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Abstract

The discrete ordinates method is widely used to solve the Boltzmann
transport equation for neutral particle transport for many engineering
applications. Source iteration is used to solve the discrete ordinates system of
equations, but can be slow to converge in highly scattering problems. Synthetic
acceleration techniques have been developed to address this shortcoming;
however, recent research has shown synthetic acceleration to lose effectiveness or
diverge for certain problems.

LTC Wager introduced an alternative to source iteration and
demonstrated it in slab geometry. Here the method is further developed,
enhancing efficiency in various ways, and demonstrated in XY-geometry as well
as slab geometry. It is shown to be efficient even for those problems for which
diffusion-synthetic and transport-synthetic accelerations fail or are ineffective.

The method has significant advantages for massively-parallel implementations.
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Distribution Iteration: A Robust Alternative to Source | teration
for Solving the Discrete Ordinates Radiation Transport Equations
In Slab and XY - Geometries

1. Introduction

The time-independent, single energy group, linearized Boltzmann
Transport Equation (BTE) for non-multiplying systems can be written:

[Q-V+ O't(F)]W(F,fZ) = IdQ'GS(r,Q'- Q(r,Q)+ qe,d(F,Q) , (1.1)
where y is the angular flux; o, is the total cross section; oy is the scattering
cross section; and Q,,is the external source (5: 2). The BTE in this form is an
integro-differential equation that is coupled in space and angle. The discrete
ordinates method discretizes the BTE in space and angle and the resulting
system of equations is widely used for solutions to the BTE for many engineering
applications.

This research demonstrates a new method that is a robust, flexible and
rapid way of solving the discrete ordinates system of equations. Various
techniques have been applied to solve the discrete ordinates equations with

varying degrees of success. A brief review of several techniques follows.



A. Background
1. Source Iteration
One technique that is commonly used to solve the discrete ordinates system
of equationsis known as source iteration (SI). The BTE can be written in an
operator notation:
Ly=Sy+E, (1.2)
where Ly =[Q-V +0't(|7)]l//(F,fZ) is the streaming and collision operator;
Sy = J. dQ o (r,Q - Q) (F,Q) is the scattering operator or (within group)
scattering source, and E is the emission source' (which includes scatter into the
group from other groups in a multigroup formulation). As an iterative scheme,
SI is written (5: 2):
Ly" =Sy +E. (1.3)
The BTE is discretized in angle and space. An initial estimate of the
scattering source is made. The right side of equation (1.3) is treated as the
source for this method, the sum of both the scattered particles, as determined by
the integral and the emission sources in the material. The discretization in angle
allows the integral for the scattering source to be evaluated using a quadrature
rule with the initial flux estimate for N directions to determine the source. If the

initial guess for the scattering source is 0, then the ith iteration, or estimate of

LMy notation, S and E, rather than 4% and g

for other uses.

; was chosen to reserve subscripts and superscripts



the angular flux, is due to particles that have scattered at most i1 times (5: 2).
The number of scatters that must be modeled determines the speed with which
SI converges.

Source iteration has been used for many years, but has several
shortcomings. For problems that are dominated by scattering with little or no
absorption, the SI method may take many iterations to converge and require
impractical compute times. Further, in highly scattering problems, the difference
between two iterations may meet the convergence tolerance before the true
solution is reached. This phenomenon is known as false convergence. Techniques
to speed the convergence have been studied with varying degrees of success (18:
1, 5: 1). Currently there is no technique to speed the convergence that works for
all problems in two dimensions.

2. Synthetic Acceleration

Methods have been developed over the past 40 years to accelerate or
rapidly converge SI, particularly for diffusive type problems. One technique that
is commonly used is synthetic acceleration, which is at least a two stage iteration
scheme. The first stage is a normal iteration from SI, with a change of the
iteration subscript from equation (1.3):

Ly"? =Sy +E. (1.4)



The intent of the second stage is to find a low order approximation to add to

2 as a better approximation to the exact solution ¥ . Subtracting equation

4
(1.4) from equation (1.2) and solving for the exact solution:
y=y"?+ (-9 S —yp). (1.5)
Finding (L—S)™"to a high order is as difficult as solving the original problem:;
therefore, a low order approximation is used where M = (L—S)™" is easier to
compute. The synthetic acceleration scheme then is:
W(l) — l//(H%) +M S(W(H%) —l//(l)) ' (1.6)

Diffusion synthetic acceleration (DSA) and transport synthetic
acceleration (TSA) are two commonly used synthetic acceleration methods. The
DSA scheme uses a diffusion approximation as the low order approximation,
while the TSA scheme uses a simplified transport operator, for example a smaller
angular quadrature, as the low order approximation. For homogenous material
problems, these techniques have been highly effective (5: 2-3).

Adams and Larsen presented a comprehensive review of these methods, as
well as others, along with their strengths and limitations (2: 139). For problems
with severe spatial heterogeneities, DSA in multiple dimensions has been shown
to degrade significantly and TSA has been shown to diverge. Additionally, a new
consistent differencing derivation is needed for each new type of problem with

DSA, and TSA still has difficulties for problems that are highly scattering. As



the authors state, there is strong interest in new methods that are efficient and
easy to implement.

3. Angle Iteration

Wager developed a new method to solve the BTE that could be a practical
replacement for source iteration. His method is called Angle Iteration (AI) and
uses iteration on the cell edge flux distribution to rapidly converge on a flux
solution. His method does not converge falsely. His work showed promising
results but was only demonstrated in slab geometry for isotropic scatter.

His method begins by treating the discretization in angle and space as a
system of equations, representing the flux for all directions as a vector and the
spatial relations as a matrix multiplying the flux vector. For a single cell (cell 1)
in one dimension for any spatial method, the outgoing flux, the incoming flux,
average flux and average source relations in his notation are:

Vo, =Ko Wiy +K 05 Sy +K o E (1.7)
Wp =KW +KxsSy +K E (1.8)
SREDIN A (1.9)

In these equations, Kg,, Kgga, Koga, Ka, Kasa, and K pga, are
diagonal matrices of transport coefficients. Each element is the quantity of flux
(out or average in the cell) constituted by the uncollided (first-flight) streaming
of a unit quantity of flux, scattering source or emission source. Only the first

flight flux is included in each K ; the flux of scattered particles is included as the



first flight of the (previously) scattered source particles (S). The quantities
éA and EA are the variables that represent the average scatter and average
emissions in a cell. Also, 2 g represents the scattering cross sections with the
appropriate quadrature weights to calculate the scattering source from the cell
average angular flux (16: 2-26).

Equations (1.9) and (1.8) can be substituted into equation (1.7) to solve for

the vector of cell face fluxes out of a cell in terms of the vector of incoming fluxes

and the vector of emission in the cell:

lﬁomi =(K o, t KOS ZS (I-K A ZS )_lK All)lﬁir\ +

o (1.10)
(Kog TKog Zs (1 =K 1 Z¢) 'K 12 )E,.

The factor (I —K AS ZS )_1 in the above equation is the sum of an infinite
geometric series as long as HK AS ZS H <1. Further, each term in the sum models

a scattering event within a cell. The factor (I —K a5 Zg )% therefore models all

numbers of scatters that a particle can have before leaving the cell (16: 2-55). 1
call this infinite within-cell scatters. This is different than SI which models each
scattering event separately and hence has difficulties with dominantly scattering
problems. Equation (1.10) can be given in a compact notation which represents

the matrices in the outer parentheses as a single matrix:

‘/70ut, :mOI,lﬁir\ +Mee EA . (1.11)
While this relation does model infinite within cell scatters (15: 2-31), it accounts

for contributions to the flux from other cells in the slab only indirectly, through



Y., - Scattering among cells is addressed by representing equation (1.11) as a
coupled system of equations across all the cells:
¥, ,=My¥, +ME,. (1.12)
Further, the incoming flux in a cell is the outgoing flux from adjacent cells,
(except at exterior boundaries) hence:
¥ =PY_,, (1.13)

where P is the permutation matrix that reorders the outgoing flux vector
appropriately. Substituting equation (1.13) into equation (1.12) yields (after some
algebra):

li’out =(P,(I-My, P))"*M OEEA? (1.14)
where P, is a permutation matrix that reorders the matrix to be of minimum
bandwidth. This system of equations fully couples angle and space to get a flux
solution, but is impractical to solve for fine angular and spatial resolution
because it is the full set of simultaneous discrete ordinates equations (16: 2-44).
Wager’s AI method makes use of the strengths of both equations (1.11) and (1.14).

In the AI method, the outgoing, within cell flux is solved using equation

(1.11). The flux solution is then collapsed into two directions. The collapsing is
done by summing (integrating) the fluxes in a given hemisphere over the
hemisphere. The collapsed flux is used to solve equation (1.14) for two directions
across the spatial grid for what he called the global problem. The new flux

solution from the global problem is apportioned back into the original cell



representation using the original flux distribution (16: 2-73). This initial
distribution is normalized to create flux weights. A flux weight for a direction is
the flux moving in that direction divided by the sum of all the flux moving along
the same hemisphere. A similar flux weight can be defined for the opposite
direction, as well as the average flux in a cell, and the scattered and emission
source in a cell. This process of collapsing, solving and apportioning gives a
better estimate for the cell edge flux and can be used to solve for an updated cell
edge flux (15: 2-66-69). The updated cell edge flux can be collapsed with new
flux weights and the process repeated. This process describes one iteration. The
iterative process is continued until a convergence tolerance is met (16: 2-73).

The AI method has been tested using two positive spatial methods: step
characteristic (SC) and exponential characteristic (EC). In both cases, it was
shown to be reliable and to rapidly converge across a broad range of cross
sections and a full range of scattering ratios for these positive spatial methods
(16: 6-1).

Despite the success of the AI method, there are several issues to address:
angular quadrature choices, cell particle flow variable representation, and
coupling of the scattering among cells. These issues will be developed and
addressed in the next two chapters.

Additionally, the ATl method was demonstrated for spatial quadratures

that only required the calculation of a zeroth spatial moment of the flux in a cell.



The higher spatial moments for the nonlinear EC method were found through a
root solving routine. Implementation of linear first spatial moment methods was
not yet derived. In addition, the effect of using non-positive linear spatial
methods in the AT method needed to be examined.

The AI method was demonstrated in slab geometry. An extension to
multiple dimensions required addressing two issues: how to incorporate the flux
scattering from the orthogonal directions; and how to efficiently communicate cell
information about cell emissions and absorptions across the spatial mesh. For
one dimension, the global problem resulted in a penta-diagonal matrix which can
be solved efficiently. A similar coupled global problem in two dimensions needed

to include the scattering terms as well.

B. Motivation

Despite the challenges that needed to be addressed for the AI method, the
results demonstrated in slab geometry showed promise that a flexible, robust
method could be developed and demonstrated in multiple dimensions. Further,
Wager’s tests in slab geometry suggested that this new method could overcome
difficulties that SI and synthetic acceleration methods have for particular

problems in XY-geometry.



C. Goal of the Research

The goal of this research was to develop and demonstrate a new algorithm
for rapid solutions of the discrete ordinates equations in two dimensions. It is
desirable that the algorithm be:

Robust — able to handle a broad range of cross sections and scattering
ratios without significant changes in convergence rates;

Flexible — able to easily implement additional spatial methods without
requiring another derivation and change to the algorithm. The method should
also be able to change angular quadratures with no changes to the algorithm;

Parallelizable — although the method was implemented and demonstrated
on a desktop machine, it is desirable that the method be parallelizable to be able
to handle large problems efficiently; and

Readily extendable to 3D — the methodology used in deriving and
implementing the method should provide a clear path to implementing the

algorithm in three dimensions.

D. Objectives:
1. Extend the method to 2-d Cartesian Geometry.
2. Use other spatial and angular quadratures to inherit correct diffusion

limits.
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3. Evaluate the utility of a partial current problem (a finite-volume
particle conservation formulation) as an alternative to Wager’s use of partial
range angular integrals of the directional flux for coupling cells in a global
problem.

4. Formulate the method to minimize the size of the global problem when
applied to higher order linear methods.

5. Demonstrate success where both DSA and TSA fail or become
ineffective and extend testing to even more challenging problems.

6. Evaluate the ability of a PARDISO-based direct solver routine (6: 11-
1) to solve the partial current problem efficiently.

7. a) Maximize the opportunity for parallelization.

b) Enhance serial performance.
8. Distribution iteration should have the desirable properties described as

goals of the research.

E. Scope

The scope of this research is to derive and implement a new method for
solutions to the discrete ordinates equations using linear spatial methods for slab
and XY — geometry with discrete ordinates quadratures. Slab geometry testing,
for both zeroth and first spatial moment methods, was used to validate method

choices for XY-geometry testing. Implementation of the DI method, for both
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zeroth and first spatial moment methods, show general performance of the
method for a variety of parameters. In addition, tests in XY-geometry show the
improvement the new method has over other methods currently used to solve
these same equations. The code implementation was written to be able to

demonstrate this; it is not intended to be incorporated in a production code.

F. Assumptions and Limitations

This research uses linear spatial methods that provide solutions to the
time independent, mono-energetic BTE for isotropic scatter and non-multiplying
systems in two dimensions. Energy dependence is not tested explicitly.
Nevertheless, the emission source can include scatter into a group from other
groups, so the derivations would apply to a multigroup formulation without loss
of generality. Similarly, my testing assumes isotropic scattering, but this
influences only the numerical values of the elements of the scattering matrix, . .
Extension to anisotropic scatter requires only the formulation of X, consistent
with the anisotropic scatter approximations to be employed.

The new method solves the discrete ordinates equations and therefore
inherits the strengths and weaknesses of the angular and spatial quadratures and

the cross section approximations used.
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G. Approach

The first step was to examine the appropriate choice for cell particle flow
for implementation in the distribution iteration method. A change in the
representation for the problem by transforming the angular flux representation of
the AI method into a current representation for the cell transport coefficients is
appropriate. This allows changing the “global” problem for the AI method into a
partial current problem. This was done for several reasons. This is a more
physical problem which is based on the conservation of particles as opposed to a
pseudo scalar flux which was used in the AI method. Using this representation,
the extensions to three spatial dimensions are more apparent and the same
methodology can be used. Also, test problems in chapter three showed that the
method converges in fewer iterations for this representation. The flux weights
used in the Al method are replaced by current distributions on the cell edges.
This motivates the name of the new method: distribution iteration (DI).

The angular integrals described in the BTE were done using an angular
quadrature. The discrete elements quadrature used in the AI method did not
meet the diffusion limit, which is needed for the highly scattering problems this
research attempted. The discrete ordinates quadratures that are commonly used
do meet the diffusion limit. Two different quadratures were implemented for two
reasons, to compare with previously published results and to demonstrate the

flexibility of the method in implementing different angular quadratures.
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Different methods to couple the scattering among cells are presented in
chapter two and tested for efficiency in chapter three. Next, the DI method for
zeroth spatial moment methods is reviewed and first spatial moment methods in
slab geometry are derived in chapter three. Implementation of two spatial
methods, step characteristic (SC) and linear discontinuous (LD) are covered.
Test problems were used to validate choices for the distribution iteration method
implementation in XY - geometry.

The DI method is derived for zeroth and first spatial moment methods in
two dimensions in chapter four. The following methods were implemented: step
characteristic (SC); weighted diamond difference (WDD); linear characteristic
(LC); and linear discontinuous (LD). The zeroth spatial moment methods (SC
and WDD) validate the extension from one dimension to two dimensions, while
the derivation and implementation of the more complicated first moment
methods (LC and LD) further demonstrate the flexibility of the method. The
partial current problem description and implementation for both the zeroth and
first moment methods are also described in chapter four. The validation of the
code is presented in chapter five as well as testing designed to demonstrate that
the DI method performs at least as well as other methods for routine problems.

The DI method is tested on a variety of problems in the remaining
chapters. The testing is designed to illustrate two points: the DI method

performs at least as well as other methods and the DI method works for those
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problems where other methods fail or have difficulties. The testing is also
designed to determine the limitations of the DI method. The problems where
other methods have difficulties are presented in chapter six and problems that

stress the DI method are presented in chapter seven.
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II. Theory

A. The Discrete Ordinates System of Equations

The discrete ordinates system of equations is derived from the linear BTE
by discretizing in space and angle. The system of equations may be expressed (9:
166) as:

On -V (F,Qn) +0,(FW(F,Qn) = S(F,Qn) + E(F,Qn) , (2.1)
with an appropriate spatial discretization. This results in a system of
simultaneous equations that is too large to solve directly. Therefore, this system
of equations is solved by source iteration. Advances in computing speed and
available memory suggest another approach is appropriate, motivating this
research.

Rather than try to solve the large problem directly, the intent is to break a
single large problem into two smaller problems that can be coupled together.
The two problems can be described as a local detailed balance problem in each
cell of a spatial grid and a global flow balance problem. Both problems assemble
the discrete ordinates system of equations in a form that gives the outgoing
particle flow in terms of the inward particle flow and emissions. By determining
the proper balance on both scales, using the local balance to improve the

coefficients in the global balance equations, and the solution to the improved
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global balance to improve the local balances, the problem can be solved
iteratively.

In general, a cell system of equations is written:

—out

=in — —
=i

— n — —

and

S=2y. (2.4)
In equations (2.2) through (2.4), TOUt is a vector of coefficients of basis

functions in an approximation to the distribution of current on the faces of the

cell for the outward directions, ]in is a vector of coefficients of basis functions in
an approximation to the distribution of current on the faces of the cell for the
inward directions, 1/7 is a vector of coefficients of basis functions in an
approximation to the distribution of the angular flux within the cell, Sisa
vector of coefficients of basis functions in an approximation to the distribution of
the scattering source within the cell, E is the vector of coefficients of basis
functions in an approximation to the distribution of emissions within the cell.
The matrices, Koy, Kog, Kog, Ky, Ky, and K, g are the relations between
the vectors for the spatial quadrature. The matrix 2, contains the scattering
contribution and angular quadrature weights to relate the scattering source and

the angular flux. These equations are developed further in Chapters three and
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four. The particle flow variable at the cell faces in equations (2.2) and (2.3) could
be expressed either as angular flux or as angular current. The reason for using
currents is presented in section B. These equations are used for the local detailed
balance problem within a cell.
The global balance problem uses the flow of particles across cell faces for all

the cells in the mesh, and removes the angular dependence by integrating a
modification to equation (2.2) over a hemisphere to determine the particle flow.
A discussion of both problems follows.

