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Abstract

The static and dynamic pitch and roll stability derivatives of a finned, axisym-

metric missile known as the Basic Finner were examined using a Computational Fluid

Dynamics (CFD) approach. Stability derivatives are used to characterize vehicle mo-

tion, and knowledge of them is critical to the design of stable uncontrolled vehicles

and control systems for controlled vehicles. Using CFD to characterize the motion of

new munition designs has the potential to improve overall performance and reduce

research and testing costs. The present analysis simulated forced oscillation and free

oscillation of the Basic Finner model using the Air Force SEEK EAGLE Office’s Beg-

gar code. The pitch stability derivatives were determined at 0◦ angle of attack for

six Mach numbers from 1.58 to 2.50 and at Mach number equal to 1.96 for angles

of attack from 0◦ to 20◦. The parameters defining the motion of the forced oscilla-

tion tests were the reduced pitch rate, amplitude, Newton iterations, iterations per

oscillation, and total oscillations. Convergence studies on each of these parameters

were performed to ensure both convergence and solution independence. Roll stability

derivatives were determined through forced, constant rate rolling motion for six Mach

numbers from 1.58 to 2.50 at an angle of attack of 0◦. The parameters defining the

roll motion were reduced roll rate and iterations per revolution, which were chosen in

the same manner as the pitch parameters. Good agreement was found between the

different methods tested, previous CFD analysis, and experimental data.
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Determination of Static

and Dynamic Stability Coefficients

Using Beggar

I. Introduction

Accurate performance estimates are critical to the efficient design of all engineer-

ing systems. It is important to assess the performance of new designs as early

as possible in the design process in order to save time, money, and other resources.

The design of aircraft and airborne weapons are no exception to this rule, and it is

important to verify each new design as quickly, inexpensively, and safely as possible.

Performance analyses of missiles and other projectiles focus primarily on three

areas: the launch system, the ability to accurately strike a target, and the amount

of energy or damage delivered to the target. The present research will focus on a

projectile’s performance in the air and its ability to hit the desired target, also known

as exterior ballistics [38]. In order to determine the aerodynamic performance of a new

design, missile and projectile designers typically turn to flight tests, but as modern

designs become more complicated, the testing process is becoming more complicated

as well. Problems with complex geometries or extreme flow conditions can be very

expensive, or even impossible, to test in a wind tunnel. The physical limitations

of wind tunnels, combined with rising costs, may make wind tunnels insufficient for

meeting the needs of future designs [12].

Computational fluid dynamics (CFD) eliminates all of the physical limitations

and many of the other limitations associated with wind tunnel testing and has the

potential to positively affect the cost, schedule, and safety of the design and validation

of new flight systems. In some cases, CFD has been shown to effectively reduce the

time and cost required to obtain aerodynamic data by as much as one year and

1



hundreds of thousands of dollars when compared to obtaining the same data using

wind tunnels [12].

CFD is routinely used to resolve the static aerodynamics and flow characteris-

tics of complex geometries. In the past, it was often considered sufficient to determine

the static stability characteristics of objects in flight, and the dynamic stability co-

efficients were either assumed to be negligible, or they were treated as some small

constant determined from simple approximations [22]. As modern designs become

more complicated and the flight conditions experienced become more extreme, the

dynamic stability characteristics are becoming increasingly important. This is par-

ticularly true on slender vehicles with fins, for which the damping derivatives have a

strong influence on vehicle response at high speeds and high angles of attack [33].

Predicting dynamic stability derivatives has been a challenge since the Apollo

and Viking programs [17]. Experimental methods have been available to determine

dynamic stability coefficients, but these methods are expensive, and the resources

needed to carry them out are very limited [22, 33]. The use of CFD as a tool for

examining dynamic stability characteristics was somewhat limited in the past, be-

cause methods had not been proven or were deemed too computationally expensive.

Recently, capabilities for predicting pitch and roll damping and Magnus moment coef-

ficients have been developed, making it possible for both static and dynamic stability

analysis to be performed using only CFD [34].

The use of CFD for determining the aerodynamic characteristics of missiles and

projectiles is becoming more widespread. In the past, the unsteady flows and mov-

ing geometries associated with determining dynamic aerodynamic stability parame-

ters made dynamic solutions more difficult to compute and less reliable, but modern

methods and resources are making this process increasingly reasonable. Flight tests

remain an essential ingredient for determining the aerodynamics of new designs, but

the process of flight testing is both expensive and time-consuming, and it often cannot

be completed early enough in the design process to have a sufficient impact. Modern

2



CFD methods and resources are both fast and accurate enough to greatly reduce the

design costs and provide a detailed understanding of complex aerodynamics [28].

1.1 Research Goals

The goal of this research is to test and verify the capabilities of the Beggar

code for determining the static and dynamic stability coefficients of objects in flight.

Specifically, the static pitch and roll stability coefficients and the dynamic pitch and

roll damping moment coefficients will be determined for the Basic Finner missile

model. Beggar is routinely used to calculate static stability coefficients or to run real

time, coupled, six degree of freedom ((6+)DOF) store separations, and the code has

the capabilities necessary to obtain the data used to determine the dynamic stability

coefficients, but it is not customarily used to do so [12, 14, 19, 25, 26]. The present

effort will expand the application of the Beggar code using its current capabilities.

1.2 Stability

For an object in flight, the word “stability” refers to the tendency of that object

to return to its equilibrium position after it has been disturbed. Some disturbances

are intentional and are input by a pilot or a computer. Other disturbances are caused

by atmospheric effects like wind gusts/gradients or turbulent air. Regardless of the

cause of the disturbance, a missile or airplane that is stable in flight will return to its

equilibrium position.

The equilibrium position is typically referred to as the trimmed condition for

an aircraft. In order to achieve this condition, the sum of both the forces and the

moments about the center of gravity must be zero. Once the equilibrium flight con-

dition is reached, it remains unchanged unless acted upon by an outside force, such

as the disturbances mentioned above. A statically stable system will respond to any

disturbance with a force/moment that tends to move it back toward the equilibrium.

If that system is also dynamically stable, then the equilibrium will eventually be reac-

quired. Otherwise, the system will diverge from its equilibrium position despite the

3



restoring force/moment. The concepts of static and dynamic stability are discussed

further below.

1.2.1 Static Stability. Static stability is the tendency of an object to move

back toward its equilibrium position after a disturbance. Figure 1.1 shows the classic

example of static stability. When the ball is on flat ground, it is considered to have

neutral static stability, because any point to which it is moved to will become a new

equilibrium from which it will not stir unless disturbed. The ball on top of the hill

is in an equilibrium position that is statically unstable. From this position, even the

slightest disturbance will cause the ball to continue to roll down the hill. Finally, the

lowest ball is in a statically stable equilibrium position. Whichever way the ball is

moved, the force of gravity will cause it to move back toward the original equilibrium

position at the bottom of the hill.

Figure 1.1: Statically Stable, Unstable, and Neutral Equilibrium Positions

Figure 1.2 shows a spring-mass system that will be familiar to most engineers.

The equation of motion for this system is:

mẍ + kx = 0 (1.1)

where m is the mass and k, the spring constant, is the static stability coefficient.

In this case, a spring constant of zero causes the system to be neutrally stable: at
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equilibrium regardless of the displacement. If k is less than zero, the force of the

spring will reinforce any disturbance, and the mass will diverge from its equilibrium

position. If k is greater than zero, the spring will act as a restoring force, moving the

mass back toward the original equilibrium [13].

Figure 1.2: Spring and Mass System

1.2.2 Dynamic Stability. Static stability does not guarantee dynamic stabil-

ity. Dynamic stability deals with the time history of a system after a disturbance. In

order to be considered dynamically stable, the system must eventually return to the

original equilibrium condition. Despite the restoring force of static stability, a return

to the original equilibrium is not guaranteed, because static stability says nothing

about whether the motion will ever settle out. It is possible for the spring-mass sys-

tem in Figure 1.2 to oscillate indefinitely about the equilibrium position if there is

an initial displacement. We know that this is not likely to happen in real life, how-

ever, because in a real system, some energy is typically removed from the motion of

the system–an effect known as damping. With damping proportional to the velocity

included, Equation 1.1 becomes

mẍ + bẋ + kx = 0, (1.2)

where b is the damping coefficient [13]. When b is greater than zero, the damping

opposes the motion and energy is removed from the system. If k is also greater than

zero, the system will be both statically and dynamically stable, and it will eventually

return to its equilibrium position after being disturbed. The left-most images of
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Figures 1.3(a) and (b) show examples of cases with positive values for both damping

and stiffness. The non-oscillatory case has a damping coefficient much greater than

the spring constant and is overdamped. The oscillatory case has k > b, causing

damped oscillation.
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Figure 1.3: Examples of Stable and Unstable Dynamic Motion

If the spring constant is less than zero, the system will diverge from its equilib-

rium position, regardless of the damping coefficient, as shown in the middle image of

Figure 1.3(a). An example of such a situation is the linear approximation of an in-

verted pendulum in a viscous fluid. Once the pendulum is disturbed from its statically

unstable equilibrium at the top, it will continue to move away from the equilibrium,

even though the viscous fluid opposes the motion [13].

If the damping coefficient is equal to zero, the response will be an undamped

oscillation. For damping coefficients less than zero, energy is added to the system

6



as it moves, and it will be dynamically unstable, regardless of the value of k. The

right-most image of Figure 1.3(b) shows an example of a system that is statically

stable, but its negative damping coeffiient causes it to be dynamically unstable [18].

An example of a case that is statically stable but dynamically unstable and

behaves as though the damping were negative is a wing in flutter condition. The

stiffness of the wing tends to bring the wing back toward its equilibrium position,

but the unsteady flow field producing the flutter can cause the motion of the wing to

diverge and fail catastrophically.

1.3 Prior Research

There are three general methods that may be used to compute dynamic stability

derivatives: approximations from linear theory or semi-empirical methods, ballistic

or wind tunnel testing, and, more recently, CFD. Methods using linear theory or

empirical data are typically the fastest and easiest, but there is often error associated

with these methods, especially for complicated geometries or extreme flow conditions.

Ballistic and wind tunnel testing can effectively provide accurate values, but finding

those values can be both expensive and time consuming. CFD can provide the most

effective means of calculating these derivatives because of its flexibility, speed, and

accuracy.

1.3.1 Linear Theory and Semi-Empirical Methods. Missile designers have

long recognized the necessity of evaluating the aerodynamic characteristics of a new

design when it is still in the preliminary or conceptual design phase. It is sometimes

difficult to build a scale model or even know exact geometries in the earliest phases,

however, so rapid, inexpensive, easy to use methods for estimating important aero-

dynamic parameters are desired. Out of this desire arose codes like the Aerodynamic

Prediction Code, developed in 1971 by the Army and Navy [9]. This code was de-

signed to handle basic wing-body-tail configurations, which covered a large percentage

of the tactical weapons in use at the time.
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The Aerodynamic Prediction Code used a combination of many theoretical ap-

proximations and empirical data to attain its estimations. Table 1.1 shows these

methods, along with the cases and applicable components. The code calculated aero-

dynamic force and moment components on each of the system components separately,

and then added the contributions together while attempting to account for interfer-

ence effects.

Table 1.1: Methods used by Army/Navy Aerodynamic Prediction Code for com-
puting dynamic derivatives [9].

Mach Number Region

Component Subsonic Transonic Low Supersonic High Supersonic

Empirical or Empirical or Empirical or Empirical or

Body-Alone Pitch Modified Slender- Modified Slender- Embedded Newtonian Embedded Newtonian

Damping Moment Body Theory Body Theory or Theory or Theory

Linear Interpolation Linear Interpolation

Wing and Lifting Linear Strip

Interference Surface Empirical Thin-Wing Theory

Roll Damping Theory Theory

Body-Alone Empirical

Magnus Moment

Wing and

Interference Assumed Zero

Magnus Moment

Body-Alone

Roll Damping Empirical

Moment

Slender-Wing Supersonic

Wing and Slender-Wing or Supersonic Slender-Wing Strip or

Interference or Lifting Slender-Wing or Linear Thin- Embedded

Pitch Damping Surface Theory or Wing or Embedded Newtonian

Moment Theory Empirical Newtonian Strip Strip Theory

Theory

These methods worked well for basic geometries and angles of attack, provid-

ing fast, reliable results that were used to guide new designs in order to optimize

configurations, control gains, and performance. The major problem with this code,

and others like it, lies in the fact that it is limited to very general conditions. This

particular code was initially limited to Mach numbers less than three and angles of

8



attack below 15◦. Those restrictions were later expanded [9], but strict geometric

restrictions remained in place.

The breakdown in theory for more complex geometries, as well as the lack of

empirical data for completely new designs, makes it impossible for codes like the

Aerodynamic Prediction Code to attain accurate predictions for anything but the

most basic geometries. To deal with complex geometries, more flexible methods are

desired.

1.3.2 Experimental Methods. Ground based experiments and flight testing

remain the most commonly utilized and trusted methods for obtaining the stability

derivatives of objects in flight. In theory, perfect flight testing has the ability to

exactly match the flight conditions of a missile or projectile, and can thus be used

to determine exact responses with no approximations. In reality, the mission flight

conditions can be difficult to simulate, and responses are often very difficult to measure

accurately.

1.3.2.1 Ground Based Tests. Historically, two types of ground based

testing have been used to determine a model’s aerodynamic stability characteristics.

These methods are ballistic range testing and wind tunnel testing. Both methods

have the advantage of using actual models in actual flows; this lends credibility to

the tests, because any simulation can only approximate real situations. This is also

a disadvantage, however, because good models are often very expensive and time-

consuming to fabricate. Depending on the type of testing employed, other challenges

and limitations also exist. Some of these issues are discussed below.

In either case, the models tested are typically scaled down in size, which often

changes the inertial properties from those of the actual missile or projectile. Because

of this scaling, it is necessary to match certain flow properties in order to duplicate

full scale flight conditions or to compare data from different facilities. The most

important of these are the non-dimensional numbers known as Mach Number (M) and
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Reynolds Number (Re), where M = V/a is the velocity (V ) non-dimensionalized by

the speed of sound (a), andReL = ρV L/µ is the ratio of inertial forces to viscous forces

where ρ is the density, L is the reference length, and µ is the dynamic viscosity [38].

When dealing with missiles and projectiles, the diameter, d, is commonly used as the

reference length for the Reynolds Number. All Reynolds numbers in the present work

use this convention.

In wind tunnel testing, rather than move the model of interest through the air,

the air is moved over the model. This is a valid approach because, in general, the

interaction between the model and the flow is independent of which is moving. This is

true in most cases, but the quality of the flow in a wind tunnel can still be affected by

many things. Some of the issues involved in wind tunnel testing include wall effects,

non-uniform flow, turbulence, and sting effects caused by the mounting system [7,38].

These effects can be accounted for in some ways, like turbulence tripping and flow

conditioning, but results may still be negatively affected.

Resolving forces and moments in wind tunnels requires precise six component

force and moment balances. The equipment used to take these measurements can

be quite complicated and expensive to install and use, especially for the dynamic

tests required to capture the dynamic stability coefficients. In wind tunnels, there

are three types of dynamic tests that may be used to determine the dynamic pitch

stability coefficients: planar forced oscillation, planar free oscillation, and steady-state

coning motion. Forced oscillation does not allow the model to respond to the flow

of the air, but measures the forces and moments on the model while maintaining a

constant frequency of oscillation. Accomplishing this requires models with very low

moments of inertia, and only a few facilities are capable of testing in this manner [7].

Free oscillation starts the model at some angle of attack and then allows it to

oscillate freely about a trim condition. Uselton [33] performed small amplitude free

oscillation tests on the Basic Finner model at the Arnold Engineering Development

Center’s (AEDC) von Kármán Dynamics Facility, which was equipped with a spe-
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cialized test mechanism that used a strut-supported cross-flexure balance in order to

measure the dynamic forces and moments. This data was used to validate the meth-

ods used in the present research. When using free oscillation, it is critical that the

model moments of inertia closely match the real moments of inertia, because they can

affect the free-flight angular motion [38].

