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Abstract

Low thrust propulsion systems such as electrodynamic tethers offer a fuel-efficient means to
maneuver satellites to new orbits, however they can only perform such maneuvers when they are
continuously operated for a long time. Such long-term maneuvers occur over many orbits often rendering
short time scale trajectory optimization methods ineffective. An approach to multi-revolution, long time
scale optimal control of an electrodynamic tether is investigated for a tethered satellite system in Low Earth
Orbit with atmospheric drag. Control is assumed to be periodic over several orbits since under the
assumptions of a nearly circular orbit, periodic control yields the only solution that significantly contributes
to secular changes in the orbital parameters. The optimal control problem is constructed in such a way as
to maneuver the satellite to a new orbit while minimizing a cost function subject to the constraints of the
time-averaged equations of motion by controlling current in the tether. To accurately capture the tether
orbital dynamics, libration is modeled and controlled over long time scales in a similar manner to the
orbital states. Libration is addressed in two parts; equilibrium and stability analysis, and control. Libration
equations of motion are derived and analyzed to provide equilibrium and stability criteria that define the
constraints of the design. A new libration mean square state is introduced and constrained to maintain
libration within an acceptable envelope throughout a given maneuver. A multiple time scale approach is
used to capture the effects of the Earth’s rotating tilted magnetic field. Optimal control solutions are
achieved using a pseudospectral method to maneuver an electrodynamic tether to new orbits over long time

scales while managing librational motion using only the current in the tether wire.
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l. Introduction

With increasing dependence of government missions, scientific exploration, and commercial ventures
on spaceborne payloads, it is critical to have the right satellite over the right place at the right time.
Currently, most satellites are confined to Keplarian orbits that reside above the “reasonable” atmosphere.
Conventional rockets do not permit a satellite to orbit at lower altitudes where atmospheric drag is hon-
negligible nor do they usually allow large orbit adjustments over a long lifetime since these scenarios
would require a prohibitive amount of propellant. However, a low thrust propulsion system requiring little
or no propellant could permit station-keeping at lower altitudes and even provide some limited orbital
maneuvering capabilities. Electrodynamic tethers (EDTSs) in low Earth orbit offer an attractive alternative
to conventional satellites that use propellant-based propulsion systems because the thrusting forces are
derived using the Earth’s geomagnetic potential. Electrodynamic tethers are electrically conductive wires
extending between two or more subsatellites and when a current is passed through the wire in the Earth’s
magnetic field, a Lorenz force is generated perpendicular to both the current direction and the direction of
the local Earth magnetic field lines. A two-ball EDT, defined as two subsatellites joined by a conducting
tether, is depicted in Figure 1 showing how the Lorenz force generated by running current through the wire

may be used to overcome drag and maneuver the satellite pair.

Lorenz Atmospheric
O 0O O 0O
B
O 0O O 0O
— P :D
1, o
O | N O)
o [ 0O ©

Figure 1. Electrodynamic Tether Force Model



The force magnitude depends on the current | , length of wire and the wire orientation with respect to the
local magnetic field according to Lorenz’s law, F = ILxB , where L represents the length vector between
the satellite pair and B represents the local Earth magnetic flux density vector. Controlling the current in
the wire through variable resistance, the satellite system would be capable of maneuvering to new orbits
without propellant, albeit at a slower rate than traditional maneuvering rockets. A capability such as this
would enable space missions requiring orbiting sensors at extremely low altitudes or those requiring
frequent repositioning of satellites by way of orbit transfers.

Because of the low thrust provided by an EDT system, an orbit transfer requires a long time to reach a
desired orbit. Obtaining optimal control solutions for satellites that maneuver for a long time can be
challenging and computationally intensive when instantaneous state dynamics and controls use dynamics
expressed using short time scales. Williams demonstrates an approach to optimal control using non-linear
perturbation equations of motion as dynamic constraints and solves an optimal control problem by direct
transcription using Non-linear Programming (NLP) software. This method is shown to be effective in
determining controls that execute a modest orbital maneuver using an electrodynamic tether for thrust;
however the optimization solver required hundreds of collocation node points to capture all the small state
variations that occur for a maneuver that only takes a single day. Many nodes were required to fully depict
the instantaneous states and control that exhibit periodic behavior. Hundreds of collocation nodes
correspond to thousands of optimization variables and constraints for the NLP solver to compute. The
number of nodes and computation time required to perform the optimization over long periods of time can
be difficult or impossible to achieve using the short time scale model and are highly susceptible to round-
off errors. In many low-thrust maneuvering situations the instantaneous orbit state will vary only slightly
from Keplarian motion within an orbital period due to small perturbations, but the variations tend to be
periodic in the short term and cancel out over the long term leaving only slow secular state changes.
Addressing long term behavior, Carroll® and Tragesser and San present a technique of non-optimal periodic
tether control that uses the method of averaging derived from perturbation theory enabling control of the

average states thus avoiding the computational burden associated with controlling the rapidly changing



instantaneous states. They demonstrate that this approach is good for determining control for longer time
periods, however the results are not optimal and the periodic control is considered to be unchanging
throughout the trajectory. Furthermore, determining the control requires constraining the maximum current
which is less straightforward using the method of averaging than constraining instantaneous current using
the short time scale model. The problem, therefore, is that it is difficult or impossible to determine optimal
controls for an EDT performing a long term orbit transfer using the methods of control currently presented
in the literature. The aim of this dissertation is to take advantage of both control methods to achieve
optimal control of an electrodynamic tether over long time periods. We seek to modify the optimal control
problem of a low thrust orbit transfer considering that we already know something about the dynamics of
the system, namely that it is nearly periodic when the EDT is continuously thrusting. Bearing this in mind,
we may dispose of the dynamic model describing the rapidly changing instantaneous behavior in favor of a
dynamic model that only describes the secular behavior of the average state over large time scales.

The research objective is to maneuver an electrodynamic tether to a new orbit over many revolutions by
posing an optimal control problem in the context of large time scales since we are mainly interested in the
secular behavior and not the periodic behavior occurring during each revolution. Although this research
focuses on optimal control of electrodynamic tethers, this approach to optimal controls over large time
scales could, in principle, apply to any continuous low-thrust system.

In the relevant EDT orbit control literature, the dynamic models used are limited to non-atmospheric
environments over short periods of time® or they ignore attitude dynamics (libration) and long term optimal
control®. In order to develop a real system that will operate in a low Earth orbit, drag effects and libration
must be addressed and either included in the controller model or justifiably ignored. Because the source of
thrust is derived from the Earth’s tilted magnetic field, it is also important to include the effects of the
Earth’s rotation on the satellite motion. To achieve the primary objective of determining optimal EDT orbit
transfers spanning many orbits, the following outline describes the approach taken in this dissertation.

e Determine optimal long term maneuvers for nadir-pointing tethers ignoring Earth’s tilted
magnetic dipole (Chapter I11)

o0 Develop set of suitable dynamic equations and path constraints



(0]

Pose and solve optimal control problems, first ignoring drag and then including drag

o0 Validate optimal control solutions by propagating with a “truth” model

o Introduce the effects of the Earth’s tilted magnetic dipole into the dynamic model (Chapter 1V)

(0]

(0]

(0]

Modify the dynamic model and path constraints to include the effects of a tilted Earth
magnetic field that rotates once per day
Pose and solve optimal control problems with and without drag

Validate optimal control solutions by propagating with a “truth” model

e Introduce tether libration into the dynamic model (Chapter V)

(0]

(0]

Perform stability analysis of tether libration

Modify the dynamic model and path constraints to include the effects of tether
libration

Pose and solve optimal control problems with and without drag

Validate optimal control solutions by propagating with a “truth” model



[I. Literature Review

The main body of spacecraft tether literature as it relates to this research may be divided into several
categories. In the area of tether dynamic analysis and control, the chief motions studied are orbital,
librational and vibrational. Models used for these motions depend on the application, but will sometimes
include either electrodynamic forces [Refs 1-2, 6-15] or aerodynamic drag [Refs 3,4 and 5], but very few
include both. Researchers have investigated tether control strategies using tether length variation, end-body
drag, thrusters, and in the case of electrodynamic tethers (EDTSs), wire current (references provided in
forthcoming discussion). This research will focus on the unexplored area of long term optimal control of
an EDT.

The first category of relevant literature addresses orbital maneuvering using EDTs. Most of these
papers discuss system design issues but do not detail controller design. Tragesser and San describe various
EDT current controllers, but they are non-optimal and librational motion is ignored.® In the area of optimal
control, the published works are very limited. The most relevant paper discussing the optimal control of
electrodynamic thrusting tethers is one from Williams.” The dynamic model in this paper ignores the
atmosphere and the librations are not explicitly bounded, however the paper showcases an example optimal
orbital maneuver useful for comparison. In other related orbital maneuvering works, long term EDT
thrusting strategies were published first by Carroll® and then Tragesser and San for no-drag orbits, however
optimal control over large time scales is not addressed.

There is a large body of work addressing the second category, EDT libration analysis and control. In
the case of electrodynamic tether models, Pelaez et. al. explore the stability of these systems assuming a

constant tether current for inclined °°

and elliptical orbits. In more elaborate analyses, two bar tether
models were employed.™ Although many of these papers do not address control, they do provide insights
into the behavior of unthrottled active electrodynamic tethers in a non-atmospheric environment.

Reference 12 shows the librational instability that occurs with a constant current EDT, thus control is

necessary to compensate for drag while simultaneously maintaining stability.. Without control, an EDT



system would need a “self-balanced” design to maintain stable attitude dynamics according to Ref 13. Ref
14 concludes that EDT control can be employed to manage instabilities for orbits with eccentricity less
than 0.35. Hoyt presents a method to stabilize using feedback control.” There are other methods of
attitude control for hanging EDTs besides using torques due to Lorenz forces about the center of mass
(COM). Williams describes a method of libration stability control using tether length variation®®, as does
Yu for orbits with e<0.3, however only in-plane motion is considered.*” Thrusters have also been proposed
for libration control,*® however by using propellant, this method defeats the stated purpose of using EDTs
in the first place. Most controller designs used one of the linear techniques like Ref 19 which describes
thruster and tension control using LQR methods. Some papers, such as Refs 20 and 21, present nonlinear
control methods (feedback linearization) to maneuver between equilibrium points. A combination of
control methods is presented in Ref 22 where both electromagnetic forces and length rate are used to
manage librations.

De Matteis and De Socio caution against instabilities due to atmospheric density gradients in very long
tethers (>75 km) that could lead to a destabilizing libration resonance at altitudes lower than 240 km.*
The culprit in this case was that a long librating tether would be subject to very different drag forces
throughout large pendular swings. However for the tether lengths, operational altitudes and allowable
librations considered in this work, the density variations are relatively minor and this effect is ignored.

Another category of tether literature is devoted to vibration and mode shapes. Von Flotow shows that
a tether under the uniform loading of an electrodynamic and aerodynamic force will tend to sag in the
middle with a slow first lateral mode of vibration (slow relative to the longitudinal vibration). Using the
fact that the period of the first lateral mode of vibration is long, he approximates the tether to be in a state
of quasi-static equilibrium in the shape of a section of a circular arc.* This shape and vibration
approximation is used in determining the maximum current limits for the system (Appendix D). Other
vibration-related work includes control of an electrodynamic tether through input shaping to reduce
vibrations and librations® and vibrations due to a constant Lorenz force load.”® Watanabe suggests a bang-
bang current control providing input shaping to reduce vibrations and librations while thrusting with an

EDT.? Williams investigates control of flexible tethers using electromagnetic forces and a movable



attachment.?® These analyses, however, do not include atmospheric effects. De Matteis® presents
equations of motion that include aerodynamic effects in modeling vibrational behavior of non-
electrodynamic tethers. There are several authors who develop controllers for non-electrodynamic tethers
using tension control or reels for length variation.* Others focus on the deployment and retrieval phases.*

The remainder of the tether literature is largely aimed at specific design studies or missions. Many
authors have addressed designing tethers to operate efficiently and safely in the space environment. Bare
wires efficiently collect electrons to produce the current used for thrust.*>* Porous tapes have been
proposed and investigated to increase the survivability where micrometeors can sever a thin wire and end a
mission.** Several other papers were written to support SEDS (Small Expendable Deployer System) and
other specific space demonstrations.®**":3® Estes et. al. document lessons learned from the various
missions that have deployed in space.** A good reference covering all the general topics reviewed is the
book Dynamics of Space Tether Systems by Beletsky and Levin.*

In the area of optimal control of low thrust multirevolution transfers, Ross, Gong and Sekavat
propose a technique that manages the high frequency content of optimal solutions. Solutions are achieved
by solving a large time scale optimal control problem using a small number of nodes. Applying Bellman’s
principle, they then iteratively solve the problem and propagate the control solution along smaller sections
of the original optimal path, thus capturing all its detailed high frequency components. This general
method has the advantage of solving large time scale optimal control problems while still avoiding the
aliasing common when there are not enough collocation node points to resolve the high frequency content.
A more exhaustive list of the literature reviewed along with a brief synopsis of their pertinent contents is
included in Appendix I.

The electrodynamic tether literature provides ample coverage of libration stability analysis and control,
however only a few papers address orbital maneuvering. Williams paper on optimal orbit transfer and
Tragesser and San’s maneuvering approach using periodic control stood out as the two works most relevant
to the research presented in this dissertation. Starting with key concepts extracted from these two papers, a

new approach to optimal orbital maneuvering is presented.



. Optimal Orbital Maneuvering

In this chapter, we examine optimal maneuvers using a two-ball EDT as defined in the
introduction (Figure 1). Because of the low altitudes considered, the trajectories account for atmospheric
drag and are nearly circular therefore the orbital equations of motion may be expanded about the very small
eccentricity. This assumption is good for orbits with small eccentricities as long as errors remain within the
tolerance of the spectral algorithm used for optimization.***? Furthermore, the maneuvers are known to
occur over many orbital revolutions, so the small oscillatory changes in the orbital parameters that are
evident over short time scales (within each revolution) are averaged out leaving only the secular changes
that occur over long time durations (many revolutions). See Appendix F for a full discussion on different
time scales. The only control we have at our disposal to perform the desired maneuvers is the current in the
wire using variable resistance. The dynamic behavior of the EDT in its slowly changing orbit is
predictably periodic, consisting of a linear combination of sinusoidal functions of true anomaly, or
equivalently, time. Because motion of a constantly thrusting EDT deviates from Keplarian motion in a
periodic manner over each orbit, a controller that is also periodic over the orbit will contribute to secular
changes in the orbital parameters over a long time as shown in Appendix G. Other contributions of the
controller are averaged out in the long-term. Therefore we assume periodic control current, I , modeled

using the relevant terms of a Fourier series.
L(v,u(T)) =1, (u (T)+u, (T)cosv +u, (T)sinv +u, (T )cos 2v +u, (T )sin 2v) 1)
where v is the true anomaly and 1 is the maximum allowable rms control current. To highlight the fact

that the controlled Fourier coefficients vary only over large time scales, we write them as functions of T .
The slow time scale variable T is a scaled version of the clock time, t, which is itself proportional to the
true anomaly. All state variables and controls that are functions of T change very slowly and are

considered constant over short time intervals. For a more complete discussion on time scaling, see Chapter

V and Appendix F. The control in Fourier space with bases ¥(v)=[lcosv,sinv,cos2v,sin2v]" is

therefore completely defined by

u(T)=[u1,u2,u3,u4,u5]T ¥}



such that the current in the clock time domain is given in Eq. (1) by | =1,¥" (v)u(T). With the control

written in this form, the approach to optimal control is viewed in the Fourier space where the goal is to

determine the time dependent Fourier coefficients, u(T), that minimize a given cost function for a

trajectory subject to the time-averaged dynamic equations of motion. A pseudospectral method of dynamic

Time Domain
Optimal ; S
Control Non-linear | States - V"!
Problem Plant > =
Constraints Optimal Controls in Clock Time
IR,

Averaged Constraints Optimal Controls

¥__ Fourier Space

Optimal
Control Optimizer
Problem » (DIDO)

Figure 2. Optimal Control in Fourier Space

optimization is employed using DIDO software*** to solve the subject optimal control problems yielding
the optimal control coefficients and path discretized over large periods of time. The diagram in Figure 2
shows that optimal control problems exhibiting periodic behavior may be transformed into a Fourier space
using the method of averaging. This eliminates dependence on fast time variables (v,t) and the resulting
averaged states and controls will only depend on the slow time variable (T ). The problem posed in this
Fourier space may now be solved by an optimizer producing average states and controls that change slowly
over time.
If it is desired to capture the instantaneous states for subsections of the averaged trajectory, then

the general method of multirevolution optimal control proposed by Gong, Ross and Sekhavat would be

suitable. In this way, instantaneous optimal controls could be determined for sections of the optimal



averaged path. This method was tested over a shorter time span, where an optimal control problem was
posed and solved using this antialiasing algorithm that applies Bellman’s principle to capture high
frequency content of an optimal trajectory. The algorithm was used to solve a fixed time (6 orbits),
maximum inclination problem (constrained to use positive current only) initially using 32 nodes. Then the
algorithm iteratively solved subsections of the optimal path using 32 nodes, propagated the resulting
optimal control which provided a new initial condition for the optimizer until the desired end conditions
were reached. The final solution used 16 iterations and was able to capture fast time periodic behavior of

some of the states (8, ¢,a), but the secular behavior was difficult to observe due to the few number of

revolutions. Longer term maneuvers were not attempted due to the number of iterations required to capture
all the fast time dynamics of the instantaneous states. The method did demonstrate, however, that it could
potentially be used to solve for sections of the optimal averaged path without placing any assumptions on
the controller (i.e. not required to be periodic) perhaps taking advantage of some of the higher order effects
availed by using instantaneous state dynamics. The remainder of this dissertation will focus on the
construction of and solution to optimal EDT control problems in Fourier space, and will begin by deriving

a dynamic model.

Dynamic Model

Orbital changes due to the relatively weak Lorenz forces generated along the electrodynamic tether
occur over many orbital revolutions. The EDT is modeled as a “dumbbell” consisting of two end bodies
tethered together with a taut (i.e. positive tension) 4 km copper wire. The Lorenz force generated along the
wire containing electric current is given by

F=ILxB (3)
where | represents tether current (the control), B represents the Earth’s local magnetic flux density vector,
and L is the tether length vector pointing in the direction from the upper end mass to the lower one (see
Appendix A). The tether geometry and current direction that yields a positive transverse thrust is shown in
Figure 1.

The local magnetic flux density for an Earth-orbiting satellite is modeled as
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-2sin(w+v)sini B,
B:7;—r3n cos(w+v)sini | =| B, 4)
Ccosi B, ],

where ., represents the Earth’s magnetic dipole moment, i is the inclination relative to the magnetic
equator and B, , B,, and B, represent the magnetic flux density vector components in the radial, transverse
and orbit normal directions respectively (i.e. € , & and €, directions). At the equator, a force of 0.1 N

distributed along a one amp, 4 km EDT is achievable at an altitude of 270 km, which can be the same order
of magnitude as the atmospheric drag at that altitude depending on the physical characteristics of the tether
and end bodies. To ensure the satellite orbits longer than a few days, the control system will need to apply
a constant average current in order to provide constant in-track thrust that will compensate for drag forces
acting in the opposite direction. The problem of drag compensation is exacerbated when the EDT orbits at
a higher inclination since the out-of-plane component of the magnetic field which produces the required in-
track thrust is reduced (see Eq. (4)). Drag magnitude depends on the physical properties and dimensions of
the EDT, the atmospheric density and satellite velocity. For a near circular orbit, the drag force on the

entire tether system is given by

1 _. J7IN
D=--B = 5
> p(l’)ret ®)

where p(r) represents the average air density at radial distance r, and B is the average ballistic

- . - L . C4A .
coefficient of the entire tether. Here the ballistic coefficient is defined as B" = —"— where C, is the
m

average coefficient of drag, A is the average cross-sectional area perpendicular to the velocity vector, and

m is the system mass. Modeling the atmosphere as an exponentially decaying density using a scale height

h", we can expand about the small eccentricity and approximate the average density through first order as*

p(r)=pp " =p(a)[1+ aef?svj (6)

where the radial distance has been approximated as r = a(l—e005v) .
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Gravity gradient torque tends to keep the tether nadir-pointing with libration that is assumed to be small

(libration is addressed in Chapter V), so the acceleration due to the Lorenz force in Eqg. (3) is given by

1Ly,

F=—"3 (cosie, —cos(v +w)sinie, ) )

Recognizing that the orbits of interest at this low altitude are nearly circular, we ignore O(ez) and

higher order terms and write the equations of variation for the five classical orbital elements as

da 2a o

22 (F+D)-

dt nr( +D)-¢,

de 1 (a? .

Eznaze[T_rJ(FJrD)'et

do 1 _rcotisin(v+a)) R

2 F-e, @)

jsinv(F+D)~ét -

- = ¥
dt nae( 1+ecosv
i rcos(v+w)_ .
di _roos(v+o)

e
dt na’ "
dQ rsin(v+e) . .
—_— .e
dt na’sini "

where n is the mean motion of the satellite (Ref 43 pp. 84-85). Expanding these equations of motion about
the small eccentricity using r* ~a™ (1+ ke COSV) and ignoring second and higher order terms, we write

the general perturbation equations of motion for a nadir pointing tether in terms of the true anomaly. This

is the only variable that changes significantly on a short time scale.

