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AFIT/GAE/ENY/08-M28 

Abstract 

This research effort focuses on using a heuristic approach to determine the 

optimal flight path required to put an Unmanned Aircraft System’s (UAS) sensor on a 

moving target in the presence of a constant wind field.  This thesis builds on past work 

using dynamic optimization techniques to calculate minimum time to target.  The 

computationally intensive dynamic optimization routines in their current form take a 

prohibitive amount of time to calculate and ultimately result in erroneous flight path 

predictions due to inherent execution time latencies.  Therefore an iterative, suboptimal 

heuristic approach was explored to mitigate excessive calculation times and ultimately 

yield improved flight path predictions.  This report not only explores the heuristic 

techniques used for flight path calculation, but also includes real world application and 

flight test results in a Micro Air Vehicle equipped with an autopilot. 
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REAL-TIME FLIGHT PATH OPTIMIZATION FOR TRACKING  
STOP-AND-GO TARGETS WITH MICRO AIR VEHICLES 

 
 

1. Introduction 

1.1   Thesis Introduction 
Lessons learned from OPERATION ENDURING FREEDOM (OEF) and 

OPERATION IRAQI FREEDOM (OIF) have demonstrated a need for teams on the 

ground in urban environments to organically engage high value, time-sensitive targets in 

real-time, from Near Line of Sight (NLOS) ranges (500m to 5km) without waiting for 

outside air support.  Currently, engaging these NLOS targets requires coordination of 

orbiting assets such as fighter or bomber aircraft, Hellfire missile equipped Predator 

UAV’s, or joint ground-based artillery systems.  While devastatingly effective, these 

systems have three drawbacks: 1) they must be on-station and available for tasking at the 

time of the request, 2) they have a high probability of causing significant collateral 

damage, and 3) it takes time to pass the target information and receive clearance to 

engage the target – an unacceptable delay when engaging a fleeting, high value target. 

These drawbacks have naturally led to research in the areas of man-portable 

Micro Aerial Vehicles (MAV’s) which can be deployed by members on location, 

requiring minimal deployment time and minimal outside coordination.  The thesis 

described herein is therefore the progeny of AFIT’s response to the need of such a 

system.  This thesis is the culmination of the theoretical work of several other groups, the 

implementation of some previous ideas as well as design and integration of new 

methodologies determined as best suited for completion of the task of creating a 

miniature, mobile system which can track and engage a moving target. 
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1.2   Problem Statement 
Current man-portable weapon systems require the operator to have unobstructed 

Line of Sight (LOS) to the target at effective ranges less than 1000 meters.  Maintaining 

an unobstructed LOS in an urban environment, while staying behind protective cover, is 

challenging at best.  These current weapon systems also require the operator to partially 

expose themselves both giving their location away and exposing them to enemy fire.  In 

addition, these weapons are essentially large, explosive bullets with no loiter or wait 

capability.  With the current capability, a team tasked with engaging a time sensitive 

target in a small city would have to infiltrate the city undetected to within approximately 

200m of the target.  Assuming the ground team stayed covert while moving to intercept 

the target, detection is almost assured once the current weapon systems are used to 

engage the target. Given their distance from friendly forces, the survivability of the 

engaging team at this point would be very low.  Further, if the target moves, or the 

ground force team is re-directed, their response time is comparably higher than other 

systems due to the team’s need to stay covert while navigating through an urban 

environment. 

The desired organic capability is a responsive, man-portable, self-propelled, low 

signature, expendable delivery system with loiter capability, and a NLOS range greater 

than that currently provided by fielded systems.  This new system would allow the user to 

covertly launch, loiter, track, positively identify (ID), and engage a time-sensitive, high 

value target from a safe distance.  The system should be effective in urban environments 

as well as desert, maritime, and temperate environments.   
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This thesis will concentrate on creating a flight path algorithm that can be 

implemented real time with minimum computation lag and will effectively maneuver a 

UAV sensor over a moving target.  It will concentrate on developing the UAV flight path 

planning algorithms necessary to guide the UAV from launch to the target.  It will 

specifically look at heuristic, iterative techniques which can quickly calculate flight path 

solutions, implement these solutions on actual UAV systems, and validate the algorithm 

through flight tests. 

1.3   Scope and Assumptions 
The following assumptions were made during the course of this research: 

1. The aircraft is modeled as a point mass 

2. The optimal sensor position is modeled as a point on the ground 

3. The aircraft is flying at constant airspeed 

4. The aircraft maintains a constant altitude 

5. The wind direction and magnitude is constant for a given flight path solution 

6. The target is assumed to be moving at a constant groundspeed for a given flight 

path solution 

7. Sensor pointing with respect to the aircraft is fixed 

 

This thesis focused on producing a robust flight path-making algorithm that can 

be implemented in a physical hardware system.  The primary purpose of the developed 

routine is to plot an optimal path in the initial stages of the encounter, from time of 

launch until the target is detectable within the FOV.  Once the target is within the FOV, 

tracking will be transferred to a separate Cursor-on-Target (CoT) tracking function (not 
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developed here).   It uses hardware that is similar in size and capability to that used in 

other MAVs on the market.  The initial testing occurred on a larger UAV test bed 

platform.  After initial testing of the system is complete, the hardware was transitioned 

into a smaller MAV system.  For the purpose of this research, a MAV is defined as 

having a wingspan of 24 inches or less, weighing less than 2 pounds. 

1.4   Thesis Outline 
In this chapter, an introduction to the concept of developing an optimal flight path 

model for a moving target was given, as well as the genesis of that requirement.  Chapter 

2 reviews the relevant work of previous AFIT students and others in this field of research, 

and their applicability to the current project.  Chapter 3 details the implementation of 

theories discussed in Chapter 2, as well as the development of new systems and 

methodologies to accomplish the project goal.  Chapter 4 details flight test results for the 

system, and provides analysis of these results.  Chapter 5 concludes the thesis and gives 

pertinent recommendations for future work.  An appendix is also provided that includes 

Matlab algorithms, flight test procedure outlines and hardware setup instructions.   
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2. Literature Review 

2.1   Introduction 
There is a growing volume of research dealing with tracking targets and optimal 

flight paths for UAS’s.  This Chapter provides a brief overview of AFIT theoretical 

research, hardware testing and procurement completed in advance of our work and will 

show in what ways this work is used in our current project.  There were four individuals 

specifically who’s work was directly related to the current thesis.  This chapter will 

discuss the details of each of these theses that are relevant to the current project.   

2.2   Sig Rascal as a Test bed Platform – Jodeh 
Pivotal to any future UAV research at AFIT was the validation/verification of a 

viable flying test bed which could be used for UAV research.  At the beginning of 2006, 

this capability did not yet exist.  To this end, Nidal Jodeh conducted a thesis in March, 

2006 to accomplish just this: 

The research in this thesis describes a UAV research platform developed to 

support the ANT Center’s goals.  This platform is now the bedrock for UAV 

simulation and local flight test at AFIT.  The research has three major 

components. The first component includes development of a physical, inertial, 

and aerodynamic model representing an existing aircraft.  A systematic analysis 

of the airframe leads to a complete geometric, inertial, and aerodynamic 

representation… Autonomous flights tune the autopilot controller through 

waypoint tracking in preparation for future advanced navigation research and 

provide data for Hardware in the Loop simulation validation.   This report, along 
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with other significant legacy documentation and procedures, builds the foundation 

on which AFIT and ANT Center UAV simulations and flight tests are based.  

(Jodeh, 2006).  

 

Capt Jodeh selected the Sig Rascal 110 as his primary test bed.  This aircraft can 

be seen in Figure 1 below.  A list of pertinent statistics for this aircraft are given below in 

Table 1.  Capt Jodeh selected this particular airframe for the following reasons: 

It was chosen for its cavernous interior, stable flight characteristics, and use by 

other research institutions around the United States.  The University of California-

Berkeley’s Center for Autonomous Intelligent Networks and Systems and Center 

for Collaborative Control of Unmanned Vehicles has utilized up to three of the 

Rascals in research of vision based road following using small autonomous 

aircraft (Ryan, et al, 2005:1).  Dr. Eric Frew from the University of Colorado, and 

formerly from the University of California-Berkeley has also conducted vision 

based navigation work with the SIG Rascals (Frew, et al, 2004:1).  The Rascal 

110 is a high wing, tail wheel configured aircraft, commonly referred to as a tail 

dragger.  The manufacturer constructed the aircraft of plywood, balsa wood, 

aluminum, and fiberglass and covered it with polyester film.  Additionally, with a 

few modifications, the aircraft was upgraded with a 50 oz fuel tank, pushing the 

flight time to nearly two hours.  (Jodeh, 2006:9) 
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Figure 1. Rascal 110's Out for Preflight Checks 

Table 1. Rascal Physical Dimensions (Jodeh, 2006) 

NAME SYMBOL VALUE 

Wing Reference Area SW 10.56 ft2 

Wing Span bW 9.16 ft 

Aspect Ratio AR 7.94 ft 

Wing Root Chord cRW 1.33 ft 

Horizontal Tail Area SH 1.99 ft2 

Horiz. Tail Span bH 3.04 ft 

Horiz. Tail Root Chord cRH 0.833 ft 

Vertical Tail Area SV 0.773 ft2 

Vert. Tail Span bV 0.937 ft 

Vert. Tail Root Chord cRV 1.0833 ft 

Aircraft Mass (Empty) M 0.4895 Slugs 
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The autopilot system that was used by Capt Jodeh was the Piccolo II airborne 

Avionics Package, seen in Figure 2.  The Piccolo autopilot system has been used in other 

UAV platforms (Vaglienti, Hoag, and Niculescu, 2005:7), and was seen as an excellent 

test bed for future UAV research.   

 

Figure 2. Piccolo II Airborne Avionics Package (Vaglienti et al., 2005:9) 

 

As part of Jodeh’s thesis, he also developed UAV physical, inertial, and 

aerodynamic simulation model of the Rascal 110.  The wireframe representation of this 

model can be seen in Figure 3.   Jodeh described his aircraft modeling: 

An accurate representation of the Rascal 110 in the Matlab/SIMULINK and 

Hardware in the Loop (HIL) simulations required precise physical and 

aerodynamic data.  Physical measurements, CG, inertia, throttle and control 

surface calibrations were performed manually in the lab.  While the airfoil model, 

engine and propeller model, and stability and control derivatives were performed 

using analytical software.  (Jodeh, 2006:38) 
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XY

Z

 

Figure 3. Rascal 110 Representation; Input to Digital Datcom (Jodeh, 2006) 

The ultimate conclusion of Capt Jodeh’s work was that he was able to develop a 

viable UAV platform for the AFIT ANT laboratory which has proved to be of great value 

for future research.  By collecting physical, inertial and aerodynamic data for the Sig 

Rascal 110, he was able to get an initial estimate on correct autopilot values as well as 

develop a Hardware in the Loop (HIL) platform for the Piccolo autopilot.   

The Sig Rascal was used as the primary air vehicle for all of the systems testing of 

the current thesis.  It should be noted that the current thesis group voted against using the 

Piccolo autopilot used by Jodeh due to its size.  The Kestrel autopilot system, which will 

be discussed later, was seen to better fit the vision for use with MAVs.  Jodeh’s work 

however was a crucial step in the procurement of the Sig Rascal as well as conducting the 

validation and verification of the airframe required for future autonomous research.    
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2.3   Wind Corrected Flight path planning – Zollars 
Another major issue which must be addressed in any MAV flight planning is the 

effect of wind on the flight path.  Not only does it affect the actual ground track, but the 

MAV heading can differ considerably from the ground track heading thus significantly 

affecting camera/sensor placement.  Lt Michael D. Zollars (Zollars, 2007) conducted a 

thesis entitled “Optimal wind corrected flight path planning for autonomous Micro Air 

Vehicles”, in which he studied minimizing the time-of-flight to position a MAV sensor 

over a specific point.  Lt Zollars made the note that, 

Therefore, the goal of this research was to use dynamic optimization techniques to 

determine the optimal flight path to place a MAV’s sensor footprint on a target 

when operating in wind for three different scenarios. The first scenario considered 

the minimum time path given an initial position and heading and a final position 

and heading. The second scenario minimized the error between the MAV’s 

ground track and a straight line to the target in order to force a desired path on the 

vehicle. The final scenario utilized both a forward mounted sensor as well as a 

side mounted sensor to optimize the time the target is continually in view of the 

sensor footprint… These optimal flight paths provide a benchmark that will 

validate the quality of future closed-loop wind compensation control systems.  

(Zollars, 2007:iv) 

At the root of Lt Zollars’ thesis was the assumption that a TACtical MAV 

(TACMAV) would be used as the ultimate end-user platform.  While the current thesis 

used the Sig Rascal as its primary test bed, the final airframe in mind was in fact identical 

to the one used in Lt. Zollars’ research.  The TACMAV also uses the Kestrel autopilot for 
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its autopilot system which became a determining factor in using Kestrel autopilot system 

for current research.   Zollars describes the system: 

The Munitions Directorate of the Air Force Research Lab has developed a light-

weight aircraft for military surveillance in the battlefield…This hand-launched 

vehicle is battery operated and navigates using a GPS/INS system. The vehicle 

utilizes two sensors for surveillance. One is mounted at a 45 degree angle directed 

out the nose and the other is mounted at a 30 degree angle directed out the wing.  