1. Local Detailed Balance

Local detailed balance is found by eliminating the scattering source from
the system of equations in a cell. This allows the direct calculation of the
detailed flow of particles in a cell from the flow from adjacent cells and emissions
within the cell, again accounting for all of the scatters a particle can undergo

within the cell. The local detailed balance relation for a cell is:

-QOut -In —
- =mg ] +mgeE. (2.5)

Again, ] is the current at a cell edge for all the ordinates in the angular
quadrature set, E is the emissions in the cell along each ordinate, and mg, and
Mo are matrices which give the contributions of the inward particle flow and
emissions respectively.

To convert equations (2.2) through (2.4) into the form of equation (2.5),

substitute equation (2.4) into equation (2.3) and solve for the angular flux:
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—

w=LK, ] +LK,eE (2.6)
where
L=(1-K,sX)™* (2.7)

This result and equation (2.4) are substituted into equation (2.2) for the current:

—out

—=in —=in — —

Collecting terms yields:

—out

j =(KOI+KOSZLKyf|)]in+(KOE+KOSzLKg{/E)E' (2.9)
The matrices in the parentheses are in the form of equation (2.5). Further, the
first matrix represents the contribution to first flight of particles, while the
product term represents the contribution from particles after scattering. The
convention of bold symbols represents matrices, while lower case m is a reminder
that this is a cell formula. This provides the needed formulas for the coefficient

matrices:

Mol =Ko +KosZLKy, (2.10)

and

2. Global Flow Balance

The global flow problem solves directly across the problem for the flow of

particles across cell edges with no angular dependence. Equation (2.5) is
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integrated over the appropriate angles to determine the outward particle flow for
a cell and this is used to create a system of equations across the spatial mesh:

Ax=b, (2.12)
where the flow of particles across cell edges, X is only dependent on the forcing
term, b.

The global flow problem is much smaller than the discrete ordinates
system of equations. The matrix A is so sparse that the system can be solved
directly. The detailed angular information for the flow of particles is implicit (in
the elements of A ); the partial currents of particles passing through all cell edges
are the only (explicit) unknowns. This uses the spatial quadrature to model the
contribution of particles entering the cell from any direction, scattering any
number of times, and exiting the cell edge.

The cell flow of particles in the local balance problem contains the detailed
angular information that is implicit in the global balance solution. However, the
detailed cell flow does not necessarily include the contribution from particles that
flow from nonadjacent cells after any number of scatters. To overcome this
shortcoming and retain angular information for the global flow problem the two

problems must be linked. Coupling the global and detailed balance problems

solves this.
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3. Coupling the Local Balances

The cell local balances are coupled across the spatial mesh and with the
global balance problem through cell coupling. The level of particles scattering
among cells is contained in the global balance solution, but the distributions of
particles in angle is not. Coupling the local balances addresses the role of these
distributions. This allows, through an angular integration, the relative
importance of an angular direction to be used in the global balance solution and
the distribution of the appropriate level for a particular direction back to the
local detailed balance problem from the global balance solution.

If the correct coupling were known, both problems could be solved exactly
and the detailed and global flow of particles could be calculated directly. As it is
not known, an estimate is used and iteration is used to improve the estimate of
the coupling. This is not source iteration; instead, this iteration seeks to improve
the estimate of the coupling of the local balances rather than improving the
scattering source estimate. The general method is shown in figure 2.1.

The figure shows the general phases of the distribution iteration method.
An assumption is made for cell edge distributions. This assumption is used to set
up and solve the global flow problem, taking into account emissions within the
problem and boundary conditions to set approximate cell edge flow values. The
cell edge values are used as inflows for neighboring cells to find cell outflows and

improve the estimate of the edge distributions.
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Figure 2.1 Flowchart describing the general distribution iteration method.

This inflow to outflow can be repeated until the estimate of the edge
distribution is sufficiently improved. The innermost loop shows where additional
iteration is done for nonlinear spatial methods, which are not included in this
research. Better inward and outward detailed particle flow solutions, through
iteration if needed, provide better coupling with detailed distributions. The
updated edge distribution is used to set up another global flow problem and
improve the estimate for the global flow problem solution, and the process

repeats until a convergence criterion is met.
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B. Choices that Define a Method
The discrete ordinates system of equations is defined by the angular and
spatial discretizations that are used. These choices, along with the possible
implementation choices shown in figure 2.1 define a distribution iteration
method. A review of the choices and considerations for implementation follow.
1. Angular Quadrature Sets
In general, the angular quadrature sets are used to evaluate the angular
integrals needed for solutions to the discrete ordinate equations.
a. Slab Geometry Angular Quadrature Sets
In slab geometry, two different quadrature sets were considered. A brief
description of these quadratures follows.
Discrete Elements Quadrature Set
Discrete elements (DE) quadratures were used by Wager to demonstrate
the Angle Iteration method in one dimension (16: 2-3-5). The discrete elements
quadratures do not exactly compute the factor of 1/3 in the diffusion coefficient.

The angular quadrature should exactly integrate the following integral:

, (2.13)

where u represents the direction cosine. In slab geometry for a discrete elements
quadrature set with an even number, NV, of equal weight elements, the general

expression for the mean 4, in an element is:
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_,_(2n-)
:un =1 N ) (214)

where the element size is:

2
Mty == (2.15)

This particular case for discrete elements is akin to a composite mid-point
method. Using the DE angular quadrature, the integral in equation (2.13) is

approximated as:

1 N
Jl%ﬂzz%ZﬂnzAﬂn =%(1—$) ¢?13. (2.16)
As shown in equation (2.16), higher resolution DE quadratures (larger N) are
closer to meeting the diffusion limit, but are still not exact.

While this quadrature set made the visualization of collapsing and
allocating the angular flux easier, the discrete elements quadratures do not meet
the diffusion limit. Problems which are highly scattering, which are the type of
problems where synthetic acceleration and source iteration have difficulty, and
that this research will examine, need an angular quadrature that meets the
diffusion limit.

Discrete Ordinate Quadrature Sets
In the case of discrete ordinates angular quadratures, an exact relation for

the integral in equation (2.13) is often considered to be a requirement for useful

quadratures. Lewis and Miller provide a description of common discrete
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ordinates angular quadrature sets for slab geometry (9: 119-126) and XY-
geometry. In general, these are even quadratures which are symmetric about
1 =0 since positive and negative particle flows are generally of equal importance.
A discussion of two popular quadrature sets for slab geometry follows.
Single Range Gauss-Legendre
This quadrature set is also known as Py quadratures. The ordinates, 4,
are the N roots of the Legendre polynomial:
Pv(,) =0, n=12..,N. (2.17)
The weights are found such that the quadrature set correctly integrates all
polynomials through order 2N —-1. The symmetry of the Py quadrature set and
the properties of the Legendre polynomials make this quadrature set popular for
certain problems (9: 119-121).
Double Range Gauss-Legendre
Double range or DPy quadrature sets (9: 121-126) are similar to By
except that quadratures are developed for the integrals over —1< <0 and
O<u<1. These quadrature sets are used for their improved treatment of
vacuum boundaries. In our case, these are desirable because partial currents are
defined as integrals over these two domains. For example, consider the function

defined as:

f(u)=0 -1<u<0,

f(u)=u O<u<l. (2.18)
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The integral over the whole domain is

1 1
_jlf(ﬂ)dﬂ=§. (2.19)

Double range quadrature sets can integrate this function exactly (even for the
lowest order), while single range quadratures do not. Table 2.1 shows the
integration results for several single range quadrature sets for equation (2.19) and
demonstrates this. The single range quadratures of order 2 -12 and the
integration results of equation (2.19) are shown. The error listed in the last

column is the absolute difference from the exact solution.

Table 2.1 Single range Gauss quadrature results for equation (2.19)

Py Integration Error
Results (Difference)

P, 0.57735 0.07735
P, 0.52126 0.02126
Bs 0.50994 0.00994
R 0.50576 0.00576
Po 0.50376 0.00376
R, 0.50264 0.00264

b. XY - Geometry Angular Quadrature Sets
The discrete ordinates quadratures were implemented to evaluate the
angular integrations needed for solutions to the discrete ordinates equations in

XY - geometry because they meet the diffusion limit. Two different quadratures
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were implemented in order to compare with previously published results and to
show the facility of the method in implementing different angular quadratures.
Level Symmetric
Level symmetric quadratures are widely used (9: 158-162), and this
quadrature set was used to compare with published results. These quadrature

sets are referred to as §, quadratures and contain the same set of '% direction

cosines with respect to each axis. There are ordinates per octant. The

N(N+2)
8

quadrature weights meet the condition that all weights must be equal for points
obtained by permuting the direction cosines. A useful property of the S
quadratures is that the ordinate directions are invariant to 90" rotations about
any axis. The quadratures sets S,, S;,and S, were implemented for XY -
geometry.
Product Quadratures

A product quadrature was also implemented to show the facility with
which different angular quadratures could be used. Abu-Shumays (1: 299-301)
showed that a quadruple range quadrature set was competitive for improving
accuracy. In this quadrature method, the polar angle, ¢, is integrated using a
Gauss-Cristoffel quadrature and the azimuthal angle, @, is integrated using a
Gauss-Chebychev quadrature. The direction cosines are calculated using these

two quadratures:
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Hpy = COS(Dry) ) SIN(A 1y )

. . (2.20)
Th = S'rl(aom(n))sm(ﬂ (n))’
and the final quadrature weights are the product of the quadrature weights,
Wh = Wran)(n)V\ﬁn) ; (2.21)

for both the Chebychev and Cristoffel quadratures. Cristoffel quadratures with
1-3 levels per octant and Chebychev quadratures with 2-5 levels per octant were
implemented for XY - geometry.

2. Spatial Quadratures

Spatial quadratures methods can be characterized by the highest-order
spatial moment balance that is satisfied exactly. Zeroth-moment and first-
moment methods are used here. An advantage of linear methods is that for the
distribution iteration methods, the matrix relationships providing the flow of
particles and defined by the angular and spatial quadratures are fixed and do not
need to be calculated for each iteration. For this reason, only linear methods are
used here.

Several attributes of spatial quadrature methods are of especial interest:
positivity, linearity, and (2" order or better) accuracy. Positivity means that the
outgoing face flow value (and the flux within the cell) returned by the spatial
method is nonnegative, given nonnegative inflow flux and source. Negative flow
values are non-physical and are strictly an artifact of the spatial method.

Linearity refers to the superposition of solutions, a solution for a source that is
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the sum of other sources is also the sum of the solutions for the other sources (11:
33). Accuracy refers to the truncation error on fine meshes (9: 371). A spatial
method has at most two of the three attributes (9: 135). The description of how
these attributes align with the choice of spatial quadrature follows.

Step characteristic (SC) is a zeroth spatial moment method. It is a linear
and positive method, but it is 1* order accurate. The SC method was
implemented for slab and XY-geometry to demonstrate the method and to
compare with Wager’s results.

Weighted diamond difference (WDD) is a zeroth spatial moment method
that is also a linear and positive method, but has less than 2" order accuracy.
The method is used in production codes and was used by Azmy to demonstrate
the loss of effectiveness for DSA. The WDD method was implemented in XY-
geometry to compare with published results.

Linear discontinuous (LD) is a first spatial moment method that is linear
and 3" order accurate, but is not a positive method. The LD method is also used
in production codes and is one of the spatial quadratures that meets the diffusion
limit on thick cells. The LD method was implemented for slab and XY-geometry
to demonstrate the DI method for first spatial moment methods.

Linear characteristic (LC) is another non-positive first spatial moment
method that is linear and 4™ order accurate. It is used for better accuracy, but

does not (like all characteristic methods) meet the thick-cell diffusion limit. The
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LC method was implemented for XY-geometry to demonstrate the flexibility of
the DI method for first spatial moment methods.
b. Nonlinear Methods
Wager demonstrated the feasibility of using the exponential characteristic
(EC) method for his work in slab geometry, a nonlinear method (16: 6-1).
Nonlinear methods add additional complexity, but have the attributes of
accuracy (EC has 4™ order accuracy), ability to use a coarser spatial mesh for
accurate solutions, and positivity. However, additional calculations are needed
for the innermost loop, as noted in Figure 2.1. Due to the additional complexity
required for nonlinear methods, implementation of DI with EC is left for future
efforts.
3. Cell Face Flow Variables
Two choices for cell face flow variable are readily apparent: angular flux,
v, and angular current, |.
a. Angular Flux as Cell Face Variable
Angular flux is commonly used for the cell face flow variable. Spatial
quadratures are presented in the literature in terms of angular fluxes. However,
with this choice, the global flow balance variable lacks physical meaning; it is the
angular integral of the angular flux over a hemisphere, which is neither a partial

current nor a scalar flux.
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b. Angular Current as Cell Face Variable
Angular current has not been used for the cell face flow variable (to my
knowledge), but can be determined easily from the angular flux and the direction

cosines from the angular quadrature. The angular current is

.infout A~ ~infout o~ . . . ~
Jtace =€ Niace W(L2), where in or out is chosen for a given Q such that the dot

product is positive. Also, the global flow variable, J* ., is now a physical quantity:
the partial current through the cell face. This changes the global flow problem to
a partial current problem that is an explicit statement of conservation of particles
within each cell. This motivated my choice of face flow variable for the
distribution iteration method. The difference is more than one of bookkeeping;
distribution iteration using the partial current problem converges in fewer
iterations, as demonstrated by the testing presented in chapter 3.

4. Coupling the Local Balances

Coupling the local balances requires carrying information about particle
flow from each cell in the spatial mesh to other cells, including cells that are not
adjacent and may be distant. In order to obtain a rapidly converging method, an
efficient coupling method is needed. Three different options are presented: local
balance sweeping; red /black; and discrete ordinates sweeping.

a. Local Balance Sweeping
In the local balance sweeping method, the current cell uses the outflows

from the adjacent cell as inflows. This method is easy to implement, but requires
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multiple sweeps to communicate between nonadjacent cells. Additionally, the
outflow in the direction of the sweep, which is the inflow for the next cell has
more improvement than the inflow at far side of the next cell. There is a
possibility that the inflow estimate on the cell edges may not have equal
improvement across the cell, which may introduce a bias across the cell. This is
the method Wager used in his efforts (16: 2-68). The sweep is sequential in 1d,
and has some parallelism in higher dimensions.

b. Red/Black

The red /black method divides the spatial mesh into alternating cells and
assigns a color, similar to a checkerboard. All the red cells can be done in
parallel. The red cell outflows are the black cell inflows so that the black cells can
then be done in parallel. Each cell communicates only locally — to its immediate
neighbors in the spatial grid. This is the ideal situation for fully parallel
computations with efficient scaling to many-processor systems.

However, the region influenced by a localized source in a problem with
little scattering is extended by only one cell (in all directions) for each red or
black calculation, hence two cells per red/black iteration. Thus convergence may
be slow for such cases. These are the conditions in which SI works best, because
the sweeps along the ordinate carry the first-flight influence of a localized source

throughout the problem in one iteration. This motivated the next approach.
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c. Discrete Ordinate Sweeping

Rather than calculate the outflow values directly, the inflow values and
emissions in a cell can be used to improve the current estimate of the cell
scattering source including all numbers of scatters within the cell. This way of
calculating the scattering source overcomes the difficulties of traditional discrete
ordinates methods of estimating the scattering source, particularly for high
scattering ratios. The cell scattering source calculations can be done in any
order, and are also parallelizable. The cell scattering sources are then used for a
single discrete ordinates sweep for each ordinate to determine the cell outflow
values. For code implementation, two different discrete ordinates sweeping
methods were used. The first was a single source calculation followed by one
discrete ordinates sweep. This proved sufficient for most problems. The other
method was an adaptive technique which varied between one and ten sweeps
depending on the properties of the problem. For each sweep, the scattering
source was updated using the cell edge values and the scattering source was used
to calculate new cell edge values. This was used for slab geometry problems and
some of the XY-geometry problems. A further analysis and description is
presented in chapter seven.

A strength of the discrete ordinates sweep is that it rapidly communicates

cell information across the spatial mesh as the angular flux calculations in an
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ordinate are done over the spatial mesh. The sweep is limited in parallelism, but
the method may have merit for serial machine implementation.
d. Parallel Efficiency of Red/Black vs. Sweeping

Any algorithm that sweeps through a regular, orthogonal grid, such as a
checkerboard or its extension to 3d, in a compound direction, for example
upward and to the right, is constrained by data dependencies. For example, after
the bottom-left cell is done, the data for both the cell to its right and the cell
above it are available. These two cells can be done in parallel, after which the
three cells above and/or right of them can be done in parallel and so on. Thus,
one sweeps a diagonal line of cells (crosswise to the flow) in XY-geometry, or a
diagonal plane of cells in XYZ-geometry. This is partially parallel, but much less
efficient than red/black (per iteration). Let d be the number of spatial
dimensions and n be the size of the mesh (in each dimension).

Table 2.2. Parallel Efficiency considerations.

d | Sweeps | Stages per | Stages | Asymptotic Stage Ratio,
Sweep Sweeps : Red/Black

1 2 n 2n n

2 4 2n-1 8n—4 4n

3 6 3n-2 | 18n-12 9n

For large n, the asymptotic ratio (large n) of the number of parallel
stages per iteration for sweeping to the number of parallel stages for red/black

(two stages) per iteration is d?n. This analysis applies to both discrete ordinates



sweeping and to local balance sweeping because all the ordinates that have the
same data dependency (such as upward and to the right) can be done in parallel
in the diagonal sweep.