% ~ 2Cacosil (v)(1+4ecosv)—2D(l+(2+ :*jecos‘/j

% ~ C cosil (\/)(2005V+5ecos2 v+e)—2—D(005v+e+(1+ stjecos2 vj
a

Sin (2042 .
d—wzCCOSISm( il V)I(v)(1+2ec05v)+sinv mI(v)(2+5e005v)—B 2+(l+ 2*ajec05v 9)
dt 2 e ae h
%z ~Csinil (v)cos® (v +w)(1+2ecosv)

Cl
z—?z——(wsin(2v+2a))(l+2ecos‘/)

B up(a)

L .
We have let C = —/n_ represent the term resulting from thrust, and D = represent the drag term.
nm

a4

In this form, these equations could serve as dynamic constraints in posing our optimal control problems,
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however due to the rapid variation of true anomaly with each revolution we would need to discretize the
problem with enough node points for the solver to capture the motion of each varying element with each
revolution. This is the approach Williams used (Ref. 1) to achieve optimal control solutions for short time
scale problems. Since we are only interested in the secular state changes of the EDT orbit over long time
scales, we use the method of averaging to eliminate the small oscillations that occur within each revolution
which effectively approximates the nonautonomous system in Eq. (9) as an autonomous averaged one.*

This is achieved by recognizing that
1
dt ==|1-2ecosv+0(e?)|d 10
n[ v+0( )] v (10)

and then integrating over 2zN (N =1,2,...). Because the average states vary slowly with time, they are
considered constant over the short time periods of integration and are removed from the integrand. The
fast-time variable, v, always appears in the argument of a sine or a cosine function, therefore integrating
Eq. (9) with respect to v will yield non-zero results only when the control current, 1, is itself periodic (i.e.
it is a combination of sine and cosine functions of v ). A current that is purely dc will produce secular
motion in semi-major axis and inclination since the first two derivatives in Eq. (9) would yield non-zero
values after integration. Because an EDT depends on the Earth’s magnetic field for propulsion, the orbits
of interest remain very close to the Earth and are therefore nearly circular. To avoid singularity neare =0,
we will substitute two equinoctial coordinates for the eccentricity and argument of perigee in Eq. (9). The
new coordinates are the eccentricity vector components defined as h =esinw andk =ecosw . The
average state equations of motion are derived in Appendix G using the periodic current defined in Eq. (1),

and are written as

13



Aa .
N 2Cl acosi(u, +u,e)—2D

Ah .| (3h h
—~Cl cosi|| — [u, +| — |u, +
AT 2 e

. . 2zN
Secular changes to the orbit state are now expressed over a large time scale, AT = 71 The state vector
n

x Now represents the average orbital state values rather than the instantaneous values and is written using a
quasi equinoctial element set, i.e. x(T)=[a,h,k, i,Q]T . Notice that these average states vary slowly over

long time scales (indicated by T ) and are considered constant “within” each revolution. The average state
equations of motion are thus devoid of the short time scale variable, true anomaly. From the first equation
in (11) we see that the average drag effect due to the air density (in the drag term, D) primarily affects the

average change in semi-major axis. To a lesser extent drag decreases the h and k states and has a

circularizing effect since e =+/h* +k® . With the secular equations of motion in hand, we now turn to

constraining the allowable tether current to values that are within the system power limitations.

Constraints

To determine the optimal controls for the system described by Eq. (11), we need to solve for the

periodic control coefficients, u(T). Besides enforcing the initial state conditions as event constraints, the

control current must also be bound to remain within an available power limit which is itself defined by the
electron collection capabilities, ohmic losses, voltage current and other factors. For a description of
electron collection in the ionosphere and the associated limitations see Ref 45. Because the control in Eq.
(1) is defined using the rapidly changing true anomaly we cannot simply bound the instantaneous periodic

current between a minimum and maximum value since we need to keep our averaged equations of motion

14



devoid of short time scale variables. To properly bound the control then, we need to define a path

constraint that is a function of the slowly varying Fourier control coefficients, u(T). The approach used

herein limits the average power available for thrust which in turn places bounds the on the rms current. For

a given constant wire resistance R and average power limit, P. the maximum allowable rms current is

avgMax !
defined by Joule’s law combined with Ohm’s law

P
Iz _ _ avgMax 12
;= (12)

The actual electric current rms value over one orbit (period) is defined by

= [ 1 3

7%

For the periodic current, this value is (using Eg. (1))
12, = Ii[uf+%(u§+u§+uf+u§)} (14)

Using Eqg. (14) we may express the path constraints in terms of the controls. The path constraint for the
control is written as

Pav ax
gl(u(T))= Irzms _QTMSO (15)

which places an upper bound on the rms control current throughout the transfer. Choosing a proper value
for the maximum allowable rms control current is addressed in Appendix D.

This path constraint approach has the double advantage of averaging out any parameters periodic with
the orbit that affect the available thrust current, such as diurnally varying ionospheric electron density, as
well as eliminating the short-time variable, the true anomaly. The event constraints (constraints on states

at specific times during the trajectory) are comprised only of the initial conditions and are written as

e(x(T,))=[a(M),h(T,) k(T ). i) ] (16)
Finally, states, controls and time are bounded by upper and lower limits (denoted using subscripts ‘u’ and

‘I’ respectively). These box constraints are written as
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’ 17)

Now all the pieces are in place to construct and solve optimal control problems that will maneuver an EDT

to a new orbit over many revolutions while overcoming drag by controlling nothing but current in a wire.

Three Optimal Control Problems and Their Solutions

Three sample maneuvers were chosen to demonstrate large time scale optimal control because of their slow
secular orbital changes that occur over many revolutions. The tether modeled in all three problems is 4 km
long and 2 mm in diameter (based on TiPs, a nonconducting tether system deployed in 1996). The system
mass and average cross-sectional area is 500 kg and 8 m? respectively. The first two problems outline the
optimal control problem setup, solution and results for maximizing the average altitude and inclination, and
serve as benchmark problems since other authors have investigated similar non-optimal problems.** The
third problem provides an example optimal control problem and solution that achieves a minimum time
orbit change occurring over 500 revolutions using only 40 nodes in the discretized optimization problem.
All problems were solved using DIDO, an optimization software package that discretizes and solves
general optimization problems using a pseudospectral method.*® Even though the derivation that produced
Eq. (11) required integration over a hypothetical integer number of revolutions, the optimizer does not need
to discretize the trajectory over the same integer multiples since the dynamic equations of motion are
established for the continuous average state, not the instantaneous state. This average state, however, is
meaningless unless the total maneuver time is long enough to span several periods. This akin to ensuring a
sample interval is big enough to capture all the desired frequencies in signal analysis.

Verification of the optimal control solution was achieved by evaluating the Hamiltonian output by
DIDO. To demonstrate the accuracy of the model used as the dynamic constraint in these problems, the
output Fourier coefficient controls were converted into the time domain and then used to propagate

instantaneous states using Eq. (8).
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Maximum Final Altitude

Consider the scenario where there is a need to tow an object (spacecraft, debris, etc.) to a higher orbit in
the same orbital plane using an EDT. For the sake of testing the algorithm against a known solution we
seek the maximum altitude an EDT can reach in 50 orbital revolutions with no drag. In this case we expect
that a direct current in the nadir-pointing tether will provide maximum thrust in the direction of the velocity
to spiral the spacecraft out to a higher orbit.>® Although we may actually want to control the other orbital
elements to a desired end state, we seek only this known solution for this benchmark problem. The optimal

control problem is written as the following.

Minimize Cost: J =—a;

Subject to:
Dynamic Constraints X(T)=1(x(T),u(T))
Event Constraints e(x(T,)) =[6648 km,0,0.001,30°T"
Path Constraints g, (u(T))=12,—2.25<0 Amps

where x(T) is the average state change and f(x(T),u(T))=Ax/AT . Box constraints in Eq. (17) are

also enforced where we have chosen the bounds to be

x, =[16000 km,0.4,0.4,80",180" ]T
x, =[6638 km,~0.4,-0.4,15', 180 |
T
u, =|12,42,42,42] (18)
u =-u,
T, =0
T, =50P

where P is the orbital period at T =0. The initial states h and k correspond to an eccentricity of
0.001 and an initial argument of perigee of zero. Before using the optimization solver, the states and time
were scaled to span values of order 1 to make the problem numerically well-conditioned.***” Solving the
problem using DIDO yields the control history shown at the top of Figure 3, and the bottom of the figure

shows the control transformed into the short time scale domain, in this case just a direct current. The
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average altitude and inclination trajectories are shown in Figure 5, where the stars indicate the DIDO
solution at distinct times (spanning large time scale steps) and the lines indicate the propagation of the
instantaneous state values using DIDO derived controls and a Matlab® ode solver. As expected, in order to
perform a maximum climb maneuver the solution indicates that the controller should drive a maximum
allowable direct current through the wire to accomplish the large transverse thrust needed to boost the orbit.
Starting at an altitude of 270 km, this EDT can climb about 130 km in about 3 days without drag.
Introducing drag into the dynamic constraints does not affect the control profile, but reduces the achievable
altitude change in the given number of orbit periods (50) to about 117 km. In reality we would need to
contend with libration control and, at times, adverse battery conditions that could limit power available for
tether thrusting. However, in principle, modest maneuvers can be accomplished if they are not time
critical. Because there is no explicit time dependence in the Lagrangian of the Hamiltonian of this optimal
control problem (Eg. (19)), the resulting Hamiltonian should be constant, i.e. H =0. The Lagrangian of

the Hamiltonian is
H=H+p,0, +p)x+pju (19)
where the Hamiltonian is given by H = A"f and A represents the costates. The covector functions

associated with the path constraint, state-variable box constraints and control-variable constraints are

represented by 4, , p, and p, respectively. DIDO uses the Covector Mapping Principle to produce

adjoints and the Hamiltonian as part of the solution. To check optimality the output Hamiltonian was

plotted and it was revealed that it was indeed constant as shown in Figure 4.
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Maximum Final Inclination

From Eq. (11) it is evident that a carefully and constantly applied dc control current could indeed
compensate precisely for drag to maintain altitude, however it would come at the expense of a secular
decay of the inclination after a long time, which may be undesirable. To maximize the final inclination
achievable in a fixed time (now for 500 revolutions), we write the same optimal control problem as in the
previous example with the following exceptions.

Minimize cost: J =i
Subject to:

T, =500P
e(x(T,)) = [6648 km,0,0.01,30°T
9, (X(T)): h? + k2 —eoz =0

where the new path constraint, g, (x(T )) , ensures a constant eccentricity transfer.
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As a test case, we first look for the no drag solution (i.e. atmospheric density terms in Eq. (11) are zero),
then compare it with the solution that accounts for drag. The 32-node DIDO control solution to the no drag
problem is depicted in Figure 6.

The contrast between the two plots of the same control in Figure 6 clearly shows the advantage of
solving the optimal control problem using Fourier coefficients over a large time scale. Attempts to
discretize and optimize this control problem using instantaneous states and their respective dynamic
equations of motion (Eq. (8)) for this long term trajectory would require thousands of nodes and run the
risk of round-off errors and long solution times. Propagating the instantaneous states using the optimal
control output produces the trajectory shown in Figure 7 where the magnified inserts clearly show the
instantaneous fast time dynamic behavior.

Because there is no drag to contend with, the optimal solution indicates that it is best to mainly use an

ac current that has double the orbital frequency, i.e. a combination of u, and u,within constraints. This
result is consistent with Refs 2 and 8 which indicate that to achieve maximum inclination change the

control strategy is to drive a current such that | = —\/Elm cosz(v +w). Here, itis assumed that the path

constraint in Eq. (15) is active which bounds the peak amplitude of this ac input to \/Elm . Transforming

this result into the Fourier coefficient controller described in Eq. (1) we see that the control solution is the
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same, only expressed in the context of the partial equinoctial set. To achieve a maximum final inclination,
the control may be written
| =21, cos(2v + 2w) = —/21,, (cos 2w cos 2v —sin 2wsin 2v)
_h? 2kh j (20)

kZ
=—J2I, [—ZCOSZV——ZSin 2v
e e

In this form we recognize the Fourier coefficients for the second mode cosine and sine functions as

2 R
U4:— ZIm(%j

U :ﬁlm(z—kzhj

e

(1)
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The optimal controls calculated using Eq. (21) are consistent with the corresponding control Fourier
coefficients determined by DIDO (within an error 2-norm of 0.04). This trajectory uses some negative dc
thrust to decrease altitude while increasing the orbit’s inclination. The Fourier control coefficients
displayed in Figure 6 show that the tether current controller initially uses a small negative dc component to
descend to the lowest allowable altitude in order to maximize the final inclination. Controlling the
spacecraft in such a way increases the orbit inclination from 30° to 31.19° in about a month. This strategy
outperforms a similar constant altitude maneuver by 0.04°. When drag is considered, the control strategy is
altogether different because more of the limited available current must be constant dc in order to
compensate for the increased drag as seen by comparing Figure 6 and Figure 8. We see from Eq. (11) that
a large positive dc coefficient tends to reduce the inclination. There is a penalty for orbiting where the
atmospheric density is higher because more power is expended simply to maintain altitude which causes
inclination to decay and less power available to maximize the inclination. In this case, the strategy is to

climb to a lower density altitude, level off to increase inclination then descend again to the minimum

Max Inclination Control Fourier Coefficients, u(T), with Drag
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allowable altitude taking advantage of the largest possible inclination gain opportunities as shown in Figure
9. The initial climb comes at the expense of inclination gain, however overall the satellite achieves

maximum inclination change because it operates in a lower average drag environment and does not need to
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Max Inclination Solution with Drag Using 32 Nodes
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Figure 9. Maximum Inclination Maneuver Trajectory with Drag

expend as much power to maintain altitude. After a month of thrusting in a reduced average drag
environment, the satellite achieves an inclination gain of 1.0° outperforming a constant altitude maneuver
by 0.25°. Because this maneuver occurs over so many revolutions, it would be near impossible for short
time scale optimization to yield a solution to this problem. The problem is complex when attempting to
solve in the clock time domain but it is reduced to a simple Zermelo problem” in Fourier space. The next

example problem will demonstrate how to apply this method to a more general orbit transfer.

“ In 1923 German mathematician Ernst Zermelo posed the problem of navigating a boat from point A to
point B in minimum time factoring in wind and current. The solution is not a straight line path. Ref. Jean
van Heijenoort, 1967. From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931. Harvard
Univ. Press.

24



Minimum Time Orbit Change

Having looked at the baseline orbital maneuvers, we now turn our attention to determining the controls
for a minimum time orbit change involving a desired final altitude and inclination while maintaining a
constant eccentricity. In this example we start by using our initial states from the first example and then
construct the optimal control problem to achieve a 10 km climb and a one degree inclination increase,

while maintaining a constant eccentricity of 0.005, in the quickest time. We write the problem as

Minimize Cost: J=t,
Subject to:
%(T)=£(x(T).u(T))
e, (x(T,)) =[6648 km,0,0.005,30°T'

=12 -2.25<0 Amps’

rms

)
9, (x(T))=h*+k*—e} =0

Box constraints are still those listed in relations (17) and Eqgs. (18), but since this problem has a free

final time, we write

T, +5 <T, <5x10*P

The control solution without drag, depicted in Figure 10, indicates that the strategy is to initially apply
a negative dc control current, indicated by u, , to descend. The controller needs to apply large ac control
components cycling at twice the orbital frequency to reach the desired inclination (i.e. large
u, and u, components), all while avoiding large components cycling at the orbital frequency, namely
u, and u,, which are large contributors to eccentricity change. The dc component is nearly zero for the

majority of the trajectory and then reverts to positive flow at the end of the trajectory to climb to the final

desired orbital altitude (Figure 11). When drag is considered, the dc component of the control current is
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throttled (see Figure 12) such that the satellite initially climbs and then descends to the final orbit

minimizing

Contending

Control Coeffs, Amps

Current, Amps

the cost due to increased drag at lower altitudes as much as possible as shown in Figure 13.

with drag, this EDT takes an additional four days to complete the maneuver.
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Figure 11. Minimum Time Orbit Change Trajectory without Drag

Controlling the slowly varying current Fourier coefficients over many revolutions has the advantage of

solving long-term problems with relatively few nodes in the optimization algorithm. A similar problem

solved using a small time scale and exact equations of motion would yield the instantaneous states during
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each revolution, however it would require an exorbitant number of nodes over the same time frame to
arrive at a meaningful solution. The periodic current would require at least four nodes per orbit revolution
in the short time scale domain to establish a control current that avoids the node points aliasing undesired
harmonics. The first day alone in this example consists of 32 control current cycles (Figure 14) which
would require at least 64 nodes to adequately capture all the cycles. Using large time scales and averaged
states, we have solved a multirevolution orbital maneuvering problem using 40 optimization nodes
contrasted to the two thousand nodes that would have been required using a short time scale and

instantaneous states. These examples demonstrate that solving optimal control problems in Fourier space

Control Fourier Coefficients, u(T), Minimum Time Maneuver with Drag
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using large time scales and time-averaged orbital states has significant advantages when the desire is to
control the secular behavior of a continuously operating, low thrust satellite system over a long time rather
than the instantaneous periodic behavior. In satellite control, a rapidly changing periodic variable may be
averaged out leaving only the dynamics of the slowly changing variables. In this dissertation, a method of
constructing and solving a large time scale optimal control problem using an electrodynamic tether to
maneuver to a desired orbit has been investigated. Optimal controls for three sample maneuvers spanning
up to 500 orbital revolutions were determined using 30 to 40 optimization nodes instead of the hundreds or
thousands of nodes required using the instantaneous clock time dynamics. The remainder of this
dissertation will use the concepts introduced here to improve the controller dynamic model by including the

effects of the Earth’s rotating tilted magnetic dipole (Chapter 1V) and tether libration (Chapter V).
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Figure 14. Current Control in Time Clock Time Domain for the First 16 Revolutions for

Minimum Time Maneuver with Drag

Table 1. Summary of Results

Maneuver Type No Drag With Drag
Maximum Final Altitude Aa =130 km Aa =117 km
Maximum Final Inclination Ai =119 Ai =10
Minimum Time Orbit Transfer Av =432 revs Av =499 revs
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V. Multiple Time Scales - Modeling Earth’s Tilted

Magnetic Dipole

Because electrodynamic tethers depend on the Earth’s magnetic field to generate a thrusting force, an
accurate model of this field is required to accurately control the spacecraft. The models used so far have
assumed that the Earth’s magnetic dipole moment vector is aligned with the Earth’s poles and the magnetic
field remains constant as the EDT orbits through it. In reality the Earth’s magnetic dipole moment vector is
tilted with respect to the North Pole by about 11.5 degrees (according to NASA) and rotates with the Earth
once per day. Since the local magnetic field vector at any given point in the EDT’s orbit cycles with a
period of one sidereal day, the controller must account for this effect in the model. Fortunately this effect is
predictably periodic and may be included in our existing model of averaged state dynamics. The diagram
in Figure 15 depicts the planes containing the geographic equator, magnetic equator, and the EDT orbit
where the magnetic equatorial plane rotates about the North geographic pole vector (N).

The inclination and argument of latitude at epoch of the satellite with respect to the magnetic equatorial

plane are represented by i, and «,, respectively for a dipole that is tilted by ¢ . The argument of latitude at

A

geographic
equatorial plane

magnetic equatorial
plane

Figure 15. Earth’s Tilted Magnetic Dipole Geometry
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epoch of the satellite with respect to the geographic and equatorial planes are given respectively by

The inclinations with respect to the two equatorial reference planes are related using the law of cosines of

spherical trigonometry.
cosi, =cosdcosi+singsinicos(Q-Q,)

sini, =/1-cos’i,

where we assume the satellite to be in an orbit such that 0 <i, <90° vt >0 and Q, is the angle from an
inertial reference direction to the intersection of the two equatorial planes in the direction of the longitude
of the ascending node in the geographic equatorial plane. This angle varies with time over a medium time

scale (i.e. a day) and is related to the true anomaly by

where 7 is a scaling factor. Applying the spherical trigonometric laws of sines and cosines once again, we

obtain the relationships between the arguments of latitude in both reference equatorial planes.

sinysini, =sinssin(Q-Q,)
cosysinisini, =(cosd—cosicosi, )

The argument of latitude at epoch in the magnetic equatorial plane is then written

sina,, =sin(a—y)=sinacosy —cosasiny

cosa,, =cos(a —y)=cosacosy+sinasiny

The local magnetic field vector direction is a function of the inclination and argument of latitude at epoch
with respect to the magnetic equator may now be expressed in terms of a time varying function that
depends on the same orbital parameters referenced to the geographic equator. In the satellite frame (Figure

33 in Appendix A), the magnetic field vector is
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—Z[Sm—a(cosé—cosi cosi, )—cosasinssin(Q-Q, )}

. L sini
-2sina,, sini,,
- cosa . o
B:y—;“ cosa,, sini, =7—';‘ ——(cosd —cosicosi, ) +sinasingsin(Q-Q, )
r _ r sini
cosi,

Cosi,,

After making the appropriate substitutions and grouping terms, a form for the magnetic field in terms of the

orbital elements referenced to the geographic equatorial plane is derived as

B =B, cosd+B,sing (22)
where
[—2sinasini
B,:y—g1 cosasini
r .
| cosi
. . . (23)
T 5% T 5%
[ 2[sinacosicos(Q -, )+cosasin(Q-Q,)]
Bn:y—j —c0Sar €osicos(Q—Q, ) +sinasin(Q-Q,)
r L
sinicos(Q-Q,)

The dynamic model of the local magnetic flux density vector may be decoupled into two terms, each

affecting the motion of the EDT over a different time scale. The first magnetic field term B, is derived

from the same non-tilted dipole moment model used in Eq. (4) and it is periodic on a short time scale of
one orbit, but does not change with respect to the medium time scale (i.e. a day). It may be averaged over a

single period. The second magnetic field term B, , however, is periodic on a medium time scale of 7
orbits (77 >l) since it contains Q, terms. For optimal control problems spanning times such that

v>> 27zn this magnetic field term may be averaged over 7 orbits. As expected, when the model assumes

that there is no tilted dipole moment, then Eq. (22) reduces to the standard model used in Eq. (4) that is
periodic over one period.