The lightweight TACMAV is equipped with sensors capable of viewing 

ground targets both directly in front, as well as out the side of the aircraft. 

However, this aircraft is very susceptible to wind disturbance which significantly 

decreases the ability to accurately point its sensor directly at the target at the 

desired approach angle. (Zollars, 2007:14) 

 

Figure 4. TACMAV Flexible Wings (Zollars, 2007) 
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Lt. Zollars focused on combing dynamic optimization techniques (Bryson, 1999) 

with Dubin’s optimal flight path methods (Dubin, 1957).   The dynamic optimization 

technique followed the standard form min ( ( ), )
u

J x N t N tφ= = .  This standard dynamic 

optimization technique seeks to minimize the path cost, J, based on a series of weighted 

constraints along N number of steps.  Zollars’ work included path optimization 

techniques developed by Dr. Dubin:  

L. E. Dubin developed a method for determining the shortest distance between 

two points given an initial position and heading to a final position and 

heading…He showed that the shortest path taken will consist of not more than 

three pieces, each for which is either a straight line segment or an arc of a 

constant radius (Dubins, 1957). Many others have adopted his philosophy and 

used it in their own work. McGee, Spy, and Hedrick, out of the University of 

California Berkeley, determined optimal path planning in the presence of wind 

using Dubins methods (McGee, 2005). (Zollars, 2007:21)  

Figure 5 depicts 4 potential solutions to a single optimal path.  They consist of a 

executing a series of Right-straight-Right (RSR), Right-Straight-Left (RSL), Left-

Straight-Left (LSL), or Left-Straight-Right (LSR) maneuvers.  The turns are done at the 

maximum turn rate available to the aircraft.  Using a parameter optimization algorithm  

such as Matlab’s FMINCON function, these four scenarios were evaluated and the 

shortest time-to-target path selected.  An example of Zollars’ model results are given in 

Figure 6. 
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Figure 5. Four Examples of Admissible Dubin’s Paths (Zollars, 2007:19) 

 

 

Figure 6. Dubins Flight Path with Forward Sensor (Zollars, 2007:31) 
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Lt. Zollars proved that optimization tools such as FMINCON could successfully 

be used to create an optimal intercept solution for a moving target in windy conditions.  

His work provided the starting point for the current thesis and an effective evaluation tool 

for future research.  Ultimately Lt Zollars’ FMINCON-laden approach to creating an 

optimal flight path proved too time-consuming and inefficient to be used in a real world 

scenario.  It did, however, provide a conceptual basis for future work. His algorithms 

were also used to check the accuracy of future suboptimal solutions which were 

developed in this thesis. 

2.4   Kestrel Autopilot Integration – Rufa 
As has been previously mentioned, the group made a decision early on to 

incorporate the Procerus Kestrel Autopilot into the hardware configuration.  Fortunately, 

some work had already been done at the ANT lab involving Kestrel autopilot systems by 

Lt Justin Rufa.  The focus of Lt Rufa’s thesis was target identification and recognition 

using MAV-sized hardware.  Lt Rufa’s research, “…demonstrates the ability of a given 

sensor to use a basic ATR algorithm to identify targets in a search area based on its size 

and color.  With this ability, the system’s target thresholds can also be altered to mimic 

real world UAV sensor performance.”  (Rufa, 2007:iv) 

While the methods explored by Rufa for target recognition were not used in the 

current thesis, the hardware procured by the ANT lab for his thesis research served as the 

foundation for the current group’s initial work.   The RC dump truck, seen in Figure 7, 

served as the test bed and mounting platform for the autopilot and cameras.  Its slow, 

variable operating speeds allowed for refinement of target recognition algorithms not 
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available in the Sig Rascal.  It also added the additional safety and accessibility of a land-

based system, where adjustments could be made easily.  The dump truck was retrofitted 

with a plexiglas shelf; this allowed all the necessary hardware to be mounted onboard and 

readily accessible for programming and modification. 

 

Figure 7. Dump truck with Plexiglas platform 

The second major component used by Lt Rufa was the Kestrel autopilot system.  

He describes the system below (Rufa, 2007:24): 

The guidance for the search system comes from the Kestrel autopilot system, 

manufactured by Procerus Technologies in Vineyard, Utah (Procerus 2007).  This 

autopilot provides the vehicle with its autonomous guidance and control ability 

with its GPS (Global Positioning System) and INS (inertial navigation system).  

The system is comprised of the actual onboard autopilot system and the ground 

station. 
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Figure 8. Kestrel Onboard Autopilot Box Input/Output Port Description, 

(With Permission © Copyright 2006 - 2007. Procerus Technologies.  

All Rights Reserved.) 

 

The ground-based portion of the Kestrel Autopilot System consists of a 

Commbox receiver, RC transmitter, and the Virtual Cockpit software loaded onto 

a laptop computer.  [as shown in Figure 9].  This ground station setup allows for 

all telemetry data to be relayed from the autopilot onboard the vehicle to the 

laptop via the Commbox through a RS232 9-pin serial cable.  If manual control of 

the vehicle is needed, an RC transmitter can be connected to the Commbox and 

when configured properly the vehicle will respond to transmitter commands 

instead of autopilot commands from the ground station. 
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Figure 9. Kestrel Autopilot Ground Station Setup, 

(With Permission © Copyright 2006 - 2007. Procerus Technologies.   

All Rights Reserved) 

 

2.5   Real World Implementation of Optimal Path Planning  
Other recent work in the area of optimal flight path planning has also noted the 

difficulty of implementing theoretical results into real world scenarios.  A 2006 

Conference paper from the Pennsylvania State University titled “Optimal Path Planning 

of UAVs Using Direct Collocation with Nonlinear Programming” ran into this very 

problem (Greiger, 2006).  Their optimal solution involved using nonlinear, receding 

horizon techniques and dynamic optimization cost functions that included maintaining 

the target in the field of view.   

While their theoretical results proved promising, they admitted in their final 

conclusions that, “…the method is too slow for real time operation as it is currently 

implemented in MATLAB.”  Furthermore, they included in their conclusions that, “We 

performed two flight tests with an offline solution for a single UAV and stationary target, 

but the presence of a steady wind invalidated these offline generated flight paths.” This 

implies that their optimal flight paths were calculated on the ground, but when applied to 
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the real world scenario the results were invalid.   Creating feasible real world solutions is 

a primary goal of this thesis. 

This chapter summarized some of the previous work that has been done to derive 

a viable real-time flight path optimization routine for use in UAV’s.  It also examined 

work previously done at AFIT that directly supported the current thesis work and paved 

the way for flight testing of optimal flight path algorithms on UAV platforms.  
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3. Methodology 

3.1   Overview 
This chapter lays out the fundamental processes for obtaining an optimal flight 

path solution for a moving target in a wind field.  A simplified heuristic approach will be 

developed and compared to the optimal flight paths developed by Lt Zollars.   

3.2   Wind-corrected Waypoint Generation 
As discussed in Chapter 2, Lt Zollars previously did similar work to calculate the 

optimal flight path through a wind field to a stationary target.  Zollars’ work focused on 

using established dynamic optimization techniques in conjunction with Matlab’s 

optimization toolset (Zollars, 2007).   The result was an extremely accurate flight path 

algorithm that minimized time-of-flight to a stationary target.   

When faced with implementing Zollars’ theoretical results, a few items proved 

problematic.  First, the computationally-intensive optimization code would often require 

in excess of 15 seconds to calculate the optimal path.  Assuming the UAV is traveling a 

modest speed of 20 m/s, the UAV would now be 300 m from its original position.  

Because the algorithm assumed the UAV to still be at the point where the code was 

initiated, large positional errors were incurred as seen in Figure 10 .   This figure 

illustrates that even though the original flight path prediction may have been extremely 

accurate, it is nonetheless useless as a final solution. 
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Figure 10.  Effect of processing time on ultimate target location solution 

 

Another problem was the fact that the amount of time required to calculate an 

optimal flight path was not linear or predictable.  Zollars’ traditional dynamic 

optimization technique relies on a dynamic optimization routine; this requires an initial 

guess for the flight path, and then subsequently tweaks the position of a predetermined 

number of stepping points to minimize the path cost.  The dynamic optimization 

technique is highly dependent on the quality of initial guess, the size of the steps and the 

nature of the cost function.  A greater number of step sizes, while generally taking longer 

to compute, does not ensure a more accurate result.  Because the code execution time 

proved unpredictable, it proved impossible to extrapolate out the future position of the 
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aircraft to a point where the flight path commands would actually be executed.  If, for 

example, we knew with relative certainty that it would take 10 seconds to compute an 

optimal flight path, we could effectively extrapolate the future location of the UAV, and 

optimize for that point.  If, however, the calculation time is unpredictable and highly 

variant, no prediction can be made.  The other option would be to force a return after a 

certain number of seconds.  This would essentially guarantee an erroneous result of 

unknown tolerance if the optimization routine was exited prematurely, so this option was 

abandoned.   

These two dilemmas persuaded the team to search for a better solution.  One 

takeaway from Zollars’ work is that, given a constant velocity wind field, the optimal 

flight path will consist of a maximum-effort turn to the target followed by a straight line 

course to the target (refer back to Figure 5).  Utilizing these known assumptions a 

simplified Dubins-path method was designed to return a near-optimal solution, but with 

processing times of less than a second.  As will be shown, the end result is a superior 

real-world solution through mitigation of the largest error-inducing aspect of the solution 

– that being the computation time required to determine the optimal path.  The following 

sections will describe this process in detail. 

3.2.1 Methodology 
The suboptimal solution (in the future referred to as the Pathmaker solution) 

involves a heuristic approach.  At its rudimentary level, the concept is rather straight 

forward.  It is based on matching the TOF of the UAV to the intercept point (sensor on 

target), to the transit time of the target from its current position to the intercept.  A set of 

iterations are implemented that predict the expected future location of the target and then 
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calculate the time required for the UAV to traverse the distance and place the sensor 

footprint on the target.  The path course created by the UAV turning to the required 

heading to intercept the target is also calculated.  By combining these two calculations, 

iterating through and getting increasingly accurate estimations on the Time of Flight 

(TOF) required to intercept the target, we can simultaneously estimate the expected 

location of the target vehicle with a high degree of accuracy.  Figure 11 gives a top-level 

illustration of the process required to arrive at an optimized flight path.   

 
Step 1: Determine straight-line distance and heading 

required to intercept target  
Step 2: Calculate flight path created by max-effort 

turn to course 

Step 3: Re-calculate straight-line path from end of  
calculated turn path to target intercept 

Step 4: Combine Results of Steps 2 and 3 to create 
Optimal Path  

 

Figure 11.  Steps required to produce flight path 
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The process for determining the future expected location of the target is done by 

iterating the calculated range to the target and the TOF necessary to intercept the target.  

A simple numerical demonstration of this process is given in Figure 12.  For purposes of 

illustration, this figure assumes no wind and that the target vehicle is moving at half the 

speed of the UAV.  With an initial target position 1 time unit away from the UAV, the 

target will move .5 time unit before intercept.  As a result, the real TOF will be 

2 21 .5 1.118+ =  time units.   

 3rd iteration 2nd iteration 1st iteration 
.5*(1.0) = .5 

1.0 

.5*(1.118) = .559

1.0 

.5*(1.145) = .573 

1.0 

 

Figure 12.  Numerical demonstration of straight line approximation 

The key takeaway from Figure 12 is that the error (shown as Δ ) in the expected 

future position of the target becomes smaller with each successive iteration.  This is the 

underlying principle behind the iterative process and ultimately serves as an exit criteria 

out of the iterative loop.  When the range approximations reach some predetermined 

tolerance of equivalency, the iterative loop is terminated. 

 Taking a further look at the process used to create the straight-line flight path 

approximation, a general step-by-step description of the process can be developed (refer 

to Figure 13).  The numbers in parentheses are the equation numbers relating to the step 

procedure, which will be discussed later. 

2 21 .5 1.118+ = 2 21 .559 1.145+ = 2 21 .573 1.152+ =

1.145 1.118 .027Δ = − = 1.152 1.145 .007Δ = − =
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1. Calculate UAV sensor location relative to UAV (1-6) 

2. Calculate the range between sensor and target (13) 

3. Calculate TOF required to intercept target at current location (14) 

4. Calculate expected location of target given current TOF (11,12) 

5. Estimate heading required to intercept target, given wind speed and TOF (15) 

6. Calculate necessary UAV final location, given wind correction and sensor 

footprint location (6) 

7. Estimate ground speed given wind data(15-18) 

8. Re-calculate range based new expected target position found in step 4 (11-14) 

9. Iterate process until range estimations from steps (2) and (8) are equivalent 

(user-defined, but generally around 0.1 meter). 