Consequently, it is reasonable to expect that red/black will be more
efficient for large problems on MMP systems because the number of red/black

iterations should be much less than the grid size n.
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ITI. Slab Geometry Implementation and Testing

A. Local Detailed Balance Problem

1. Zeroth Spatial Moment Methods

Wager presented the foundation for the zeroth spatial moment methods
(16: 2-22-27) using the angular flux formulation. The analogous angular current
formulation is presented here. For the zeroth spatial moment methods, the

system of equations for a cell are:

i = Ko ]in"'KOSAéA"'KOEAEA? (3.1)

_, ~in — -

A=K ] +KasaS +K ppaB”, (32)
and SA=Y . (3.3)

In these equations, Kg;, Kgga, Koea, Ka, Kaga and K pgp, are diagonal
matrices of transport coefficients that define the relations of the inputs of a cell
to the calculated quantity. For example, Ko represents the contribution to the
outgoing flux from the incoming flux and K ags represents the contribution to
the average flux from the average scatter. The values of the transport
coefficients are determined from the spatial quadrature used. Letting D(X) be
the diagonalization operator that creates a diagonal matrix from vector ;(, the

general matrices become:

K =D(k). (3.4)
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—out =in —A .
The quantities | " , jI and ¥ are the variables to represent the cell outward

angular current, inward angular current and average angular flux respectively.
The zeroth spatial moment over a cell is normalized to be the average value.
Thus, the quantities SA and E”are the variables to represent the average
scatter and average emissions in a cell. The vector notation represents an array
for the variable with all the ordinates in the angular quadrature. Also, for

isotropic scatter:

Ts=0s1D(W), (3.5)

where D(Vv) is the diagonal operator on quadrature weight vector, oy is the
isotropic scattering source and 1 is a matrix with one for every element. In
general, this matrix, 2g contains the scattering cross sections with the
appropriate quadrature weights to calculate the scattering source from the
average flux.

Equations (3.3) can be substituted into equation (3.2) to solve for the
average flux in a cell in terms of the incoming cell angular current and the

emission in a cell:
_ _ —in _ —
PR =(1-KasaZs) K a | +(1 —K asa Zs) K agaE™. (3.6)

Equations (3.6) and (3.3) can be substituted into equation (3.1) to solve for the
outgoing angular current in a cell in terms of the incoming cell angular current

and the emission in a cell:
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—out

I =Ko +KosaZs(l =K asa Zg) 'K Al)im+

) (3.7)
(Koea+KosaZs(l =K aga Zs) K aga) E™

Again, the factor (I -K ASAZS)_l can be thought of as modeling infinite within
cell scattering (16: 2-55). The terms in the outer parentheses can be expressed as

a single matrix:

—~out =in —
i =mg | +moeER. (3.8)

An exactly analogous derivation is done for the angular flux formulation. For the
zeroth spatial moment methods, these matrices need only be calculated one time
for each material (with a uniform spatial mesh). Equation (3.8) can be used to
solve the cell detailed balance problem for both the local balance sweeping and
the red/black methods. Equations (3.6) and (3.3) are used to determine the cell
scattering sources for the discrete ordinates sweep method.

Zeroth Moment Transport Coefficients

For the testing in slab geometry, the transport coefficients for the step
characteristic will be discussed for zeroth spatial moment methods. The
transport coefficients are used to build the diagonal matrices used in the local
detailed balance problem. Other zeroth spatial moment methods would be

implemented using the same procedure.
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1. Angular Flux Formulation

Lathrop introduced the step characteristic method in 1969 (11: 24) and
the quadrature equations can also be found in the literature (10: v-8). Wager
presented SC relations (16: 2-18,2-22) in a more compact notation using the
exponential moment functions of order m developed by Mathews et al. (11: 27)

where:

1
M (X) = j dt(1—t)Me ™. (3.9)
0

The cell optical thickness measured along ordinate n is used in these relations

and is defined as:

OAX
En=77,

(3.10)
|t

where o is the total cross section, AX is the cell width and g, is the direction
cosine from the angular quadrature. As an example, consider a quadrature set
with four ordinates, (1 and 2 to the right, 3 and 4 to the left). The cell SC

equations for the outgoing angular fluxes are:

AX

y =€ Gy + |,u| (Q)SA |,U| Mo(&)EL, (3.11)
1 1

yR=e2y) + |,U | YNCHES +|,U | Mo(&5)ES, (3.12)
2 2

vs :e_ggllfs'? |ﬂ3| Mo(£3)S5 +| 3| Mo(e3)ES', (3.13)

39



_ AX
and i =e 841//)1?+| Mo(£4)Sy' +—Mo(£4)ES, (3.14)

ﬂ4| |ﬂ4|

where R and L designate the right and left faces of the cell. Equations (3.11)
through (3.14) take the form of equation (3.1), with K, = D(kor ),

Kosa= D(EOSA) and Kgoga = D(ROEA) , where the k vectors are:

(kOI)n :e_gn7 (315)
(Kosa)n =77 Mo(€0) (3.16)
Iﬂnl
and (Kogan :|fl_X|MO(€n) . (3.17)

For the same quadrature set, the SC equations for the average angular flux are:

v = Moegyt +> M M, () S +|ﬂ1| M (e)Ef, (3.18)
w5 =Mo(e)y; + |ﬂ2| My(e 2)52+| | M (&) ES, (3.19)
w3 =Mo(&)ys + |ﬂ3| M(£3) S5 +| | My(e3)ES, (3.20)
and wa=My(e)wi + ] M (£4)Ss + 2 M, (g,)ES . (3.21)

Equations (3.18) through (3.21) take the form of equation (3.2), with
K o =D(Kal), K asa =D(kasa) and K app =D(Kaga) , where the k vectors are:

(Kai)n =Mo(en) , (3.22)



AX
Kasa)n = — My (&) , 3.23
( ASA) |,Un| 1(8 ) ( )

ax

and (Kagadn = | M (&n) - (3.24)

nl

2. Angular Current Formulation

The x component of current along an ordinate in slab geometry is j, = | ,un|l//n.
The general form for the angular flux equations is exactly analogous to the
angular current equations (3.1) through (3.3), but the formulas for some of the k
vectors are different. To change the transport coefficients to the current
representation requires multiplying or dividing the transport coefficient by | ,un|
where appropriate. The system of equations for the outgoing flow and cell
average flux shown in equations (3.11) through (3.14) and equations (3.18)
through (3.21) must also be changed. Multiply equation (3.11) by |,ul| to get the
corresponding angular current formulation equation:

iR =€+ AxM(g) S+ AxM (g EP. (3.25)

Thus the k vectors for the outward currents are:

(ko )n=€"", (3.26)
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(kOSA)n = AX Mo(gn) )

and (Koea)n = AXMg(&p) -

L
Replacing l//lL with the equivalent % | in equation (3.18) yields the
1

corresponding angular current formulation equation:

A

4]

AX

My(e) B
|ﬂ1|

1 .
i =—Mo(e) iy +7—My(e)S +

4]

hence, the k vectors for the average flux are:

(Kaidn = s Mo(&n) 5

|t

A
(Kasa)n =ﬁml<en> ,
n

AX
and (Kagadn :|_M1(€n) .

nl

2. First Spatial Moment Methods

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

The slab geometry zeroth-moment methods are in the general form of

equations (2.3) through (2.5); the only difference is the addition of “A” to some

of the subscripts and superscripts. The first-moment methods are also of that

form, as is shown in this section. First, however, the first-moment methods are

presented in a form that follows naturally from the way such spatial quadratures

are normally written. This requires several additional terms and equations to
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account for the contribution to the flux from the first moment of the scattering

source:
P =Ko T K 0eaSA K om 8 +K oeaBA + K oy EX (3.33)
A=K 7" 4K anSP 1K poe S +K asaBA +K aex EX (3.34)
=Koy T 4K 3enSA 1K 3o 8% +K yeaBA +K yex EX (3.35)
Sh=X. ", (3.36)
and SX=3.w*. (3.37)

The new matrices, Kgoex , Kagx s Kx s Kxsa, Kxea,Kxsx and K ygx , are also
diagonal matrices of transport coefficients that define the relations of the inputs
of particles to the calculated quantity. For example Ky, represents the

contribution to the first spatial moment of the flux in the cell from the incoming

flux. The diagonal values, or transport coefficients, are also determined from the

spatial quadrature used. The new quantities ¥ SX and Ex are the variables
to represent the x-moments of the angular flux, scatter and emissions
respectively.

This system takes the general form by collecting the zeroth and first
moments together into single, larger vectors. The easiest way to do this is

blockwise:



and

Equation (3.33) can be written in the general form

—~out

J

by joining K matrices blockwise:

and

_&A
="
Ly
g
S=
—X
[—A
E= x
E

:KO|]In+Kosé+KOEE,

KOS:[KOSA Kosx]a

KOE:[KOEA KOEX]'

Similarly, equations (3.34) and (3.35) are

where

and

_ n a =

LY

_K XEA

K AEX
K XEX

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)



Finally, equations (3.36) and (3.37) can be also represented as:

S=Yv, (3.48)

where 2= [z(:)s ;S} : (3.49)

With these matrices that include first moments, the first-moment system of

equations,
]OUt :KO|]m+K05§+KOEE, (350)
=K, ] +K,sS+K,gE, (3.51)
and S=Yv, (3.52)

is of the same form as equations (2.2) through (2.4). Equation (3.52) can be
substituted into equation (3.51) to eliminate the scatter:

—

7=(-K,sX) ™Ky, +(1-K,sX) K E. (3.53)

This result with equation (3.52) can be substituted into equation (3.50) to again

eliminate scatter:

—out

I = (Ko +KosZ(1-K ,sZ) 7K )]in"‘

4 (3.54)
(Koe +KosZ(1 —K,s ) 7K ,g)E.

The quantities in the parenthesis can be combined to form a single matrix

yielding the general form,
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-out —=in _
] =mg j +mgeE, (3.55)

of equation (2.5). As with the zeroth spatial moment methods, these matrices
are only calculated once for each material for first spatial moment methods.
Again, equation (3.55) can be used to solve the cell detailed balance problem for
both the local balance sweeping and the Red/Black methods. Equation (3.53) is
used to determine the cell scattering sources for the discrete ordinates sweep
method. The scope of this research is limited to single energy group problems,
therefore the x-moments of emissions are zero and the related transport
coefficients, K opx ,K pex and K ygx , were not used. The code implementation
used an equivalent elimination of the scattering sources, in which a block forward
elimination and back substitution produces the inverse matrix in equation (3.53).
Details are presented in Appendix E.

First Moment Transport Coefficients

For the testing in slab geometry, the transport coefficients for linear
discontinuous methods are used as an example of a first-moment, linear spatial
quadrature. The transport coefficients are used to build the diagonal matrices
used in the local detailed balance problem. Other first spatial moment methods

would be implemented using the same procedure.
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Angular Flux Formulation

The LD method has also been used for many years, and the equations are
presented by Larson (8: 222) and also by Lewis and Miller (9: 134). Similarly to
the zeroth moment methods, a system of equations for a cell is set up for all the
ordinates in the angular quadrature set for the outgoing flux in a cell, the average
angular flux in a cell, and the x-moment of angular flux in a cell. As was done
for SC, the LD angular flux transport coefficients are found from the angular flux
equations in a cell, which are shown in appendix A. The current equations are

also derived in appendix A. The LD Kk vectors for the outgoing fluxes are:

6-2¢,
=—— N 3.56
(kOI )n 6+ 4€n +€n2 ( )
AX(6+¢€,)
(kosan = a— (3.57)
" (6+4e,+ e,
AXE
(kosx)n = . : (3.58)
T (644, + 8.0 |1l
AX(6+¢€,)
and (Koea)n = q . (3.59)
" (6+4e,+e,) |
The LD k vectors for the average flux are:
6+¢
k =——"N 3.60
( Al )n 6+4€n+8n2 ( )
(Kasa)n = Ax(3+ &) (3.61)

(6+ 4, +€n2)|,un| ’
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—AX

(KasxIn = ) (3.62)
" (6+4e, +‘9n2) |;un|
AX(3+&p)
a,nd (kAEA) = n . (363)
" (6+4e,+ €n2)|ﬂn|
The LD x-moment angular flux K vectors are:
-3¢,
k =070 3.64
(Kxi n 614z, +2.2 (3.64)
3AXx
(Kxsa)n = ; (3.65)
" (6+4¢, +€n2)|,un|
AX(e,+1)
" (6+4e, +‘9n2) |;un|
3AX
a,nd (kxa) = . (367)
" (6+4e,+ gn2)|ﬂn|

Angular Current Formulation
The translation to the current representation is done in the same way as
for the zeroth spatial moment method shown in equation (3.25) using the relation

in= |ﬂn|l//n- The LD k vectors for the outgoing currents are:

6-2¢,

(kO| )n = 6+4€n+8n2 ) (368)
_ AX(6+¢,)
(kosa)n = 6+4¢, +gn2 ’ (3.69)



Axe,

(kosc)n = 6+4e,+6,°
AX(6+¢€,)

and =— N7 .
(koea)n 6+ 4€n+€n2

The LD k vectors for the average flux are:

6+¢
(kAI) = : ;
n (6+4en +£,7) | o
AX(3+&p)
(kASA) = 1 s
" (6+4e,+6,7) 1|
—AX
(kAsx) = s
" (6+4g,+6,7) ||
and (Kpga)r = AX(S”g) .
(6+4¢,+ &, )|;Un|

The LD x-moment angular flux K vectors are:

(ky )n = o 2 ’
(6+4en +&,°)|
(kxsadn = 6+ 4gjf)::n2)|ﬂn| 7
(KxsxIn = (6_,_3::?;?) || 7
and (Kxeadn = 6+ 4€r]3j‘—);n2)|ﬂn| .
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(3.72)

(3.73)

(3.74)

(3.75)

(3.76)

(3.77)

(3.78)

(3.79)



B. Global Flow Balance Problem

The global flow balance problem determines the proper level of flow values

across the problem. Setting up the global flow balance problem with the updated

cell valued information uses an array similar to the flux weights used by Wager

(16: 2-73). However, a brief discussion of angular quadrature weights is needed

first. In the transport equations, the angular quadrature weights are used to

calculate the scalar flux and partial currents. In slab geometry the scalar flux,

@, is:

17t 1
=3 _Ilv/(ﬂ)dﬂ = E%Wnl//(ﬂn) -

The partial currents, Ji, in slab geometry are:

1
J+:jﬂw(ﬂ)dﬂz z W:l—;unl//(:un)a
0

N>, >0

0
and 37 = [y =~ 3w |y ()
-1 N>, <0

where the quadrature weights are renormalized for each direction:

!
:SEI+

2 W
n'ssignn'=t

If there are no ordinates where u, =0, (which is standard practice) and:

> w, =1,

n>,>0
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(3.81)

(3.82)

(3.83)

(3.84)



and D> w, =1, (3.85)

n>,<0

then > w, =2, (3.86)
vn

and the quadrature rules in equations (3.80) through (3.82) are exact for

w(u)=constant (-1< ¢ <1). It is sufficient for an =2,n0 4,=0 and a
vn

symmetric angular quadrature set (which is the case for the angular quadratures
tested in this research). For these quadrature sets, the renormalized weights in
equation (3.83) are equal, Wh = W, and the Wh notation is dropped for
convenience.

The edge distribution, ¢ , is a weight indicating the relative importance of
the current along an ordinate to the partial current. The edge distribution, ¢, is

defined for the angular flux and current as follows:

éay/ — l//n , (3 . 87)
n
Wn’li”n’
n>Sgn( gy )=Son(uy,)

and o= Jo —, (3.88)
W, j,

n>Sgn(uy)=Son(uy,)

where W, is the angular quadrature weight. The use of the edge distributions to
set up the global problem begins by referring to the general form for the cell

system of equations in the current formulation in equation (3.8):

-out —=in —
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The denominator of equation (3.88) is a partial current as defined in equations
(3.81) and (3.82). Arranging the edge distributions and angular currents as
vectors for the edge of the cell in equation (3.88), the inward angular current for
a given direction is:

—-in  —in

I =¢ Jin, (3.90)

where J;,is the inward partial current. Substituting this back into equation

(3.89) yields:

—out

—in _
o =mg ¢ Jin+meeE . (3.91)

The outward partial current for a given outward direction is:

Jout = Z anr?Ut . (3-92)

neout

Equation (3.91) is used to calculate the outward partial current:

‘]out = Z Wn(mOI Zin)n‘Jin + Z Wn(mOEE)n- (3-93)

neout neout

The quantities:

Mo = . Wn(mOI Zin) ; (3.94)

neout n

and Je= Y Wi(MogaE) (3.95)

n
neout

are collapsed coefficients representing the contribution to the outward partial

current in a given direction from the inward partial current and emissions
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respectively. This process of using the appropriate quadrature weights to
integrate over a hemisphere and reduce the cell matrices to a single coefficient is
what I call collapsing. For equation (3.95) the quantity JF represents the
outward partial current of particles emitted in the cell that have scattered any
number of times (0 through infinity) before leaving the cell for the first time. It is
a known value for the problem. For a cell in slab geometry, the partial current

equations with the collapsed coefficients are:
J L M LL M LR J L J L
oMo Mol dn | %) (5.96)
‘]Out IleI MOI ‘Jln 'JE

where the superscripts R and L indicate the right or left sides of the cell. The
double superscripts indicate the contribution to the outward partial current from
the respective inward partial current, RL is the contribution to the right outward
partial current from the left inward partial current. A similar relation can be
defined across the spatial mesh. Recognizing that the inflow variables are
outflows of adjacent cells, a system of equations, ég(: b can be set up with the
emissions shown in equation (3.95) as the forcing term and the global flow
variables as the unknowns. Wager showed how the global flow variables
permutation resulted in a penta-diagonal matrix that could be solved directly
(14: 2-47) using the angular flux formulation. The current formulation is exactly

analogous. To explore the efficacy of sparse matrix methods, a Compaq
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Extended Math Library (CXML) direct sparse matrix solver (cxml dss.f90) (6:
11-1) was used to solve this system of equations in slab geometry.
To distribute the partial current (or global flow variable) solution back to

the detailed cell edge angular currents, the distributions are used as follows:

=L =

e = JsonG (3.97)
a’nd _J:r?aNzJSFf)I'nZR' (398)

A similar technique is used in the angular flux formulation. This completes the
equations needed to complete an iteration as described in chapter two.
C. Test Results In Slab Geometry

1. Preliminaries: Measuring Convergence Tolerance

The symmetric relative difference (SRD) was developed by Minor and
Mathews (13: 182) to determine when the difference in the desired quantities

between iterations met the chosen convergence tolerance. The relation for the

SRD is:
0 x=y=0,
SO N=12x-y g (3.99)
{+[y]

This function returns a value between zero, for values that are exactly the same,

and two as the limit for values that are very different, are of opposite signs, or



only one of which is 0. Most often this function is applied to two arrays to find

the maximum SRD between corresponding array values:
SRDyrax (%, Y) = Max(SRD(, 1)) (3.100)

To check for convergence tolerance, the SRD function is applied to corresponding
values in two arrays (for two successive iterations) and the maximum value is
compared to the convergence criterion.