The Lorenz force due to a control current driven through the tether is given as

F=ILxB=ILx(B,cosd+B,sind)=F, cos5+F,sind
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where F, represents the contribution to the electrodynamic force that is periodic over a single orbit and F,
represents the contribution that is periodic only over 7 orbits, i.e.

F, = ILxB,
F, = ILxB,

The F, contribution is the same as that derived in Eq. (7) and may be averaged over one orbit as shown in
the example problems in the previous section using the non-tilted dipole model. The F, term contributes

to the total Lorenz force when there is a non-zero tilt in the Earth’s magnetic dipole moment and the vector

direction cycles with period 2777 . For a nadir-pointing EDT using the satellite frame defined in Figure 33,

this force contribution is

with components

F, -é =Clsini(cosQcosQ, +sinQsinQ, ) (24)

F, &, =Cl[ cosacosi(cosQcosQ, +sinQsinQ, ) —sina (sinQcosQ, —cosQsinQ, ) |

L . .
where C = L"‘A . Assuming that states and controls change very slowly over 7 orbits, the average states
nma

change due to this force contribution only when there is a control current that is resonant with Q, = Y we
n

will therefore define a control current as in Eq.(1) that now includes Fourier control coefficients

us and u, that correspond with this harmonic as

L(vou(T). (M) =1, (ul +U, COSV +U, SiNv +U, COS 2V + U, Sin 2v + U, cos%+u7 sin%) (25)
Substituting Eqgs. (24) and (25) into the perturbation equations of motion (Eq.(8)) and changing the
independent variable to the true anomaly using the approximation dt ~ %(1— 2e cosv) dv we write the

averaged perturbation equation for the semi-major axis as

Aa=Aa cosd +Aa, sino
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where Aa, is the same averaged perturbation equation for the non-tilted dipole given in Eq.(75) and

2c . v Y
Aa :—asmlj' I (v)(1+2ecosv)| cQcos—+sQsin— |dv (26)
oo ] n n

The sine and cosine functions of the longitude of ascending nodes do not change much over the 27zn

interval and may be considered constants for the integration (they are abbreviated as sinQ = sQ and

cosQ = cQ for clarity). When # is an integer, the only terms in the current (Eq.(25)) that will resonate
with the lower frequency harmonic and survive the integration are the u, and u, terms. Therefore, in this

case the contribution to the change in the average semi-major axis due to the rotating tilted dipole is
Aa = Cl_asini(cQu, +sQu, ) 271 27
a, =Cl asini(cQug +s u7)T (27)

where we have assumed that frequencies of the F, and F, contributions are commensurate and that terms

with incommensurate frequencies drop out after integration in Eq. (26) yielding an exact solution shown in
Eq. (27). For a satellite orbiting at an altitude of approximately 261 km, the scaling parameter corresponds

to 16 orbital revolutions per sidereal day, i.e. 7 =16 . To consider an orbit transfer at altitudes that do not

correspond to an integer number of revolutions per sidereal day where the multiple frequencies under
consideration are not commensurate, we average the state over a larger integer number of revolutions to

achieve an approximate model for the averaged state dynamics. This is accomplished by recognizing that

for some tolerancer >0, 3N €Z and p < Z such that |77N - p| <. Simply said, if we choose N such
that an interval 2zn7N is very close to an integer number of periods, then the commensurate frequency

model in Eq. (27) will suffice to represent the averaged dynamics within a tolerance that is defined by 7 .
This means that the duration of the maneuver must be long enough to obtain an accurate average of

instantaneous states that include contributions at lower frequencies. By choosing intervals that do not

. . . . . A
correspond to integer periods (i.e. 7N ¢ Z ), the maximum mean square error of our estimate for A
a

incurred by using Eq.(27) is of the same order as the nondimensional quantity Cly (~10°° for the examples
n

here). The error due to the approximation is itself periodic, free of secular growth, and is exactly zero
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whenyN € Z . Therefore, after integrating Eq. (26) over the interval from 0 to 277N , Eq. (27) becomes
(forN >1)

Cl_aN .
Aa, = T]a [2;msm|(c(2u6+sQu7)+(9(%ﬂ

Similarly the average inclination change due to the contributions of the rotating tilted dipole is derived

using the method of averaging.

2znN
Ai,iz—E I I(v)cow{cowcosi[chosK+stinKj—sina[chosK—cQsinzﬂdv
n s n n n n

Cl A v v v .V
~ ——"COoSi I cos’ a| cQcos—+sQsin— || u, cos—+u, sin— [dv
n 0 n n n n

Integrating yields

. Cl .
Ai, ~— 4m cosi(cQug + sQu7)27[I:7N

For the longitude of the ascending node, the change due to this contribution is

2znN
AQ, __c '[ I(v)sino{comcosi(chosKJrstinK)—sina{chosK—cQsinKﬂdv
n g n n n n
cr_ N . .
~—0 J sm2a(chosK—cQsij(uscosz+u7smK]dv
n s n n n n
cl N
~—"(sQu, —cQu
4 (s, 2 n

The eccentricity vector components are derived as follows.

=11 1 : .\ reotisina .|, 1 (@ | (1-2ecosv)
= {k[r%(u—uecosv)smv(ﬂ~et)——na2 (F“-e")}+hnaze ), [,
2m]N~ v v
j k{(2+ec05v)sinvsini[chos—+stin—j
0 n n

o

5|0

-sin a|:COSaCOSi(CQCOSK+ sQsin K]—sin a(chosK—cQsin KH} I(v)
n n n n

+hsini (2c05v+e(cos2 v+1))(chosK+ sQsin KJ I (v)dv

n n
Integrating yields

2znN

Ah, ~ Céllm (K coti(sQu, —cQu, )+ 3hsini (cQug +sQu, ))
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CZm]N~ v v
Ak == _[ h{(2+ecosv)sinvsini| cQcos—+ sQsin—
on oy n n

+cotisin a{coswcosi(cﬂcosz+ sQsin KJ—sin a(chosK—cQsin Kﬂ} I(v)
n n n n

+Ksini (2003v+e(0032 v+1)){chosK+ stinK) I (v)dv
n n

which produces

Ak~ C:‘rm (ﬁcot i (_SQUG +cQu7)+3k sini (CQU6 +sQu, )) Zﬂ:N

For a given averaged state x , the total rate of change is approximated as

AX ~ AX COS O + AX, sin &

where the non-tilted dipole dynamics periodic over a single orbit, Ax, , are given in Appendix G.

Recognizing that AT = 2mN , the averaged dynamics 2—; may be determined. For a sufficiently long
n

orbit transfer using an electrodynamic tether, this averaging method will capture the averaged effects due to

the lower frequency rotation of the tilted dipole. The following example will demonstrate this idea.

Solution to an Optimal Control Problem Using Multiple Time
Scales

Using the tether model from the previous optimal maneuver example, a longer term optimal orbit
change maneuver is investigated that includes the moderately varying effect of the Earth’s rotating tilted
dipole. For this model, we use the magnetic field described by Eq. (23) and a dipole tilt of 11.5 degrees.
The example maneuver will increase the inclination of an EDT in a 261 km parking orbit (where 77 ~16)
from 40 to 45 degrees ending at the same altitude while maintaining a constant eccentricity of 0.005 in a
drag environment. The optimal control problem is therefore written as

Minimize Cost: J=t,

Subject to:
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%(T)=1(x(T),u(T))

e, (x(T,)) =[6639 km,0,0.005,40°,0°]"

o

(x(

f(X(Tf )) I:af 'If] —[6639 km 45]
(u(T)) =17 225<0Amps

g, (x(T))=h?+Kk?* —€2 =0

(=]

where the mean square current is defined using Eq. (13) as

2
I ms

1
_12 2 2 2 2 2 2 2
Im[u1 +E(u2 +US +U; +Ug +Ug +u7)

The dynamic constraints are given by f(x(T),u(T )) =dx/dT ~Ax/AT and box constraints given in Eq.

(17) are also enforced. Solving the optimal control problem using DIDO vyields the optimal control profile

shown in Figure 16.
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Figure 16. Control Profile Using Tilted Dipole Model

The controller dc component, u, , and the Fourier coefficients corresponding with the higher frequencies

(u, through u;) look similar to the corresponding minimum time problem in the previous section (see

Figure 12). Slightly more power is dedicated in the form of direct current, corresponding tou, , to change

the altitude because at this higher inclination orbit the local magnetic field is less effective for thrust. In the

tilted dipole case, however, a small controller contribution at the lower frequency,

Ug , is evident which
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superimposes a lower frequency component on to the control signal (see bottom of Figure 16). The altitude
and inclination trajectories shown in Figure 17 reveal a similar “climb and descend” strategy to that of the
example in the previous section. This maneuver is more aggressive than the previous one taking 113 days
to complete and close inspection of the propagated trajectory reveals the impact of a rotating tilted Earth
magnetic dipole. The magnified inserts in Figure 17 show the effects of the 3 time scales; the fast time
dynamics of the instantaneous altitude, the medium time attitude dynamics with daily oscillations, and the

slow trend of the average altitude.
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Figure 17. State Trajectories Using Tilted Dipole Model with Drag

For comparison, optimal controls were determined for the same problem using a model that does
not include a tilted magnetic dipole. The controls (Figure 18) look similar to the previous ones, albeit
without the medium time scale components. The maneuver appears to take two fewer days to complete
when power is not directed to compensate for the magnetic dipole motion; however the propagation of the
altitude does not match very closely with the output from the model (Figure 19) for such a long term
maneuver. The propagation was performed in the same manner as the previous example for comparison,

indicating that the errors are model errors and not numerical errors.
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Summary

Because an EDT draws its thrusting capability from the Earth’s magnetic field, it is important to
use a magnetic field model with an appropriate amount of fidelity. Engineers may obtain control strategies
using a less accurate model for maneuvers that do not span many revolutions (in this example, less than

about 300 revolutions), however for transfers that take a very long time a tilted dipole model must be

Min Time Orbit Change Control Fourier Coefficients with No Tilted Dipole
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Figure 18. Optimal Control with Drag, but No Earth Dipole Tilt

considered. Using the multiple time scale approach and the method of averaging, one can include this low
frequency effect in the model by introducing a new time scale variable in the controller. The next step to
improving the controller is to include the librational motion of the EDT in the dynamic model, which is the

subject of the next chapter.
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Altitude Trajectory with No Medium Time Scale Control
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Figure 19. The controller model breaks down when Earth magnetic dipole tilt is excluded

for along term orbit transfer. Stars indicate the model-derived altitude trajectory; line indicates

propagated altitude trajectory in a rotating tilted dipole magnetic field.
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V. Tether Libration

When controlling an electrodynamic tether (EDT) to reach a new orbit as discussed in Chapters 111 and
IV, it was assumed that the tether was nadir-pointing and non-librating. This was done to introduce the
method of averaging for solving the optimal control problem in Fourier space. In reality, however, we
would need to account for the librations of the long tether. It is well known that an unperturbed inert
(unpowered) tether librates in and out of plane about an equilibrium point for circular orbits without growth
or decay.**>® An uncontrolled EDT with a constant current running through it, however, will eventually go
unstable as aptly pointed out in Ref 10. The purpose of this chapter is to analyze the stability of an EDT
and to use the resulting stability criteria to define libration constraints. The objective will be to determine
the optimal control that will maneuver an EDT to a new orbit while simultaneously driving libration
amplitude to a desired end state within these specified libration bounds. To achieve this objective, this
chapter will first provide an examination of the stability of the tether libration both with and without drag.
Given that an EDT with a dc control current eventually goes unstable, it is shown that the system may be
stabilized using a method of feedback linearization. This demonstration provides confidence that there is at
least one feasible control solution, thereby allowing us to seek an optimal control solution. The remainder
of the chapter is devoted to the derivation of dynamic model and path constraints and then determining

optimal controls for a librating EDT in orbit transfer.

Equilibrium and Stability

The first step in stability analysis is to obtain the attitude dynamic equations of motion for the system.
The attitude equations of motion will initially be based on the following assumptions for an EDT system of
two subsatellites connected by a wire in tension. These assumptions and approximations may be relaxed as
need arises, but the ones listed here are necessary to model the EDT system and clearly demonstrate the

utility of multiple time scale optimal controls applied to libration control.
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Rigid Rod in Tension — The tether is assumed to be perfectly straight between two subsatellites. This
approximation is valid for certain ranges of maximum allowable wire control current (see Appendix
D). Because the tether is straight, the center of mass (COM) is located along tether. The tether cannot
undergo compression or go slack, but rather it remains in tension and does not stretch. The former
condition is valid because tether attitudes will be constrained through active control to remain below
libration angles that would permit a slack tether. The no-stretch condition is justified since the
materials used will be such that the stretch dynamics is insignificant and may be ignored.

Medium Length Tether — The tether is long enough to consider gravity gradient and aerodynamic torques

due to air density variations along the length of the tether to be significant. The latter assumption may

be restricted to %* < 1 when appropriate, but the term will be retained for generality in the

derivation of the equations of motion. The characteristic (or scale) height of the atmosphere, h”, is
about 30 to 60 km for altitudes between 150 and 400 km [MSIS Standard Atmosphere]. See Figure 20
for MSIS standard atmosphere plots. The tether is considered short enough, however, the magnetic
field is approximately constant along the tether length. Implicit in this assumption is the tether length

is small compared to the distance to the center of the Earth, r, such that r > L.
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Figure 20. Standard MSIS Atmosphere

Spherical Earth with Non-tilted Magnetic Dipole — Although the magnetic dipole is actually tilted
approximately 11.5 degrees from true north and rotates once per day, this effect is ignored without
severe impact to the initial stability analysis and control design. Figure 21 depicts the coordinates used

to describe the in-plane and out-of-plane librations respectively.
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Tether Tip Direction

Nadir Direction

Figure 21. EDT Attitude Geometry defining the in-plane and out-of-plane libration angles

0 and ¢, respectively

It may be desirable to have the tether maintain certain attitudes (&, ¢) or operate within limits of

acceptable attitudes. With the equations of motion we can proceed to determine the equilibrium points,
their stability and the non-linear motion of the tether in the rotating frame of reference. The libration
equations of motion were derived in Appendix A using Lagrange’s method, shown here employing the

rigid tether assumption.

5o - _ &. Qg
0=—1V+2(0+v)ptang 3r3 S|n¢9cos¢9+7ﬂe|—zcosz¢ (28)
¢ =—{(0+v)? +3% cos? G}sin pcos g+ R (29)

r3 ,Ll 2

Variable v is the true anomaly, L is the tether length and 4, is the effective reduced mass (defined in

Appendix B) that accounts for the end-masses and the tether mass. The scalars Q, and Q, are the

generalized forces due to the combination of electromagnetic Lorenz and aerodynamic drag forces. These
equations make no assumptions about the ellipticity of the orbit and may be related to the rate of change of

the true anomaly by
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2

Hy 1%

r* 1+ecosv

where e is the eccentricity of the orbit. We start by analyzing the unperturbed system and then later add

some of the perturbing effects like atmospheric drag.

No Drag Model

Unperturbed tether system stability has been analyzed by others®'*%?, but will be repeated here in

a manner that serves the purposes of this research. Starting with the equations of motion we can readily

observe the equilibrium points, 6, and ¢, , where 6 =0=¢=¢=L=0.

c2¢(f/ + 3:;9 ceseJ -0 (30)
o SHy
c¢s¢(v + r3g c QJ:O (32)

Although the above equations allow for an equilibrium point at ¢, = +— when the tether is perpendicular to

NN

the orbital plane, we shall soon discover that the tether cannot maintain pure positive tension at this attitude
thereby allowing the end bodies to orbit separately without constraint. In controlling space tethers, we will
avoid this case since we desire to maintain tether tension to keep a valid dynamic model. Other equilibrium

points are present when we consider a circular orbit. With a circular orbit, the true anomaly changes at a
constant rate v = w, = \//:739 sov =0. With this assumption, consider the in-plane libration case, ¢, =0 such
that Eq. (30) reduces to 3w’cds@ =0 while the second is satisfied for all @. The equilibrium points in this
case occur when the tether is in a lead-trail co-orbital configuration, i.e. €, = i% , or in a nadir/zenith-

pointing configuration, i.e. (6,,4,)=(0,0) or (z,0). It will be shown later that a tether can go slack in a

lead-trail orientation, so we will instead avoid this configuration and only investigate the system stability of

the nadir-pointing equilibrium point where positive tension can be maintained.
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The unperturbed equations of motion for a tether in a circular orbit are first rearranged as explicit

solutions for the libration accelerations.
.. . . 2
b = 24t4 (6 + w, ) — 3, cOs0

¢ = —cosg ((9 + o, )2 + 3505026’)

Defining the state vector as x = [9, 8,0, ¢] we can generate the state vector time derivative and its

Jacobian.
6
. / ,
F=X=1 2htg(0+0,)-30c0s0 (32)
_c¢s¢((9 +o,) + 3(002029)
0 0 1 0
of 0 0 0 1
A=—= o . .
x | -3 (c’0-5"0) 2sec’ gp(0 + w,) 24t 2tg(0+ w,)
6w’chsOcgsp (- P{(0+w,) +3w c’d} —2csp(0+ @,) 0
Linearizing A and evaluating it at equilibrium point (6,,¢,) = (0,0) yields
0 010
. 0 001 @)
Yo |30 0 0 0
0 —4w’'0 0

Defining a = -3w. and b = —4@. the characteristic equation is
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1010

0401 )
MI—AF:aOlO:ﬂ ~(b+a)A’ +ab=0 (34)
0b0A
A=b, A =a

1 2

The eigenvalues are therefore i\/g and i\/;. Note that as long as a <0 and b < 0 then the system will

have marginal stability. When a > 0or b > 0, then there will be a positive real eigenvalue which indicates

an instability. In this case, the eigenvalues are J_r\/gcooi and £2w,i, pure imaginary numbers. This means

that in the vicinity of the nadir-pointing equilibrium position, the tether will have pendular motion with

frequency \/ga)o in the orbital plane and 2, out of plane. Only circular orbits have been considered at

this point. For non-circular orbits the true anomaly rate changes with respect to time, therefore the system
would be non-autonomous. Floquet theory would be better suited to determine the stability of this system
with a periodic solution. Palaez et. al offer a more thorough discussion of the stability in Refs 9 and 10 for

a powered EDT not subject to drag.

Drag Model

For purposes of controlling tether libration in a circular orbit, the strategy requiring the least
amount of energy would be one that controls about the equilibrium point. When atmospheric drag is
considered, the equilibrium point may be slightly different than that of the tether in a pure vacuum. To
determine this equilibrium point, we again write the equations of motion that include torque due to the

drag.
1 Uc*p(0 + 30 cos0 - 29t (6 + w,)) = Q,,
u,C(§+epsp((0+o,) +307c°0))=Q,

The in- and out-of-plane torques for a tether are derived in Appendix A with the results shown here

assuming a circular orbit.
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Q. = p(h>v2c¢ce{‘%(85e“1 ~Bje ™ )-C(e ™ (-p,~1)—e™ (p,-1))} (35)

2 mL *A P *a= P -p2
Qu = p(h)r 5¢56{ﬂ7(81e Be)cle (—pz—l)—epl(pl—l))} (36)

*

2

e #( h P

where C =d, (1 cos” ¢gsin (49+7)) —— | and the non-dimensional parameters p, and p, are
cgcl

givenas p, = % and p, = % The other parameters in Egs. (35) and (36) are the system
1 2

velocity V, the atmospheric densityp(h) at altitude h, and B" values representing the ballistic

- _ m
coefficients of the end-masses. The mass parameters M, and M, are definedas M, =m +— and
2

m
M, =m, + —where m_ is the mass of end-body 1, m, is the mass of end-body 2, and m is the mass of the
2

tether (see Appendix B for details).