Each of these steps are described in more detail in what follows.  Note that 

magnitude of change or error between range calculations in steps 2 and 8 is not used for 

any other purpose other than to determine whether the iterative loop should be continued; 

it is not used to construct a gradient or to determine which direction the optimization 

should continue.  If the difference between the ranges is large, it means only that the 

process must be continued until the difference between range calculations is negligible.   
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Figure 13.  Illustration of iteration sequence of events 

The process begins by assuming the UAV will intercept the target at its current 

position.  This assumption is knowingly false, however it acts to seed the iterative 

process, giving an initial distance which can be used to estimate TOF and subsequent 

variables.  In Figure 14 below, a generic example is given.  This example would be 

indicative of a UAV flying in a northerly direction, a target moving in a southwesterly 

direction and winds from the south.  As Figure 14 makes clear, the turn rate of the UAV 

is not taken into account at this time.  Turn rate calculations are made in a higher level 

loop, and will be discussed in future sections.  In the given example it can be seen that the 

initial estimate was quite erroneous, but successive iterations (blue lines) were relatively 

close to the final solution.   
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Figure 14.  Example of standard iterative procedure 

This straight-line approximation, which is the core of the optimization routine, is 

calculated both before and after any turn to course required for the UAV to intercept the 

target.  It is calculated before the turn to course to determine what heading is required to 

for exiting out of the turn.  It is calculated again after the turn to determine whether the 

expected location of the target has changed significantly since the initial calculation, as 

illustrated in Figure 11. 

This lays out the basic methodology used to heuristically predict an optimal path.  

The next sections will go into further detail of specific aspects of the Pathmaker 

prediction. 

3.2.2 Camera FOV and sensor footprint 
To determine optimal positioning the UAV, it is necessary to know exactly where 

the sensor  is looking on the ground.  The camera field-of-view (FOV) is a projection of 
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the UAV’s sensor trapezoidal footprint onto the earth’s surface.   This trapezoidal 

projection can be determined if the aircraft altitude and attitude are known, and given the 

camera elevation angle, azimuth angle, and camera FOV.  These camera angles are 

illustrated in Figure 15.  

 

uavh  

rearLine  

Camera FOV 

Elevation Angle

Azimuth 
Angle 

fwdLine
 

Figure 15.  Camera FOV depiction 

 

Referring to the vertical FOV above (LH illustration), the forward and rear limits 

of the FOV can be determined using the simple geometric equations below: 

camFOV

uav

camElevation 2tan( )fwd
hLine θθ

=
−

                                                       (1) 

camFOV

uav

camElevation 2tan( + )rear
hLine θθ

=                                                        (2) 
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To obtain the corners of the trapezoid, one must take into account the normalized 

distance from the aircraft to the corner points.  With the front and rear FOV limits known, 

we can calculate the corners using Equations 3-5 (see also Figure 16 ).  Note that the rear 

FOV limits are found in a similar fashion as those described for the forward FOV below.  

2 2
uavfwd fwdR h Line= +                                                        (3) 

camFOV
_ 2tan( )fwd LHS fwdCam R θ=                                                   (4) 

camFOV
_ 2tan( )fwd RHS fwdCam R θ= −                                                 (5) 

 

 

_fwd RHSCam

uavh

fwdR  rearR  uavh  

_fwd LHSCam  

fwdR

 

Figure 16.  Determining corner points for camera FOV 

Pathmaker uses a single point for sensor-on-target determinations.  Pathmaker 

uses the sensor bore site as the optimal sensor positioning location.  With this being the 

case, then the sensor point used in steps 1,6 and 8 in the iteration process will simply be: 

 
camElevationtan( )

uav
sensor

hy
θ

=                                                        (6) 
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One anomaly that arises in low slant angle (small elevation angle) is that upper 

FOV limit for the sensor may actually be above the horizon.  Within the trapezoidal 

construct, the forward bound would be an infinite distance away.  A white paper 

conducted at AFIT (Knowlan, 2005:27) provided some research on target detection and 

identification using UAV sensor platforms.  This paper showed that using a standard 

768x494 resolution camera (as was used in our studies), pixel density prohibits target 

detection of a standard vehicle sized target at ranges beyond 700 m.  As a result, a 

limiting function was built into Pathmaker to clip the forward sensor FOV line.  This line 

is adjustable, but a setting between 600-800m was generally used as the maximum 

viewable distance.  Clipping this forward FOV line currently does not change the bore 

sight calculation used to determine optimal sensor position. 

3.2.3 Wind correction 
In order to make accurate calculations,  a wind vector must be supplied.   Wind 

data is derived by the Kestrel autopilot.  Given a known airspeed (from pitot-static data) 

and GPS ground speed, the wind speed and direction can be readily derived.  Wind data 

is part of the data packet received back from the autopilot and fed to the Pathmaker 

algorithm.  Pathmaker assumes wind speed and direction to be constant between the 

target and the UAV.  The wind vector is further broken down into X and Y components 

as follows: 

     cos( )x w windW V θ=                                                        (7) 

sin( )y w windW V θ=                                                         (8) 
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3.2.4 Target Location Prediction 
Pathmaker assumes that the target will be traveling at a constant speed and 

direction for the duration of the intended flight path calculation.  From a systems 

integration perspective, a change in target course and speed will first be noted by the 

user.  When the target course and speed are modified, it will automatically force a flight 

path re-calculation.   

It should be noted that within the Pathmaker algorithm, all positions are relative to 

the UAV.  At the system level, it is assumed that a valid lat/long are given to the user, 

who inputs that data into the system.  This lat/long data is then converted at the system 

level into a relative position to the UAV.  This data is conditioned into relative position 

prior to, and after being received back from, Pathmaker.  Within Pathmaker, all 

calculations are made in metric units. 

The target velocity used is broken into X and Y components using equations 

similar to the wind correction equations: 

cos( )
xt t tV V θ=                                                          (9) 

  sin( )
yt t tV V θ=                                                         (10) 

The future location of the target ( , )
e et tx y  is determined by estimating the TOF 

required to place the UAV’s sensor on the target, multiplying this by the velocity of the 

target, and adding the vector to the current known position: 

0e xt t tx x V TOF= +                                                      (11) 

0e yt t ty y V TOF= +                                                     (12) 
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2 2( ) ( )
e et sensor t sensorRange x x y y= − + −                                    (13) 

grounduav

RangeTOF
V

=                                                          (14) 

Notice that there is a circular reference between equations required to calculate 

the Range and TOF.  This is why an iterative process is required.  Through successive 

iterations on the range to the expected location of the target and UAV time of flight, the 

future vehicle location can be predicted with a high degree of accuracy. 

3.2.5 UAV flight path prediction 
The UAV location is determined using an iterative process similar to that 

described for the moving target.  Given the target’s course and speed, the expected 

location of the target at interception is calculated.  Once this course is determined, a 

wind-corrected heading is calculated to place the sensor on target.  The ground speed is 

also calculated and used to determine the TOF, using the set of equations below: 

e

e

t sensor
uw

t sensor

x   - x  + Wx TOF
 = atan( )

 - y  + Wx TOFy
θ                                            (15) 

uwcos( )
wxuav uav xV V Wθ= +                                                        (16) 

uwsin( )
wyuav uav yV V Wθ= +                                                       (17) 

2 2
ground wx wyuav uav uavV V V= +                                                       (18) 

Given the known maximum turn rate for the vehicle, Pathmaker calculates both 

right hand and left hand paths to the predicted necessary intercept heading in a technique 

similar to that used by Zollars (Zollars 2007:27).  It then rejects the longer of the two 
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paths.  An example of this procedure is demonstrated in Figure 17 with a UAV flying 

north, the target moving south, and easterly wind.   The turn to course is an iterative 

process in itself which incorporates the course optimization routine described earlier.  

The iterative steps are as follows: 

1. Estimate future position of the target given current range and TOF 

2. Calculate the arcs created by a max-rate turn to both the RH and LH sides. The 

length of the arc is determined by the final heading required to place the UAV 

sensor on target.   

3. Calculate elapsed time required to make the turn and fly to target. 

4. Re-calculate estimated future position of target based on new TOF  

5. Repeat 
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Figure 17.  Determining shortest turn path to target 

Wind 
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A latency term was built into Pathmaker to account for the time required to 

calculate an optimal path and send it to the UAV for execution.  This latency factor 

estimates the future position of the UAV at the time of actual command execution by 

assuming the UAV will travel straight and level along the current vector for the duration 

of the latency time.   

The time required for Pathmaker to compute a flight path is under a second, 

however due to modem transmission delays, the average time required for the UAV to 

begin execution of a new flight path is approximately 2 seconds.  Figure 18 shows the 

effects of a 2 second and 30 second latency on the ultimate flight path of a UAV flying 

due north and intercepting a target heading west.   The first obvious insight is that not 

taking into account a 30 second latency will provide a result that is wholly unusable.   
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Figure 18.  Effects of command execution delays on optimal path 

Utilizing the above described techniques provides for a realistic, near-optimal 

flight path solution that closely approximates dynamic optimization techniques, as will be 

discussed next in the analysis results.   
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3.2.6 Analysis Results 
NOTE:   This section contains many graphs depicting calculations made using flight path 

optimization algorithms.  To reduce clutter within the charts and the text, much of the 

initial conditions information was omitted.  Please refer to Appendix A for a more 

complete set of graphs and tables containing all the information pertinent to each test 

case. 

Within the proceeding charts, the symbology can be broken down as follows:  the 

blue circles represent UAV waypoints or turn points.  Blue or red arrows extending from 

the circles represent the UAV heading.  A blue line represents the travelled path of the 

UAV.  Red trapezoids represent the sensor FOV, and a red diamond represent the optimal 

sensor point.   Target motion is depicted by the solid black line. 

To determine the effectiveness of the Pathmaker routine,  Pathmaker results were 

compared to Zollars’ (Zollars, 2007) dynamic optimization routine.  One of the problems 

with Zollars’ method was that it would not always converge on an optimized solution.  

Selected cases were created to ensure that Zollars’ method did in fact converge on an 

optimal solution.   Figure 19 below demonstrates the high degree of correlation between 

Zollars’ dynamic optimization and the developed Pathmaker routine.   A stationary target 

is presented in the left hand side of Figure 19; the right hand side is a moving-target 

comparison.  Table 2 includes the initial conditions for each of these runs as well as the 

final solution difference between the two methods.  In the moving target case, the 

Pathmaker approach was within 8.5 meters of the optimal path, which is well within the 

standard sensor field of view.   
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Figure 19.  Comparative results with stationary and moving targets 

 

Table 2.  Run data for path comparisons shown in Figure 19 

Target UAV Wind Fmincon Pathmaker Difference
Initial X (m) -100 0 -100 -100 0
Initial Y (m) 200 0 200 200 0
Speed (m/s) 0 30 10
Heading (deg) n/a 50 0
Initial X (m) 0 0 -134.5 -126.04 8.46
Initial Y (m) 200 0 200 200 0
Speed (m/s) 10 30 10
Heading (deg) 270 50 0

Initial  Conditions Final Position

 

Another figure of interest is shown in Figure 20.  This figure shows two separate 

optimal solutions calculated with Zollars’ algorithm, using two different step sizes.  Note 

that the optimal path found with a step size (N) of N=60 is closer to the value found using 

the Pathmaker routine.  This would indicate that the Zollars’ optimization routine is 

actually converging on a trajectory similar to that calculated with Pathmaker.   Upon 
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looking at Zollars’ algorithm, one reason for the disparity is due to the nature of how the 

flight path is calculated between points in a turn.  The Zollars routine assumes that the 

UAV will fly in a straight line between points.  Therefore, in a solution with a course step 

size, the calculated turn radius will actually be larger than actual.  We can see that this is 

exactly what is happening in Figure 20 below.   
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Figure 20.  Effects of coarse step size on calculated turn radius 

Another significant measure of the accuracy of the final solution can be 

demonstrated by including a representative computational latency into the flight path 

calculation.  While Zollars’ algorithm does not allow for this, we can examine a 
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representative latency using the Pathmaker algorithm.  Figure 21 below gives an example 

of Zollars’ optimized solution with a somewhat coarse step size of N=20.  This specific 

solution required 8 seconds to calculate.  The Pathmaker solution included in this figure 

demonstrates the effects of an 8 second latency on the UAV flight path and ultimate 

intercept location of the target.  It should be noted that the calculation time required for 

the Pathmaker solution was 0.21 seconds.  From Table 3 below we can see that the 

difference between the original optimized routine and Pathmaker-predicted target 

location is approximately 174 meters.  This significant disparity illustrates that the 

Pathmaker flight path calculation offers a superior real-world estimation of the target 

location. 
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Figure 21.  Effects of 8 second computation latency on final result 

Table 3.  Run data for path comparisons shown in Figure 21 

Target UAV Wind Fmincon Pathmaker Difference
Initial X (m) 0 0 -134.5 -308.35 -173.85
Initial Y (m) 200 0 200 200 0
Speed (m/s) 10 30 10
Heading (deg) 270 50 0

Initial  Conditions Final Position (m)
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The final and primary point of interest for using the Pathmaker algorithm is for 

variable winds and stop-and-go targets.   Results could not be compared with Zollars’ 

routine, as his algorithm was not built to accommodate such calculations.  We will start 

by discussing stop-and-go targets.  As was discussed earlier, an assumption is made 

within this thesis that target data is current and accurate, and that exact times for change 

of course and speed are known.  This would be representative of the case where the target 

is initially spotted by someone either on the ground or in the air who can monitor when 

the target changes course.  Given this assumption, the Pathmaker algorithm can be used 

to make real-time flight path modifications.  The routine would proceed as follows: 

1. Spotter calls in new course and speed for target to UAV operator. 

2. UAV operator inputs target’s new course, speed, and time of change into 

laptop.  