2. Test Problems

The test problems were a series of single material problems with a
reflective boundary on the left and a vacuum boundary on the right. In the
series of problems, the material was totally scattering with total cross section
0 =1.0 and an emission source S=1.0 uniformly distributed throughout the
material. The cell size was fixed at AX=1.0 and the number of cells varied from
10 to 300 for the problems. The tests were done using a DBy angular quadrature
(16 ordinates). The convergence tolerance was 10~ for the maximum symmetric
relative difference (SRD) in the cell average scalar flux between two iterations.
This tested the performance of the code for various combinations of methods for
a series of increasingly larger problems.

3. Edge Flow Variable Formulation

The first series of tests examined how DI performed with the angular flux

formulation as opposed to the angular current formulation as discussed in chapter
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two. The measure of performance is the number of iterations needed to reach

convergence. The results of these tests are shown in table 3.1.

Table 3.1. Iterations to convergence for current vs. angular flux.

Spatial Quadrature SC SC LD LD

Formulation Current Flux Current Flux

Number of cells

10 3 6 3 6
20 3 6 3 7
100 3 6 3 7
150 3 6 3 7
200 3 6 3 7
250 3 6 3 7
300 3 6 3 7

For these tests, discrete ordinates sweeping was used. Table 3.1 shows
that the performance of the current formulation was substantially better than
angular flux formulation. The number of iterations needed to reach the
convergence criterion in the current representation is at most half the number
needed for the angular flux representation. This validates the choice of using the
current formulation for additional implementation in XY — geometry.

4. Coupling the Local Balances

The next tests examined the efficiency of different methods for coupling

the local balances presented in chapter two. The test conditions were the same
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and the tests were done using the current formulation. The measure of
performance is the total time required to converge the test problem. This was
measured using the (CPU time) intrinsic FORTRAN function and included only
the computations, not file I/O. The results for the step characteristic method are

presented in figure 3.1.
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o
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0.00 T T T T T
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Number of Cells

Figure 3.1. The problem solution time versus number of cells for
different cell flow coupling methods with step characteristic.

Figure 3.1 shows that the discrete ordinates sweep is the most efficient
method for coupling the local balance among cells for this single processor
implementation. The Red/Black method performance was less efficient than the
discrete ordinates sweep but still an improvement over the local balance sweeping

method.
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The results of the same test for linear discontinuous with the current

representation are shown in figure 3.2.
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Figure 3.2. The problem solution time versus number of cells for different
cell flow coupling methods with linear discontinuous.
The results for linear discontinuous method confirm the results shown by the step
characteristic method. A similar timing test was run for a two material problem,

with an absorbing (C:ﬁ =0.3) region and a scattering (c=0.3) region. The

Oy
total times were again consistent with the previous series of one material
problems: the discrete ordinates sweep method had the fastest time and local
balance sweeping the slowest. The overall efficiency of the discrete ordinates
sweep method makes it a good choice for implementation in XY — geometry

because it will be demonstrated on a serial machine. For problems large enough
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to need parallel implementation, the Red/Black method may be the method of

choice.

59



IV. Implementation in XY — Geometry

This chapter presents the derivations for the local balance problems for both
zeroth and first spatial moments problems using the current representation. The
global balance problem, subsequently called the partial current problem, is also
presented.

A. Zeroth Spatial Moment Methods Distribution Iteration Derivation

The zeroth spatial moment methods are an extension of the method
presented in slab geometry in chapter three. The general representation used in
chapter three is changed to explicitly account for the contributions for each
cardinal direction, even though in some cases the contribution is zero.

The desired form is to assemble the equations for zeroth spatial moment
methods in a relation that gives the cell face outgoing currents in terms of the
cell face inward currents and cell emissions. A general method for all zeroth
spatial moment methods, such as step characteristic (SC) or weighted diamond
difference (WDD), is presented here.

The form of the system of equations is:

—out —=in — _
] =Ko ] +KpsS+KeE, (4.1)
~ —=in — —
and S=Xsv. (4.3)
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In equation (4.3), the scattering matrix 2g has the same representation as

in equation (3.3). The vectors are defined:

T
—out —-out -—out -—out -out
u :[JLU JRu JTU JBu:| ’ (4.4)
. ) ) . T
=In =In =In =In =In
j =[JIL ir it JIB} , (4.5)
5=5" (4.6)
and E=E. (4.7)

In equations (4.4) and (4.5) the directions for the sub-vectors are given by the

capital subscript, for example L for left. The matrices are defined:

[ LL LR LT LB ]
Ko Ko Ka Ko
RL RR RT RB
Ko Ko Ko Ko
TL TR TT B
Ko Ko Ko Ko

BL o BR BT BB
Ko Ko Ko Kor ]

Kos= R E

R
Kog =|  OFA (4.10)
OE — T ’ .

KAI:[KE&I KR Kha KEI]? (4.11)

KWS:KASAH (412)

61



and Kye =K aga- (4.13)
In equations (4.8) through (4.11) the sub-matrices are diagonal matrices similar to
those used in slab geometry. In equation (4.8) the sub-matrices are matrices that
give outgoing currents from inward currents, hence the subscript OI, and the two
directions in the superscript correspond to the outward direction from the inward
direction. For example, Kglf is the sub-matrix that gives the right outward
currents from the left inward currents. In equations (4.9) through (4.10), the
superscript directions correspond to the outgoing direction and the subscripts
have the same meaning as in slab geometry. For example, K-(BSA is the matrix
giving the current out the top from the average scatter, K(I‘)EA is the matrix
giving the current out the left from the average emissions, and K i, is the matrix
giving the average flux from the right inward current.
Similar to the slab geometry case, scatter is eliminated from equations (4.1) and
(4.2):

7=(01-K,sZs) 'K, " +K,El (4.14)
Equation (4.14) can now be used to eliminate scatter from equation (3.50). The

resulting equation is:

TOUt = (KOI +KOSZ:S(l _Ky/SZS)ile/I)Tm +

_ (4.15)
(K o T Koszs(I - Kz//S Zs)_l Ky/E)E'

This equation can be used to calculate the cell outgoing currents from the cell

inward currents and cell emissions. Looking at the terms in each parentheses,

62



the first matrix is the uncollided contribution to the respective outgoing current
from the respective incoming current as modeled by the spatial quadrature
method. The product or second term represents the respective incoming current
that contributes to the respective outgoing current after all scattering takes
place, again as modeled by the spatial quadrature method.

In addition, the final matrix represented by the sum in each parentheses,
only needs to be calculated once for each combination of cell size and material.

The final matrices for equation (4.15) can be expressed as a matrix equation:

—out —-in —A
] =mg ] +mgeE (4.16)

where My, is a matrix that gives outward currents from inward currents and Mg
is a matrix that gives outward currents from emissions. The current vectors and

emission vector with the respective sub-matrices for each direction is:

5] [ms mg my mP]0] [mEr

o [_{ms mi my mip | e | mb € .
| [ms mg g me || e |
i&) (mg mg mg me)|ge] [meEr

Here, the sub-matrices represent the outward contribution from the inward
current after any number of scatters. The emissions vector represents the forcing
term for this system of equations. Later, the relation between the inward and
outward currents will be used to set up the partial current problem across the
spatial mesh. The next section will show how to calculate the values for the

diagonal sub-matrices in equations (4.8) through (4.13).
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1. Step Characteristic Transport Coefficients

The first spatial method implemented in XY - geometry was step
characteristic (SC). This method was chosen for its relative simplicity, and as a
way to validate the extension to XY - geometry before attempting other more
complicated spatial methods. Miller (10: 21) presents the cell equations in the
angular flux representation using the exponential moment functions. The

derivation for the current equations is in appendix B.

Top

Ay X = aAX

T sA ,
Left A Right

U4

0

0 X —> AX
Bottom

Figure 4.1. Rectangular cell for implementation of the zeroth spatial

moment methods.

For the cell in figure 4.1 showing ordinate n out the top face, g, and 7, are the
direction cosines along the x and y axis respectively from the angular quadrature

set, the optical thickness along an ordinate in the y and x direction is:

_oly (4.18)

€y, 7



o AX

Ey =—, 4.19
=T (4.19)

and o, = s =M. (4.20)
& |m|Ax

These equations are used for the spatial quadratures in XY - geometry. For a

rectangular cell as shown in figure 4.1, the equations for the outgoing currents in

: HIR( s oright : : + bott  left
ordinate n, j,® and j ", in terms of the incoming currents j " and j

scattering within the cell, S,,, and emissions, E,,, for ordinate n with

M > My >0 and a, <1 are:

jnTOp :manlvlo(gy )JnLEft +(1_an)e_€)’n JnBOtt0m+Ay[(1_an)MO(8y )
|;un| n i (421)

+0,My (£, ISP+ AY[(1- 2, )Mo (e, ) + My (e, )]ER,

. A A
janght:MMo(gyn)jnBottom_i_le(gyn)SjA_,_|'un| yMl(gyn)Erf\’ (4.22)
|77n| |77n| |77n|
and
A 1 et 1 . Bottom
¥n :m“n'\"o(fyn)ln +m[(1—an)|v|0(gyn)+anlvll(eyn)]Jn t
K n n A (4.23)
ﬁ[(l—an)Ml(gyn)+anMZ(gyn)]SnA+|—y[(1—an)M1(€yn)+05nM2(8yn)]EnA’
n n

where M(g, ), My(g, ) and M,(e, ) are the exponential moment functions
defined in equation (3.9). Because the ratio of the direction cosines is frequently
used, let:

T _ bl (4.24)

n_|ﬂn|.
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The transport coefficients are the values used to build the diagonal
coefficient matrices described previously. Equations (4.21), (4.22) and (4.23) can

be written as:

o, ™ = (K5 Jin, ™+ (K )i, + (G i, "™ +

_ (4.25)
(k! i in P + (Ksa)n S + (Koga)n En
Jout, "™ = (kS )i Jin, O™ + (G din, <+ (RS ) in, "™ + (126)
(S )i Jin, P + (kSsa)n S + (KSea)n En™,
and
nA = (kEI )n jin bottom+ (kkl )n jin +(kAI )n Jln r|ght
(4.27)

(kay D Jin, ™ + (Kaga)n Sn” + (Kaga)n En™
This form is a variation of equation (3.50) giving the outgoing currents
from the inward currents, scattering and emissions for an ordinate. As was done
in slab geometry, the k vectors, which are used to form the diagonal matrices
K =D(K), can also be found by inspection of equations (4.21), (4.22) and (4.23).

Thus the k vectors for the top outward angular currents are:

(ko) = (A-a)e (4.28)
(KON )n = TntaMo(£y, ) , (4.29)
(kd)n = (ko1 )n =0, (4.30)
and (Kosa)n = (Kdea)n = AYL(L- )Mo (ey, ) + Mgy, )] (4.31)

The k vectors for the right outward angular currents are:
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MO(gyn)

(KSP)n =" (4.32)
(KS)n = (k5 )n = (k5 )n =0, (4.33)
and (S = (kedn =L ey ) (1.3)

The k vectors for the average angular flux are:

1

(Kni)n = Py [(A-o)Mo(e,, )+ Mgy )], (4.35)

(K5 n =ﬁanwlo(eyn) , (4.36)

(KK )n = (KA )n =0, (4.37)

and (Knsa)n = (Knga)n = |A—y[(1— 2)My(ey )+ M (2, ). (4.38)

n|

Each ordinate is evaluated to determine the outgoing face and the
respective transport coefficient. Not shown in figure 4.1 are ordinates exiting the
right, bottom, or left cell edges instead of the top edge; however, the same basic
relations are used. For these cases, an x-y reversal, a right-left exchange or a
top-bottom exchange are used where appropriate. In all, there are 30 transport
coefficients to find for each ordinate of which only 11 are nonzero.

These transport coefficients are used to build the diagonal matrices listed
in equations (4.8) through (4.13). Once the diagonal matrices are calculated, the

final matrices described in equations (4.15) and (4.17) can be constructed. For
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the DI method, these matrices will be calculated one time for each material
(assuming the spatial mesh is uniform).

2. Weighted Diamond Difference Transport Coefficients

Another zeroth spatial moment method that was implemented was
weighted diamond difference (WDD). This positive method was chosen to
demonstrate the ease of adding other zeroth spatial moment methods and to
compare with published results. Azmy (3: 215-216) presents the angular flux
formulation of the WDD method, which is changed to the current formulation in

appendix B. For the same rectangular cell shown in figure 4.1, the equations for

bottom

P right

the outgoing currents j '® and j "™, in terms of the incoming currents j_
and | '™ scattering within the cell S* and emissions E”, for ordinate n with
My > My >0 and a,, <1 are presented in Appendix B. To avoid bad numerical

conditioning, the WDD equations are cast in terms of

S =1-p(ey ) (4.39)
and 5B =prley, ), (4.40)
M, (&
where pley )= Maey,). (4.41)
" MO(gYn)

Here, 5%“ and 53’13} are the adaptive weights for the spatial method and MO(Sy)
and M,(¢,) are the exponential moment functions defined in equation (3.9).

Also 5|);]” and & are defined exactly analogously. In addition, a ratio of weights

and optical thicknesses is defined:
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5(;(St8xn Toke Yi
o= T e (4.42)
OolkEx, + OottEy + OolitEx FolkEy,,

Determining the values of the k vectors used to form the diagonal matrices
K =D(k) is done the same way that was used for the SC quadrature. The k

vectors for the top outward angular currents are:

é‘Yn
G ML (4.3
(58)/Gt)2€yn 5
(=t (4.44)
S0t OdEx, |t
(kg)n = (K5 )n =0. (4.45)
U
and (kdsadn = (Kdea) =M- (4.46)
Sous
The k vectors for the right outward angular currents are:
hy ||
k), == — (4.47)
| 5OXTJt 5Oy|r.11tgyn |77|
S
(), = ot (4.49)
T (Ga)e, O
(k5 =5, =0, (4.49)
H,
and (K5 = k), = el (4.50)
Outo-
The k vectors for the average angular flux are:
(B )= (451)

Sont |’7n|‘9yn ’
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Kby = M 1

(Kai n 5())/Bt|:un|gxn7 (4.52)

(KR n=(Ka)n =0, (4.53)
and (ase)n = (aga)y =2 (4.54)

Unlike characteristic methods, the WDD equations need not treat
Az /|u| < Ay /|n| differently than Az /|u|> Ay /|n|. For convenience in sharing
code, I use the equations for the case in figure 4.1 to fill the WDD matrices in the
same way as | described above for SC. Again, for the DI method, these WDD
matrices (or any other linear, zeroth spatial methods) use the same solver
algorithm as SC.
B. Derivation of First Spatial Moment Methods Distribution Iteration

Similar to the zeroth spatial moments derivation, it is desirable to
assemble the discrete ordinates system of equations in a form that gives the cell
outgoing currents in terms of the cell inward currents and cell emissions.
However, unlike the zeroth spatial moment methods, there is the addition of the
first spatial moment of the current along edges @ and first spatial moment of the
scattering sources in each dimension to consider. The equations could again be

cast into the general form:

i =Ko ] +K osS+K oeE (4.55)
W:Kl/,,im+K,/,S§+KV,EE, (4.56)
and S=Xsv, (4.57)
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where the angular current vectors include the first spatial moment of the current:

. AT
j|n:|:j|n eln},

and ]out _ []out éout :lT .

(4.58)

(4.59)

This approach was not used; instead, the spatial moments of the angular currents

are explicit in the system of equations. This simplifies the indexing for the code

and allows use of the same routine for the partial current problem as for the

zeroth spatial moment quadratures. This routine is presented later in this

chapter. The cell system of equations for the first spatial moment spatial

quadratures in general can be written:

_J:OUt = KO| _jln + Kogém + KOS§+ KOEE’

EOUt = K P41 _J:In + K gggm + K QS§+ K QEE'
— ~=in —in - —
and S= 21/7.
The vectors for equations (2.2) through (2.4) are defined as:

out [-out -out -out -out]'
J :[JL JL JL JL } ,

-in —-in =in  =in  =in T
J :[JL L L J|_:| ,
—out [»out —out éout éout T— ’

0 =\60_. 6L L L

o=t ar ar ot
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(4.60)
(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)



and E=

The matrices for equations (2.2) through (2.4) follow the same

methodology as slab geometry. The matrices for equation (2.2) are defined:

K& K& K
e
Ko Ko K
K& Ko K
Kog Koy K

Koy = Ki‘@ KTSE K
Kop Kog K

[Kos Kos K
Kbsa Ko
Kos= ETSSA ETSSX
osa Kosx

| Kosa KOs

Koea K 6ex

and Koe = KE)EA K§EX
Koea Koex

| Koea KBex

The notation is similar to the zeroth spatial moment method notation. For

—X =Y
v v
=X =
—X =Y
E E

LT LB
K Ol
RT RB
K Ol

R
K OEY

;
Koey

B
Koey |

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

example, the diagonal sub-matrix K g represents a matrix that gives bottom
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outward currents from left inward currents. The diagonal sub-matrix Kgg, gives

the left outward current from the x-moment of scatter in the cell §x. The

diagonal sub-matrix K¢, gives the right outward current vector from the

average emissions in the cell EA. The higher moments for the emissions vector,
as for the first moments of emissions in slab geometry, represent the higher
moments of scatter from other energy groups in a general representation. For the
mono-energetic problems used in this research, these vectors and matrices are not

used. The matrices for equation (4.61) are defined:

ULl LR LT LB
Kor Ko Kg Ky
RL ,RR L RT _RB
K Kor Ko Ko Ky (4.75)
o1 = : :
Koi Kot Koo Kgp
BL BR BT . BB
Kar Ko Ko Ko
[ LL LR LT LB ]
Kee Koo Koo Koo
R ,RR L RT RB
K g = Kee Koo Koo Koo (4.76)
Kee Koo Koo Koo
BL ,BR BT BB
Ko Koo Koo Ko |
To L L LT
Kosa Kosx Kasy
Kooa Ko Kooy

T T T
Kosn Kosx Kosy

B B
_KHSA K&SX KHW

and

73



[ L
K gea
R
Ko = K oea

bE=| +
K gea

B
| Kgea

L
K gex
R
K oEx
i
K gEx

B
K gex

-

K gey
R

K oey

:
K gey

B
Kgey |

(4.78)

Again, the notation is similar to the previous notation used for equation (2.2).

