12.747:

4 % Modeling , Data Analysis and Numerical Techniques for Geochemistry"

% course at the Woods Hole Oceanographic Institution.

%

% Changelog: Created by the authors circa Fall 1996

% Modified Jan 2008 - additional comments and formatting

9 % changes were made by 1Lt Theodore Erickson , USAF

% first , create a random set of times from 0 to 1 seconds with

% the rand function , and sort in ascending order

%

14 t=rand (150 ,1); t=sort(t);

tt =0:.001:1;

% choose two frequencies to build data

f1=50; f2 =130;

19
% then create data , with some noise

y=2*sin(2*pi*f2*t)+0.5* randn(size(t));

% next , plot the data

24
subplot (412); plot(t,y,’r*’); % plot data

set(gca ,’FontSize ’ ,10);

xlabel(’Time (sec)’); ylabel(’Observation ’); title(’Samples (150) ’)

29 % Now Plot the generator function
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subplot (411);

z=2*sin(2*pi*f2*tt);

plot(tt,z);

set(gca ,’FontSize ’ ,10);

34 xlabel(’Time (sec)’); ylabel(’Observation ’);title(’Generator ’);

%

% Now do compute the Lomb normalized periodogram

%

39 % first create a vector of frequency bins , 1 per Hz

f=[0:200];

[Pn Prob]=lomb(t,y,f);

% and plot the periodogram

44 %

subplot (413)

h=plot(f,Pn,’r’); set(h,’LineWidth ’ ,2);

xlabel(’Frequency (Hz)’); ylabel(’Normalized PSD’);

title(’Lomb Periodogram ’); set(gca ,’FontSize ’ ,10);

49 %

% and plot the probabilities

%

subplot (414)

h=plot(f,Prob ,’r’); set(h,’LineWidth ’ ,2);

54 xlabel(’Frequency (Hz)’); ylabel(’Probability ’);

set(gca ,’FontSize ’ ,10);

%

% then sort for smallest values first

% (ie. those points least likely to be random)

59 %

[p,ind]=sort(Prob);

most=ind (1:5); % just the first 5 values

ANS=[f(most)’ Pn(most)’ Prob(most)’]
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Appendix B. C++ Code

This appendix includes the implementation of the C++ parsing program.

B.1 C++ Parsing Program

Listing B.1: C++ Parsing Code.(appendix3/parse.cpp)
#include <fstream > // files streams

2 #include <iostream > // standard streams

#include <sstream > // string stream support

#include <string > // string variable support

#include <iomanip >

#include <list >

7 #include <vector >

#include "nr.h"

using namespace std; //using standard library

12 void main(int argc , char **argv) {

string inName , outName ;// strings for the input and output file names

unsigned int number;

17 double time , interarrival;

string test , test2 , test3 , test4 , test5 ;// string to test if I’ve got a ...

spare line

string Line1 ;//use this to test inside my if statements

string source;

string framestring;

22 bool first , second , third , debug;

//vector <string > sources;

if (argc <=1){

// useful debugging message

27 cout << "Program Usage: " << argv [0] << " <filename >" << endl;

return; //fail the program

}else{

inName=argv [1];// save the filename

32
}

ifstream iFile(inName.c_str ());

37 if(!iFile.is_open ()){

cout << "Bad Input Filename" << endl;

return;

42 }

cout.precision (12); // increases the decimal precision for the output

debug=false ;// debug on or off

47 /*////////////////////////////////////////////

//Here ’s the code for opening the input file

////////////////////////////////////////////

cout << "Please enter new input filename: ";

getline(cin , fName);

52 cin.ignore(1, ’\n’);

ifstream iFile(fName.c_str());
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while ( iFile.fail()) {

iFile.clear();

cout << "File not found: " << fName << endl;

57 cout << "Please enter new input filename: ";

getline(cin , fName);

cin.ignore(1, ’\n’);

iFile.open(fName.c_str());

}*/

62
//////////////////////////////////////////////

//Here ’s the code for creating the output file

//////////////////////////////////////////////

outName =" Output_" + inName;

67 ofstream outFile(outName.c_str());

outFile.precision (16) ;//set the decimal precision for the outfile

72
// initialize the testing counter

int count = 0;

first = false;

second = false;

77 third = false;

//Grab the first line to start the loop

getline(iFile , test);

82 //Loop until the end of the file

while (iFile) {

istringstream In(test);

87 In >> test >> test2 >> test3 >> test4 >> test5;

if(debug==true){

cout << test << test2 << test3 << test4 << test5 << endl;