3. Operator executes Pathmaker algorithm, and new flight path is calculated. 

Figure 22 demonstrates the stop-and-go technique under three different camera 

scenarios.  Each graphed solution used identical input variables except for the camera 

FOV used to calculate the solution.  The top graph uses a forward looking camera 

scenario, where as the middle graph uses a side-looking camera configuration.  The 

bottom graph uses a front-looking camera for the first two legs, and then switches to a 

side-looking camera for the final intercept.  This is possible because each leg is optimized 

for the current camera configuration.  The solitary blue circle with magenta asterix marks 

the position of the UAV at the conclusion of each 10 second interval, and beginning of 

each subsequent calculation.   
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The tests consisted of three legs.  The first two legs were each 10 seconds long; 

the third leg was kept indefinite and determined by sensor placement on the target.  With 

the target traveling north at 10 m/s, a stop was made at (-400, 100) for 10 seconds before 

continuation north again.  A time lag of 2 seconds was used to demonstrate 

computational latencies.  UAV airspeed was 20 m/s; wind was constant from heading 315 

degrees at 5 m/s.  As can be seen by these results, Pathmaker was able to successfully 

adjust to the stop-and-go target. 
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Figure 22.  Tracking a stop-and-go target 
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A more difficult test of the system would be a target whose course and speed are 

changing.  This would be analogous to a target that is actively trying to evade 

surveillance, or that may be traveling down a road.  Figure 23 illustrates such a scenario, 

where the target course and speed are varied.  This example also incorporates a 2 second 

time lag.  The target originally travels north at 10 m/s, then east at 5 m/s, south at 20 m/s, 

and finally  west at 15 m/s.  UAV airspeed was 20 m/s; wind was constant from heading 

315 degrees at 5 m/s. 
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Figure 23.  Tracking a target that has variable course and speed 

The Pathmaker algorithm can also be used to make in-flight adjustments to 

variations in wind.  In theory, this wind-correction process could be done automatically 

without any input from the user.  Because the wind data is derived from GPS and pitot-

static data, it is calculated onboard the autopilot and is part of the standard packet of 

information available.  It is therefore possible to take the wind data as it is updated in real 

-time from the autopilot, and execute Pathmaker at any point the wind speed and 

Wind
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direction fall outside of a set tolerance.  Furthermore, if a processor capable of running 

the Pathmaker solution was located onboard the UAV, this calculation could be done in 

real-time with time lags of less than a second.  Currently all Pathmaker processing is 

done at the ground station where the wind data is transmitted to the laptop, Pathmaker 

calculates a new solution, and the new solution is uploaded back to the UAV. 

Figure 24 illustrates a potential wind correction scenario that involves three legs.  

The wind speed remained constant at 10 m/s for each leg, however the direction changes 

as noted in the graph.  A time lag of .5 second was used to demonstrate a scenario 

utilizing an onboard processor.  Target velocity was constant at 10 m/s, north.  UAV 

airspeed was 25 m/s. 
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Figure 24.  Tracking target with variable wind direction 

3.2.7 Pathmaker Weaknesses 
There are some inherent weaknesses, which, while not being exclusive to the 

Pathmaker algorithm, should be discussed.  The ability to precisely track a target is 
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dependent on receiving timely information on the target.  In a real world scenario, a 

target change of course will be relayed to ground station unit, entered into the laptop, and 

Pathmaker will be executed.  This whole process when moving efficiently takes 

approximately 20 seconds.  Should the target make any changes in course within this 

time window, it is easy to see that the operator will constantly be lagging behind the 

movements of target.  An example of this is given in Figure 25.  The closer the UAV is to 

the target, the more pronounced the effect of these time lags will be on accurately target 

tracking.   
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Figure 25.  Tracking difficulties as result of high lag times 

This weakness was recognized from the beginning.  The primary purpose of the 

Pathmaker routine is to plot an optimal path in the initial stages of the encounter, from 

time of launch until the target is detectable within the FOV.  Once the target is within the 

FOV, tracking will be transferred to a separate Cursor-on-Target (CoT) tracking function.  
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This algorithm allows the user to identify the target within the FOV and establish 

tracking through a semi-autonomous interface.   For more information on Cursor-on-

Target tracking, refer to Lt. Josh Crouse’s thesis work (Crouse, 2007), as well as the 

future thesis work of Lt. Troy Vantrease.  Lt. Vantrease is conducting a thesis on 

integrating Lt. Crouse’s CoT techniques into the current MAV platform.   

One other point to keep in mind is the fact that the Pathmaker algorithm is 

optimized for a singe point, and has no recognition of whether the target may be in any 

other part of the FOV.  It may be instructive to take the example given in Figure 25 and 

overlay a standard camera FOV onto it as seen in Figure 26.  Figure 26 depicts a camera 

FOV and elevation angle of 60 and 45 degrees respectively, from an altitude of 120 

meters.  The three FOV snapshots visible are taken just prior to making the initial turn to 

intercept, just after the 1st turn to intercept, and finally at 30 seconds into the entire flight 

path.  This last point also correlates to the first turning point for the moving target.   
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Figure 26.  High lag time solution with FOV overlay 

Figure 26 demonstrates that the target was actually within the detectable FOV 

from the time just prior to the turn to intercept, all the way until the target changed 

course.  However, because Pathmaker optimizes for a single point along the camera’s 

bore sight, it was not considered to be legitimate solution.  In a real world scenario, once 

the target was detected within the FOV, the user would have transferred to a CoT 

tracking interface to maintain the target in the FOV.  In this respect, Pathmaker would 

have been successful in guiding the UAV to a point of interception as it was intended to 

do. 
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It should be noted that this information lag problem is endemic to any 

optimization routine, and not solely the Pathmaker algorithm.   Zollars’ dynamic 

optimization routine, for example, would have to cope with the same issue of maintaining 

up-to-date information on the current location of the target.  Inherent in this argument is 

the idea that you have, by some method or another, received current information on the 

target.  In the Conclusions and Recommendations chapter, we will discuss some ways 

that can minimize the time between change in target direction and execution of a new 

flight path solution will be discussed.  

3.2.8 Summary 
A heuristic, iterative algorithm was developed that significantly reduced the 

calculation time while also incorporating features to compensate for computation time 

lag.  Results were presented that demonstrated promising capability of tracking real 

world stop-and-go targets as well as variable winds.  Results were also presented to prove 

that the Pathmaker solution provides superior results when compared to other 

computationally intensive optimal path techniques, given real-world time lag constraints.  

The Pathmaker routine  also proved to be incredibly robust and resistant to computational 

crashes with predictable execution times, a trait that has plagued some of the earlier 

dynamic optimization routines.  To fully prove the viability of the Pathmaker approach, 

flight testing will be conducted.  This work will be presented in Chapter 4.  Actual 

Matlab code is contained in Appendix B. 
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4. Flight Test Results and Analysis 

4.1   Overview 
A full set of flight testing was not completed due to inclement winter weather and 

time constraints.  A limited series of flight tests were conducted in November of 2007 

however .  This chapter will discuss these flight tests and any valuable data that was 

obtained. 

The following flight tests were accomplished rather early in thesis development 

process.  Because a new airframe and autopilot system were being used that had not been 

validated in the past, the first flight tests were spent setting up the autopilot and verifying 

that the various hardware systems were working properly.  The majority of the achieved 

flight testing involved this validation process, with a limited set of Pathmaker test cases 

being accomplished.  

4.2   Validating the Sig Rascal with Kestrel Autopilot 
As mentioned in Chapter 2, AFIT has used the Sig Rascal extensively in the past 

with the Piccolo autopilot system, but it was necessary to validate the Sig Rascal airframe 

using the Kestrel autopilot.  Because of recent updated interpretations of FAA law, it was 

no longer possible to conduct flight testing at Wright-Patterson AFB, so flight testing was 

conducted at Camp Atterbury, IN.   

Procerus provides a detailed process for configuring the autopilot for the first 

flights in their “Installation and Configuration Guide” (Kestrel, 2008).  A brief 

description of this Procerus’ autopilot configuration and first flight tests are listed below: 

1. Prior to 1st Flight 
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a. Servos are configured 

b. Autopilot settings and gains are configured with default parameters.   

2. 1st Flight 

a. Verify proper operation of critical autopilot systems such as the 

autopilot sensor suite, the communication link, and the GPS receiver. 

b. Trim the aircraft. 

c. Find the trim airspeed, trim throttle, and trim angle of attack.  

3. 2nd Flight 

a. Tune the rate damping servo loops. The rate damping loops damp the 

aircraft rotation around the pitch, roll, and yaw axis if the aircraft has a 

rudder.  

4. 3rd Flight 

a. Tune the attitude, altitude and airspeed autopilot loops.  

5. 4th Flight 

a. Verify waypoint navigation and loiter work correctly.  

 

These first 4 flights were conduct following Kestrel’s procedural outline.  Typical 

flight test procedure was to take off under pilot command and ascend at an airspeed 

between 25-30 m/s to an altitude of 200 meters.  Once at altitude, the pilot would conduct 

a series of in-flight checks, and once he was comfortable that the aircraft was operating 

correctly, the Kestrel flight test regimen was conducted.    

Flight test results for this validation process were successful with no 

complications.  The initial values that were given for the autopilot were accurate for the 
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airframe and very little modification had to be made.  With the autopilot configured, the 

Sig Rascal proved to be a reliable platform and performed well in the given conditions. 

In conclusion, the Sig Rascal was validated and verified for use with the Kestrel 

autopilot system.  This UAS can now confidently be used as a test platform for any future 

UAV research at AFIT. 

 

4.3   Camera Validation 
A major component required for the success of any Pathmaker validation and 

target tracking was the validation of the camera system.  Initial tests with the camera 

proved successful.  Figure 27 is an example of a still image taken from the aircraft at an 

altitude of approximately 200 meters.  The light brown rectangles toward the center of 

the image are Army Humvees (circled in red).  The elevation angle of the camera was 

approximately 40 degrees.  These vehicle sized targets were readily detectable within the 

camera FOV at this altitude. 

 

Figure 27.  UAV camera showing Humvees at 200m Altitude 
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Unfortunately, additional camera testing proved problematic after the 1st flight.  

Persistent white banding began to occur within the camera FOV as shown in Figure 28.  

This banding occurred irrespective of aircraft attitude and orientation.  Originally it was 

thought that this had to do with antenna interference, however a different antenna setup 

was tried and did not alleviate the problem.    

 

Figure 28.  White banding anomaly seen in camera FOV 

Attempts at isolating the issue were unsuccessful.  Furthermore, attempts at 

recreating the banding on the ground in the lab were unsuccessful.  There is a possibility 

that there is an electromagnetic interference between the video transmission hardware 

and the portable generator used to power the ground station.  This has not been confirmed 

and should be investigated in the future as a potential problem source. 

Despite the white banding that was seen, some good reference data was 

accumulated.  From an altitude of 200 meters, vehicle sized targets were readily 

detectable within the camera FOV.  The cameras were set up with 64 degree FOV lenses.  

Human sized targets were minimally detectable within the FOV at this altitude.  In Figure 
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29 a bicyclist can be seen on the road (circled in red).  While hardly visible within the 

still image, the person was easier to see within the video feed.  This would relate to 

human physiology and the eyes’ acute sensitivity to peripheral motion.  Figure 29 does 

prove however that a human is detectable from this level and will enter future optimal 

tracking altitude considerations. 

 

Figure 29.  Camera FOV with bicycler circled in red 

 Camera work was discontinued in the later flights because some of the camera 

hardware shook loose.  As a result, no camera support was available to validate the 

Pathmaker routine.  Since the November test flights the cameras have been shock 

mounted and enclosed in a plexiglas bubble to alleviate any windstream disturbances.  

This new camera setup was not tested before the conclusion of this thesis. 

4.4   Pathmaker algorithm flight testing 
A limited series of tests of the Pathmaker algorithm were conducted.  With the 

time remaining after the initial Kestrel flight tests were completed, time was spent 
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validating the UAV camera video feed, FTC controller interface and the Pathmaker 

algorithm.   

To confirm that Pathmaker was working properly, members of the group picked a 

target located away from the ground station unit.  Using a portable GPS, they recorded 

the lat/long position of the target.  These coordinates were entered into the FTC which 

executes Pathmaker.  Upon execution, Pathmaker generated a series of 2 waypoints that 

directed the UAV to the target. 

 Because video feed was not available to confirm the location of the targets within 

the FOV, correct target acquisition was inferred from the Virtual Cockpit UAV tracking 

screen.  Figure 30 shows a screen capture of a Pathmaker solution.    