To obtain equilibria of long tethers at various altitudes, no simplifying assumption on the size of

%* has been made yet. According to the equations of motion equilibrium is achieved when ¢ =6=0

which occurs when ¢ =0 and @ satisfies the following equation.

* *

M. h M.h

2

H, Lo, —u, Led, —u, Leo, M, Lo,
L{ . wr . “wn | —u Lcd : Lco
3u L'w’sd, =v'p(h){L2=| Ble ™ —Be ™ |-cle™ (L—l)—ew (L—lj
2
@37

CdlAl

Recall that B = —“— and B, =
M

1 2

CdlAZ h*z

and when ¢ =0 ina circular orbit, then C =d —. This resultis
co

consistent with that of Beletsky and Levin [Ref 52, p 214 and 262].

This indicates that an equilibrium point resides in the plane of the circular orbit and is offset from
nadir pointing by an angle 6, that satisfies the transcendental Equation (37). Solutions to Eq. (37) are

obtained numerically for given values of altitude, density and tether characteristics. Figure 22 and Figure
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23 show the equilibrium points residing in the orbital plane for various tether characteristics and altitudes.
These plots show three main trends. They are

e Increasing the altitude drives the equilibrium point to nadir. In the absence of drag, the
equilibrium point is exactly zero.

e Increasing the disparity between the upper and lower endmasses drives the equilibrium
point away from nadir. When one mass is more massive than the other, it is less
susceptible to drag resulting in a more tipped orientation on average.

o Increasing the tether length beyond 3 or 4 km up to 10 km does not significantly affect

the equilibrium point.

L
If we make the approximation that i~ <« 1, then the equilibrium condition reduces to

2
' )

e

*\2
3uUais0, =v'p(h) %L(B*_B*)_d[(h) (—CHiL)

suofs="p(n) 22 (8 -85 - | @)

In this form, we may explicitly solve for 6, . Caution must be exercised since sé, is bounded by [-1,1]
for real 6, values, thus the quantity (B; - B; ) is also bounded to certain values for given tether

dimensions and mass distribution. There is a nadir-pointing equilibrium condition where (6,,4, ) =(0,0)

d;h”

when the tether properties are such that (B} - B, ) ~ -2

m
Stability about the neighborhood of an arbitrary equilibrium point may be determined
approximately using the same technique as was done in the case with no drag. When the in-plane angular
acceleration due to aerodynamic drag torque (Eg. (62) in Appendix A) is included in the dynamics, the state

vector’s time derivative is given by
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_ 5 _
¢
. ey 2 vip(h m * o* * 24.209\/2
f=x= 2¢t¢(9+a)0)—3a)ocesé?+yeL(Ez;{’uzC¢C9(Bl ~B;)+d,h"(1-c’gs 9)}/}
: 2 2.2 vip(h o (me e 4 24.29\72
_—c¢s¢((9+a)0) +3wlc 9)+ﬂe(|_)s¢s€{ﬂ2(82 - Bl)_cﬁwﬁ (1-c?gs 9)}/}—

In calculating the linearized A matrix about the in-plane equilibrium point (69,0) with 6'9 = ¢e =0, the

d A, _ A . Because of

(6:.0)

only terms that will differ from those given in Eqg. (33) are A, = %
(ee'o)

the structure of the linearized A matrix, the eigenvalues will have positive and negative real parts if these
two elements of the matrix are positive and an instability would exist (see the characteristic Eq. (34)). If
these elements remain negative, then there would be a pendular libration in the neighborhood of the

equilibrium point, as we had with the no-drag case. The first element under investigation is given as

’p(h P .
A, :% =-3w? (%6, —326'8)—\/ ’OE_ )see {#2“”(8l -B;)+dh }
(6,.0) He

We may substitute the equilibrium condition (38) into the second term on the right hand side of A,, to

produce

31,0 s6,L)s6,
A, = -3w?(c%0, —$%6,) —(“"ﬂL) = 30} (c%6, —5%6,) - 3wis%6),

e

A31 = —36050296

Likewise, the A,, term is calculated as

, .
Zf;:—4a)§cz¢9(c2¢—52¢)+vp(h)c¢sg{#m(B;—Bl*)— d;h (1—c2¢320>%}

ML 2 cocg
2
of vip(h)sé x x *
A, =t :—4a)§c2¢98—7p( )50, (B -B;)+dh
o¢ HeL 2

(6.0)
Once again, substituting the equilibrium condition (38) into the second term on the right side yields

A, = —4a)c’0, —3w?s%0,

Ay =-of (3+¢%6,)
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Notice that both terms A,, and A,, remain negative, thus in the vicinity of the equilibrium point the tether

librates with in-plane frequency \/écb?ea)o and out-of-plane frequency /3 + 026'e @, . For the nadir-pointing

case, we have the same solution as that of the no-drag case.
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In-plane Lib angle equilibrium for various tether designs, 180 km alt circ orbit
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Figure 22. In-plane equilibrium points for 180 km and 200 km circular orbits
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Figure 23.
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Tension

When determining the equilibrium point, we assumed that the tether was rigid, which is only a
good approximation when the tether is in tension. In the case of a slack tether, we would have to
unconstrain the equations of motion and retain the L term in the equations of motion. We can use the
equations of motion to determine if the tether is in tension at the nadir pointing equilibrium point. The

tension is depicted in Figure 24.

Figure 24. Tether Tension Diagram

The generalized force along the tether length is derived as follows.

The force due to the atmospheric drag along the tether for ¢ =0 is

QL = ﬂ%p(h)vzsﬁ(Bfepl - B;e*pz)
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The electrodynamic force does not add any force along the tether since it acts perpendicular to the assumed

straight tether. So from the equation of motion in L for a circular orbit (Eq. (59)), i.e. v = y—j =w_ ,and
r
arigid rod (L = L =0) in equilibrium we have
Lo o s N2 Hy(. 2 5 2.2
R A $(6+v) _73(30 #c°0-1) |= -3p,Lolc’0=Q , +Q, (39)
311, Len’c20 = %“p(h)vzse(sfe"l B ™ )-r
=34, La)5026+ﬂ7mp(h)v256(BIep1 By ™) (40)

This result is consistent with Ref 45 p. 125. We defined 7 to be in tension when it is positive as defined in
Figure 24. The first term on the right hand side of Eq. (40) is always positive and dominates the second
term near 6 = 0, z except when the term in brackets is a very large value. This would occur in extreme
cases where the design of the tether is such that the upper and lower masses have very different ballistic
coefficients so that one end mass is subject to much more drag than the other. For example, if the in-plane
libration angle & is positive (i.e. the upper mass leads the lower one) and the upper mass undergoes so
much drag that it falls behind faster than the gravity gradient can correct to the vertical position, then the
tether could go slack. The graphs shown in Appendix E present numerical solutions for tension 7 at
different in-plane equilibrium points. The remaining graphs in Appendix E are 6, solutions for the zero
tension condition. Each of these angles will serve as an upper bound for in-plane libration so the tether
does not go slack. For this design, the tether would need to be fairly close to 90 degrees (i.e. lead-trail

configuration) for reasonable ballistic coefficients before losing tension. The tension in the nadir-pointing
position is 7 = 3u,Lw. . For a2 km tether in a 250 km orbit, this force would be about 0.7 N.

The other singularity points mentioned were ruled out because the tether cannot maintain positive

tension in those circumstances. For the singularity at ¢ = +— we have the equation of motion
2
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Mgl .
r=- er;’ +Q,, WithQ,, =0.

This indicates that the force along the tether wire would be in compression, which of course is physically

impossible. For the circular orbit singularity at 6, = +— (lead-trail orientation)

NN

/»l * *
r=—pLals’p+ 7"’\/2,)(h)c¢(|31 -8;)

Tension in this case is only positive when ¢, =0 (or 7), 6, = +%(or —%) and B, > B, i.e.the

trailing end-mass in the lead-trail formation is subject to a greater drag force. Otherwise the tether goes
slack. The stability of EDTs has been explored by other researchers who conclude that when driving a
constant uncontrolled current through the tether wire, the system will eventually go unstable, tumbling end
over end. Instead of reproducing the results here, we will explore an example of a controller that uses
feedback linearization to drive down the libration. After gaining confidence that the system may be
stabilized by employing active control, we will turn to posing and solving optimal control of a librating

EDT.

Demonstration of Attitude Control Using Feedback Linearization

With the dynamic models presented in Chapters 111 and 1V, we are positioned to explore
electrodynamic tether libration control strategies. Before determining optimal control for a librating EDT,

in this section we will first determine a feasible solution.

Libration control example using feedback linearization

There are two types of 2-ball tether system attitude control strategies, a hanging tether and a
spinning tether. A hanging system will use active control to maintain pendular motion about equilibrium
whereas a spinning system will allow the system to tumble end-over-end, thus avoiding the need for active
attitude control. In this section we explore a possible attitude control strategy using torque resulting from

the applied Lorenz force. Although not optimal, feedback linearization provides a quick way to see if
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attitude control is achievable for a given system using nothing but the Lorenz force on the wire. We start

with the dynamic equations of motion derived in Appendix A. They are repeated here for the state vector

X= [91 ¢191 ¢]T :

6
¢ f,
f=x= 2¢t¢(9+wo)—3w§case+w = 2
#LC9 f,
. + f
—c¢3¢((9+ o, )2 +3a)02026’) +—Q‘”a ?‘”e 4

L Mmoo

We will take advantage of the assumption that the tether length is significantly shorter than the atmospheric
scale height, hL <<1 and write the generalized forces due to drag from Eq. (62) and Eq. (63) as the
following.
Q,. =V?p(h) L{%“cme(Bf ~B;)+d,h"(1-¢? g 9)%}
clcyg

2 m * * 2 4o2 2 h’
Q. =V p(h)quﬁse{%(Bz—Bl)—clt (1-c?gs a)y—}

The generalized forces due to the Lorenz force acting perpendicular to the tether are given by Eq. (64) and

Eq. (65) and repeated here.

2 p—
Q, = %(c;ﬁceswr +sgcgsoB, —c’¢B, )
MM mm) oo oo,
v 2M ' '

Suppose we wish to minimize the error 2-norm of the tether attitude with the equilibrium attitude, i.e. we
desire to drive the states y = h(x) = [9,¢]T to some position close to the point [6,, ¢, ]T . Looking at the

dynamics of the system, the control, | =u(t), appears only in the second derivative of y. Therefore,

following the discussion in Ref 49 pp. 267-232, we may obtain the dynamic inversion by taking the second

Lie derivative of h(x) .
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Now to derive the controller, we write

y= 9} :[):(3} —az—hf+G(x)u

| ¢ X, | ox?
20tp(0+ @, ) -3wicOs0+ Qfaz QB; >
" u e | | Ly Ll'c’y
y= + u
Q¢a Q¢e

—c¢s¢((9+ o,) +3w§c29)+

Ak I 4,2
Let the desired values of & and ¢ be given by the vector v. The controller will drive the states toward

the desired values using a gain matrix K.
y _ V:|:V1} :|:_k1e1_k2é1 } :|: _kl(yl_ydl)_kZ(YI_ydl) j|
‘ vV, —kqe€, —k 8, _ks(YZ_de)_k4(Yz_de)

Where the error vector and gain matrix are respectively,

Y1 = Ya

e= ¥2_¥d2 andKz[klok2 0}
Y1 = Ya Ok30k4
Y2_yd2

Setting the desired output equations containing the gain equal to the system dynamic equations, we can

solve for u(t) .

o’h
d_V—yf-i-U
o o’h
= X)| v——
u=G, (x) >t (41)
Ox
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The term G_*(x) is the pseudo inverse of input vector/matrix G and is required for dynamic inversion

since there are two controlled states, but only one input control.
Although the pseudo inverse cannot drive the tether attitude to the exact desired equilibrium point

in general, it does minimize the error 2-norm. The proof is shown as follows.
2

h . L. ..
Let q = {v —g—zf} . We can write the error norm as e = [Gu —q||° and minimize this with respect to the
X

control.

Z 2 ({Gu-q] [Gu-q]) =0

=[Gu—q] G+G"[Gu—q]=0
=2G'Gu-q'G-G'q=0

Since q and G are both vectors,

2G'Gu-2G'q=0
B T
= u=(G'G) G'q= ¢

el

The control law given by Eqg. (41) was implemented using Simulink and the system was given a small

q=G.q

perturbation from equilibrium. The output plots in Figure 25 show that the controller drives the in- and
out-of-plane libration angles back toward the equilibrium point. Although the controller does not minimize
energy or time, it does demonstrate that there is potential for controlling attitude, if required, using only the
current in an electrodynamic tether. In reality, consideration must be given to the orbital change impacts of
attitude controlling in this way. Other researchers have investigated tether length or tension control to
dampen librations.*® The next section will demonstrate how one may use optimal control methods over
large time scales to maneuver the tether system to a new orbit while constraining the libration angles and

rates to desired values.
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Figure 25. EDT Attitude Control Using Feedback Linearization
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Libration Control over a Long Time Scale

When controlling an electrodynamic tether to reach a new orbit as discussed in the Chapter Ill, it
was assumed that the tether was nadir-pointing and non-librating. This was done to introduce the method
of averaging for solving the optimal control problem in Fourier space. In reality, however, we would need
to account for the librations of the long tether. It has been shown that an unperturbed inert (unpowered)
tether in a circular orbit librates in and out of plane about an equilibrium point without growth or decay.
An uncontrolled EDT with a constant direct current running through it, however, will eventually go
unstable as aptly pointed out by Pelaez, Lorenzini, Lopez-Rebollai, and Ruiz in Ref 10. The purpose of
this section is to incorporate constraints on libration in the optimal control problem of Chapter Il1 that will
enable an optimal orbital change maneuver while simultaneously driving libration amplitude to a desired
end state within specified bounds. Unfortunately, straightforward averaging of the derivative of the
libration angle as we did with the orbital state derivative would yield zero. Control cannot be achieved for
a state that is always zero, so a different approach is required to capture the librational motion in Fourier
space to control the averaged state.

To simplify the problem, in-plane libration is ignored and attention is placed on controlling the

out-of-plane libration. In-plane libration is not resonant with the periodic controller or the orbital motion
(recall from the Equilibrium and Stability Section that w, = /3n where n is the mean motion of the

satellite), thus it does not grow very quickly. For the design proposed here, months of constant thrusting
are required to gain a few degrees of in-plane libration amplitude. Furthermore, the small in-plane
librations may be managed by other mechanisms, such as controlling the drag on the upper and lower
bodies thus imparting an aerodynamic torque out of phase with the pendular motion thus dampening this
motion. With this justification in mind, we derive a new state that captures only the out-of-plane libration
(hereafter simply called “libration” unless otherwise stated).

A constraint in Fourier space must not contain any functions of a fast time variable, i.e.

trigonometric functions of v . Averaging serves to eliminate dependence on this fast time variable leaving
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only variables changing slowly with time. To accomplish this, a new state is devised; the mean square
value of a tether’s out-of-plane libration. Whether power is applied to the tether or not, the libration mean
square is proportional to the maximum angle reached throughout the pendular cycle. For an unpowered

(inert) librating EDT, the mean square value is exactly half of the square of the libration magnitude, i.e.

¢Z

= 7’" . This relationship is approximate for a powered EDT as long as the perturbation due to the

electromagnetic torque is relatively small. Deriving an expression that describes the librational mean
square behavior provides a way to understand the behavior of the magnitude of the librational motion over
a long time. Thus constraining the mean square trajectory for a given orbital maneuver is tantamount to
bounding the envelope that contains the librational motion of the tether over long time durations.
Unfortunately, the librational equations of motion given in Egs. (28) and (29) have no closed-form
solution that will enable us to capture the libration amplitude changes over long time scales. The good
news, however, is that assuming small libration angles we may linearize the equations of motion, thus
decoupling the in- and out-of-plane libration equations of motion and, as previously mentioned, ignore the

in-plane libration. Introducing the mean anomaly v as the independent time variable we write

; Qpe (mz_ml)Vm e ~ N T
b+4p= = I, sini(k(T)cosv—h(T)sinv)¥ T
wl Mg (kDyeosy )T )l @)

= esini(Kcosv —Rsinv)(u, +u, cosv +ugsinv +u, cos 2v + ug sin 2v)

d()

where dots indicate differentiation with respectto v, i.e. (') = s This equation is expressed using a
14

partial equinoctial element set described in Chapter 111 where k = k andh = h . Both k and hare order
e

@D

one quantities that are themselves averages that vary slowly with time. Adopting the convention used in
Refs 9 and 10, the non-dimensional small parameter ¢ is defined as the ratio of the maximum

electrodynamic torque to the gravity gradient torque and corresponds to the powered part of the expansion.

Max Electrodynamic Torque (M, —m,)7,,
= - M (43)

Gravity Gradient Torque 2M p p,
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For a 1.5 Amp, 500 kg tether system in low Earth orbit with an upper end mass of 230 kg and a lower end

mass of 220 kg, this parameter is about 0.0026. The current control introduced in Chapter 111

as|(u(T),v), has aslowly varying part, u(T)=[u,,u,,us,U,,Us | and a periodic part that forms the basis
in Fourier space ¥ (v) =[1,cosv,sinv,cos 2v,sin 2v]" . The normalized control current is therefore given

by I =1,%" (v)u(T)where ¥ (v)u(T) is an order one quantity. Recall that the slow time scale variable

T is a scaled version the clock time t and the true anomaly. It is now necessary to formalize the
relationship between the two time scales using a scaling parameter £ such that

T :gt:g% (44)

The non-dimensional scale factor used here is the torque ratio defined in Eq. (43) (see Appendix F for
details on scaling). Only small changes to the known periodic libration motion of the inert tether over short
time spans will occur as long as the electrodynamic torque is small compared to the gravity gradient, i.e.

g <« 1. Intransforming the controls from the short time scale domain to Fourier space, we exchange a
single control variable (current as a function of a fast time variable) for five control variables (the five
Fourier coefficients in this case that are functions of slow time variables). Expanding the right-hand side
term in the differential equation in Eq. (42) and through liberal use of trigonometric identities, we

determine an exact solution to the linearized equation applying the method of undetermined coefficients.

$(v.T)=¢, (v.T)+ 2 (v.u(T)) =4, cos2(v—v,)+esini(kk —H) (45)
where
K (v.u(T)) :uZJrl(u1 +u“j005v+ussinv—u3vcost+uzvsin 2v— % 0053y — %5 gin 3y
8 3 2 6 8 8 10 10

H(v,u(T)):ui+uic05v—E Yoy, lsiny L2y cos 2y + % vsin 2y + 25 cos 3y — 4 sin 3y
8 6 3L 2 8 8 10 10

One restriction due to the linearization is that the second term on the right hand side of Eq. (45)

must be less than order one, i.e. &v < 1. Therefore, to ensure accuracy of the solution, the duration is

limited to v < 1 (note the explicit v terms present in K and H ). For a scaled maximum electrodynamic
&
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torque of & =0.0026 , this maximum allowable duration corresponds to about 60 orbital revolutions.
Eventually a long duration optimal control problem will be discretized into smaller intervals that are much
shorter than this limit so that the approximate solution is valid for each subinterval. Linking the
subintervals together, the long term maneuver consists of the slowly varying “constant” states and Fourier
coefficient controls within each subinterval. The first term on the right side of Eq. (45) represents the
homogeneous solution indicating that a tether without any electrodynamic torque would continually librate
at twice the orbital frequency. Perturbations come through the small electrodynamic torque of order ¢
imparted on the tether over a long time. Whether these perturbations destabilize or stabilize the libration
depends on the slowly changing control terms contained in K and H . A thorough derivation of periodic
libration angle solutions is provided in Ref 10 for an EDT with a steady dc current.

For an unpowered tether, or one where the center of mass is collocated with the center of force on

the tether (thus no Lorenz torque), cu (T ) =0, or an equatorial orbit where i =0, the solution to Eq. (45)
is the homogeneous solution.

¢, (v.T) =6, (T)cos(2(v-v,))
where ¢_(T) is the initial amplitude of the librational motion which is approximately constant over a

period, but changes slowly over time. Presuming that the periodic control may be started at any time
during the libration cycle, for purposes here we assume the peak of a libration cycle corresponds

withv, =0 and write

¢, (v.T)=¢,(T)cos2v (46)
Using this model, the only way to control the libration is through the O(g) term in Eq. (45).