}

92
//The First Case

if (test == "No."){

getline(iFile , Line1);

istringstream In(Line1);

97 In >> number >> time >> source;

first = true;

if(debug ==true){

cout << "First Case" << endl;

102 }

}

//The Second Case

107 if ((test == "[Time") && (test5 ==" displayed ")){

In.ignore(INT_MAX , ’:’);

In >> interarrival;

second = true;

112 if(debug ==true){

cout << "Second Case" << endl;

}

}

117 //The Third Case

if ((test == "Frame ") && (test2 ==" Length :")){
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framestring = test3;

122 third = true;

if(debug ==true){

cout << "Third Case" << endl;

}

127 }

//The Fourth Case

if (first && second && third){

cout << setw (10) << number << setw (20) << time << setw...

(20) << source << setw (25) <<interarrival << setw (10) ...

<< framestring <<endl;

132 outFile << setw (10) << number << setw (20) << time << setw...

(20) << source << setw (25) <<interarrival << setw (10) ...

<< framestring <<endl;

first = false;

second = false;

third =false;

137
// Increment the testing counter

count = count ++;

cout << "Record #: " << count << endl;

142 if(debug ==true){

cout << "Fourth Case" << endl;

}

}

147

//Reset the input streams

In.clear();

152
//Grab another line

getline(iFile , test);

}

157 iFile.close();

}

B.2 Sample Input

This section contains some sample input to the parse.cpp program. This input
is obtained after viewing the desired traffic in Wireshark, and selecting the option to
output to a text file the displayed packets.

No. Time Source Destination Protocol Info

73111 4398.532380 172.16.112.10 172.16.113.50 NTP NTP server

Frame 73111 (90 bytes on wire, 90 bytes captured)

Arrival Time: Mar 31, 1999 10:13:27.607540000

[Time delta from previous captured frame: 0.000478000 seconds]

[Time delta from previous displayed frame: 4398.532380000 seconds]

[Time since reference or first frame: 4398.532380000 seconds]

Frame Number: 73111

Frame Length: 90 bytes

Capture Length: 90 bytes
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[Frame is marked: False]

[Protocols in frame: eth:ip:udp:ntp]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]

Ethernet II, Src: SunMicro_83:4a:82 (08:00:20:83:4a:82), Dst: SunMicro_09:b9:49 (08:00:20:09:b9:49)

Internet Protocol, Src: 172.16.112.10 (172.16.112.10), Dst: 172.16.113.50 (172.16.113.50)

User Datagram Protocol, Src Port: ntp (123), Dst Port: ntp (123)

Network Time Protocol

No. Time Source Destination Protocol Info

75186 4462.517102 172.16.112.10 172.16.113.50 NTP NTP server

Frame 75186 (90 bytes on wire, 90 bytes captured)

Arrival Time: Mar 31, 1999 10:14:31.592262000

[Time delta from previous captured frame: 0.000364000 seconds]

[Time delta from previous displayed frame: 63.984722000 seconds]

[Time since reference or first frame: 4462.517102000 seconds]

Frame Number: 75186

Frame Length: 90 bytes

Capture Length: 90 bytes

[Frame is marked: False]

[Protocols in frame: eth:ip:udp:ntp]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]

Ethernet II, Src: SunMicro_83:4a:82 (08:00:20:83:4a:82), Dst: SunMicro_09:b9:49 (08:00:20:09:b9:49)

Internet Protocol, Src: 172.16.112.10 (172.16.112.10), Dst: 172.16.113.50 (172.16.113.50)

User Datagram Protocol, Src Port: ntp (123), Dst Port: ntp (123)

Network Time Protocol

No. Time Source Destination Protocol Info

77702 4526.485501 172.16.112.10 172.16.113.50 NTP NTP server

Frame 77702 (90 bytes on wire, 90 bytes captured)

Arrival Time: Mar 31, 1999 10:15:35.560661000

[Time delta from previous captured frame: 0.000445000 seconds]

[Time delta from previous displayed frame: 63.968399000 seconds]

[Time since reference or first frame: 4526.485501000 seconds]

Frame Number: 77702

Frame Length: 90 bytes

Capture Length: 90 bytes

[Frame is marked: False]

[Protocols in frame: eth:ip:udp:ntp]

[Coloring Rule Name: UDP]

[Coloring Rule String: udp]

Ethernet II, Src: SunMicro_83:4a:82 (08:00:20:83:4a:82), Dst: SunMicro_09:b9:49 (08:00:20:09:b9:49)

Internet Protocol, Src: 172.16.112.10 (172.16.112.10), Dst: 172.16.113.50 (172.16.113.50)

User Datagram Protocol, Src Port: ntp (123), Dst Port: ntp (123)

Network Time Protocol

Continued...