 

Figure 30.  2-Point Pathmaker Solution with Camera FOV shown in red 

Pathmaker initiated here 
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The test was started with the UAV flying in a southerly direction away from the 

target.  The known position of the target was marked by dashed circle “T” waypoint to 

help determine the accuracy of the Pathmaker solution.   As can be seen in Figure 30, 

Pathmaker successfully created as series of waypoints that captured the target in the 

FOV, which is represented by the red translucent trapezoid.   

A similar test was conducted to test the ability of Pathmaker to predict the 

location of a moving target.  Using the same known target, a moving speed and direction 

were entered into the FTC, and Pathmaker was executed.  Figure 31 is a screenshot of the 

UAV intercepting a target moving due west from the original target location at 5 m/s.   

 
 

 
Figure 31.  Pathmaker Solution for simulated moving target 

Because we did not actually have a moving target available, this test was conducted 

simply to verify if the sense of Pathmaker’s predictions were correct.  For example, if the 

target was moving west, then the final waypoint should be some position west of the 

Pathmaker initiated here 
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original position.  The flight time from Pathmaker execution to waypoint 2 was 

approximately 30 seconds.  With a target moving at 5 m/s, the intercept point should be 

approximately 150 meters west of the starting target location.  Figure 31 indicates that 

Pathmaker correctly estimated the location of the target. 

 Unfortunately no other flight testing was possible.  The first round of flight testing 

was meant only to validate the Sig Rascal/Kestrel system as a UAV platform, as well as 

test basic FTC systems and algorithm execution.  A second in-depth validation of 

Pathmaker, using live moving targets was never accomplished due to time and weather 

constraints.  Recommendations for future flight testing are included in Chapter 4.   
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5. Conclusion and Recommendations 

5.1   Conclusions 
 

The goal of this research was to develop a wind corrected, moving target UAV 

flight planning algorithm that could produce accurate target intercepts in real time.   An 

algorithm was successfully created that could effectively navigate a UAV in real-time 

and determine an optimal flight path starting at an initial position and heading and ending 

with a desired viewing angle of the target.  The solution technique developed used a 

Dubins-style flight path model optimized through a heuristic iterative approach.  This 

approach proved to be much less time consuming to calculate and produced equivalent 

results as other more computationally intensive dynamic optimization routines.  

Specifically, the following was accomplished: 

• A method was created to compensate for computational and communication 

relay time lags that extrapolated the future position of the aircraft at point of 

command execution.   

• Methods were discussed of how to create an effective auto-updating wind 

corrected flight path using the developed algorithms.  

• The Sig Rascal was validated and verified for use with the Kestrel autopilot. 

Flight testing of the actual algorithm was limited due to weather restrictions.  

However the limited flight testing that was completed indicate that the Pathmaker 

algorithm effectively intercept the target.  HIL testing also indicate that the developed 

algorithms successfully guide the UAV to the target.  Additional flight testing is needed 

to validate the system, however.  
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5.2   Recommendations for Future Research  

5.2.1 More flight testing 
Additional flight testing is required to fully validated the Pathmaker algorithms as an 

effective optimal flight path tool.  Specific areas of testing that are required are as 

follows: 

1. Verify ability to place UAV sensor on stationary target 

2. Verify ability to place UAV sensor on moving target 

3. Verify ability to adequately track a stop-and-go moving target 

4. Verify ability to adequately track an unpredictable (nonlinear) moving target  

 

A flight test procedure document was created that was intended to be used had flight 

testing occurred.  It has been included in Appendix C, and should provide a good starting 

point for future groups interested in developing a flight test program.   

5.2.2 AVDS HIL sim 
Due to the nature of the education cycle, it has become increasingly apparent that 

a robust HIL system is required that can incorporate variable camera angles and moving 

targets.  Graduate students generally do not begin serious work on their thesis until the 

fall.   

For this reason, it is advisable that a future groups focus on creating a HIL system 

that can more effectively test the developing capabilities of the UAV.  Two key 

components are required:  the ability to change to displayed FOV to mimic current 

camera settings, and the ability to incorporate a moving target.  The current HIL software 
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(Aviones) packaged with the Kestrel autopilot does not allow for moving target 

visualization or variable camera angles. 

One piece of software that is already available to AFIT which may provide a 

solution to this problem is AVDS.  Lt Crouse (Crouse, 2007) used AVDS extensively in 

his thesis work, to include tracking moving targets.  AVDS is a piece of simulation 

software that allows the user to change the FOV to various camera angles.  For more 

information on AVDS, refer to Lt Crouse’s thesis, or the AVDS website (AVDS, 2008).  

5.2.3 Aircraft Heading Verification 
 

During the course of this thesis research, it was assumed that the UAV magnetic 

heading (in contrast to the ground track heading) is known and accurate.  Both values are 

contained within the telemetry feed from the aircraft.  The ground track heading is readily 

derived from the vector path of the UAV, while the physical heading, or bearing of the 

UAV is not as obvious.  In fact, it is not entirely obvious how the Kestrel autopilot is 

deriving this value.  A future effort should be made to verify that the UAV bearing data is 

accurate, and an effort should be made to characterize the effect of  

5.2.4 Implement Auto-wind correcting into FTC 
One takeaway from the Pathmaker analysis was that it is possible to make varying wind 

correction an automatic loop within the system architecture.  Below is a plausible 

solution which could be implemented in the future: 

1. Record the wind speed data from the autopilot telemetry output. 

2. Create a tolerance range for the wind.   
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a. Example:  if the wind is within 1 knot, and the wind direction is within 

5 degrees of the last Pathmaker execution, do nothing.   

b. Otherwise, execute Pathmaker 

3. Create flags within the system architecture that will execute Pathmaker given 

the stated tolerances. 

Because the wind data is coming from the UAV, this process can be implemented to 

operate autonomously without any user input and has the potential of improving path 

optimization over long flight distances. 

 In summary, a viable path planning solution was derived that shows great 

potential for future work in real world UAV and MAV flight path generation.  While 

initial tests appear to confirm the viability of the Pathmaker algorithm, additional flight 

testing is necessary to validate the algorithm in real world scenarios. 

inaccurate UAV bearing data on flight path calculation and sensor placement. 
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Appendix A. Additional Pathmaker Validation Information 

The following are a series of graphs and tables constructed during the Pathmaker 

analytical process.  The graphs depict the results of Pathmaker algorithm executions and 

the tables attached below each graph included the pertinent information for each run. 
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Target UAV Wind
Initial X (m) -200 0 Elevation 45
Initial Y (m) 200 0 Azimuth 0
Speed (m/s) 10 25 10 FOV 30
Heading (deg) 270 0 180 Altitude (m) 100
Lag Time (s) varied
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Target UAV Wind
Initial X (m) 0 0 Elevation 90
Initial Y (m) 200 0 Azimuth 0
Speed (m/s) 10 30 10 FOV 0
Heading (deg) 270 0 0 Altitude (m) 100
Lag Time (s) 10.2
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UAV Wind Target: leg 2 leg 3 leg 4
Initial X (m) 0 0 -100 -100 -200
Initial Y (m) 0 400 400 300 300
Speed (m/s) 20 5 10 10 10 10
Heading (deg) 0 315 270 180 270 180
Lag Time (s) 6
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UAV Wind Target: leg 2 leg 3 leg 4
Initial X (m) 0 -400 -400 -350 -350
Initial Y (m) 0 0 100 100 -100
Speed (m/s) 20 5 10 5 20 19.5
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Lag Time (s) 2
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UAV Wind Target: leg 2 leg 3 leg 4
Initial X (m) 0 -800 300 300 600
Initial Y (m) 0 0 -800 -500 -500
Speed (m/s) 20 0 10 10 10 10
Heading (deg) 270 0 0 90 0 90
Lag Time (s) 20

Initial  Conditions
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Appendix B. Matlab Code 

B.1 Pathmaker Routines 
 
function count = startturnpath(in) 
%Pathmaker Initialization file 
%To be used as input to pathmaker.m 
%Nate Terning 
clc 
clear all; %clf 
% tic 
if(nargin==0) 
d2r = pi/180; 
N=2; 
MaxIts=[200];  % use default 
MaxFunEvals=500;    % vehicle IC 
thf = 90; %final intercept angle (absolute),  
constrain_theta = 0; %thf on:1 off:0 
d = 200; %lookout Distance, out left side of UAV(m) 
  
%*****************  DATA I NEED PASSED IN  
******************************** 
% targetDat 
x_t = -100;             %Target relative x position,m 
y_t = 1000;              %Target relative y position,m 
hdg_t = 0*d2r;        %target heading (currently in GPS rad coorinates) 
vel_t = 10;              %target velocity, fps (15m/s ~= 30kts) 
alt_t = 0;              %target altitude 
  
%uavDat 
vel_u = 23;             %UAV true airspeed, m/s 
x_u = 0;                %UAV x position 
y_u = 0;                %UAV y position 
roll_u = 0;             %UAV roll orientation (for camera look angle)   
pitch_u = 0;            %UAV pitch angle 
hdg_u =  0*d2r;         %UAV heading (currently in GPS rad coords) 
alt_u = 50;              %UAV altitude 61m ~ 200ft 
  
%wind = [speed hdg] 
v_wind = 5;             %wind speed, m/s 
hdg_wind = 315*d2r;     %wind blowing FROM direction (GPS rad coords) 
  
%sensorDat = [camElevation camAngle camFOV]; 
camElevation = 90*d2r;      %camera look-down angle 
camAngle = 0*d2r;          %0: out nose; 90:  LHS; -90: RHS 
camFOV = 0*d2r;            %Field of View of camera 
% 
***********************************************************************
** 
  
runData = [N,MaxIts,MaxFunEvals]'; 
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targetDat = [x_t y_t hdg_t vel_t alt_t,thf, d,constrain_theta]'; 
uavDat = [x_u y_u roll_u pitch_u hdg_u vel_u alt_u]'; 
wind = [v_wind hdg_wind]'; 
sensorDat = [camElevation camAngle camFOV]'; 
  
%PACK AND PLAY 
[x_out, y_out, th_out] = pathmaker(runData', targetDat',uavDat',wind', 
sensorDat'); 
disp('      X         Y       Theta') 
disp([x_out y_out th_out./d2r])   
  
end %nargin = 0 
% toc 
return %startturnpath 
 
 



65 

function [x_out, y_out, th_out] = pathmaker(runData, 
targetDat,uavDat,wind, sensorDat) 
%Pathmaker Version Date 05 Nov 2007 
%   Removed input_out return array 
%   fixed a problem with hdg_uw (th_out) being measure incorrectly 
%   Create argument that takes into account turning radius 
%   Build in latency time into function (ie time it takes to transfer 
soln 
%     to UAV) 27Nov 
%   Create code that will allow sensor footprint offset 30 Nov 
%   Create visualization for camera(sensor) footprint 
%     NOTE:  currently assumes camera no bank angle 03Dec2007 
%   turn optimization was re-written to aid turns > 180deg 07Dec2007 
%   This version will look at including pitch-down info for terminal 
phase 11Dec 
  
  
% clc; 
d2r = pi/180; 
  
%UNPACK ALL THE INPUT DATA: 
%runData 
N = runData(1);    
MaxIts = runData(2);   
MaxFunEvals = runData(3); 
  
  
%UAV Dat 
    x_u = uavDat(1); x_u1 = x_u;     
    y_u = uavDat(2); y_u1 = y_u;    
    roll_u = uavDat(3);   
    pitch_u = uavDat(4); 
    hdg_u =  (pi/2 - uavDat(5));         %UAV heading (currently in d2r 
coords) 
        if hdg_u < 0, hdg_u = hdg_u + 360*d2r; end  %Aids conversion to 
magnetic heading 
    vel_u = uavDat(6);    
    alt_u= uavDat(7); 
  
%targetDat = [x_t y_t hdg_t vel_t alt_t]' 
    x_t = targetDat(1);  x_t1 = x_t;   
    y_t = targetDat(2);  y_t1 = y_t;  
    hdg_t = (pi/2 - targetDat(3)); %target heading (currently in rad 
coorinates) 
        if hdg_t < 0, hdg_t = hdg_t + 360*d2r; end  %Aids conversion to 
magnetic heading 
    vel_t = targetDat(4);   
    alt_t= targetDat(5);   
  
%Wind conditions 
    W= wind(1); 
    th_w= (pi/2 - wind(2)); 
    Wx=W*cos(th_w); 
    Wy=W*sin(th_w); 
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%Camera Data 
    camElevation = sensorDat(1); %camera look-down angle 
    camAngle = sensorDat(2); %0: out nose; 90:  LHS; -90: RHS 
    camFOV = sensorDat(3); %Field of View of camera 
    FOVtype = 2; 
 %The following exception is made for current FTC process that requires 
 %final waypoint to always be on target 
    camElevation = 90*d2r; %camera look-down angle 
    camAngle = 0; %0: out nose; 90:  LHS; -90: RHS 
    camFOV = 0; %Field of View of camera 
     
    if FOVtype ==1, 
        %This takes the bisector of the max and min field distances for 
        %sensor target 
        fieldlimit = 900; %max horizon distance you want to include in 
footprint 
        %NOTE: Also need to change in createFOV function! 
        flines = 
[alt_u/tan(camElevation+camFOV/2),alt_u/tan(camElevation-camFOV/2)]; 
        if abs(flines(2))>fieldlimit, flines(2)=fieldlimit;end  
        d = sum(flines)/2; 
    else 
        %Because it may be more optimal to put the target at the 
boresight of 
        %the camera the following is developed as an alternative: 
        d = alt_u/tan(camElevation); %distance looking out through 
center of camAngle 
    end 
  
