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Abstract

There is no universally accepted methodology to determine how much confi-

dence one should have in a classifier output. This research proposes a framework

to determine the level of confidence in an indication from a classifier system where

the output is or can be transformed into a posterior probability estimate. This is

a theoretical framework that attempts to unite the viewpoints of the classification

system developer (or engineer) and the classification system user (or warfighter).

The developer designs and tests the classification system at a macro-level. The user

fields the system in an environment often quite different that those used to develop

the system. The user operates at a micro-level and is interested in the indications

as they are made by the system. The paradigm is based on the assumptions that

the system confidence acts like, or can be modelled as a value and that indication

confidence can be modelled as a function of the posterior probability estimates. The

viewpoints of the developer and the user are unified through the proposition that

the expected value of the user’s confidence should be approximately equal to the

developer’s confidence.

We choose a quadratic function to represent the ascent from zero confidence

to absolute confidence. The tactical issues involved with fitting such a curve are

addressed in this research. Once we have fit the appropriate quadratic function to the

distribution of the posterior probability estimates, we have equated the engineering

confidence to the user confidence. Two methods of applying the new classifier (the

forced decision classifier with the confidence function overlaid) are suggested. One

could await a posterior probability estimate output from the classifier and then make

a declaration decision based on a random number draw as compared to P (DEC|p).

Most users would find the idea of “rolling the dice” on the declaration undesirable and

so a second alternative is suggested. The user could consider a sequence of classifiers

xv



devised simply from the application of a threshold on the confidence function. This

creates a rational portfolio of classification systems based on the user’s confidence

function. Each member of the portfolio has a non-declaration rate and associated

recalculated engineering confidence.

The introduction of the non-declaration possibility induces the production of a

higher-level value model that weighs the contribution of engineering confidence and

associated non-declaration rate. Now, the task becomes to choose the appropriate

threshold to maximize this overarching value function. This paradigm is developed

in a setting considering only in-library problems, but it is applied to out-of-library

problems as well. Introduction of out-of-library problems requires expansion of the

overarching value model. This confidence measure is a direct link between traditional

decision analysis techniques and traditional pattern recognition techniques. This

methodology is applied to multiple data sets, and experimental results show the sort

of behavior that would be expected from a rational confidence paradigm.

xvi
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A CONFIDENCE PARADIGM FOR

CLASSIFICATION SYSTEMS

1. Introduction

1.1 Classification Problem and Confidence Definitions

In general, a classification problem is a problem where it is of interest to assign

an object to one of a predetermined number of classes based upon features from

measurements of the object. In addition to knowing which class the object belongs,

it is also of interest to know how confident one should be in that assignment.

While “confidence” is a widely used term, very few people can actually define

it. According to Webster’s Dictionary [2], “Confidence is a feeling of trust (in some-

one or something).” Wikipedia [3] defines it by saying “Confidence is trust or faith

that a person or thing is capable.” Confidence is an age-old concept; all the great

philosophers (Socrates, Plato, Aristotle, Plotinus, St Augustine, St Aquinas, Machi-

avelli, Descartes, Hobbes, Locke, Rousseau, Kant, Marx, Mill, Confucius) discuss

having confidence in many different ideas, but none of them actually define confi-

dence. Aristotle comes the closest to defining confidence when he discusses courage

being the mean between fear and confidence [3]. Still, he does not specifically define

confidence. The common thread throughout these definitions is that confidence is a

measure of how much one can trust something or somebody.

1



In statistics, confidence is discussed among both frequentists and Bayesians.

Frequentists typically measure the probability of the data given a model, and Bayesians

typically measure the probability of a model given the data [23]. From a frequentist

point of view, a 95 % confidence interval means that if the experiment was run 100

times, the true parameter of interest would fall inside the interval approximately 95

times [64]. From a Bayesian point of view, the posterior probability is often used as

a measure of confidence. This probability has an intuitive meaning. A high value

indicates that there is a high probability that the model is correct (and thus, a high

level of confidence should follow) [23]. The problem with simply using the posterior

probability is that, in practice, these are hard to estimate accurately [51]. When

evaluating a classifier or classifier ensembles, most of the commonly used measures

are based upon the performance of the classifier on the entire data set. The main

objective of this research is to develop a confidence paradigm for a classification

system; one useful product of this confidence paradigm is a measure which can be

applied to the individual declarations of a classification system.

1.2 Combat Identification and Automatic Target Recognition

Following the argument laid out in Laine [40], as the United States Air Force

continues to become more and more technologically advanced, it is able to effectively

kill any object identified as a target. Air Force Doctrine Document (AFDD) 2-1: Air

Warfare [63] states that “if the enemy’s key targets, target sets, or centers of gravity
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(COGs) can be found and identified, they are usually within airpower’s reach.” Of

course, identification is simply one link in the kill chain; this kill chain may include

processes such as search, detect, track, classify, identify, assign, weapon launch,

target acquisition, target damage, and kill assessment [26]. “Combat identification

(CID) is often viewed as the weakest link in the military’s kill chain [26].” As this is

the considered the weakest link, CID needs improvement the most.

Sadowski [57] broadly defines CID as “the process of attaining an accurate

characterization of detected objects in the joint battlespace to the extent that high

confidence, timely application of tactical military options and weapons resources can

occur.” At the heart of CID is making high confidence declarations.

Laine [40] lays out two types of CID: cooperative and non-cooperative. Identi-

fication, friend or foe (IFF) systems are an example of cooperative CID. IFF systems

involve the communication between two friendly electronic systems. When feedback

from one of the systems is not obtained, non-cooperative CID must be implemented.

Non-cooperative CID can be further broken down into two categories: man-in-the-

loop and autonomous. A non-cooperative man-in-the-loop system is one where a

human makes the final decision of whether a target is a friendly or hostile. A non-

cooperative autonomous system is one where this decision is made automatically

without human intervention; such a system is an automatic target recognition (ATR)

system [40]. An ATR system seeks to automatically recognize targets as friendly or

hostile (or a more specific type of target). There are two additional labels that may
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be used by ATR systems. If a system is not confident enough in the information

available, a non-declaration status can be used. This delays the system from making

a declaration until more evidence is obtained (maybe via classifier fusion) [40]. In

addition to a non-declaration status, an out-of-library status may also be used. Any

target type that an ATR system has observed before (or has been used to train the

classifier system) is considered an in-library target type; any target type that an

ATR system has not observed before (or has not been used to train the classifier

system) is considered an out-of-library target type [4]. Since it is quite possible that

an ATR system may encounter a target type that has not been seen before, out-of-

library status allows an ATR system to account for this occurrence in the combat

environment [56].

1.3 Research Goal and Application Areas

Ho [27] and Melnik et al. [46] discuss three types of classifier outputs: abstract

(single class declaration), rank (ordered list of class membership), and measurement

(magnitude of class selection). The goal of this research is to develop a confidence

paradigm for classification systems; one product of this paradigm is the confidence

in the indication of a classification system. Specifically, this research is concerned

with classification systems that produce measurement level outputs that are or can

be transformed into posterior probability estimates.
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The paradigm is demonstrated on a synthetic problem and two real-world

classification problems. Further, the paradigm is applied to an ATR problem. The

main goal of an ATR system is to identify hostile targets that can be exploited by

friendly forces. In such an ATR system, it would be useful to not only identify targets

of interest but also to specify how much confidence the system has that what it has

just identified is a target. The warfighter is interested in a measure that expresses

the confidence that a system has in any given indication [53].

1.4 Contributions of this Research

This research makes several contributions as it addresses the overarching re-

search goal. First, this research develops a confidence paradigm that encompasses

and generalizes current practices. One result of this paradigm is a new confidence

quantifier that unites traditional decision analysis techniques and current pattern

recognition techniques. The main axiom of this contribution is as follows: the class

specific confidence we have in the output of a classifier, on average, should be ap-

proximately equal to the confidence we have in the classifier operating on that class.

This research develops a methodology to determine the parameters of a general-

ized confidence function within the confidence paradigm. One novel application of

the generalized confidence function is a new non-declaration methodology using a

stochastic implementation.
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A new use of the popular Kullback-Liebler distance to determine how well a

classifier generalizes to an independent data set is developed. This research demon-

strates the effectiveness of a new out-of-library detector and demonstrates the new

concept of an out-of-library non-declaration. The new paradigm unites multiple

performance measures under an overarching value model that leads to choosing the

optimal operating point.

An algorithm is developed that minimizes a “confidence” measure called Binned

Error in the Posterior (BEP). Then, we prove that training a classification system

using back-propogation to minimize sum of squared error also minimizes BEP. This

allows us to show that minimizing this confidence measure leads to outputs of the

classification system which are, in the limit, posterior probabilities.

1.5 Organization of the Dissertation

The following is the organization of the dissertation. Chapter 2 provides a

summary of the current literature as it relates to confidence in a classifier indication.

In the literature, we have seen that posterior probability estimates or constructs

known as confidence scores are employed as confidence measures [49, 53]. There is

a need to measure how well these confidence measures perform across a number of

exemplars; one example of this, as put forth by Parker et al. [49], is the confidence

error. Ross [53] makes the statement that under the discrete form of confidence error,

a confidence score is ideally a posterior probability. We present an algorithm that
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minimizes the confidence error. We show that training a multiple layered perceptron

(MLP) neural network using back-propagation to minimize sum of squared error

also minimizes the confidence error in Chapter 3. This allows us to show that, when

training a classification system using back-propogation to minimize confidence error,

the outputs of the classification system are posterior probability estimates.

We develop a confidence paradigm in Chapter 4. This is a theoretical frame-

work that attempts to unite the viewpoints of the classification system developer (or

engineer) and the classification system user (or warfighter). The developer designs

and tests the classification system at a macro-level. The user fields the system in an

environment often quite different that those used to develop the system. The user

operates at a micro-level and is interested in the indications as they are made by the

system. The paradigm is based on the assumptions that the system confidence acts

like, or can be modelled as a value and that indication confidence can be modelled

as a function of the posterior probability estimates. The viewpoints of the developer

and the user are unified through the proposition that the expected value of the user’s

confidence should be approximately equal to the developer’s confidence.

This all occurs in a setting where the classifier is developed as a forced de-

cision tool. The developer has attached confidence, which we model as value, to

this classifier. The developer typically characterizes system performance based on

statistics such as averages. The user does not live in a world of average performance.

The user must make decisions based on the indications of the classifier and wants

7



to make these decisions with high confidence. Implicit in all this is the fact that a

forced decision classifier that bases its decisions on the values of estimated posterior

probabilities attaches (even if unconsciously) equal confidence to all its decisions.

A notional histogram along with the implied forced decision confidence function is

shown in Figure 1.1.
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Figure 1.1 Notional Histogram with Forced Decision Confidence Function.

Standard practice is to elevate the performance of the classifier by not allowing

decisions based on some range of lower magnitude posterior probability estimates.

This philosophy leads to the rejection region concept. Essentially, decisions based on

posterior probability estimates below some pre-determined threshold are deferred.

Here, two levels of confidence are apparent: none and absolute. In this scenario,

the confidence function can be thought of as simply the probability of a declaration
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given a posterior probability estimate, P (DEC|p). A notional histogram along with

an implied rejection region confidence function is shown in Figure 1.2.
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Figure 1.2 Notional Histogram with Rejection Region Confidence Function.

Believing that a middle ground exists between these extremes, we choose a

quadratic function to represent the ascent from zero confidence to absolute confi-

dence. A notional histogram along with a quadratic confidence function is shown in

Figure 1.3.

The tactical issues involved with fitting such a curve are addressed in Chapter

4. Once we have fit the appropriate quadratic function to the distribution of the pos-

terior probability estimates, we have equated the engineering confidence to the user

confidence. Two methods of applying the new classifier (the forced decision classifier

with the confidence function overlaid) are suggested. One could await a posterior
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Figure 1.3 Notional Histogram with Quadratic Confidence Function.

probability estimate output from the classifier and then make a declaration decision

based on a random number draw as compared to P (DEC|p). Most users would

find the idea of “rolling the dice” on the declaration undesirable and so a second

alternative is suggested. The user could consider a sequence of classifiers devised

simply from the application of a threshold on the confidence function. This creates

a rational portfolio of classification systems based on the user’s confidence function.

Each member of the portfolio has a non-declaration rate and associated recalculated

engineering confidence. The introduction of the non-declaration possibility induces

the production of a higher-level value model that weighs the contribution of engi-

neering confidence and associated non-declaration rate. Now, the task becomes to

choose the appropriate threshold to maximize this overarching value function. This
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overarching value model is addressed in Chapter 6. This paradigm is developed in a

setting considering only in-library problems, but it can be applied to out-of-library

problems as well. The addition of out-of-library problems is presented in Chapter 5

along with a demonstration of out-of-library non-declarations. Once out-of-library

problems are added, the higher-level model is expanded; this expanded overarching

value model is presented in Chapter 6. Experimental results are documented in

Chapter 7. Contributions and conclusion of this research as well as items for future

work are presented in Chapter 8.
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2. Literature Review

2.1 Literature Overview

There is an extensive literature regarding classification confidence, but there

seems to be no methodology that is universally accepted. Many articles argue that

confidence acts like a probability and thus, conforms to the axioms of probability

while others argue that confidence follows some other paradigm. Many of these

articles treat confidence simply as some real number. Others restrict this idea of

confidence to a number in the closed interval [0, 1]. Still others treat confidence as

a binary value. There is also literature available that may aid in testing potential

confidence measures. Fusion is a popular technique that is thought to increase con-

fidence, and some methodologies place restrictions on the inputs to the fusion (e.g.,

only perform fusion on classifiers that produce a label or a rank). Finally, there

are some miscellaneous articles that are on the periphery of this research effort. The

following section summarizes the current literature as it relates to this research effort.

Richards et al. [51] describe the basic need for a confidence measure. Often,

classifier systems are judged as a whole by using measures such as true positive rate,

false positive rate, and Receiver Operating Characteristic (ROC) curves. However,

it is also useful to have a way to measure how confident the system is on any given

indication. Much of the current literature, [6, 9, 12, 41, 65, 66], uses either a posterior

probability or something similar to a posterior probability to measure confidence
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in a given declaration. However, there are problems with simply using posterior

probabilities. Roberts [52] states that the problem in using posterior probabilities as

a measure of confidence is that they sum to 1; this is a problem because if a “rogue”

data point is evaluated, it is treated as if it is a “genuine” data point and thus,

is classified with “apparent confidence” into one of the output classes. In the ATR

application, this is the problem with out-of-library targets. Richards et al. [51] states

that using a posterior probability is troublesome because this requires specification

of the prior probabilities which are often unknown. Ross and Minardi [53] state that

posterior probabilities are particulary difficult for classification systems to estimate.

Because of these problems, researchers continue to search for a better confidence

measure for classifier declarations.

The remainder of the chapter is organized as follows. Section 2.2 discusses

confidence paradigms in the literature. Section 2.3 reviews those confidence measures

where the measure is some real number. Section 2.4 discusses those confidence

measures where the measure is restricted to [0, 1]. Section 2.5 covers those confidence

measures where the measure is a binary value. Section 2.6 discusses some of the

literature as it relates to testing a confidence measure. Section 2.7 discusses classifier

fusion as it relates to confidence. Section 2.8 covers some other literature related to

this research.
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2.2 Confidence Paradigms

There is no universally accepted confidence paradigm in the literature. The

most popular paradigm to evaluate confidence is as a probability, [6, 41, 46, 65,

49, 66, 51, 9, 53, 12, 30, 61]. Thus, each of these papers models confidence in a

fashion such that confidence to conform to the axioms of probability. Goh et al. [37]

state that the confidence in an exemplar is proportional to the maximum posterior

probability across the possible classes; however, more information than just the

posterior probability is needed for an accurate confidence estimate. Other authors

treat confidence as something other than a probability. Jaeger [31] treats confidence

and information as identical and discusses confidence as the trust one should have

in a classifier. Therefore, confidence does not necessarily conform to the axioms of

probability. Also, Tubbs and Alltop [62] discuss confidence as “probabilities, beliefs,

or any suitable weight” and define a measure which does not sum to one across

the possible classes (one of the axioms of probability). Each of these paradigms is

discussed in further detail in subsequent sections.

2.3 Confidence as a Real Number

One approach to measuring confidence is to devise a measure whose range set

is the set of all real numbers. These values have no absolute meaning since there

is no lower or upper bound on the measure. Atukorale and Suganthan [7] use the

idea of overlapping networks and a confidence measure from each of these networks
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to classify handwriting samples. The confidence measure for classifier j is given by

cj = (1 − dj

dacc
) where dj is the minimum distance between the data point and all

classes for the classifier j, and dacc is the sum of dj over all j. If Ci = [cj], then a

confidence vector is calculated for each of the i overlapping networks. The overall

confidence of the classifier system is found by adding the confidences from each of

the i confidence vectors. The individual confidence vectors will sum to one when

summing across classes, but the overall confidence vector will sum to i.

Kimball and Rothkopf [36] derive a measure of confidence in the field of speech

recognition that can reliably predict when an utterance classifier has made a correct

decision. The authors state that the main purpose of this measure is to aid in

deciding when to use a more expensive, but also more powerful classifier. In order to

represent an utterance, it is coded into a string of characters in some feature space.

Given a set of k known strings and an unknown string U , it is desirable to find which

known string is most similar to U . Let D1 denote the minimum hamming distance

between the unknown string and all the known strings. Let D2 denote the second

smallest hamming distance between the unknown string and all the known strings.

Then, the measure R = D2

D1
is their measure of confidence. If R is small enough,

then there is little confidence in the classification. If R is large enough, there is more

confidence in the classification. This ratio will always be positive, but there is no

upper bound on this measure. If an exact match occurs, D1 = 0, and R is undefined.

However, the authors do not address this case.
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Roberts [52] looks into some of the issues that go along with estimating con-

fidence limits in a feed-forward neural network. For a committee of classifiers,

the author uses the confidence measure c = exp(−ε[E]) where E = (ym − t)2,

ε[E] = var[ym]+ (ε[ym]− t)2, ym is the largest output of the committee of classifiers,

and t is the target value for ym. This is essentially the negative exponentiation of

the expected squared error of the committee of classifiers.

Jaeger [31] does not combine the confidence value from the individual classifiers,

but instead, the author uses the information contained in this confidence value as

measured by Shannon’s notion of information. This method implies that confidence

and information are identical. The author describes confidence as the trust that

a classifier engenders in its recognition results. As the probability that the class

label is correct increases, so does the confidence in that class label. Confidence

values contain information that aid in classification. The estimate of the confidence

for classifier i is given by: K̂i = −E(R) ∗ ln(1 − p̂(Ki)) where E(R) = R
−1

ln(1−R) ,

p̂(Ki) = E( ln(1−Ri)
ln(1−R)

), Ri is a partial recognition rate found by taking the recognition

rate on all exemplars with confidence value K ≤ Ki, and R is the overall recognition

rate. The author uses the sum rule as the fusion rule to use in overall classification.

Ho et al. [28] discuss three methods for classifier fusion where the output of

each classifier is a ranking of the classes from most likely to least likely. For each

method, a confidence score is calculated as a function of the ranks assigned to each

class. Only the relative magnitude of the confidence scores is considered here, and the
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value of the score in absolute terms has no meaning. The three methods discussed are

the highest rank, the Borda count, and the generalized Borda count. As an example,

consider the fusion of three classifiers on a three class problem. Let Cij be the rank

that classifier i assigns to class j. Let C1 = [1 2 3], C2 = [2 1 3], and C3 = [1 2 3].

The highest rank method is easy to implement, but there could be many ties that

need to be arbitrarily broken. The only output of the highest rank method, HR, is

the actual rank. In our simple example, the highest rank outputs HR = [1 1 3].

This illustrates the point of a tie that needs to be broken. The Borda count for

class c, counts the number of classes ranked below c for each classifier by summing

the ranks across the classifiers. The magnitude of the Borda count, BC, indicates

the strength of agreement by the individual classifiers. In our simple example, the

BC = [3 3 9] The generalized Borda count, BCG, weights the individual classifiers

Borda counts, and these weights are determined through logistics regression. For our

example, the generalized Borda count will need three weights, w1 = 0.5, w2 = 0.25,

and w3 = 0.25. Then, BCG = [1.25 1.25 3] It seems that the Borda counts could be

used to measure the confidence in a declaration easier than the highest rank. While

none of these measures directly measure confidence, they could be used indirectly to

measure confidence.
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2.4 Confidence Restricted to [0,1]

Another approach to developing a confidence measure is to limit the range of

the confidence measure to the closed interval [0, 1]. This limitation is nice because it

allows for absolute interpretation of the measure. As stated in [51], this means that

an analyst need not know the inner workings of the measure since it has absolute

meaning. By definition, any measure that treats confidence as a probability falls

into this category. Arribas and Cid-Sueiro [6] state right up front that a posterior

probability can be used as a measure of confidence in a decision. Weintraub et

al. [66] use the posterior probability as the measure of the confidence in a word

hypothesis. Goh et al. [37] state that confidence is not equal to the posterior

probability; instead, it is proportional to the maximum posterior probability across

the possible classes. This research was done with support vector machines as the

classifier. In this paradigm, more information (from the support vector machine in

this research) than just the posterior probability is needed for an accurate confidence

estimate.