In steady-state coning motion, the longitudinal body-fixed axis of the missile is

rotated about a vector that is parallel to the flow and passes through the center of

gravity at a constant angular rate, Ω, as shown in Figure 1.4. The model may also

rotate about its longitudinal body-fixed axis at an angular rate, ω. For the special

case when ω = 0, the coning motion is referred to as lunar coning [8]. The model’s

stability coefficients may be calculated based on the side moment experienced and

the angular rotation rate. Since the angular rate is constant and the solution is run

to steady state, the coning motion method does not have to account for transients,

which can eliminate one source of error [7]. Other complications exist, however, such

as accurately measuring the forces and moments while rotating the model, sometimes

about two axes. Facilities capable of this type of experiment are limited in number,

but the method is growing in popularity.

Figure 1.4: Coning Motion

Aeroballistic test ranges, also known as free-flight spark ranges, do not share all

of the same issues as wind tunnels do, because the projectile is the moving component,

going through a still atmosphere. To a large degree, this eliminates problems with

wall effects, non-uniform flow, and interference from the mounting system. Free-flight

spark ranges typically consist of a gun room, a blast chamber, and a long, sometimes
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enclosed area called the range [38]. Projectiles are launched from the gun room

and blast chamber, attempting to simulate the speeds and flight conditions that the

projectile would experience when carrying out its mission. Once the blast chamber

is cleared a projectile flies unconstrained through the range. Throughout the range,

stations are set up orthogonal to the flight path that contain spark photography

equipment and other measuring devices. The photographs from each of the spark

photography stations are used to build a history of the projectile’s three dimensional

position components, (x̄, ȳ, z̄), which define the location of the projectile’s center of

gravity, and the three Euler angles, (θ, φ, ψ), which define the projectile’s orientation

[5].

The position and orientation data gathered at discrete locations in the range

are smoothly interpolated between points to build a continuous time-history of the

flight. Boissevain and Intrieri [5] used the history of the position and orientation

elements to determine the angles of attack and side-slip, which, in turn, were used to

solve assumed forms of the equations of motion. This method has since been updated

and, to a large degree, automated to determine the coefficients of the equations of

motion by fitting a curve to the position and orientation data [7, 38]. The CADRA2

interactive software, developed by Yates [7], has been used to provide these fits for

data gathered in Eglin Air Force Base’s Aeroballistic Research Facility. The software

accepts trajectory data as an input, allows the user to specify the assumed form of

the equations of motion, and outputs the unknown coefficients for that assumed form.

These methods can be effective, but, like wind tunnels, the facilities capable of

carrying out these tests are very limited, and they can be expensive and difficult to

use. Another issue shared with wind tunnels is the effect of scaling. Sizes, weights,

forces and moments can be effectively scaled, but boundary layers and turbulent

effects do not scale. Because ballistic ranges and wind tunnels often use sub-scale

models, it is possible for the control surfaces of the models tested in these facilities to

be submersed in the boundary layer, and the measured effectiveness could be greatly

impacted [38].
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Ground-based test facilities attempt to match real conditions as much as possi-

ble, and, in general, they do an acceptable job determining the aerodynamics of new

designs. The process can involve many challenges, however, and is difficult to accom-

plish fast enough to effect fundamental design changes. This fact, coupled with the

fact that the tests are often quite expensive to run, makes an alternative desirable.

1.3.2.2 Flight Tests. Actual flight tests with full scale models may

seem like the optimal method of determining stability characteristics, but flight testing

can sometimes prove to be difficult. To begin with, live flight experiments are typically

expensive, time-consuming, and may even be dangerous. Also, there are a number of

factors that are difficult to account for in flight tests, such as wind gusts and changing

atmospheric properties [7]. Even without those uncertain effects to deal with, data

acquisition on real systems can be difficult because of relative velocities, since it is

not possible to have relevant cameras or other sensors set up at fixed locations with

respect to the flight path. This makes flight testing very difficult, but, when properly

performed, flight testing provides the ultimate verification of a design’s performance.

Unfortunately, because of the difficulty, time, and expense involved in effective flight

testing, it is generally not possible for flight tests to have an impact on the design

phase when significant changes may still be made.

1.3.3 CFD Approaches. Because experimental approaches are time-consuming

and expensive, and theoretical and empirical approaches are not flexible enough, de-

signers have turned to CFD for determining the aerodynamic characteristics of missiles

and projectiles. Physical testing remains a valuable tool for the validation of compu-

tational data and techniques, but CFD approaches may be applied to new designs of

any shape or size relatively early in the conceptual design phase without the need for

actual model fabrication.

The utility of CFD lies in the fact that it can be used to simulate exact con-

ditions. Because of this, any type of testing that is possible in wind tunnels or test

ranges may also be simulated using CFD, so long as an appropriate solver is used.
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This allows CFD approaches to employ the same techniques for determining the static

and dynamic stability coefficients as wind tunnels and ballistic ranges.

Ballistic trajectories are simulated by providing initial conditions and then using

a real-time, six degree of freedom solver to build a continuous time-history of a pro-

jectile’s flight. The time-history is constructed by coupling the forces and moments

found in the CFD solver with a rigid body dynamics (RBD) model to solve for the

motion [27]. This data may be processed to determine the stability coefficients with

a tool like CADRA2 [7] just like the data from a ballistic range. The main difference

is that the ballistic range captures the projectile’s position and orientation at discreet

points and interpolates to build the time-history, while the data from a CFD trajec-

tory will be nearly continuous and requires no interpolation. Data found with this

method has been found to agree very well with data from test ranges [27]. An issue

with this method, however, is that a full (6+)DOF trajectory can be computation-

ally expensive to compute, and multiple trajectories are often needed to accurately

determine the stability coefficients.

A more common and less computationally expensive method for determining the

dynamic stability coefficients is forced oscillation. Just like the method used in wind

tunnels, forced oscillation involves pre-defined planar rotation about the model center

of gravity. In various manners, CFD has been used to apply forced oscillation [8,16,17,

21,28–30]. Sahu [27–30], DeSpirito, Silton, and Weinacht [8], and Oktay and Akay [21]

have used forced oscillation to determine the damping coefficients on various missile

models, both finned and unfinned. Both viscous and inviscid models were tested for

various Mach numbers, typically determining the coefficients at an angle of attack

of 0◦. In general, good agreement was found both between similar computational

tests and experimental approaches. Murman [16] applied small amplitude forced

oscillations to various projectiles at varying angles of attack to examine the change

in damping using a reduced-frequency approach. The results were found to match

closely with experimental data.
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Murman and Aftosmis [17] performed planar free oscillation testing on the Ba-

sic Finner model. The model was started at an angle of attack of 20◦ and a coupled

CFD/RBD solver was used to predict the damped oscillations about the trim angle

of 0◦ degrees. While real-time, coupled free oscillation tests take longer than a sin-

gle forced oscillation test, the advantage of free oscillation lies in the fact that the

damping at any angle of attack that the model passes through more than once may

be determined from a single test. Forced oscillation testing requires that a small am-

plitude oscillation test be carried out at each angle of attack of interest. Murman and

Aftosmis [17] found free and forced oscillation techniques to be in good agreement

with each other and with experimental data, especially at low to moderate angles of

attack.

Time-accurate approaches, while effective for determining damping coefficients,

bring with them both computational expense and some degree of complication. The

steady state coning method can determine the pitch damping and eliminates the

need for time-accuracy. Weinacht [34] and DeSpirito et al [8] applied a combination

of coning and lunar coning to various spin-stabilized projectiles. The steady state

solutions were converged and the pitch damping predicted was found to compare very

well to experimental data and to time-accurate methods, except at low supersonic

Mach numbers, where the experimental data had a large degree of scatter.

1.4 Research Approach

The current effort applied forced oscillation and free oscillation techniques to the

Basic Finner model using the Beggar CFD code. The Basic Finner model and grids

were built using Gridgen R©. Static solutions were computed at various Mach numbers

and angles of attack, and those solutions were used as the starting point of various

dynamic tests. The results of the dynamic tests were used to obtain a history of the

moment coefficients, which, in turn, were used to calculate the stability derivatives

for each case. These results were compared to previously accomplished experimental

and computational tests.
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1.5 Roadmap

The flight equations of motion are presented in Chapter II, along with the deriva-

tion of the static and dynamic stability coefficients for pitch and roll. An overview

of the Beggar solver is also given, along with a description of its methods for solving

the governing equations, overset grid capability, and (6+)DOF model. Chapter III

outlines the methods used in this research, from grid building to dynamic testing

and stability coefficient extraction. Results are presented in Chapter IV, along with

a discussion of the findings and comparison to previous findings from wind tunnels,

ballistic ranges, and other CFD applications. Chapter V includes the conclusions

reached from this testing and recommends possible courses of future research. The

appendices present additional methods and results that are relevant to the research

but not shown in Chapters III or IV.
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II. Theory

For an aircraft, just like any other system, static stability requires that the forces

and moments generated in response to a disturbance tend to move the system

back toward the equilibrium position. For an aircraft to be statically stable in pitch

(known as longitudinal stability), this means that the aircraft’s response to a nose

up disturbance must be a nose down moment. Figure 2.1 shows example pitching

moment coefficient (Cm) curves versus angle of attack (α) for two aircraft that share

an equilibrium at point B.

Figure 2.1: Sample pitch moment coefficient slopes for stable and unstable aircraft.

If a downward wind gust or another disturbance were to cause the angle of

attack to move to point A, aircraft 1 would respond with a nose up pitching moment,

moving back toward the original angle of attack. Aircraft 2, on the other hand, would

respond to the decreased angle of attack with a nose down moment, further decreasing

the angle of attack and causing the aircraft to diverge. If an upward gust changed the

angle of attack to point C, the result would be the same, and aircraft 1 would again

be forced back toward equilibrium, while the angle of attack of aircraft 2 would again

diverge. This example demonstrates that the requirement for static pitch stability

is [18]

dCm

dα
< 0 (2.1)
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The requirements for static roll stability may be similarly discovered, resulting

in a requirement that
dCl

dφ
< 0 (2.2)

where Cl is the roll moment coefficient, and φ is the roll angle.

As discussed in the previous chapter, a system may be statically stable but

never return to its original equilibrium position because of a dynamic instability. An

airplane is considered dynamically stable only if the motion due to a disturbance

decreases with time [18]. The degree of dynamic stability or instability depends upon

the frequency of the oscillation and the speed with which motion either increases or

decreases. In order to understand and predict static and dynamic stability, we must

first understand the equations of motion governing aircraft flight.

2.1 Equations of Motion

The rigid body equations of motion are derived from Newton’s 2nd Law, which

can be expressed in vector form as:

ΣF =
d

dt
(mv) (2.3)

ΣM =
d

dt
H (2.4)

Simply put, the sum of the external forces, F, is equal to the time rate of change

of the linear momentum (the product of mass, m, and the velocity vector, v), and

the sum of the external moments, M, is equal to the time rate of change of the

angular momentum, H. These equations are frequently broken into scalar form with

components along the body-fixed axes shown in Figure 2.2, yielding six separate

equations. In the x, y, and z-directions, respectively, the components of each of the

vectors above are: F = [Fx Fy Fz], v = [u v w], M = [L M N ], and H = [Hx Hy Hz].
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Figure 2.2: Body-Fixed Axes

If the mass of the vehicle is assumed to be constant and the angular velocity of

the body frame is ω, Equations 2.3 and 2.4 may be rewritten in terms of ω and the

velocity of the center of mass (vcg):

F = m
dvcg

dt
+m (ω × vcg) (2.5)

M = m
dH

dt
+ ω × H (2.6)

In scalar form, assuming an axisymmetric projectile about the xy- and xz-planes, the

equations are
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Fx = m (u̇+ qw − rv)

Fy = m (v̇ + ru− pw) (2.7)

Fz = m (ẇ + pv − qu)

L = Ixṗ+ qr (Iz − Iy)

M = Iyq̇ + rp (Ix − Iz) (2.8)

N = Iz ṙ + pq (Iy − Ix)

where p, q, and r are the scalar components of the angular velocity vector about the

x, y, and z axes, respectively, and Ix, Iy, and Iz are the mass moments of inertia of

the body about the axes. A full derivation of the flight equations of motion may be

found in references [18] and [32].

By assuming that the motion of the projectile consists of small changes from a

steady flight condition, small-disturbance theory may be applied to rewrite the equa-

tions of motion in terms of aerodynamic stability derivatives. In small-disturbance

theory, each variable in the equation of motion is replaced by the sum of a reference

value (denoted by a subscript ’0’) and a perturbation (denoted by a ∆) as, for exam-

ple, u = u0 + ∆u. The aerodynamic stability derivatives are the incremental changes

in forces or moments due to an incremental change from one of the reference con-

ditions for velocity, acceleration, angular velocity, or control surface deflection. The

small-disturbance theory equations of motion based on the aerodynamic derivatives

that are most important for uncontrolled aircraft are:
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∆Fx =
∂Fx

∂u
∆u+

∂Fx

∂w
∆w

∆Fy =
∂Fy

∂v
∆v +

∂Fy

∂p
∆p +

∂Fy

∂r
∆r

∆Fz =
∂Fz

∂u
∆u+

∂Fz

∂w
∆w +

∂Fz

∂ẇ
∆ẇ +

∂Fz

∂q
∆q

(2.9)

∆L =
∂L

∂v
∆v +

∂L

∂p
∆p +

∂L

∂r
∆r

∆M =
∂M

∂u
∆u+

∂M

∂w
∆w +

∂M

∂ẇ
∆ẇ +

∂M

∂q
∆q

∆N =
∂N

∂v
∆v +

∂N

∂p
∆p+

∂N

∂r
∆r

(2.10)

where the partial fractions are the aerodynamic stability derivatives.

2.1.1 Aerodynamic Derivatives. The stability derivatives of interest in the

present analysis are those in the pitch and roll directions. The motion in the pitch

direction is a function of both static and dynamic aerodynamic derivatives, but pure

roll motion for an axisymmetric projectile at an angle of attack of zero degrees is

governed only by a dynamic stability derivative.

2.1.1.1 Pitch Derivatives. The static pitch stability coefficient, Cmα
,

arises due to changing forces on the projectile as the angle of attack is changed. Cmα

is also known as the pitch stiffness, and it acts like the spring constant term found in

Equation 1.2. This term is defined as:

Cmα
=
∂Cm

∂α
=
∂M/∂α

QSd/Iy
(2.11)

where Q = 1

2
ρV 2 is known as the dynamic pressure, d is the reference length, the

missile diameter, and S is the reference area, which is the area of the base for missiles,

given as πd2

4
.
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As discussed above, in order to be statically stable in pitch, the slope of the

Cmα
curve must be negative. This opposes any deviations and forces the aircraft

back toward equilibrium when it is disturbed. For standard configuration missiles

and aircraft, this negative moment is developed by a change in the lift on the tail.

Figure 2.3 shows the change in lift on the tail, and thus the change in moment about

the center of gravity, that results from a change in angle of attack.

(a) Equilibrium Flight (b) Disturbed Condition

Figure 2.3: Induced moment due to change in angle of attack.

Two dynamic derivatives contribute to dynamic pitch stability. These are the

moment coefficient due to pitch rate, Cmq
, and moment coefficient due to the rate

of change of angle of attack, Cmα̇
. These terms are defined in terms of the angular

rates q and α̇ nondimensionalized by the diameter and freestream velocity, which are

generally treated as constants [32].

Cmq
=

∂Cm

∂
(

qd

2V∞

) and Cmα̇
=

∂Cm

∂
(

α̇d
2V∞

) (2.12)

The Cmq
stability coefficient develops in response to a change in the effective

angle of attack on the tail due to the pitching rate. Figure 2.4 shows a missile model

pitching up, which causes the tail to see an upward induced velocity equal to the

product of the pitch rate and the distance from the tail to the center of gravity. For

supersonic cases, the forward velocity, V∞, can generally be assumed to be much

greater than the induced velocity, so the change in effective angle of attack is ∆α =

qlt
V∞

, as shown in Figure 2.4.