Here, the outgoing current symbol O is replaced with the outgoing edge current

moment, @ so the diagonal sub-matrix K} represents a matrix that gives

bottom outward edge current moment from left inward currents. The matricesfor

equation (2.3) are defined:

L R T B
Ka Ka Ka Kg
L R T B
Ky =|Kx Kx Kx Kx|,
L R T B
Ky Ky Ky Ky
Kby KR Kl KB
L R T B
Kyo=|Kxo Kxo Kxo Kxol
KVe Ko Kyp Kip
Kasa Kasx Kasy
Kys=|Kxsa Kxsx Kxsy |
Kysa Kysx  Kysy
Kaea Kaex  Kagy
Kl//E: Kxea Kxex Kxey |s
Kvea Kvex Kyey
and
>, 0 0
s={0 %, 0
0 0 X
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(4.80)

(4.81)

(4.82)
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Similarly, the diagonal sub-matrix K}, gives the contribution the average

—A
angular flux within a cell ¥ from the top inward current vector, the diagonal

sub-matrix K%, gives the contribution the x-moment angular flux within a cell
—X
v from the right inward edge current moment vector, the diagonal sub-matrix

K s gives the contribution the x-moment angular flux within a cell &X from the
y-moment of scatter vector, and the sub-matrix Xg is the scattering matrix
defined in equation (3.5).

Equation (4.63) is substituted into equation (4.62) to eliminate scatter.

This gives:

— _ n _ —in _ —
w=(01-K,sX) Ky ] +(1-K,sX) K0 +(1-K,gX) K, gE (4.84)
Equation (4.84) is then substituted into equations (4.60) and (4.61) to again

eliminate scatter. The final equations are:

—out _ ~in _ —in
=Ko +KosZ(1-K s X) K, )T +(Kog+KosZ( -K s T) 'K )6 +

" (4.85)
(Kog +KosZ(1 =K, X) 'K ,g)E,

and

—out -1 -in -1 —in

0 =(Kg +KpsZ(I =K s2) Ky )i +(Kgg+Kps Z(1 —K s 2) 7K\ 9)0 +(4.86)
(K o T K S 2(I -K wS Z)_lK 1//E)E-

As was done for slab geometry, the code implementation used an equivalent

elimination of the scattering sources, in which a block forward elimination and

back substitution produces the inverse matrix in equations (4.84) through (4.86),

which is shown in appendix C.
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As with the zeroth spatial moment methods, the final matrix represented
by the sum in each parentheses for equations (4.85) and (4.86), only need to the
calculated once per material and cell size. The matrices for these equations can

be expressed as:

= =i —i —=A
JOUt :mO| j|n+m099|n+mOEE 5 (487)

and 6™ =my | +mpyd " +m,eE (4.88)
Here mg, is a matrix that gives cell outward currents from inward currents,
Mogis a matrix that gives cell outward currents from emissions, My, is a matrix
that gives cell outward current edge moments from inward currents, and Mgy is a
matrix that gives cell outward current edge moments from inward current edge

moments. The current vectors, edge moment vectors and emission vectors with

the respective sub-matrices for each direction is:

5] [ma mg my mg T
B |_|mE mE my mE TR
Be| |m& mEomg ome |
i8] [ma m& mE mE |7
(=L - (4.89)
mg, me my, mi] O mbE*
my mE& mg m3 | 6n| | mi,E"
mg, my mg, me | gn | migE?
mg mE mg mE ) s | [mEE*
n

A similar system can be constructed for the outward current edge moments for a

cell:
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—-L

Pout Tmy mif mi mi g

Bout B mS,L mS,R nglT m9R|B JT: "

foe| | M my my o mp g

s | Lmi miF mE m ]|

- (4.90)
my; mis my m | O | [ E*
m mEy mE mE |G| | miE*
my my my o mp | gn | Mg E |
my mey mEy miy ) e | [ micE”
n

Again, the sub-matrices represent the outward contribution for the respective
vectors from the inward vector after completing any number of scatters. The
emissions vector represents the forcing term for these systems of equations.
These equations will be used to set up the partial current problem across the
spatial mesh. The next section will show how to calculate the values for the
diagonal sub-matrices in equations (4.71) through (4.82).

1. Linear Characteristic Transport Coefficients

The first method implemented was linear characteristic (LC) which was
initially developed by Alcouffe et al. in 1979 (11: 24). This first spatial moment
method was chosen as an extension of SC and to show the implementation of
first order spatial methods. Miller (12: 23) also provided the LC cell equations in
the angular flux representation using the exponential moment functions. The
derivation for the cell current equations are presented in Appendix D. The

process of determining the equations for the k vectors used to form the diagonal

77



matrices K =D(K) is analogous to the procedure used for SC. The k vectors for

the top outward angular currents are:

(k&P )n = (- )e ™,

(K& )n = 7n0Mo(ey, )

(k3g)n = —0n(L-ay)e
(k3g)n = Zn@a[2My(ey, ) ~Mo(ey )],
(kdsadn = (Koeadn = 2nAY[—(1— )Mo &y, )+ (1- 20, My (€, ) + Mo (ey )],
(kds )n = @nAY[—(1— at )Mo (ey, ) + (A 205,)My (£, ) + M (g )]

and (kdsy)n = AY[—(1- )Mo (&), )+ (2= 3, )My (&, ) + @M (e, )]

The k vectors for the right outward angular currents are:

(KEP)n =—Mo(ey,) -
T

n

(KEB), = [(1— 20, Mo ey, ) + 20, My (e, )],

(k(F)\)IL)n :(koRlé n=0,

(sn =~ IMafey, )~ Maey, 1.

n

(5000 =210 20 ey, ) + 20,M (e, ).

n

and (kORSA)n = (kgEA)n = %Ml(gyn) :

(4.91)

(4.92)

(4.93)

(4.94)
(4.95)
(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

The k vectors for the top outward first moment of the angular currents are:

(k;-IB)n = 3Oln (- an)e_gyn ;
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(ko) = 30,020, )M oy, ) —20,My (g )],

(kgg )n = (130, + 201,2)e |

(4.105)

(4.106)

(kg )n = 30, (L— 20, ) M (&, ) + (6 ~2)My (e, ) — 4o Mo, )], (4.107)

(k;—SA)n = (k;—EA)n =3, Ay (1- an)MO(gyn) +(2cx, _1)M1(‘9yn) -oM 2(“3yn )]s

(Kgsx )n = AY[(1— 32, + 20, )M (&, )+ (3, — 60,°) My (£, ) +

60, M (e, ) — 20, Ms(ey )],

(Kasy )n = 30AY[~(1— o) Mg (e, ) + (3= e, )My (g, ) -
(2—-50,)M5(ey ) —20,M3(ey )]

and

(4.108)

(4.109)

(4.110)

The k vectors for the right outward first moment of the angular currents are:

(KE®)n = [Mo(e,, ) - 2My(ey, )],
Tn

() =— [~ 20) Moy, )+ (60~ DMy, )~ 4 M (e, )]

n
(ki) = (k%) =0,

()n = (ki) =2 IMi(ey, )~ Moy, )]

(KB n =21 20, My(ey, )~ (1 Aol ) - 20,Mofe, )],

n

A
and (k) = T—y[—3M 16, )+6M (e, )~ 2Mg(e, )]

n
The k vectors for the average angular fluxes are:

1

N

(ki )n = (A=) Mo(ey, )+ aMy(ey )],
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(4.112)

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)



(K ) = -2 My(ey, ),
|t
(Kao)n =|f7‘—“|[—(1— aIMo(ey, )+ (1= 20, My(e, )+ M (e )]
(Kko)n =ﬁ[Mz(eyn)— My(e, )l

(Kaga) = (Knga)n = @—ﬂ[a— a)My(ey )+ oM (e, )

onAY

(Kasx)n = [~(1- )My (g, ) +(1-20,)M(gy, ) + 0 M3(ey )],

770

and  (Kasy)n =|§—y|[—<1— )My, )+ (1- 20, M (e, )+ auMs(e, )]

The k vectors for the x-moment of the angular fluxes are:

(K5 )n = ?;_T[(l_ on)Mo(ey, )+ (200, —)My (e ) - Mo (€y )],

3

|t

1
(kxo)n = W[(l_ 3at, + 20, > )M (&, )+ (301, — 605, )My (¢, ) +
n

(ki )n =212, ~ DMy (e, ) — 20, (ey )],

6oy "M(ey, ) ~ 20, Ma(ey )],

3t

[t

[@- an)MO(gyn) +(2a, —1)|\/|1(8yn) _anMZ(gyn )],

(kko)n = T [(1— 206, My (e, ) — (det, ~DM (e, ) — 20, Ms(e, )],

3o,

(kxi )n = |
(kxsa)n = (Kxga)n = %[(1_ an)Ml(gyn) + (204, -)M z(gyn) -o,M 3(8yn 1,
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(4.119)

(4.120)

(4.121)

(4.122)

(4.123)

(4.124)

(4.125)

(4.126)

(4.127)

(4.128)

(4.129)



(Kns)n =L (- 30z, + 20,9 )My (£, ) + (Bet — 60,32, )+
u " " (4.130)
60, °Ma(ey, ) — 20, ° My ey, )],
3o, Ay
Kysy )y = = [-(1- )M 2-30,)M -
- (kxsy) my [~(A- a,)My (e, ) +(2-30,)M (e, ) .
(1-3a,)Ma(ey )~ My(e, ).

The k vectors for the y-moment of the angular fluxes are:

(ke )i =ﬁ[(l— o)Mo(ey )+ By —2)My(ey ) - 20, Mp(ey )], (4.132)
(K4), =|3§—nfi[M1(eyn)— Ma(e, ). (4.133)
(KE))n = 220 (1- o )Mo (e, )+ (3—da) My (e, ) +

Y N R (4.134)

(5, - 2M (e, )~ 20,Ms(ey )],
(K¥g)n = |Z—2|[—3Mo(eyn) +6My (e, )—2M (e, )], (4.135)
(kYSA)n = (kYEA)n :%[(1_ an)Ml(gyn)"'(zan _1)M2(gyn)_anM3(€yn)] ) (4'136)

3o, Ay

(kysxIn = |77n| [_(1_an)M1(€yn)+(2_30{n)M2(8yn)_

(L-3o)M3(e, )~ oM ae,, ),

(4.137)

A
(Kesy)n = ﬁ[—s(l— an)Ma(ey, )+ (6-9an)Ma(ey, ) - (4.138)

(2-8a,)Mg(ey, ) - 20 M g e, ).

and

As with the zeroth spatial moment methods, each ordinate is evaluated to
determine the outgoing face and the respective transport coefficient. Ordinates

exiting the right, bottom or left cell edges instead of the top edge use the same
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basic equations with an x-y reversal, a right-left exchange or a top-bottom
exchange where appropriate.

2. Linear Discontinuous Transport Coefficients

The next spatial method implemented was linear discontinuous (LD).
This first spatial moment method was chosen to show the implementation of
other higher order spatial methods with the same algorithm as LC. Boergers et
al (4: 289-290) provided the angular flux representation for the LD equations. A
derivation for the LD cell current equations for ordinate n with 7,, >, >0 and
o, <1, is presented in Appendix D.

The following definitions are used for the LD quadrature:

2
a, =l+a,+e, + 3 + 3o , (4.139)
" A4+e,  1+30,tey
by=4+¢, (4.140)
and Ch =143, +&y . (4.141)

Again, the process of determining the equations for the k vectors used to form
the diagonal matrices K = D(R) is analogous to the procedure used for SC. The

k vectors for the top outward angular currents are:

_ 2
(1), = &+ % an:’:gb“ ), (4.142)
LS G bnal(b?;:T;l)Tnlnnl (4.143)
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Y

) __%(dht3)
(koa)n - anbncn
_ (=3+ (@, —Dby) |

(kSg)n = :
o a,bn? | o

Ty _aTl y _Ay(0,+3
(kOSA)n (kOEA)n anbn ’

T Z_Ayan(bn+3)
(kOSX)n anbncn

AY(-3+ (3, ~D)by)
ab,”

The k vectors for the right outward angular currents are:

Y

and (Kosy)n=

_ (3+by)(c, + 3an)|lun|

RB
(kOI )n anbhcn |77n|

(67 + 9, + 6, (3— 3, + 3a1,))

(K& )n >
anCn

Ch— an(cn + San)) |/un|

8 |77n|
_(cq+3ay)
anbncy
Ay(Cn +30%) |t

8nCn 77|

(kORHB n= B

(kglé)n =

Y

(k§sa)n = (K5gadn =

A c,—o,(c,+3,
(kgsx)n — y(an n an(zn n))|ﬂn| ,
8nCn” |77

(G +30) ||

nd R n=
: (Fosr) 8o 17|

)

(4.144)

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

(4.155)

The k vectors for the top outward first moment of the angular currents are:
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(Vg =M, (4.156)

2nnCy
(k;'ll_ = 3ot (=23 Cy +(2:'7""(:n)0{n)|77n| , (4.157)
BnCn”
2
(), = Patn = 3) (4.158)
anC
30t ||
(kgg)n = ———0, (4.159)
O Gyt
Ay3er
(Kjsa)n = (Kjea)n = gn%“, (4.160)
A — 3,2
(Kgs )n = V(@ 5 ), (4.161)
anC
Ay3e,
d Khay ) =— n. 4.162
an (Kosyn abc, ( )

The k vectors for the right outward first moment of the angular currents are:

_3(=3+ (3 —Dly) |4y

(ke )n = ey : (4.163)
(ka1 )n =%, (4.164)

(K66 )n :_%@LI’ (4.165)
(K6 )n =%, (4.166)
(kgsa)n = (Kgka)n = fbyjﬁ‘]j , (4.167)
(koS n =—;Agna—qm , (4.168)



AY(@nbh = 3)|tn|
anbn> 77|

and ( HSY)n

The k vectors for the average angular fluxes are:

(KA )n = B+bn)
" aby )
Kk ) = _op(3+¢cy)
(Al) ann|,un|
(Kso) ancn|77n|
1
Kig)n =————
e == bl
Ay

k k e A
( ASA)n ( AEA)n an|77n|

Aye,
(k ) =- . )
AT Al
Ay
and (Kney ) = —
AT ey ||

The k vectors for the x-moment of the angular fluxes are:

33+h)e,
anbnCa ||

L _ 3(ln (_ancn + (3+ Cn)an)
(kXI )n - 2
anCy” |ttn|

(KR )n =

(KB,), = M
anCn |

(KB,), = M
anCn |
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(4.170)

(4.171)

(4.172)

(4.173)

(4.174)

(4.175)

(4.176)

(4.177)

(4.178)

(4.179)

(4.180)



Ay3a,

k =(k —_—7n 4.181
( XSA)n ( XEA)n anCn |77n|7 ( )
A —3a,2
(kXSX)n = y(ancn2 . )7 (4182)
BnCn” [77n|
Ay3e,
and (Kygy)q=———"—. (4.183)
SN Aol

The k vectors for the y-moment of the angular fluxes are:

9+3b —3ah)

kB(n,n):( n h”, 4.184

) ab,2 (7| (154
3 (3+¢C)

ki (n,n) = ==l 4.185

i a‘nbn(-:’n|aun| ( )

3,

k> (n,n)=———"" 4.186

Y ar1ann|77n| ( )
-3+ab,)

ks, (n,n) :(—”, 4.187

Yo anan|ﬂn| ( )

Ay3
k = (k =2 4.188
( YSA)n ( YEA)n anbn|77n| ( )
Ay3e,

(Kygy )py = —————0— (4.189)
ST acbyGa |

and (Kygy ) = LBh=3) (4.190)
80 [77n|

As with WDD, LD is treated like LC: each ordinate is evaluated to
determine the outgoing face and the respective transport coefficient. For
ordinates that are not exiting the top of the cell, the same basic relations are

used with an x-y exchange, a right-left reversal or a top-bottom reversal where
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appropriate. Again, for the DI method, these LD matrices (or any other linear,
first spatial method) use the same solver algorithm as LC.
C. Partial Current Problem

1. Zeroth Spatial Moment Partial Current Problem

The partial current problem is set up to establish the proper scale of
values across the problem. Setting up the partial current problem with the
improved cell shape information requires an array similar to equation (3.88). The
edge distribution, ¢, is defined as the current along an ordinate divided by the

partial current found by integrating over the ordinates in that direction or:

n___ e
T2 W
neR

where W' is the angular quadrature weight. Similarly, an edge distribution can

be defined for the top edge as well:

in

it
S YU

neT

(4.192)

The left and bottom edges are defined in the same way.