Wan [65] states the posterior probability can be thought of as a measure of

confidence in any indication. In addition, Wan suggests alternate measures of confi-

dence. One is the Kullback-Leibler distance which is a measure of relative entropy,

but this requires the true posterior probability distributions. The author says that

a more practical measure of confidence is the entropy of the posterior probability.
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Lane et al. [41] examine the effects on utterance detection when an utterance

is not within the limited domain of the system. This is similar to an out-of-library

indication in ATR. A set of SVMs is used to classify the utterances into topics so the

output is a set of confidence scores, C(tj|W ), for each topic j. Then the topic confi-

dence scores are combined to get a speech recognition result using a weighted linear

combination of the topic confidence scores. Essentially, this paper uses something

like a posterior probability as a measure of confidence.

Baraghimian [9] discusses the fusion of confidence values for multiple characters

in a word in order to get a confidence in the entire word. While the confidence

measure is a value between 0 and 1, calculating the confidence value is not discussed,

but they look something like a posterior probability. One idea is to take an average

confidence across all characters to get a confidence value for the word. Then, one

could compare confidence scores across the possible words.

Callari and Ferrie [12] describe a paradigm common to active object recog-

nition: gather data; build a model of the environment; attempt recognition; when

recognition is ambiguous, use context information to take further measurements. In

particular, the authors are interested in the problem where there is uncertainty/error

in the inputs to binary classification. The authors state that the classifier produces

a set of conditional probabilities. Based upon the ambiguity set forth from these

posterior probabilities, the authors seek to find an efficient way to collect more data

in order to reduce this ambiguity.
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Melnik et al. [46] consider confidence and probability as one and the same.

Thus, they assume confidence to be a probability. The authors are interested in

classifier systems where the output of each classifier is a class ranking. This paper

looks at highest rank, Borda count, generalized Borda count. In addition to these

methodologies, the authors devise a new methodology which is a generalization of

these three methogologies. Confidence in the lower ranks is a principle that says that

there is a more significant difference between ranks 1 and 2 than there is between

ranks 100 and 101.

Tubbs and Alltop [62] attempt to derive a measure of confidence for fused

classifiers where the confidence measure can be easily interpreted. The input to

the fusion scheme is a ranked list of class membership from each classifier, and

the authors develop a nonparametric fusion scheme and a quantitative confidence

measure from this data. “In this paper, a measure of confidence is any real-valued

function whose values indicate the level of confidence associated with a decision. The

measures could be represented as probabilities, beliefs, or any suitable weight.” The

fusion method is based on Friedman’s procedure [21]. Then, the confidence measure

is given by the probability of observing a ratio of successive ordered values. This

measure of confidence is calculated for all but one class (it is necessary to eliminate

one class to allow for a non-singular covariance matrix of order statistics). It is

interesting that the measures of confidence for all classes do not sum to one; instead,
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in the example, there were cases where one would be greater than 90% confident in

two separate class labels.

Zhang et al. [68] apply confidence to computer science by trying to prune the

size of a section of computer code with confidence that some faulty code has not been

included in the reduction. The idea of pruning is to reduce the section of code that

could contain the erroneous code. Thus, the authors want to reduce this code to as

small a section as possible while not eliminating the actual erroneous code. In doing

this, the authors identify their confidence measure by modelling their computer code

as a directed graph with nodes and edges. If a section of the code is classified as

correct, it has a confidence score of 1. If a section of the code is classified as incorrect,

it has a confidence score of 0. If a section of the code is unknown, it has a confidence

score of 1− log|Range(v@n)||Alt(v@n)| where v@n represents the value, v, for node n.

Thus, Range(v@n) is the allowable range of v, and Alt(v@n) is the alternate values

of v for which the same result would have been computed.

Richards et al. [51] states that a confidence measure should act like a prob-

ability in that it should be between 0 and 1 and sum to 1. Since using posterior

probabilities requires specification of the prior probabilities which are often unknown,

they base their confidence measure on likelihoods, rather than probabilities. One is-

sue with this idea is that while the authors try to eliminate prior probabilities, they

replace the prior probability of hypothesis i with λi. This looks suspiciously like a

prior probability.
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Huang and Suen [30] develop a method to combine classifiers when the out-

put of the individual classifiers is a measurement value. The method is called Linear

Confidence Accumulation (LCA). The authors describe a subjective confidence value

and an objective confidence value. The authors describe a confidence value based

on a distance or heuristic transformation function that may be very different from

the real confidence value as a subjective confidence value. If the confidence value

is derived from a probability function, the authors state this is an objective confi-

dence value. Thus, the authors are assuming that objective confidence acts like a

probability. Their method takes the individual classifier measurements, transforms

them into an objective confidence measure (presumably through some probability

density function) and then sums them linearly by class. Thus, the class correspond-

ing to the largest accumulated sum is the class declared by the classifier ensemble.

This method assumes three things: the measurements only contribute to confidence

for a given class, classifier independence, and aggregation of confidence is a linear

summation of individual confidence values.

Thomas and Allcock [61] develop a statistical confidence measure for use in

remote sensing applications. In this application, every pixel in a scene needs clas-

sified with an associated confidence level. For classification purposes, a maximum

likelihood classifier is used. Each pixel can only be classified correctly or incor-

rectly. For notation, p is the probability of getting one pixel correct, and q is the

probability of getting one pixel incorrect (q = 1 − p). The confidence level is the
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probability that at least i pixels are correctly classified from a random sample of

n pixels. Using the Binomial Distribution, the probability of any pixel combina-

tion can be calculated. Then, using the fact that the Binomial Distribution can

be approximated with the Normal Distribution in the limit, the confidence measure

is developed using the standard normal tables (because the Binomial Distribution

calculations “rapidly becomes tedious”). To make sure this approximation is used

appropriately, only sample sizes greater than 50 are used. The measure takes into

account the mean, standard deviation, standard error of the estimate of the mean,

the standard error of the estimate of the standard deviation, and the experimental

error. In the end, the authors can make statements like they are 99.9% confident

that at least 94.5% of the pixels were correctly classified. To make this statement,

the authors calculate a 99.9% confidence interval on the average correct number of

pixels across a number of samples from the population where each sample contains

at least 50 pixels. The lower confidence interval value in this case would be 94.5%.

Huang et al. [29] uses SVMs to find a confidence measure for word confidence.

Words can be broken down into sub-words. Typically, word confidence is found by

combining confidence levels from the sub-words. Phone-level confidence measures

are a type of sub-word confidence measure. Larger words have a larger number of

sub-words; hence, they will have a larger number of features than smaller words.

Since words will have different numbers of phone-level confidence measures (or sub-

words), different SVMs will be used based upon the number of phone-level confidence
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measures. Then, a threshold can be applied to the output of the SVM. In general,

this method performed better than more conventional methods in that it had a lower

error rate.

2.5 Confidence as a Binary Value

Yet another approach to developing a confidence measure is to further limit

it to be a binary value. Grunwald et al. [25] use high confidence (HC) and low

confidence (LC) as the two labels that a given indication is correct (C) or incorrect

(I). Black and Franklin [11] state that confidence indications are necessary in or-

der to allow for more efficient parallel processing in computer science applications.

When two calculations need to be performed and one calculation depends on a pre-

vious calculation, it is beneficial to estimate the value of the first calculation so this

estimate can be used to perform the second calculation. Hence, these confidence

measures are designed to predict or not predict.

Krzanowski et al. [39] and Bailey et al. [8] build on the concept of a rejection

region implementing uncertainty envelopes (UE) that are associated with unsure

classifications. Over 10,000 classifiers, the percentage of classifiers that correctly

classified the same exemplar is the level of confidence for that exemplar. A user

defined threshold is applied to form the UE. Any data falling into the uncertainty

envelope is unsure, and any data falling outside the uncertainty envelope is sure.

Thus, the confidence measure is essentially a binary indicator, either sure or unsure.
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Delany et al. [15] state that while some classifiers produce numeric scores, those

scores do not necessarily correlate well with the confidence one should have in that

score. It is stated that Support Vector Machine outputs and Logistics Regression

outputs do correlate well with confidence, but Naive Bayes, k-Nearest Neighbor, and

Neural Networks do not correlate well. In this research, the authors are trying to

classify an email as either spam or not spam. Each email will either be declared as

confident or not confident. Thus, this is another binary confidence measure.

2.6 Confidence Testing

Some other researchers have provided some paradigms that may prove useful

when testing a confidence measure. Parker et al., [49] discuss area under the ROC

curve (AURC) and confidence error (CE) measures for assessing ATR performance.

AURC is fairly straight-forward, and it measures how well the classifier predicts the

actual class of the exemplars. The authors state that the output of some classifier is a

score between 0 and 1, and they assume that these scores are distributed according to

a Beta distribution for both classes. CE is a measurement of how good the [0, 1] score

is. To compute CE, the outputs of the classifier are ranked, sorted, and placed into

bins. Then, the average score is calculated in each bin. The authors state that if the

average score in a bin is .20, then you would expect that 20% of the actual exemplars

in that bin are targets and 80% are non-targets. To calculate CE, the difference

between the mean score and the percentage of targets is calculated by bin. This value
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is squared for all bins, summed across all bins, divided by the number of bins, and the

square root is taken. While the equation for CE is not provided in [49], it is provided

in [53] as binned error in the posterior (BEP). BEP = {∑n
i=1(( ¯sBi

−PT |Bi
)2PBi

)}1/2

where n is the number of bins, ¯sBi
is the average score in bin i, PT |Bi

is the probability

of targets in bin i, and PBi
is the probability of bin i. Here PBi

is assumed to be

equal for all bins. According to the authors, the only problem with this measure is

that discrete methods are not as effective as continuous methods.

Ross and Minardi, [53] expands upon Wise et al. [67] in terms of describing

performance measures for both discrimination as well as confidence error. Ross pro-

poses two methods for estimating confidence. One is based on information theory,

the normalized cross-entropy (NCE) measure, and one is based on Bayesian thinking,

Error in the Posterior (EP) (or BEP in the discrete case). A lower BEP value indi-

cates more confidence than a higher BEP value. The authors discuss the difference

between discrete EP and continuous EP. Discrete EP uses the binning discussed in

[49]. The authors state that they do not know how to directly calculate the con-

tinuous EP without specifying a distribution. They recommend changing from the

discrete EP to the continuous EP where the probability density function is a series

of constant segments, and the cumulative distribution function is estimated by a

piecewise linear function. Parker [49] provides an algorithm to do this using Beta

distributions.

26



Weintraub et al. [66] define confidence measures to evaluate the confidence

performance of the recognizer. They use the mean square error (MSE), cross-entropy

(CREP), and classification error rate (CER). They also use a normalized MSE as

well as a measure that combines the word error rate and word confidence, the net

recognition performance (NERP).

2.7 Confidence and Fusion

Fusion of individual classifiers to increase confidence is a common theme in

the literature (e.g., see [28], [62], [52], [9], [30], [31], [8], [39], [35], and [46]). Taking

outputs from multiple classifiers and combining them into a single output has been

long thought to improve the credibility, reliability, and hence confidence in any single

indication.

There are a couple subsets of these articles pertaining to fusion. Ho et al. [28],

Melnik et al. [46], and Tubbs and Alltop [62] only consider fusion when the output of

the individual classifiers is a ranked list of classes. Bailey et al. [8] and Krzanowski

et al. [39] examine fusion along with the idea of a rejection region. Over 10,000

classifiers, the percentage of classifiers that correctly classified the same exemplar is

the level of confidence for that exemplar. A user defined threshold is applied to form

the uncertainty envelope or rejection region.
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2.8 Related Work

There are also a few other articles that do not necessarily pertain directly to

indication confidence but still are on the periphery of the current research.

Daugman, [14] and [13], defines confidence in a completely different fashion.

He uses high classification accuracy and a low false positive rate as a way of defining

high-confidence classification. Daugman [13] discusses classification of people based

upon features of their iris. Using a Hamming Distance measure, the authors get

very accurate results. For certain hamming distances, the odds of a false match

are extremely low. This is what the authors are calling high confidence recognition.

There is not a confidence score for every iris being a match or not (i.e. every exemplar

does not have an associated confidence score, just an associated hamming distance).

Daugman [13] discusses visual recognition of people; this research is similar to that

of his previous work [14].

Li and Sethi [44] introduce a new methodology called confidence based clas-

sifier design and implement the method using SVMs on a two-class problem. This

is basically a way to set up a classifier with non-declarations. The authors describe

this method as basically a post-processing of the individual classifier. The three-step

process is to train the classifier, estimate the probabilities or error rates from the

classifier, and calculate the two thresholds for the rejection region (or non-declaration

region). By creating this rejection region, this methodology does not make a decla-

ration unless there is enough “confidence” in the decision.
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Bassham et al. [10] develop a methodology to evaluate automatic target recog-

nition (ATR) systems through the use of a decision analysis paradigm. The ATR

system evaluation framework is divided into two parts: the evaluator framework and

the warfighter framework. The evaluator framework encompasses the engineering as-

pects of an ATR system, and the warfighter framework encompasses the operational

aspects of an ATR system. This paper combines the two into a single framework used

for ATR system evaluation. The evaluator framework may have some applicability to

the idea of classifier confidence. In the same way that one would chose an alternative

system with a higher value in this paradigm, one would also have more confidence

in a system with a higher value. Thus, some of the same measurements and value

functions may apply. The evaluator framework can be divided into seven major

categories (and their associated weights): classification ability (0.11), cost (0.10),

declaration ability (0.13), employment concept (0.15), detection performance (0.17),

robustness (0.20), and self-assessment accuracy (0.14). This paradigm is meant to

evaluate a set of alternative ATR systems before fielding, but the confidence prob-

lem is meant to evaluate how much confidence that we have in an indication of an

already-fielded system. For this reason, cost should not be considered in confidence.

Employment concept is either intelligence, surveillance, and reconnaissance (ISR)

or ATR. Obviously, this has nothing to do with confidence in an ATR indication

so it should not be considered in confidence. The other five categories seem to be

applicable to confidence in an ATR system.
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Ross et al. [54] provide performance measures for summarizing confusion ma-

trices. The performance measures are given both in equation form as well as tabular

form so they are displayed in a nice visual format. This paper also contains some of

the overall vocabulary of ATR as well as an object-taxonomy.

Fenton and Wang [20] state that classical multi-criteria decision making (MCDM)

methods cannot accommodate imprecise information. Probabilistic methods such as

fuzzy set theory have been used to study this problem in the past. This paper intro-

duces general fuzzy MCDM problem. The authors state that they believe risk and

confidence are the two dimensions in which the DM’s attitude is very subjective.

Schmeiser and Yeh [58] begin with a discussion of classical statistical confidence

interval estimation for mean and variance as well as some strengths and weaknesses

of these techniques. Then, some usual confidence interval criteria are discussed

including expected half-width, half-width variance, and actual coverage probability.

Essentially, this becomes a multiple criteria problem. The authors state that the

ideal value for actual coverage probability is the nominal coverage probability, not

one. Also, the ideal value for expected half-width is the width that results from

accurately estimating the sampling error in the point estimate, not zero. Therefore,

the shortest interval widths and the highest actual coverage probabilities are not

necessarily the best. Also, a confidence interval needs to be good for all values of

α, not just a particular value. The single criterion that they suggest for evaluation

is the sum of squared error between the coverage function for the ideal confidence
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interval and the coverage function for some specified confidence interval. One obvious

problem with this approach is finding the ideal confidence interval.

Schruben [59] develops a coverage function to measure confidence interval ro-

bustness where η is the probability that a confidence region contains some unknown

parameter (and equals 1− α) and η∗ is defined to be the smallest confidence coeffi-

cient such that a known parameter is within the confidence region. It is the smallest

because the regions get smaller as the confidence increases. The coverage function

is given by Fη∗(η) = Prob(η∗ ≤ η) and represents the probability that the interval

actually contains the unknown parameter. Next, the author describes the two main

problems in simulation output analysis: initialization bias and autocorrelated data.

The empirical distribution function of η∗ can be found by Gη∗(η) = 1
n

∑n
j=1 I[η∗≤η]

where η∗j are observed values of the confidence coefficient for a sample with n interval

estimates and I is an indicator function.

Do et al. [16] use associative classification where there is a rule that is as-

sociated with some class. This rule maps features of an exemplar to a class label.

This rule is determined through a data-mining process from a database of exem-

plars. The confidence value is conventionally used to describe how a rule performs

on the training set. The predictive confidence value describes how the rule performs

on the test set. The difference between the two is the confidence decrease. This is

generalized for using multiple rules where the rules are weighted. Empirical results

for confidence decrease are shown for a single rule and multiple weighed rules.
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Ghosh et al. [24] use a likelihood L-statistic to measure confidence in audio-

visual speech recognition. Specifically, they use the separation of likelihoods as the

measure of confidence. They discuss feature-level fusion and decision-level fusion and

state that decision-level fusion outperforms feature-level fusion in their application.

They state that in a noise-free environment, audio usually should be used on its

own; in fact, video can degrade classification performance. However, when noise is

present, video can improve audio-only classification performance. The authors seek

to weight audio and visual according to their confidence measure. In essence, they

find a combined log-likelihood as a weighted combination of the audio and video

log-likelihoods. These weights are determined as functions of the sample confidence

value and the overall confidence value. The sample confidence value is the L-statistic

of the log-likelihood for a single frame and is used to determine acoustic confusability.

The overall confidence is the cumulative mean of the sample confidence values and

is used as a measure of noise level.

Arenas-Garcia et al. [5] develop a methodology to increase the operational

speed of classifying patterns. Since many neural structures are complex, the compu-

tational time to evaluate a pattern can be large. Thus, the authors develop a way to

speed up this operational phase. They do this by examining the signs of partial sums

for only certain important features. They examine the partial sum of the trained

weights times their features (or features through a kernel function). If this partial

sum is large enough (or small enough), then the hope is that the current sign will
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correlate well with the class. Thus, the entire calculation does not need to be per-

formed; only the partial calculation needs to be performed. Conservative thresholds

are developed for two cases: if the variables are coded ±1, and if the variables are

coded 0,1. Since these are conservative, the authors reduce them by a factor of β.

This is their confidence measure. As this number increases, the threshold becomes

more conservative and there are fewer errors. That is, the faster classification acts

more like the classification where all calculations were performed. Thus, this is a

confidence measure between 0 and 1, but it is not a confidence measure for every

exemplar.

Kanungo and Haralick [33] develop the methodology to choose the Bayes opti-

mal operating point from a receiver operating characteristic (ROC) curve. The idea

here is to find the point of the ROC curve where the slope of the tangeant is equal

to the appropriate ratio of the costs of misclassification along with the appropriate

prior probabilities. Of course, this means that the ROC curve must not be discrete;

the derivative of the ROC curve must be found. Thus, the authors estimate the

ROC curve with a spline representation.

Everson and Fieldsend [19] develop a methodology to find the Pareto front for

multi-class classification problems where the costs of misclassification are unknown

by posing it as a multi-objective optimization problem. When zero-one costs are

used, the conditional risk is equal to the posterior probability. It is also stated that

choosing the class with the maximum posterior probability minimizes the overall
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error rate. If costs are known, it is easy to chose the class assignments that minimizes

the Bayes risk. When costs are unknown, it is common to vary these costs and

examine classification rates. The underlying classifiers used in this research were

a k-nearest neighbor and a multilayer perceptron. Multi-class ROC surfaces are

discussed as well as the volume under ROC curve measure. If C(Θ)jk is the cost of

misclassification of declaring class j as class k, then the multi-objective optimization

problem is to minimize C(Θ)jk for all j 6= k. Then, a classifier parameterized by Θ

strictly dominates a classifier parameterized by Φ if and only if C(Θ)jk ≥ C(Φ)jk for

all j 6= k and C(Θ)jk > C(Φ)jk for some j 6= k. Then, they present an algorithm that

perturbs both the weights from the underlying classifier as well as the cost vector

and calculates the misclassification rates. If the classifier isn’t dominated, it is added

to the Pareto front. This perturbation is repeated to generate the Pareto front.

Gandrabur et al. [60] discuss confidence estimation for nonlinear programming

(NLP) application. First, they outline confidence estimation as “a generic machine

learning rescoring approach for estimating the probability of correctness of the out-

puts of an arbitrary NLP application.” In a rescoring framework, a new score is

generated that is different than the baseline that can be used as a confidence mea-

sure for rejection or reranking. Outputs with a low enough confidence score are not

reliable and thus are rejected. They state that probabilistic scores can be used, but

the use of separate confidence measures provide more flexibility as it allows for recal-

ibration of the baseline system. In defining confidence mathematically, the authors
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obviously are treating confidence as a probability of correctness. This method also

describes something popular in speech recognition. That is, a set of confidence fea-

tures are generated and fed into another classifier that outputs an overall confidence

measure. The authors discuss neural networks and their estimates of probability of

correctness (or posterior probability) so they seem to be leaning toward the posterior

probability being the ideal confidence measure. Then, the authors discuss evaluation

of confidence measures. They mention two measures: ROC Curves and Normalized

Cross-entropy. Finally, there is a large section of the paper dedicated to confidence

estimation in the automatic speech recognition (ASR) application area.
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3. Confidence Scores and Posterior Probabilities

This chapter provides an algorithm that minimizes a classification system measure

of performance in the literature, shows the algorithm’s equivalence to a popular

algorithm used to train neural networks, and equates the output of the new algorithm

to the posterior probability estimate.