22



∆α =
qlt
V∞

(2.13)

Figure 2.4: Induced velocity due to pitching motion.

This change in angle of attack results in a change in the lifting force on the tail

as

∆Lt = CLαt

qlt
V∞

QS (2.14)

The change in pitching moment due to the change in lift on the tail, then, is

∆Mcg = −lt∆Lt (2.15)

This shows that, for the example in Figure 2.4, pitching up motion develops a pitching

down moment that opposes the motion. This pitching moment may be expressed in

terms of a change in moment coefficient as

∆Cmcg
=

∆Mcg

QSd/Iy
= −CLα

ql2t
V∞d

(2.16)

This relation may be expressed as an aerodynamic derivative due to a nondimensional

pitch rate, kq = qd

2V∞

, known as the reduced pitch rate.
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Cmq
≡ ∂Cm

∂
(

qd

2V∞

) =
2V∞
d

∂Cm

∂q
=

2V∞
d

∂M/∂q

QSd/Iy
(2.17)

The other dynamic pitch stability coefficient, Cmα̇
, is due to the time rate of

change of angle of attack, which may be different than the pitch rate because of

plunging or lag in the down-wash reaching the tail. For the conventional missile

configurations considered here, there is no appreciable down-wash to affect the α̇

term, so Cmα̇
may be determined similarly to Cmq

Cmα̇
≡ ∂Cm

∂
(

α̇d
2V∞

) =
2V∞
d

∂Cm

∂α̇
=

2V∞
d

∂M/∂α̇

QSd/Iy
(2.18)

In practice, it is very difficult to measure these two dynamic stability coefficients

separately, so it is commonly considered sufficient to determine the sum of the two [33].

This sum,
(

Cmq
+ Cmα̇

)

, is known as the pitch damping stability coefficient.

2.1.1.2 Roll Derivatives. The dynamic roll stability derivative of in-

terest is the roll response due to roll rate, Clp. This term is known as the roll damping

coefficient, and is defined as

Clp =
∂Cl

∂
(

pd

2V∞

) (2.19)

Roll damping arises because of an uneven lift distribution created by the rolling

motion. Figure 2.5 illustrates the linear velocity distribution developed by rolling

motion, which, in turn, develops a linear distribution of local angle of attack and

lift. The induced velocity is equal to the product of the distance from the center of

gravity, y, and the roll rate, p. Note that the forces developed by the motion produce

a roll moment that opposes the rolling motion and is proportional to the roll rate

and the distance from the center of gravity. By inspection, we see that missiles with

larger fins and faster spin rates experience more roll damping. Additional roll stability
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Figure 2.5: Induced velocity due to rolling motion.

derivatives develop due to sideslip and angle of attack, but the present analysis will

be limited to pure rolling motion.

2.1.2 Pure Pitching Motion. For a special case in which a missile is con-

strained to fly in a straight line at a constant speed but is free to pitch about its

center of gravity, the equation of motion may be derived from Newton’s second law,

as described above. For pure pitching motion, the sum of the moments about the

center of gravity is equal to the product of the moment of inertia about the local

y-axis (Iy) and the angular acceleration about the y-axis (θ̈).

ΣMcg = Iyθ̈ (2.20)

If the moment and angle are treated as the sum of a reference value and a perturbation

as, for example, M = M0 + ∆M , and the reference condition is the trimmed state,

when the moment is zero, then Equation 2.20 becomes

∆Mcg = Iy∆θ̈ (2.21)
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Considering only pitching motion, the equation of motion is a function of the

angle of attack (α), the time rate of change of the angle of attack, denoted by a dot,

(α̇), the time rate of change of the pitch angle (φ̇ = q), and the elevator angle (δe).

Using a first order Taylor series expansion, the change in pitching moment may be

expressed as

∆M =
∂M

∂α
∆α +

∂M

∂α̇
∆α̇ +

∂M

∂q
∆q +

∂M

∂δe
∆δe (2.22)

where q is the time rate of change of the pitching angle.

Because the center of gravity is constrained, if the fixed frame of reference is

initially aligned with the body-fixed frame then ∆α = ∆θ, ∆α̇ = ∆θ̇ = ∆q, and

∆θ̈ = ∆q̇. Substituting these relationships into Equations 2.21 and 2.22 and re-

writing the aerodynamic derivatives gives

∆α̈− (Mq +Mα̇)∆α̇−Mα∆α = Mδe
∆δe (2.23)

where

Mα =
∂M

∂α
/Iy Mα̇ =

∂M

∂α̇
/Iy and so on (2.24)

In Equation 2.23, Mq +Mα̇ is the pitch damping derivative sum and Mα is the

static stability derivative. Equation 2.23 is a nonhomogeneous second-order differen-

tial equation with constant coefficients. Setting ∆α = Aeλt, the homogeneous portion

of this equation of motion becomes

λ2Aeλt − (Mq +Mα̇)λAeλt −MαAe
λt = 0 (2.25)

Dividing by Aeλt yields the characteristic equation of motion for Equation 2.25:
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λ2 − (Mq +Mα̇)λ−Mα = 0 (2.26)

The roots of the characteristic equation are known as the eigenvalues of the system.

Applying the quadratic formula, the eigenvalues of this system may be shown to

be [18]

λ1,2 =
(Mq +Mα̇)

2
±

√

(

Mq +Mα̇

2

)2

+Mα (2.27)

The general form of the homogeneous part of a solution to a second-order equation is:

α(t) = C1e
λ1t +C2e

λ2t, where C1 and C2 are constants based on the initial conditions

of the problem [6]. The actual response to a displacement from equilibrium depends

on the eigenvalues, and the eigenvalues are based on the physical stability derivatives

Mα, Mα̇, and Mq. In particular, the value of Equation 2.27’s determinant dictates

the response of the system.

If −Mα <
(

Mq+Mα̇

2

)2

, the eigenvalues of the system are real, and as long as they

are both negative, the motion dies out exponentially with time. This is a condition

known as overdamping. The equation of motion for this case becomes

α(t) =C1 exp









Mq +Mα̇

2
+

√

(

Mq +Mα̇

2

)2

+Mα



 t



 (2.28)

+ C2 exp









Mq +Mα̇

2
−

√

(

Mq +Mα̇

2

)2

+Mα



 t





When −Mα >
(

Mq+Mα̇

2

)2

, the roots are complex, and the equation of motion is
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α(t) = exp

(

Mq +Mα̇

2
t

)



C1 exp



i

√

−Mα −
(

Mq +Mα̇

2

)2

t



 (2.29)

+C2 exp



−i

√

−Mα −
(

Mq +Mα̇

2

)2

t









which may be simplified to [6]

α(t) = exp

(

Mq +Mα̇

2
t

)



A cos





√

−Mα −
(

Mq +Mα̇

2

)2

t



 (2.30)

+B cos





√

−Mα −
(

Mq +Mα̇

2

)2

t









The response defined by Equation 2.30 behaves as a damped sinusoid with a natural

frequency, ω, of

ω =

√

−Mα −
(

Mq +Mα̇

2

)2

(2.31)

The final case represents the boundary between exponential damping and si-

nusoidal damping and is known as critical damping. Critical damping occurs when

−Mα =
(

Mq+Mα̇

2

)2

and the eigenvalues are repeated as λ1,2 =
(

Mq+Mα̇

2

)

. For the case

of repeated roots, the form of the equation of motion is [6]

α(t) = (C1 + C2t) e
λt (2.32)

and, if λ < 0, the exponential term goes to zero faster than C2t goes to infinity with

time, and the motion damps out without oscillations.
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The damping for the critically damped case is known as the critical damping,

and is defined as the value that makes the determinant of Equation 2.27 equal to zero:

− (Mq +Mα̇)
cr

= 2
√

−Mα (2.33)

The damping of any oscillatory case is typically defined in terms of a damping ratio,

ζ, which is

ζ =
− (Mq +Mα̇)

2
√
−Mα

(2.34)

When there is no damping in the system, ζ = 0 and the system oscillates in a constant

sine wave. The natural frequency for this special case is called the undamped natural

frequency ωn

ωn =
√

−Mα (2.35)

It is helpful to refer these results to the standard form of a second-order dif-

ferential equation with constant coefficients, which defines the motion for the generic

second order system in Equation 1.2. This equation is:

λ2 + 2ζωnλ+ ω2

n = 0 (2.36)

the roots of which are

λ1,2 = −ζωn ± iωn

√

1 − ζ (2.37)

The damping of the system is governed by the real part of these complex roots,

and the damped natural frequency is governed by the imaginary part. As an example,

Figure 2.6 shows the response of a generic second order system to a step input when

the natural frequency is held constant and the damping ratio is varied.
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Figure 2.6: Effect of pitch damping on pure pitching response.

The response is defined by Equation 2.38,

α

αf

= 1 − e−ζωnt

√

1 − ζ2
sin
(

ωnt
√

1 − ζ2 + φ
)

(2.38)

where αf is the final value of α and φ is the phase angle defined as:

φ = sin−1

(

√

1 − ζ2

)

A full derivation of Equation 2.38 may be found in references [18, 20, 35]. Note the

undamped sinusoid for the ζ = 0 case and the decrease in overshoot as ζ increases.

2.1.3 Pure Rolling Motion. In a manner analogous to the methods for

pure pitching, the equations of motion for pure rolling may be derived from Newton’s

second law

ΣRollingMoments = Ixφ̈ (2.39)
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The rolling moments may be due either to aileron deflection or rolling rate, so Equa-

tion 2.39 may be re-written as

∂L

∂δa
∆δa +

∂L

∂p
∆p = Ix∆φ̈ (2.40)

Since the rolling rate is equal to the time rate of change of the rolling angle, p = φ̇,

Equation 2.40 becomes

∆φ̈− Lp∆φ̇ = Lδa
∆δa (2.41)

where Lp and Lδa
are defined as

Lp =
∂L/∂p

Ix
and Lδa

=
∂L/∂δa
Ix

(2.42)

This is again a second order nonhomogeneous equation with constant coeffi-

cients, but, unlike the pitching equation, there is no stiffness term, only damping.

The characteristic equation of this nonhomogeneous equation is

λ2 − Lpλ = 0 (2.43)

and the eigenvalues are

λ1,2 = 0, Lp (2.44)

where Lp is the roll damping derivative. These eigenvalues are both real, so the

response is overdamped for Lp < 0, and the form of the resulting equation of motion

is

φ(t) = C1e
Lpt + C2 (2.45)
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Lp must be negative for a dynamically stable system. If the roll damping is negative,

the first term of Equation 2.45 goes to zero as time increases and the roll angle goes to

the constant C2, which is based on initial conditions and inputs. The magnitude of the

Lp term will determine the speed with which the constant roll angle is reached. Large

negative values for roll damping will lead to rapid responses; small negative values

will cause the system to respond more slowly. Positive values for the roll damping

derivative will cause the system to roll uncontrollably and diverge.

2.2 Governing Equation

The Beggar code is a finite volume, cell-centered flow solver with the ability to

solve for a large variety of cases: inviscid or viscous, steady or turbulent, and static or

moving. One of Beggar’s key capabilities is that it can resolve the flow around mul-

tiple complex bodies in relative motion. This capability is primarily enabled by two

methods: the ability to allow for blocked, patched, and overset grid communication

and a 6+ degree-of-freedom solver that uses the forces and moments computed by the

flow solver to predict the motion of rigid bodies [2]. Beggar combines these methods

and, when the correct cases are run, may be used to produce the time-accurate output

necessary for the computation of static and dynamic stability derivatives.

In the present analysis, the Beggar code was used to solve the Euler equations for

inviscid cases and the Reynolds-Averaged Navier-Stokes equations for viscous cases.

The Navier-Stokes equations are presented below, and the Euler equations may be

obtained by removing the viscous terms. The Reynolds-Averaged Navier-Stokes Equa-

tions are found as the time-average of the Navier-Stokes equations [4].

The Navier-Stokes (N-S) equations are based on the conservation of mass, mo-

mentum, and energy. The Beggar code solves these equations using a finite volume

solver, which requires that the N-S equations be in integral form, shown below as a

single vector equation [15]:
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∫

V

∂ ~Q

∂t
dV +

∫

A

( ~Fc − ~Fv)dA = 0. (2.46)

In Equation 2.46, body and source terms have been neglected, and ~Q, ~Fc, and ~Fv are

the vectors of conserved variables, convective fluxes, and viscous fluxes respectively.

The vector of conserved variables is defined as:

~Q =























ρ

ρu

ρv

ρw

Et























(2.47)

Et is the total energy, defined as:

Et = ρ

(

e+
1

2

∣

∣

∣

~V
∣

∣

∣

2
)

(2.48)

where e is the internal energy.

The convective flux term accounts for the inviscid fluxes and flow terms acting

on a control volume, and is defined as:

~Fc =























ρŨ

ρuŨ + pnx

ρvŨ + pny

ρwŨ + pnz

(Et + p)Ũ























(2.49)

where nx, ny, andnz are unit vectors normal to the control volume and the term, Ũ ,

is known as the contravariant velocity, which is:
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Ũ = ~V · n̂ = unx + vny + wnz (2.50)

The viscous term, ~Fv accounts for both the viscous fluxes acting in all directions

and the conduction terms due to work and heat:

~Fv =























0

τxxnx + τxyny + τxznz

τyxnx + τyyny + τyznz

τzxnx + τzyny + τzznz

Θxnx + Θyny + Θznz























(2.51)

The work terms and heat conduction terms of Equation 2.51 (θi), are of the form:

θx = uxσxx + vτxy + wτxz + k
∂T

∂x
(2.52)

and

τij = µ

(

∂ui

∂xj

+
∂uj

∂xi

)

+ δijλ∇~V (2.53)

is the viscous stress tensor for a Newtonian fluid. Assuming Stoke’s Hypothesis,

(λ+ 2

3
µ = 0), these terms become:

τij = τji = µ

(

∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij∇~V

)

(2.54)

In order to put Equation 2.46 into Euler equation form, it is assumed that

the viscous terms are negligible, and they are treated as zero. Strictly speaking,

the Euler equations only include the momentum portion of Equation 2.46 with these

assumptions, but the mass and energy equations are often included as well. With the

source terms (body forces, body heating, mass injection, etc...) again treated as zero,

the integral form of the Euler equation is [15]:

34



∫

V

∂ ~Q

∂t
dV +

∫

A

( ~Fc)dA = 0. (2.55)

Beggar uses dimensional values to calculate actual forces and moments acting

on a body, but it uses non-dimensional values to solve the Navier-Stokes equations.

Non-dimensionalization enables Beggar to find a solution for a given model and then

apply that same solution to multiple cases with different dimensional parameters, but

the same dimensionless parameters. Each of the flow variables is made dimension-

less according to Equation 2.56. The dimensionless parameters are indicated by the

asterisks and are used to replace the dimensional values in the N-S equations.

ρ∗ = ρ/ρ∞ E∗
t = Et/ρ∞a

2
∞ p∗ = p/ρ∞a

2 t∗ = ta∞/Lref

u∗ = u/a∞ v∗ = v/a∞ w∗ = w/a∞
(2.56)

2.3 Solver Methods

As stated above, Beggar uses a finite volume, cell-centered approach to flow

solving. While the flow is governed by the Navier-Stokes equations at all points and

times, the equations cannot be solved for the flow directly because of the difficulty in-

volved in solving non-linear, partial differential equations [36]. In order to apply these

equations to practical, non-simplified problems, the equations must be discretized so

that numerical approximations may be obtained.

Beggar is capable of both implicit and explicit time discretization, but an im-

plicit solver is more effective because it maintains solution accuracy and stability with

larger timesteps [4]. Equation 2.57 shows an implicit discritization of Equation 2.46:

∂Qn+1

∂t
V +

∑

faces

(

~F n+1

c − ~F n+1

v

)

= 0 (2.57)
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where ∂Qn+1

∂t
is the temporal discritization of the change in the conserved variables.