B.3 Sample Output

This section contains some sample output obtained after parsing the sample

input file.

73111 4398.53238 172.16.112.10 0.0 0

75186 4462.517102 172.16.112.10 63.984722 90
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77702 4526.485501 172.16.112.10 63.968399 90

79336 4590.45371 172.16.112.10 63.968209 90

80239 4654.412086 172.16.112.10 63.958376 90

81156 4718.380345 172.16.112.10 63.968259 90

82297 4782.349253 172.16.112.10 63.968908 90

83547 4846.317122 172.16.112.10 63.967869 90

86244 4910.285995 172.16.112.10 63.968873 90

88644 4974.254602 172.16.112.10 63.968607 90

90366 5038.222591 172.16.112.10 63.967989 90

92854 5102.191042 172.16.112.10 63.968451 90

93688 5166.158629 172.16.112.10 63.967587 90

94437 5230.127581 172.16.112.10 63.968952 90

95031 5294.09686 172.16.112.10 63.969279 90

97323 5358.063556 172.16.112.10 63.966696 90

97621 5422.031773 172.16.112.10 63.968217 90

98767 5486.000149 172.16.112.10 63.968376 90

101438 5549.958484 172.16.112.10 63.958335 90

102698 5613.927384 172.16.112.10 63.9689 90

104177 5677.895122 172.16.112.10 63.967738 90

106055 5741.864053 172.16.112.10 63.968931 90

107954 5805.832306 172.16.112.10 63.968253 90

109647 5869.80002 172.16.112.10 63.967714 90

111665 5933.768394 172.16.112.10 63.968374 90

Continued...
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Appendix C. Results Organized By Attack

This appendix includes the periodogram data for each connection of each attack that

was analyzed in this research.

C.1 The ProcessTable Attack

C.1.1 Victim: 172.16.113.50 on 31 March 1999. This section contains the

pertinent information describing the ProcessTable attack mounted against IP address

172.16.113.50 by IP address 172.16.118.60 on 31 March 1999.

Table C.1: ProcessTable Attack against 172.16.113.50

Name processtable
Date 03/31/1999
Category Denial of Service
Duration 00:28:02
Attacker 172.16.118.60
Victim 172.16.113.50

Table C.2: Summary for ProcessTable Attack against 172.16.113.50

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.10 76 False False False
172.16.112.20 905 False True False
172.16.112.149 158 False False False
172.16.113.84 319 False False False
172.16.113.204 104 False False False
172.16.114.148 324 False False False
172.16.114.207 465 False False False
172.16.118.60 782 True False True
194.7.248.153 611 False False False
195.115.218.108 968 False False False
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Figure C.1: ProcessTable Attack Source=172.16.112.10
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Figure C.2: ProcessTable Attack Source=172.16.112.20
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Figure C.3: ProcessTable Attack Source=172.16.112.149
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Figure C.4: ProcessTable Attack Source=172.16.113.84
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(b) Payload: Alarm False

Figure C.5: ProcessTable Attack Source=172.16.113.204
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Figure C.6: ProcessTable Attack Source=172.16.114.148
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Figure C.7: ProcessTable Attack Source=172.16.114.207
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(b) Payload: Alarm False

Figure C.8: ProcessTable Attack Source=172.16.118.60
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Figure C.9: ProcessTable Attack Source=194.7.248.153
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(b) Payload: Alarm False

Figure C.10: ProcessTable Attack Source=195.115.218.108
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C.1.2 Victim: 172.16.113.50 on 7 April 1999. This section contains the

pertinent information describing the ProcessTable attack mounted against IP address

172.16.113.50 by IP address 172.16.117.52 on 7 April 1999.