Parker et al. [49] describe one output of a classification system as a confidence

score. These scores are also employed by the Air Force Research Laboratory (AFRL)

as shown in [53] and [67]. One confidence measure for an entire classification system

is called either the confidence error (CE) [49] or binned error in the posterior (BEP)

[53]. Ross and Minardi [53] state that under this paradigm, “the score ideally would

be the Bayesian posterior probability.”

In [49], a score is defined to be a number between 0 and 1. Based upon this

score, a system declares whether or not a target is present in an image. Note that

this structure is applicable to all classification problems, not just target declaration

in an image. This score is described as the predicted probability that a target is

in the image. In [53], the authors state that “we associate the pre-decision rule

quantity with this detector reported confidence. We call the quantity or confidence

a score.” Thus, the score is taken as a measure of confidence in the indication of the

classification system. According to [49], if 100 scores between 0.19 and 0.21 were

sampled, then one would expect to see 20% of these to actually be targets. One

metric used to measure the accuracy of the scores is the BEP or CE. Ross and
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Minardi call this BEP and define it as

CET = BEPT =

(
N∑

j=1

((s̄Bj
− PT |Bj

)2PBj
)

)1/2

. (3.1)

Here, we denote BEP , as defined by Ross and Minardi, as BEPT since it is

calculated with respect to only the target class, T .

Using their notation, N is the number of bins, Bj denotes the jth bin, s̄Bj
is

the average score in bin Bj, PT |Bj
is the estimated probability of targets in bin Bj,

and PBj
is the probability associated with bin Bj. Here PBj

is assumed to be equal

for all bins; that is, PBj
= 1

N
for all j. Thus,

CET = BEPT =
1√
N

(
N∑

j=1

((s̄T
Bj
− PT |Bj

)2)

)1/2

. (3.2)

Ross only characterizes the BEP for target class. Now, define BEP for the

non-target class, BEPT̄ .

CET̄ = BEPT̄ =
1√
N

(
N∑

j=1

((s̄T̄
Bj
− PT̄ |Bj

)2)

)1/2

(3.3)

Then, to calculate the total BEP, we can sum across the target and non-target

classes to get

BEPTOT = BEPT + BEPT̄ . (3.4)
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Ross and Minardi [53] describe BEP as a measure of performance where a

smaller value is better. This suggests training a classifier to minimize BEP .

Theorem 3.1. The outputs of a classification system trained using back-propogation

to minimize SSE are, in the limit of infinite data, posterior probabilities; hence,

the outputs of a classification system trained to minimize BEPTOT using back-

propogation are, in the limit of infinite data, also posterior probabilities.

In the remainder of the chapter, we present and prove two lemmas. Using these

lemmas, we prove Theorem 3.1.

Lemma 3.1. BEP can be minimized using a gradient descent algorithm.

To calculate the BEP , all the scores are sorted in ascending order and binned

into a predetermined number of bins. As shown in Equation 3.1, the BEP is com-

puted as the square root of the average (across bins) of the squared differences

between the average score in a bin and the actual percentage of targets in that bin.

Let Z = [Zc
k] where we define Zc

k as the score for the kth exemplar and the cth

class in a data set where k = 1, ..., K and c ∈ {T, T̄}. Let d = [dc
k] and dk = [dT

k dT̄
k ]

where we define dc
k as the desired output for the kth exemplar and the cth class in

the data set where dk = [1 0] if the kth exemplar is a target and dk = [0 1] if the

kth exemplar is a non-target. Let Z ′T be the vector where ZT is sorted in ascending

order, and let d′T be the vector dT sorted in the same order as Z ′T . In addition, let

Z ′T̄ be the vector where Z T̄ is sorted in the same order as ZT and let d′T̄ be the

vector dT̄ sorted in the same order as Z ′T . Binning must be accomplished in order

38



to calculate the BEPTOT . Let M be the number of exemplars in a bin, and let N

be the number of bins. Thus, K = M ·N . In what follows, assume that the bins are

chosen such that each bin contains exactly M exemplars. Let Z ′T
ij be the ith sorted

score for the target class in the jth bin and let Z ′T̄
ij be the ith sorted score for the

non-target class in the jth bin where i = 1, ..., M and j = 1, ..., N . Let d′Tij be the

ith sorted desired output for the target class in the jth bin and Let d′T̄ij be the ith

desired output for the non-target class in the jth bin. Now, we can estimate s̄Bj
as

1
M

∑M
i=1 Z ′T

ij and estimate PT |Bj
as 1

M

∑M
i=1 d′Tij . Then, the BEPT is redefined as

BEPT =
1√
N

N∑
j=1

(
1

M

M∑
i=1

Z ′T
ij −

1

M

M∑
i=1

d′Tij

)2

, (3.5)

and BEPT̄ is redefined as

BEPT̄ =
1√
N

N∑
j=1

(
1

M

M∑
i=1

Z ′T̄
ij −

1

M

M∑
i=1

d′T̄ij

)2

. (3.6)

We manipulate BEPT which yields

BEPT =
1√

N ·M2

N∑
j=1

(
M∑
i=1

Z ′T
ij −

M∑
i=1

d′Tij

)2

(3.7)

and

BEPT =
1√

N ·M2

N∑
j=1

(
M∑
i=1

Z ′T
ij − d′Tij

)2

. (3.8)
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The same manipulations can be applied to BEPT̄ which result in

BEPT̄ =
1√

N ·M2

N∑
j=1

(
M∑
i=1

Z ′T̄
ij − d′T̄ij

)2

. (3.9)

The expression for BEPTOT is

BEPTOT =
1√

N ·M2

N∑
j=1

(
M∑
i=1

Z ′T
ij − d′Tij

)2

+
1√

N ·M2

N∑
j=1

(
M∑
i=1

Z ′T̄
ij − d′T̄ij

)2

.

(3.10)

At this point, we assume the standard feed-forward neural network as shown

in Figure 3.1. This figure is taken from Looney [45].

Figure 3.1 Standard Feed-Forward Neural Network [45].

This structure can be trained using a gradient descent algorithm designed to

minimize the sum of squared error (SSE). The SSE is expressed as
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SSE =
∑

c ∈{T,T̄}

K∑

k=1

[Zc
k − dc

k]
2. (3.11)

Here we will leave the structure intact and change only the error function. Instead of

minimizing SSE, we train the network to minimize BEPTOT as shown in Equation

3.10. We must find the derivative of BEPTOT with respect to both sets of learned

weights, ∂BEPTOT

∂umc
and ∂BEPTOT

∂wmn
where umc and wmn are the learned weights. These are

the standard back-propogation formulae which we summarize below. By substituting

the new error function into equations found in Looney [45], we find

∂BEPTOT

∂umc

=
∂BEPTOT

∂Zc
· ∂Zc

∂sc
· ∂sc

∂umc

(3.12)

and

∂BEPTOT

∂wmn

=
∂BEPTOT

∂ym

· ∂ym

∂rm

· ∂rm

∂wmn

=
∂BEPTOT

∂Zc
· ∂Zc

∂sc
· ∂sc

∂ym

· ∂ym

∂rm

· ∂rm

∂wmn

. (3.13)

Relative to the derivative found in [45], only the error function changes and

hence, the only partial derivative that changes is ∂BEPTOT

∂Zc . Once the expression for

∂BEPTOT

∂Zc has been found, we can use the update equations for iteration r as given in

Looney [45] where η is the step size.
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wr+1
mn = wr

mn + η
∂BEPTOT

∂wmn

(3.14)

ur+1
mc = ur

mc + η
∂BEPTOT

∂umc

(3.15)

Now, ∂BEPTOT

∂Zc = ∂BEPTOT

∂Z′c
i′j′

where ∂BEPTOT

∂Z′c
i′j′

is the partial derivative of BEPTOT

with respect to Z ′c
ij for a specific i = i′ and a specific j = j′. In order to accomplish

batch learning, we seek

S =
N∑

j′=1

M∑

i′=1

∂BEPTOT

∂Z ′c
i′j′

. (3.16)

Now, we find ∂BEPTOT

∂Z′T
i′j′

to be

∂BEPTOT

∂Z ′T
i′j′

=
∂

∂Z ′T
i′j′

1√
N ·M2

N∑
j=1

(
M∑
i=1

(Z ′T
ij − d′Tij )

)2

. (3.17)

The following are simply the steps needed to determine the derivative with the

final derivative given below.

∂BEPTOT

∂Z ′T
i′j′

=
1√

N ·M2

∂

∂Z ′T
i′j′

(
M∑
i=1

(Z ′T
ij′ − d′Tij′)

)2

(3.18)

=
2√

N ·M2
· [

M∑
i=1

(Z ′T
ij′ − d′Tij′)] ·

∂

∂Z ′T
i′j′

M∑
i=1

(Z ′T
ij′ − d′Tij′) (3.19)
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∂BEPTOT

∂Z ′T
i′j′

=
2√

N ·M2

M∑
i=1

(Z ′T
ij′ − d′Tij′) (3.20)

We can derive the final expression for S as

S =
2√

N ·M2
·

N∑

j′=1

M∑

i′=1

M∑
i=1

(Z ′T
ij′ − d′Tij′) (3.21)

=
2M√

N ·M2
·

N∑

j′=1

M∑
i=1

(Z ′T
ij′ − d′Tij′) (3.22)

S =
2√

N ·M ·
N∑

j=1

M∑
i=1

(Z ′T
ij − d′Tij ). (3.23)

Now, recall how we defined Z ′
ij as the sorted and binned values of Zk. This

implies that the following holds true,

N∑
j=1

M∑
i=1

(Z ′T
ij − d′Tij ) =

K∑

k=1

(ZT
k − dT

k ). (3.24)

This means that the final expression for S is shown as

S =
2√

N ·M
K∑

k=1

(ZT
k − dT

k ). (3.25)
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Applying the same algebra to the non-target class, we get

S =
2√

N ·M
K∑

k=1

(Z T̄
k − dT̄

k ). (3.26)

Proof. In order to prove Lemma 3.1, we use the results from Equations 3.25 and 3.26

and results from Looney to arrive at

∂BEPTOT

∂umc

=
2√

N ·M
K∑

k=1

(Zc
k − dc

k)Z
c
k(1− Zc

k)ym (3.27)

and

∂BEPTOT

∂wmn

= [
2√

N ·M
∑

c ∈{T,T̄}

K∑

k=1

(Zc
k − dc

k)][ym(1− ym)][xn]. (3.28)

Note that Looney uses sigmoids for activation functions, and recall that Z =

[Zc
k] where we define Zc

k (dc
k) as the score (desired output) for the kth exemplar and

the cth class in a data set where k = 1, ..., K and c ∈ {T, T̄}.

These can be substituted into the update Equations 3.14 and 3.15, and we

have a gradient descent algorithm that minimizes BEPTOT .

Lemma 3.2. The gradient descent algorithm that minimizes BEPTOT is equivalent

to the back-propogation gradient descent algorithm used to train neural networks based

on sum of squared error.
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Proof. The gradient used in back-propogation as presented in Looney [45] and the

gradient presented in the proof for Lemma 3.1 are equivalent to within a constant.

Equations 3.29 and 3.31 show the gradient for the back-propogation weights as shown

in Looney. Equations 3.30 and 3.32 show the gradient for the weights for the BEP

algorithm shown here.

∂SSE

∂umc

= −2
K∑

k=1

(Zc
k − dc

k)Z
c
k(1− Zc

k)ym (3.29)

∂BEPTOT

∂umc

=
2√

N ·M
K∑

k=1

(Zc
k − dc

k)Z
c
k(1− Zc

k)ym (3.30)

∂SSE

∂wmn

= [−2
∑

c ∈{T,T̄}

K∑

k=1

(Zc
k − dc

k)][ym(1− ym)][xn] (3.31)

∂BEPTOT

∂wmn

= [
2√

N ·M
∑

c ∈{T,T̄}

K∑

k=1

(Zc
k − dc

k)][ym(1− ym)][xn] (3.32)

It is easy to see that the two sets of equations are equal to within a constant.

This constant can be subsumed into the stepsize, ν, and the update equations for

the two algorithms are equivalent.

Now that we have proved Lemmas 3.1 and 3.2, we will prove Theorem 3.1.
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Proof. In [55, 65, 17], it is shown that when training a classifier on the sum of squared

error, the outputs theoretically estimate the probability of class membership condi-

tioned on the data (i.e. the posterior probability). This includes any classification

system (not only a neural network) that uses back-propogation to minimize sum of

squared error. Thus, we have already shown in Lemma 3.2 that if we train a network

to minimize the BEPTOT , this is identical to training a network to minimize SSE.

This, in turn, means the confidence score that minimizes BEPTOT is nothing more

than the posterior probability estimate. The theorem and corollaries presented here

justify the statement made in [53] that the best confidence score, with respect to

confidence error, is the posterior probability.

While Ross and Minardi [53] state that BEP is a measure of system confi-

dence, we contend this statement. While the value of BEP depends on the actual

distribution of posterior probabilities, the value of BEP is independent of the de-

sired distribution of the posterior probabilities. A classifier system may be able to

perfectly estimate posterior probability estimates when compared to truth; however,

clearly some distributions are more preferred than others. This suggests that confi-

dence may better be represented as a function of the posterior probabilities instead

of as the posterior probabilities themselves. That is the avenue taken throughout

the remainder of this dissertation.
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4. The Confidence Function for Non-Declarations

In the literature, we have seen that posterior probability estimates or constructs

known as confidence scores are employed as confidence measures [49, 53]. There is

a need to measure how well these confidence measures perform across a number of

exemplars; one example of this, as put forth by Parker et al. [49], is the confidence

error. Ross [53] makes the statement that under the discrete form of confidence error,

a confidence score is ideally a posterior probability. In Chapter 3, we showed that

training a multiple layered perceptron (MLP) neural network using back-propagation

to minimize sum of square error also minimizes the confidence error. Additionally,

we show that since, when training an MLP to minimize confidence error, the outputs

of the MLP are posterior probability estimates, this implies that the best confidence

score is simply a posterior probability.

Confidence error only measures how close the posterior probability estimates

are to the true posterior probabilities. Confidence error does not measure how useful

the posterior probability distributions are in separating the classes. In other words,

there is no value in being able to perfectly measure posterior probabilities if there

is no inherent separability in their true distributions. This suggests that confidence

in an indication is not the posterior probability directly; instead, it should be mod-

elled as a function of the posterior probabilities. In fact, this is exactly how current

practices operate, albeit unconsciously. Without stating such, two current pattern
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recognition techniques impose an implied confidence function on the posterior prob-

ability estimates.

In this chapter, a confidence framework is developed that encompasses two

common pattern recognition scenarios: forced decisions and the allowance for non-

declarations through rejection regions. In the forced decision problem, a classification

system must choose between one of the output classes. When a rejection region is

allowed, some decisions may be deferred if there is not enough confidence in the

indication of the classification system. Both methodologies impose an implied confi-

dence on the posterior probability estimates. In a forced decision problem, one has

supreme confidence across the spectrum of posterior probability estimates; thus, all

posterior probability estimates are used for classification purposes. The implied con-

fidence function for this problem is a constant. The rejection region implies supreme

confidence on all posterior probabilities outside the rejection region and a complete

absence of confidence inside the rejection region; thus, only posterior probability

estimates outside the rejection region are used for classification purposes. The im-

plied confidence function for this problem is a step function. Believing that a middle

ground exists between these extremes, we choose a quadratic function to represent

the ascent from zero confidence to absolute confidence. As such, our methodology is

a generalization of these current practices. In addition, our methodology produces a

confidence score that can be used in conjunction with posterior probability estimates

for classification decisions.
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We present the notation for our confidence framework. Let a posterior prob-

ability estimate be denoted p and the set of all posterior probability estimates be

denoted Ω. The posterior probability for class ωd is given as

pd = P (ωd|x) =
P (ωd ∩ s−1{x})

P (s−1{x}) (4.1)

where s{x} represents the sensor/processor that produces the feature vector x and

s−1{x} is the pre-image of x [17]. For the remaining discussion, we remove the d

subscript from p.

Hence, p ∈ Ω ≡ [0, 1]. Define the rejection region (an interval) as β ⊂ Ω. In

the forced decision scenario, β = ∅. Let P (p) denote the distribution (probability

density function) of the posterior probability estimates. We denote the confidence

function as C(p).

In a forced decision case, this confidence function is a constant function. Specif-

ically,

C(p) = 1 for all p ∈ Ω (4.2)

The graph of the confidence function for a forced decision is shown in Figure 4.1.

In the classical rejection region case, the confidence function is the complement

of an indicator function as shown in Equation 4.3. An indicator function typically
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Figure 4.1 Implied Confidence Function For the Forced Decision Case.

assumes a value of 1 in a set and 0 out of a set; thus, the confidence function is the

complement of an indicator function.

C(p) =





0, if p ∈ β

1, if p /∈ β

(4.3)

The implied confidence function associated with a rejection region is shown in

Figure 4.2.
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Figure 4.2 Implied Confidence Function Associated with a Rejection Region.
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Figure 4.2 is somewhat deceiving as the rejection region, as it is typically

displayed is actually a combination of two implied confidence functions, one for each

class. Figure 4.3 shows the two confidence functions that comprise the rejection

region.
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Figure 4.3 Rejection Region as Two Implied Confidence Functions.

The rejection region is implemented in the following fashion. If the posterior

probability for an exemplar falls to the left of the rejection region, the exemplar

is classified into one class. If the posterior probability for an exemplar falls to the

right of the rejection region, the exemplar is classified into the other class. If the

posterior probability for an exemplar falls in the rejection region, the exemplar is

given non-declaration status.

The two confidence functions shown in Figure 4.3 are shown separately in

Figure 4.4. This motivates the use for class specific confidence functions.

Thus far, two specific examples of C(p) have been shown in Equations 4.3 and

4.2. From this, we can see that the rejection region is simply a generalization of
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Figure 4.4 Two Separate Implied Confidence Functions for a Rejection Region.

the forced decision scenario. We propose to further generalize this methodology.

Specifically, we posit a general form for the confidence function over the indications

or outputs of the classifier. Specifically, C(p), the confidence function, need not be

a constant or a step function. In our paradigm, C(p) takes on a general form and is

used to impute confidence in a less severe fashion; thus, we are able to produce con-

fidence values in the interval [0, 1], as opposed to simply members of the set {0, 1}.

The confidence function assigns a value in [0, 1] to each possible posterior probabil-

ity estimate. Two possible forms of the confidence function are modified quadratic

functions and sigmoids; here, we examine the modified quadratic confidence func-

tion. Once a form is decided upon, parameters need to be estimated; the question

that arises next is how to find the parameters associated with a specific confidence

function.

Axiom 4.1. The average confidence in the output of a classifier, by class, is approx-

imately equal to the confidence in the classifier as it operates on that class (i.e., the

class specific classifier confidence).
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In this research, we assume that Axiom 4.1 holds true. Thus, each class will

have an associated confidence function. Class specific classifier confidence is esti-

mated using multiattribute preference theory. The appropriate parameters for the

class specific confidence function are “learned” through the assumed equality of class

specific classifier confidence to the expected value of the confidence indications for

each class, E[Cd(p)] where d = 1, ..., D and D represents the number of classes.

Additionally, Cd(p) produces a confidence score that can be used in conjunction

with posterior probability estimates in classification decisions. The confidence func-

tion allows us to act on classifier indications in a manner that is not arbitrary and

consistent with our inherent confidence in such indications.

4.1 Confidence Function Overview

There are two types of confidence developed in this research. The first is confi-

dence in a classification system (or, for brevity, a classifier) and is denoted classifier

confidence. This confidence is developed for each class. The second is the confidence

in the output (indication) of a classification system or classifier. The amount of class

specific confidence in a given classifier is estimated using multiattribute preference

theory and forms the foundation for a quadratic confidence function that is applied

to posterior probability estimates. Classifier confidence is based upon individual

measurable value functions for class specific classification accuracy, average entropy,

and class specific sample size (of the training set). The form of the overall measurable
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value function is multilinear based upon the assumption of weak difference indepen-

dence [18]; the use of this form is developed later in the chapter. This multilinear

function is used to determine class specific classifier confidence; hence, we assume

that value and confidence are analogous. We posit a general form for a confidence

function over the indications or outputs of the classifier. The confidence function

assigns a value in [0, 1] to each possible estimate. The appropriate parameters for

the confidence function are “learned” through the assumption that the average con-

fidence one has in the output of a classifier, by class, should be approximately equal

to the confidence one has in the classifier as it operates on that class (i.e., the class

specific classifier confidence).