This term multiplied by the cell volume must be equal to the sum of the fluxes through

the boundaries of the cell. The fluxes are linearized in time as [15]

F n+1

c ≈ F n
c +

∂Fc

∂Q

(

Qn+1 −Qn
)

(2.58)

F n+1

v ≈ F n
v +

∂Fv

∂Q

(

Qn+1 −Qn
)

(2.59)

Substituting these linearized fluxes into Equation 2.57 yields:

∂Qn+1

∂t
V +

∂R

∂Q

(

Qn+1 −Qn
)

= −Rn (2.60)

where ∂R
∂Q

is the flux Jacobian, defined as:

∂R

∂Q
=
∑

(

∂F n
c

∂Q
+
∂F n

v

∂Q

)

(2.61)

The right hand side of Equation 2.60 is the explicit side, known as the residual, which

is defined as:

Rn =
∑

(F n
c − F n

v ) (2.62)

Two options are available in Beggar for the implicit time discretization term: an

Euler time discretization and a second order three point backward time discretization.

The three point backward time discretization is the more accurate of the two, and is

given by:

∂Qn+1

∂t
=

3Qn+1 − 4Qn +Qn−1

2∆t
(2.63)
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For unsteady solutions, it is essential that the solution be sufficiently converged

at every timestep in order to maintain accuracy. Beggar uses Newton iterations to

guarantee appropriate convergence for each timestep by allowing the user to specify

either the number of Newton iterations or a convergence criteria. For a vector function

G(x) = 0, Newton’s method can be written as [37]:

G
′

(xm)
(

xm+1 − xm
)

= −G (xm) (2.64)

where G
′

(x) is the Jacobian matrix:

G
′

(x) =

















a11(x) a12(x) · · · a1,n(x)

a21(x) a22(x) · · · a2,n(x)
...

...
. . .

...

an1(x) an2(x) · · · an,n(x)

















(2.65)

where

aij(x) =
∂Gi(x)

∂xj

(2.66)

Assuming Euler discretization, equation 2.60 may be rearranged to resemble 2.64:

(

∂R

∂Q

)n,m
(

Qn+1,m+1 −Qn+1,m
)

= −
[

V
Qn+1 −Qn

∆t
+Rn

]

(2.67)

Solving this equation directly would require the inversion of the Jacobian term, which

may have dimensions on the order of millions. Instead, Beggar applies a symmetric

Gauss-Seidel method, which solves the generic equation [A]x = b for x by dividing

[A] into

[A] = ([D][L])[U ] (2.68)
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where D is the diagonal part of A, and U and L are the parts of A above and below

the diagonal, respectively. x is found by solving

xk
i =

(

bi −
i−1
∑

j=1

Aijx
k
j −

jmax
∑

j=i+1

Aijx
k−1

j

)

/Aii (2.69)

The Gauss-Seidel iterations are referred to as inner iterations within Beggar and

are run until user-specified values for convergence or maximum inner iterations are

reached.

2.3.1 Boundary Conditions. Properly defined boundary conditions are criti-

cal to accurately simulating the flow about an object. The default boundary condition

within Beggar is an inviscid boundary, termed “tangent.” At a tangent boundary, the

component of the velocity normal to a surface is set to zero, but the velocity magni-

tude does not decrease as the surface is approached, the flow is simply turned. For

viscous solutions, the “no-slip” boundary condition may be used to decrease the flow

velocity to zero as the surface is approached. Farfield boundaries are solved using

characteristic boundary conditions. For supersonic cases, these boundary conditions

are easily specified because all waves run downstream [2].

2.3.2 Overset Grids. As stated previously, Beggar is a structured solver.

Three dimensional structured grids require that each cell have eight points and six

faces. Structured grids easily map from computational to physical domains, but the

process of grid generation for complex geometries can be challenging. To simplify the

requirements for the grid generation process, multiple types of grid communication

are available, as shown in Figure 2.7.

The highest level of Beggar’s grid hierarchy is the superblock, which consists of

one or more related grids that do not overlap each other. Within a superblock, the

only permissible types of communication between separate grids are block-to-block

and patched, each illustrated in Figure 2.7. An overset, or chimera, grid assembly
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Figure 2.7: Beggar communication types between grids. [2]

allows superblocks to interpolate solutions from one another through overlapping

communication. Values are interpolated to interior cell centers of each superblock,

and the interpolation process requires an overlap of five cells for a first order stencil,

seven cells for a second order stencil [15].

The overset assembly process is also used to cut holes in one superblock when an-

other superblock has a solid surface at the same location. This capability allows grids

to be constructed about a localized geometry without necessarily being concerned

about other surfaces in the flow. Care must still be taken to allow for appropriate

overlap and to ensure that cells interpolate from other cells of a similar size, but the

Chimera process greatly simplifies three dimensional structured grid construction.

2.3.3 Six Degree of Freedom Model. Beggar’s (6+)DOF capability allows

the user to specify various types of motion. The true power of the solver lies in the

coupling of the rigid body equations of motion and the CFD governing equations.

This capability is applied by first solving the governing equations to find the forces

and moments on a model and then using those forces and moments in the rigid body
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equations of motion to determine an incremental response to the flow. This process

is carried out in a time-accurate fashion to simulate actual trajectories.

Other options that use just some aspects of the (6+)DOF solver include con-

strained motion and motion prescribed by an input file. For constrained motion, the

forces and moments are calculated as normal, but the rigid body response to those

forces and moments is limited. As an example, in constrained planar motion, the rigid

body equations of motion are solved and a response is calculated, but a dot product

of that response and a vector normal to the planar constraint is taken to cause any

response outside of that plane to be zero. Prescribed motion allows the user to specify

exactly how the model will move, and the model will not respond at all to the forces

calculated by the CFD solver.

2.3.3.1 Coordinate Systems. At this point, a note must be made about

the differences in convention between CFD and standard controls coordinate systems.

CFD coordinate systems customarily define the flow direction to be the direction of

the positive x-axis, as shown in Figure 2.8(a). The y-axis is then assumed to go up,

and the z-axis is perpendicular to the x and y-axes and is positive in the direction of

the left wing. When dealing with aircraft controls, on the other hand, the axes are

typically defined as shown in Figure 2.8(b). The x-axis is positive in the direction of

flight, the z-axis is down, and the y-axis points out of the right wing of the aircraft.

(a) Conventional CFD Axes (b) Conventional Controls Axes

Figure 2.8: Comparison of conventional CFD and controls axes.

40



For consistency, the conventional controls axes will be used in the present anal-

ysis, except when referring to specific Beggar inputs.
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III. Methodology

Tests were performed on a commonly used missile configuration known as the

Basic Finner. The static and dynamic pitching and rolling stability derivatives

were determined by following the steps that are summarized below. These steps are

described in more detail in this chapter.

1. Model and grid construction

2. Computation of static solutions

3. Computation of unsteady solutions using static solutions as initial conditions

4. Moment coefficient histories obtained from unsteady solutions

5. Calculation of stability derivatives from moment coefficient histories

3.1 Basic Finner Model and Geometry

The Basic Finner model was chosen because of the extensive experimental and

computational testing that has been performed with it in the past. Experimental

data available include both wind tunnel data [33] and ballistic test range data [24,31].

Data available from computational fluid dynamics includes many different solvers and

approaches [10, 16, 17, 21, 23, 28].

3.1.1 Model Geometry. The Basic Finner is a slender body axisymmetric

missile with four fins attached at the base. Figure 3.1 shows the dimensions of the

missile in calibers, where the diameter is equal to one caliber. Each fin has a chord

and height of one caliber, and a thickness of 0.08 calibers at the trailing edge. The

leading edge of the fins comes nearly to a sharp edge, with a radius of 0.004 calibers.

Similarly, the conical nose of the Basic Finner also has a radius of 0.004 calibers and

has a half-angle of 10 degrees. The model center of gravity is located on the centerline,

6.1 calibers back from the nose.
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Figure 3.1: Basic Finner configuration (dimensions in calibers)

For the present analysis, the model was created using the commercially available

software, Gridgen R©. Figure 3.2 shows the completed Gridgen R© model of the Basic

Finner. The same model was used for both the inviscid and the viscous cases.

Figure 3.2: Three-dimensional Basic Finner model.

3.1.2 Grid Generation. The model of the Basic Finner was used with

Gridgen R© to create the structured grids required by Beggar. Because of Beggar’s

overset capabilities, described in Chapter II, it was possible to build separate grids
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for the missile body and the fins. Building separate, relatively simple grids about

each part of the geometry is desirable because attempting to build a single structured

grid around the entire complicated geometry would require a large amount of time

and effort to construct and refine.

Because the missile is divided into four identical quarters, it was possible to

build all of the necessary grids on a single quarter and then rotate those grids around

for the other sections. All of the grids around the body were combined into a single

superblock structure, and the grids around each fin were grouped into individual

superblocks, resulting in a total of five superblocks solving the flow around the missile.

A sixth superblock was created as an inertial reference that does not move with the

rest of the model. The purpose of the inertial grid is to provide a fixed reference point

from which to determine the motion of the moving parts of the grid.

3.1.2.1 Inviscid Grid. The largest superblock created for the inviscid

case was the body grid, which is the grid that goes around the body of the missile,

ignoring the fins. The body grid was both the largest and the most coarse of the grids.

It can accurately be considered the main grid, and all of the other grids operate with

data passed to them from this main grid.

The body grid was divided into 3 blocks: one to solve in front of and above the

missile, one to solve the flow immediately behind the missile (the ’plug’ grid), and

one to solve above the plug and behind the body. Since the flow over the missile was

supersonic, the grid did not need to extend far in front of the body. To capture just

some of what happens in front, the grid was extended half a missile length in front

of the missile (one missile length is 10 calibers). Much more was expected to happen

behind the missile, so the grid was extended a full missile length from the back of

the missile so that the boundary would not affect the flow solution. To accurately

capture the flow in the radial direction, the grid was extended one and a half missile

lengths up. Figure 3.3 shows the three domains used to create these blocks.

44



Figure 3.3: Inviscid body grid domain.

As Figure 3.3 shows, the largest degree of refinement in this grid was just above

the nose and at the back near the fins. The purpose of the refinement at the nose

was to capture any shocks that might occur. Oblique conical shocks were expected

because of the supersonic speeds and the sharp point of the nose. The grid was refined

near the fins for two reasons. First of all, the flow was expected to be affected by the

fins, and this effect needed to be resolved. Secondly, the grids around the fins were

more resolved, and, in order to enable accurate overset communication between the

body and fin grids, the body grid needed to have spacing comparable to the spacing

of the fin grid near the fins. For the inviscid case, the full 360◦ of the body superblock

contained 505, 920 cells.

The fin grid was created by first constructing domains on the surface of the fin,

and then extruding those domains out in all directions, conforming to the shape of

the missile body where appropriate. The blocks constructed included a C-grid around

the sides and front of the fin, extending from the missile surface to above the top of
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the fin, a block extending from the top of the fin to the top of the grid domain, and

a block to capture the flow behind the fin. It was necessary to extend this rear block

below the surface of the missile in order to maintain sufficient interpolation points in

the wake flow. Figure 3.4 displays a rear view of one fin superblock.

Figure 3.4: Inviscid fin grid superblock

The fin superblock was more refined than the body superblock in order to cap-

ture the effects of the flow around the fin. The refinement was relaxed further from

the surface of the fin in order to achieve cell sizes appropriate for overset block com-

munication with the body grid. Altogether, each inviscid fin superblock had 33, 904

cells.

The inertial reference grid was created outside of the body and fin grids, and is

simply a 5× 5× 5 block that does not move when the missile grids move. Figure 3.5

shows the inertial grid above the Basic Finner model with one quarter of the body

grid and one fin grid assembled. With the body superblock, the four fin superblocks,
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and the inertial block combined, table 3.1 shows the total number of cells for the

inviscid case to be 641,661.

Figure 3.5: Basic finner block assembly

Table 3.1: Inviscid grid dimensions

Superblock Number of Cells

Body 505, 920

Fin 4 × 33, 904

Inertial 125

Total 641, 661

3.1.2.2 Viscous Grid. The viscous grids were constructed in the same

general manner as the inviscid grids, but additional care was necessary to ensure

that initial grid spacing and growth rate satisfied the criteria for viscous grids. The

boundary spacing was selected in order to achieve a y+ value of 1.0, which corresponds

to 2.130 × 10−4 calibers for this case [1] (Reynolds number based on diameter set to

0.086 × 106 to match reference data [33]). From the missile body, the grids were
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extended with a growth rate of 1.2 for 15 cells in the viscous boundary layer [15], and

then the growth rate was increased to 1.3 for the remainder of the grid. Figure 3.6

shows all 360◦ of this body grid. Similar to the inviscid grid, the viscous body grid

was also built with cells clustered near the nose and near the fins.

Figure 3.6: Viscous body superblock

The fin grids were constructed with the same initial spacing and growth rate

as the body grid, and in the same shape as the inviscid fin grid. The same inertial

grid was used for the viscous case as for the inviscid case. Table 3.2 shows that the

total number of cells for the body grid was approximately 2.17 million and the total

for each fin grid was about 0.3 million. This resulted in a total of approximately 3.4

million cells for the viscous case.

3.2 Static Solutions

In order to determine the static and dynamic stability coefficients for the Basic

Finner model, dynamic testing was required. Each dynamic test was initialized from
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Table 3.2: Viscous grid dimensions

Superblock Number of Cells

Body 2, 172, 544

Fin 4 × 310, 274

Inertial 125

Total 3, 413, 765

a fully converged static solution, so static testing was also required. There were ten

static cases of interest. Five were run with Mach number held constant at 1.96 while

the angle of attack was varied from 0◦ to 20◦, and five were run with angle of attack

held constant at 0◦ while the Mach number was varied from 1.58 to 2.50. These

ranges of Mach number and angle of attack were chosen based upon the availability

of comparison data. Table 3.3 shows a complete listing of the static cases.

Table 3.3: Flow and model parameters for static cases.

Constant Varied

M = 1.96 α =
[

0 5 10 15 20
]◦

α = 0◦ M =
[

1.58 1.75 1.89 2.10 250
]

All ten of the static cases shown in Table 3.3 were run for the inviscid grid using

Beggar. Only the five cases at constant Mach number and varying angle of attack

were run for the viscous grid.

In order to achieve convergence, each case was run until residuals had been

reduced by at least three orders of magnitude, which is generally considered sufficient

for engineering applications. Figure 3.7 shows a characteristic residual plot. This

example is for the inviscid M = 1.96, α = 5◦ case. Most of the cases converged quite

readily from freestream startup values with moderate timestep ramping. Timestep

ramping is the process of gradually increasing the size of the timestep from a small

value to a value that will converge more rapidly. Initial timesteps must be small for

stability at the startup, which is an issue because of the large initial gradients. Initial

nondimensional timesteps were on the order of 0.0001 and reached a value of 1.0 in
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500 iterations or less. For these cases, the desired convergence was achieved within

around 1, 000 iterations.
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Figure 3.7: Sample residual plot: M = 1.96, α = 5◦

For the two cases that were the most extreme, M = 1.96, α = 20◦ and M =

2.50, α = 0◦, convergence was slightly more difficult to achieve. For each of these

cases, the solver developed negative values for pressure or density in the base flow

region because of the large gradients that existed immediately after the case began.

In both cases, this issue was fixed by extending the timestep ramps and initializing

from the M = 1.96, α = 0◦ case. Extending the timestep ramp caused the solver

to take smaller steps at the start and developed less extreme gradients. Initializing

from previous solutions also gave the solver realistic values in the base flow region so

that large gradients did not occur. Each of these solutions converged in around 1, 100

iterations.

3.3 Dynamic Pitch

Dynamic pitch derivatives were obtained using two methods of oscillation about

the model center of gravity. One method used prescribed sinusoidal forced oscillation
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to determine the stability derivatives at one angle of attack per test. The other

method allowed the model to oscillate freely in the pitch direction and was used to

find the stability derivatives over a range of angles of attack. Each of the dynamic

pitch cases was initialized from a static solution before the motion started.