We can now define the libration mean squared state as

v+27

2= [ F(ET)dE= 4 )

This state is always positive and is itself an average over a period by definition. Furthermore, for short
time intervals such as a few periods when the libration amplitude change is negligible, the relationship

between the state z and the amplitude may be expressed as
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20=242 ~§

rms m

Substituting Eq. (45) into Eq. (47) we write

z(v,T)=$ j”¢2(§,T)d§=i [ [a(aT)+ e (u(T))] 0
v v 48
1 v+2r ( )

[ & +2ep,0+ 5747 de

2
Because ¢, (v,T) and ¢ (v,u(T )) are both considered 27 periodic in v over the small interval, the whole

integrand in Eq. (48) is assumed 27 periodic. This assumption is valid since u(T) and ¢, (T) do not

change significantly over the short 27 interval, therefore the limits of the definite integral may be
considered from 0 to 2z without loss of generality. Thus, the secular change in z due to the Lorenz torque

over one period is

Z(T):% f¢§ +2e4,0 + &% dv

(49)
2
:ijqﬁj + 264, cos2vsini (KK —AH )+ % sin? i (kK ~fH ) dv
27
Since the next step in the derivation will be to integrate, terms that will average to zero after integration
may be omitted which yields
z(T):iT¢2dv+MiT5vc052v((ﬁu —ku )0052v+(I2u ~hu )5in2v)dv
273" 4 27y 2 2
sin?i 1% 2 0)
2. 2| H ~ H 2
e E!g v [k(u3 C0S2v +U,sin 2v)+h(u, cost—u3sm2v)] dv+O<g v)

The first integral term in Eq. (50) is the inert tether libration mean square value. Secular changes enter the
system through the remaining terms with explicit dependence on v . Over a single period the change in

z is very small due to the scaling factor ¢ . Recalling Eq. (44), we substitute the slow time variable for

gv , consider it constant over the limits of the definite integral, and remove it from the integrand. This
slow time variable affects the secular growth (or decay) of the z state only over large spans of time, so only
the sinusoidal functions of v are averaged through integration. Physically, the mean squared value of

libration changes approximately linearly with T to first order over short time intervals. The plot in Figure
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26 depicts the small, nearly linear change in the z state over one period. Substituting the slow time

variable into Eq. (50) and expanding yields

z(T)ziT¢2dv+ﬂ¢ siniizf((ﬁu —ku, ) cos® 2v + (ku, - hu )lsin4v]dv
2Ty ° 4" 27, 2 : ? )
272 ain2 2z
+%i 0 [Rz(u§ cos” 2v +u; sin® 2v)+h* (u} cos® 2v +uj sin’ 2v)—zﬁ|2u2u3]dv+0(eT)

Finally, we perform the integration with respect to true anomaly and take the derivative with respect to
clock time for the desired secular change in z over a long time scale. Assuming that the averaged states x

and control coefficients u in the previous equation vary slowly, the derivatives with respect to clock time

will be small, i.e. dx/dt =O(xe) and du/dt = O(ue) . The z state derivative is therefore

dz dz «/Ensini
— ==

dt " dT 8

~ - ,N%sin®iy, , o\ e )
(hu2 —ku3)+g o ((u2 +U; )—4hku2u3)t+0(¢mg t) (51)

where T = &t . Although the second term on the right hand side of the derivative in Eq. (51) causes

quadratic growth (or decay) of the z state, it is of order £ and may only be significant when considering
larger time spans. This derivative will serve as a dynamic constraint in subsequent optimal control
problems to manage the magnitude of libration while performing orbital maneuvers. Notice that using this
model, the change in the libration mean square state is achieved primarily through the u, and u,
coefficients corresponding to periodic control resonant with the orbital frequency. This is because in the
satellite frame the local magnetic field vector varies with the orbital frequency, therefore resonating control

current with this frequency can dampen (or excite) libration.
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Figure 26. Libration Squared Function and Envelope

Optimal Maneuvering with Libration Control

With the dynamics of the mean square libration in hand, it is possible to optimally maneuver an
EDT satellite to a new desired orbit while controlling the out-of-plane libration (within the limits of the
dynamic model). The assumptions made for this section are that the in-plane libration is controlled using a
separate mechanism (e.g. drag torque control) and that the out-of-plane librations are much larger than the

in-plane librations, i.e. 8 < ¢. Furthermore, the eccentricity and the maximum possible electrodynamic
torque for a given tether design are both small, i.e. e <1, ¢ <1 . This method would work with eccentric

orbits as well, but in deriving the asymptotic expansion for the libration angle, one would need to expand
about the difference from the reference eccentricity. Because an EDT must orbit low enough to take
advantage of the Earth’s magnetic field, the orbit is nearly circular by necessity, so the problem posed here

is for a nearly circular orbit. The optimal control problem is constructed in a manner similar to the ones
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posed in Chapter |11, but with the additional constraints on the mean square libration state, z , and may be
written as the following.

Minimize Cost: J=t,

Subject to:

dx i =f(xu)

e0( (T))=
e (x(T1))=[a iz, | =[6658 km,30.5',0.0014]"
g, (u(T))=12,-2.25<0 Amps®

x(Ty)) = [ay, €., 2,]" =[6648 km, 0.005,30",0.0038]"

(52)
X
u

where x(T)= [a, h, ki, z]T represents the average states with averaged dynamics

f(x(T),u(T))~ Ax/AT that are described by Eq. (51) and Eq. (11). Box constraints in Eq. (17) are still

enforced as well and the rms current is defined by Eq. (14). The 500 kg, 4 km tether in this case is modeled
using a 230 kg upper end body, and a 220 kg lower end body with the same current properties as the tether
modeled in the Chapter 111 examples. Solving this problem using DIDO for the no drag case yields an
optimal control solution (Figure 27) that drives the libration magnitude to the final desired value while
executing the desired orbital maneuver (Figure 28). Similar to the minimum time solution obtained in
Chapter 111, much of the thrust is used to achieve the inclination change through the u, and u, control
coefficients corresponding with the frequency components twice that of the orbital frequency. In this case,

however, there is a small component of the periodic current allotted to u, and u, to drive the libration
amplitude to the desired final state. The libration angle, ¢, depicted in Figure 28 was propagated using the

exact equations of motion given by Eq. (29) with a stiff ode solver (Matlab’s ode23t) to verify the accuracy
of the dynamic model and the assumptions. Control current is constantly phased with the librational

motion to account for a small frequency shift due to numerical errors in the ode propagation, i.e.
v, =v(1+¢)
where v, is the true anomaly argument used in the clock time domain controller given in Eq. (1) and Sis a

small parameter determined by observing the errors incurred during propagation of the homogenous

solution to Eq. (46) (see Appendix H). The DIDO solution shows the z state history transformed into a
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Control Fourier Coefficients, u(T)
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Figure 27. Control for Minimum Time Orbit Change with Libration Control, No Drag

libration angle history which forms an envelope for the rapidly varying libration angle. The propagated
orbital trajectory and maximum libration angle envelope matches well with the propagated values

indicating that the proposed model is sufficient for this problem.
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Minimum Time Orbit Change, 32 Nodes
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Figure 28. Minimum Time Orbit Change State Trajectory, No Drag. Stars indicate DIDO

derived libration envelope; lines indicate propagated instantaneous state.

For comparison, a similar constant eccentricity optimal maneuver was executed without any
restriction on the libration mean square state. The constraints in Eq. (52) were enforced with the following
exception and addition.

e (x(T,))=[ay.i, | =[6658 km,30.5T

g, (u(T))=h*+k’—¢} =0
The additional path constraint is written to enforce a constant eccentricity maneuver. The resulting control
profile (Figure 29) and trajectory (Figure 30) demonstrate that the maneuver is only marginally quicker (by
a single revolution) but the libration amplitude, left uncontrolled, remains practically unchanged for this
time span. Given enough time, however, this amplitude can grow in a thrusting tether, so it is important to

manage the libration while maneuvering an EDT. This is especially true for a tether that is long, carries a
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large control current, or has a large mass differential between the upper and lower masses resulting in a

large electrodynamic torque when the EDT is active.

Control Fourier Coefficients, u(T)
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Figure 29. Control Profile for a Minimum Time Orbit Change with No Libration Control, No

Drag

Including a state in the dynamics that captures the magnitude of the out-of-plane tether libration
provides a higher fidelity constraint model that enables more accurate optimal control of an EDT. Since
the long time scale equations of motion for orbit transfers assume a near nadir-pointing tether, bounding the
libration is even more critical. The results of this section demonstrate that it is possible to control tether
libration while simultaneously maneuvering to a new orbit using periodic control of the EDT current over a

long time scale.
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Minimum Time Orbit Change, 32 Nodes
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Figure 30. Minimum Time Orbit Change State Trajectory without Libration Control

When drag is included in the dynamic model (i.e. D = 0in Eq.(11)), the controls initially boost the satellite
to take advantage of the lower atmospheric density at higher altitudes allowing more power to be dedicated
to cranking the inclination in the same manner as the example in Chapter I1l. The controls are shown in
Figure 31 with the resulting trajectory in Figure 32. With drag, this maneuver takes three more days to
complete than its no-drag counterpart, requiring a total of 270 revolutions.

Although we do not demonstrate definitive optimality of the control solution, compliance with one
transversality condition necessary for optimality is shown. Because there is no explicit time dependence in
the Lagrangian of the Hamiltonian of this optimal control problem we have H=0. The Lagrangian of the
Hamiltonian was defined in Chapter 111 as

H=H+ 0, +px+pu

where the Hamiltonian is defined by H = A"f given the Mayer cost chosen in this example and A

represents the costates. Recall that the covector functions associated with the path constraint, state-variable
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box constraints and control-variable constraints are represented by 4, , p, and p, respectively.
Furthermore, since the problem posed here is a minimum final time problem we have H (tf ) =-1,s0we

have a condition that holds throughout the trajectory, namely
H(t)=-1 (53)

DIDO uses the Covector Mapping Principle to produce adjoints and the Hamiltonian as part of the solution.
To check this optimality condition we plotted the output Hamiltonian and discovered that it indeed satisfied

Eqg. (53) throughout the maneuver within a tolerance of 0.002.
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Figure 31. Control Profile for a Minimum Time Orbit Change with Libration Control and

Drag
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Figure 32. Minimum Time Orbit Change State Trajectory with Drag
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VI. Summary, Conclusions and Future Work

This research demonstrates how using the method of averaging and multiple time scales can be
used to achieve optimal controls for systems exhibiting periodic behavior, such as maneuvering low thrust
satellites. Optimal control problems for maneuvering electrodynamic tethers were posed using averaged
state dynamics and constraints and then solved using a pseudospectral optimization method. It was shown
that some classes of complex optimal control problems that use instantaneous state dynamics requiring
hundreds or thousands of collocation node points for accurate solutions in the clock time domain can be
reduced to relatively simple problems in Fourier space using only tens of node points. Using this method
of large time scale optimal control, it is possible to determine optimal solutions of nearly periodic systems
more accurately and more quickly than optimization using the instantaneous states. For long term
maneuvers spanning days, weeks or months, it may be difficult or impossible to achieve accurate solutions
that use instantaneous state dynamics due to numerical round off errors. Using averaged state dynamics,
however, small periodic behavior over each orbit is ignored enabling the optimizer to determine a trajectory
for the averaged state, thus optimizing only the secular behavior. This greatly reduces the scale of the
problem for the optimizer. This method of optimal control in Fourier space could assist engineers with
initial trade studies to determine design and performance parameters for a tether or any other low thrust
maneuvering satellite.

It was further shown that this method of large time scale optimal control may be adapted to
accommodate dynamics operating over multiple time scales. For the electrodynamic tether controller
model, it was necessary to include the effects of a tilted Earth magnetic dipole which rotates once per day,
slower than the orbital rate of the satellite system. None of the controllers described in the literature
addressed a tilted Earth magnetic dipole or an atmospheric drag model for electrodynamic tethers in orbit
transfer, so a model was derived that included both. The periodic controller was modified to include terms
resonant with the Earth’s rotation and more accurate results were achieved and verified against a “truth”

model.
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To provide an even higher fidelity controller model, optimal libration control was also examined.
It was shown that a rapidly changing state such as libration may be controlled in Fourier Space by defining
a mean square state and using the averaged dynamic equations of motion as constraints in the optimal
control problem. In this manner, it was possible to achieve minimum time orbit transfers that
simultaneously drove down libration amplitude. Using this method of large time scale optimal control in
concert with instantaneous state controllers operating in real time could enable maneuvering
electrodynamic tether satellites to achieve long term transfers unachievable using instantaneous state
controllers alone.

Optimal controls for low thrust satellites performing orbital maneuvers using multiple time scales
is a wide open field with plenty of areas to be explored. The following is a list of recommended follow on
research.

Apply the method of multiple time scale optimal control to systems subject to a different class of
dynamic equations of motion. In this research, optimal control problems were reduced in Fourier space
because we exploited what we knew about the problem, namely that the dynamic system had a fast time
periodic piece and a slowly varying secular piece. There are many other systems that fall into this category
that could use this method. Additionally, we are not constrained to periodic systems. A basis in Fourier
space was chosen here because of the periodic nature of the orbital mechanics, however a different problem
might be better served in a polynomial space with an orthogonal polynomial basis.

Demonstrate a powered sun-synchronous orbit. Non-thrusting satellites may be placed in sun-
synchronous orbits that take advantage of the Earth’s oblateness in such a way that the orbital plane
precesses once per year. However, these orbits are typically constrained by altitude, inclination and
eccentricity. A continuously thrusting system however could potentially achieve otherwise unachievable
sun-synchronous orbits. One advantage would be that a satellite could reside in a desired orbit while
maintaining optimal solar panel orientation with respect to the sun at all times.

Demonstrate optimal control using a higher fidelity model. Other periodic effects may be
included into the dynamic model. A diurnally varying atmosphere, by definition, differs on the day and

night sides. The controller, as described by Eqg. (1), already contains control coefficients to affect
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perturbations resonant with the orbital motion such as diurnally varying phenomena. When we introduced
the Earth’s rotating tilted magnetic dipole into the model, we had an effect that is not resonant with the first
two harmonics of the Eq. (1) controller. New terms were be added to the controller to accommodate new
perturbation effects (Eq. (25)). There may be other multiple time scale effects to consider in the model that

operate at different frequencies.
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Appendix A: Derivation of Libration Equations of Motion

In developing an orbital maneuvering controller, it is important to understand the attitude behavior
of the tether motion when subjected to electrodynamic and aerodynamic forces. Because of the length of
the tether, gravity gradient restoring torques can be significant. In order to make the equations as general
as possible for 2-ball tether designs, few assumptions were made with regard to the mass distribution. The
tether is modeled as two end-masses connected by a straight tether in constant tension with a uniform mass
distribution.

The conservative gravitational force plays a large role in the tether attitude dynamics and lends
itself well to the development of equations of motion using the Lagrangian method. Constructing the
Lagrangian, we need adequate expressions for both the kinetic and potential energies. Using the

coordinates defined in Figure 33, we can write the endmass and tether velocities and thus the kinetic

energy.
ms
K
A é p2
" e, Rotating Frame
et
®,
r
1
my >
I Inertial Frame

Figure 33. Rotating Frame Coordinates
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The inertial frame is centered at the center of the Earth. The rotating frame is located at a position
r with respect to the inertial frame and is centered at the system COM. It consists of three mutually
orthogonal unit vectors; €, in the zenith direction, e, in the transverse direction and €, completing the triad
in the direction of the angular momentum perpendicular to the orbital plane. The vectors along the straight

tether extending from the COM to mass 1 and mass 2 are p, and p, respectively.

Kinetic Energy

The Kkinetic energy for the system is derived by summing the separate Kinetic energies for the end-
masses and the integrated Kkinetic energy across the length of the tether. The velocity for mass 1 and its

square are

vV, =F+p, =F+p +(0, t0,)xp, =F+p; +Qxp,
vV, =(F+p) +Qxp,)-(F+p; +Qxp,)
=F-F+2F-p; +20-(Q2xp,)+p;-p; +2p; - (Qxp, ) +(2xp,)-(2xp,)

where o, is the angular velocity of the straight tether in the rotating frame, o, is the angular velocity of

o

the rotating frame with respect to the inertial frame and Q = @, + ®, . Primed vectors indicate radial

derivatives with respect to the rotating frame (e-frame). Given the length of the straight tether, L, we may

write the relative position vectors p, and p, in terms of a reduced mass and L.

J 77,
= — m L
[ M, p

Y7
= L
P2 M, p

where p is the unit vector in the direction along the straight tether from m; to m,. The reduced mass

is given by

2 )
m+—=|m,+—+
_ 2 2) MM, MM,

" m+m+m (M, +M,) M
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m m, I :
where M, =m +—, M, =m, +— and M =m, + m, + m, , the total mass. Derivation for this 3-body
2 2

reduced mass is found in Appendix B. Considering the appropriate substitutions for p, and p,, the kinetic

energy of mass 1 is
1
T = Emlvl Vi

=ﬂt-r+%{—2r-L'—2r-ng+ﬁ(L'-L'+2L'-g><L+(Q><L)-(ng))}
2 2M, M,

where L' is the time derivative of L w.r.t. the e-frame. Likewise the kinetic energy for mass 2 is

1
T, =Em2v2 "V, =

Mo gt Dok d o op 14 26 @ L+ (L1 L/ 4 2L - @ L+ (@ L)-(@xL))
2 2M, M,

Note that the fourth term in braces vanishes since L'-QxL =0.
The Kinetic energy of the tether, however, must be integrated from tip to tip (i.e. —p, to p, as

shown in Figure 34)

Figure 34. Straight Tether Integration
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where the velocity of any given element ds along the tether is
V, =F+8§=7+s"+Qxs

and a mass element for a tether of uniform density is
m,
dm=—ds
L

Substituting in appropriate terms, the tether kinetic energy may be written

T, = ;n: PP 420" +2F - Qxs+s'-8'+28"- Qx5+ (Qxs)-(Qxs)ds

A

Recognizing that a tether section that spans length s stretches in linear proportion to the overall tether

sl . . _ . .
stretch, i.e. s'= 3 L = Tp and we can write the kinetic energy integrand in terms of the scalar s.

2 p,
=—{r -FL + 2r - pJ—dS+2r prj Sds+( J js ds+2p- pr( stzds+
" (54)
+(@xp)-(Qxp) J. s’ds}
A

Since —p, :—%L and p, = | , We can rewrite the integration limits and the tether kinetic energy
1 2
becomes
2 2 2 2 2
=—{r -¥L +2r- pLL— z_‘u"‘z +21'-.Q><f)|‘_ ﬂmz_fum2 4
L2{M,° M, 2(M,2 M,

L zL3 ys y3 13 ya ,U3
— | = P+ |+ (Qxp) (Qxp)—| o+
(Lj 3 [Mzs Mlgj ( P) ( p) 3 [MZS MlsJ}

Where the fifth term in the braces of Eq. (54) drops out since p-Qxp=0.

Thus we are left with

t

m . A(m—m ~(m-m
T =—"r-r+mLf-p| =—2|+mLi-Qxp| +—= [+
2 2M

L(M2+M2 R M (ME+M 2
mt?(lM—f}(‘“")'(‘*X")tT(lM—f]

Note that
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2 2 2 2 2 2
Hm Hin _M1 -M, :ml +mm —m,” —m,m (m1_m2)(m1+m2+mt) m-m,

M. M2 M? M? YE M
The total kinetic energy of the system is then

T=T+T,+T,

STV P L WL LY (L ] (LE-p+Li-@xp)+
2 M, M, 2 M

mﬂ 2 m ﬂ 2 m M 3+M 3 . ~ ~
{ZlI\/ITZ ’ 2&}*?[# (L4 L2 (1) (2xp))

The term in the first set of braces vanishes as shown below.

Ml MZ

2

mt
y(—ml sz nmom,) ~Mat My, +7 (M ~m)

Furthermore, the quantity (Qxﬁ)-(ﬂxﬁ) is actually Q'JQ or Q .J-Q in matrix and tensor form

respectively where J isthe specific inertia tensor (see Appendix C). Thus the total kinetic energy for the

system is

M3 M3 . -
T=IMipe ]z My M| MM+ M, (L2+L29-J.Q)
2 2 MZ MZ) 3l M

The mass term in braces may be shown to reduce to an equivalent reduced mass g, as shown in Appendix

B.

2 ml m2 mt M13+M23 mt
= +— |y 22 =y ——t
/Lle ﬂm (Mlz MZZJ 3[ M3 ﬂm 6

The final form of the total Kinetic energy is

T:%Mf-i‘+%ye(L2+LZQ;-Q) (55)
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The first term on the right hand side of Eq. (55) is the translational energy of the whole system acting
through the system COM. The second term accounts for the rotational energy acting through the COM and

the relative motion energy between the two end-masses.

Potential Energy

Figure 35. Position of Endmass 1

The potential energy is derived for each end-mass at its distance from the center of the Earth. The
potential energy of the tether wire is integrated for each elemental mass along the length of the wire. To
obtain the potential relative to the COM, a binomial expansion of the potential energy expression is used.
For mass 1, the potential energy may be expressed in terms of the radius vector to the COM of the system,
r, and the m; position vector relative to the COM

_ _lug ml _ _:ug I'nl

¢ A 2 V%2
1 r[1+2p'er+p12j

V].
roor

where we have used the geometry in Figure 35 and the law of cosines to infer that

2 2 .a
P =r’+p’-2rp cosf = r2[1+p—12+M
r r
1
2 .a 2
rlzr[1+p—12+MJ
r r

An expression for r,* is derived using a binomial expansion and ignoring terms greater than or equal to
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Thus the potential energy of mass 1 is

~ ~A N2 2
L MM p,-e. 3(p, e, lp
V) = —HgMih ' s {l— ! +—( 1 -=4

Substituting in the expressions for p, and p, we obtain

—um L(p-e 212(5.a 2 22
Vlz 'ug 1 1+/um (p erj_,’_g/um - (p erj _llum2 -
r M, LU r 2 M, r 2 M°r

__:ugml ,umL ~on 1Ium2L2 ~ a2
—T{“M—lr(l’-erﬁ— (3-8, -1)

Similarly, the potential energy of mass 2 is

— 2p2
v, z—”imz {1_&(ﬁ.é,)+1“m - (3(;,.@,)2—1)}

The potential energy of the tether is the integration of all the elemental potential energies along the tether

length.