In this research, a modified quadratic function is used as the confidence func-

tion. In our paradigm, we have no confidence in exemplars with low posterior prob-

ability estimates. We have growing confidence in exemplars with moderate posterior

probability estimates. After a point, we have supreme confidence in exemplars with

high posterior probability estimates. In this paradigm, confidence in an indication is

related to the posterior probability estimate but is not equal to it. This confidence

methodology is a direct link between traditional decision analysis techniques and

traditional pattern recognition techniques.
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4.2 Multiattribute Preference Theory Application

Multiattribute preference theory is a branch of decision analysis that allows a

decision maker to determine preferences for alternatives when each of the alternatives

has more than one attribute. Within multiattribute preference theory, there are two

classes of problems. One class of problem is determining preferences with uncertainty,

and the other class of problem is determining preferences with certainty. In either

case, let the set of alternatives be denoted by A = {a1, a2, ..., am}. Each of the

m alternatives has n attributes and are denoted by X = (X1, X2, ..., Xn) where X

denotes the entire set of attributes. Let xi represent a specific level of Xi. Each

of these n attributes are evaluated over a region xL
i ≤ xi ≤ xH

i where xL
i is the

lowest level of interest for Xi and xH
i is the highest level of interest for Xi. Also,

the least preferred level of Xi is denoted by x0
i , and the most preferred level of Xi is

denoted by x∗i . Let x̄i denote all the levels of all attributes except attribute i. Let

(si; x̄i) denote that attribute i is at level si while all other attributes are at level xi.

This notation represents levels for all attributes but calls specific attention to the

particular level of Xi. Finally, let (si; x̄i)(x
o
i ; x̄i) denote that attribute i has changed

from level xo
i to level si while all other attributes were held constant at levels xi.

When the actual consequence of choosing alternative ai is uncertain, the sce-

nario is known as determining preferences under uncertainty. In this case, choosing

alternative ai has a number of potential consequences; each of these consequences

has an associated probability. Here, an expected utility can be found for each alter-
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native. In this class of problem, utility theory is used which takes into account the

decision maker’s risk attitudes.

The other class of problem is determining preferences under certainty. This

implies that the actual consequence of choosing alternative ai is certain. In this case,

choosing alternative ai has only one consequence; this consequence has a probability

of one. In this class of problem, value functions are used. Value functions take

into account the decision maker’s values but not his risk preferences [38]. Since we

are interested in evaluating classifiers, the equivalent decision problem would be to

choose the best classifier. The alternatives are the classifiers themselves so there is

no uncertainty in the consequence; thus, we are interested in using value functions.

4.2.1 Measurable and Non-Measurable Value Functions

There are two types of value functions: non-measurable value functions and

measurable value functions. Non-measurable value functions allow a decision maker

to rank order alternatives but do not allow any analysis of the difference between

values for two alternatives (i.e., ordinal scale measurement). Measurable value func-

tions do allow for analysis of the difference between two values (i.e., interval scale

measurement). Hence, using measurable value functions, an alternative with a value

of 0.7 is more preferred to an alternative with a value of 0.4 by a difference of 0.3.

Here, we require measurable value functions.
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4.2.2 Functional Form of the Overall Measurable Value Function

Since we know measurable value functions will be used, we must determine the

functional form of the overall measurable value function. The functional form of the

overall measurable value function is based on whether or not certain conditions hold.

The following notation and definitions explain what each of these conditions means.

Using the notation presented by Dyer and Sarin [18], let XI and X̄I be a

partition of the attributes X = {X1, X2, ..., Xn}. Let s Â t denote that alternative s

is preferred to alternative t. Let wx º∗ yz mean that the strength of preference for

w over x is greater than or equal to the strength of preference for y over z [18].

Definition 4.1. “Weak Difference Independence: XI is weak difference indepen-

dent of the X̄I if given any wI , xI , yI , zI ∈ XI and some w̄I ∈ X̄I such that

(wI ; w̄I)(xI ; w̄I) º∗ (yI ; w̄I)(zI ; w̄I), (wI ; x̄I)(xI ; x̄I) º∗ (yI ; x̄I)(zI ; x̄I) for any x̄I

∈ X̄I [18].”

(wI ; w̄I)(xI ; w̄I) º∗ (yI ; w̄I)(zI ; w̄I) means that changing attribute I from level

xI to level wI while holding all other attributes constant at levels w̄I is more preferred

(or equally preferred) to changing attribute I from level zI to level yI while holding

all other attributes constant at levels w̄I .

“If XI is weak difference independent of X̄I , then the ordering of preference

differences depends only on the values of the attributes XI [18].”

Dyer and Sarin [18] reference a theorem in the Keeney and Raiffa text [34],

change the verbiage slightly, and define the conditions for a multilinear measurable
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value function. Specifically, with a set of attributes, X = (X1, X2, ..., Xn) where

n ≥ 2 if XI is weak difference independent of X̄I , then a multilinear measurable

value function is appropriate. A multilinear measurable value function with three

attributes is given by vm(x) = λ1 · vm
1 (x1) + λ2 · vm

2 (x2) + λ3 · vm
3 (x3) + λ1,2 · vm

1 (x1) ·

vm
2 (x2)+λ1,3 · vm

1 (x1) · vm
3 (x3)+λ2,3 · vm

2 (x2) · vm
3 (x3)+λ1,2,3 · vm

1 (x1) · vm
2 (x2) · vm

3 (x3).

Kirkwood [38] outlines a four-step procedure for developing a value model

using measurable value functions which we can modify based upon results of Dyer

and Sarin [18] and Keeney and Raiffa [34]. The first step is to define the attributes,

Xi, i = 1, ..., n, as well as x0
i and x∗i . Kirkwood’s [38] second step is to either test a set

of assumptions or assume them to be true. The third step, according to Kirkwood

[38], is to define vm
i (xi), the measurable value function for the ith attribute; this

can be done by directly measuring the relative value increments between different

attribute levels. The fourth step is to determine the weights used in the overall value

function. Kirkwood assumes that the functional form of the overall value function

is additive. Kirkwood [38] also states that even though Dyer and Sarin [18] have

derived other forms of measurable value functions, none have actually been put into

practice (as of 1997). It should be noted that the multilinear form requires weights

similar to those in step four of Kirkwood, but Kenney and Raiffa provide specific

instructions on how to determine these weights [34].

While Kirkwood [38] defines a four step process, our process necessitates a fifth

step. In multiattribute preference theory, the actual quantity associated with the
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value of an alternative has no meaning in isolation. We want the output of our value

model to have meaning; specifically, we want the meaning to be the confidence that

a decision maker has in that classifier. Therefore, we must add a fifth step to achieve

this objective. The fifth step of our process is to validate the output of the model

with the decision maker to ensure that the model does, in fact, tell us the confidence

the decision maker has in that classifier.

4.2.3 Attributes for Classifier Confidence

The following describes the logic behind the attribute choices for classifier con-

fidence. Confidence can be described as a lack of uncertainty. In information theory,

the amount of uncertainty in a sequence of values is called the entropy [17]. In our

case, we are interested in the amount of uncertainty in the posterior probability dis-

tributions since posterior probability estimates are often used to make declarations.

Consider a two-class problem. We will estimate the posterior probability distri-

bution for class 1 with a histogram of posterior probability estimates from exemplars

known to be in class 1. We will estimate the posterior probability distribution for

class 0 with a histogram of posterior probability estimates from exemplars known to

be in class 0. Let C denote the number of bins used to form the histogram. Let the

frequency of posterior probability estimates calculated from class d in bin c be rep-

resented by F d
c . Then, the entropy for class d is given by Ed = −∑C

c=1 F d
c log2 (F d

c ).

Here 0 log2 0 ≡ 0 by definition. Figure 4.5 shows the 8-bin histogram that has the
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highest entropy; the entropy in this case has a numeric value of 3. Figure 4.6 shows

the 8-bin histogram that has the lowest entropy; the entropy in these cases has a

numeric value of 0.
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Figure 4.5 Worst Case for Entropy.
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Figure 4.6 Best Cases for Entropy.

Entropy depends on the number of bins used to form the histogram. For

example, the entropy of the worst case using 8 bins has a numeric value of 3, but

the entropy of the worst case using 7 bins has a numeric value of 2.8. The entropy

of the best case has a numeric value of 0 for any number of bins. To make entropy

comparable across the number of bins, we will form a normalized entropy by dividing
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by the entropy of the worst case. Let ẼC denote entropy of the worst case using C

bins. Hence, the normalized entropy for class d is Ed
n = Ed

ẼC
. We also seek a single

entropy value across the classes. We define the aggregated normalized entropy as

En = (% of class 0) · E0
n + (% of class 1) · E1

n.

We have more confidence in a classification system that outputs a posterior

probability estimate histogram similar to the best case than we have in a classification

system that outputs a posterior probability estimate histogram similar to the worst

case. Hence, entropy is a logical choice as an attribute in determining confidence in a

classification system. There is one additional consideration. Both histograms shown

in Figure 4.6 result in the same entropy value. However, for a given class, one will

be 100 % accurate, and the other will be 0 % accurate. This suggests we combine

entropy with classification accuracy to measure confidence in a classification system.

Classification accuracy (CA) is calculated across exemplars in both classes.

There are four possible outcomes from a two-class, forced decision classification sys-

tem.

Define a true positive (TP) as a ‘target’ indication from a classification system

given that the exemplar is actually a target. Define a true negative (TN) as a ‘non-

target’ indication from a classification system given that the exemplar is actually a

non-target. Define a false positive (FP) as a ‘target’ indication from a classification

system given that the exemplar is actually a non-target. Define a false negative (FN)

as a ‘non-target’ indication from a classification system given that the exemplar is
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actually a target. The equations for true positive rate, true negative rate, false

positive rate, and false negative rate are defined as

TPrate =
number of TPs

number of targets
, (4.4)

TNrate =
number of TNs

number of nontargets
, (4.5)

FPrate =
number of FPs

number of nontargets
, (4.6)

and

FNrate =
number of FNs

number of targets
. (4.7)

Aggregate classification accuracy is defined as

CAagg = (% of targets · TPrate) + (% of nontargets · TNrate). (4.8)

In addition, we would have more confidence in a classification system as the

number of samples used to train the system increases. Thus, the total sample size

across classes is the third attribute used to determine classifier confidence.
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4.2.4 Attributes for Class Specific Classifier Confidence

While the classifier confidence quantifies the confidence in the classifier as a

whole, we are also interested in class specific classifier confidence. This represents

how confident we are in classifier outputs for a specific class. This is especially

relevant for problems where the classifier has high accuracy for one class but low

accuracy for another. In this case, we would not want to let classifier performance on

one class bias our confidence on the other class. For class specific classifier confidence,

we calculate the class specific sample sizes (SS), entropies (Ent), accuracies. We will

use the class specific sample sizes (i.e., the actual number of each class used to train

the classifier). We will also use the class specific entropy values. Additionally, we

will use the true positive rate as the accuracy measure for one class and true negative

rate as the accuracy measure for the other class. Now, we can calculate the aggregate

classifier confidence value as well as class specific classifier confidence values. Class

specific confidence values are used to fit the class specific confidence functions, and

the aggregate classifier confidence value is tracked as a performance measure in

Chapter 7. Combination of these three attributes, including their interactions, into

a classifier confidence value, CENG, is portrayed in Figure 4.7.

Figure 4.7 Value Hierarchy with Interactions.
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4.2.5 Implementation of the Five-Step Process

For this research, the engineer is the decision maker. Current implementation

is with respect to the engineer and produces an engineering confidence in a classifier.

Now, we apply the four-step process detailed above. The first step is to define

the attributes of the alternatives. In this case, there are three attributes: class

specific sample size, class specific classification accuracy, and average entropy. Let

d = 1, ..., D be the possible class labels where D is the total number of class labels.

Entropy will be constant across all classes because it is calculated across classes.

Class specific classification accuracy and sample size will both vary across the class

labels. Hence, they are subscripted with the class label, d. Let sample size be

denoted XSSd
where x0

SSd
= 2 and x∗SSd

= 500. Let classification accuracy be denoted

XCAd
where x0

CAd
= 0.5 and x∗CAd

= 1. Let average entropy be denoted XĒ where

x0
Ē

= 1 and x∗̄
E

= 0. Because we are assuming a two-class problem, the scenario

with the minimum confidence is a coin-flip scenario. Since classification accuracy

could, practically speaking, be less than 0.5, any classification accuracy less than 0.5

will be assessed a value of 0. Also, since sample size, practically speaking, could be

greater than 500, any sample size greater than 500 will be assigned a value of 1.

Following Kirkwood’s [38] second step, we can let XI = {XCA, XĒ} and X̄I =

{XSS}. Now, we can test the attributes for weak difference independence. The

difference in value of having an increase in sample size from 50 to 100 does not depend

on the levels of classification accuracy and average entropy. We examine 2 cases. Let
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the levels of CA and average entropy be set at 0.6 and 0.4, respectively in case 1, and

let the levels of CA and average entropy be set at 0.8 and 0.2, respectively in case

2. The value difference resulting from an increase in sample size (e.g., sample size

increases from 50 to 100) creates the same increase in case 1 and case 2. Therefore,

XI and X̄I are weak difference independent and the functional form of the overall

measurable value function is multilinear [18, 34].

Step 3 is to define the individual measurable value functions vca(xca), vē(xē),

and vss(xss). This is done by directly measuring the relative value increments be-

tween different attribute levels. Using this methodology, individual measurable value

functions were derived. Figure 4.8 shows individual measurable value functions for

classification accuracy, average entropy, and sample size.
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Figure 4.8 Measurable Value Functions.

Once the individual value functions have been found, the next step is to find

the weights for those individual attributes in the overall value function. The same

theorem from Keeney and Raiffa [34] that gives the conditions for a multilinear

measurable value function also states how to determine the weights for the multilinear
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measurable value function. Specifically, ki = v(x∗i , x̄
0
i ), kij = v(x∗i , x

∗
j , x̄

0
ij)− ki − kj,

and kijk = 1−∑
i ki −

∑
i,j>i kij.

Figure 4.9 shows two contour plots of engineering confidence; each plot displays

classification accuracy vs. average entropy for a fixed level of sample size. A low

level of sample size is used for the plot on the left, and a high level of sample size is

used for the plot on the right.
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Figure 4.9 Confidence Contours for Classification Accuracy and Average Entropy.

Figure 4.10 shows two contour plots of engineering confidence; here, each plot

shows classification accuracy vs. sample size for a fixed level of average entropy. A

low level of average entropy (in terms of value) is used for the plot on the left, and

a high level of average entropy (in terms of value) is used for the plot on the right.

Figure 4.11 shows the final two contour plots of engineering confidence; each

plot depicts average entropy vs. sample size for a fixed level of classification accuracy.

A low level of classification accuracy is used for the plot on the left, and a high level

of classification accuracy is used for the plot on the right.
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Figure 4.10 Confidence Contours for Classification Accuracy and Sample Size.
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Figure 4.11 Confidence Contours for Average Entropy and Sample Size.

Figure 4.12 shows the value hierarchy with the individual value function. The

interactions are removed for simplicity.

Figure 4.12 Engineering Confidence Value Hierarchy.
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The fifth and final step involves validation of the values in Figures 4.9, 4.10,

and 4.11 with the engineer to ensure that the output of the model can be interpreted

as the confidence that the engineer has in a classifier. Using multiattribute preference

theory, classification accuracy, average entropy, and sample size are used to derive

a single engineering confidence value by class, CENG
d , that can be used to train a

quadratic confidence function.

4.3 Quadratic Confidence Function

One way to view confidence for a given indication is through the use of a

quadratic confidence function. One should have less confidence in a posterior prob-

ability estimate in a region where there is a great deal of overlap between two popu-

lations; on the other hand, one should have more confidence in posterior probability

estimates in regions with less overlap between the two populations. To this end,

a quadratic confidence function is fit for each of the classes. Hence, we have no

confidence in exemplars with low posterior probability estimates. We have increased

confidence in exemplars with moderate posterior probability estimates. After a point,

we have supreme confidence in exemplars with high posterior probability estimate.

The region of growing confidence is the fundamental different between the quadratic

confidence function and the implied confidence function imposed by a rejection re-

gion. For illustrative purposes, Figure 4.13 shows one potential quadratic confidence

function along with one implied confidence function imposed by a rejection region.
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We will modify the standard form of a quadratic function to use as our confi-

dence function. Let’s define the standard, unmodified quadratic function, CU(p; k, p0) =

k · (p− p0)
2 where p0 is the vertex of the function and k is the multiplicative factor.

We will make two modifications to this quadratic function and denote the modified

quadratic function C(p; k, p0). If p < p0, C(p; k, p0) = 0. Thus, our confidence

increases as a posterior probability increases from p0, but we have zero confidence

in posterior probabilities less than p0. Second, if CU(p; k, p0) > 1, C(p; k, p0) = 1.

These modifications bound our confidence function between 0 and 1 and form a

piecewise confidence function. The definition for the quadratic confidence function

is

C(p; k, p0) =





0, if p < p0

1, if p ≥
√

1
k

+ p0

CU(p; k, p0), otherwise

. (4.9)
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Figure 4.14 shows potential modified quadratic confidence functions for eight

values of k where p0 = 0.5. As k increases, the modified quadratic confidence function

becomes steeper. Also, one can now visualize the regions of no confidence, growing

confidence, and supreme confidence. In the next section, we derive methodologies to

determine p0 and k.
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Figure 4.14 Potential Modified Quadratic Confidence Functions.

4.4 Parameterizing the Confidence Function

In our confidence paradigm, we posit that the average confidence one has in

the output of a classifier, by class, should be approximately equal to the confidence

one has in the classifier as it operates on that class (i.e., the class specific classifier

confidence). The confidence function for class d is denoted Cd(p; k, p0). Since the

same process is followed for all classes, for ease of notation, we suppress the subscript

d and write CENG for CENG
d and C(p; k, p0) instead of Cd(p; k, p0). Hence, we wish

to solve the following optimization problem
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min

k ≥ 0, p0 ∈ [0, 1]
(CENG − E[C(•; k, p0)])

2. (4.10)

Since k and p0 are both unknown, we will fix p0 and solve for k. This should

yield a functional relationship where k∗ = F (p0). We will now define methodologies

for fixing p0 and solving for k.

4.4.1 Finding the Loss Vertex

One logical methodology to find p0 is to place it close to the Bayes optimal

threshold; this is the threshold that minimizes the classification error. However,

there is an advantage in our paradigm to choosing a smaller value of the vertex

rather than a larger value of the vertex. As stated earlier, we are developing a

confidence measure less severe than the implied confidence set forth by a rejection

region. As the vertex value decreases, a smaller quantity for k can be used which will

correspond to a less severe quadratic confidence function (i.e., one that rises from 0

to 1 more slowly). In turn, this will provide a less severe approach than the rejection

region approach. Thus, we will move the vertex (i.e., by decreasing it) away from the

Bayes optimal point to allow for a gentle increase in confidence initially and then a

more rapid increase past the Bayes optimal point. For a given histogram, a smaller

vertex value allows for a larger range of expected confidence values to be achieved.

To illustrate this point, consider Figure 4.15 where two plots are shown. The first

plot shows a notional histogram of posterior probabilities with possible quadratic
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functions overlaid. The vertex for all possible quadratic functions shown is 0.5. The

second plot shows the expected confidence as a function of k.
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Figure 4.15 Histogram with Confidence Functions and Expected Confidence.

It is easy to see that no matter how large k is, the largest expected confidence is

0.59. If this represented a scenario where the engineer has more confidence than 0.59,

we would not be able to solve the optimization problem in Equation 4.10 without

decreasing the value of p0.

Now that we have shown how our paradigm benefits from smaller p0 values,

we will now discuss our procedure for finding p0. We start by finding the Bayes opti-

mal threshold from the classifier when applied to the training set (i.e., the threshold

that corresponds to the maximum classification accuracy in the training set). Let

the Bayes optimal threshold be denoted θBayes. Let the classification accuracy cor-

responding to this threshold be denoted CABayes. Let εCA > 0 be the allowable

tolerance on classification accuracy, and let the classification accuracy correspond-

ing to any set threshold, θ, be denoted CAθ. Now, the optimal θ, denoted θ∗, is

found by solving the constrained optimization problem
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min{θ ∈ [0, 1] : CAθ ≥ CABayes − εCA}. (4.11)

Then, p0 = θ∗. Thus, the optimal threshold is the minimum threshold that

meets the minimum acceptable classification accuracy constraint. Now that a method-

ology to determine p0 has been set forth, a methodology to determine optimal k must

be developed.

4.4.2 Finding the Optimal Multiplier

We can find the expected value of the function, g, by integrating it with respect

to its probability density, f , by calculating E[g] =
∫∞
−∞ g(p)f(p)dp [64]. In the

discrete case, we calculate the expected value as E[g] =
∑n

i=1 g(pi)f(pi) where p is

divided into n bins.