The edge distributions allow the cell current shape information to be
retained while solving the partial current problem. Using the relations in
equation (4.17), the edge current along the right edge in terms of the incoming
currents and emissions in a cell is:

=R RLTL RRTR RT =T RBTB R B
Jou =My Jin T Mgy )iy + Mgy 1y Mgy )y, +mOEAEA‘ (4'193)
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As was done in slab geometry, the right edge current relation can be transformed
into an equivalent relation for the partial currents and emissions in a cell as:

I8 =M +MIIR+MET I +MEPIS+MELE, . (4.194)
In this case, the coefficients on the partial currents and emissions are collapsed

single values determined using the quadrature weights, the coefficient matrices

and the edge distributions as follows:

, (4.195)

[mere”)

MG = D Wn(mgﬁL) , (4.196)
[m&T <)
[me?e”)

RT RT 2T
Mg = D wWo(mai & | (4.197)
neout n
—B
MSP = D Wy (mgrs | (4.198)
neout n
neout n

Equations (4.195) through (4.198) can be applied in a similar manner to
determine the remaining partial currents. Applying this to the system of
equations described in equation (4.17) yields:

Jou | |Mar Mg' Mg Mg’ | J;,

Jou |_| Mo Mg Mg Mg || Jj;

or
Py
>

=
+

o T VRV Vi R
%] (Mg mg mg M|

(4.200)

OQw O+
b
>

=< < LZ
O
g

m m m m
>

b
>
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The partial currents in equation (4.200) are the outgoing partial currents for a
cell. The collapsed matrices form coefficients for each cell in the spatial mesh

that will be used in the partial current problem.

o
T |Jl8 |J24
N B
J7 [, JQ L Jll [,
4__‘]8 <__Jlo 4__\]12
J16 J22
1
(04 aR
L JlS‘ l J21| l
i r |, A
J? J* Je
—1 — —

Figure 4.2. Setting up the partial current problem for a two cell by two

cell problem showing the ordering of the partial currents.

The ordering of the partial currents in the partial current problem is
important in keeping the problem manageable. The scattering contribution from
the orthogonal directions increases the bandwidth of the sparse matrix. To keep
the matrix bandwidth manageable and provide a consistent pattern to implement

into the code, the partial current problem was set up using the ordering shown in
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figure 4.2. The currents are numbered across the rows left to right and up then

up the columns from bottom to top and right. The quantities, ¢ , ar, ¢4, and

o represent the boundary conditions on the left, right, top and bottom side of

the spatial mesh respectively. The same boundary condition was applied to all

the cells on a respective edge. Two boundary conditions were used: vacuum

boundaries (i.e.og =0); and reflective boundaries (i.e.ag =1). The cell partial

currents in equation (4.200) are rearranged across all the cells to create a matrix

equation of the form ég(:f) by using the relation between the cell inward and

outward partial currents. For the problem shown in figure 4.2, the matrix A is:

-0
1

S EEr

0

o

'«#;H‘"

_MZ
_|\/|3

By

B

0

0

1
-0

20
2%
1

£t

o 0 .
1 . M
1w
0 My 1
M.
.0
0o 0 .
M
M
0o o0 .
.0
_MZ
M.
.0

90

0

e o)
.. 0 o0 .
0
_M]%
M.
.0
1 o 0 .
o1 M
M1 M
Y
M.
.0

o -

s




where, for example, M/, is the coefficient that corresponds to the cell top
incoming partial current that contributes to the outgoing partial current J4.
These values come directly from the cell partial current equation shown in
equation (4.200) and are the collapsed matrix coefficients for each cell. The

unknowns X in the relation are the partial currents in the ordering shown in

figure 4.3: ;(T:(Jl NN L KN J24) and the forcing vector b,

is derived from the cell emissions in the same ordering. The elements of the
forcing vector are considered known values for this problem.

As can be seen by the matrix, this is a sparse matrix problem which grows
quickly as the number of cells in the problem increase. To solve the sparse
matrix problem, a Compaq Extended Math Library (CXML) (6: 11-1) direct
sparse matrix solver (cxml dss.f90) was used. Fortunately, the library routine
did not require actually creating the matrix explicitly; data was entered as
vectors which greatly increased to size of the problems that could be solved.

Reapportioning Partial Current from the Direct Solver

The partial current problem solution, Jpcp, from the library routine can
then be distributed back to the cell edge currents using the original ¢ , or edge
distribution. This forms the basis of the iterative method. With the correct ¢
value, the partial current solution does not change from the initial partial current
values. Since the correct ¢ value is not known initially, an iteration with among

cell calculations on the cell edge values must be used to improve the current
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estimate of . To distribute the cell partial current solution back to the cell

edge values, the following relations are used for the zeroth spatial moment

methods:
Jnew=IpcPS (4.201)
Jnew=IpcPS (4.202)
=T 4T =T
Jnew =Jpcp¢ (4.203)
- —=B

and jw=Jpcpl . (4.204)

2. First Spatial Moment Partial Current Problem

First spatial moment methods must be handled differently due to the first
spatial moment of the edge current @ that is used for these methods. The
solution can be found through either solving two simultaneous systems of
equations or transforming the partial current system of equations to eliminate the
6 values. The second choice was used in order to allow the use of the same
routine for the partial current problem that was used with the zeroth spatial
moment methods. To do this, a new parameter is defined:

ﬁ

=t (4.205)

where ,B is a cell edge array containing the number of ordinates in the angular
quadrature set. This new parameter permits the first spatial moment methods
current to be written in a form similar to equation (4.193). In this case, the

equation may be written as:
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Jom = (m0| +m09 D(pln)) J|n + (m0| +moe D(pln)) J|n

(m0| + m06 D(pln)) Jln + (mOI + mOH D(pln)) Jln + mOEAEA

where D is an operator that creates a diagonal matrix from a vector.

procedure is done for the remaining edge currents.

equations in equation (4.89) to be written:

S
JOut
Jout

s
Jout

L JOut_

=R (mor + moa D(pm))

-B (MF +Mgg D(Pm))

(m0| +moe D(Pln))

(ME +mE3 D(py)

(4.206)

A similar

This allows the system of

+

mM&eaE”

R EA
MoeaE

T EA
MoeaE

_ngAEA_

(4.207)

The quantity in the parenthesis can be combined to form a single matrix:

=L
Jout

R
J Out

J out
=B

_JOut_

[ ~LL

moi

~RL
moi

~TL
moi

~BL

el

~LR
moi

~RR
moi

~TR
moi

~BR
moi

~LT
moi

~RT
moi

~TT
moi

~BT
moi

~LB]
moi

~RB
moi

~TB
moi

~ BB
mor |

Jllﬁ

Jlﬁ

J|n

J|?1

mBRAER

T EA
MoeaE

B gEA
_mOEAE

S
MaeaE

(4.208)

Here the m indicates the quantities in the parentheses for equation (4.207). Now

equation (4.208) is in the same form as equation (4.17) and the collapsing for the

partial current problem is done the same as for the zeroth spatial moment

method. The first moment partial current problem is identical to the zeroth

spatial moment problem. Also, the cell partial current solution is distributed to

the cell edge currents as shown in equations (4.201) through (4.204). One

difference is the cell edge current first spatial moment values g?, are distributed

as follows:
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-L —L.—=L
Orew=JpcpD(p )¢, (4.209)

Brew=38D(p )", (4.210)

Brew=3tcr D(p ). (4.211)
and

EEQN:JECP D(;B)?B- (4.212)

Note the partial current problem does not adjust the edge distributions Z This

is done during the among cell calculations using the local cell coupling relations.
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V. Validation and Performance

The code must be validated before any comparisons to other methods can
be made. The test plan was implemented in three phases: initial checks;
consistency checks; and accuracy checks. These checks and their results are
described in this chapter.

A. Validation

1. Initial Checks

Two key areas for initial checks were for both the spatial method and the
angular quadrature. For the angular quadrature, the weights and direction
cosines were tested using Mathematica to compare the ability of the angular
quadrature to exactly integrate the functions 1, u, u*, u®, u*, n, n*, n° and
n* over the interval -1 to 1.

Numerical testing confirmed that cell balance equations were satisfied by
each spatial quadrature method as implemented. Most errors would show up as
violations of the balance equations (13: 176-177). For the zeroth spatial moment
methods, the particle balance equation for a cell is:

(jn— J)AY +(Jy — ja)Ax+ OAXAYY,, = S,AXAY. (5.1)
For the first spatial moment methods, additional balance equations were used.
The x moment balance equation:

3(jR + j|_ - zﬂl//A)Ay+(0T _QB)AX"'O'AXAWX = SXAXAy, (5'2)
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and the y moment balance equation:
3ir + o — 200, A+ (6~ 6) Ay + OAXAYY, = S,AXAY . (5.3)

Both the angular quadrature testing and all cell balance relations for all spatial
methods were confirmed.

2. Consistency Checks

The consistency testing was broken into two portions: symmetry tests and
aspect ratio tests.

Symmetry Tests

In this phase, the testing validated that boundary conditions and indexing
were consistently implemented. (This test identifies copy-paste-edit errors.) The
quantities, &) , ar, o4, and ap are used to specify the boundary conditions on
the left, right, top and bottom side of the spatial mesh respectively. The same
boundary condition was applied to all the cells on a respective edge. Again, two
boundary conditions were used: vacuum boundaries (i.e. ag=0); and reflective
boundaries (i.e. g =1). The scattering ratio is varied in these tests. It is
defined as the ratio of the scattering cross section (o) to the total cross section

(01):

_ O-S
o,

c (5.4)

Various symmetries are compared to ensure the same result is calculated when

only the orientation of the problem is changed. For the different problems
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examined, the cell average scalar flux should be the same value and the rate of
convergence should be identical.
The first test problem in this phase is the uniform universe test.

Reflective boundaries are set on all boundaries and the values are set as shown in

figure 5.1.

o =1

20
o, 1 t a, -1
c=0.444
E=14
AXx=Ay=0.5
0
0 oy =1 20

Figure 5.1. Problem values for the uniform universe test problem.

This test problem was chosen because it is one of the few transport
problems with a closed form solution. A flux solution is found by integrating the

BTE over all angles:

I [Q-Vy+ow=04+EQ, (5.5)
VO

but V=0 and w is independent of Q for this uniform problem. This also

means that:

y=ag, (5.6)

where a=1 based on the normalization for the angular quadrature set where:
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[ da=1. (5.7)

vQ
Equation (5.5) yields:
op=0p+E, (5.8)
or,
(01 —0)p=0,0=E, (5.9)

where o, is the absorption cross section. The solution for the scalar flux is:

s=E (5.10)
O-a

Also, for the angular quadrature set normalization, the value of the

E
converged angular and scalar flux in a cell should be the same and equal to —.
O-a

The next symmetry test problem examined the effect of boundary
conditions on the solution by setting three sides of the problem with reflective
boundaries and the remaining side with a vacuum boundary. The side with the
vacuum boundary is rotated through all possible cases, and the (rotated or
reflected) converged solutions should be identical in each case. The problem

values for this test are shown in figure 5.2.
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20
aL =1 O-t =1.0 B
c=05 O =0
E=14
Ax=Ay=0.5
0
0 oy =1 20

Figure 5.2. Problem values for the single vacuum boundary and three

reflective boundary problem.

The last symmetry test problem in this phase examines additional
rotational symmetries. In this problem, two adjacent boundaries are reflective
and the other two are vacuum, then the boundary conditions are reversed.
Again, for both of these cases, the converged results should be identical. The
problem values were the same as figure 5.2 with the exception of the vacuum
boundaries.

The results of some of the validation tests follow. For brevity, the results
of the WDD method are shown for some of the tests, the other spatial
quadratures had similar results.

Symmetry Test Results

The results of the uniform universe test are shown in table 5.1. The test
was done using the § angular quadrature and a tolerance of 107°. Each spatial

method converged in one iteration for the DI method. As noted earlier, the value
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of the scalar flux in a cell can be calculated and for this test the value should be
0.9325873. An independent source iteration (SI) solution was also done for
comparison. Note that while the SI solution meets the requested tolerance, it
does not have the precision that the DI methods have for this solution. The
number of SI iterations required to meet the same tolerance is listed, which is
significant for a relatively simple test problem. In addition, for this test, the
average angular flux in a cell had the same value as the scalar flux as expected.

Table 5.1. Results of the uniform universe test.

Spatial Distribution Iteration Source Iteration
method Scalar Flux | Number of | Scalar Flux | Number of
iterations iterations
WDD 0.9325873 1 0.9325859 38
SC 0.9325873 1 0.9325859 35
LD 0.9325873 1 0.9325871 21
LC 0.9325873 1 0.9325871 21

The results of the one vacuum boundary symmetry tests showed that the
problems returned identical values for the scalar flux, iterations to convergence
and maximum and minimum scalar flux values for each vacuum boundary
location. The test was also done using the § angular quadrature and a
tolerance of 107°. As noted earlier, the results of each different vacuum
boundary should be identical as the vacuum boundary is rotated around the

problem grid if the boundary conditions and indexing are correct for either a
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right /left or top/bottom exchange. The other spatial quadratures have similarly
identical results.

In addition, the average angular flux in each cell was compared for the
results for the right/left and top/bottom tests respectively by exchanging the
array indices for the right/top and comparing this to the left /bottom test results.
The exchanged right vacuum boundary cell average angular flux values compared
to the test left vacuum boundary cell average angular flux with a SRD of
1.28x10™. Also, the exchanged top vacuum boundary cell average angular flux
values compared to the test bottom vacuum boundary cell average angular flux
with a SRD of 1.28x10™. The other spatial quadratures have similar results.
These test results all used a convergence tolerance of 10_5, and the SRD is
consistent with the rounding errors associated with the machine arithmetic for
the different test solutions.

The next symmetry tests, two vacuum boundaries, also returned identical
values for the scalar flux, iterations to convergence and maximum and minimum
scalar flux values for both vacuum boundary cases. Computations for this test
used the S angular quadrature and a tolerance of 107°. For this test, the
results for the different vacuum boundaries should also have been identical as the
vacuum boundaries are rotated on the problem grid if boundary conditions and
indexing for an x/y exchange are properly implemented. The other spatial

quadratures again had similar identical results.
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For this case as well, the average angular flux in each cell was compared
by doing another exchange of the array indices for the right/top test results.
The exchanged right /top vacuum boundary cell average angular flux values
compared to the test left /bottom vacuum boundary cell average angular flux
with a SRD of 1.60x10™, which is consistent with rounding errors for the
different tests. The other spatial quadratures had similar results.

Aspect Ratio Tests

The symmetry test problems used a 40x40 grid of square cells. The next
series of test problems in this phase of testing uses various aspect ratios Ay:AX
while keeping the cross section and boundary conditions the same as shown in
figure 5.3. Again, the results for the converged solution should be identical when
x and y values are interchanged. Aspect ratios of 1:2, 1:4 and 1:8 were compared
to aspect ratios of 2:1, 4:1 and 8:1.

The aspect ratio tests returned identical values for the scalar flux,
iterations to convergence and maximum and minimum scalar flux values for all
spatial quadratures. Again, the test was also done using the § angular
quadrature and a tolerance of 10°. As noted earlier, this test confirms that cells
with aspect ratios other than one returned consistent results when x and y values

are interchanged.
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3. Source Iteration Comparison

The last series of tests in this phase compare the converged solution from
conventional source iteration with the DI solution. The scattering ratio was kept
low so that the SI solution would not suffer from false convergence. An example
of the problem and boundary conditions used is shown in figure 5.3 for a 10x10
spatial mesh. The spatial mesh is refined, from 10 cells by 10 cells to 100 cells by
100 cells. The cell scalar flux results for both SI and DI are compared to ensure

the converged results are consistent.

o =0

10
aL:]_ O't=l.0 B
c=0.33 O =0
E=14

AX=Ay=1.0

0
0 a, =1 10

Figure 5.3. Problem variables for the source iteration comparison test

problem.

Source Iteration Test Results

The results of the source iteration comparison tests are shown in figure
5.4. Again, the test was done using the S5 angular quadrature and a tolerance of
10°. The solid line is the requested tolerance of 10°. As noted earlier, this test

confirmed that an independent source iteration calculation returned the same
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values for the cell scalar fluxes as the DI method. The SRD(dp,.@g) was less
than 3.6x10°, which is less than the 107 tolerance, in every cell for seven trials
with grids ranging from 10x10 to 100x100. This gives confidence that the code is
consistent, however it is still possible that both the DI and the SI codes could be
off by a common factor. To eliminate this possibility, the results are next
compared to an independent solution.

4. Benchmarking

After the initial checks and consistency checks are done, it is evident that
the results from the code are consistent. Getting the same results for different
problems from two different methods within the code shows consistency, but it
does not demonstrate accuracy. To do this, the converged results must be
compared to a known solution (benchmarked). Mathews’ vacuum duct problem

(10: x-8) is used as a benchmark. The benchmark problem is shown in figure 5.5.

0 % o =0 2

4
c=0.25
ylcm] ®

FI S A — S=2n/cm?/s
3 O E—
0 : vacuum

0 % x{cm] 2

0y =0

Figure 5.4. Problem variables for the benchmark problem.
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Benchmark Test Results

The results of a benchmark test for the SC spatial quadrature is shown in
figure 5.5. Again, the test was also done using the S angular quadrature and a
tolerance of 10°. The solid line shows an independent Monte Carlo solution to
the same problem (10: x-8). A ray effect due to the use of the § angular
quadrature is seen in the location of the peak of the graph. Physically, the peak
should be located over the duct, as shown by the Monte Carlo solution. This ray

effect behavior is also consistent with previous results for this problem (10: x-

10).
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Figure 5.5. Results of the SC comparison with a Monte Carlo solution to
the benchmark problem. The plot of the partial current out the top edge

is shown for both methods.

105



The results of a benchmark test for linear discontinuous is shown in figure
5.6. Again, the test was done using the S angular quadrature and a tolerance of
10°. The solid line shows an independent Monte Carlo solution to the same
problem. As with the SC solution, a ray effect due to the use of the S angular
quadrature is seen in the location of the peak of the graph. Again, this ray effect

behavior is also consistent with previous results for this problem.
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Figure 5.6. Results of the LD comparison with a Monte Carlo solution to
the benchmark problem. The plot of the partial current out the top edge

is shown for both methods.