P2

m
Vi =—u, #Adm where dm = —tds
r+s-e, L

Using a binomial expansion,

The total potential energy is then
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r r M, M, 2
2
4L M MM, m(MP M (3(5 8 )z_l)
2r® M? 3 M? i

The first term in braces vanishes to zero as shown.

H My M, +ﬂ m, —m,
M, M, 2 M

mt mt mt
M, =5 |my = my+ = mz+?(mz—ml)

M

=0

The second term in braces is the equivalent reduced mass, 4, . The total potential energy is then

Vv z————3ye(3(ﬁ-ér)2—1) (56)

The first term in (56) is the potential energy of the entire system mass acting as a point mass at the COM.

The second term is the gravity gradient potential due to the center of gravity offset from the COM.

The Lagrangian Equations of Motion

With the kinetic and potential energies in hand (equations (55) and (56)), we may now construct the

Lagrangian function, £ =T -V , and form the Lagrangian equations of motion.

1 1. = M p
L="MV?+= (L2+LZQ-J-Q)+9—+ 80 _(3(p-e.) -1
" Tt e OO

To get the equations of motion in terms of the in-plane and out-of-plane libration angles of the straight
tether, we need reference frames and coordinates with which to evaluate the vector operations to obtain

scalars. The body frame and the rotating frame (e-frame) will serve well for this purpose. The rotational

energy term, L°Q J-Q , is evaluated using the body frame depicted in Figure 36. The orbital rotation may
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Figure 36. Body Frame and Rotating Frame

wsing
be expressed in body coordinates as w, =| 0 and similarly the tether rotation in the rotating frame
@CoS¢P |
dsin ¢
may be expressed in body coordinates as o, = -4 |.
fcos ¢ i

Letting s@ =sin@d and cd = cos& we may write the total inertial angular rate of the tether system in body

coordinates as

(9+ a)) s¢
Q=0,+0,=| -4
(6+)co b
The specific inertia tensor may be expressed in body coordinates as well in matrix form. Approximating

the tether as a thin rod with zero inertia about the f), axis, we write

0 0 O
JP=|0 * 0
0 0 L]

thus

2Q.7.Q=2Q"JO = I ((;32 +CZ¢(9+w)z)
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where @ is not constant in general and is equal to the rate of change of the true anomaly, v. To

A A \2 . . . . . .
evaluate (p . er) , the e-frame is convenient. In the rotating e-frame, the length vector and its derivative

may be written

cos ¢ cosé
L=L|cosgsingd | =Lp
sing
C0S ¢c0s @ —6cos ¢sin @ — gsin gcos O
L=L'+o xL=Lp+Lp=L|cosgsing | +L| 6cospcosd—gsingsine
sing |, @Cos ¢ .
cgcl
p=|CpsO | ,p-e =cgch, (ﬁ-ér)2:02¢026
s¢ |,

The Lagrangian is then

1, 1 2 v2f g2 20, )2 #M ,ug,ue
L—EMV +Eﬂe(|— +L(¢ +C ¢<9+v) ))+ , o3 (3 2¢O — l)

The in-plane libration equation of motion may be obtained as follows.

5L 2.2 oL 2.2 2 7 ‘a2 )11
- pL2c*p(0+v), dt( ) L%c ¢(9+v)+ye((—2Lc¢s¢¢)+2LLc $)(6+v)
oL _ —_?WgyeL c’gchso
00

oL\ oL
dt[ j_@:QH

yeLz[cz¢<é+f/')+2[%cz¢—¢c¢s¢](9+v) 3:’9 2¢c¢959] Q,

The out-of-plane libration equation of motion is similarly obtained.

oL d (oL e o
R L2, _[a_¢j 1 (Lg+2LL4)
%:—yELZ[C¢S¢(9+V)Z+ 2 j
ddﬁ( LJ_%:%

t (0d ) o4
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AR (;}h 2—E¢5+c¢s¢[(9+v‘)2 +%czen =Q, (58)

The motion along the length of the tether is free when the tether is slack, but constrained when the tether is

in tension. This equation of motion is given by

d(eLy_
dtlar )~ *

Z—f - ﬂeL[gz}Z +?p(0+v) +%(302¢c20—l)j
d(oeL) oL
E(Ej_a_l_:q
ul E—qiz—czgzﬁ(e'w)z—ﬁ(3c2¢c29—1) =Q (59)
e L r3 L

To complete the right sides of these equations of motion, we need to write the non-conservative generalized

forces acting on the system.

Non-Conservative Generalized Forces

There are two external non-conservative forces considered in these equations of motion,
aerodynamic drag and Lorenz force due to the current in the wire interacting with the Earth’s magnetic
field. At the operational altitudes of interest, the magnitudes of both of these forces cannot be neglected.

In this section we will derive the generalized forces on the tether due to these effects.

Aerodynamic Drag

Although the air density is very low in the stratosphere, drag is not negligible. Over many orbits,
the atmospheric drag will eventually cause the tether orbit to decay if there is no restoring force. The air is
too thin to model as a fluid, i.e. the molecular mean free path is large compared to the dimensions of the
satellite. Therefore we use a free-molecular flow model and only consider a drag force opposite the
direction of the velocity. This force acts on both end-masses and the tether itself. Each end-mass has a

different ballistic coefficient and the system COM is not, in general, in the center of the tether.
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Furthermore the atmospheric density varies exponentially along the length of the tether, thus the impact
force of incoming atmospheric particles varies with height along the wire as shown in Figure 37. Due to
the uneven distribution of aerodynamic forces about the COM, there will be aerodynamic torque acting on

the tether system.

Fl
Figure 37. Tether Subject to Atmospheric Drag
The generalized in-plane aerodynamic torque is given by
ov ov oQ
=F,-—+F, —%+M, - —
a=Fi G5t E 5o M5
but
%:—8(1’%.;’)1) =6—p.‘:—a(p;+9Xp') _O Lo Py, O ) _ )
06 00 06 06 00 06 00 00
since a—r.:al.‘:ai.‘:o. Recalling that Q = @, + ®, , we have
06 06 00
0 +
M _ (@, me)xplz =xp, since —>=0
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Similarly % = aau;f‘ x p,, thus the aerodynamic torque reduces to

om om oQ
=F, —xp, +F, —&xp, + M, - —r
Qe =F, 25 PRy M

The forces on the end-masses depend on the respective ballistic coefficients and air densities and vehicle
velocity. For the purpose of computing the aerodynamic forces on both end-masses, the velocity due to
orbital motion is considered far greater than the velocity of each end-mass relative to the COM due to
rotation. Also, the tether is considerably shorter than the distance to the center of the Earth, so the

directions of F, and F, are approximately parallel with the velocity vector of the COM. In the force

computations, we use Vv, as the velocity of air molecules impinging on the vehicle. Ignoring the rotation

of the atmosphere since this velocity contribution is miniscule compared to the orbital velocity in low Earth
orbit, we can write the air velocity in the rotating e-frame (designated with a subscript “e”) in terms of the

flight path angle y (Figure 38) as

—siny —siny -f
A ~ .2 2/ . . \2 7% . .
v, =V, =v| —cosy | wherev, =|—cosy :(r +r*(v+a,) ) —r(v+a,)
0 0 0

e e e

Thus, the aerodynamic force on mass 1 is described as

R I
v, = EcdlAipoe "V ey
0

—(h+p; &)

1 -
F, :EcdlAipoe A

2

e

where h is the altitude of the COM, h" is the characteristic height of the atmosphere, w, is the argument

of perigee, C,, is the effective coefficient of drag on M,, A is the presented area of mass 1, and p, is the

atmospheric density at the COM altitude. Also

5 L —Cgsé 2 L —Cgsé
De xp, =—Em=l cged | and St xp, = Em=| cpeo
00 M| Y M|

The torque about the perpendicular to the orbital plane about the COM due to the drag on mass 1 is
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b e
oo 1 i)
F, 'a_éxpl :EcdlAipoe " v

-[h-”MLLwca]

1

2 /um LC¢(
M

1

—sysf+cych)

= % e T Vi Leg(cyed—syso)

CuA

where B v is the effective ballistic coefficient with M, in the denominator, not m,. Likewise, the
1

aerodynamic force on mass 2 is

ul
1 (bt 1 {rtatwo) [-s7
K, :EcdzAzpoe "oV, :EcdzAzpoe " Vi —cy

with a corresponding aerodynamic torque of

i h+ﬂc¢cg]

o® 1 7[ Mz U, Lco
e * 2 Fm

F,- 25 <P =—ECdZA2p0e A ™, (—sys@+cych)

—[h+Mc¢caj
1 -

== B,oe " Vi, Lcg(—sysO+cych)

The moment due to the varying air drag on the tether must be integrated along the tether length. An

infinitesimal force acting on an element of surface area on the tether is proportional to the presented area to
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the air flow, the velocity squared, the coefficient of drag, and the air density at that position on the tether.

Its direction is in the direction of the air flow.
Cqu 2 inn
dF :—2 p(h)v,“dAv,

The elemental area presented to the air stream is dA =cosad,ds where « is the angle of attack as shown
in Figure 38 and d, is the tether diameter (tether wire modeled as a long cylinder). Using a coefficient of
drag for an infinitely long cylinder of approximately two (i.e. C, ~ 2), we may express the moment on

tether alone due to drag as (see Ref 51 pp 250-251)

P2 P2 P2
M, = fpsxdF = [ (px¥,)sdF =(px¥,) [ sp(h)v,’dA=(px¥,)v,> cosed, [ sp(h,)ds
~PL —P1 ~PL

where h, is the altitude of the element which may be written h, =(he, +sp)-€, =h+scosgcosd. Fora

more thorough discussion of the tether coefficient of drag, see Ref 52. Integrating in this manner presumes
that cosa >0 since a negative value would imply force acting on the backside of the elemental area, thus

only the area presented to the air stream is considered.

A

>

Figure 38. Tether Element and Drag Geometry
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The angle of attack is defined as the angle between the unit inward normal to the elemental area, n, and

the air stream velocity unit vector, v, as shown in Figure 38. Using the angles defined in this figure we
can determine the angle of attack in terms of the libration angles, & and ¢, and the flight path angle, »,

using the following spherical trigonometry relation.
COS 5 = COS@PCOS S +Sin @sin 5cos(%} =C0S¢COSd

5=%—9—7 cos§=cos(%—(9+y)) =sin(0+y)
cos B =cosgsin(6+y)
B = %—a since m, v, and p all lie in the same planeand p L n
. sina =cos g =cosgsin(0+y)
cosa = (1—sin2 a)% = (1—(:032 gsin® (0+ ;/))}/2
Notice that for a circular orbit, » =0 for all time. Additionally, if there is no out of plane motion

thencosa =cosé .

Air density is modeled as an exponentially decaying atmosphere with characteristic height (or
scale height) h™. Letting p, be the reference density at the altitude of the center of mass, then the density

at the tether element location is

—(h+scosgcosd) 7y —SCos¢cosé —SCos ¢ cosd
h*e

p(hs)zpoe " = P " :p(h)e "
_V*
where p(h) = p,e /"
Substituting these values into the tether moment equation yields

7y« }/ ”“%Az —scos?cosqﬁ
M, =V’ p,e /"d, (1-cos® gsin® (0+ 7)) (px¥,) [ se " ds
i
/lm%/l

_llmy
My

cgch h*

—cOcdu, L _ +c9~c¢ymL
=v’p(h)C {e hM; (—cecqﬁ,umL —1] —e "™ [—Cec@lmL —1]}(f)x v.)

* \2 zcocgs
Mt=v2p(h)d[(1—0052¢sin2(9+;/))%(f)x€/a)[ h J e " [_C¢095_1j

M, M,
h* 2
where C =d, (1—cosz¢sin2(9+;/))%[ ] .

cgco
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Now the torque effect on @ due to the aerodynamic drag on the tether alone is

d_s_z.Mt =
do
—cOchu, L COC¢ L +cocdu, L C9C¢ L
Vp(h)Cle MM | =2¥n= g | o wwe | BP9 1 L(cg(sys0—cpcd
p(){ [ = . [(e(srs0-creo))
#s6 0
- dQ
where Q=| —¢cd| .. —=|0] and
V+0 i 1],
—cOchu, L +cOcdu, L C7S¢
M, =v’p(h)C+e h'M; %—1 —e "™ %—l —syse
h'M, h'M,
ch(sysd—cych) .
&, & &| [ o
since px v, =|cgchd cgsO sg|= —SyS¢

-sy —¢cy O _c¢(s;/se—c;/c(9)e

The total aerodynamic drag torque affecting @ is therefore

op op o0
=F -—/++F, - —*+M, —
Q. =F 06 ? 00 ' a6

L tnLogcl ~HinLco0
Q,a =V:p(h)cg(cycod—syso) %{B{e M B M ]—

—COCH, L +COCH, L
ol [COoduLL ) v [ cOoduL
h'M, M,

Notice that this expression reduces significantly if the assumption that the atmospheric density does not

(60)

vary significantly across the length of the tether. Looking at the expansion of the exponential terms in Eq.

M and p, = Mwe write for a circular orbit (y =0)

60) and lettin =
(60) gp M.h M.h

2
Qpa = vzp(h)cqbce{%L{Bf (l+ P, +%J_

L (S aee e

(61)
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2 N B * IR AR ) i 2 2
=V p(h)C¢C0{ﬂT(Bl (1+ p1)_82 (1— pz))_dl (1—C @s 9)}/(0¢00J (pz - P )}

Qs =v2p(h)c¢0‘9{ﬂZL(BI (1+p,)=B, (1-p,))-

s ool 0 Y ((cgcoV L. 1 1
ata-ctos o ) (422 e (s )

The last term in the braces is rewritten as

1 1 (m —m,)L?
P - = |=-2pL
s [ v "

where we have used the mass term equalities given in the kinetic energy discussion in Appendix A and the

definition of the COM offset distance p, given in (66). Therefore the in-plane torque is

Qu = (W) Lot | % (B (11 ) B3 (1= ) + 20, (197 0)

2
which is accurate for U}‘] < 1. This assumption would mean that the length of the tether is much

smaller than the characteristic height of the atmosphere. For altitudes up to about 160 km, h™ ~ 7km.

Between 160 and 400 km, h” ranges from 30 to 60 km. If we desire a first order approximation, namely

that hL <« 1, then the torque due to the tether drag would be derived as follows.

cgcd h'M, h'™M,

2 m * * 2 2 2 h* m m
—v p(h)LC(/ﬁCH{%(Bl ~8))-d, (1-c?¢s?0) [W}[l\ﬁ_fﬁlﬂ_j}

1

Qe =Vzp(h)c¢09{%(af—a;‘ -4, (1-¢* gs° e)%[ il j [_ °0c¢umL_c9c¢umL]}

recognizing that g, [MLJFMLJ =1.
2 1

And the total aerodynamic drag torque with this simplifying assumption is

2 AP L 2 2 g\ 22
Q,, =V p(h)chﬁc&{%(Bl —Bz)—c¢cg<l—c #s e)y} (62)
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To derive the torque affecting the out-of-plane libration angle ¢ we follow the same process.

Q¢a:Fl~i.‘+F2-i?+Mt oo
o¢ o¢ o¢
ov, o L s b L| 500 s | ¥
where 61 %:#ML s@sd | , 8_2 aPz :ﬂML -s¢s6 | and - —co
¢ ¢ | —cp ), ¢ ¢ | o |, ¢ 0|
The moments are
—(h—#MLLcﬂcgzﬁJ
ov, 1 M L
F-—L==C e " V2 i sg(—sycd—cysh
1 04 2 1AL, M, ¢( 4 /4 )

Uy LcOcg
M;h"

—u L .
= 'L;m o 2 visp(sycld+cysd)Be

[h ":;‘ ch;tJ

ov, 1 ML
F, —1= Mo v I sg(sych +cysh
2 8¢ 2 CaoA o8 M, ¢( /4 Y )
L | oty
:%poe M visg(sycd+cysd)B,e M

—cOchu, L _ +cz9::¢ym L
Mt .8_Q:V2poei%*c e h'M, M_l —e h"M, %_1 S¢(S}/C9+C]/SH)
o¢ h'M, h'M,

The total moment about the COM affecting ¢ due to aerodynamic drag is

L tipLc0cs spLetcs
Q. =V:p(h)sg(syc+cysh) #; Be " —Be ™ |+
—cOcdu, L +cOcd, L
clo mm [ZCO0BL ) e[ cO0duL
h'M, h'M,

When the tether is significantly shorter than the characteristic height of the atmosphere (hi < 1} , the air

density is considered constant along the tether and the following simplifications can be made using the

same procedure that produced Eq. (62).

Q¢a:Vzp(h)s¢(syC€+C7S5’){ﬂ;L(B;_B) c,UmLhCQCqﬁ(M +Mij}
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L/iw Lh”
Q. = V2 p(h)sp(syc0+cyso)| Lo (B; B )—d, (1-¢* g5* (0+ 7)) ——
2 cocy
Furthermore, for circular orbits » =0 for all time and we have

2 m (o* * 2 42 2 h’
u=Vplh)sisoL {1 (681}, 1-c'o5' ) 1| ©

As we shall see later, this torque affecting out-of-plane libration vanishes near the equilibrium point where
0—0 ¢—>0.
The generalized force due to air drag along the tether length is a force given by

ov ov oQ
=F -—L+F, —2+M, —
Q. =F, oL 7% oL toaLl

Since a_Q = Othe last term drops out. The remaining two are determined by

ov,  of cgct ov, of opct
PP T egsg | and Sz = P2 o Enfoysp
oL oL M, oL o M,
s |, sg |,
—[h—ﬂMLLcmﬁ]
ov, 1 2y
F.-—L==C vie N I ch(sychd+cyso
VL T 1AL, M, ¢(7’ V4 )
—[h#’LLwﬁce]
aVZ 1C 2 ’:7*2 Hn 2l 2]
F, —X=-Z= vie LM ch(sychd+cys
2 50 5 42P P M, ¢(7 /4 )
My Legeo — i LCpco
QLa:ﬂ—z"‘vzp(h)c¢(s;/ct9+0yse){81*e Mo _ple M ]

When % <« 1, then the equation reduces.