For the cases tested using forced oscillation, the prescribed motion of the model

was defined as:

α = α◦ + αm sin(ωt) (3.1)

where α is the instantaneous angle of attack, α◦ is the starting and mean angle of

attack, αm is the magnitude of oscillation, and ω is the frequency of oscillation.

The parameters chosen to define this motion were the amplitude of oscillation

and a nondimensional pitch rate, kq, which is known as the reduced pitch rate and is

defined as

kq =
qd

2V∞
(3.2)

where q is the pitch rate, d is the model diameter, and V∞ is the freestream velocity of

the flow. Use of a nondimensional pitch rate is beneficial because it enables comparison

of cases of differing Mach number and model size. From the choices of αm and kq, the

frequency of oscillation is defined as

ω =
q

αm

=
2kqV∞
dαm

(3.3)

In all cases, dimensional values were used for the model diameter and the freestream

velocity. The model diameter was 1.25 inches, and the freestream velocity was the

product of the Mach number and the speed of sound, which is based on altitude. The

tests were run simulating an altitude of 20,000 ft, where the speed of sound is 1037

ft/s.
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The reduced pitch rate and oscillation amplitude fully defined the motion of

the forced oscillation cases, but other parameter choices were also vital to accurately

resolving the flow. These parameters include the number of Newton iterations the

solver used, the total number of oscillations, and the number of iterations per oscil-

lation. The number of Newton iterations was important because time-accurate flow

solving requires that the inner iterations be fully converged at each timestep. Multiple

oscillations were required because the dynamic cases exhibit transient solutions upon

startup. Additional oscillations removed those transients, and the solution eventu-

ally settled into a repeating cycle. Finally, the number of iterations per oscillation

(which is inversely related to the timestep) can have a profound effect upon a solution.

Too few iterations, and the timestep will be too large, and the flow under-resolved.

Inaccurate force and moment data may then be obtained.

It is theoretically possible to simply set the flow parameters controlling con-

vergence (Newton iterations, number of oscillations, and number of iterations per

oscillation) to very high numbers to ensure that the solution is converged, but the

associated computational expense would be alarming. For this reason, convergence

studies were performed on each of these parameters to ensure both solution accuracy

and reasonable use of computational resources. The convergence studies were run

by starting each of these parameters at a minimal value, and successively increasing

them until the measured stability derivatives no longer changed as the parameters

increased. A change of less than 2% was required for convergence.

Convergence studies were also performed on the reduced pitch rate and ampli-

tude of oscillation, although the studies for these were not so linear. The reduced pitch

rate was varied to determine its effect upon the stability coefficients, and to assist in

choosing a value that both ensured convergence and avoided nonlinear separation

effects due to high angular velocities.

The amplitude of oscillation was important for a number of reasons. First of all,

for a given reduced pitch rate, an oscillation of larger amplitude takes a longer amount
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of time. This means that larger amplitudes require either a larger timestep, which may

degrade accuracy, or more iterations, which requires additional computational time.

Large amplitudes are also not advantageous because the local stability derivatives are

desired, and large oscillations would smooth out the local effects, providing an average

over a range rather than a local value.

Oscillations may not be too small, however, because hysteresis effects could

dominate the solution, rather than the expected physics. Hysteresis effects occur

when there is a lag between the cause and effect of a system. In a pitching missile

system, this lag would be observed between the motion of the missile and the response

of the flow; the flow responding only after the missile moved, rather than as it moved.

Hysteresis effects are typically observed at low amplitudes of oscillation [22], so the

amplitude at which tests were run needed to be high enough to avoid this.

The desired result was a range of values for which the solution was not signif-

icantly changed by local changes in the reduced frequency or amplitude. This was

desired in order to determine solutions that were relatively independent of the param-

eters chosen. The parameters were varied both separately and together, and with a

varying number of timesteps, and final values were chosen in the middle of what was

determined to be the optimal range of the values tested.

The specific execution of the convergence studies is discussed in Chapter IV,

along with the results of those studies. Using those results, ten prescribed motion

dynamic pitch cases were tested using the inviscid grid, and five with the viscous grid.

Both inviscid and viscous solutions were run for five cases with constant Mach number

equal to 1.96. In these five cases, the angle of pitch about which the oscillation took

place varied from 0 − 20◦ in 5◦ increments, as shown in the first part of Table 3.4.

The other five cases, those oscillating about an angle of attack of 0◦ with the Mach

numbers shown in the second part of Table 3.4, were run only on the inviscid grids.

In addition to the ten forced oscillation cases run on the inviscid grids, four

inviscid free oscillation cases were tested. Three were run with Mach number equal to
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Table 3.4: Dynamic test cases

Constant Varied

M = 1.96 α =
[

0 5 10 15 20
]◦

α = 0◦ M =
[

1.58 1.75 1.89 2.10 250
]

1.96, and were started at angles of attack of 5, 20, and 30◦. The final dynamic pitch

case tested was free oscillation starting at M = 1.58, initialized from a static solution

at α = 20◦.

3.4 Dynamic Roll

Similar to the dynamic pitch cases, each dynamic roll case was initialized from

a static solution and put through prescribed motion. Rather than the sinusoidal

oscillation used in the in the pitch direction, however, the prescribed motion was a

constant angular rate in roll. This difference in method is due to a difference in the

calculation of damping derivatives in pitch and roll that is explained below.

As was the case in the dynamic pitch cases, there are certain parameters that

must be chosen for the dynamic roll cases. The first of these parameters was the

reduced roll rate, kp, defined as

kp =
pd

2V∞
(3.4)

where p is the roll rate. Just like the reduced pitch rate, the reduced roll rate enables

direct comparison of cases with differing model sizes or Mach numbers.

The other parameter tested and determined was the number of iterations per

revolution. Together, these two parameters define the rate of roll, the physical step

size, and the temporal step size. Because their effect is interrelated, the two values

were varied iteratively, testing multiple steps per revolution for every reduced roll

rate, and vice versa.
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An initial estimation of the reduced roll rate was chosen based on comparison

data from Oktay and Akay [21], where kp = 0.00326 was used. The number of itera-

tions per revolution, which is inversely related to the timestep, was tested in the same

manner as iterations per oscillation for the pitch cases. The timestep convergence

study began with just 360 iterations per revolution, and that value was doubled until

increasing the number of iterations changed the solution by less than 2%. Using these

methods, optimal parameters for both accuracy and speed were chosen.

The parameters defined by the methods outlined above were used for testing six

dynamic roll cases.. All of these cases were run on the inviscid grid, and each of them

was initialized from a static solution at zero degrees angle of attack, Mach numbers

M =
[

1.58 1.75 1.89 1.96 2.10 2.50
]

. Each case was run until the roll moment

had converged.

3.5 Beggar Inputs

Each static and dynamic case required several different input files. The master

input file, denoted by the extension “.in”, was used to set solver options like Mach

number, angle of attack, CFL number, and solver type. It was also used to read in

the (6+)DOF inputs and the grid inputs. Appendix A.1 shows an example of a “.in”

file for the inviscid M = 1.96, α = 5◦ case. The inviscid solver used was a second

order Euler solver with implicit boundaries that used Steger-Warming [4] methods

to solve for the fluxes. The second order time discretization, three point backward

time, was used for additional accuracy. The viscous cases were solved using a second

order Baldwin-Lomax turbulence model [4]. The boundaries and viscous terms were

implicitly updated, and Roe methods [4] were used to solve for the fluxes.

Files with the extension “.beg” were called from the master input file to read

in the grids. Within each of these “.beg” files, a single grid was read in, boundary

conditions for that grid were set, cell protection was enabled, if necessary, and local

grid rotations were applied where appropriate. Located in Appendix A.1 is an example

of a file used to read in the fin grids and rotate them 90◦ from the original location.
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The force and dynamic group specifications, denoted by the extensions “.fspec”

and “.dyn” were used to define the motion of the missile body. The missile body

and fins were included in a single force specification to determine the total forces and

moments on the model. The dynamic specification was used to define the prescribed

motion or to specify the motion constraints. Example force and dynamic specifications

are located in Appendix A.1, along with a sample of a file used to specify the prescribed

motion.

3.6 Stability Derivative Calculation

Beggar outputs the solution time and the model location, orientation, forces,

moments, and coefficients to user specified output files. The orientations and moment

coefficients were extracted and analyzed using the Matlab
r script found in Appendix

A.2. The coefficient and orientation histories were then used to calculate the static

and dynamic stability derivatives.

3.6.1 Static Stability Derivatives. Static stability derivatives are routinely

found using both experimental techniques and CFD. The tests outlined above allow

for three ways to calculate the static pitch stability coefficient, Cmα
. First, the static

solutions were used to plot α vs Cm. The local slope of the curve at any angle of

attack is the static pitch stability coefficient, Cmα
[21].

The second method used the dynamic solutions from forced oscillation at each

angle of attack to determine the local static pitch stability coefficient. First, the angle

of attack and moment coefficient histories were plotted as Cm vs α. The sinusoidal

oscillation causes the plot of these histories to make a loop, as shown in Figure 3.8.

To determine the static stability derivative from this plot, a line was drawn from

the left-most point (lowest angle of attack) to the right-most point (highest angle

of attack) through the center of the loop, which corresponds to the static moment

coefficient. The slope of this line is the static pitch stability coefficient.
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Figure 3.8: Sample moment coefficient history: M = 1.96, α = 5◦

Finally, the static stability coefficient was also calculated from the free oscillation

cases. This is best shown through an example. Figure 3.9(a) shows the trajectory

history of a sample free oscillation case. In this example, the moment coefficient and

the local pitch rate were extracted each time the model pitched through α = 10◦.

These moments were then plotted against the nondimensional pitch rate, as shown in

Figure 3.9(b). A straight line was fit between the points on the curve, and the static

moment coefficient (Cmstatic
) at the angle of attack that the points were taken from

was found as the y-intercept of that line. This method was employed to find Cmstatic

at numerous angles of attack along the trajectory, and then Cmα
was found as the

local slope of the Cmstatic
vs α curve. The static pitch stability derivative relates to

the static pitch stability coefficient as:

Mα =
QSd

Iy
Cmα

(3.5)

Roll tests were done only for the cases with a pitch angle of zero. Because the

Basic Finner is a symmetric missile, there is no static roll moment for zero angle of
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Figure 3.9: Free oscillation trajectory and method for determining pitch damping
sum.

attack. This means that regardless of the roll angle, the static roll derivative, Clφ, is

zero when the angle of attack is zero. Thus, no static roll stability coefficients were

calculated.

3.6.2 Dynamic Stability Derivatives. As shown in Chapter II, the dynamic

pitch stability coefficient is
(

Cmq
+ Cmα̇

)

. Because q = α̇ for the missile in pure

pitching motion, this sum may also be found from the forced oscillation pitching

cycle shown in Figure 3.8 as

(

Cmq
+ Cmα̇

)

=
2V∞
d

∂Cm

∂q
=
∂Cm

∂kq

(3.6)

With forced oscillation, this equation was solved to determine the local pitch

damping coefficient at each angle of attack by extracting the pitch moment coefficient

at the angle of interest as the model oscillated up and down. As the model rotated

up through the angle of interest, the reduced pitch rate had a value of kq, and, as

the model rotated back down, the reduced pitch rate was −kq. For the example in

Figure 3.8, the lower part of the curve corresponds to pitching up (positive kq) and

the upper part corresponds to pitching down (negative kq). Using this information

with Equation 3.6 yields
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(

Cmq
+ Cmα̇

)

=
∆Cm

2kq

(3.7)

where ∆Cm =
(

Cmpitchup
− Cmpitchdown

)

.

The method for determining the pitch damping coefficient at each angle of attack

from the free oscillation trajectories was very similar to the method for determining

Cmα
. As shown in Figure 3.9, the moment coefficients and rates were extracted at

a given angle, and then the pitch damping coefficient was found as the slope of the

straight line fit to the Cm vs α plot [17]. The pitch damping derivative may be found

from the pitch damping coefficient as

(Mq +Mα̇) =
(

Cmq
+ Cmα̇

) QSd

Iy

d

2V∞
(3.8)

The roll damping term was found as [21]

Clp =

(

Cl − Clφφ
)

kp

(3.9)

Because the static roll stability term is equal to zero for a symmetric missile, this

equation reduces to:

Clp =
Cl

kp

(3.10)

This roll damping coefficient may be re-written as the roll damping stability derivative:

Lp = Clp

QSd

Iy

d

2V∞
(3.11)
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IV. Results and Discussion

Using the geometry, grids, and methods developed in Chapter III, the static and

dynamic stability coefficients were determined for the Basic Finner. Static cases

at various angles of attack and Mach number were run first, both as a starting point

for dynamic cases and as a comparison for the static stability coefficient. Dynamic

cases were run with forced oscillation, free oscillation, and prescribed roll motion for

the inviscid cases, and with forced oscillation for the viscous cases. The output from

the dynamic cases was used to determine the static and dynamic stability derivatives

and to characterize the disturbance response of the Basic Finner. A comparison of

the results from the methods used here and from prior experimentation is included.

4.1 Static Solutions

4.1.1 Inviscid. Inviscid static tests were run for the ten cases shown in

Table 3.3. As stated previously, each of these steady state solutions was run until

the residuals had converged by at least three orders of magnitude. Figure 4.1 shows

the residual convergence for the slowest case and for the case with the highest angle

of attack. Each of the lines represents the average residual value for a given block

in the grid, and the y-axis represents orders of magnitude of decrease in the residual

value. The periodic spikes in the residual values are due to ramping of the flow solver
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Figure 4.1: Inviscid residual convergence.
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timestep. The residual convergence of each of the cases tested behaved in this same

general manner.

Equally important to the accuracy of steady state solutions is the convergence

of the integrated forces and moments. Even when the residuals do not converge to the

desired tolerance, it is often considered sufficient to monitor the force and moment

histories to determine convergence. Figure 4.2 displays sample force and moment

coefficient histories in CFD coordinates for cases with high angle of attack, low Mach

number, and high Mach number. The force and moment coefficients for every case

converged within the given number of iterations. As was the case for the residuals,

the periodic spikes in the coefficients are due to the timestep ramping.
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Figure 4.2: Inviscid force and moment coefficient histories.

61



To demonstrate that the flowfield of the static solutions is behaving as expected,

sample results of static flow solutions are presented in Figures 4.3, 4.4, and 4.5. Figure

4.3 shows filled Mach contours of constant scale for angles of attack of 0◦ and 20◦,

both at M = 1.96. At α = 0◦, the flow is very symmetric around the missile and a

(a) M = 1.96, α = 0◦ (b) M = 1.96, α = 20◦

Figure 4.3: Filled Mach contours, constant z-plane of symmetry.

symmetric oblique shock cone begins at the nose. The shock angle is approximately

33◦, which matches closely with analytical data [3]. At α = 20◦, an asymmetric shock

comes off the bottom of the nose. Figure 4.3 demonstrates this change in the flow

solution.

The wake is also greatly affected by the angle of attack of the missile, as is the

pressure distribution over the body of the missile. Figure 4.4 shows the static pressure

behind and on the surface of the missile. At an angle of attack of 0◦, the static pressure

on the surface of and behind the missile is very symmetric, as expected because of

the missile symmetry. At α = 20◦, however, large pressure gradients are visible both

in the wake and on the missile body. These asymmetries in the static pressure on

the surface of the missile are the cause of the restoring moment experienced by the

missile.
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(a) M = 1.96, α = 0◦ (b) M = 1.96, α = 20◦

Figure 4.4: Static pressure on the missile surface and a constant x-plane in the
wake.

Figure 4.5 shows zebra plots (alternating black and white) of Mach number with

constant scale for Mach numbers 1.58 and 2.10, both at an angle of attack of 0◦. The

greater speed of the M = 2.10 case caused a stronger, narrower oblique shock cone

to develop off the nose and off the fins. Off the nose, the angles of the shock cones

were found to be approximately 31◦ for M = 2.10 and 41◦ for M = 1.58. Both values

matched closely with analytical data, which predicted cone angles of approximately

29◦ and 40◦, respectively [3].