For both the SC and LD solutions shown in figures 5.5 and 5.6, the
important observation is not the ray effect, but the magnitude of the partial

current calculated for both spatial methods. The scale of the DI result is
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comparable to the Monte Carlo result in either case and validates the accuracy of
the comparison done with SI in figure 5.4.
B. Routine Problem Comparison

This section demonstrates the efficiency of this method by comparing the
results for the DI method to published results for DSA methods for three
different problems: varying aspect ratios, varying scattering ratios and varying
mesh size, for given problems. The three problems were not particularly
challenging for either method, but show how DSA methods and SI methods
compare to the DI method for relatively straightforward problems. Morel et al.
(14: 309-10) published results for DSA using Bi-Linear Nodal (BLN) and Waring
et al. (17: 124-25) published results for DSA using Linear Bi-Linear Nodal
(LBLN) spatial methods for the same set of three problems. The comparative
measure used for each problem is the number of iterations needed to converge the
cell scalar flux to a given tolerance. The DSA methods have an inner loop which
is used to estimate the residual error at each step. For these problems listed, the
DSA inner loop used a minimum of three passes to update the residual error
estimate, while the DI method only had one pass through the among cell
calculations (14: 306). However, for comparison purposes, an iteration is one

complete cycle in each case, which should be a conservative comparison for the

DI method.
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1. Aspect Ratios

The first comparison problem examines results for a set of grids which
differ in cell aspect ratio, Ay:Ax. The basic parameters for a homogeneous
medium problem (14: 309, 17: 124) are shown in figure 5.7. The problem is
intended to show for DSA methods the effectiveness in terms of error reduction
per iteration. The problem was done using an S, angular quadrature and
converged to a tolerance of 10™* using the cell average scalar flux. The spatial
grid has 25x25 rectangular cells in each case; the problem size differs among the
cases. The cells are not necessarily square. Aspect ratios of Ay:Ax=2:1, 5:1,

10:1 and 20:1 were tested.
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Figure 5.7. Problem variables for the DSA aspect ratio comparison.

The results for the aspect ratio tests for both DI and DSA (14: 309, 17:
124) are shown in table 5.2. As can be seen in the table, the zeroth spatial

moment methods using DI (WDD and SC) converged faster than the DSA
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methods, while the first moment methods using DI (LD and LC) were
comparable to the DSA methods. The stability of the DSA methods shows that
the iteration count does not increase as the aspect ratio increases. The zeroth
spatial moment methods also show this, while the DI method shows a slight
increase for high aspect ratios for first moment methods. For the 20:1 case, DI
takes more iterations (10 for LD, 7 for LC) than DSA (6 for BLN, 6 for LBLN)
but uses fewer discrete ordinates sweeps (10 for LD, 7 for LC) than DSA(> 18
for each DSA calculation). While this problem does not definitely show the DI
method as better, it does show that DI requires of the same order of iterations to
converge for a totally scattering problem.

Table 5.2. DSA aspect ratio comparison results

DI Methods DSA

Methods

AX | Ay |WDD | SC | LD | LC |BLD[LBLN
1.0 | 1.0 4 5 5 5 8 8
1.0 | 5.0 3 3 5 5 8 8
1.0 ] 10.0 3 3 8 8 8 8
5.0 | 5.0 2 2 3 5 6 6
5.0 |10.0 2 2 3 4 6 6
5.0 |100.0] 2 2 110 7 6 6
10.0 1 10.0 2 2 3 5 5 5
10.0 {100.0 2 2 5 5 5 5
100.0{100.0] 2 2 4 5 5 5
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The same test was done using an adaptive DO sweeping technique in
shown chapter two and described later in this chapter. The results are shown in
table 5.3 with the original DSA results for comparison. The additional DO
sweeps for each iteration only decrease the iteration count for a few of the tests,
but this is by design. The adaptive technique is only to use additional DO
sweeps for an iteration where the DI method is converging relatively slowly,
which is only two of the tests the 1:10 and 1: 20 cases. For these problems, the
number of iterations to convergence is a third smaller. For the other cases, the
iterations to convergence is about the same or one less.

Table 5.3. DSA aspect ratio comparison adaptive

DO sweep results

DI Methods DSA

Methods

Ax | Ay |WDD | SC | LD | LC |BLD|LBLN
1.0 | 1.0 4 5 4 3 8 8
1.0 | 5.0 3 3 4 3 8 8
1.0 ]110.0 3 3 5 5 8 8
5.0 | 5.0 2 2 3 3 6 6
5.0 |10.0 2 2 3 3 6 6
5.0 |100.0] 2 2 4 3 6 6
10.0 1 10.0 2 2 3 3 5 5
10.0 {100.0 2 2 4 4 5} 9
100.0{100.0] 2 2 2 3 5 5
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The adaptive DO sweeping technique shows the DI method to be slightly
better than DSA for this case in terms of iterations to reach convergence for this
problem.

Scattering Ratios

The next comparison problem examines results for grids which differ in
cell scattering ratio. The basic parameters for another homogeneous medium are
shown (14: 309, 17: 124) in figure 5.8. The problem is intended to show, for DSA
and source iteration methods, the dependence of the efficiency upon the
scattering ratio. The problems were solved using an S, angular quadrature and
cell average scalar fluxes were converged to a tolerance of 10*. The problem

uses a 25x25 cell grid with AX=Ay=1 mean free path (mfp).
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Figure 5.8. Problem variables for the DSA scattering ratio comparison.

The results for the scattering ratio comparison for unaccelerated SI, for
DI, and for DSA-SI are shown in table 5.3. First consider SI versus DI. SC and

LC have similar relative performance for SI and DI as WDD and LD. Both the
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zeroth spatial moment methods using DI converged faster than source iteration
using the same spatial method and angular quadrature. The DI zeroth spatial
moment methods show that the iteration count went from three to four as the
scattering ratio increased for this problem, while the SI methods climbed from
twenty to over two thousand with higher scattering ratios. The DI first spatial
moment methods again show the iteration count went from three to five as the
scattering ratio increased for this problem, while the SI methods increased from
ten to over two thousand with higher scattering ratios. It also shows the
advantage of first moment methods for source iteration: the iteration count is
much lower for the same problem than with a zeroth moment source iteration
method. For DI methods, the iteration count was almost identical for both
zeroth and first moment methods. This problem demonstrates the DI method as

superior to (unaccelerated) source iteration for this case.
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Table 5.4. DSA scattering ratio comparison results.

SI DI DSA
¢ WDD | LD | WDD | LD | BLN | LBLN
1.0 2379 | 2020 4 5 8 8
0.9 171 94 3 4 7 7
0.8 93 50 3 4 7 6
0.7 64 34 3 4 6 6
0.6 49 26 3 4 5 5
0.5 40 20 3 3 5 5
0.4 34 17 3 3 5 4
0.3 29 14 3 3 4 4
0.2 26 12 3 3 4 4
0.1 23 9 3 3 3 3

Next consider DI versus DSA. The DI method converged slightly faster
than DSA for almost all scattering ratios. The DI methods show very little
increase in iteration (from 3 to 5) with increasing scattering ratio for this
problem, while the DSA methods show a larger increase (from 3 to 8). This
problem also shows the DI method to be slightly better than DSA for this case in
terms of iterations to reach convergence.

3. Two Material Problem
The last comparison problem examines results for grids which differ in spatial
mesh refinement for a two material problem. The basic parameters for another
homogeneous medium are shown (14: 309, 17: 124) in figure 5.9. The problem is

intended to show the effectiveness of DSA for inhomogeneous problems. The
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problems were solved using an S, angular quadrature and cell average scalar
fluxes were converged to a tolerance of 10*. The spatial grid size remained fixed
at 50 cm for this problem while AX and Ay both vary at the same ratio, thereby
refining the spatial mesh for the problem. Mesh sizes of 5x5, 10x10, 25x25 and
50x50 were tested. For these mesh sizes, the cell thicknesses were 10 cm, 5 cm, 2

cm and 1 cm respectively.
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Figure 5.9. Problem variables for the two material DSA comparison

problem.

The DI results for the mesh refinement problem, along with the published
DSA results (14: 309, 17: 124), are shown in table 5.5. As can be seen in the
table, the DI method converged slightly faster than the DSA methods for these
cell sizes. Again, while this problem does not definitely show the DI method as
better than DSA, it does again show that DI converges in the same number of

iteration or slightly fewer iterations for a highly scattering problem.
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Table 5.5. DSA two material comparison results.

DI Methods DSA Methods
Mesh WDD SC LD LC | BLD | LBLN
5x5 2 2 4 5 6 6
10x10 2 3 4 5 8 7
25x25 3 4 4 4 9 8
50x50 4 6 6 5 8 7

In chapter two, figure 2.1 shows an inner loop doing the local balance
coupling labeled “iterate as needed”. The discussion following the figure
discussed the fact that some problems needed additional loops with discrete
ordinates sweeping. For the problems presented so far, only one discrete
ordinates sweep was sufficient for the DI method to converge in a few iterations.
However, there were problems in which additional loops through the discrete
ordinates sweeping were needed but this also depended on the spatial method
used. This led to an adaptive technique which varied between one and ten
sweeps depending on the properties of the problem. Timing analysis showed that
ten sweeps would at most double the time for an iteration. For each sweep, the
scattering source was updated using the cell edge currents and the scattering
source was used to calculate new cell edge currents. A detailed analysis of the
adaptive technique is presented in chapter seven, but the technique was used for
some of the problems in chapter six, as well as in the first DSA comparison

problem for this chapter.
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This chapter showed the validity of the DI results through a variety of
test problems. In addition, this chapter showed that the DI method performed
much better than SI for higher of scattering ratios. Finally, these problems show
the performance of DI is comparable to the effectiveness of DSA with a similar
computational effort based on a conservative iteration count. In the next

chapter, problems where synthetic acceleration has difficulties are examined.
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VI. Challenging Problems — Comparison with DSA and TSA

A. Where DSA Loses Effectiveness

The previous chapter shows how DI performance was comparable to DSA
on several routine problems. Recently, it has been have shown that DSA can
lose its effectiveness or converges slowly for a particular problem.(3: 213, 18: 1)
This was shown using a test that has alternating layers of two different materials
that are highly scattering. The particular problem’s parameters given by Azmy
(3: 228-229) are shown in figure 6.1. For this problem, different total cross
sections will be compared with different mesh sizes which varied from a 10x10

spatial mesh to a 160x160 spatial mesh.
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Figure 6.1. Problem variables for the Azmy Periodic Horizontal Interface
(PHI).
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An § angular quadrature was used for this problem to compare with the
published results in the article. The convergence tolerance of 10° was used for
the relative difference in the cell average scalar flux.

The measure of effectiveness used for this problem is the spectral radius.
For a converging system of equations, the spectral radius is between zero and
one. A spectral radius which is close to zero indicates that the system of
equations converges rapidly. Conversely, a spectral radius close to one indicates
the system of equations converges slowly. Additionally, a spectral radius of one
or greater indicates system of equations that diverges (6: 229). Often calculating
the eigenvalues or spectral radius for a large system of equations is impractical.
Azmy estimates the spectral radius using the ratio of the L,norm of the residual

in the cell average scalar flux to the previous iterate as follows:

I

- . (6.1)
62—,

P

The spectral radius is computed for the iteration in which the problem met the
convergence tolerance (3: 213-216).

For the DI method, testing showed that the spectral radius calculated this
way could vary with the chosen tolerance or iteration even though the method
was converging in a few iterations. Another method of estimating the spectral

radius or convergence rate was developed. The maximum SRD of the scalar flux
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between iterations is shown for two different cross sections in figures 6.2 and 6.3.

The solid line represents the convergence tolerance in Azmy’s problem.
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Figure 6.2. Convergence rates for the Azmy Periodic Horizontal Interface

(PHI) problem with DI using WDD and S5 at o =10cross section for

various mesh sizes.

These problems are done to a much tighter tolerance, 10, and for all the
different spatial meshes that the DSA test problem were done. The figures
demonstrate two points, the maximum SRD of the scalar flux decreases by a
fairly constant amount per iteration and the problem can be run to very tight
tolerances which show the problem does not suffer from bad numerical
conditioning. The rate of decrease in the maximum SRD is the DI method
estimate of the spectral radius or convergence rate. The convergence rate is
found by doing a linear regression of the linearized data which is shown in the

figures. One note is that this maximum SRD estimate is an asymptotic value.
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For problems with reasonable tolerances, for example 10 is commonly used, the

problem would converge faster than the DI estimate of the spectral radius would

predict.
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Figure 6.3. Convergence rates for the Azmy Periodic Horizontal Interface

(PHI) problem with DI using WDD and S5 cross sectiono =160 for

various mesh sizes.

Another observation from the two plots shown in figure 6.2 and 6.3 is that
the rate of convergence does change with cross sections and mesh size. For the
cross section shown in figure 6.2 the spectral radius is fairly constant as the mesh
is refined. This can be seen by the fact the iteration count does not change
significantly as the spatial mesh is changed. On the other hand, for the cross
section used in figure 6.3, the number of iterations needed to reach the final

tolerance almost doubles as the mesh gets larger. The convergence rates for these
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plots will be discussed shortly. For the DI results shown in table 6.2 and 6.4, the
adaptive DO sweeping technique was used.

1. Weighted Diamond Difference Comparison

The published results for the Azmy PHI problem using DSA with WDD
and an S angular quadrature are shown in table 6.1 (3: 231). As seen in the
table, the spectral radius increases strongly with the number of cells, indicating
slower convergence. For this DSA method, going to larger problems of this type
will lead to slowly converging solutions. Hence, DSA is no longer accelerating
the solution for a large enough problem of this type or loses effectiveness.

Table 6.1. Published DSA with WDD Results.
Cross Sections

Mesh 10 20 40 80 160
10x10 | 0100 | 0.039 | 0.010 | 0002 | 4E-4
20x20 | 0241 | 0132 | 0.044 | 0010 | 0.002
40x40 | 0422 | 0316 | 0151 | 0.046 | 0.010
80x80 | 0581 | 0539 | 0360 | 0.160 | 0.048
160x160 0.683 | 0.713 | 0.609 | 0.386 | 0.165

The DI results for the Azmy PHI problem using WDD with DI and S
angular quadrature are shown in table 6.2. The spectral radii, or convergence
rates, listed in the table were determined using the slope of the linearized plots,
as described previously. Contrary to the DSA solutions, the DI method does not
increase strongly for larger problems. In addition, the total number of iterations

needed to solve a difficult problem remains small. For this problem, DI with
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WDD showed good performance and was considerably better than DSA with the
same spatial and angular quadratures.

Table 6.2. DI with WDD results.

Cross Section

Mesh 10 20 40 80 160

10x10 |0.079671] 0.061348] 0.046345] 0.001066] 0.000303

20x20 |0.077822] 0.083753] 0.057003] 0.016199] 0.002528

40x40 | 0.09177] 0.07236] 0.085153] 0.049317] 0.012909

80x80 | 0.08531| 0.104472] 0.067329] 0.081133] 0.036083

160x160] 0.122462] 0.098787] 0.110332] 0.064091{ 0.081433

2. Linear Discontinuous Comparison

Azmy’s results for the Azmy PHI problem using a Bi-Linear Nodal method
with DSA and S angular quadrature are shown in table 6.3 (3: 232). Again, the
spectral radius increases for larger meshes for certain cross sections. For this
DSA method, going to larger problems will lead to slowly converging solutions.
For example, the spectral radius listed for the cross section o =20 and mesh of
160, took 388 iterations to meet the tolerance of 10° (3: 231). In addition, for

several cross sections, this method diverged.
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Table 6.3. Published DSA with BLN Results.
Cross Sections

Mesh 10 20 40 80 160
10x10 | 0.355 | 0.254 | 0.192
20x20 | 0543 | 0417 | 0317
40x40 | 0.717 | 0.607 | 0.452
80x80 | 0.836 | 0688 | 0.624
160x160] 0.901 | 0.392 | 0.671

OO0 [O|[O |0
OO0 [OC[O |0

The DI results for the Azmy PHI problem with LD and an S5 angular
quadrature are shown in table 6.4. The spectral radii listed in the table were

again determined using the linear regression of the slope of the linearized plots.

Table 6.4. DI with LD results.

Cross Section

Mesh 10 20 40 80 160

10x10 | o.101 0.115 0.089 0.059 0.044

20x20 | o.101 0.117 0.118 0.075 0.053

40x40 | 0.194 0.099 0.124 0.094 0.055

80x80 | 0.269 0.216 0.153 0.140 0.099

160x160] 0.245 0.302 0.160 0.179 0.133

Unlike the zeroth spatial moment method, the convergence rates for DI
method with first spatial moment methods do increase slightly with larger
problems. However, the spectral radius is still much better than the DSA
methods and the DI method works for all the cross sections tested (did not

diverge). Also, and for the WDD results as well, the calculated spectral radii are
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an asymptotic value from the plots of convergence rates. Just using the problem
set tolerance of 10° would have given lower spectral radii.

The DI method has demonstrated an improved performance over DSA for
this particular problem. The rate of convergence for zeroth spatial moments
methods is clearly superior for DI. The convergence rate stays almost constant
while the DSA method increased strongly with an increase in the number of cells.
The first moment methods also had good improvement in the rate of
convergence, and the DI methods were able to solve the problem for cross
sections the DSA method diverged on.

3. Azmy PHI Timing Analysis

The DI method showed good improvement over the DSA method
performance for the Azmy PHI problem, particularly for the zeroth spatial
moment method of WDD. Two questions to be answered are: where does the DI
method spend its computational effort; and how does the effort change as the
number of cells increase? An intrinsic FORTRAN timing function was used to
determine the amount of time spent in each portion of the DI iteration.

The DI iteration is separated into two parts for timing purposes; discrete
ordinates sweep cell calculations; and the partial current problem. The discrete
ordinates sweep cell calculations will be further broken down into the within cell
calculation and the discrete ordinates sweep. For timing purposes, only a single

within cell calculation and discrete ordinates sweep will be timed. The actual
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times can be scaled from these time values. The partial current problem is
further separated into the collapsing / setting up the partial problem and the
time needed for the CXML library routine to solve the partial current problem.
The timing analysis was done for the DI method with WDD and LD using S5
and a cross section o =10.