By integrating the confidence function, C(p; k, p0), relative to a posterior prob-

ability density, f(p), we can find the expected value of the confidence function,

E[C(•; k, p0)] =
∫ 1

0
C(p; k, p0)f(p)dp. In the discrete case, we can calculate the ex-

pected value as E[C(•; k, p0)] =
∑n

i=1 C(pi; k, p0)f(pi). For this research, we only

use the discrete case. Our paradigm dictates that we choose k∗, the optimal value of

k, such that E[C(•; k∗, p0)] equals the confidence the engineer has in the classifier,

CENG. This is shown as

k∗ =
argmin

k
(CENG − E[C(•; k, p0)]p0=θ∗)

2. (4.12)
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Here, CENG was determined using multiattribute preference theory.

In practice, the theoretical density of the posterior probabilities is most likely

unknown. Thus, we must estimate this density empirically using the posterior prob-

ability estimates from the underlying classifier. This is done using a histogram of

the posterior probability estimates. The first decision that must be made is de-

termining the number of intervals, c, in the histogram. Sturges’s rule is the most

well-known heuristic and states that c = b1 + log2 nc where n is the number of

exemplars in the data set [42]. Let pi, i = 1, ..., c be the center of the ith inter-

val. Then, let f(pi) be the percentage of data in the ith interval. Then, empiri-

cally, E[C(•; k, p0)] =
∑c

i=1 C(pi; k, p0)f(pi). Now that we have an expression for

E[C(•; k, p0)], and a methodology to find CENG and p0, we can find k∗; once k∗ is

found, the quadratic confidence function will be fully defined.

Since C(p; k, p0) is a piecewise function, we can break E[C(•; k, p0)] into three

components. Define r to be the smallest index of pi such that pi > p0. Define s as

the largest index of pi such that k(pi− p0)
2 < 1. Equation 4.13 shows the expression

for E[C(•; k, p0)] broken down into three components.

E[C(•; k, p0)] =
r−1∑
i=1

0 · f(pi) +
s∑

i=r

k(pi − p0)
2 · f(pi) +

c∑
i=s+1

1 · f(pi) (4.13)
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Thus, we have broken the expected value into three parts: 1 ≤ i < r, r ≤ i ≤ s,

and s < i ≤ c. As k changes, s will change in reaction. Since changing k changes

the limits of the summation when determining E[C(•; k, p0)], we must solve for k∗

numerically. Specifically, we will use the bisection method to solve for the optimal

value of k. In order to use the bisection method, we must find one value of k that is

less than k∗ and one value of k that is greater than k∗.

4.4.2.1 Bounds on k∗

One way to find a lower bound on k∗ is to solve a relaxation of the problem.

In particular, we will solve for the optimal value of k on the unmodified confi-

dence function, CU(p; k, p0). Since CU(p; k, p0) is not piecewise, the limits of the

summation do not depend on k so we can directly solve for the optimal k. In

order to optimize k, we must find the value of k that minimizes the expression

D = ‖CENG − E[CU(p; k, p0)]p0=θ∗‖2. We know this is a lower bound on k∗ because

CU(pi; k, p0) ≥ C(pi; k, p0) for all i. Therefore, for the same values of k and p0,

E[CU(pi; k, p0)] ≥ E[C(pi; k, p0)]. In order to achieve the same expected value, the

unmodified version must use a smaller k than the modified version. Hence, this will

provide an initial lower bound on k∗, denoted kL
0 .

In order to solve the relaxation, classical unconstrained optimization theory

tells us that we can take the derivative of this expression, set it equal to zero, and
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solve for k. This value will give us the optimal value of k [47]. The minimization

problem is shown in Equation 4.14.

kL
0 =

argmin

k
D = (CENG − E[CU(p; k, p0)]p0=θ∗)

2 (4.14)

The derivative of D with respect to k is

∂D

∂k
= 2 · (E[CU(p; k, p0)]− CENG) · ∂E[CU(p; k, p0)]

∂k
(4.15)

and

∂E[CU(p; k, p0)]

∂k
=

∂

∂k
[k ·

c∑
i=1

(pi − p0)
2 · f(pi)]. (4.16)

Now, the derivative is very simple since everything except k is a constant;

finally, ∂E[CU (p;k,p0)]
∂k

is shown as

∂E[CU(p; k, p0)]

∂k
=

c∑
i=1

(pi − p0)
2 · f(pi). (4.17)

Now, substituting Equation 4.17 into Equation 4.15 and setting this expression

equal to zero yields Equation 4.18.

2 · (E[CU(p; kL
0 , p0)]− CENG) ·

c∑
i=1

(pi − p0)
2 · f(pi) = 0 (4.18)
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The expression for E[CU(p; kL
0 , p0)] is given as

E[CU(p; kL
0 , p0)] = kL

0 ·
c∑

i=1

(pi − p0)
2 · f(pi). (4.19)

Then, substituting the expression for E[CU(p; kL
0 , p0)] into Equation 4.18 yields

2 · (kL
0 ·

c∑
i=1

(pi − p0)
2 · f(pi)− CENG) ·

c∑
i=1

(pi − p0)
2 · f(pi) = 0. (4.20)

Dividing both sides of the Equation 4.20 by 2 ·∑c
i=1 (pi − p0)

2 · f(pi) results in

kL
0 ·

c∑
i=1

(pi − p0)
2 · f(pi)− CENG = 0. (4.21)

With some simple algebra, the solution for k0
L is completed and shown in

Equation 4.22.

k0
L =

CENG

∑c
i=1 (pi − p0)2 · f(pi)

(4.22)

Now that we have the initial lower bound on k∗, we must find an initial upper

bound on k∗. This is found by numerically evaluating E[C(p; k, p0)] with large values

of k until we observe a value of k where E[C(p; k, p0)] > CENG. Then, this k is set

to the initial upper bound for k, denoted kU
0 . Now, that we have an upper and a
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lower bound on k∗, we can proceed with the bisection method. However, it is also

interesting to observe how much confidence changes as k changes; this is developed

next.

4.4.2.2 Change in Expected Loss

Define C = E[C(•; k, p0)] and ∆C = E[C(•; k + ∆k, p0)] − E[C(•; k, p0)]. Given

a step of ∆k, we wish to find ∆C for use in the bisection method. Consider pi,

i = 1, ..., c, to be the histogram centers (i.e., discretized p into c histogram bins).

Define r to be the smallest index of pi such that pi > p0. Define s as the largest

index of pi such that k(pi − p0)
2 < 1. Define t to be the largest index of pi such

that (k + ∆k)(pi − p0)
2 < 1. With these definitions, we can determine how much

C changes as k changes by evaluating the expression for ∆C. There are three cases

to evaluate: s = t, s < t, and s > t. Figure 4.16 shows case 1. Figure 4.17 shows

case 2. Figure 4.18 shows case 3. For simplicity, no histograms are shown, but the

histogram centers corresponding to r, s, and t are marked accordingly.

In the first case, s = t, the magnitude of the change in k is so small that the

limits of the summation have not changed. Equations 4.23 and 4.25 simplify the

expression E[C(•; k + ∆k, p0)]− E[C(•; k, p0)].
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Figure 4.16 Change in Expected Loss-Case 1.
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Figure 4.17 Change in Expected Loss-Case 2.

∆C =
t∑

i=r

(k + ∆k)(pi − p0)
2 · f(pi)+

c∑
i=t+1

f(pi)−
s∑

i=r

k(pi − p0)
2 · f(pi)−

c∑
i=s+1

f(pi)

(4.23)

Since s = t in the first case, the
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Figure 4.18 Change in Expected Loss-Case 3.

∆C =
s∑

i=r

k(pi − p0)
2 · f(pi) +

s∑
i=r

∆k(pi − p0)
2 · f(pi) +

c∑
i=s+1

f(pi)−
s∑

i=r

k(pi − p0)
2 · f(pi)−

c∑
i=s+1

f(pi) (4.24)

which simplifies to

∆C =
s∑

i=r

∆k(pi − p0)
2 · f(pi). (4.25)

It should be noted that this case, s = t, is a special instance of the other two

cases where there are no restrictions on the sign of ∆k.

In the second case, ∆k < 0 so s < t. The expression for E[C(•; k + ∆k, p0)]−

E[C(•; k, p0)] becomes
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∆C =
s∑

i=r

(k + ∆k)(pi − p0)
2 · f(pi) +

t∑
i=s+1

(k + ∆k)(pi − p0)
2 · f(pi) +

c∑
i=t+1

f(pi)−
s∑

i=r

k(pi − p0)
2 · f(pi)−

c∑
i=s+1

f(pi)

∆C =
s∑

i=r

k(pi − p0)
2 · f(pi) +

s∑
i=r

∆k(pi − p0)
2 · f(pi) +

t∑
i=s+1

(k + ∆k)(pi − p0)
2 · f(pi) +

c∑
i=t+1

f(pi)−
s∑

i=r

k(pi − p0)
2 · f(pi)−

t∑
i=s+1

f(pi)−
c∑

i=t+1

f(pi)

∆C =
s∑

i=r

∆k(pi − p0)
2 · f(pi) +

t∑
i=s+1

(k + ∆k)(pi − p0)
2 · f(pi)−

t∑
i=s+1

f(pi).

(4.26)

In the third case, ∆k > 0 so s > t. The expression for E[C(•; k + ∆k, p0)] −

E[C(•; k, p0)] becomes

∆C =
t∑

i=r

(k + ∆k)(pi − p0)
2 · f(pi) +

c∑
i=t+1

f(pi)−
s∑

i=r

k(pi − p0)
2 · f(pi)−

c∑
i=s+1

f(pi)

∆C =
t∑

i=r

k(pi − p0)
2 · f(pi) +

t∑
i=r

∆k(pi − p0)
2 · f(pi) +

s∑
i=t+1

f(pi) +
c∑

i=s+1

f(pi)−

t∑
i=r

k(pi − p0)
2 · f(pi)−

s∑
i=t+1

k(pi − p0)
2 · f(pi)−

c∑
i=s+1

f(pi)

∆C =
t∑

i=r

∆k(pi − p0)
2 · f(pi) +

s∑
i=t+1

f(pi)−
s∑

i=t+1

k(pi − p0)
2 · f(pi).

(4.27)
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4.4.2.3 Bisection Method

Given an initial upper bound, k0
U , and lower bound, k0

L, we can start the bisection

method. For iteration i, calculate ∆k, calculate ∆C, the change in expected confi-

dence at that point, and calculate E[C(p; ki, p0)]. If E[C(p; ki, p0)] > CENG, kU
i+1 =

ki and kL
i+1 = kL

i ; otherwise, kL
i+1 = ki and kU

i+1 = kU
i . Then, we can calculate ki+1 =

kU
i +kL

i

2
and ∆k = ki − ki−1. This process is iterated until |E[C(p; ki, p0)]− CENG| <

εconf where εconf is the tolerance on the bisection method. When |E[C(p; ki, p0)] −

CENG| < εconf , k∗ = ki.

4.5 Final Form of the Quadratic Confidence Function

Using a quadratic confidence, we have fit the best function for the paradigm.

This procedure is repeated for all classes. This confidence function, Cd(p; k∗, p0),

uses a posterior probability estimate, p, as input and outputs a confidence. This

confidence measure adjusts the posterior probability based upon the values of the

engineer. Here, indication confidence is not equal to the posterior probability esti-

mate but is related to it. This confidence measure directly incorporates the prefer-

ence structure of the engineer and links traditional decision analysis techniques and

pattern recognition techniques.
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4.6 Kullback-Leibler Distance

It is vital to the application of this paradigm that the histogram of the pos-

terior probabilities from the test set be similar to the histogram of the posterior

probabilities from the training set. This is typically the case when the training and

test sample sizes are relatively large. However, in small sample size cases, this is not

always true since it is more likely that the training set is not completely represen-

tative of the population as a whole. To alleviate this problem, we will implement

a new methodology that will help measure how well the classifier generalizes to an

independent data set. Only classifiers that generalize well enough to an independent

data set, as measured through Kullback-Leibler (KL) distance, will be considered

further in our paradigm. In the early stages of the research, a multiple layered

perceptron was being used as a classifier. Because the MLP initializes its weights

randomly, there are times when the fully trained classifier does not perform well. To

alleviate this affect, the following methodology was developed. KL distance has been

used extensively in pattern recognition problems as it measures the distance between

two probability distributions, f(p) and g(p) over the same variable p where f(p) is

the true distribution, and g(p) is the estimated distribution[17]. The KL distance

between distributions is shown as

DKL(f, g) =
∑

p

g(p)ln
g(p)

f(p)
. (4.28)
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In our scenario, we treat the distribution of the target class posterior proba-

bility estimates from the training set as the truth data, f(p), and the distribution

of the target class posterior probability estimates from the test set as the observed

data, g(p). If the classifier generalizes well to an independent data set, then the

distribution from the test set should be similar to that of the training set.

The variable p was already divided up into c intervals when the histograms

were created, and c was held constant across the training set and test set. Then,

DKL is the distance between the two distributions. If this distance is small, then the

two distributions are similar indicating that the classifier performance on the test

set is similar to its performance on the training set (i.e., the classifier is generalizing

well). If this distance is large, then the two distributions are not similar indicating

that the classifier performance is not similar on training set and test set (i.e., the

classifier is not generalizing well). The one remaining issue is how small does the

KL distance have to be before it becomes significant. Define εKL as the user defined

tolerance on KL distance. If DKL ≤ εKL, we consider the classifier adequately

trained. Otherwise, we consider the classifier inadequately trained and remove it

from further consideration within our paradigm.

4.7 Implementation of the Confidence Function

Now that a general confidence function has been parameterized for each class,

the question remains of how to use the functions. There are three options for appli-
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cation of the confidence score. First, as is current practice, the posterior probability

estimate for only those exemplars with supreme confidence (i.e., confidence score

equal to 1) are used for classification decisions. As stated earlier, this is the ap-

proach that is used by forced decision and rejection region methodologies. The

second option for application is to choose another threshold (i.e., other than 1) and

only use the posterior probability estimates for those exemplars with confidence score

greater than the threshold. The following summarizes the first two options. Only

exemplars with confidence scores greater than a threshold will be used for classi-

fication purposes. Let Lid be the output of the parameterized confidence function

for the ith exemplar of the dth class. Let θC be the confidence threshold. Then,

exemplar i is classified according to its posterior probability estimate if the poste-

rior probability corresponding to class d exceeds the Bayes optimal threshold and

Lid > θC . Otherwise, exemplar i is considered a non-declaration. While this still

results in a non-declaration window, θC does provide some insight into the mini-

mum confidence associated with a given window. In the first option, θC = 1; in the

second option, 0 ≤ θC < 1. The third option has a random component involved.

Here, the confidence function is interpreted as the probability of a declaration given

a posterior probability, P (DEC|p). Thus, we can compare a random number to

the output of the confidence function; if the random number exceeds the output of

the confidence function, the exemplar is considered a non-declaration. If the out-

put of the confidence function exceeds the random number, a declaration is made
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based upon the posterior probability estimate. For example, if many exemplars had

C(p) = 0.80 and a random number was drawn for each exemplar, approximately

80% of these exemplars would be chosen as declarations and 20% would be chosen

as non-declarations.

4.8 Summary of the Confidence Paradigm

In this chapter, we develop a theoretical confidence framework based on the

assumptions that the classification system confidence acts like a value and that indi-

cation confidence can be modelled as a function of the posterior probability estimates.

Classification system confidence is modelled using multiattribute preference theory,

and indication confidence is modelled as a quadratic function. The tactical issues

involved with fitting such a curve are addressed. A new use for the KL distance is

developed. Finally, three implementations of the confidence function are discussed.
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5. The Confidence Paradigm for In-Library and

Out-of-library Problems

5.1 In-Library and Out-of-Library Problems

Previously, we have discussed forced decision classification and classification

schemes that allow for non-declarations. Classification problems can be further bro-

ken down into two additional categories: in-library (IL) and out-of-library (OOL).

For both cases, only a certain discrete number of target types are used to train a

classifier. That is, a classification system has data on a certain number of target

types, and that data is used to train the classification system to distinguish between

those classes. If, in practice, the classification system only observes the target types

used to train the classifier, then the problem is considered an “in-library” problem.

However, if, in practice, the classification system observes new target types, not used

to train the classification system, then the problem is considered an “out-of-library”

problem [4].

When the confidence paradigm is applied to a classification system on only

in-library targets, the confidence paradigm presented in Chapter 4 can be applied

directly where IL non-declarations are used. When an out-of-library detector is

available, this can be treated as another classifier and the paradigm developed in

Chapter 4 can be applied directly to this classifier. The remainder of this chapter
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discusses the OOL problem, a new OOL detector. This leads to the new concept of

OOL non-declarations

5.2 The OOL Problem

As stated in [4], an out-of-library target class is one that was not used to train

the classifier. This chapter introduces a new out-of-library (OOL) detector through

the use of a generalized regression neural network (GRNN). Once this OOL detector

is described, we develop the idea of OOL indication confidence along with the new

concept of an OOL non-declaration.

For this research, an OOL detector is a classifier that discriminates between

in-library (IL) targets and OOL targets based upon the features of those targets.

As such, we desire that this OOL detector output a posterior probability associated

with each class. We now develop the methodology to develop such an OOL detector.

What makes the OOL problem difficult is that since the OOL targets are, by

definition, not in the library, we do not have exemplars to use to train a classifier in

the traditional sense. One could argue that it is the idea that “we don’t know what

we don’t know” that makes the OOL problem difficult. The OOL detector presented

below is based on an amendment to the previous proposition. It is restated as “we

don’t know what we don’t know,” but “we do know that we don’t know it.”

Consider the two-class problem where each exemplar has two features. For

each class, the two-dimensional feature space has a multivariate normal distribution.
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Let the mean of the class 0 be (0, 0), and let the mean of class 1 be (1.95, 2.15). Let

both classes have a covariance matrix equal to the identity matrix. Let each class

have 200 observations. The observations in the feature space are shown in Figure

5.1.
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Figure 5.1 Two-Class Feature Space Plot (200 Observations Each).

Now, assume that there is another class that is unknown to our classifier (i.e.,

an OOL class). Let the features of this class also follow a multivariate normal

distribution with mean (1.95, -2.15) and a covariance matrix equal to the identity.

Figure 5.2 shows the feature space with the OOL class included.

We desire an OOL detector that can tell the difference between the in-library

classes, classes 0 and 1, collectively, and the OOL class; this becomes our new two-

class problem. This problem is portrayed in Figure 5.3.
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Figure 5.2 Two-Class Feature Space Plot with OOL Class (200 Observations
Each).
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Figure 5.3 Two-Class OOL Problem (600 Observations Total).
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To emphasize the point made earlier, the hard part about the OOL problem is

that we do not have knowledge of the OOL class in training. Hence, the only data

available to train the classifier is the features of the IL classes. This feature space

which is simply the combined in-library classes is shown in Figure 5.4.
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Figure 5.4 In-Library Features (400 Observations Total).

5.3 New OOL Detector

There is information that has not been used yet. That is, there are regions of

the feature space where we have not observed any in-library targets. These regions

yield the points to be used as features for the out-of-library class. We just need to

know how to choose these points. Here, we discuss two types of data: observed data

and data generated from a bounded, discretized feature space. We propose to bound
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and discretize the feature space, assign each discrete point to either the IL class or

the OOL class, and treat those discretized features as input to a GRNN. For each

data point, we calculate the Mahalanobis Distance between the data point and each

of the IL classes. For this example, we bound the feature space to be the square

[-6,6]x[-6,6] and discretize the space by using integers in this range. Thus, for this

simple example, we have 13 settings per feature for a total of 169 discrete points.

Figure 5.5 shows the Mahalanobis Distance between each discrete point and class

0, and Figure 5.6 shows the Mahalanobis Distance between each discrete point and

class 1.
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Figure 5.5 Mahalanobis Distance between Discrete Points and Class 0.

It is desirable for an out-of-library point to be far from both in-library classes

so we calculate the minimum Mahalanobis Distance (across classes) for each of the
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Figure 5.6 Mahalanobis Distance between Discrete Points and Class 1.

discrete points. Figure 5.7 shows the minimum Mahalanobis Distance for each of

the discrete points.

For a discrete point, if the minimum Mahalanobis Distance is less than a thresh-

old, the point is considered an IL point and is included in the training set for the IL

class. However, if the minimum Mahalanobis Distance is greater than the threshold,

the point is considered an OOL point and is included in the training set for the OOL

class. For this low-dimensional feature space, a single threshold can be used. Using

a single threshold, we can divide the entire discretized feature space into either IL

or OOL. Figure 5.8 shows the discretized features space divided into IL (blue) and

OOL (red) using a single threshold.
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Figure 5.7 Mahalanobis Distance for Discrete Points.
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Figure 5.8 GRNN Feature Map using Single Threshold.
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As the dimensionality of the feature space grows, the number of discrete points

to evaluate also grows. In turn, the number of data points used to train the GRNN

grows. To illustrate this point, consider two problems. In the first problem, let the

feature space be two-dimensional. If we divided the feature space into 10 discrete

points in each dimension, we only need to evaluate 102 = 100 data points. In the

second problem, let the feature space be 10-dimensional which is not unreasonable

for a real data set. If we divided the feature space up into 10 discrete points in

each dimension, we need to evaluate 1010 = 10, 000, 000, 000 data points. So, there

is an obvious benefit to reducing the number of features to be considered in the

discretization process. Another way to limit the number of training points, especially

in the corners of the feature space, is to implement the use of a second threshold.