%     createFOV(x_u, y_u, hdg_u, alt_u, camAngle, camElevation, camFOV, 
0); 
     
     
%Create Latency path (path UAV follows before commands are sent) 
latency = 2; %seconds NOTE: this can be changed in future if needed 
%    latency = 2 + .0001*norm([x_t-x_u, y_t-y_u]); 
   vel_uwx = vel_u*cos(hdg_u) - Wx; 
   vel_uwy = vel_u*sin(hdg_u) - Wy; 
   x_u = x_u + vel_uwx*latency; 
   y_u = y_u + vel_uwy*latency; 
   x_t = x_t + vel_t*(cos(hdg_t))*latency; %expected pos of target 
   y_t = y_t + vel_t*(sin(hdg_t))*latency; 
   [x_s,y_s] = getSensorLoc(x_u, y_u, hdg_u, camAngle, d,0,'sensor'); 
   %plot([x_u1 x_u],[y_u1,y_u], 'bo',[x_u1 x_u],[y_u1,y_u], 'b'); hold 
on 
   createFOV(x_u, y_u, hdg_u, alt_u, camAngle, camElevation, camFOV, 
0);  
     
%CREATE INITIAL OPTIMIZATION   
[x_us y_us x_t_e y_t_e hdg_uw, tti count] = CourseOpt(vel_u, vel_t, 
hdg_t, Wx, Wy, x_t, y_t, x_u, y_u,camAngle,d, hdg_u); 
%x_us denotes location of UAV necessary to put sensor on target 
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%The following will try to incorporate pitch-down angle for terminal 
phase. 
% phasetype = 'loiter  '; 
% phasetype = 'terminal'; 
phasetype = 'other   '; 
    if phasetype == 'terminal',  
        range_t = sqrt((x_u-x_t_e)^2+(y_u-y_t_e)^2); 
        camElevation=camElevation+atan2(alt_u,range_t); 
        d = alt_u/tan(camElevation); 
    end 
    if phasetype == 'loiter  '; 
        range_t = sqrt((x_u-x_t_e)^2+(y_u-y_t_e)^2); 
        camElevation=camElevation+15*d2r; %Currently just assuming 15 
deg loiter bank angle 
        d = alt_u/tan(camElevation); 
    end 
  
%Now, segment into N waypoints 
x_g = linspace(x_u,x_us,N); 
y_g = linspace(y_u,y_us,N); 
hdg_uw = hdg_uw*ones(1,N); 
% plot(x_g,y_g, '*', x_g,y_g); grid on; hold on %plot of initial guess 
% plot(x_g,y_g, 'bo'); grid on; hold on %plot of initial guess 
sw = 0; swfix = 0; %switch to determine if UAV has switched from RH to 
LH turn 
mtr = 15*d2r; %max turn rate in rad/sec 
  
  
  
turnside = 'lh'; 
%Determine both left and right paths: 
[x_ul,y_ul,x_usl,y_usl,hdg_uwl,ttcl,ttil,x_t_e,y_t_e] =...  
    
turnpath(mtr,hdg_uw,Wx,Wy,hdg_u,vel_u,x_u,y_u,hdg_t,x_t,y_t,vel_t,camAn
gle,d,turnside,0); 
  
turnside = 'rh'; 
[x_u2r,y_u2r,x_usr,y_usr,hdg_uwr,ttcr,ttir,x_t_e,y_t_e] = ... 
    
turnpath(mtr,hdg_uw,Wx,Wy,hdg_u,vel_u,x_u,y_u,hdg_t,x_t,y_t,vel_t,camAn
gle,d,turnside,0); 
  
if (ttcl+ttil) > (ttcr+ttir), turnside = 'rh';else turnside = 'lh';end 
%run again to print 
[x_u2,y_u2,x_us,y_us,hdg_uw,ttc,tti,x_t_e,y_t_e] = ... 
    
turnpath(mtr,hdg_uw,Wx,Wy,hdg_u,vel_u,x_u,y_u,hdg_t,x_t,y_t,vel_t,camAn
gle,d,turnside,1); 
  
%The following will mark a certain time point in the flight path 
%(use to determine turning pts for stop/go targets) 
y10 = y_u2 + (y_us - y_u2)*(10 - latency - ttc)/(tti-ttc); 
x10 = x_u2 + (x_us - x_u2)*(10 - latency - ttc)/(tti-ttc); 
y_t10 = y_t1 + (y_t_e - y_t1)*(10)/(tti + ttc + latency); 
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x_t10 = x_t1 + (x_t_e - x_t1)*(10)/(tti + ttc + latency); 
% disp(['   x10      y10']) 
% disp([x10,y10]) 
% plot(x10,y10,'m*') 
  
%Now, segment into N waypoints 
x_g = linspace(x_u2,x_us,N); 
y_g = linspace(y_u2,y_us,N); 
% x_g = linspace(x_u2,x10,N);  %USE FOR STO-GO ONLY! 
% y_g = linspace(y_u2,y10,N);  %USE FOR STO-GO ONLY! 
hdg_uw = hdg_uw*ones(1,N); 
[x_s,y_s] = getSensorLoc(x_g, y_g, hdg_uw, camAngle, d,1,'sensor'); 
% disp('     dx_s        dy_s');disp([x_s(N)-x_t_e;y_s(N)-y_t_e]'); 
for i = 1:N 
    createFOV(x_g(i), y_g(i), hdg_uw(i), alt_u, camAngle, camElevation, 
camFOV, 1); 
end 
  
th_out = 90*d2r - hdg_uw; 
if th_out < 0, th_out = th_out + 360*d2r; end  %converts to positve 
magnetic heading 
x_out = x_g'; 
y_out = y_g'; 
th_out = th_out'; 
  
%***************  PLOTTING RESULTS  ***************************** 
%************************************************************* 
plotcourse = 1; 
if plotcourse == 1 
    %For quiver function     
    Vx_g=[.2*vel_u*cos(hdg_uw)]; 
    Vy_g=[.2*vel_u*sin(hdg_uw)]; 
  
    %figure(1); %plot wayponts 
    %plot(x_g,y_g,'bo',x_g,y_g, 'b'); grid on; hold on; %axis([-50 200 
-50 200]); 
    %plot(x_g(N),y_g(N),'b') 
%     quiver(x_g,y_g,Vx_g,Vy_g,'b') 
%     xlabel('x (meters)');  
%     ylabel('y (meters)') 
%      title(['tf to sensor on xt & yt, tf=',num2str(tti+ttc+latency)]) 
  
    % %***********  VEHICLE GROUND PLOT  ********************** 
    x_vh=[x_t1, x_t_e]; 
    y_vh=[y_t1, y_t_e]; 
    %plot(x_vh,y_vh,'g',x_t1,y_t1,'b.',x_t_e,y_t_e,'b.') 
%     x_vh=[x_t1, x_t10]; %FOR STOP AND GO     
%     y_vh=[y_t1, y_t10]; %FOR STOP AND GO  
%     plot(x_vh,y_vh,'g',x_t1,y_t1,'b.',x_t10,y_t10,'b.') 
  
  
end %plot 
count; 
return %Pathfinder 
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function [x_u2 y_u2 x_t_e y_t_e hdg_uw tti count] = CourseOpt(vel_u, 
vel_t, hdg_t, Wx, Wy, x_t, y_t, x_u, y_u,camAngle,d, hdg_u) 
%CourseOpt is the subroutine that calculates an optimized flight path 
%It uses a hueristic approach to iterating the following: 
% 1.    Determine UAV sensor location 
% 2.    Calculate the range between sensor and target 
% 3.    Calculate time-of-flight (TOF) required to intercept target at 
current location. 
% 4.    Calculate expected location of target given current time-of-
flight. 
% 5.    Estimate heading required to compensate for wind, given wind 
speed and TOF 
% 6.    Calculate necessary UAV final location, given wind correction 
and sensor footprint location 
% 7.    Estimate actual ground speed 
% 8.    Re-calculate range given updated expected location of target 
% 9.    Iterate process until range estimations from steps (2) and (8) 
are equivalent. 
  
d2r = pi/180;                                           
%Initialize Variables 
x_t_e = x_t; y_t_e = y_t; hdg_uw=hdg_u; 
Range2 = 0; Range = 10; count = 0; 
xrel = x_t_e - x_u;   yrel = y_t_e - y_u; 
    %converge onto actual range by iterating 
    while abs(Range2 - Range) > .01 & count<200 
        [x_s,y_s] = getSensorLoc(x_u, y_u, hdg_uw, camAngle, 
d,0,'sensor'); 
        Range = sqrt(xrel^2 + yrel^2);  
        tti = Range/vel_u;  %rough wag on minimal time-to-impact 
        x_t_e = x_t + vel_t*(cos(hdg_t))*tti; %expected pos of target 
        y_t_e = y_t + vel_t*(sin(hdg_t))*tti;  
        xrel = x_t_e  - x_s + Wx*tti; %incorporates wind correction 
        yrel = y_t_e  - y_s + Wy*tti; 
        hdg_uw = atan2(yrel,xrel); %current heading estimation 
        %position of UAV given sensor location: 
        [x_u2,y_u2] = getSensorLoc(x_t_e, y_t_e, hdg_uw, (camAngle-
180*d2r), d,0,'uav   '); 
        vel_uwx = vel_u*cos(hdg_uw) + Wx; 
        vel_uwy = vel_u*sin(hdg_uw) + Wy; 
        vel_uw = norm([vel_uwx, vel_uwy]); %ground speed 
        Range2 = sqrt((x_u2-x_u)^2 + (y_u2-y_u)^2); %norm([xrel yrel 
hrel]);  
%         Range2 = sqrt(xrel^2 + yrel^2);  
        count = count+1; 
    end 
return %CourseOpt 
  
  
function  [x,y] = ellipse(a,b,phi,x0,y0,n) 
% ELLIPSE  Plotting ellipse. 
%   ELLIPSE(A,B,PHI,X0,Y0,N)  Plots ellipse with 
%   semiaxes A, B, rotated by the angle PHI, 
%   with origin at X0, Y0 and consisting of N points (default 100). 
%   [X,Y] = ELLIPSE(...) Instead of plotting returns coords of ellipse. 
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%  Copyright (c) 1995  by Kirill K. Pankratov 
%   kirill@plume.mit.edu 
%   03/21/95 
n_dflt = 100;   % Default for number of points 
 % Handle input ................ 
if nargin < 6, n = n_dflt; end 
if nargin < 5, y0 = 0; end 
if nargin < 4, x0 = 0; end 
if nargin < 3, phi = 0; end 
if nargin < 2, b = 1; end 
if nargin < 1, a = 1; end 
th = linspace(0,2*pi,n+1); 
x = a*cos(th); 
y = b*sin(th); 
c = cos(phi); 
s = sin(phi); 
th = x*c-y*s+x0; 
y = x*s+y*c+y0; 
x = th; 
if nargout==0,  
    %plot(x,y);  
end 
  
  
 
 
function [x_s,y_s] = getSensorLoc(x_u, y_u, hdg_u, camAngle, 
d,plotflag,icon) 
%getSensorLoc will determine the location of the sensor given the UAV 
%location & camera info.  Note that the sensor location is modeled as a 
point. 
%The process can also be done in reverse to determine the UAV location 
from 
%a known sensor point. 
x_s = x_u + d*cos(camAngle + hdg_u); 
y_s = y_u + d*sin(camAngle + hdg_u); 
if plotflag==1 
    if icon == 'sensor',icon = 'rd';  
    elseif icon == 'uav   ',icon = 'bo';end 
    %plot(x_s,y_s, icon); hold on; 
end 
return  %getsensorLoc 
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function [flines] = createFOV(x_u, y_u, hdg_u, alt_u, camAngle, 
camElevation, camFOV, plotflag) 
%createFOV provides trapezoidal representation of UAV sensor FOV 
%currently does not account for bank angle 
  
d2r = pi/180; 
fieldlimit = 90000; %max horizon distance you want to include in 
footprint 
%NOTE: Also need to change in createFOV function! 
flines = [alt_u/tan(camElevation+camFOV/2),alt_u/tan(camElevation-
camFOV/2)]; 
        if abs(flines(2))>fieldlimit, flines(2)=fieldlimit;end  
range =  [norm([flines(1),alt_u]), norm([flines(2),alt_u])]; 
fRH  = [range(1)*tan(camFOV/2), range(2)*tan(camFOV/2)]; 
fLH  = [-range(1)*tan(camFOV/2), -range(2)*tan(camFOV/2)]; 
ffarlength = abs(fRH(2) - fLH(2)); 
fnearlength = abs(fRH(1) - fLH(1)); 
hyp = [norm([fnearlength/2,range(1)]), norm([ffarlength/2,range(2)])]; 
  