Table C.3: ProcessTable Attack against 172.16.113.50

Name processtable
Date 04/07/1999
Category Denial of Service
Duration 00:31:05
Attacker 172.16.117.52
Victim 172.016.113.50

Table C.4: Summary for ProcessTable Attack against 172.16.113.50

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.10 30 False False False
172.16.112.20 837 False True False
172.16.112.50 62 False False False
172.16.112.100 37 False False False
172.16.114.50 55 False False False
172.16.117.52 1871 True False True
196.227.033.189 1705 False False False
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Figure C.11: ProcessTable Attack Source=172.16.112.10
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm True

Figure C.12: ProcessTable Attack Source=172.16.112.20
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm False

Figure C.13: ProcessTable Attack Source=172.16.112.50
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm False

Figure C.14: ProcessTable Attack Source=172.16.112.100
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(b) Payload: Alarm False

Figure C.15: ProcessTable Attack Source=172.16.114.50
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(a) Inter-Arrival: Alarm True
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(b) Payload: Alarm False

Figure C.16: ProcessTable Attack Source=172.16.117.52
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm False

Figure C.17: ProcessTable Attack Source=196.227.33.189

C.2 The Dictionary Attack

C.2.1 Victim: 172.16.114.50. This section contains the pertinent informa-

tion describing the Dictionary attack mounted against IP address 172.16.114.50 by

IP address 172.16.118.10 on 5 April 1999.

Table C.5: Dictionary Attack against 172.16.114.50

Name dict
Date 04/05/1999
Category Root to Local
Duration 00:16:35
Attacker 172.16.118.10
Victim 172.16.114.50
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Table C.6: Summary for Dictionary Attack against 172.16.114.50

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.20 228 False False False
172.16.112.50 764 False False False
172.16.113.50 289 False False False
172.16.113.105 156 False False False
172.16.114.169 128 False False False
172.16.118.10 3438 True False True
195.115.218.108 2094 False True False
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(b) Payload: Alarm False

Figure C.18: Dictionary Attack Source=172.16.112.20
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm False

Figure C.19: Dictionary Attack Source=172.16.112.50
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm False

Figure C.20: Dictionary Attack Source=172.16.113.50
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm False

Figure C.21: Dictionary Attack Source=172.16.113.105
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm False

Figure C.22: Dictionary Attack Source=172.16.114.169

81



1800 2000 2200 2400 2600 2800 3000
0

0.5

1

1.5

2

Time (sec)

O
bs

er
va

tio
n

Input Data

0 50 100 150 200
0

10

20

30

40

Frequency (Hz)

N
or

m
al

iz
ed

 P
S

D

Lomb Periodogram

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

S
ig

ni
fic

an
ce

Significance

(a) Inter-Arrival: Alarm True
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(b) Payload: Alarm False

Figure C.23: Dictionary Attack Source=172.16.118.10
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(a) Inter-Arrival: Alarm False
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(b) Payload: Alarm True

Figure C.24: Dictionary Attack Source=195.115.218.108
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C.3 The Teardrop Attack

C.3.1 Victim:172.16.114.50. This section contains the pertinent informa-

tion describing the Teardrop attack mounted against IP address 172.16.114.50 by IP

address 207.230.54.203 on 6 April 1999.

Table C.7: Teardrop Attack against 172.16.114.50

Name teardrop
Date 04/06/1999
Category Denial of Service
Duration 00:00:01
Attacker 207.230.54.203
Victim 172.16.114.50

Table C.8: Summary for Teardrop Attack against 172.16.114.50

Connection Packets Timing Alarm Payload Alarm Attack
172.16.112.10 17 False False False
172.16.114.148 24 False False False
206.48.44.50 493 False False False
207.230.54.203 90 True False True
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Figure C.25: Teardrop Attack Source=172.16.112.10
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(a) Inter-Arrival: Alarm False
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Figure C.26: Teardrop Attack Source=172.16.114.148
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Figure C.27: Teardrop Attack Source=206.48.44.50
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Figure C.28: Teardrop Attack Source=207.230.54.203
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C.3.2 Victim:172.16.114.50. This section contains the pertinent informa-

tion describing the Teardrop attack mounted against IP address 172.16.114.50 by IP

address 199.227.99.125 on 8 April 1999.

Table C.9: Teardrop Attack against 172.16.114.50

Name teardrop
Date 04/08/1999
Category Denial of Service
Duration 00:00:01
Attacker 199.227.99.125
Victim 172.16.114.50

Table C.10: Summary for Teardrop Attack against 172.16.114.50

Connection Packets Timing Alarm Payload Alarm Attack
135.16.216.191 14 False False False
172.16.113.105 41 False False False
199.227.99.125 20 False False True
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Figure C.29: Teardrop Attack Source=135.13.216.191
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Figure C.30: Teardrop Attack Source=172.16.113.105
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Figure C.31: Teardrop Attack Source=199.227.99.125
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