Q. = %mvzp(h)c;/ﬁ(mm cys6)(B; ~B;)

If the tether is in a circular orbit such that » =0 then the equation further reduces to

Q. = “—vazp(h)c;/ﬁse(sl* -B;)
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Lorenz Force

When there is a current driven through the conducting tether wire in a magnetic field a force is
created in the direction mutually perpendicular to the local magnetic field lines and the current direction

according to the relation dF, = IdL xB where | is the current, B is the Earths magnetic flux density and

L is the length vector along the direction of the straight tether. For a uniform current in a straight line

electromagnetic tether we simply have F, = ILxB. Using a non-tilted dipole model of the Earth’s

magnetic field, we can write the magnetic flux density direction as a function of true anomaly, v , magnetic

inclination, i, and the argument of perigee, ,. The magnitude depends on the magnetic dipole of the

Earth, y,, (z 8e6 Alkm3j, and the radial distance from the Earth’s center, r. The magnetic flux
-m

density is modeled here as

—2sin(@, +v)sini

Br
B :};—”3‘ cos(w, +v)sini | =| B,
cosi B, I,
e
Vo 866 - N .
On the surface of Earth, B =% = T =3e75 A Another 250 km up from the surface, the value is
r -m

about 2.7e’5l.
A-m
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m,

Figure 39. Electrodynamic Tether with Lorenz Force Loading

A rotating Earth with a tilted dipole would yield a time varying magnetic field, however we will assume
that the motion of the satellite is much faster than the rotational motion of the Earth. This assumption was
relaxed in Chapter I11 where multiple time scale optimization was addressed, however for derivation
purposes the rotating tilted dipole of the Earth’s magnetic field may be ignored without loss of generality.
The electromagnetic force along the tether length varies as the cube of the distance to the center of the

earth. This resultant force may be written as

F, = [dF = [" 1pxBas = [" 1pxb—T" s =1y, (pxb) [ B
L

(r=s) i (r-s)

Using a binomial expansion of the integrand, we have

ML
o=

F, = Iym(ﬁxﬁ)jp;r3(1—§+G]2]ds= 'r73m (ﬁxﬁ)(s—§+%+ h.o.t.j "

HmL

1

Ignoring the higher order terms, following through with mass term substitutions and rearranging we write

~ e — 2 2
F= o ()| 1-( Mo b [ L (mom L
r 2M r |12 2M r
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A simplifying approximation is that the length of the tether is significantly shorter than the distance
between the center of mass and the center of the Earth (% < 1) . This means that the magnetic field

strength and direction is approximately the same across the length of the tether. The model is then simply a
uniform force distribution along the tether as shown in Figure 39. For analyses in which we have already
assumed the length to be short compared to the atmospheric scale height (40-50 km) when modeling the

atmospheric drag, this approximation is justified. The resultant force, F, , may be used to determine the

m,-m, )L . .
moment about the COM with moment arm p, = %p . The force is
F,=ILxB=ILpxB
e, e €, B,c#sd — B s¢

where pxB =cgcld cgs@ s¢| and F, =IL| B s¢— B, cgcod
B B B B.cgcd — B.cgst |,

t

r n

The torque affecting the @ state is

o(r+p ) "o+
Q98=Fe~ﬁ=Fe~(r—.p'):Fe- oF  dp 0(2+p,) :Fe-(a—g.!xpt+9xa—p.tj
00 a0 00 80 a6 00 00

where o ap.‘ _ o
o0 060 06
oQ oQ oQ
=F | —x =—" xF =—M
QBe e (60 pt} 69 pt e 69 e
IL?(m, —
Q, - (2;Mml)(c¢c€s¢Br +sgcgsoB, —cgB,) (64)
The torque affecting ¢ is
s@
Qe :Fe-ﬁza—g-pthe where a_s;: —co
o o b |,
I (m, —m
Q. :%(—SH& +cOB,) (65)

There is no tension in the wire created by the Lorenz force since the force is perpendicular to the wire so no

work is being done to move the end-bodies toward or away from each other.
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' + o(Lp
QLE=@.-Fe where ﬁza(p +9Xp):a—p.: ( .p)
oL oL oL oL oL

Q.=p F. =0sincep LF,

The total generalized forces (torques) are the sum of those due to the electrodynamic and aerodynamic

forces.
Q:9 = Qﬁa + Qﬁe
Q¢ = Q¢a + Q¢e
QL = QLa + QLe

Now these values may be substituted into the right hand sides of the equations of motion (Egs. (57), (58)
and (59)). For purposes of this research, the electrodynamic tether will be controlled using the current in

the wire.
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Appendix B: Reduced Mass Derivation

In order to capture the mass of the tether and end-masses of the “dumbbell” tether model, a reduced mass is
used to simplify the equations of motion. Starting with the geometry depicted in Figure 40, we can write

the positions of p,, p, and p, relative to the COM.

i
L
P
D

1
ml

Figure 40. Tether Mass Distribution Geometry

Calculating the distances from each end-mass to the COM we have

L L
. m,§+m2 M, Lt
1——:— = ——
m+m,+m, M M,
m£+mL
pe—2 My
, = = =
m+m,+m M M,
where Ml:m1+%vM2:mz+%aM =m +m, +m and z, = MIIVIMZ.

The distance from the system COM and the tether COM located at the midpoint of the tether is given by

ml(_;jmz(;j (m, —m,)

= = L 66
~ m, +m, +m, 2M (66)

The equivalent reduced mass, g, , given in equations (55) and (56) may be reduced as follows.
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M, M, m(1 1 m (M} +M,?
ol v v el v v e B e
MZ M2 2(M? M, 3 ™

m, M (M22+M12) m, (M13+M23J

B VERREY B VE

m
=um—6|v;3{3(M1+M2)(M22+Mf)—2(|v|f+|v|23)}
:,um—6:/|]‘3{M13+3M12M2+3M1M22—M23}

m m
::um_6|v;3(Ml+Mz)3:/um_6N;3M3
LY
_/um 6

Notice that if we approximate the tether mass as zero we are left with the more familiar two body reduced

oy oM
O

Many analysts prefer to model the system as a dominant end-mass with all other masses negligible. An

mass.

— m,m,
m, +m,

m, =0

example is the space shuttle or space station with m,, m, << m,. In this case, mass terms become

M =M, p, =——25=M,=m, +—

and the equivalent reduced mass reduces to

He =My +—F——= =M, +—
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Notice that (mz +?‘j L* is the moment of inertia of a mass on the end of a rigid rod about an axis through

the other end of the rod.
It may be desirable to simulate the tether using finite elements. The elements may be modeled as
straight bar links with no end-masses, only tether mass. In this case the reduced masses for each element

may be approximated in the following manner.

This effective mass, when multiplied by L?, is the moment of inertia about the center of a uniform density

rod.
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Appendix C: Tether Moment Of Inertia

The derivation of the specific inertia dyadic is derived in several dynamics texts (see [53] for example), but

will be repeated here for convenience. From a vector product identity, we may write

The specific inertia tensor is given byi. This tensor expression in matrix form is
(@xp)-(2xp)=Q"[ p’I-pp’ |Q=0"IQ
Because p is a unit vector, we recognize that p-p = p°> =1. In our case, we can express the vectors in the

rotating e-frame, thus the quantity (2xp)-(2xp) may be computed as follows.

: : : —gcosp—(v +6)cgso

(@xp)=|dso —gco v+6|=| cgco(v+6)-gsgso
cgcld cgsd  s¢ dco
(@xp)-(@xp) = ¢°c205%4 + 26 (v + 0) cpebsgsd + cgs?0(v + 6) +
cgc?0(v +6) —24(v +0)cgedsgs + §s20s g+ g
=c2p(v+6) +4°
This result is of course the same as that achieved using the specific inertia tensor in the kinetic energy

formulation. Using the equivalent mass g, which accounts for end-masses and the tether mass, the radius

of gyration can be taken as that of a very thin rod.
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Appendix D: Operational Limitations

Choosing a proper maximum allowable rms control current is important to ensure feasible EDT
designs. Permitting too much current can cause a flexible tether to curve too much, tus negating the
“dumbbell” model used by the controller. If the EDT system is not capable of driving enough average
current through the wire, then drag will overpower the electrodynamic thrust and the EDT will reenter the
atmosphere. The subject of this appendix is to determine bounds on the maximum allowable current with

which we may constrain the optimal control problems presented in Chapter 111 through Chapter V.

Preventing Reentry

There are many forces acting on the electrodynamic tether besides gravity. The predominant two
are the drag force and, when the electrodynamic tether is actively thrusting, the Lorenz force (see Figure 1).
If the cumulative drag force is greater than the Lorenz thrust, then the EDT will reenter the atmosphere. To
determine the tether system design requirements to compensate for atmospheric drag to prevent reentry we
look at approximate models for the atmosphere and Earth’s magnetic field. The atmosphere is modeled as

having exponentially decaying air density with a scale height h™ = 44 km and a reference altitude and

density of h, =250 kmand p, = 6e —11 kg/m3 respectively. In a circular orbit the drag force will always

act opposite the direction of motion (i.e. the —e, direction). The drag magnitude on the two endmasses is

—(h—het )

1 5 1
Fa+Fa :Evzpoe " (CdlAi*CdlAi)ZZ(

H
;

]p(hxcdlmcdm )

_(h_href )
W

where p(h) = p,e . The drag force on the tether alone is approximated using a constant force

distribution along the tether. This approximation is adequate for this calculation when the COM of the

system is close to the midpoint of the tether. Justification of this approximation is shown as follows.

Letting dA = d,ds , the force due to the drag on the tether alone is
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Letting z = o an expansion of the hyperbolic sine function is

;8
sinh(z) =z + E +h.ot

If we are willing to ignore O(z®) terms, then we may let sinh(z) = z and write

F

1. 2
tether — Ecdtv p(h)dtl‘
where we recognize that d,L is the cross sectional area of the tether. Only in very long tethers

(L >35km) at low altitudes (h < 250 km ) could the O(z*) terms be too significant to ignore. The total

aerodynamic drag force on the entire system is the sum of the drag forces on both end masses and on the

tether itself.

1 1( u
D= 3PINE B+ P ) =5 2| €t 1,10 )

The maximum Lorenz force on the other hand depends on the maximum average current that is

permitted through the wire and, for the nadir-pointing tether in a circular orbit, will only have a component
of thrust in the positive velocity direction e, perpendicular to the normal component of the local magnetic
field.

F=(1,Lé, xB)-¢&,

For a circular orbit the force magnitude is

r

3
r
F=1,LB, (0) cosi (69)
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N
where the circular reference orbit is taken to be at a 250 km altitude where B, =2.7e -5 —— . The
A-m

magnetic flux density component normal to the orbital plane decays as the magnetic inclination i
approaches 90 degrees, and thus so does the transverse force component of a nadir-pointing EDT. For a
given orbit in a drag environment, the average Lorenz force must be greater than the average drag or the
EDT will lose altitude quickly and burn up on reentry.

It is desirable to graph the force balance altitudes for various tether designs from which we can
perform design trade studies. Knowing the lowest feasible altitude one can achieve for various
electrodynamic tether designs, one can determine a control strategy that avoids inadvertent reentry. The

ratio of average forces given in Eq. (68) and Eq. (69) is

3
I LB, (rj cosi
r

1#g r ’(hjho)
Zr(:jpoe " (CdlAi"'CdzAz"'CdtLdt)

F
D

Separating the reference altitude parameters (r,, B, and p,) and assuming that the coefficients of drag are

all approximately 2, we write the force ratio in terms of the radial distance or equivalently the altitude.

- 2
E:ImLzBocom 15 exp ro* . (70)
D vip, A Lr h L

where A=A + A, +d,L is the total system cross sectional area. To avoid drag induced orbit decay, the

average available Lorenz force must overcome the average drag force, i.e. %2 1. A graph depicting the

force ratio as given by Eq. (70) is shown in Figure 41 for a2 Amp EDT in a circular equatorial orbit with
the force balance condition depicted as a vertical dashed line. The graph clearly shows that long skinny
tethers permit orbits at lower altitudes than short wide tethers which are more susceptible to drag and do
not generate as much thrust. Varying design parameters such as the maximum average current or orbit
parameters such as the inclination will shift along the curves according to Eq. (70). For instance,
increasing the orbit inclination reduces average normal component of the magnetic flux density. This

component is the only one that contributes to forward thrust in a nadir-pointing EDT, so reducing it
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diminishes the system’s boosting capability and as a result the available thrusting force to overcome drag is
reduced thus reducing the margin to the force balance altitude (or forces higher force balance altitude).
Increasing the maximum allowable control current increases the available thrusting force and shifts the
curves right, resulting in a lower force balance altitude (or increases margin to force balance altitude). This
graph is useful for design trade studies to determine the minimum force required to maintain a given orbit.

The upper bound on the generated force is limited by the tether quasi-equilibrium curvature described in

Appendix D.
Max Lorenz Force to Drag Force balance, circ orbit, dt = 4 mm
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Figure 41. Maximum Lorenz Force to Drag Force Ratio at the Magnetic Equator

It is should be recognized that there are other considerations that factor into the design
requirements such as ochmic losses in the conducting wire, cosine losses due to non-vertical wire orientation
in a spinning or librating tether, and even non-operation during eclipse times. The design limits presented

here represent an absolute lower bound on the average current, therefore the peak current available for a
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real system would need to be higher than this average value. The upper bound on the allowable control

current is driven by the tether length and diameter, and is described in the following section.

Validity of a Straight Tether Model

To control an electrodynamic tether, it is important to understand the tether shape. Simpler
control laws using current through the conducting wire are available when we assume that the tether lies
along a straight line between the two end-masses. To justify this approximation, we need an adequate
shape model with which we can determine the tether constraints that maintain a relatively straight line. For
a given orbit, the EDT’s maximum current, length and diameter all factor into the tether shape and
vibration dynamics. These parameters must be considered to ensure feasible control solutions. An
approximate model using spectral separation developed by Von Flotow (Ref 54 pp 76-77) will serve this
purpose. An outline of these approximations is given here.

Because the dynamics of the flexible tether experiences fast motion (longitudinal vibration along
the tether) and slow motion (lateral vibration), we may view the slow dynamics as forming an equilibrium
with respect to the fast dynamics. A quasi-equilibrium state may be reached in slow time when the lateral
force distribution along a vertical wire is balanced by gravity gradient and tension forces. Viewing the
quasi-equilibrium in this manner permits us to determine an instantaneous tether shape using the following

equation.

ﬁ(z’a—RjJrfm =0
os\  0s

where S is the distance along the strained arc-length of the tether subject to tension, z , and external forces

per unit length, f_, , such as drag and Lorenz forces (Figure 42).
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Figure 42. Tether Curvature Due To Lorenz and Aerodynamic Force Distribution

The vector position of the tether is R , thus the equilibrium radius of curvature is its magnitude R . The
tether does not curve very much and we can approximate it as that of a circular arc of radiusR . If we
assume that the tether mass is much less than the end-body masses, then we can assume the tension is

independent of S. At equilibrium conditions with these assumptions, the tether radius of curvature is

R= fi where f, is the total external force density component in the ¢, direction perpendicular to the line
t

betweenm, and m, . This lateral force density is measured in units of force per unit length. Tether
curvature in the e, —e, plane is depicted in Figure 43 with¢ =0.

The curve angle  may be written

y=—opy=—" (71)
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Figure 43. Curved Tether Geometry

The tether shape is determined by its tension, length and transverse component of external forces acting on
it. To justify a straight-line tether assumption in the dynamic equations and subsequent control laws, we
cannot allow the tether to curve appreciably under the distributed loads along the tether to the extent that
the resultant force is significantly smaller than that of a straight tether. From Figure 43 we see that the arc

portion Ry is slightly longer than the vertical component of the wire that effectively produces thrust in the

p, direction, Rsiny . This difference results in the straight-line model error given by

3

e = R(siny —y) = R(l//—%—l//+h.0.t.] =- ng

3

where we have made use of a Taylor expansion for y about zero and ignored terms higher than order

three. If we desire the straight tether thrust approximation to remain within 95% that of the actual curved
tether, we require that
Rsiny >0.95*Ry = siny > 0.95y

therefore,
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SINWjim = Wi — ‘//ém = 0.95y;;,
(//ﬁzm =6(1-.95)=0.3
Vim = 1£0.548

To obtain the force per unit length f, we include electrodynamic and atmospheric effects, f, and f,. The

maximum electrodynamic force per unit length for a given 1, is

. =||ImaxL><B|| 1B

te max —n
L

mag equator
where B, isthe €, component in the rotating frame of the Earth’s magnetic flux density. At 250 km, this
magnetic flux density is about 2.7 e-5 N/(A-m) (rounded average from International Geomagnetic
Reference Field).

The maximum aerodynamic force per unit length of the wire in nadir-pointing equilibrium and circular
orbit is

7
f, = \/Zp(h)cosad[|€:¢:a:o = ?g,o(h)dt

so the total lateral force density is

f=f +f =1 B +%gp(h)dt (72)

ax —n

At 250 km where the atmospheric density is about 6e-11 kg/m?®, this force density is about 1.8e-5 N/m.

Using v, to determine f, using Eq. (71) then substituting into Eq. (72) yields a maximum allowable

current that permits the straight tether line assumption.

12t My
| == | Vin S, (h)d
max B ( L a p( ) tj

n

For a 2 km tether in a 250 km orbit with a tension at nadir-pointing equilibrium of about .7 N, this
maximum current equates to about 13 Amps. A tether carrying 13 Amps of current will have a radius of

curvature and mid-point sag distance given respectively by
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=t L _1920m
f,13-(2.7e-5)
2
s=L — 260m
8R

Von Flotow’s paper provides a formula for the period of the first lateral mode of vibration as

Plat = 2L\/§
T

where ¢, is the mass density of the tether. For a uniform density tether, this is simply &, = th and the

period of lateral vibration is

/L
Pat =2 ﬂ
T

For a 400 kg tether system described above (10% of which is tether mass), this period would equate to 676
seconds. Having bounded the maximum allowable control current, we may now pose optimal control

problems that can achieve feasible solutions.
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Appendix E: Tether Tension Curves

There are two sets of graphs in this Appendix. The first set represents solutions to equation (40)
for various altitudes, mass ratios, ballistic coefficient ratios and tether lengths. In all cases, the numerical
solutions use a 400 kg system with a tether thickness of 5 mm. The second set of graphs show the in-plane
equilibrium conditions at which the tether tension is zero. Equilibrium conditions above the curves are
where the tether is in tension, while regions under the curves represent non-tension conditions where the
tether would be slack. The slack conditions must be avoided when determining the EDT control strategy in
which case we may bound the ¢ state to meet the constraints established by Eq. (39) for all libration angles

and not just at equilibrium.
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Tension of tethers in equilibrium at 150 km circ orbit for 2/3< (B1*/B2*) <1
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Tension of tethers in equilibrium at 150 km circ orbit for 2/3< (B1*/B2*) <1
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Tension of tethers in equilibrium at 200 km circ orbit for 2/3< (B1*/B2*) <3/2
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Tension of tethers in equilibrium at 250 km circ orbit for 2/3< (B1*/B2*) <3/2
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Tension of tethers in equilibrium at 300 km circ orbit for 2/3< (B1*/B2*) <3/2
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In-plane Lib Theta @ zero tension, 150 km alt circ orbit
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In-plane Lib Theta @ zero tension, 250 km alt circ orbit, B1*/B2* = 2/3
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Appendix F: Scaling

Because of the nature of the optimal control problems posed in this paper, there are a number of
states that can be very large or very small and ones that change over small and large time durations.
Furthermore, it is important to scale the problem parameters, not only to assist in derivations of equations
of motion, but also to condition a problem to achieve an accurate numerical solution. This appendix
addresses the scaling that is required to achieve both goals. First, scaling the time variable to derive
averaged state equations of motion, and second to scale all the problem parameters for well conditioned

numerical solutions.

Scaling the Time Variable for Derivation of the Averaged State
Equations of Motion

The control problems posed in this paper include states that undergo small rapid changes over
short time scales, but on average change more significantly over long time scales. For maneuvers
spanning long time scales, it is advantageous to average out the small fluctuations occurring over the short
time scales and only consider the long term behavior of the average states. This is achieved through the
method of averaging offered by perturbation theory. Averaging a state over a 2z period requires
integration of the instantaneous state with respect to a time variable. It is important to recognize which
terms change rapidly and must be integrated and which terms change so slowly that they may be considered
constant over a single period. To assist in this clarification, two time scales are employed to identify
parameters that change slowly and ones that change quickly.

The true anomaly, v, is related to the clock time t through the equation

v=nt

where n is the mean motion of the orbit. This variable v is be referred to as a “fast” time

variable which changes rapidly on a “short” time scale, e.g. over a single orbit. On the other hand, the

variable T is related to the clock time t by
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T=gt=5%

where & is a small parameter such that £ << 1. In this paper, a useful scaling factor is the non-dimensional
electrodynamic torque defined in Eq. (43). The variable T captures the dynamics which vary slowly and is
referred to as the “slow” time variable. Because T changes slowly with time, it represents the dynamics
which take place on the “long” time scale, i.e. over many orbits. These variables may be treated as
independent variables so long as ¢ <1. Although two time scales are employed in this paper, multiple
time scales may also be used in a similar fashion (e.g. including a rotating tilted magnetic dipole moment

would introduce a medium time scale variable).

Scaling the OCP for Well-Conditioned Numerical Solutions

When solving an optimal control problem (OCP) using numerical methods, it is critical to
condition the input parameters to achieve accurate results with faster CPU run times. Scaling is essential to
writing a well conditioned problem for the computer. This section draws from discussions given in Ref 41,

pg 31-36, and Ref 47 the salient points being repeated here for convenience. Recall the unscaled state and
control vectors, x(T)=[a,h,k,i,z]" and u(T)=[u,,u,,us,u,,u,] respectively. Numerically, it is

advantageous to scale each element in the state and control vectors for computational efficiency, i.e.

where A H,K,I,Z,U,,U,,U,,U,, and U, are arbitrary designer units. For the problems posed in this

paper, designer units chosen to make the scaled states and controls roughly order one worked well. Time is

scaled in a similar fashion expressed using a designer clock time unit, .

t_:

|~
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For the work presented here, the designer clock time unit was chosen such that T, is order one. As an

example, the OCP presented in Eq. (17) is rewritten in scaled form to input into the numerical optimizer.
Minimize Cost: J =t (73)

Subject to:

where | is the maximum allowable rms control current. The scaled box constraints are enforced as well,

i.e.

=

Kl
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|
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(74)
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&

Note that the OCP presented here is mathematically identical to the unscaled one in Eq. (17).
Also, recognize that the dynamic constraint vector f has elements containing unscaled states. The output,
however, is scaled to be compatible with the other scaled constraints. Using the fact that a generic unscaled
state and time are related to their scaled counterparts by x = XX and t = tt,, each individual time derivative

is scaled as

&bk T
X

dt  dt dx dt
The scaled OCP in the form of Eqgs. (73) and (74) were used as the input for the optimizer (DIDO) that

yielded the solutions in this paper.
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Appendix G: Derivation of Averaged Orbital Element

Equations of Motion

This appendix provides a derivation of secular equations of motion using a mixed set of classical and

equinoctial coordinates and the method of averaging. To determine the secular change in a given state x, ,

we start with the perturbation equations of motion given in Eq.(9) and use the approximation

dt ~ l(1— 2ecosv)dv then integrate over N periods as follows.
n

AX, = : dx, z%IOZ”N%(l—Zecow)dv

Because the orbits considered are nearly circular, eccentricity is very small and the argument of perigee
is ill defined. Therefore two equinoctial coordinates defined as h = esinw and k = ecos w are better suited
for this orbit type. Thus, changes in semi-major axis, inclination and right ascension of the ascending node

are approximated as

Aa ~ 2Cacosi [%)J'OMN | (1+2ecosv)dv —2TDJOZ”N (1+ 2ecosv + aeﬁ?svj(l—ZeCOSV)dv

Ai ~—Csini (ljj:”” I cos? (w+v)dv =—Csini (ljjoz”” L (K cos? v + h sin? v — hksin 2v )d

n n e
AQ ~ —E[ENZ”” I'sin(2v+20)dv :—E(EJIZ”NLZ(hk cos2v+ (k2 ~h? )sin Zvjdv
2\n)0 2\nJj e 2
B up(a
where C = LL"E represents the thrust per unit current and the drag rate is D = /ZJL() Note that ¢ is
nma na n

dimensionless.