This second threshold helps to create a cloud around the in-library data points to

be used to train the OOL detector. Figure 5.9 shows the discretized features space

divided into IL (blue) and OOL (red) using two thresholds.

The reason we feel we can implement the second threshold successfully is

through understanding how a GRNN will classify such points. We suspect that

the GRNN will still select exemplars from the regions beyond the second threshold

as OOL even though they were not used directly in training. That is, since we expect

they are closer to the OOL class than the IL class, they will be classified as OOL

points.
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Using this methodology on 30 replications of the problem described above, our

OOL detector records an average OOL true positive rate of 0.90, an average OOL

true negative rate of 0.82 and an average classification accuracy or 0.85. Of course,

these results will vary based upon the geometry of the OOL class with respect to

the IL class. It is easy to envision a scenario where the OOL class is so far separated

from the IL class that the OOL detector can easily tell the difference between the

two classes. Likewise, it is easy to envision a different scenario where the OOL class

is so close to the IL class that the OOL detector cannot do much better than chance.
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5.4 OOL Indication Confidence

Of course, this OOL detector is simply another two-class classifier; thus, it has

quantities associated with it such as classification accuracy, true positive rate, true

negative rate, entropy, and sample sizes. Assuming some test data is available that

contains OOL and IL targets, we can calculate the class specific OOL engineering

confidence values using true positive, true negative, class specific entropy, and class

specific sample sizes, just as we did in Chapter 4. Using the class specific OOL

engineering confidence values, we can find the class specific quadratic confidence

functions. These can be used in the same fashion as Chapter 4. As such, the

methodology will produce OOL confidence values in the range [0, 1]. This confidence

value represents the confidence that an exemplar is either an in-library exemplar or

an out-of-library exemplar. Since we can apply a new threshold to these confidence

values, a new concept is suggested. In Chapter 4, we discussed the non-declaration

option. Below, we introduce the idea of an OOL non-declaration and show that the

region of the feature space where OOL non-declarations occur is a different region

in the feature space than the in-library non-declaration region.

5.5 OOL Non-Declaration

Non-declaration status is an option given to classification systems when there

is not enough confidence to declare an exemplar into one of the in-library classes.

In previous work by Friend [22], non-declaration is only an option once an exemplar
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passes as an IL target (i.e., the exemplar is not given OOL status). Thus, a non-

declaration region is typically a region of the feature space where there is overlap

between multiple in-library target classes. Figure 5.10 shows a traditional in-library

non-declaration region.

Figure 5.10 Notional IL Non-Declaration Region.

We now introduce the new concept of an OOL non-declaration region. This is

the region where there is overlap between the in-library and potential out-of-library

target classes. Figure 5.11 shows an OOL non-declaration region.

Now, the regions from Figures 5.10 and 5.11 can be combined to form the

complete non-declaration region. Figure 5.12 shows a combined non-declaration

region.
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Figure 5.11 OOL Non-Declaration Region.

Figure 5.12 Combined Non-Declaration Region.

5.6 Summary of the Confidence Paradigm for IL and OOL Problems

This chapter started with describing the difference between an IL problem and

an OOL problem in the context that our confidence paradigm can be applied to both
99



the IL problem as well as the OOL problem. Then, a more detailed description of

the OOL problem is provided as well as a new OOL detector. This OOL detector

bounds and discretizes the feature space and assigns these discrete points as either

IL or OOL. These points are used to train a GRNN which acts as an OOL detector.

Since this is simply another classifier, our confidence paradigm is applicable. This

application produces the concept of an OOL non-declaration. The issue of combining

IL confidence and OOL confidence is addressed in subsequent chapters.
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6. Confidence and Non-Declarations

6.1 Overview

There are a variety of scenarios in which a classification system can be em-

ployed; three of them are discussed here: (1) in-library (IL) with non-declarations

(no out-of-library (OOL) option), (2) IL with non-declarations and OOL targets with

non-declarations, and (3) IL targets with non-declarations and OOL forced decision.

Case (1) considers classification systems where only IL targets are present with no

OOL targets. In this scenario, no OOL detector is needed, and no OOL confidence

measure is needed. In this case, there is a trade-off between IL confidence and IL non-

declarations. Case (2) addresses classification systems that are able to identify IL

targets and OOL targets and allow for non-declarations in both realms. In this case,

there is a trade-off between IL engineering confidence and IL non-declarations as

well as a trade-off between OOL engineering confidence and OOL non-declarations.

Finally, case (3) addresses classification systems that allow non-declarations on IL

targets but force a decision on whether the target is OOL or not. In this case, there

is a trade-off between IL engineering confidence and IL non-declarations, and OOL

confidence is present.
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6.2 IL with Non-Declarations

In a forced decision scenario, a classification system is forced to make a deci-

sion between one of the output classes. In the forced decision, there is no tradeoff

between confidence and non-declarations because non-declaration status is not an

option; hence, the non-declaration rate is zero when a classification system is forced

to make a decision. This is the exact scenario in which the class specific, engi-

neering confidence values are derived. This reflects how confident we are in how a

classifier makes decisions on a certain class when it is forced to decide between the

pre-specified output classes. This engineering confidence value is used to determine

the quadratic confidence function that is applied to the posterior probability dis-

tribution. Using this confidence function, every exemplar is assigned a confidence

value. A threshold can be applied to this value. If the confidence is above the thresh-

old, the exemplar is classified according to its posterior probability estimate. If the

confidence is below the threshold, the exemplar is consider a non-declaration. As we

vary this threshold between 0 and 1, a rational portfolio of classification systems is

created based on the user’s confidence function. For each member of the portfolio,

we can observe the values of certain performance measures, specifically, engineering

confidence and non-declaration rate. There is an underlying trade-off between these

two measures. As the threshold increases, typically, we will observe an increase in

engineering confidence. That is, as questionable exemplars are removed from classi-

fication consideration, the classification accuracy tends to increase and the average
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entropy tends to decrease. This causes engineering confidence to increase. Note that

sample size is the number of exemplars used to train the classifier so this remains

constant across the confidence threshold space. However, this increase in engineering

confidence does not come without a price. The percentage of declarations continues

to decrease as the confidence threshold increases. Thus, there is a tradeoff between

more confident decisions and number of these decisions made.

We use multiattribute preference theory to determine the optimal alterna-

tive. Here, each threshold setting represents an alternative. Let IL engineering

confidence be denoted XIL−EC where where x0
IL−EC = 0 and x∗IL−EC = 1. Let

IL non-declaration rate be denoted XIL−ND where x0
IL−ND = 1 and x∗IL−ND = 0.

Value functions will be developed for both IL engineering confidence, vil−ec(xil−ec)

and IL non-declaration rate, vil−nd(xil−nd). They will be combined using a weighted

linear overall value function, voverall = wil−ec · vil−ec(xil−ec) + wil−nd · vil−nd(xil−nd)

where wil−ec is the weight associated with IL engineering confidence and wil−nd is

the weight associated with IL non-declaration rate. Figure 6.1 shows the individual

value functions for IL engineering confidence and IL non-declaration rate.

Since engineering confidence is already a value, it need no further transforma-

tion. For non-declaration, there is a region between 0 and 0.2 where the value is

a constant 1. After that, the value drops off in a linear fashion until it reaches a

constant 0. The higher the non-declaration rate, the lower the value assigned to that

rate. The form of the overall value function will be linear. In essence, the overall
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Figure 6.1 IL Individual Value Functions.

value will be a weighted average of the values assigned to engineering confidence and

non-declaration rate. Figure 6.2 shows the value hierarchy for this case. Figure 6.3

shows the contour plot of overall value vs engineering confidence and non-declaration

rate.

Figure 6.2 Overall Value Hierarchy-Case 1.

Each threshold setting will result in a non-declaration rate, engineering con-

fidence pair that is input into the overall value model. The threshold setting that

provides the most value is the chosen as the operating point for the paradigm.
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Figure 6.3 Overall Value Contour.

6.3 IL and OOL with Non-Declarations

In the case where IL and OOL targets are present and the classification system

uses both IL and OOL non-declarations, we simply need to extend the model devel-

oped for the IL with non-declarations. Also, the decision space is two-dimensional

as we now must find settings for both the IL threshold and the OOL threshold.

Now, there are two new attributes to the decision problem. Let OOL engineering

confidence be denoted XOOL−EC where where x0
OOL−EC = 0 and x∗OOL−EC = 1.

Let OOL non-declaration rate be denoted XOOL−ND where x0
OOL−ND = 1 and

x∗OOL−ND = 0. Value functions will be developed for both OOL engineering con-

fidence, vool−ec(xool−ec) and OOL non-declaration rate, vool−nd(xool−nd).

They will be combined with the IL values using a weighted linear overall value

function, voverall = wil−ec·vil−ec(xil−ec)+wil−nd·vil−nd(xil−nd)+wool−ec·vool−ec(xool−ec)+

wool−nd · vool−nd(xool−nd) where wool−ec is the weight associated with OOL engineer-
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ing confidence and wool−nd is the weight associated with OOL non-declaration rate.

Figure 6.4 shows the individual value functions for OOL engineering confidence and

OOL non-declaration rate.
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Figure 6.4 OOL Individual Value Functions.

Figure 6.5 shows the value hierarchy for this case.

Figure 6.5 Overall Value Hierarchy-Case 2.
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Each threshold setting pair will result in a four-tuple that is input into the

overall value model. The threshold setting pair that provides the most value is the

chosen as the operating point for the paradigm.

6.4 IL with Non-Declarations and OOL Forced Decision

In this scenario, non-declaration is not an option to the OOL detector. Thus,

we only have three attributes to account for since there are no OOL non-declarations.

We will further limit this scenario; this detector will only output a class label. It will

not give any measurement that indicates its confidence in the class label, such as a

posterior probability estimate. Note that this is the scenario in Friend’s research [22]

where he uses percentiles of Mahalanobis distance as his OOL detector. Without

this measurement, we do not have all the information needed to calculate the full

OOL engineering confidence since we cannot meaningfully calculate entropy. In

this case, we will need to reduce the engineering confidence model by removing

entropy and only considering classification accuracy and sample size. It is from

this reduced model that OOL engineering confidence is calculated for this case.

With only the three remaining attributes, the overall value model is reduced to

voverall = wil−ec · vil−ec(xil−ec) + wil−nd · vil−nd(xil−nd) + wool−ec · vool−ec(xool−ec)

Figure 6.6 shows the value hierarchy for this case.

Even though non-declarations are not allowed in this case, there is still a thresh-

old setting associated with the OOL detector. This threshold directly determines
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Figure 6.6 Overall Value Hierarchy-Case 3.

the classification accuracy of the OOL detector. Thus, the decision space is still two-

dimensional. Each threshold setting pair will result in a three-tuple that is input

into the overall value model. The threshold setting pair that provides the most value

is the chosen as the operating point for the paradigm.

6.5 Summary of Confidence and Non-Declarations

For a given confidence threshold, there is a tradeoff present between engineering

confidence and non-declarations. This is present for both IL problems and OOL

problems. Three cases are discussed as decision problems with competing objectives.

All cases are handled using value models. The optimal operating threshold for all

three cases is the threshold (or threshold pair) that produces the highest value.
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7. Experimentation and Results

7.1 Overview

This chapter provides results and insights from the confidence paradigm devel-

oped in this research. First, the four data sets, referred to as the Cancer, Diabetes,

multivariate normal (MVN), and automatic target recognition (ATR), used in this

research are described in detail. Second, results are provided on three two-class

problems without out-of-library (OOL) targets: Cancer, Diabetes, and MVN. Next,

results are provided on a MVN problem with OOL targets when a novel OOL detec-

tor is used. Then, OOL detector results on the ATR data set are provided. Finally,

results are provided on the ATR data set with OOL targets when an OOL detector

is not available.

7.2 High Level Methodology

For a given classifier family and a given data set, the following process was

followed. First, the data set was split into training data, test data, and validation

data, and a classifier was trained from a family of classifiers. For this classifier, the

classification accuracy, average entropy, and set of posterior probability estimates

were calculated for the training, test, and validation sets. The training data was

used to train the classifiers, and the training sample size was used as an input

into the value model to determine classifier confidence. When fusion is employed,
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the training set posterior probabilities from the individual classifiers were used to

train the fusion. The test set served multiple purposes. First, the classification

accuracy and the average entropy from the test set were used as inputs to the value

model to determine the engineering confidence. Classifier performance, specifically

classification accuracy, is typically overestimated when applying the classifier to the

data on which it was trained. To avoid this, an independent test set was used

to estimate classification accuracy and average entropy, and these estimates were

used as inputs to the value model. In addition, the threshold, p0 is selected based

upon performance in the test set, and k∗ is found using the histogram of the test

set. After the quadratic confidence function is fit, it is applied to both the test set

and the validation set. For all the data sets except the ATR data set, this process

was then repeated 30 times for different random samples of the data set and average

performance across the replications is reported. As discussed in Chapter 6 and based

upon results from the test set, an overarching value model can be used to determine

the optimal threshold settings to be used in practice. In problem types where there

are no OOL targets, only a single threshold is employed. In problem types when

there are OOL targets, two thresholds are employed. Since confidence thresholds are

found based upon results from the test set, it is critical that results from the test

set and the validation set be similar across the range of confidence thresholds. For

all of the problems studied, performance from the test set was, in fact, similar to
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performance on the validation set. Hence, only performance on the validation set is

shown here.

7.3 University of Wisconsin Breast Cancer and Diabetes Data Sets

The first two real world data sets used in the testing of the confidence paradigm

were the University of Wisconsin breast cancer data set and the Pima Indian Diabetes

data set. Since these are both two-class problems, they cannot be used directly to test

any out-of-library methodology. Both data sets were taken from [48]. The University

of Wisconsin breast cancer data set contains 683 exemplars, and each exemplar has 9

features. The two classes in the the data set are malignant and benign tumors. The

training set contained 178 benign exemplars and 96 malignant exemplars. The test

set contained 177 benign exemplars and 95 malignant exemplars. The validation set

contained 89 benign exemplars and 48 malignant exemplars. Two classifiers were

applied to this data set: a linear discriminant function and a quadratic discriminant

function. These classifiers were applied in two ways. First, all 9 features were used

to train both classifiers. Then, the data set was split into two separate feature

sets: features 1-5 and features 6-9. In this case, features 1-5 were used to train

the quadratic discriminant function, and features 6-9 were used to train the linear

discriminant function.

The Pima Indian Diabetes data set contains 768 exemplars, and each exemplar

has 8 features. The two classes in the data set are diabetics and non-diabetics. The
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training set contained 200 negative exemplars and 107 positive exemplars. The test

set contained 200 negative exemplars and 107 positive exemplars. The validation set

contained 100 negative exemplars and 54 positive exemplars. Two classifiers were

applied to this data set: a linear discriminant function and a quadratic discriminant

function. These classifiers were applied in two ways. First, all 8 features were used

to train both classifiers. Then, the data set was split into two separate feature

sets: features 1-4 and features 5-8. In this case, features 1-4 were used to train

the quadratic discriminant function, and features 5-8 were used to train the linear

discriminant function.

Since real world data sets are being used here, replications cannot be arbitrarily

generated as with Monte Carlo simulations. Since we do not want to draw conclusions

on a single experiment, we need to perform replications of the experiment. Thus,

“bootstrapping” (sampling was done without replacement) is employed. In this

process, a random selection of the data is taken to train the classifier (approximately

40 %), another random selection of the data is taken to test the classifier and train

the confidence paradigm (approximately 40 %), and the remaining data is left for

validation (approximately 20 %).

7.4 Multivariate Normal Data Set

The MVN data set is a synthetic two-class data set where each class has two

features. For each class, the two-dimensional feature space has a multivariate normal
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distribution. Let the mean of the class 0 be (0, 0), and let the mean of class 1 be

(0.95, 1.15). Let both classes have a covariance matrix equal to the identity matrix.

Since we are using simulated data, we can generate as much data as necessary for all

three data sets (training, test, and validation); thus, bootstrapping is not necessary.

For all three data sets, there are 200 observations in each class. Johnson and Wichern

[32] define the total probability of misclassification (TPM); this is an estimate of the

error rate of the classification system. We can calculate this for the MVN problem.

The TPM for this problem is 0.23. Thus, when we report classification accuracy for

the forced decision on the MVN problem, we should expect classification accuracy

to be approximately 0.77.

7.5 Fusion: Cancer, Diabetes, and MVN

We also want to examine fusion of multiple classifiers on the Cancer, Diabetes,

and MVN problems. Research by Leap et al. [43] showed that probabilistic neural

network (PNN) fusion outperformed Boolean fusion across a variety of synthetic

problem types. To this end, PNN fusion is used as described in [43]. In PNN fusion,

the posterior probabilities from the individual classifiers are used as features to a

new classifier, a PNN. For each of these three problems, the quadratic and linear

discriminant functions are fused and fusion results are provided. Another finding

from [43] was that PNN fusion performed best when the individual classifiers had

independent feature sets. We examine the effects of fusion in two scenarios. First,
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we show fusion when the individual classifiers are trained on the same features sets.

In this case, the classifiers feature sets have perfect correlation. In an attempt to

reduce this effect, the classifiers were trained again using separate feature sets for the

Cancer and Diabetes problems and independent feature sets for the MVN problem.

Here, we make a distinction between separate and independent feature sets. The

level of correlation can be controlled on the MVN problem, and the features given

to the two classifiers are statistically independent. The level of correlation can not

be controlled on the Cancer and Diabetes sets so we simply separated the features

into two disjoint sets. The level of correlation between the features for the Cancer,

Diabetes, and MVN data sets was calculated using a pooled correlation matrix as

shown in Tables 7.1, 7.2, and 7.3.

Table 7.1 Correlation Matrix For the Features of Cancer Data Set.

F1 F2 F3 F4 F5 F6 F7 F8 F9

F1 1 0.14 0.17 -0.03 0.06 0.01 0.03 0.04 0.08
F2 0.14 1 0.71 0.31 0.45 0.05 0.36 0.33 0.22
F3 0.17 0.71 1 0.26 0.38 0.12 0.30 0.32 0.18
F4 -0.03 0.31 0.26 1 0.21 0.22 0.29 0.19 0.19
F5 0.06 0.45 0.38 0.21 1 0.04 0.20 0.26 0.29
F6 0.01 0.05 0.12 0.22 0.04 1 0.15 -0.02 -0.02
F7 0.03 0.36 0.30 0.29 0.20 0.15 1 0.27 0.04
F8 0.04 0.33 0.32 0.19 0.26 -0.02 0.27 1 0.21
F9 0.08 0.22 0.18 0.19 0.29 -0.02 0.04 0.21 1

By examining Tables 7.1, 7.2, and 7.3, one can tell that, in general, the features

from the Cancer data set are more highly correlated than the features of the Diabetes

data set. Also, the features of the MVN have extremely low correlation.
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Table 7.2 Correlation Matrix For the Features of Diabetes Data Set.

F1 F2 F3 F4 F5 F6 F7 F8

F1 1 0.03 0.13 -0.10 -0.11 -0.05 -0.08 0.52
F2 0.03 1 0.14 0.03 0.31 0.10 0.06 0.18
F3 0.13 0.14 1 0.20 0.08 0.28 0.03 0.23
F4 -0.10 0.03 0.20 1 0.43 0.39 0.17 -0.14
F5 -0.11 0.31 0.08 0.43 1 0.17 0.17 -0.08
F6 -0.05 0.10 0.28 0.39 0.17 1 0.10 -0.04
F7 -0.08 0.06 0.03 0.17 0.17 0.10 1 -0.01
F8 0.52 0.18 0.23 -0.14 -0.08 -0.04 -0.01 1

Table 7.3 Correlation Matrix For the Features of MVN Data Set.

F1 F2 F3 F4

F1 1 0.02 -0.002 0.0004
F2 0.02 1 -0.005 0.01
F3 -0.002 -0.005 1 -0.01
F4 0.0004 0.01 -0.01 1

7.6 Cancer, Diabetes, and MVN Results

We consider the results of the Cancer and Diabetes problems at the same time

where in each problem, both a quadratic discriminant function and a linear discrim-

inant function are used. Figure 7.1 plots the two inputs to the overarching value

model, engineering confidence vs. non-declaration rate. On the same plot, the con-

tours for the overarching value model are shown. Each point on the plot represents

a different confidence threshold. These trajectories represent a rational portfolio of

classification systems based on the user’s confidence function. In addition to the tra-

jectories, the stochastic non-declaration methodology is employed and performance

is shown. The plot on the right is a zoomed-in version of the plot on the left.
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Figure 7.1 Cancer,Diabetes-Engineering Confidence vs. Non-Declaration Rate
with Value Contours-Validation Set.

These plots are used to demonstrate the fact that classifier performance de-

pends not only on the classifier employed but also the problem on which it is used.