Aside from using the static cases to initialize the dynamic cases, the cases run

at M = 1.96 with varying α were also used to estimate the static stability coefficient,

Cmα
. The static stability coefficient, as described previously, is the slope of the Cm vs

α curve. Figure 4.6 shows this curve for the inviscid case along with comparison data

from [16] and [33]. The measured moments match well with the comparison CFD

data [16], which used an inviscid solver, but significant differences were seen between

current CFD data and wind tunnel data [33] at low and high angles of attack. At

low angles of attack, this is due to sting interference in the wind tunnel testing. Sting

effects were found to be significant for angles of attack up to 7◦ [33]. Beyond α = 10◦,
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(a) M = 1.58, α = 0◦ (b) M = 2.10, α = 0◦

Figure 4.5: Zebra plots of Mach number for the constant z-plane of symmetry.

0 2.5 5 7.5 10 12.5 15 17.5 20

−6

−5

−4

−3

−2

−1

0

Angle of Attack (deg)

P
itc

hi
ng

 M
om

en
t C

oe
ffi

ci
en

t, 
C

m

 

 

Inviscid Static CFD
Murman Static CFD [16]
Wind Tunnel (AEDC) [33]

Figure 4.6: Inviscid pitching moment coefficient.
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the inviscid CFD diverges again from the experimental data. The most likely reason

is that the inviscid solver fails to model the flow separation that actually occurs at

these angles of attack.

4.1.2 Viscous. Five viscous cases were run statically. These five shared a

common Mach number of 1.96 and the angle of attack was varied from 0 to 20 degrees.

Although a Roe-based solver was used for the final cases, stability issues required that

each of the five cases be run first with a Steger-Warming solver. The Steger-Warming

method is more dissipative than the Roe method and is not as difficult to get started.

The Roe solver ran without issues for each case when it was initialized from the result

of 1500 iterations with the Steger-Warming solver.

Although stability issues were overcome by initializing from a Steger-Warming

solution, both methods had difficulties with residual convergence. As Figure 4.7

shows, neither the Steger-Warming nor the Roe methods converged to the desired

three orders of magnitude. The case presented here, α = 10◦, barely converged one

order of magnitude using the Steger-Warming solver, and the residuals stalled before

converging a single order of magnitude for the Roe solver. Even running an additional

1, 000 iterations, none of the cases using the Roe method converged by more than one

order of magnitude.
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Figure 4.7: Viscous residual convergence. M = 1.96, α = 10◦
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Since the residuals did not converge to the desired degree, the force and moment

coefficient histories were used to determine solution convergence. Figure 4.8(a) shows

the transient part of the solution with the Steger-Warming solver. By the time the

Steger-Warming solver finished and the Roe solver started (Figure 4.8(b)), the coef-

ficients were basically converged, and only small changes were made. For this reason,

these solutions were considered sufficiently converged to use for the present analysis.
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Figure 4.8: Viscous force and moment histories. M = 1.96, α = 10◦

One major difference between the viscous and inviscid solvers is the way that

boundary conditions are applied. For viscous solutions, the velocity at a surface is

constrained to be zero, while an inviscid boundary merely requires that the compo-

nent of velocity normal to the surface be zero. Figure 4.9 shows the surface velocity

magnitude and contours of Mach number for a viscous and an inviscid case. Note

that the velocity magnitude on the surface of the viscous case is a constant zero, while

the flow is moving at varying speeds on the inviscid surface. The legend in Figure 4.9

refers to the contours of Mach number, which clearly show the shocks and expansions

in the flow. The viscous and the inviscid solvers computed very similar solutions for

the contours of Mach number and matched particularly well for the shock off the

lower surface of the nose and the expansion above the nose. The main reason for the

minor differences visible in the two solutions is that the viscous grid was much more

refined.

66



(a) Inviscid Case (b) Viscous Case

Figure 4.9: Comparison of surface velocity and Mach contours for viscous and
inviscid cases. M = 1.96, α = 20◦

Another comparison of the viscous and inviscid cases is shown in Figure 4.10.

This case shows lines of surface flow on the missile body and a coordinate surface

of constant x-location just in front of the fins shaded by stagnation pressure. The

two images are very similar, but differences may be seen between the viscous and

inviscid cases. Separation is visible in the lines of surface flow as lines join together

and leave the surface. The viscous case displays a line of separation starting just

after the nose and running along the side of the missile all the way to the tail. The

inviscid case appears to exhibit some separation, but only starting at the rear of the

missile. The coordinate surface of stagnation pressure shows the vortices developed

by the separation over the body. Both cases show the development of twin vortices,

but the vortices are much more clearly defined for the viscous case. This difference

in definition is due to the fact that the viscous solver models the true physics of

separated flow while the inviscid solver does not.

The primary goal of the present research, however, is not necessarily to resolve

the flow around the missile as accurately as possible, but to predict the sum of the

forces and moments about the missile center of gravity. Figure 4.11 shows that, for
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(a) Inviscid Case (b) Viscous Case

Figure 4.10: Comparison of surface flow and stagnation pressure for viscous and
inviscid cases. M = 1.96, α = 20◦

the static cases at least, there is good agreement between the viscous and inviscid

methods for resolving the forces and moments on the missile. The solutions were

expected to be similar, but the degree of agreement between them was not expected,

especially at higher angles of attack. As Figure 4.10 shows, the viscous surface caused

large vortices to form, and these vortices flowed directly over the upper tail surfaces,

which was expected to change the forces and moments computed there. The inviscid

solver also found some degree of separation, however, which led to very similar results.

Another possible reason for the lack of difference is the sharp leading edge of the fins.

This causes them to behave almost as ideal flat plates, for which the surface pressure

is nearly unchanged with viscosity.

Certain other factors also may have affected the static viscous solutions. First

of all, the Baldwin-Lomax turbulence model that was used was not designed for

separated flows. Another turbulence model may have more accurately modeled the

flow. Additionally, although the forces and moments for the static cases had converged

to an acceptable degree, the residuals had not. Additional timestep ramping and

additional iterations may have caused the residuals to converge further, and may
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Figure 4.11: Viscous and inviscid pitching moment coefficient.

have improved solution accuracy. Also, to ensure that correct solutions were obtained

by the viscous solver, a grid convergence study would need to be undertaken. This

process would involve refining the grid until changes in the solution were no longer

observed with an increase in the number of cells.

4.2 Prescribed Motion Parameter Selection

4.2.1 Pitch: Forced Oscillation. As described in Chapter III, certain pa-

rameters defining the sinusoidal oscillation were chosen with care, since they had the

potential to affect the solution. These parameters included the reduced pitch rate,

the amplitude of oscillation, the number of iterations per oscillation, the number of

Newton iterations, and the total number of oscillations.

The forced oscillation is defined by Equation 3.1, which is repeated below for

convenience:

α = α◦ + αm sin(ωt) (4.1)
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As described previously, this motion is fully defined by the choices of reduced pitch

rate (kq) and oscillation amplitude (αm). Initial estimates for each of these values

were gained from comparison data, and they were varied together and separately to

determine their effect upon the static and dynamic stability coefficients. Many levels

of testing were performed before each of the parameters were selected. Initially many

amplitudes were tested with many reduced pitch rates in order to find appropriate

values to use in subsequent tests. Presented here is the final level of the testing: only

one parameter varied at a time, except for the number of iterations per oscillation,

which was varied with nearly every case to ensure timestep convergence.

All parameter convergence tests were run using the M = 1.96 and α = 5◦

case. Other cases were tested to a lesser extent, but this case was chosen as the

characteristic case for all angles of attack and Mach number.

4.2.1.1 Reduced Pitch Rate. Twelve reduced pitch rates were tested

to determine the optimal value. The number of iterations per oscillation was varied

concurrently with the pitch rate so that the effects of time discretization at each pitch

rate could be observed.

Increasing the pitch rate increased the area of the Cm vs α curve, as shown

in Figure 4.12. To explain this increase in area, consider again Figure 2.4, which

illustrated the induced velocity and change in effective angle of attack on the missile

tail due to pitching rate. The induced velocity is equal to qlt and the induced angle

of attack is ∆α = qlt
V∞

, so, the induced angle of attack increases linearly with the pitch

rate. This in turn induces a change in the lift of the tail and a change in moment

at the center of gravity opposing the rotation. Figure 4.12 confirms this expectation,

showing greater deviations from the static moment coefficient with greater pitch rates.

Note also that the value of Cm at the angle extrema appears to be constant

with the changing pitch rate, which means that the slope between the extrema, Cmα

is relatively constant as well. In Figure 4.12, the pitch damping for each case is found

from the difference in Cm as the model pitched up and down through α = 5◦.
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Figure 4.12: Cm vs α histories with varying pitch rate. M = 1.96, α = 5◦

Figure 4.13 shows the angle, lift coefficient, and moment coefficient histories

plotted against iterations for three reduced pitch rates. For a series of static solutions,

the peaks of angle and lift coefficient would line up identically with each other and

with the troughs of the pitch moment coefficient curve. Notice the dotted vertical line

on all three graphs lining up with the third peak in angle of attack. Observe that the

peaks of the force and moment coefficients for the slowest pitch rate, kq = 0.00025,

lead the peaks of the angle of attack by just a small amount. As the pitch rate

increases to kq = 0.001, the amount of lead also increases. This lead in the system is

a product of the hysteresis effects of the dynamic system, again caused by the fact that

the increasing pitch rate leads to an increasing induced velocity on the tail. In this

example, maximum induced velocities occur as the missile passes through an angle of

attack of 5◦. As the missile pitches more rapidly, the extrema of the Cm curve move

toward the location of maximum induced velocity.

As described in Chapter III, the pitch damping is found as the slope of a Cm

vs kq curve. If the damping was completely independent of the pitch rate, then the

Cm vs kq plot would be a straight line. As shown in Figure 4.14(a), however, the

slope of the Cm vs kq curve is not a constant, meaning that different rates result in
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Figure 4.13: Angle of attack, lift coefficient, and pitching moment coefficient histo-
ries. M = 1.96, α = 5◦

different damping coefficients. Figure 4.14(b) shows a zoomed in view, for which more

of a linear relation is observed. This shows that the damping coefficient is relatively

constant with low reduced pitch rate, but the induced velocities caused by higher

reduced pitch rates result in nonlinear behavior.

The effect of reduced pitch rate on the static and dynamic stability coefficients

for cases with 1600 iterations per oscillation may be seen in Table 4.1. The static and

dynamic coefficients were found to be relatively constant in the range of kq = 0.0001

to kq = 0.001, meaning that the solution is relatively independent of the rate within

that range. Figure 4.15 demonstrates these effects graphically for 1600 and 3200

iterations per oscillation. Note that both of the stability coefficients calculated were

relatively constant with the doubling of the number of iterations per oscillation over

the limited range of kq mentioned above, but large variations were seen outside of

that range.

72



−0.02 −0.01 0 0.01 0.02
−15

−10

−5

0

5

10

Reduced Pitch Rate, k
q
 (rad)

P
itc

hi
ng

 M
om

en
t C

oe
ffi

ci
en

t (
C

m
)

 

 

Pitching Up
Pitching Down
Static Pitch Moment

(a) High pitch rates lead to nonlinear Cm vs
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Figure 4.14: Pitch damping coefficient is the slope of Cm vs kq. M = 1.96, α = 5◦

Table 4.1: Effect of reduced pitch rate on stability coefficients: 1600 iterations
oscillation

.

kq Cmα
% Change

(

Cmq
+ Cmα̇

)

% Change

0.000010 -17.8929 -102.0000

0.000025 -17.8935 0.00% -218.6000 114.31%

0.000050 -17.8963 0.02% -258.3000 18.16%

0.000100 -17.9089 0.07% -279.5000 8.21%

0.000250 -18.0081 0.55% -291.1000 4.15%

0.000500 -18.3180 1.72% -291.5700 0.16%

0.001000 -19.0520 4.01% -283.9050 2.63%

0.002500 -13.7183 28.00% -268.0820 5.57%

0.005000 9.1347 147.95% -286.9930 7.05%

0.010000 48.8813 456.32% -338.2760 26.18%

0.025000 -10.1992 120.87% -417.3322 23.37%

0.050000 -659.5501 6366.68% -411.6254 1.37%
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Figure 4.15: Pitch stability coefficients as a function of kp for two values of iterations
per oscillation. M = 1.96, α = 5◦

At low pitch rates, this variation was most likely due to a lack of full convergence;

more iterations per oscillation were required. A more in-depth timestep convergence

study was performed on several pitch rates to investigate this. For the case with kq =

0.000025, doubling the number of iterations from 1600 to 3200 per oscillation changed

the pitch damping term in excess of 15%. This implies that additional timesteps

would be required to fully resolve this solution. For the case with kq = 0.00025, on

the other hand, the same doubling of iterations per oscillation changed the solution

by only 1.04%. Cases with slower pitch rates require a larger number of iterations

per oscillation because the slower rate of oscillation means that additional physical

time elapses during the same pitching cycle. In order to have the same number of

iterations per oscillation as a case that is pitching more rapidly, a larger timestep is

required, which, in turn has the potential to degrade the flow solution, as seen here.

The discrepancies seen in the static and dynamic coefficients seen at higher pitch

rates are again due to the nonlinearities introduced by the large induced velocities on

the tail. A timestep convergence study on the case with kq = .025 showed that the

damping coefficient was virtually constant (and larger than predicted at lower rates)

for a large range of iterations per oscillation. The static stability coefficient, on the
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other hand, was still changing by a margin of over 20% as the number of iterations

was increased from 1600 to 3200 per oscillation, implying that additional iterations

per oscillation were required to achieve convergence. Based upon this analysis the

reduced pitch rate chosen for the final forced oscillation testing was kq = .00025.

4.2.1.2 Oscillation Amplitude. Various oscillation amplitudes were

tested in conjunction with the number of iterations per oscillation. Figure 4.16 shows

the effect of changing amplitude on the Cm vs α cycle for the test case with M =

1.96, αo = 5◦. The moment coefficient as the model passed through α = 5◦ appears
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Figure 4.16: Cm vs α for multiple amplitudes. M = 1.96, αo = 5◦

constant with changing amplitude, as did the Cm vs α slope for the angle extrema.

Even small variations in the moments calculated, however, lead to noticeable changes

in the stability coefficients, as shown in Figure 4.17.

Figure 4.17 shows the effect of both amplitude and iterations per oscillation on

the stability coefficients as the number of iterations was increased from 1600 to 3200

per oscillation. With any amplitude, only minute changes were seen in the static

stability coefficient as the number of iterations was increased, but larger changes

were observed in the damping coefficient. Especially with larger amplitudes, the
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Figure 4.17: Pitch stability coefficients as a function of amplitude for two values of
iterations per oscillation. M = 1.96, α = 5◦

predicted damping coefficients changed to a large degree with the number of iterations

per oscillation. At αm = 2◦, doubling the number of iterations per oscillation from

1600 to 3200 increased magnitude of the predicted damping coefficient by nearly 6%,

implying that another increase in the number of iterations would increase magnitude

of the solution by a still significant degree. With αm = 0.5, on the other hand, the

predicted damping value changed by only 1.04% with the same increase in iterations

per oscillation. This shows that the solution had converged for the αm = 0.5◦ case with

only 1600 iterations. Additional testing showed that further increasing the number of

iterations per oscillation for the αm = 1◦ and αm = 2◦ caused these cases to converge

to the same damping coefficient as the αm = 0.5◦ case. For computational efficiency,

αm = 0.5◦ was chosen for the final test cases.