%Rotate above shape to desired heading/camera angle combination 
rfar = norm([fRH(2),flines(2)]);  %projected radial distance to far pt 
rnear = norm([fLH(1),flines(1)]); %projected radial distance to near pt 
ranglefar = atan2(fRH(2),flines(2)); 
ranglenear = atan2(fRH(1),flines(1)); 
ranglefar2 = [-ranglefar+camAngle+hdg_u, ranglefar+camAngle+hdg_u]; 
ranglenear2 = [-ranglenear+camAngle+hdg_u, ranglenear+camAngle+hdg_u]; 
FOV1 = [x_u+rfar*cos(ranglefar2(2)),y_u+rfar*sin(ranglefar2(2))];     
%top RH 
FOV2 = [x_u+rfar*cos(ranglefar2(1)), y_u+rfar*sin(ranglefar2(1))];     
%top LH 
FOV3 = [x_u+rnear*cos(ranglenear2(2)), y_u+rnear*sin(ranglenear2(2))]; 
%bottom LH 
FOV4 = [x_u+rnear*cos(ranglenear2(1)), y_u+rnear*sin(ranglenear2(1))]; 
%bottom RH 
FOVPLOT=[FOV1;FOV2;FOV4;FOV3;FOV1]; 
if plotflag==1, 
    %plot(FOVPLOT(:,1),FOVPLOT(:,2), 'r'), 
end 
  
return  %createFOV 
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function [x_u2,y_u2,x_us,y_us,hdg_uw,ttc,tti,x_t_e,y_t_e] = 
turnpath(mtr,hdg_uw,Wx,Wy,hdg_u,vel_u,x_u,y_u,hdg_t,x_t,y_t,vel_t,camAn
gle,d,turnside,plotflag); 
%turnpath is responsible for calculating 
  
d2r = pi/180; 
sw=0; 
% turnside = 'rh'; 
hdg_uwprev = hdg_uw; 
for tangentloop = 1:5 %This will close in on the final turn-to-course 
exit angle 
    %The following is a series of if-then statements that deal with 
    %peculiarities of the target being in different quadrants 
    if hdg_u>pi & hdg_u < 2*pi 
        if hdg_uw>0 
            if turnside=='rh' 
                chi = hdg_u - hdg_uw(1); 
            else %'lh' 
              chi =  2*pi - hdg_u + hdg_uw(1); %determine amount a/c is 
off intended course 
            end 
        else %hdg_uw<0 
            if turnside=='rh', 
                chi = hdg_u - hdg_uw(1); 
            else %'lh' 
              chi =  2*pi - hdg_u + hdg_uw(1); %determine amount a/c is 
off intended course 
            end 
        end 
    else % 0<hdg_u<pi 
        if hdg_uw<0 
            if turnside == 'lh',  
                chi = (2*pi+hdg_uw(1)) - hdg_u; 
            else 
                chi =  hdg_u - hdg_uw(1);  
            end 
        else 
            chi =  hdg_u - hdg_uw(1); %determine amount a/c is off 
intended course 
        end 
    end 
    %other special case 
    ttc = abs(chi/mtr); %time-to-course: time it takes to turn to new 
course 
    arclength = vel_u*ttc*sign(chi);%scribe arc 
    R = arclength/chi; %negative implies turn to LHS of uav 
    if turnside=='lh',R = -abs(R);else R = abs(R); end 
    if arclength == 0, R=0,end 
    %determine center for uav turn radius: 90deg off heading (r or l) 
    Rcenter = [x_u+R*sin(hdg_u), y_u-R*cos(hdg_u)]; 
    [xCircle yCircle] = ellipse(R,R,0,Rcenter(1),Rcenter(2),100);  
    %     plot(Rcenter(1),Rcenter(2),'.'); 
    %     plot(xCircle,yCircle, 'b') 
    %Commence Turn 
    P = abs(round(chi/d2r/3)); hdg_uu = hdg_u; x_u2=x_u; y_u2=y_u; 
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    for j = 1:P %create a loop to turn UAV to req'd heading 
        hdg_uu = hdg_uu + mtr*ttc/P*sign(-R); 
        x_u2 = x_u2 + vel_u*cos(hdg_uu)*ttc/P - Wx*ttc/P; 
        y_u2 = y_u2 + vel_u*sin(hdg_uu)*ttc/P - Wy*ttc/P; 
        [x_s,y_s] = getSensorLoc(x_u2, y_u2, hdg_uu, camAngle, 
d,plotflag,'sensor'); 
        if plotflag==1, 
            %plot(x_u2,y_u2,'bo'); 
        end 
    end 
    hdg_uwprev = hdg_uw; %save heading calc from this run 
    x_t2 = x_t + vel_t*(cos(hdg_t))*ttc; %expected pos of target 
    y_t2 = y_t + vel_t*(sin(hdg_t))*ttc; 
    [x_us y_us x_t_e y_t_e hdg_uw, tti count] = CourseOpt(vel_u, vel_t, 
hdg_t, Wx, Wy, x_t2, y_t2, x_u2, y_u2,camAngle,d, hdg_u); 
     
end %tangentloop 
  
return  %turnpath 
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Appendix C. Pathmaker Validation Flight Tests 

First Flight – Stationary Target Identification 
The goals for this flight are to ensure the UAV is working correctly since the last flight, 

and then test the ability to track a stationary target.  An individual will be sent out to an 
unspecified location away from the ground control unit, where the UAV will be required to 
positively identify him upon flight path execution.    
 

I. Preflight 
1. Range Checks 

a. Verify packets per second (PPS) are between 20 and 30 
b. Walk the airplane out while maintaining line of sight with the Commbox 
c. Monitor the PPS in the ground station.  
d. Verify PPS between 15 and 30 within 250 m line of sight 

2. Sensor Checks 
a. Position the aircraft in level flight attitude 
b. Verify the horizon is approximately level 
Note: If the horizon indicator does not indicate level, select “Attitude 
Level” button in the Autopilot Variable window  
c. Bank the aircraft right 45 degrees and hold attitude for at least 5 seconds. 

Verify attitude indicator reads correctly 
d. Bank the aircraft left 45 degrees and hold attitude for at least 5 seconds. 

Verify attitude indicator reads correctly 
e. Pitch the aircraft up 45 degrees and hold attitude for at least 5 seconds. 

Verify attitude indicator reads correctly 
f. Pitch the aircraft down 45 degrees and hold attitude for at least 5 

seconds. Verify attitude indicator reads correctly 
g. Press the “Zero Pressure” button 
h. Verify the indicated airspeed is within 5 kts of zero 
i. Verify the indicated altitude is within 10 ft of zero 
j. Cover the pitot tube and verify that the airspeed increases slightly 
k. Place aircraft on level ground 
l. Press the “Check Sensors” button. Ensure all sensors pass (see message 

window)  
3. Stationary Target Placement 

a. Send an individual (target) out with a GPS to an unspecified location 
within the test range.   

1. This location should be at least 300 meters from the ground 
station and not be obvious to the person manning the UAV 
ground station. 

2. For testing purposes, the person should wear something that 
highly contrasts the surroundings, i.e. a red jacket, vest, etc. 

b. When the target is satisfied with his location, use the GPS to mark the 
lat/long. 

c. Relay the lat/long data to the ground station member.  Standard 
convention for relaying target data will be as follows: 

1. Latitude 
2. Longitude 
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3. Target Course 
4. Target Speed 
5. Time of change to current course and speed. 

d. Have target announce his location in generalities, i.e., “I’m south of 
you”.  This will be used to position the UAV away from final target for 
beginning of test. 

 
II. Launch 

 
4. Launch the aircraft and trim it for level flight using the trim tabs on the RC 

controller. 
 

 
III. Flight 

Note: The communication quality should be monitored throughout the flight 
 
5. Maintain level flight. Verify the following: 

a. GPS maintains lock 
b. Airspeed and Altitude values in the artificial horizon are reasonable 
c. Roll, Pitch, and Heading angles shown in the artificial horizon 

6. Open the servo Setup Screen in Virtual Cockpit 
7. Load the Camp Attebury waypoint racetrack into Virtual Cockpit. 
8.  With Virtual Cockpit set to “Nav” mode, instruct the pilot to hand off the aircraft 

to Autopilot. 
9. If the autopilot appears to be tracking well with no irregularities (follows the 

waypoints correctly, adjusts for wind, no instabilities, etc) we are ready for target 
ID. 

10. Ensure UAV flight data is being recorded. 
11. Using Onpoint, begin recording the video stream. 
12. Using noted general location of target, position UAV at least 400m away from 

general location of target noted above. 
13. With the target data loaded into the FTC, execute Pathmaker. 
14. Take note of the final waypoint.  Prepare to identify the target. 
15. Announce when you are able to identify the target. Note if you were able to 

detect the target in the front camera, side camera, or both. 
16. Make note of position target in FOV during loiter.  Does it stay in the center of 

the FOV?  Is the turn radius too big or too small? 
17. Using OnPoint, try to lock onto the target to receive lat/long data. 
18.  Stop Recording video stream. 

 
IV. Landing 

 
19. Land the aircraft in RC Mode, ensuring airplane power remains on 

 
V. Postflight 

 
20. If the UAV was unsuccessful in keeping the target in the FOV during the turn, a 

change in the loiter radius may be required.   
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Second Flight- tracking a moving target 
The second flight will build on the success of the 1st flight.  This flight will measure the 

ability of Pathmaker to adequately predict the future location of a target that is traveling along a 
specified route. 

 
 

I. Preflight 
 

Stationary Target Placement 
 

1.  Do a time hack so that all watches are in sync. 
2. Send an individual (target) out with a GPS to an unspecified location within the 

test range.   
a. This location should be at least 300 meters from the ground station and 

not be obvious to the person manning the UAV ground station. 
b. For testing purposes, the person should wear something that sticks out 

from the surroundings, i.e. a red jacket, vest, etc. 
3. When the target is satisfied with his location, Use the GPS to mark the lat/long. 
4. Have target announce his location in generalities, i.e., “I’m south of you”.  This 

will be used to position the UAV away from final target for beginning of test. 
5. The target shall determine the direction he intends to travel. 

 
NOTE:  You may want to wait until the UAV is airborne to commence the following 
steps. 
 
6. The target will mark the time, and commence walking at a constant course and 

speed in a direction of his choice. 
7. Monitor speed and course on the GPS.  Once satisfied that the GPS has stabilized 

on your course and speed, relay the lat/long, target course and speed, and time 
data to the ground station member.  Standard convention for relaying target data 
will be as follows: 

a. Latitude 
b. Longitude 
c. Target Course 
d. Target Speed 
e. Time of change to current course and speed. 

8. The ground station member should input the target information into the FTC 
 

II. Launch 
 

1. Same as above 
 

III. Flight 
 

0. If the autopilot appears to be tracking well with no irregularities (follows the 
waypoints correctly, adjusts for wind, no instabilities, etc) we are ready for target 
ID. 

1. Ensure UAV flight data is being recorded. 
2. Using Onpoint, begin recording the video stream. 
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3. Using noted general location of target, position UAV at least 400m away from 
general location of target noted above. 

4. With the target data loaded into the FTC, execute Pathmaker. 
5. Take note of the final waypoint.  Prepare to identify the target. 
6. Announce when you are able to identify the target. Note if you were able to 

detect the target in the front camera, side camera, or both. 
7. Make note of position target in FOV during loiter.  Does it stay in the center of 

the FOV?  Is the turn radius too big or too small? 
8. Using OnPoint, try to lock onto the target to receive lat/long data. 
9.  Stop Recording video stream. 

 
IV. Landing 

 
16. Land the aircraft in RC Mode, ensuring airplane power remains on 

 
 

Third Flight – stop and go targets 
The third flight will build on the success of the 1st two flights.  This flight will measure 

the ability of Pathmaker to adequately predict the future location of a target with nonlinear 
trajectory. 

 
I. Preflight 

 
1. Stationary Target Placement 

a.  Do a time hack so that all watches are in sync. 
b. Send an individual (target) out with a GPS to an unspecified location 

within the test range.   
1. This location should be at least 300 meters from the ground 

station and not be obvious to the person manning the UAV 
ground station. 

2. For testing purposes, the person should wear something that 
sticks out from the surroundings, i.e. a red jacket, vest, etc. 

c. When the target is satisfied with his location, Use the GPS to mark the 
lat/long. 

d. Have target announce his location in generalities, i.e., “I’m south of 
you”.  This will be used to position the UAV away from final target for 
beginning of test. 

e. Determine the intended direction of travel. 
f. The target will mark the time, and commence walking at a constant 

course and speed in a direction of his choice. 
g. Monitor speed and course on the GPS.  Once satisfied that the GPS has 

stabilized on your course and speed 
h.  Relay the lat/long, target course and speed, and time data to the ground 

station member.  Standard convention for relaying target data will be as 
follows: 

1. Latitude 
2. Longitude 
3. Target Course 
4. Target Speed 
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5. Time of change to current course and speed. 
i. The ground station member should input the target information into the 

FTC 
II. Launch 

 
2. Same as above 

 
III. Flight 

 
3. If the autopilot appears to be tracking well with no irregularities (follows the 

waypoints correctly, adjusts for wind, no instabilities, etc) we are ready for target 
ID. 