That is, typically, we examine classification systems as they are applied to a single

problem. However, this confidence paradigm can be used to look across multiple

problems. By examining Figure 7.1, the first observation to make is that we are

more confident in either the linear or the quadratic classifiers as they are applied

to Cancer problem. For any confidence threshold, the classification systems when

applied to the Cancer problem yield more overarching value. This illustrates the

point that the inherent confidence we have in a classification system depends upon

the difficulty of problem geometry, the classifier employed, and the number of sam-

ples used to train the data. Second, within a problem, we can see which classifier

we prefer. In the Diabetes problem, the quadratic classifier dominates the linear

classifier. In the Cancer problem, neither classifier dominates the other across the

threshold range. With these observations, we can see that this paradigm can be used

116



as a classifier screening tool to see which classifier you would prefer when you can

choose from a variety of classification systems.

Each point on the trajectories reflects a specific confidence based rejection re-

gion. As stated in Chapter 4, there is one alternative to forming a rejection region,

and that is the stochastic non-declaration procedure. For the Diabetes problem with

either classifier, the stochastic non-declaration procedure is dominated by the confi-

dence based rejection region. However, for the Cancer problem, the performance of

the stochastic non-declaration procedure falls along the trajectory of the confidence

based rejection region. While probably not operationally acceptable to employ this

procedure, it is interesting to note that for the Cancer problem, its performance is

very similar to the confidence based rejection region.

After examining four problem-classifier combinations together, we will now

examine the problems separately and consider PNN fusion performance. Figure 7.2

shows three performance parameters: classification accuracy, non-declaration rate,

and engineering confidence; the performance parameters are plotted vs. confidence

threshold for the MVN Problem on the validation set where the features used to

train both classifiers are the same. Figure 7.3 shows two performance parameters:

overarching value and average entropy; the performance parameters are plotted vs.

confidence threshold for the MVN Problem on the validation set where the features

used to train both classifiers are the same. Figure 7.4 plots the two inputs to the

overarching value model, engineering confidence vs. non-declaration rate. On the

117



same plot, the contours for the overarching value model are shown. Each point on

the plot represents a different confidence threshold. These trajectories represent a

rational portfolio of classification systems based on the user’s confidence function.

The plot on the right is a zoomed-in version of the plot on the left.
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Figure 7.2 MVN-Three Performance Parameters vs. Confidence Threshold-
Validation Set.

In examining the MVN problem when the feature sets observed by the in-

dividual classifiers are identical, we see that performance across all 5 performance

measures is nearly identical across individual classifiers. Since the feature sets are

generated to have identical covariance matrices, it is not surprising that the linear and
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Figure 7.3 MVN-Two Performance Parameters vs. Confidence Threshold-
Validation Set.
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Figure 7.4 MVN-Engineering Confidence vs. Non-Declaration Rate with Value
Contours-Validation Set.

quadratic classifiers perform nearly identically. With respect to overarching value,

the fusion is preferred across a large range of the threshold space. This is due to a

combination of lower entropy (particularly at lower confidence thresholds) and lower

non-declaration rates (particularly at higher confidence thresholds). Additionally,
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we see rational trends in the performance parameters for the individual classifiers

and the fusion as the confidence threshold increases. That is, classification accuracy,

non-declaration rate, and engineering confidence increase as the confidence thresh-

old increases, and average entropy decreases as the confidence threshold increases.

The performance of the stochastic non-declaration procedure is outperformed by the

confidence based rejection region across the confidence threshold space.

Figure 7.5 shows three performance parameters, classification accuracy: non-

declaration rate, and engineering confidence; the performance parameters are plotted

vs confidence threshold for the Diabetes Problem on the validation set where the

features used to train both classifiers are the same. Figure 7.6 shows two performance

parameters: overarching value and average entropy; the performance parameters are

plotted vs confidence threshold for the Diabetes Problem on the validation set where

the features used to train both classifiers are the same. Figure 7.7 plots the two inputs

to the overarching value model, engineering confidence vs. non-declaration rate. On

the same plot, the contours for the overarching value model are shown. Each point

on the plot represents a different confidence threshold. These trajectories represent

a rational portfolio of classification systems based on the user’s confidence function.

The plot on the right is a zoomed-in version of the plot on the left.

For the Diabetes problem, when the feature sets used by the individual clas-

sifiers are identical, we observe logical trends with respect to the performance pa-

rameters. When examining overarching value, fusion performs at least as good as
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Figure 7.5 Diabetes-Three Performance Parameters vs. Confidence Threshold-
Validation Set.

the worst classifier across a large range of the confidence threshold space, and fu-

sion is preferred at extremely low confidence thresholds. Across most of the range

of the confidence threshold space, the linear discriminant function and the fusion

perform nearly identically with respect to overarching value. The performance of

the stochastic non-declaration procedure is outperformed by the confidence based

rejection region across the confidence threshold space.

Figure 7.8 shows three performance parameters: classification accuracy, non-

declaration rate, and engineering confidence; the performance parameters are plotted

vs confidence threshold for the Cancer Problem on the validation set where the

features used to train both classifiers are the same. Figure 7.9 shows two performance
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Figure 7.6 Diabetes-Two Performance Parameters vs. Confidence Threshold-
Validation Set.
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Figure 7.7 Diabetes-Engineering Confidence vs. Non-Declaration Rate with Value
Contours-Validation Set.

parameters: overarching value and average entropy; the performance parameters are

plotted vs confidence threshold for the Cancer Problem on the validation set where

the features used to train both classifiers are the same. Figure 7.10 plots the two

inputs to the overarching value model, engineering confidence vs. non-declaration
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rate. On the same plot, the contours for the overarching value model are shown.

Each point on the plot represents a different confidence threshold. These trajectories

represent a rational portfolio of classification systems based on the user’s confidence

function. The plot on the right is a zoomed-in version of the plot on the left.
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Figure 7.8 Cancer-Three Performance Parameters vs. Confidence Threshold-
Validation Set.

In the Cancer problem, when the feature sets used by the individual classifiers

are identical, we observe logical trends with respect to all the performance parame-

ters. When examining overarching value, fusion is only marginally better than the

quadratic classifiers across approximately half of the confidence threshold space. The

performance of the stochastic non-declaration procedure is very similar to the perfor-

mance of the confidence based rejection region across the confidence threshold space.

For the individual classifiers, the stochastic non-declaration performance falls along
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Figure 7.9 Cancer-Two Performance Parameters vs. Confidence Threshold-
Validation Set.
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Figure 7.10 Cancer-Engineering Confidence vs. Non-Declaration Rate with Value
Contours-Validation Set.

the trajectory of the confidence based rejection regions. For the fusion, the stochas-

tic non-declaration performance is marginally outperformed by the confidence based

rejection regions.
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The results thus far may be surprising. While the overarching value from

the fusion performs at least as good as the worst classifier for some portion of the

confidence threshold space, some may expect the fusion to outperform the individual

classifiers across a large region of the confidence threshold space. Leap, et al. [43]

already found that fusion of highly correlated classifiers does not perform as well

as fusion of independent classifiers so the results are less surprising. So far, the

feature sets between the two individual classifiers have been identical (i.e., perfectly

correlated) so there may be little to no benefit from the fusion. This is exactly what

is observed. Now, let’s use separate features to train the individual classifiers. This

should provide the individual classifiers with less dependent information.

Figure 7.11 shows three performance parameters: classification accuracy, non-

declaration rate, and engineering confidence; the performance parameters are plotted

vs confidence threshold for the MVN Problem on the validation set where the fea-

tures used to train both classifiers are disjoint. Figure 7.12 shows two performance

parameters: overarching value and average entropy; the performance parameters are

plotted vs confidence threshold for the MVN Problem on the validation set where the

features used to train both classifiers are disjoint. Figure 7.13 plots the two inputs

to the overarching value model, engineering confidence vs. non-declaration rate. On

the same plot, the contours for the overarching value model are shown. Each point

on the plot represents a different confidence threshold. These trajectories represent
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a rational portfolio of classification systems based on the user’s confidence function.

The plot on the right is a zoomed-in version of the plot on the left.
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Figure 7.11 MVN-Three Performance Parameters vs. Confidence Threshold-
Validation Set-Separate Features.

Figures 7.11, 7.12, and 7.13 show results for the MVN problem where the fea-

ture sets observed by the individual classifiers are disjoint. In the controlled scenario

with synthetic data, we know the feature sets observed by the two individual classi-

fiers have very low correlation. This is the scenario where we would expect the largest

increase in performance between the individual classifiers and the fusion, and that

is exactly what happens. In terms of overarching value, the fusion outperforms the

individual classifiers across the entire confidence threshold space. The performance
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Figure 7.12 MVN-Two Performance Parameters vs. Confidence Threshold-
Validation Set-Separate Features.
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Figure 7.13 MVN-Engineering Confidence vs. Non-Declaration Rate with Value
Contours-Validation Set-Separate Features.

of the stochastic non-declaration procedure is outperformed by the confidence based

rejection region across the confidence threshold space.
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Figure 7.14 shows three performance parameters: classification accuracy, non-

declaration rate, and engineering confidence; the performance parameters are plotted

vs confidence threshold for the Diabetes Problem on the validation set where the

features used to train both classifiers are disjoint. Figure 7.15 shows two performance

parameters: overarching value and average entropy; the performance parameters are

plotted vs confidence threshold for the Diabetes Problem on the validation set where

the features used to train both classifiers are disjoint. Figure 7.16 plots the two inputs

to the overarching value model, engineering confidence vs. non-declaration rate. On

the same plot, the contours for the overarching value model are shown. Each point

on the plot represents a different confidence threshold. These trajectories represent

a rational portfolio of classification systems based on the user’s confidence function.

The plot on the right is a zoomed-in version of the plot on the left.

Figures 7.14, 7.15, and 7.16 show results for the Diabetes problem where the

features observed by the individual classifiers are disjoint. In the Diabetes problem,

the fusion now outperforms the individual classifiers for almost the entire confidence

threshold space. The correlation between the disjoint feature sets for the Diabetes

problem was higher than the MVN problem but lower than the Cancer problem.

Therefore, we expected there to be some increase in performance resulting from the

fusion but not as much increase in performance as was experienced in the MVN

problem. This is exactly what we observe. The performance of the stochastic non-
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Figure 7.14 Diabetes-Three Performance Parameters vs. Confidence Threshold-
Validation Set-Separate Features.

declaration procedure is outperformed by the confidence based rejection region across

the confidence threshold space.

Figure 7.17 shows three performance parameters: classification accuracy, non-

declaration rate, and engineering confidence; the performance parameters are plotted

vs confidence threshold for the Cancer Problem on the validation set where the

features used to train both classifiers are disjoint. Figure 7.18 shows two performance

parameters: overarching value and average entropy; the performance parameters are

plotted vs confidence threshold for the Cancer Problem on the validation set where

the features used to train both classifiers are disjoint. Figure 7.19 plots the two inputs

to the overarching value model, engineering confidence vs. non-declaration rate. On
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Figure 7.15 Diabetes-Two Performance Parameters vs. Confidence Threshold-
Validation Set-Separate Features.
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Figure 7.16 Diabetes-Engineering Confidence vs. Non-Declaration Rate with
Value Contours-Validation Set-Separate Features.

the same plot, the contours for the overarching value model are shown. Each point

on the plot represents a different confidence threshold. These trajectories represent

a rational portfolio of classification systems based on the user’s confidence function.

The plot on the right is a zoomed-in version of the plot on the left.
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Figure 7.17 Cancer-Three Performance Parameters vs. Confidence Threshold-
Validation Set-Separate Features.

Figures 7.17, 7.18, and 7.19 show results for the Cancer problem where the

features observed by the individual classifiers are disjoint. In the Cancer problem,

the fusion marginally outperforms the individual classifier across a large region of the

confidence threshold space. Since the correlation between the disjoint feature sets

was the highest for the Cancer problem, we expected the fusion in this problem to be

the worst, and this is exactly what was observed. The performance of the stochas-

tic non-declaration procedure is very similar to the performance of the confidence

based rejection region across the confidence threshold space. For the individual clas-

sifiers, the stochastic non-declaration performance falls along the trajectory of the
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Figure 7.18 Cancer-Two Performance Parameters vs. Confidence Threshold-
Validation Set-Separate Features.
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Figure 7.19 Cancer-Engineering Confidence vs. Non-Declaration Rate with Value
Contours-Validation Set-Separate Features.

confidence based rejection regions. For the fusion, the stochastic non-declaration

performance is marginally outperformed by the confidence based rejection regions.
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We implemented the confidence paradigm on three data sets and shown rational

trends in performance parameters. We’ve demonstrated the performance of the novel

stochastic non-declaration procedure on all data sets. We have also shown how the

paradigm performs across a spectrum of problem difficulties as well as different

classifiers. We demonstrated performance of individual classifiers as well as PNN

fusion. At this point, we have not considered data sets with OOL targets. Next, we

will extend the paradigm to consider both IL and OOL target types.

7.7 Results for MVN Problem with OOL targets and OOL detector

Chapter 5 details the OOL problem and introduces the new concept of an OOL

non-declaration. Chapter 6 discusses the overarching value model used on problem

types where an OOL detector is available. Results in this section are reported on the

multivariate problem discussed in Chapter 5 where the GRNN OOL detector is used.

As discussed in Chapter 6, there are four inputs to the overarching value model: IL

engineering confidence, IL non-declaration rate, OOL engineering confidence, and

OOL non-declaration rate. All of the IL data is used to train the IL confidence

function. A bounded and discretized feature space is used to train the OOL detector

and the test set, composed of both real IL and OOL targets, is used to test the

OOL detector. Quantities such as classification accuracy and entropy as well as a

histogram of the posterior probability estimates from the test set are used to fit

the confidence function. Once the confidence functions are fit, both IL and OOL
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confidence thresholds are varied together, and an overarching value is observed. In

addition, each exemplar is processed in the following serial fashion. First, the OOL

detector must determine if the exemplar is IL, OOL, or OOL non-declaration. Only

those exemplars that are classified as IL by the OOL detector are considered for

classification by the IL classifier. The OOL entropy and OOL classification accuracy

(CA) are calculated on all exemplars classified as IL or OOL by the OOL detector.

The IL entropy and IL CA are calculated on those exemplars classified as IL by the

OOL detector and classified as either a target or non-target by the IL classifier. Using

this methodology, IL engineering confidence, IL non-declarations, OOL engineering

confidence and OOL non-declarations are calculated and input into the overarching

value model. The threshold pair that yields the highest overarching value is the

optimal threshold pair. Figure 7.20 shows a contour plot of the overarching value

model for both the test set and the validation set when varying the two thresholds

together. The maximum of the overarching value model occurs when the IL threshold

is set at 0.88 and the OOL threshold is set at 0.76; this point is plotted on Figure

7.20 as well. Also, we can see that performance does not change much from the test

set to the validation set.

This concludes implementation of the confidence paradigm on all data sets

except the ATR data set. Next, we describe the ATR data set.

134



Out−of−library Threshold

In
−

Li
br

ar
y 

T
hr

es
ho

ld

Overarching Value Output−Test

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Out−of−library Threshold

In
−

Li
br

ar
y 

T
hr

es
ho

ld

Overarching Value Output−Validation

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.20 Overarching Value Contour vs IL and OOL Confidence Thresholds.

7.8 ATR Data Description

The ATR data set has been used extensively by Laine [40], Albrecht [4], and

Friend [22]; as such, the process used to generate the features is given in detail

in these dissertations. The ATR data set used in this research was captured from

the General Dynamics Data Collection System (DCS). The ATR data set contains

high-range resolution (HRR) profiles processed from synthetic aperture radar (SAR)

data from two separate polarizations (HH and VV). These HRR profiles form the

foundation for the feature set used in this research. The HH and VV polarizations

are treated as different classifiers and are used for fusion as well.

The following describes the methodology used in evaluating the ATR data set.

The data set is comprised of 724 exemplars each for 10 in-library classes (5 in-library

targets and 5 in-library non-targets) and 5 out-of-library classes where each exemplar

contains 10 features and each exemplar corresponds to a specific aspect angle. This

data is split into 3 data sets: training set, testing set, and validation data set. Each

of these data sets is comprised of 241 exemplars. At this point, each data set of 241
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exemplars per class is linearly interpolated into 360 exemplars per class. Again, each

exemplar corresponds to a specific aspect angle so the interpolated data set provides

1 exemplar per degree of aspect angle. The training set is used to develop the

template classifier similar to that described in chapter 5. Only the data from the 10

in-library classes are used to build the template classifier. A template classifier for the

ATR data set is built in the following manner. Let a denote the aspect angle where

a = 1, ..., 360. Since aspect angle is not necessarily known with 100 % certainty, a

symmetric wedge of 15 degrees is formed around the aspect angle estimate, a (i.e.

a± 7 degrees). For each of the 10 in-library targets, a template is formed for every

aspect angle where x̄ad represents the average of 10 features inside the 15 degree

symmetric wedge for the dth class and Σ̂ad is a 10 x 10 estimated diagonal covariance

matrix generated from the features in a 15 degree wedge centered at aspect angle a

for the dth class. Once the template classifier is built using in-library targets, it is

tested using two independent data sets containing both in-library and out-of-library

targets.

Let xa represent the features for an exemplar at aspect angle a. Let Mad

denote the Mahalanobis distance for an exemplar at aspect angle a from class d

where Mad = (xa − x̄ad)
′
Σ̂−1

ad (xa − x̄ad).

We also leave open the option to take multiple looks similar to that performed

in [40], [4], and [22]. For more than one look, the average Mahalanobis distance

is found across the number of looks. Thus, if five looks are used, the Mahalanobis
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distance from the current aspect angle and the next four aspect angles are averaged

together. This average Mahalanobis distance is used to calculate posterior probabil-

ities. Let M e
ad be the Mahalanobis distance for an exemplar at aspect angle a from

class d for look e where e = 1, ..., E and E is the number of looks.

Let M̄ad denote the average Mahalanobis distance across the number of looks

for aspect angle a and class d. Then, M̄ad = 1
E

∑E
e=1 M e

ad. This M̄ad is input

into the multivariate normal distribution given by lad = 1

(2π)f/2|Σ̂ad|1/2 e
− 1

2
M̄ad where

f is the dimensionality of the feature space [17]. In this case, f = 10. In order

to use Bayes rule to calculate the posterior probabilities, we need to sum across

likelihoods (assuming equal prior probabilities). Let sa represent the sum of the

likelihoods across classes for aspect angle a where sa =
∑10

d=1 lad. The posterior

probabilities are calculated as pad = lad

sa
. For simplification, we only implement the

confidence paradigm on the aggregate hostile/friendly problem. To calculate the

aggregate hostile and friendly posterior probability estimates, we sum across the 5

hostile target posterior probabilities and the 5 friendly target posterior probabilities,

respectively. Let paT denote the posterior probability of observing a target at aspect

angle a and let paN denote the posterior probability of observing a non-target at

aspect angle a. Then, paT =
∑5

d=1 pad, and paN =
∑10

d=6 pad.

We process the ATR data set slightly different from the way Friend [22] pro-

cessed the data. His methodology was replicated using our processing of the data

and the results are shown in Figure 7.4.
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Table 7.4 Results Summary for Friend Methodology

Sensor Looks TPR IL CA OOL CA Dec

HH 1 0.98 0.95 0.70 0.23
VV 1 0.97 0.96 0.70 0.24
HH 2 0.97 0.94 0.70 1
VV 2 0.96 0.95 0.72 1
HH 5 0.99 0.97 0.68 1
VV 5 0.97 0.96 0.72 1
HH 10 0.99 0.98 0.59 1
VV 10 0.97 0.98 0.62 1

By examining the results in Table 7.4 as well as results show in the follow-

ing sections, it is evident that our paradigm produces results comparable to those

produced by Friend [22].

7.9 Implementing the OOL detector on the ATR Data set

The first step in applying the GRNN OOL Detector is discretizing the bounded

feature space. It is advantageous to reduce the number of features since this reduces

the overall number of discrete data points that must be evaluated. Using results

from Friend’s research [22], the top seven features were used for discretization; Friend

found features 1, 2, 3, 7, 8, 9, and 10 to be the most salient features. As a feasibility

test, we chose to implement the GRNN detector at a favorable aspect angle. In past

research, the template classifiers have had good performance at a 30 degree aspect

angle. The feature space was discretized and Mahalanobis Distances were calculated

from exemplars in a 15 degree wedge centered at 30 degrees. Figure 7.21 shows the

GRNN performance as the GRNN spread value is varied. The top plot shows GRNN
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performance on the validation set, and the bottom plot shows GRNN performance

on the training set.
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Figure 7.21 GRNN Performance vs Spread.

Figure 7.21 shows that on the training set classification accuracy, true positive

rate, and true negative rate are quite high for low spread values. However, it must be

noted that the training set is comprised of all discrete points, not the features from

the actual ATR data set. Thus, it is predictable that the GRNN classifier performs

well on the data it was trained on. Figure 7.21 shows that the classification accuracy

on the validation set is approximately 50 % across all spread values. Obviously, one

would like to see performance better than 50 %. This poor performance is because

of the geometry of the ATR problem. There is a great deal of overlap between

the IL and OOL targets; thus, it is difficult for a GRNN classifier to provide good
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classification accuracy in the face of such a difficult problem. Since the GRNN OOL

detector is not providing adequate performance at one of the least challenging aspect

angles, we removed the GRNN OOL detector from further consideration and left it as

an item of future research. Instead, we implement the confidence paradigm without

an OOL detector.