The only control that will yield non-zero solutions after integrating the above equations is a periodic
current. The control current may be expressed as the sum of the periodic functions that produce secular
changes to the states, therefore we use the first five terms of a Fourier series shown in Eq. (1). After

integration we obtain the secular changes to three of the five states that change on a long time scale.
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n
212
Ai = —-ClI_ sini ﬂ+—k Zh uA—h—kzu5 —ZﬂN
2 4e 2e n

2 2
AQ ~-Cl h—k2u4+k 2h U —27[N
2e 4e n

Aa~[2Cl acosi(u, +u,e)—2D]

(75)

The time derivatives of the equinoctial coordinates may be calculated as follows.

h = ecos wa + €sin @
~ClI cosi[cos(v+a))(hcosv+ksin v)(1+2ecosv)cosw+(2—ecosv)(1+3ecosv)sinv cosw

+(2cosv +esin’v)(1+3ecosv)sin w]_g{smv
a | 2e

a ) .
+(005v+e+(1+wjecos vjsm a)}

Carrying out the multiplications, eliminating second and higher order eccentricity terms, then

(1+(1+hi*je005vj(2—ecow)cosw (76)

substituting in hand k , we write

h ~ Cl cosi {KECOSV—Dsin v + 2k cos? v —hsin 2vj(h005v+ k sin v)+(23in v +gesin 21/]}5
e e e

+2—hcosv+h+5hcoszv _2b ﬂ+i*sin2v— 1+i* € cos?vsiny k (77)
e a e 2h h" )2 e

a , \h
+| cosv+e+ 1+F ecos’ v E

.. . . k h .
recognizing that cos(v + ) = cosv cosw—sinvsinw = —cosy ——siny and e* =h* +k>.
e e

Integrating with respect to the true anomaly from 0 to 2z N , we find the change in the average h state.

2 k? —h?)k
Ah=<Cl_ cosi ul(S—hj+u2(Ej+u3(hj+u4 D+% +U, 5+¥ —2(1+i*jh 27[—N(78)
2 e e 4 2e 4 4e a h n

We obtain the k state dynamics in a similar manner.
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k = —esin wa@+ €cos @
~Cl cosi[—cos(v+a))(hc05v+ ksinv)(1+2ecosv)sinw—(2—ecosv)(1+3ecosv)sinvsinw

+(2005v+esin2v)(l+3ecosw)cosw]—£ SV 142 Jecosy (2—ecosv)sinw  (79)
a h

2e
a 2
+[c05v+e+(1+ﬁjecos vjcosw}

Rewriting Eq. (79) using definitions of h and k , we obtain

k ~ Cl cosi {|:—(KCOSV —Esin v+2kcos®v—hsin 2vj(hc03v +ksin v)—(Zsin v+gesin 2vﬂD
e e e

+2—kcosv+k+5kcoszv _2D)_ ﬂ+i*sin2v— 1+i* € cos?vsiny h
e a 2h h" )2 e

e
a , |k
+| cosv+e+ 1+F ecos” v E

Integrating with respect to the true anomaly from 0 to 27N , we find the change in the k state.

_ 2 h? —k?)h
Ak =1 ClI_ cosi ul(%J+u2(5j+u3£—hj+u4 K—h—lj +Ug —E+¥ —2(1+ a*jk 27N
2 e e 4 2e 4 4e a h n

(80)
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Appendix H: Propagation of Libration

When propagating a variable such as libration that exhibits rapidly changing behavior on short
time scales but also exhibits slowly changing behavior over longer time scales, it is necessary to use stiff
ordinary differential equation (ode) solvers. These numerical solvers are subject to errors which can grow
as solutions are propagated over a long interval. To test the ode solver in a problem relevant to this

research, the following homogeneous ordinary differential equation was propagated.

F(v)+4¢(v)=0
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Figure 44. Matlab ode23 Solution to Homogeneous Equation vs. Exact Solution

The propagated solution to Eq. (81) is plotted in Figure 44 along with the exact solution to this equation
using Matlab’s ode23t (stiff solver). Notice that over the course of time the propagated solution’s phase
slowly drifts from the exact solution (i.e. ¢ = ¢, cos2v ) where 1 rev = 2z rad. The shift is not due to real
perturbations since this is an exact homogeneous solution, but rather due to numerical round off errors

which must be addressed when propagating control solutions. When using a propagator to model a
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nonlinear plant response to a control input, the controller could become out of phase with the propagated
states due solely to numerical errors. To compensate for this small artificial phase shift when propagating
control solutions, we provide the controller given by Eq. (1) with a slightly phase shifted true anomaly
input, v_, at each instant. This correction has the effect of slightly raising or lowering the frequency of the
periodic controller to match the frequency of the numerically propagated homogeneous solution. The

modified true anomaly is designed to be in phase with the propagator to simulate a real plant that is

unaffected by round off error and is defined by

_yf1-A% 82)
Ve =V Av
Av_ . . . . . .
where — is the change in the propagated independent variable v, with respect to the change in the true

Av

independent variable v . The easiest way to obtain Av is to determine the difference between the v (in
revs) corresponding to the final peak of the propagated homogeneous solution after Av = N revs,

(vp )peak and the peak of the exact solution (always corresponding to either whole or half revs). The

difference Av is positive when the propagated peak lies to the right of the exact solution peak (i.e. lags the

exact solution) and is negative when it lies to the left (i.e. leads exact solution), written as

Avp _ (Vp)peak -N

Av N

The value is non-dimensional and will shift the control input variable v, throughout the trajectory to
maintain phase with the propagated phase v, (i.e. control frequency is matched with the “natural”

frequency as determined by the numerical propagator). Note that at the final time after N revs the

controller is in phase with the propagated trajectory, i.e.
Av
Vv, = N[l— ij: N-Av,

I =u,(T)+u,(T)cosv, +u,(T)sinv, +u,(T)cos2v, +u, (T )sin 2v, (83)

The controller is then rewritten as
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It must be emphasized that this controller is only used for propagation to compensate for numerical errors
to achieve more accurate comparisons. This scheme is not necessary when applied to a real world design,

although some variation of this method would be useful for real perturbations originating from other

sources.
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Appendix I. Reference Synopses

Reference

Author

JGCD Vol 26, #5 Sep-Oct 2003  Tragesser & San

JGCD Vol 28 #2

AlAA-2001-1139

AlAA-1999-2841-933

AlAA-2000-440-651

AlAA-2001-3980-120

AIAA-2003-143-567

AlAA-2004-3501-989

AlAA-2004-5309-275

AlAA-2004-5313-157

P Williams

West

Gilchrist

Estes

Van Noord

Santangelo

Vaughn

Palaez

Watanabe

Title and Synopsis

Orbital Maneuvering with Electrodynamic Tethers

Titlted Dipole Magnetic field. Perturbation equs (a,e,l,...) w/ expansion in e appx to get secular
changes. Change shows how various current laws change g, e, |, etc. Ex I(hu) = cos(nu) changes e.
EOM assumes tether aligned w/ vertical. Rigid rod model. Changes indep variable from t to nu.
Maneuvers are NOT optimal.

Optimal Orbital Transfer with Electrodynamic Tether

Change orbit by modulating current in wire. Takes into account librations, both in plane and out of
plane. Compares w/ similar maneuvers using a hypothetical non-librating tether. Has useful reduced
mass. No atmosphere considered. Example problem uses a 500 km orbit.

Life Extension and Orbit Maneuvering Strategies for Small Satellites in LEO Using Electrodynamic
Tethers.

Has good sample parameters w/ which to frame the problem. Addresses micometeor problem and
pourous tape. Shows graphs of responses to various tether configurations and conditions. No EOMs

Space Electrodynamic Tether Propulsion Technology: System Considerations and Future Plans
Good plots of bare wire EDTs. ProSEDS and TSS-1R missions.

Performance and Dynamics of an Electrodynamic Tether
Discusses advantages of a bare EDT in collecting electrons. Reviews boosting and deboosting

applications. Gives system performance variation vs. key parameters. Discusses performance of bare
EDTs for boost or de-boost applications

Electrodynamic Tether Optimization for the STEP AIRSEDS mission
Mostly about design, survivability and manufacture of EDT. No EOM

Evolution, Technology and Direction for the ASTOWSTEP AIRSEDS Electrodynamic Tether
Mission
Brief format, not paper

Review of the PROSEDS Electrodynamic Tether Mission Development
Mission never got off the ground, but good passdown for future EDT mission planners.

Self-Balanced Electrodynamic Tethers

Inclined orbits produce instabilities on EDTs. Inert tethers are fine (for circular case). Zeroizing the
Lorentz torque is addressed which eliminates instability. Mass distribution is critical, else damping or
control is needed. Attitude dynamics and Mag field model. Rigid rod assumed.

An Application of Input Shaping for Electrodynamic Tether Systems

Input shaping to reduce vibrations and librations on an EDT being propelled. Mag field model
includes massive flexible lumped mass tether. Considers one flexible mode of vibration. Uses Kanes
equation (refs 4&7) although not supplied. Discusses how to do bang bang EDT thrust control by
stepping in a controlled way that reduces vibes.
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Reference

AIAA-2005-4545-358

AlAA 2002-4641

AlAA 5479-983

AlAA 6473-285

AlAA 6685-973

AlAA 5077-785

AlAA 17499-711

AlAA 4992-661

AIAA 1990-1197

AlAA 9166-681

AlAA 2002 4045

AIAA 2000-322

AIAA 1990-656

Author

Bonometti

Tragesser

Kumar

Lorenzini

Pelaez

Pelaez

Williams

Palaez

Vadali

Kojima

Hoyt

Lorenzini

Matteis

Title and Synopsis
Compares 3 different electron emission methods for different missions

Free Reboost Electrodynamic Tether on the International Space Station
Proposes tether flywheel design to reboost ISS. Has some charts w/ ISS data. Altitude history 1998-
2004. No eom

Orbital Design of Earth-Oriented Tethered Satellite Formations

Looks at dynamics of multiple tethered satellites (3-D). Investigates stability. Flexible lumped mass
tether. Starts w/ rigid model, then moves to flexible elastic one uses eoms and stability analysis from
Hughes book. Example formation uses circular orbit.

Review on Dynamics and Control of Non EDT Satellite Systems
Light on equations but very thorough presentation of varius work in dynamics and control being done
by different researchers. 275 refs!

Libration control of EDTs in Inclined Orbit
EOMS derived from Lagrangian

Dynamic Stability of EDTs in Inclined Elliptical Orbits

Elliptic orbits yield periodic solutions not equilibrium positions. EDT control can be employed to
manage the instability for small eccentricity orbits (e<.35). 3 stages. 1. Analyze stability of elliptical
orbit inert tether. 2. Consider electrodynamic forces. 3. Compare w/ circular case.

Periodic Solutions in EDTs on Inclined Orbits

Periodic solutions obtained using eigval of monodromy matrices compared with propagations based
on Poincare method in both ep (mag to grav torque ratio) and then I (inclination). Even compares w/
linearized solution. Model is a rigid rod, dominant end mass, constant tehter current. Periodic
solution exhibits frequency entrainment phenomenon (periodic sol'n has same period or integer
multiple as forcing terms)

Libration Control of Tethered Satellites in Elliptical Orbits
Non-EDTs. Control via tether tension (length variation). Stability analyzed via floquet theory.

Two Bar Model for Dynamics and Stability of EDTs

Looks at 2 rigid bar model for tether to analyze the impact of lateral dynamics on stability. Assumes
Massive s/c, circ orbit, inclined, but only constant current, no control. 2 cases, 1. Continuous
conductive wire, 2. Part discontinuous.

Feedback Control of Tethered Satellites Using Lyapunov Stability Theory

(also hardcopy of Journal 0731-5090 Vol 14 #4 (729-735))

Has Dynamic Equations useful for stationkeeping, but mostly concentrates on deployment and
retrieval of tethers. No atm drag. Lyapunav function provided for in plane theta and L eom.
Coordinate xform is presented which partially decouples theta and phi dynamics.

Non-linear Control of Librational Motion of Tethered Satellites in Elliptic Orbits
Controls w/ thrusters at endmasses. Assumes no aerodrag, no elasticity of tether, only in-plane
libration considered. Mother w/ 2 subsatellites connected w/ massless rigid rod tethers.

Stabilization of EDTs
Uses sensors to provide feedback control varying the current to stabilize the EDT. No eoms, but
show output plots.

An Overview of EDTs
Good overview of actual deployed systems (TSS, ProSEDS, etc) their history, what we've learned,
what we can do in future missions

Dynamics of a Tethered Satellite Subjected to Aerodynamic Forces
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AIAA 1990-1198

AlAA 21768-992

AlAA 1991-532

AlAA 10546-681

AlAA 11822-945

AlAA 1990-1195

AlAA 1991-1002

AlAA-6934-481

JGCD 2005 vol28#3 541-545

AlAA 13956-480

AIAA 2003-5781

AlAA 4057-325

Von Flotow

Yu

Matteis

Sanyal

Somenzi

Modi

Modi

Mankala

Mankala

Williams

Fujii

Includes aero forces on the subsatellite. Aerodynamic forces play a role in determining stability of
system equilibrium. Circ orbit, equatorial plane, rotating atmosphere. 2 approaches 1. Linearize the
eom. 2. Propagate non-linear equations. EOMS assume a dominant mass (shuttle), circ orbit, flexible
tether. Contains excellent aero tether refs.

Insights and approximations in Dynamic Analysis of Spacecraft Tethers

Discusses vibrational motion. Equilibrium shape of tether is slightly sagged from straight line.
Includes stretch and flexibility in tether. Weak instabilities. Concludes passive damping has
inconclusive effects.

Periodic Motion in the Tethered Satellite System

Motion and control of Mother/daughter pair in circular orbit, then elliptical orbit. Control via length
rate of tether. EOM include length rate and tension but in plane motion only. Below critical
eccentricity (e<.3) motion is stable. Limit cycle.

Dynamics of a Tethered Satellite in Elliptical, Non-Equatorial Orbits

(also a JGCD article 0731-5090 1992 vol 15#3 (621-626). Depicts eoms with states expressed in
Cartesian coords. 2 cases. 1. Equatorial eccentric orbits. 2. Inclined orbits. Includes aero forces and
mentions peak natural fregs and driving aero force freq.

Stability and Stabilization of Relative Equilibria of Dumbell Bodies in Central Gravity
Two identical masses, rigid rod, massless link. 5-DOF eom. Uses Lagrangian eom approach and
then Routh reduction to eliminate a DOF.

Linear Stability Analysis of EDTs

Assume circ orbit, inextensible tether 2 pt endmass. Electrodynamic forces cause coupling of cable
oscillation. Constant current. Bending tether under current load included. Lat and long modes of
vibration. Separates lateral modes of vib from librations.

Dynamics and Control of a Tethered Spacecraft- A Brief Overview
Has some history of the idea of EDTs and past missions (Gemini). Description of model and various
control schemes, including tension control, offset control, etc. See also AIAA 1991-1002 below.

On the Control of Tethered Satellite System
Dynamics of tether. Three different LQR controllers (Thrusters, tension and offset control) for
stationkeeping and retrieval. See also AIAA 1990-1195 prev entry.

Equilibrium-to-Equilibrium Maneuvers of Rigid EDTs

Note discusses a 2-D in plane libration stability of a varying resistance EDT. Tether modeled as rigid
rod in equitorial circular orbit. Feedback linearization is used to provide the control history to move
from one equilibrium position to another. Stability is not really addressed, but phase plot of the
model used shows stable focus for a given set of tether params. Equilibrium points are expressed in
terms of L and radial distance, r. Interesting.

Equilibrium-to-Equilibrium Maneuvers of Flexible EDT in Equatorial Orbits

Discusses shape of massless flexible EDT. Control resistor on a flexible massless EDTw/ dominant
end mass in equatorial orbit (B field is perp to orbit and only er-et plane) Tether takes shape of an arc
of circle and tether tension is constant. Equilibria are unstable w/o controller, but are stabilizable
using either linear controller, non-linear controller or combo of both.

Libration Control of Flexible Tethers Using Electromagnetic Forces and Movable Attachment

See also JGCD v.27 n5 2004. Good ref list and what is in them. EOM included- rigid and flexible,
no drag, mother satellite mass dominant, circular orbit..

Nonlinear Dynamics of Tethered Subsatellite system During Stationkeeping Phase
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AIAA 2001-1141 Van Noord
AIAA 2001-3980 Van Noord
AIAA 1759-102
Misra
JGCD
JGCD 1989 0731-5090 Vol
12#3 (431-433)
book Von Flotow
book Misrah
JAS Vol 48#4 2000 p449-476
JCGD v27 n5 2004 Beletsky
Penzo
AIAA 3565-487 Palaez

Journal of Spacecraft and
Rockets, 2000, Vol37#2 187-
196

JoVibeandAcoustics127_2_20 yyilliams
05

Journal of Vibration and

Acoustics, Col 127 #2ppl44-

156

Eur Jour of Mech

Vol 9, #2, 1990, pp207-224
AlAA-4147-252 Forward

Poincare method used demonstrating chaotic behavior. Uses Lyaponov exponents and generates
bifurcation maps. Models dominant mass w/ mt->0.

EDT Tape Tether Performance in LEO
Tether survivability w/ wider and shorter tethers. Reduce Drag, increase life. Includes twisting in
model. Charts show decay time vs. tether width. Shows boosting by tether of various widths.

EDT Optimization for STEP-AirSEDs Mission
Design optimization considering survivability, drag, current collection, thrust produced, tether
strength, thickness, etc. Has charts showing tether sever risk vs. width. Orbit transfer time vs. width.

Effect of Electromagnetic Forces on Orbital Dynamics of Tethered Satellites
JGCD2005-G05-162

Breakwell Memorial Lecture- Dynamics and Control of Tethered Satellite Systems (Sept 29, 2003)

Only owned by SISTI. OCLC#57023082. 54th international Astro Congress. Can't get my hands on
this one.

Some Approximations for the Dynamics of Spacecraft Tethers

Explains why simple tether model is good enough. Walks through methodical approach to
approximate dynamic modeling. Discusses curvature and stress, strain relations.

Comments on "Some Approximations for the Dynamics of Spacecraft Tethers"

Misrah took issue w/ some of the assumptions in VVon Flotow's paper. A followon paper by Von
Flotow takes issue with Misrah's issue. I'll stay out of it, but the issue only relates to deployment, not
station-keeping dynamics.

Effects of Atmospheric Density Gradient on Control of Tethered Subsatellites
Need to obtain for longer tethers

Dynamics of Space Tether Systems
Advances in the Astronautical Sciences (An AAS publication), Vol 83. Checked out from Library.

Tethers in Space Handbook

NASA report edited by Paul A. Penzo.
A New Kind of Dynamic Instability in Electrodynamic Tethers

ED tether modeled as a rigid rod w/ point endmasses. Constant tether current causes constant energy
being pumped into system causing instability w/ current on. There are no equilibrium positions (circ
inclined orbit). Equations have periodic solutions. Does not consider variable current, tether
flexibility or damping. Floquet theory used for periodic solutions and stability analysis.

Libration Control of Flesxible Tethers Using Electromagnetic Forces and Movable Attachment

Good ref list and what is in them. EOM included- rigid and flexible, no drag, mother satellite mass
dominant, circular orbit. See also AIAA 2003-5781

Linear Stability Analysis of EDTs
JGCD G05-109

Terminator Tether: A Spacecraft Deorbit Device
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JGCD Vol 8, #1, Jan-Feb
1985

AlAA-2947-955

Mankala

Matteis

Ketchichian

Wiesel

Stevens

Dynamic Modeling and sumulation of Satellite Tethered Systems

Models tether shape dynamics.

Equilibrium of a Tether-Subsatellite System

Resonance due to aero gradient forces on subsatellite can cause instability. Sensitive to atm model.
Assumptions- tether has no mass or aero forces on it, no bending. Alt ~110 km. Assuming relative
constant atmosphere, no problem.

Trajectory Optimisation Using Non-Singular Elements and True Longitude
Contains eom w/ states that avoid singularities

Optimal Many-Revolution Orbit Transfer
Multiple time-scale problem.

Preliminary Design of Earth-Mars Cyclers Using Solar Sails
Optimal control methods for low thrust orbital maneuvering
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