4.2.1.3 Newton Iterations. The number of Newton iterations was

important because time-accurate flow solving requires the convergence of these inner

iterations. As Figure 4.18 shows, the number of Newton iterations was found to

have only a small effect on the calculation of stability coefficients for the case with

α = 5◦, M = 1.96, αm = 0.5, and 1600 iterations per oscillation. The static stability
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coefficient changed by only 0.13% as the number of Newton iterations was increased

from four to eight, and the pitch damping coefficient changed by only 0.72%. For this

reason, the number of Newton iterations was set to four for all of the dynamic tests.
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Figure 4.18: Effect of Newton iterations on pitch stability coefficients. M =
1.96, α = 5◦

4.2.1.4 Oscillation Number. To test the appropriate number of os-

cillations, one case was run for four complete oscillations. Figure 4.19(a) shows the

pitching cycle vs pitching moment coefficient. Figure 4.19(b) zooms in on the lower

portion of this plot to show that, after the initial transients die out, each successive

cycle follows the same path. Although the solution was converged by the second os-

cillation for this test case, all cases were run for 3 full oscillations to ensure that the

periodic moment coefficients were properly resolved.

4.2.1.5 Iterations per Oscillation. The convergence study of iterations

per oscillation was performed concurrently with the convergence studies of all other

parameters. Based upon the above analysis, the number of iterations per oscillation

was set to 1600. This number achieved the desired convergence for the parameters

chosen above, while at the same time minimizing the computational expense.
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Figure 4.19: Multiple cycles show oscillation convergence. M = 1.96, α = 5◦

4.2.2 Roll: Constant Revolution. The roll motion of the missile was defined

solely by the reduced roll rate, kp = pd/2V∞. As described in Chapter III, the reduced

roll rate and the number of iterations per revolution were varied to determine their

effect upon the solution and to guarantee solution convergence. Initial estimates for

kp were found from Oktay and Akay [21], where kp = 0.00326 was used. Figure

4.20 displays the change in Cl as a function of reduced roll rate with the number

of iterations per revolution held constant at 23,040. Note the nearly constant slope,

which confirms that the roll damping is nearly independent of the reduced roll rate.

The roll damping was not found to be entirely independent of roll rate, however,

as shown in Figure 4.21. This figure shows the roll damping coefficient as a function

of the reduced roll rate for two numbers of iterations per oscillation. Note that, for

this case, the slower rates of rotation appear to be changing to a large degree with

the number of iterations, while the faster reduced roll rates remain nearly constant.

Additional iterations may have caused the slowest reduced roll rates to converge to

the same value as the faster rates, but the computational expense was considered

unnecessary since the faster rates converged sufficiently. Based on these tests, kp =

0.0025 was chosen as the the reduced roll rate for the six final test cases.
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Figure 4.20: Roll moment coefficient for differing rates. M = 1.96, α = 5◦
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Figure 4.21: Roll damping coefficient as a function of rate and number of iterations.
M = 1.96, α = 5◦
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Table 4.2 highlights the effect of iteration per revolution with reduced roll rate

equal to 0.0025. As the number of iterations per revolution was doubled, the solution

continued to change, but with diminishing returns. Doubling the number of iterations

per revolution from 23,040 to 46,080 changed the roll moment coefficient by only

0.18%, and Clp by only 0.32%. Since this change was so small, the number of iterations

per revolution chosen for the six final test cases was 23,040.

Table 4.2: Effect of iterations per revolution on roll moment and damping, kp =
0.0025.

Iterations
Revolution

Cl % Change Clp % Change

360 -0.1126 -45.0560

720 -0.0944 16.16% -37.7610 16.19%

1440 -0.0737 21.93% -29.5000 21.88%

2880 -0.0630 14.52% -25.1890 14.61%

5760 -0.0578 8.25% -23.1310 8.17%

11520 -0.0556 3.81% -22.2520 3.80%

23040 -0.0549 1.26% -21.9720 1.26%

46080 -0.0548 0.18% -21.9010 0.32%

4.2.3 Test Parameter Recap. For convenience, the parameters used for all

of the forced motion cases are given here. The parameters chosen for forced pitch

oscillation were:

Iterations per Oscillation = 1600

Oscillations per Test = 3

Newton Iterations = 4

αm = 0.5◦

kq = 0.00025

(4.2)

For rolling motion, the parameters chosen were:
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Iterations per Revolution = 23040

kp = 0.0025
(4.3)

4.3 Pitch Stability Derivatives: α = 0 − 20◦

Five of the inviscid and all of the viscous cases were run at a constant Mach

number, angle of attack varying from 0 − 20◦. These cases were used to determine

the stability coefficients as a function of angle of attack. Figure 4.22 shows the Cm

vs α loops for two inviscid cases, both with Mach number equal to 1.96. Mean angles

of attack were 10 and 15 degrees.
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Figure 4.22: Pitching moment cycle for two angles of attack. kq = 2.5e− 4

Note the increased width of the case run at 15◦. Similar to Figure 4.12, this

increased width implies larger induced velocities and thus larger changes in the pitch-

ing moment about the center of gravity. Unlike Figure 4.12, however, which had the

increased difference in Cm at the mean angle normalized by an increasing pitch rate,

the cases in Figure 4.22 were oscillated at the same reduced pitch rate, so the larger
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area of the pitch cycle implies a larger predicted damping. This is investigated further

below.

4.3.1 Static Pitch Stability. Four computational sources were used for cal-

culating the static stability coefficient, Cmα
, as a function of angle of attack for

M = 1.96. These four sources were inviscid static solutions, inviscid forced oscil-

lation, viscous forced oscillation, and inviscid free oscillation. The data reduction

techniques for each of these sources are given in Chapter III, and Figure 4.23 shows

a comparison of the results from each method.
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Figure 4.23: Comparison of static stability coefficients, M = 1.96.

In order to refine the stability coefficient calculated from the static solutions,

additional static solutions were run at each angle of attack in the range 1−21◦. Figure

4.23 shows that all four of the testing methods computed strikingly similar curves for

Cmα
. This result was expected for the three inviscid cases, since the oscillation rate of

the forced oscillation was chosen carefully to avoid nonlinearities and the static and

free oscillation solutions were based solely upon the model and flow properties.

The agreement between the viscous solver and the inviscid techniques was ex-

pected at low angles of attack because, in general, inviscid solvers compute accurate
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surface pressures for the attached flows seen at low angles. At angles of attack of 15◦

and 20◦, however, separated flow and large vortices off the body were expected, and

both were observed in the viscous solution, as shown in Figure 4.10. As discussed

above, however, a certain degree of non-physical inviscid separation was also modeled,

which may have lead to some similarity between the solutions.

In addition to the possible reasons previously given for error in the static viscous

solutions, the dynamic cases may have introduced their own error. A plot of the

forced oscillation pitching cycle for a viscous case showed that the solution had not

sufficiently converged to a consistently repeating cycle after the three oscillations that

were run for each case. This failure to achieve cyclical convergence could introduce

error into the viscous solutions. Two choices may have fixed this issue: additional

oscillations or a decreased timestep.

4.3.2 Pitch Damping. The pitch damping coefficients were also determined

at each angle of attack using the three dynamic methods mentioned above. These

values, displayed in Figure 4.24 showed good agreement with other CFD methods

[16, 17] for all angles of attack. At low angles of attack, all results from Beggar

matched well with ballistic range data [31], but not with wind tunnel data [33]. This

error is due to the sting effects of the wind tunnel testing for angles of attack up to

7◦ [33]. At high angles of attack, the inviscid CFD methods over-predict the value

of the damping coefficient when compared to wind tunnel data. This is likely due to

non-linear effects in the inviscid solution at high angles of attack, and the failure of

the inviscid solver to model separation effects.

The viscous solver, on the other hand, does model the flow separation that

occurs at high angles of attack, but the computed damping values agreed quite closely

with those found from inviscid techniques. The viscous damping does diverge from

the inviscid solutions at α = 20◦ and come closer to the damping values computed

experimentally, but it was expected that the results of the inviscid and viscous cases at

high angles of attack would be fundamentally different and that the viscous solution
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Figure 4.24: Comparison of dynamic stability coefficients, M = 1.96.

would more accurately model the experimental data. The possible explanations for

this divergence of expectations and results for the pitch damping are the same as the

reasons given above for the static pitch stability.

4.3.3 Trajectory Prediction. The equation of motion for a pure pitching

system was developed in Chapter II and is repeated here in homogeneous form, since

control surface deflections are not being analyzed.

∆α̈− (Mq +Mα̇)∆α̇−Mα∆α = 0 (4.4)

The motion of the system is controlled by the static pitch stability derivative and the

pitch damping derivative sum. Because both of these terms are functions of angle

of attack, Equation 4.4 was integrated in time using linear interpolations between

the discreet values found from the inviscid forced oscillation cases. The result of this

integration for a case with an initial angle of attack of 20◦ is shown in Figure 4.25,

along with the free oscillation result at the same initial angle and the same Mach

number of 1.96.
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Figure 4.25: Comparison of free oscillation trajectory and trajectory predicted
based on stability coefficients from forced oscillation. M = 1.96, αstart = 20◦

The two methods match up well at the start of the trajectory, but the integration

using values from forced oscillation shows a distinct and growing phase lead and

slightly higher damping than the free oscillation case. These discrepancies are most

likely due to the inaccuracies evident at high angles of attack, and, because the range

of motion is quite large, even small degrees of error propagate through the solution

to become large errors over time. Another possible source of error is that the second

order model given in Equation 4.4 does not accurately model high amplitude motion,

since it was based on a small perturbation assumption. Higher resolution might be

possible with a higher order model that incorporates, for example, third order terms

like Cmαα
.

Another case was examined to determine whether the stability derivative pre-

dicted by the forced oscillation would provide a more accurate modeling of the free

oscillation at lower angles of attack. This case was started at an angle of attack of 5◦,

the trajectory of which is shown in Figure 4.26 along with the trajectory predicted

by the second order model using forced oscillation stability derivatives.
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Figure 4.26: Comparison of free oscillation trajectory and trajectory predicted
based on stability coefficients from forced oscillation. M = 1.96, αstart = 5◦

Figure 4.26 shows that the stability derivatives estimated through forced oscil-

lation, combined with second order model of the motion, predicted motion almost

identical to the free oscillation case. After three full cycles, the equations of motion

with coefficients from forced oscillation predicted a peak just 0.243% greater than the

free free oscillation model, and exhibited lag of only 1.24 degrees. For the case in

Figure 4.25, on the other hand, the third peak of the trajectory for the integrated

method was 4.75% beneath the free oscillation trajectory, and lead by 60.3 degrees.

The final free oscillation case was run at M = 1.58 and started from an angle of

20◦. The two free oscillation cases initialized at α = 20◦ are shown together in Figure

4.27. Note that the static stability coefficient of the M = 1.58 case is significantly

higher at all angles of attack, and the values of the damping coefficient are higher

for the lower Mach number until α = 12◦, when the damping of the M = 1.96 case

spiked due to non-linearities. The M = 1.58 case also experienced non-linearities at

high angles of attack, but not until around α = 14◦. The reasons for higher coefficient

values at the lower Mach number is discussed in the following section.
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(a) Static pitch stability coefficient.
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(b) Pitch damping coefficient.

Figure 4.27: Static and dynamic stability for two Mach numbers.

4.4 Pitch Stability Derivatives: M = 1.58 − 2.50

The remaining five inviscid forced oscillation tests were run with a constant

angle of attack of zero degrees, M = 1.58−2.50. Figure 4.28 shows the pitch moment

coefficient vs angle of attack for three Mach numbers. Note that the magnitude of
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Figure 4.28: Cm vs α cycles for multiple Mach numbers.

the slope between left and right sides (Cmα
) decreases with increasing Mach number.

Additionally, ∆Cm at α = 0◦ for the M = 2.50 case may be seen to be smaller than
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it is for the two slower cases. The implications of and reasons for these results are

discussed below.

4.4.1 Static Pitch Stability. The decrease in Cmα
with increasing Mach

number is visible in Figure 4.28. It is even more evident in Figure 4.29, which shows

excellent agreement with data from the Ballistic Research Laboratory (BRL). All

Mach numbers tested agree very closely with the experimental range data. This
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Figure 4.29: Static pitch stability as a function of Mach number.

trend in Cmα
follows the trend predicted by linear wing theory and Newtonian impact

theory applied at supersonic Mach numbers. These theories show that the normal

force coefficient on a lifting surface decreases with increasing Mach number [11]. This

in turn decreases the restoring moment provided by the tail, and since the moment

provided by the tail is the main source of static stability for the Basic Finner, the

overall static stability of the missile decreases as well.

4.4.2 Pitch Damping. Comparison damping coefficient data exhibited more

scatter with varying Mach number, but Figure 4.30 shows that, in general, inviscid

forced oscillation techniques using Beggar captured the damping coefficients accu-

rately. The largest degree of variance is seen at M = 2.5.
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Figure 4.30: Pitch damping as a function of Mach number.

The general trend in the pitch damping coefficient is to decrease with increasing

Mach number. This is the expected behavior, because the damping term is based

on the induced velocity on the tail, qlt. This term was held constant for all Mach

numbers, but the induced angle of attack on the tail is qlt/V∞. This means that the

change in angle of attack induced by the pitch rate goes down with increasing Mach

number. Thus, the change in moment about the center of gravity is decreased, and

the damping from the tail is less effective.

4.5 Roll Damping Derivative

Prescribed motion roll tests were run for six Mach numbers from 1.58 to 2.50,

α = 0◦ with the inviscid grids. As a reminder, the values chosen to define the motion

and temporal discretization were kp = 0.0025 and 23,040 iterations per revolution. As

a contrast to the dynamic pitch cases, the dynamic roll tests were run to convergence

rather than freely or with periodic motion, eliminating the need for time-accurate

solving. Recall that, from a converged solution, the roll damping coefficient is defined

as Clp = Cl

kp
.

Figure 4.31 shows the Cl histories of the six Mach numbers tested. Convergence
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Figure 4.31: Roll moment convergence for six Mach numbers, kp = 0.0025.

was achieved within approximately one degree of roll, but each case was run to a roll

angle of 45◦ in an attempt to remove any variations in the measured value. Regardless

of how far they were run, however, a certain amount of random noise was observed

in the roll moment coefficient measurement. This noise was considered insignificant,

however, because the value never strayed by more than 0.5% from the mean value for

each case. This mean convergence value was used in calculations of Clp.

The converged value from each of the Mach numbers was used to determine

the local roll damping coefficient. The magnitude of the roll damping was found

to decrease steadily with increasing Mach number, as seen in Figure 4.32. This is

due to the fact that, as Mach number increases, the induced velocity on the tail

fins due to roll becomes a lesser percentage of the total velocity. This reduces the

induced angle of attack, and thus the total moment produced by the tail. The tail

continues to resist rolling motion at all Mach numbers, but to a lesser extent at

faster speeds. Comparison data showed some degree of scatter for the roll damping

of similar cases, but, in general, the present methods show very good agreement with

both experimental and computational data.
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Figure 4.32: Roll damping coefficient as a function of Mach number, kp = 0.0025.
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V. Conclusions

The use of the Beggar code for determining the static and dynamic pitch and

roll stability derivatives of the Basic Finner missile was analyzed and verified.

Various methods for determining the pitch derivatives were compared and shown to

be in good agreement with one another and with experimental data. The static

pitch stability derivatives were found from inviscid static solutions, inviscid forced

oscillation, inviscid free oscillation, and viscous forced oscillations. The dynamic

pitch derivatives were found from inviscid forced oscillation, inviscid free oscillation,

and viscous forced oscillation. Dynamic roll derivatives were found from forced roll

motion with constant angular rate. The parameters defining the forced pitch and roll

motions were carefully chosen through multiple convergence studies. For pitch motion,

these parameters were reduced pitch rate, amplitude, Newton iterations, iterations per

oscillation, and total number of oscillations. Convergence studies were performed on

reduced roll rate and iterations per revolution to define the rolling motion.

At all angles of attack and Mach number, the varying inviscid methods showed

impressive consistency for determining the stability coefficients. However, only at

angles of attack less than or equal to 10◦ did the predicted stability coefficients match

well with wind tunnel and ballistic range data. Above α = 10◦, the inviscid solver

failed to model nonlinear separation effects, and this was found to degrade solution

quality.