7.10 ATR Data Set and Current OOL Methodology

Friend [22] develops an out-of-library procedure for a template classifier. Let

the class label for exemplar a be denoted La where La ∈ {1, ..., 10}. For exemplar a,

the class label, La, is determined by finding the class corresponding to the minimum

average Mahalanobis distance. La = argmin
d

Mad and Ma = min
d

Mad. By looking

across all exemplars in a training set by class for only those exemplars that were

correctly classified, we can determine the maximum correct average Mahalanobis

distance. Friend [22] actually quantizes the correct average Mahalanobis distances,

but for simplication, we will only consider the maximum. This maximum value is

used as a class specific threshold, Td = max
a

Mad. Then, an exemplar is given out-

of-library status if the minimum Mahalanobis distance corresponds to class d and

Ma > Td. Otherwise, it is considered an in-library exemplar and classified as one of

the in-library classes or given non-declaration status.

It is apparent that according to the Friend methodology, one has supreme con-

fidence that an exemplar is in the library if the corresponding average Mahalanobis
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distance is less than the class specific threshold, and one has a complete absence of

confidence that an exemplar is in the library otherwise. This is nothing more than a

confidence step function. Thus, in this method, an exemplar is only observed by the

IL classifier if the out-of-library system has complete confidence that the exemplar

is in-library. The out-of-library confidence values as implemented in this section are

binary values in the set {0, 1}.

7.11 The ATR Data Set Without an OOL Detector

Without an OOL detector, we will use the current OOL methodology and

combine that with the IL confidence already developed. Just as current practices for

non-declarations are imposing an implied confidence function, current out-of-library

practices also impose an implied confidence function. Where current non-declaration

practices typically operate on the posterior probability domain, current out-of-library

practices operate on the Mahalanobis distance domain. For this case, we use the

value model detailed in Chapter 6.

The posterior probabilities from all the in-library targets were used to form the

IL confidence functions. The same serial processing of the data that was used with

an OOL detector is used for this implementation. First, an exemplar is determined

to be IL or OOL by comparing its average Mahalanobis distance to the class spe-

cific threshold. Only those exemplars that have small enough average Mahalanobis

distance are considered for classification by the IL template classifier.
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7.12 ATR Data Set-HH and VV Classifier Results

Figure 7.22 shows classification accuracy, non-declaration rate, and engineering

confidence vs. confidence threshold for the HH and VV classifiers across 1, 2, 5, and

10 looks. Figure 7.23 shows average entropy, OOL CA, and the overarching value

vs. confidence threshold for the HH and VV classifiers across 1, 2, 5, and 10 looks.

The scales are different in the subplots of Figures 7.22 and 7.23 to make the subplots

easier to read. It should be noted that in the research done by Friend, only OOL

TP rate was recorded. OOL TP rate increased as the number of looks increased.

However, further examination in this research found that this increase in OOL TP

rate was at the expense of OOL TN rate. This caused an overall drop in OOL CA.

To account for this trade-off, OOL CA is reported here.

These result confirm the results found by Friend [22]. There is a general in-

crease in classification accuracy as the number of looks increase. There is also a

decrease in non-declaration rate as the number of looks increase. Additionally, as

expected, the engineering confidence increases as the number of looks increase. The

OOL CA for 1, 2, and 5 looks are similar; however, this is a large decrease in perfor-

mance for OOL CA for 10 looks. Since the features are heterogeneous across aspect

angles, this suggests that there may be a point where averaging too many Maha-

lanobis distances (across looks) is no longer advantageous, especially with respect to

OOL CA. As a result of this decrease in OOL CA for 10 looks, when examining the
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Figure 7.22 ATR-First Three Performance Parameters vs Confidence Threshold-
Validation.

overarching value, 1, 2 and 5 look classifiers provide more value than the 10 look

classifiers.

7.13 ATR Data Set Fusion

Fusion must be performed at two levels. First, fusion must be performed on

the OOL declarations. Second, fusion must be performed on the IL declarations.

For the OOL level fusion, we examine two fusion rules: the logical AND rule, and

the logical OR rule. For the logical AND rule, both the HH and VV classifiers must

declare a target OOL for the fusion to declare that target OOL. For the logical OR

rule, if either HH or VV declares a target OOL, the fusion will declare that target
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Figure 7.23 ATR-Second Three Performance Parameters vs Confidence
Threshold-Validation.

OOL. Results for both of these OOL fusion rules are reported. The HH and VV IL

classifiers are fused using the basic ensemble method (BEM) [50] which Friend [22]

describes as “mean” fusion. BEM fusion simply averages the posterior probabilities

from the individual classifier. Using these simple fusion rules, the HH and VV

classifiers are fused.

7.14 HH and VV Fusion Results-OOL AND

7.14.1 HH and VV Fusion Results-1 Look-OOL AND

Figure 7.24 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 1 look as well as the BEM fusion of the two using
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the OOL AND rule. Figure 7.25 shows three different performance parameters vs

confidence threshold for the HH and VV classifiers with 1 look as well as the BEM

fusion of the two using the OOL AND rule.
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Figure 7.24 ATR-First Three Performance Parameters-1 Look-OOL AND-
Validation.

As expected, the BEM fusion provides an increase in CA compared to the in-

dividual HH and VV classifiers. With a confidence threshold of 0, the BEM fusion

has more entropy than the individual classifiers. Since BEM fusion simply averages

the posterior probabilities, this increase in entropy is expected. However, as the con-

fidence threshold increases slightly, the entropy drops quickly as the non-declaration

increases quickly. This causes engineering confidence to increase quickly as well.

This fusion provides no increase in OOL CA for the 1 look case. In terms of over-
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Figure 7.25 ATR-Second Three Performance Parameters-1 Look-OOL AND-
Validation.

arching value, BEM fusion is preferred to the individual classifiers only slightly over

most of the confidence threshold range.

7.14.2 HH and VV Fusion Results-2 Look-OOL AND

Figure 7.26 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 2 looks as well as the BEM fusion of the two using

the OOL AND rule. Figure 7.27 shows three different performance parameters vs

confidence threshold for the HH and VV classifiers with 2 looks as well as the BEM

fusion of the two using the OOL AND rule.
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Figure 7.26 ATR-First Three Performance Parameters-2 Look-OOL AND-
Validation.

The trends for BEM fusion using 2 looks are similar to the trends for BEM

fusion using 1 looks. As expected, the BEM fusion provides an increase in CA

compared to the individual HH and VV classifiers. With a confidence threshold

of 0, the BEM fusion has more entropy than the individual classifiers. Since BEM

fusion simply averages the posterior probabilities, this increase in entropy is expected.

However, as the confidence threshold increases slightly, the entropy drops quickly as

the non-declaration increases quickly. This causes engineering confidence to increase

quickly as well. This fusion provides no increase in OOL CA for the 2 look case. In

terms of overarching value, BEM fusion is preferred to the individual classifiers only

slightly over most of the confidence threshold range.
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Figure 7.27 ATR-Second Three Performance Parameters-2 Look-OOL AND-
Validation.

7.14.3 HH and VV Fusion Results-5 Look-OOL AND

Figure 7.28 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 5 looks as well as the BEM fusion of the two using

the OOL AND rule. Figure 7.29 shows three different performance parameters vs

confidence threshold for the HH and VV classifiers with 5 looks as well as the BEM

fusion of the two using the OOL AND rule.

The trends for BEM fusion using 5 looks are similar the trends for BEM fusion

using 2 looks. There is one change of note. For the first time, we see an increase

in OOL CA due to the fusion. In terms of overarching value, the fusion is preferred

over the entire confidence threshold range.
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Figure 7.28 ATR-First Three Performance Parameters-5 Look-OOL AND-
Validation.

7.14.4 HH and VV Fusion Results-10 Look-OOL AND

Figure 7.30 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 10 looks as well as the BEM fusion of the two using

the OOL AND rule. Figure 7.31 shows three different performance parameters vs

confidence threshold for the HH and VV classifiers with 10 looks as well as the BEM

fusion of the two using the OOL AND rule.

The trends for the BEM fusion using 10 looks are very similar to the trends for

BEM fusion using 5 looks. We see an increase in OOL CA due to the fusion. In terms

of overarching value, the BEM fusion is preferred over most the entire confidence

threshold range.
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Figure 7.29 ATR-Second Three Performance Parameters-5 Look-OOL AND-
Validation.

7.14.5 HH and VV Fusion Results-OOL AND

When using the OOL AND rule, we can make some general observations across

the number of looks. First, using overarching value, we always prefer the fusion to

the individual classifiers. However, we do not always prefer an increasing number of

looks. In fact, the overarching value peaks at 5 looks. This is another indication that

averaging over too many looks in this data set can cause degradation in performance.

150



0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence Threshold

A
ve

ra
ge

 C
A

 (
1r

ep
s)

ATR−Val

 

 

HH 10
VV 10
Fusion

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence Threshold

N
D

ec
 R

at
e 

A
ll 

(1
re

ps
)

ATR−Val

 

 
HH 10
VV 10
Fusion

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Confidence Threshold

A
ve

ra
ge

 E
ng

 C
on

f (
1r

ep
s)

ATR−Val

 

 

HH 10
VV 10
Fusion

Figure 7.30 ATR-First Three Performance Parameters-10 Look-OOL AND-
Validation.

7.15 HH and VV Fusion Results-OOL OR

7.15.1 HH and VV Fusion Results-1 Look-OOL OR

Figure 7.32 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 1 look as well as the BEM fusion of the two using

the OOL OR rule. Figure 7.33 shows three different performance parameters vs

confidence threshold for the HH and VV classifiers with 1 look as well as the BEM

fusion of the two using the OOL OR rule.

BEM fusion performance using the OOL OR is very similar to BEM fusion

performance using the OOL AND. The only significant difference is that the OOL

CA for the fusion marginally outperforms the individual classifiers. Because of this,
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Figure 7.31 ATR-Second Three Performance Parameters-10 Look-OOL AND-
Validation.

in terms of overarching value, the BEM fusion is preferred to the individual classifiers

across the confidence threshold space.

7.15.2 HH and VV Fusion Results-2 Look-OOL OR

Figure 7.34 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 2 looks as well as the BEM fusion of the two using

the OOL OR rule. Figure 7.35 shows three different performance parameters vs

confidence threshold for the HH and VV classifiers with 2 looks as well as the BEM

fusion of the two using the OOL OR rule.
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Figure 7.32 ATR-First Three Performance Parameters-1 Look-OOL OR-
Validation.

The performance using 2 looks and the OOL OR is very similar to the per-

formance using 1 look and the OOL OR. One difference is that the OOL CA for

the fusion is between the OOL CA for the individual classifiers. Because of this, in

terms of overarching value, the BEM fusion performs nearly identically to the best

classifier.

7.15.3 HH and VV Fusion Results-5 Look-OOL OR

Figure 7.36 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 5 looks as well as the BEM fusion of the two using

the OOL OR rule. Figure 7.37 shows three different performance parameters vs
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Figure 7.33 ATR-Second Three Performance Parameters-1 Look-OOL OR-
Validation.

confidence threshold for the HH and VV classifiers with 5 looks as well as the BEM

fusion of the two using the OOL OR rule.

The performance of the BEM fusion using the OOL OR continues to decrease

as we increase to 5 looks. The OOL CA for the BEM fusion is less than the OOL CA

for the individual classifiers. In terms of overarching value, the BEM fusion using 5

looks is never preferred to the individual classifiers.

7.15.4 HH and VV Fusion Results-10 Look-OOL OR

Figure 7.38 shows three performance parameters vs confidence threshold for

the HH and VV classifiers with 10 looks as well as the BEM fusion of the two using
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Figure 7.34 ATR-First Three Performance Parameters-2 Look-OOL OR-
Validation.

the OOL OR rule. Figure 7.39 shows three different performance parameters vs

confidence threshold for the HH and VV classifiers with 10 looks as well as the BEM

fusion of the two using the OOL OR rule.

The performance of the BEM fusion using the OOL OR decreases as we increase

to 10 looks. The contributing factor here is that the OOL CA for the BEM fusion

using 10 looks is less than the OOL CA for the individual classifiers. Again, in

terms of overarching value, the BEM fusion using 10 looks is never preferred to the

individual classifiers.
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Figure 7.35 ATR-Second Three Performance Parameters-2 Look-OOL OR-
Validation.

7.15.5 HH and VV Fusion Results-OOL OR

When using the OOL OR rule, we can make some general observations across

the number of looks. As the number of looks increases, there is a continuing decrease

in OOL CA for the BEM fusion as the number of looks increases. Since the OOL

OR rule declares an exemplar OOL when either the HH or VV classifier declares

an exemplar OOL, there are more OOL declarations. We can see by the OOL CA,

more error is introduced to the OOL process using the OR rule especially for a larger

number of looks.
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Figure 7.36 ATR-First Three Performance Parameters-5 Look-OOL OR-
Validation.

7.15.6 HH and VV Fusion Results Summary

We examined HH and VV classifier results as well as BEM fusion of the HH

and VV classifiers. In addition, we looked at two ways to combine OOL decla-

rations from the two classifiers. Each individual performance parameter performed

consistent with a rational confidence paradigm. That is, classification accuracy, engi-

neering confidence, and non-declarations rates increased as the confidence threshold

increased, and average entropy decreased as the confidence threshold increased. We

did observe some interesting observations between the number of looks and the OOL

fusion rule. First, we saw that for both the AND and OR OOL fusion rule, perfor-

mance did not always increase as the number of looks increased. This is because each
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Figure 7.37 ATR-Second Three Performance Parameters-5 Look-OOL OR-
Validation.

exemplar corresponds to a specific aspect angle, and the features are heterogeneous

across the aspect angles. The features become more and more heterogeneous as the

number of looks increases so we see a decrease in performance for too many looks.

We saw optimal performance at 5 looks for the AND rule and 2 looks for the OR

rule. In general, the AND rule provided no decrease in OOL CA when compared to

the individual classifiers. In general, the OR rule provided no increase in OOL CA

when compared to the individual classifiers.
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Figure 7.38 ATR-First Three Performance Parameters-10 Look-OOL OR-
Validation.

7.16 Results Summary

This chapter provided results for all the methodologies described in Chapters

4, 5, and 6. Four different data sets were described: Cancer data set, Diabetes

data set, MVN data set, and ATR data set. Results are provided on three two-

class problems without out-of-library (OOL) targets: Cancer, Diabetes, and MVN.

Results are provided on a MVN problem with OOL targets when an OOL detector

is used. GRNN OOL detector results on the ATR data set are provided. Finally,

results are provided on the ATR data set with OOL targets when an OOL detector is

not available. In all cases, results are consistent with a rational confidence paradigm.
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Figure 7.39 ATR-Second Three Performance Parameters-10 Look-OOL OR-
Validation.
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8. Contributions and Future Work

This chapter provides a summary of the contributions made to the fields of pattern

recognition and automatic target recognition through the research of this disserta-

tion. In addition, areas of future work related to this research effort are presented.

8.1 Contributions

In this research, we developed a confidence paradigm for classification systems.

As such, this research makes several contributions to the fields of pattern recognition

and automatic target recognition. A brief summary of each contribution is provided.

8.1.1 Confidence as a Function of Posterior Probabilities

We provide a gradient descent algorithm that minimizes the Binned Error in

the Posteriors (BEP) as defined by Ross and Minardi [53]. This research proves

that training a multiple layered perceptron to minimize sum of squared error also

minimizes BEP. We also show that in minimizing BEP, the outputs of the neural

network are posterior probability estimates; hence, the best confidence score is the

posterior probability estimate. However, BEP does not consider the desired poste-

rior probability distributions (i.e., distributions that lead to separation between the

classes). Thus, confidence is modelled as a function of the posterior probabilities.
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8.1.2 Confidence Paradigm

This research develops a confidence paradigm that encompasses and generalizes

current practices under the assumption that system confidence acts like a value and

that indication confidence can be modelled as a function of the posterior probability

estimates. One output of this paradigm is a new confidence measure that unites

traditional decision analysis techniques and current pattern recognition techniques.

The main axiom of this contribution is as follows: the average confidence in the out-

put of a classifier, by class, is approximately equal to the confidence in the classifier

as it operates on that class.

8.1.3 Tactical Issues of Fitting the Confidence Function

This research develops a methodology to determine the parameters of a gener-

alized confidence function within the confidence paradigm. A methodology is devel-

oped to find both the vertex and multiplier for the quadratic confidence function.

8.1.4 Stochastic Non-Declaration Procedure

One novel application of the generalized confidence function is a new non-

declaration methodology using a stochastic implementation. This involves interpret-

ing the confidence function as the probability of a non-declaration given a posterior

probability, P (DEC|p), and is implemented by comparing the output of the confi-

dence function to a random number draw.

162



8.1.5 New Use of the Kullback-Liebler Distance

This research develops a new use of the popular Kullback-Liebler (KL) distance

to determine how well a classifier generalizes to an independent data set. In this

application, we measure the KL distance between the histogram of the training set

and the histogram of the independent test set. The KL distance between these two

is a measure of how well the classifier is generalizing to an independent data set.

8.1.6 New Out-of-Library Detector

We develop a new methodology to determine out-of-library (OOL) targets by

bounding and discretizing the feature space, designating those discrete points as

either in-library (IL) or OOL, and providing those discrete features to a generalized

regression neural network. The effectiveness of this OOL detector is demonstrated

on a synthetic example.

8.1.7 Out-of-Library Non-Declarations

Typically, non-declarations are considered in an IL target setting. The confi-

dence paradigm is applied to an out-of-library problem which leads to a demonstra-

tion of the new concept of OOL non-declarations. This OOL non-declaration region

of the features space is combined with the typical IL non-declaration region of the

feature space to form a combined non-declaration region of the feature space.
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8.1.8 Overarching Value Model

This research unites multiple performance measures, specifically, the engineer-

ing confidence values and non-declaration rates, under an overarching value model

that leads to choosing the optimal confidence threshold. Overarching value models

are developed for cases considering IL and OOL target types.

8.2 Future Work

There were other research areas that could have been investigated, but due to

time constraints, these were left as items of future research. This section details the

items of future work.

8.2.1 Different Forms of the Confidence Function

The only confidence function form investigated in this research is the quadratic

confidence function. A sigmoid may also be appropriate and is left as an item of

future work. In changing forms, new tactical issues of how to find the appropriate

parameters will need to be addressed.

8.2.2 Engineering Confidence and Expectation of Random Variables

This research sets the expected value of the confidence function equal to the

output of an engineering confidence model, CENG. Some of the inputs to the en-

gineering confidence model are random variables (i.e., classification accuracy and
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average entropy). Rather than set the expected value of the confidence function

equal to CENG, it could be set equal to E[CENG].

8.2.3 Finding Function Parameters in Parallel

We parameterized the confidence function by first fixing the vertex and then

solving an optimization problem conditioned on the fixed vertex. The optimiza-

tion problem can also be solved by considering both of the parameters at the same

time. However, this will lead to multiple optimal solutions. Thus, some additional

constraint or condition must be enforced to get to a single solution. Performance

across the confidence threshold could be studied across the set of multiple optimal

parameters.

8.2.4 Expansion of the Engineering Confidence Model

While we model engineering confidence as a function of three attributes, there

may be other considerations that could be incorporated. Robustness and context are

two attributes that could be possible additions to the engineering confidence model.

8.2.5 Generalization of the Confidence Paradigm

Classification systems can have a variety of outputs. Our paradigm was devel-

oped to operate on posterior probability estimates. The paradigm can be generalized

to operate on any output from a classification system. Of course, if the output of

the classification system is not bounded between 0 and 1, the expected value of the
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output is not bounded between 0 and 1. This poses a problem since the output of

the engineering confidence value is designed to be a value between 0 and 1. This

issue will need to be resolved to generalize the confidence paradigm. In addition,

the confidence paradigm was only applied to two-class problems. Application of the

paradigm to problems with more than two classes is left as an item of future work.

8.2.6 Generalized Regression Neural Network OOL Detector

We successfully demonstrated the effectiveness of the OOL detector on a syn-

thetic example. However, the GRNN OOL detector did not perform as favorably on

the ATR data set. Improving this methodology on the ATR data set is something

that can be done as an item of future work.

8.2.7 Improving Implementation of Multiple Looks in ATR Data Set

Currently, we implement multiple looks by calculating a Mahalanobis distance

for consecutive aspect angles and average the Mahalanobis distances across the num-

ber of looks. These average Mahalanobis distances are used to find posterior proba-

bility estimates. This process can be improved and should be examined as an item

of future work.

166



8.2.8 Expansion of the Overarching Value Model

While we modelled overarching value as a function of engineering confidence

and non-declaration rates, attributes such as critical and non-critical error rates

could also be added to the model.
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