4. Ensure UAV flight data is being recorded. 
5. Using Onpoint, begin recording the video stream. 
6. Using noted general location of target, position UAV at least 400m away from 

general location of target noted above. 
7. With the target data loaded into the FTC, execute Pathmaker. 
8. At this time, the target should do the following: 

i. Stop 
ii. Mark the time he stopped, and note the lat/long of his current location. 

iii. Relay this new target data to the GCU. 
9. Upon receiving the updated target data, Load the new data into the FTC and re-

execute Pathmaker. 
10. The above process of stop and go can be repeated multiple times, but will largely 

be dependant on the range of the target from UAV. 
11. The GCU operator should announce when they are able to identify the target. 

Note if you were able to detect the target in the front camera, side camera, or 
both. 

12. Upon loitering the target, use OnPoint to determine the lat/long position of the 
target. 

13. Use OnPoint to successfully loiter around moving target.  Note effectiveness of 
Onpoint to maintain track. 

14. Make note of position target in FOV during loiter.  Does it stay in the center of 
the FOV?  Is the turn radius too big or too small? 

15. Stop Recording video stream. 
 

IV. Landing 
 

16. Land the aircraft in RC Mode, ensuring airplane power remains on 
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Fourth  Flight – unpredictable moving target 
The fourth flight will build on the success of the 1st three flights.  This flight will measure 

the ability of Pathmaker to adequately predict the future location of a target with nonlinear 
trajectory.  This procedure will have the greatest potential for course prediction errors out of the 
four. 

.  
I. Preflight 

 
1. Stationary Target Placement 

j.  Do a time hack so that all watches are in sync. 
k. Send an individual (target) out with a GPS to an unspecified location 

within the test range.   
1. This location should be at least 300 meters from the ground 

station and not be obvious to the person manning the UAV 
ground station. 

2. For testing purposes, the person should wear something that 
sticks out from the surroundings, i.e. a red jacket, vest, etc. 

l. When the target is satisfied with his location, Use the GPS to mark the 
lat/long. 

m. Have target announce his location in generalities, i.e., “I’m south 
of you”.  This will be used to position the UAV away from final target 
for beginning of test. 

n. Determine the intended direction of travel. 
o. The target will mark the time, and commence walking at a constant 

course and speed in a direction of his choice. 
p. Monitor speed and course on the GPS.  Once satisfied that the GPS has 

stabilized on your course and speed 
q.  Relay the lat/long, target course and speed, and time data to the ground 

station member.  Standard convention for relaying target data will be as 
follows: 

1. Latitude 
2. Longitude 
3. Target Course 
4. Target Speed 
5. Time of change to current course and speed. 

r. The ground station member should input the target information into the 
FTC 

II. Launch 
 

2. Same as above 
 

III. Flight 
 

3. If the autopilot appears to be tracking well with no irregularities (follows the 
waypoints correctly, adjusts for wind, no instabilities, etc) we are ready for target 
ID. 

4. Ensure UAV flight data is being recorded. 
5. Using Onpoint, begin recording the video stream. 
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6. Using noted general location of target, position UAV at least 400m away from 
general location of target noted above. 

7. With the target data loaded into the FTC, execute Pathmaker. 
8. At this time, the target should do the following: 

iv. Change course, preferably by some angle greater than 90 degrees. 
v. Mark the time he stopped, and note the lat/long of his current location. 

vi. Relay this new target data to the GCU. 
9. Upon receiving the updated target data, Load the new data into the FTC and re-

execute Pathmaker. 
10. The above process of stop and go can be repeated multiple times, but will largely 

be dependant on the range of the target from UAV. 
11. The GCU operator should announce when they are able to identify the target. 

Note if you were able to detect the target in the front camera, side camera, or 
both. 

12. Upon loitering the target, use OnPoint to determine the lat/long position of the 
target. 

13. Use OnPoint to successfully loiter around moving target.  Note effectiveness of 
Onpoint to maintain track. 

14. Make note of position target in FOV during loiter.  Does it stay in the center of 
the FOV?  Is the turn radius too big or too small? 

15. Stop Recording video stream. 
 

IV. Landing 
 

16. Land the aircraft in RC Mode, ensuring airplane power remains on 
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Appendix D. Hardware Setup 

Overview  
A key aspect of the current thesis was the actual implementation of optimal flight 

path solutions into a real-world system.  The following chapter will try to document the 

various hardware and software systems used within the thesis work, and act as a 

reference guide for future work. 

 
Kestrel Autopilot Setup 

The Kestrel Autopilot is an integral part of system.  The following section will 

step through the setup of the Kestrel Autopilot in a fashion that is tailored specifically for 

the current thesis application.  All work should also be referenced to Kestrel’s user 

manual. 

Setting up comms with laptop 
 

This section provides a step-by-step instruction for setting up communications 

between the laptop, Commbox, and autopilot.  This setup is required for talking to the 

autopilot and making any changes to Flash files, PID settings, or any autopilot settings in 

general.  It will allow you to interface with the autopilot and force servo commands, but it 

will not allow any sort of Hardware-in-the-Loop (HIL) ability.  
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Figure 32.  Representative comms setup 

1. Connect battery to autopilot.   

a. You should get a steady orange light, a blinking red light, and a steady green 

light. 

2. Turn on Commbox.   

a. With the commbox plugged into a power outlet, you should have a blue 

power light, orange charging battery light, and red blinking modem light. 

3. Using a Serial to USB connector cord, plug the Commbox into one of the 

available USB ports.  In this example we will use the top USB port on the 

current laptop setup. 

4. Open Virtual Cockpit 

5. Go to “Settings”, “Comm and XML” (see Figure 33) 

6. On Communications Port page, set the port to the correct com port.  On the 

current laptop, the top USB port on the LH side of the laptop will show up as 
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“COM 4 AETN USB to Serial Bridge”.  If for some reason this COM port 

does not work, try the others.  Virtual Cockpit is known to be finicky in this 

regard. 

 

Figure 33.  Locating “Comm and XML” from pull down menu 

7. Do not change the baud rate or any other settings on this page at this time. 

8. With the correct com port selected, you should now see two yellow or green 

power bars within the HIS screen of virtual cockpit.  The Commbox voltage 

should also appear in comment box area.  You may also see a 5 second count-

down when the autopilot is initially hooked up. 

a. The Commbox should now have blinking orange VC light as well as the 

blinking Modem light. 

b. The green light on the autopilot should now be blinking, rather than steady. 
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9. You are now set up sufficiently to communicate with the autopilot.  This 

configuration is sufficient for uploading or downloading PID and Flash values, 

as well as accessing any other information on the autopilot.   

10. This would also be the general startup procedure used for initialization of the 

Autopilot system when used in actual flight test scenario as well.   

The next section will go through a normal Hardware-In-the-Loop setup. 
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Hardware-In-the Loop (HIL) setup 
 

 While the above setup is good for basic communication with the autopilot, often 

times you will want to test certain scenarios out using a HIL setup.  This section will 

describe the hardware and process necessary to perform a basic HIL setup with the 

Kestrel Autopilot. 

 

Figure 34.  Representative HIL setup 

1. Maintain the same setup as in section 4.4.1; however remove power from the 

autopilot and commbox. 

2. Obtain the comm cable shown below, and plug into computer using a serial-to-

USB converter.  In the following demonstration it will be plugged into the lower 

USB port on the laptop computer. 
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a. Note that the green wire must be unconnected.  If the green wire is 

connected, the serial cable will not communicate with the autopilot. 

 

Figure 35.  HIL Comm Cable  

3. Plug the autopilot comm serial wire into the “serial A” slot.  See Figure 36 

 

Figure 36.  Diagram of Autopilot Ports 

4. Power up both the autopilot and Commbox. 

5. Open Virtual Cockpit. 

6. Click on “Settings”, “Payload”  
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Figure 37.  Locating “Payload” from pulldown menu 

7. From the Payload page, for “Port A”, select “Pins 3,4 for Hardware-In-The-

Loop”. 

a. Port E can be any of the options at this time and it will not affect the HIL 

setup.  Port E is used primarily for setting up a gimbaled camera. 

 

Figure 38.  Payload Window 
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8. Hit the “upload Config” button, followed by the “Update Flash” button.  This 

will have loaded and saved the new settings to the autopilot. 

9. Unplug the power for the Autopilot, and plug it back in after all the autopilot 

lights have extinguished.  This resets the autopilot. 

10. Open the Aviones. 

11. Click on “UAV”, “Add new…” 

 

 

Figure 39.  Locating “Add new…” from pulldown menu 

a. If an “Add UAV” pop-up screen does not immediately appear, hit the Alt 

button on the keyboard. 

12. In the “Add UAV” pop-up, hit OK. 

13. Click on “View”, “HIL Sim Control” 

14. In the HIL Simulation Control pop-up, you will need to enter the correct “Serial 

Port #”.  Common serial port numbers are 5 for the lower USB port. 

15. With the correct port number selected, you should see a count-down in the main 

virtual cockpit window, and then another window will pop up requesting launch 
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altitude.  This is the altitude you are assuming the UAV you see in the Aviones 

screen is starting at.  Select any of the three choices you prefer.   

 

Figure 40.  Locating “HIL Sim Control” from pulldown menu 

16. You should now have a solid orange light, and a blinking red, green and red light 

on the autopilot.  The outside right light indicates that the HIL setup is 

communicating with Virtual Cockpit.  On the Commbox you should have a 

blinking red modem light and blinking orange VC light, as well as illuminated 

battery and power lights. 

17. At this point you are ready to conduct a HIL flight.  To launch the aircraft, click 

on “UAV” and “Launch if necessary”.  The autopilot will now begin to fly via 

commands sent from Virtual Cockpit.  Follow standard operating procedures for 

setting up waypoints as described in the Procerus instruction manual. 
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Setting physics.dll parameters 
 
 It is necessary to modify the physics.dll file to match your current aircraft as 

best as possible.  A Sig Rascal model was created using empirical data from Jodeh’s 

(Jodeh, 2006) thesis.  Units of measure are either in standard metric units, or follow the 

units of measure prescribed in Appendix B of Nelson’s “Flight Stability and Control” 

(Nelson, 1998: 401)  

1. The easiest way to alter the physics.dll parameters is to import them into Excel. 

2. Locate the “physics_params.txt” file, which should be located in the parent 

Aviones directory. 

3. Using Excel, open the “physics_params.txt” file as a comma delimited file in 

Excel. 

4. Modify as needed. 
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External Servo Board Setup 
 

1. Follow the updated instructions given in section 1.5.4 of Procerus’ Installation 

Configuration guide V2.3 (Kestrel Autopilot System, 2007:19). 

2. It should be noted that the external servo board needs a power source external to 

the Serial E connector.   

 

 

Figure 41.  External Servo Board 

 

3. The channels on the servo expansion board are very specific, and cannot be 

reprogrammed.   

4. To control channels 7 and 8, you will need to use the manual controller setup.  

From Virtual Cockpit, go to “Settings”, “Manual Control”. 

5. In the “Joystick Mapping” Section, select “User Configured”. 
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Figure 42.  Payload Window 

6. Using an available USB gamepad, assign gimbal azimuth and elevation axis 

relating to the controller you are using.  If you are not sure which axis/button is 

relates to which, click on the “Display Joystick States”.  Afterward, when you 

click on a gamepad button or move one of the controllers, it will display the 

pertinent button or axis number. 

 

Figure 43.  Locating “Manual Control” from pull down menu
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RC controller setup 

 
Some items should be noted for setup of the RC controller. 

1. The RC controller should be set to “PPM” 

a. If “PPM” is not selected, do the following: 

b. On the Futaba front face, press and hold the “Mode/Page” button. 

 

 

Figure 44.  RC controller display and interface 

 

c. Using the selector wheel, scroll down to page 2 and select “PARAMETER” 

by pressing the selector wheel. 

d. Using the Select (Cursor) buttons, select “MODUL” . 

e. Change “MODUL” setting to “PPM” using the selector wheel. 
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Figure 45.  Locating “PPM” from controller menu 

 

f. Press the “End” button twice to exit back to the main menu. 

2. Other parameter may be changed on the RC controller box in a similar fashion 

as described above. 
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Virtual Cockpit Setup 
 

Setting Flash Values 
1. Setup comms with laptop as in section 4.1.1 

2. From Virtual Cockpit, click on “Settings,”  “Autopilot Variables” 

 

Figure 46.  Locating “Autopilot Variables” from pull down menu 

3. You are now at a page that can be used to change the PID values 
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Setting PID values 

4. Setup comms with laptop as in section 4.1.1 

5. From Virtual Cockpit, click on “Settings,”  “PID values” 

 

Figure 47.  Locating “PID Values” from pull down menu 

6. You are now at a page that can be used to change the PID values 

 

Figure 48.  Locating “PID Values” from pull down menu 
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