Viscous cases were found to agree well with the inviscid CFD, and not as well

as expected with experimental data. Based on flow visualization, the viscous solver

appears to have resolved the vortices caused by flow separation at high angles of

attack, but the integration of forces and moments over the surface failed to bear out

this difference between viscous and inviscid solutions. This unexpected result could

be due to the use of a turbulence model not designed to model separation, a lack of

full convergence for the viscous cases, insufficient grid resolution, or the fact that the

sharp leading edges of the fins caused there to be little difference in surface pressure

for the inviscid and viscous cases.
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Aside from the issues with the viscous solutions, the methods used here showed

that Beggar may quite readily be used to determine the stability derivatives of a

supersonic projectile. The free oscillation method provides the most capability due

to the fact that a single test may be used to determine the stability coefficients

for a wide range of angle of attack. Forced oscillation techniques were shown to

accurately compute local stability derivatives, but in order to find the derivatives

as a function of angle of attack, multiple dynamic solutions were required. Each

forced oscillation solution was less time-consuming than a free oscillation solution,

but sufficiently resolving the static pitch stability and pitch damping as a function of

angle of attack required multiple tests, which negated this advantage.

5.1 Future Research

Beggar has been shown to be a useful tool for determining fast estimates for the

stability derivatives of a supersonic projectile, but full validation of this capability

for a wide range of cases will require additional testing. This validation should be

accomplished with additional models, methods, and flow regimes.

One validation case that would be particularly useful would be to perform tests

similar to those performed here on the Army-Navy Spinner Rocket (ANSR). Like

the Basic Finner, the stability coefficients of the ANSR are well documented in the

literature, providing excellent sources of comparison. This case would also expand

the application of current methods to a spin-stabilized projectile.

In addition to the methods shown here, steady state coning motion should be

tested and verified. Such a steady state method is desirable because it eliminates the

need for time-accurate solutions, which are typically difficult to run and computa-

tionally expensive.

The test methods performed here have been shown to work well with a super-

sonic projectile. Additional testing is required to validate the use of Beggar with

these methods for subsonic, transonic, and higher supersonic Mach numbers than
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were tested here. More complicated, asymmetric geometries should also be tested to

verify the utility of these methods for more than the simple geometry tested here.

Final testing with the Basic Finner could be expanded to include fin deflection to

determine changes in the stability coefficients as a function of fin deflection angle.

Finally, once Beggar has been fully validated as an aerodynamic derivative pre-

diction tool, it could be used to build a database of static stability coefficients. Such

a database would allow missile designers to swiftly and accurately predict flight tra-

jectories of new designs. This database and additional testing with Beggar could be

used in early design phases to improve the final performance and to minimize the

research and testing costs of new systems.
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Appendix A. Listings

A.1 Beggar Inputs

Listing A.1: Beggar input file: finner.in. (Appendix2/finner.in)
#_________________________________________________________________

#

# INITIALIZATION PARAMETERS

#_________________________________________________________________

5

verbose = 3 # Chapter 1, para. 4

ptol = 1e-7 # Chapter 9, para. 1

nopatch # Chapter 10, para. 4

10 cfl=250000

init from ’/home/scratch2/mbartowi/thesis/finner/static/d_m196/...

a_a00/carraige.r01000’

#dump plot3d every 40

15 #_________________________________________________________________

#

# FLOW PROPERTIES

# (Ref. Beggar Manual , Chapter 4, para. 1)

#_________________________________________________________________

20 #

mach = 1.96

# Rotate to desired angle of attack

25 rot z -0.0

#_________________________________________________________________

#

# SIX+DOF PARAMETERS

30 # (Ref. Beggar Manual , Chapter 5, para. 4 & 5)

#_________________________________________________________________

#

sixdof gravity = <0.0,-32.18,0> # ft/s^2 for AOA=0 deg

35 sixdof density = 0.001262 # Slug/ft^3 @20000 ft

sixdof soundspd = 1037.0 # ft/s @20000 ft

sixdof refl = 0.104167 # Reference length conversion (ft)

#_________________________________________________________________

40 #

# DYNAMIC CASE PRE -CHECK

# (Ref. Beggar Manual , Chapter 5, para. 17)

#_________________________________________________________________

#

45

#noflow
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#noflow_assembly

dt=0.034968731

50

#_________________________________________________________________

#

# FLOW SOLVER PARAMETERS

# (Ref. Beggar Manual , Chapter 7)

55 #_________________________________________________________________

#

stencil= inviscid2

solver = second order , full , euler , steg_warm_xair jacobians ,

60 implicit bcupdate , primitive extrap,steger_warming ...

right_side ,

three point backward time

65 dtiter = 4 # Newton Iterations [1]

dtiter_tol = -10 # Newton iteration tolerance , [ -10]

inner = 80 # Gauss -Sidel Iterations [80]

# BC update weighting

70 bcrelax = 1.0 #default = 1.0

block to block relax = 0.4 #default = 0.4

#_________________________________________________________________

#

75 # GRID ASSEMBLY

#_________________________________________________________________

#

# Configure Basic Configuration to include

# Global Cartesian Grid

80 # Aircraft

# Pylons , Racks ,and Launchers

# Pods , Tanks , and other stores

# Store of Interest

#

85 #-----------------------------------------------------------------

# Inertial Grid: SB 1

#-----------------------------------------------------------------

readgrids ’/home/afiten1/gae08m/mbartowi/scratch/thesis/finner/...

geometry/inviscid/inert.p3ds’ as plot3d ascii

90

#-----------------------------------------------------------------

# Store of Interest: SB 2-6

#-----------------------------------------------------------------

95 # Here include the store , the fins , the fspec , and the dyn.
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include ’/home/afiten1/gae08m/mbartowi/scratch/thesis/finner/beg/...

inviscid/body.beg’

include ’/home/afiten1/gae08m/mbartowi/scratch/thesis/finner/beg/...

inviscid/fin1.beg’

100 include ’/home/afiten1/gae08m/mbartowi/scratch/thesis/finner/beg/...

inviscid/fin2.beg’

include ’/home/afiten1/gae08m/mbartowi/scratch/thesis/finner/beg/...

inviscid/fin3.beg’

include ’/home/afiten1/gae08m/mbartowi/scratch/thesis/finner/beg/...

inviscid/fin4.beg’

include ’/home/scratch2/mbartowi/thesis/finner/dynamic/pitch/...

motion_files/mach_196.dyn’

105 include ’/home/afiten1/gae08m/mbartowi/scratch/thesis/finner/beg/...

inviscid/finner.fspec’

#________________________________________________________________

#

# SET WORLDSIDE FOR CCUT OPTIONS

110 # (Ref. Beggar Manual , Chapter 8, para. 6)

#________________________________________________________________

#

# Set worldside cell

115 sb 2

g 1

set (10,30,4) (11,31,5) to worldside

Listing A.2: Beggar grid input file: fin2.beg. (Appendix2/fin2.beg)
directory prefix = ’/home/afiten1/gae08m/mbartowi/scratch/thesis/...

finner/geometry/inviscid/’

readgrids ’fin.p3df’ as plot3d ascii

tag ’fin2_SB’

5

#------ Set BCs -------------------

g 1

set "fin2" = (59,1,1) (11,20,1) to tangent

set (59,1,*) (11,1,1) to tangent nocut

10 g 2

set "fin2" += (1 ,1,1) (*,*,1) to tangent

g 3

set (1,1,1) (*,*,1) to tangent nocut

g 4

15 set "fin2" += (1,1 ,18) (*,1,1) to tangent

20 #------ Set protected cells -------

g 1
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set (11,1,1) (59,3,*) to protect

g 3

set (1,1,1) (*,*,3) to protect

25

#------ Rotate --------------------

30 rot x 90

Listing A.3: Beggar force specification file: finner.fspec. (Appendix2/finner.fspec)
#_______________________________________________________________

#

# FORCE SPECIFICATIONS

# (Ref. Beggar Manual , Chapter 8)

5 #_______________________________________________________________

#_________________________________TOTAL FSPEC___________________

forcespec "finner ": dump every 1 to "finner.forces"

10 with refl=1.0 # Approx diameter of store (grid ...

units)

with refa=0.7854 # Approx cross sectional area ...

using body diameter (grid units)

with mcenter = <6.1,0.0,0.0> # grid units

forcespec "finner ": add "body"

forcespec "finner ": add "fin1"

15 forcespec "finner ": add "fin2"

forcespec "finner ": add "fin3"

forcespec "finner ": add "fin4"

#_______________________________________________________________

Listing A.4: Beggar dynamic specification file: mach196.dyn. (Appendix2/mach196.dyn)
#_______________________________________________________________

#

# INERTIAL AND DYNAMIC SPECIFICATIONS

# (Ref. Beggar Manual , Chapter 9)

5 #_______________________________________________________________

#-------------------------Body----------------------------------

10 dynamicspec "basic":

add sb ’body_SB’;

add sb ’fin1_SB’;

add sb ’fin2_SB’;

add sb ’fin3_SB’;

15 add sb ’fin4_SB’;
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## INERTIAL PROPERTIES / FORCE SPECIFICATIONS

20

add fspec ’finner ’;

cg = <0.63542,0.0,0.0>; # ft 6.1 calibers

spec_motion_file = "/ home/scratch2/mbartowi/thesis/finner/...

dynamic/pitch/motion_files/mach_196.dat";

trelease = 0.0;

25

## DYNAMIC DATA FILE CREATION

read gandc z down gviz;

30 dump gandc z down

Listing A.5: Beggar prescribed motion file: mach196.dat. (Appendix2/mach196.dat)
* Generated using transform.m

* Angular rate = 9.8 rad/s

* Reduced frequency = 0.0003

* Magnitude of oscillation = 0.5 degrees

5 * Number of complete oscillations = 3.0

* Dimensionless Timestep = 0.03496873

* Physical Timestep = 3.51262018e-06

* Total time = 0.01826562 seconds

* Iterations = 5201

10 * Euler rotation order about CFD axis [1 3 2]

* dt dx dy dz th_x theta_y theta_z

0 0 0 0 0 0 -0

3.512620184e-06 0 0 0 0 0 -0.001963490362

7.025240368e-06 0 0 0 0 0 -0.003926950444

15 1.053786055e-05 0 0 0 0 0 -0.005890349968

1.405048074e-05 0 0 0 0 0 -0.007853658656

1.756310092e-05 0 0 0 0 0 -0.00981684623

2.10757211e-05 0 0 0 0 0 -0.01177988242

2.458834129e-05 0 0 0 0 0 -0.01374273694

20 2.810096147e-05 0 0 0 0 0 -0.01570537954

. . . . . . .

. . . . . . .

. . . . . . .

25

0.001390997593 0 0 0 0 0 -0.4999383162

0.001394510213 0 0 0 0 0 -0.4999653026

0.001398022833 0 0 0 0 0 -0.4999845788

0.001401535453 0 0 0 0 0 -0.4999961447

30 0.001405048074 0 0 0 0 0 -0.5

0.001408560694 0 0 0 0 0 -0.4999961447

0.001412073314 0 0 0 0 0 -0.4999845788

0.001415585934 0 0 0 0 0 -0.4999653026

0.001419098554 0 0 0 0 0 -0.4999383162

35

. . . . . . .
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. . . . . . .

. . . . . . .

40 0.00420109374 0 0 0 0 0 0.4999383162

0.00420460636 0 0 0 0 0 0.4999653026

0.00420811898 0 0 0 0 0 0.4999845788

0.004211631601 0 0 0 0 0 0.4999961447

0.004215144221 0 0 0 0 0 0.5

45 0.004218656841 0 0 0 0 0 0.4999961447

0.004222169461 0 0 0 0 0 0.4999845788

0.004225682081 0 0 0 0 0 0.4999653026

0.004229194701 0 0 0 0 0 0.4999383162

Listing A.6: Beggar execution file: rubeg. (Appendix2/runbeg)

#PBS -l nodes=4:ppn=2

#PBS -j oe

#PBS -M michael.bartowitz@afit.edu

#PBS -N angle_00

5

MPICHBIN=/apps/Linux86_64/partools/mpich -1.2.7p1/bin

Beg=/apps/ECS/Beggar/Beg117j/opteron.mpich/dp/opt/Beg.mpich

nprocs=$(cat $PBS_NODEFILE|wc -l)

10 nnodes=$(cat $PBS_NODEFILE|sort -u|wc -l)

echo $nprocs

echo $nnodes

cd $PBS_O_WORKDIR

15

# now run beggar

$MPICHBIN/mpirun -machinefile $PBS_NODEFILE -np $nprocs $Beg -hgl...

=15 -dcut=2 -Direset -motion -i 5200 -r finner.r00000 > r650....

out

A.2 Post-processing Tools

Listing A.7: Matlab
r post-processing tool. (Appendix2/postprocess.m)

% ----------------------------------------------------------------------...

% Read in and plot Free Oscillation Data

% ----------------------------------------------------------------------...

5 name = ’finner.forces’;

angle_start = #;

data = dlmread(name ,’’ ,120,0);
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10 time = data(:,2);

% local aero force and moment coefficients

cf_loc_aero_x = data(:,3);

cf_loc_aero_y = data(:,4);

15 cf_loc_aero_z = data(:,5);

cm_loc_aero_x = data(:,6);

cm_loc_aero_y = data(:,7);

cm_loc_aero_z = data(:,8);

20

% position and orientation

dx = data(:,9);

dy = data(:,10);

dz = data(:,11);

25

th_x = data(:,12);

th_y = data(:,13);

th_z = data(:,14);

30 % global aero force and moment coefficients

cf_glb_x = data(:,15);

cf_glb_y = data(:,16);

cf_glb_z = data(:,17);

35 cm_glb_x = data(:,18);

cm_glb_y = data(:,19);

cm_glb_z = data(:,20);

% local total forces and moments

40 f_x = data(:,21);

f_y = data(:,22);

f_z = data(:,23);

m_x = data(:,24);

45 m_y = data(:,25);

m_z = data(:,26);

cf_y = cf_loc_aero_y;

cm_z = - cm_loc_aero_z;

50 th_z = -th_z+angle_start;

L = length(time);

% ----------------------------------------------------------------

55 % Pitch Derivatives

% ----------------------------------------------------------------

% ***** Forced Oscillation Cases *****

% Locations of interest , assuming 3.25 oscillations

60 l = floor (11/13*L); % left , corresponds to minimum angle

r = floor (9/13*L); % right , corresponds to maximum angle
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t = floor (10/13*L); % top , corresponds to pitching down

b = floor (12/13*L); % bottom , corresponds to pitching up

65 th_lt = th_z(l);

th_rt = th_z(r);

cm_lt = cm_z(l);

cm_rt = cm_z(r);

70

cm_up = cm_z(b);

cm_dn = cm_z(t);

75 % Static Stability Derivative

stab_stat = ( cm_rt -cm_lt ) ./ ( th_rt -th_lt ); % per deg

stab_stat = stab_stat * (180/pi); % per rad

% Dynamic Stability Derivative

80 stab_dyn = ( cm_up -cm_dn ) ./ (2*k); % per reduced freq

% ***** Free Oscillation Cases *****

%find indices of angle of interest

85 alpha=#; % Choose # to search for

j = 1;

k = 1;

for i = 2: length(th_z)

if k*(th_z(i)-alpha) < 0 % enter if statement after a ...

crossing

90 ind(j) = i;

j=j+1;

k=k*-1;

end

end

95

% interpolate to find coefficient at angle of interest

cm_slope = ( cm_z(ind)-cm_z(ind -1)) ./ ( th_z(ind)-th_z(ind -1));

cm = cm_z(ind) + cm_slope .* ( alpha -th_z(ind) );

100 q = deg2rad(( th_z(ind)-th_z(ind -1) )) ./ ( dt_phys );

k = (q*d) ./ (2*V);

P = polyfit(k,cm ,1);

105 damping = P(1);

cm_static = P(2); % use this with consecutive angles to get ...

stiffness

% ----------------------------------------------------------------

110 % Roll Derivatives

% ----------------------------------------------------------------
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% Dynamic Stability Derivative

damp = cm_x_conv ./ k; % uses converged value of cm_x
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