Zeroth Spatial Moment Methods

The WDD results of the time analysis for the main parts of a DI iteration:
the iterations time; among cell calculation time; and partial current problem time
are shown in table 6.5. As can be seen in the table, the time for the partial
current problem is most of the iteration time, more than three times the discrete
ordinates sweep cell calculation time. Additionally, separate log-log plot shows
that the iteration portions of the code scale linearly with the number of cells,
with a slope of 1.00. SC gave nearly identical timing results for the zeroth
spatial moment tests.

Table 6.5. WDD Iteration Timing.

Time (s)
Number| Iterationl Partial |JAmong Cell
of Cells Current|Calculations
Problem|

100 0.063 | 0.047 0.019
400 0.234 | 0.188 0.047
1600 | 0.938 | 0.766 0.172
6400 | 4.000 | 3.281 0.656
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The WDD results of the time analysis for the partial current problem are
shown in table 6.6. As can be seen in the figure, the predominance of the time
for the partial current problem is used for collapsing and setting up the partial
current problem due to the number of matrix multiplications that are done.

Table 6.6. WDD Partial current problem timing.

Time (s)
Number| Partial ICollapsing Direct
of Cells|Current Solver
Problem

100 0.047 0.031 0.016
400 0.188 0.141 0.031
1600 | 0.766 0.547 0.172
6400 | 3.281 2.234 0.906

The WDD results of the time analysis for the discrete ordinates sweep cell
calculations is shown in table 6.7. As can be seen in the table, most of the time
is for within cell calculation, again doing the matrix multiplications, and is about

twice the time for the discrete ordinates sweep.
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Table 6.7. WDD Discrete ordinates sweep timing.
Time (s)

Number]Among Celll Update | DO
of Cells|Calculations|Scattering| Sweep
Source
100 0.019 0.016 0.004
400 0.047 0.031 0.016
1600 0.172 0.109 0.063
6400 0.656 0.391 0.266

First Spatial Moment Methods

A similar analysis was done for the LD spatial method. The LD results of
the time analysis for the main parts of a DI iteration: the iterations time;
discrete ordinates sweep cell calculation time; and partial current problem time
are shown in table 6.8. As can be seen in the table, the time for the partial
current problem is most of the iteration time, more than ten times the among cell
calculations time. This is significantly more than the zeroth spatial moment
methods, and due to the additional matrix multiplications used in collapsing to
set up the partial current problem. Additionally, separate log-log plots show that
the iteration portions of the code scale linearly with the number of cells with a
slope of 0.9969. LC gave nearly identical timing results for the first spatial

moment tests.
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Table 6.8. LD Iteration timing.

Time (s)
Number| Iterationl Partial |JAmong Cell
of Cells Current|Calculations
Problem|

100 0.469 | 0.422 0.047
400 1.828 | 1.656 0.172
1600 | 7.328 | 6.688 0.609
6400 | 29.547 | 26.969 2.484

The LD results of the time analysis for the partial current problem time
are shown in table 6.9. As can be seen in the table, the predominance of the
time for the partial current problem is collapsing and setting up the partial
current problem. The CXML direct solver actually takes the same amount of
time as the zeroth spatial moment methods. This is to be expected, the actual
problem size is the same for both methods.

Table 6.9. LD Partial current problem timing.
Time (s)

Number| Partial ICollapsing Direct
of Cells|Current Solver

Problem
100 0.422 0.422 0.016
400 1.656 1.625 0.031
1600 | 6.688 6.469 0.172
6400 | 26.969 | 25.875 0.906
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The LD results of the time analysis for the discrete ordinates sweep cell
calculation time is shown in table 6.10. As can be seen in the table, most of the
time is for the within cell calculation again, updating the scattering sources,
significantly more than the discrete ordinates sweep.

Table 6.10. LD Discrete ordinates sweep timing.
Time (s)

Number]Among Cell| Update | DO
of Cells|Calculations|Scattering| Sweep
Source
100 0.047 0.031 |0.016
400 0.172 0.141 ]0.031
1600 0.609 0.531 |0.078
6400 2.484 2.156 10.328

The timing analysis of the DI method showed three important points.
First, the problem iteration time scales linearly with the number of cells. This
will be important when using the DI method to solve very large problems in
higher dimensions. Second, the among cell calculations using a within cell
calculation followed by a discrete ordinates sweep is an efficient way to update
the cell edge values. The computation cost of the discrete ordinates sweep cell
algorithm is less than doing two within cell calculations to update cell edge
values. Lastly, most of the computational effort for an iteration is in setting up
and solving the partial current problem. The discrete ordinates sweep cell

calculations are a smaller part of the computational effort, particularly with first
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moment methods. The timing analysis showed that additional effort could be
applied to improving ¢ without a significant computational cost as is done in
the discrete ordinates sweep method.
B. Where TSA Fails

The Azmy PHI problem showed how the DSA method lost effectiveness,
or converged slowly across a variety of cross sections and meshes. Another
periodic horizontal interface (PHI) problem reported by Chang and Adams (5: 1)
demonstrated how TSA methods diverged for certain cross section combinations.
This next problem also uses pairs of cross sections, but the layout and source are
slightly different from the Azmy PHI used in the last section. This next
problem, hereafter referred to as the Chang problem(5: 11), uses a fixed mesh of
100 cm by 200 cm and varies the two different cross sections during these tests.
Each cell is set at 1 cm by 1 cm and there are incident boundary currents on the
bottom and left sides with no sources within the problem. The layout of this

problem is shown in figure 6.4.
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Figure 6.4. Problem variables for the Chang Periodic Horizontal Interface

(PHI).

The problem was done for different scattering ratios and to a tolerance of
107" using the cell average scalar flux. As with the DSA PHI problem, the
measure of effectiveness used in this article was the spectral radius, which is
determined using the relation described in equation (6.1) for the published results.
The numerical results of the TSA method using diamond difference (DD) showed
that certain cross sections caused the method to diverge, as can be seen by
spectral radii greater than one. This data will be presented later in this chapter.
The DI method was done with a single discrete ordinates sweeping method
initially for comparison. The DI method used the same linear regression

procedure that was used with the Azmy PHI to determine the convergence rates.
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1. Weighted Diamond Difference Comparison

An example of how the SRD of the scalar flux changed per iteration for the DI
method with WDD is shown in figure 6.5 for a scattering ratio of ¢=0.9.
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Figure 6.5. Convergence rates for the Chang Periodic Horizontal Interface

(PHI) problem with DI using WDD and S for 03=10"* and o,at

various cross section combinations with a scattering ratio of 0.9.

As can be seen in figure 6.5, there are particular cross section
combinations for which the problem converges slower. The fastest convergence
occurs when the two cross sections are the same, making it a homogeneous
problem. The rates of convergence are listed in table 6.11 along with TSA results

(5: 11) for comparison.
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Table 6.11. Chang PHI Test for ¢ = 0.9, with DI
WDD using S;, and TSA DD using S, /S,.
0,,=0.0001 |o,,=1.00 0,,=10000.0

Spectral Spectral Spectral
[Radius [Radius [Radius
o,, [D1 [TSA I [TsA pI [TsA

0.0001 |0.004677] 0.00140.277204] 4.52550.002214] 0.0397
0.01  Jo.212961] 0.07930.273905 4.1231}0.019761] 0.1745
1.00  |o.273779 4.52540.119207 0.4639 0.12364 0.4521]
100.0 |0.023046 1.10090.120754 0.4741)0.000194| 0.0783
10000.010.002211f 0.0398] 0.12314} 0.4562/8.87E-08 0.0089

Note that for four different cross section combinations, the TSA method
diverged. This is indicated by a spectral radius greater than one. However, for
this case, the DI method performed well having a spectral radius less than 0.3 for
all cross sections and only using a single discrete ordinates sweep per iteration.
For only one combination of cross sections, where TSA worked well, the TSA
spectral radius was smaller than the DI method spectral radius. Note these
problems were done with similar spatial methods and similar angular
quadratures.

For higher scattering ratios, c=0.99 and a higher order angular

quadrature, the following comparisons (5: 14) can be made in table 6.12.
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Table 6.12. Chang PHI Test for ¢ = 0.99 with DI Results
WDD using S5, and TSA DD Results using S5/S,.

0,,=1.00

Spectral Radius
0, IDI TSA
0.0001  Jo.4858  [32.5264
0.01 0.4802__ |20.1193
1.00 0.1017 _ |0.5865

100.0 0.0928  |1.2958
100000 ]0.1196 |0.5458

Note that for the same cross section combinations that diverged in the
previous problem, the TSA method also diverges for this case, as well as another
combination of cross sections. The DI method converges for this problem using
one discrete ordinates sweep per iteration. The performance is somewhat slower
for the particular cross section pairs where TSA diverged for this case. However,
the rates of convergence for the other cross sections remains about the same or
slightly faster than the ¢=0.9 scattering ratio case while the TSA method is
much slower.

Although TSA method did not give results for scattering ratios of c=1.0,
since it had already diverged for lower scattering ratios, the DI method was also
done for totally scattering problems to see if the DI method would solve these
problems with a single discrete ordinates sweep. This would make this particular

problem as difficult as it could be.
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As can be seen in table 6.13, the rate of convergence for this scattering
ratio is again much slower for certain cross sections combinations.

Table 6.13. Chang PHI Test for ¢ = 1.0, DI with WDD using S

o, 0,,=0.0001 | 0,,=1.00 0,,=10000.0
Spectra Spectral Spectral
Radius Radius Radius
1.00E-04 0.006858 0.653732 0.420436
1.00E-02 0.234153 0.641062 0.406724
1.00E+00 0.651778 0.111584 0.04627
1.00E+02 0.397283 0.038089 3.7E-05
1.00E+04 0.395913 0.038089 2.12E-06

For the combinations where TSA diverged previously, the DI method
performance was again slower but still converged. The other cross sections
continued to converge at the same or a faster rate.

Again, the DI results with WDD are presented here using only a single
discrete ordinates sweep per iteration The Chang PHI problem was challenging
for the DI method for certain cross section combinations, but these are the same
cross section combinations which caused the TSA method to diverge for this
particular problem.

2. Other Spatial Method Comparison for Chang PHI Problem

The next section demonstrates the effect the adaptive discrete ordinates
sweep has on convergence rates for this problem. The adaptive technique is
applied to the Chang PHI problem for the particular cross sections that

challenged the DI method. These cross sections, 0;, =1.0 and o,, =0.0001, are
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the same cross sections where the TSA method diverged for all scattering ratios.
The results for these cross sections using the four spatial DI methods are listed in
table 6.14 with scattering ratio of c=0.9. As a comparison of note, the TSA
method using DD had a spectral radius of 4.5255 or diverged (5: 11).

Table 6.14. Chang PHI Problem
for ¢=0.9 using ;.

TSA DD Spectral Radius
4.5255
Method [1x DO  |Adaptive
sweep DO sweep
'WDD 0.259] 0.198107
SC 0.431519] 0.25439
LD 0.466337] 0.249747
LC 0.473478] 0.243725

All the spatial methods show improvement in the rate of convergence for
the adaptive discrete ordinates sweep over a single DO sweep per iteration.

The same case was done again for a scattering ratio of c=0.99. The
results are listed in table 6.15. Again, note the TSA method diverged (5: 14) for
this case. The adaptive discrete ordinates sweep technique shows improvement
over a single DO sweep per iteration in the rates of convergence for all the spatial

methods tested with the DI method.
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Table 6.15. Chang PHI Problem for
c=0.99 using ;.

TSA DD Spectral Radius
32.5264
Method |1x Adaptive
DO sweep|DO sweep,
'WDD 0.4858  0.3907]
SC 0.7217  0.5471
LD 0.8285]  0.4851
LC 0.7783]  0.5058

Although the TSA method was not done for a scattering ratio of c=1.0,
this combination of cross sections caused the DI method with SC to diverge as
well. The TSA PHI problem was done again using the adaptive discrete
ordinates sweep and the results are shown in table 6.16.

Table 6.16. Chang PHI Problem
for c=1.0 using S

TSA Spectral Radius
N/A
Method|1x Adaptive
DO sweep|DO sweep)|
WDD 0.6537]  0.5786

SC N/Al  0.9001
LD 0.9468)  0.7140
LC 0.8707]  0.6438
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The results also show that the adaptive discrete ordinates sweep technique
improve the rates of convergence for the DI method. The adaptive DO sweep
technique also stabilizes the SC spatial method, which had previously diverged
for this problem.

This section showed that the improved performance for the DI method
over TSA for this particular problem. The DI WDD method converged reliably
where TSA DD did not. The DI method rate of convergence was considerably

faster than TSA when TSA did work.
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VII. Additional Tests

This section shows the development and analysis of the adaptive DO
sweep technique that was used in chapter six. Earlier testing on the Chang PHI
problem showed areas where the DI method performance was challenged for
certain spatial methods and scattering ratios. In an attempt to fully challange
the method, another degree of interfaces or a checkerboard of alternating cells
was added. Also, to further stress the DI method with this problem, the cross
sections that caused the TSA method to diverged and showed slower convergence
rates for DI were chosen. The cross section values used were o;, =1.0 and
0,, =0.0001, and the scattering ratio is set to one.

A. The Checkerboard Problem

The problem used incident currents on the left and bottom side, like the
Chang PHI problem. A diagram of the problem is shown in figure 7.1. For this
problem, the S5 angular quadrature was used. The number of X and Yy cells

were the same for each case and varied from 25 to 125 each.
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Figure 7.1. Problem variables for the checkerboard problem.

1. Spatial Method Performance

As was shown in the chapter six, other spatial methods did not perform as
well as WDD for the Chang PHI problem with these particular cross sections and
scattering ratio. The rate of convergence for the checkerboard problem can be
seen in figure 7.2 for all the spatial methods currently implemented in DI using a

single discrete ordinates sweep.
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Figure 7.2. DI Convergence rates for different spatial methods on the

checkerboard problem for a single DO sweep.

As can be seen in figure 7.2, SC does not converge for this problem (like
the Chang PHI problem) with one DO sweep. The first spatial moment methods
are slow to converge for tolerance >10"* while WDD converges in the fewest
number of iterations. The performance of the spatial methods for the Chang PHI
problem gave similar results. This performance in figure 7.2 for the DI method
indicated that the checkerboard problems were taxing the DI method using only
one DO sweep per iteration for several spatial methods.

2. Edge Distribution Improvement

The initial attempt at how the number of DO sweeps per iteration
influences the overall performance is shown in figure 7.3. In this case, the
number of discrete ordinate sweeps was increased from one time per iteration to

three times per iteration for each of the four spatial methods.
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Figure 7.3. DI Convergence rates for different spatial methods on the

checkerboard problem for a three DO sweeps.

Figure 7.3 shows several important points. With the additional discrete
ordinate sweeps, SC is now converging slowly as opposed to diverging, and the
first spatial moment methods are converging faster, especially LD. However, the
effect on WDD is small, there is little change in the convergence rate.

This spatial method dependence led to the concept of letting the code
decide how much effort to put into discrete ordinate sweeps, or an adaptive
technique to estimate how many discrete ordinates sweeping cell calculations to
do. For spatial methods that are working well, like WDD, there is little
advantage to doing additional discrete ordinate sweeps. For spatial methods that
are not performing well, like SC, more effort in the discrete ordinates sweeping

cell calculations should help the problem converge quicker. There should be a
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limit to the maximum number of discrete ordinates sweeping cell calculations. A
first estimate of what the maximum should be is based on the results of the
timing analysis. The partial current problem time during an iteration, for the
first spatial moment methods, was about ten times longer than the discrete
ordinates sweeping cell calculations. Thus ten was chosen as the maximum, as it
would at most double the iteration time for the first spatial moment methods.
The adaptive technique used the ratio of the maximum value in the SRD of the

edge distribution ¢ for the current and previous iteration.

Max(SRD({" . ¢'™)
Max(SRD({"™,¢"™))

Number of DO sweeps = Maxvaluex (7.1)

The ratio of the maximum values of the SRD of ¢ should be less than one for a
method that is converging and much less for one that is converging quickly. For
methods that are working well, only one discrete ordinates sweeping calculation is
enough to improve the estimate of ¢ and the ratio should reflect that. Methods
that need additional effort would have more discrete ordinate sweeps up to ten.

The results of the adaptive algorithm are shown in figure 7.4.
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Figure 7.4. DI Convergence rates for different spatial methods on the

checkerboard problem for the adaptive DO sweep technique.

As in the multiple calculations shown in figure 7.3, the adaptive technique
used in figure 7.4 shows similar results with a few key differences. The
performance of the first spatial moment methods, LD and LC, is better,
converging in fewer iterations. Also performance of SC which was slow or even
diverged in the previous two cases, is much improved. The SC method now
converges readily. Again, the improvement of WDD is not significant, it has
been working well previously. The number of iterations need to reach a tolerance

of 107 is shown in table 7.1.
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Table 7.1. Number of DI iterations for the checkerboard problem.

DO Sweep Cell Calculation Technique
Spatial 1x 3x Adaptive
Method
WDD 28 23 21
SC Div >100 57
LD >100 55 35
LC 54 38 29

The improvement in performance for some spatial methods is considerable
for this simple adaptive technique. Another optimization of the technique, or
different choice for the maximum number, may give even better performance.
However, this simple adaptive method is sufficient to show the robustness of the
DI method and the importance of efficiently improving the estimate of ¢ values
for difficult problems.

Table 7.2. Total number of DO sweeps for the checkerboard problem

Number of DO Sweep Calculations
Spatial 1x 3x Adaptive
Method
WDD 28 69 83
SC Div >300 393
LD >100 165 220
LC 54 114 156

Table 7.2 shows the total number of discrete ordinate sweeps done for
each of the different spatial methods. For each case, the total number of discrete

ordinate sweeps is two to three times more. However, these calculations are the
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comparatively inexpensive part of the overall iteration calculation. Timing
analysis shows that setting up and solving the partial current problem is most of
the computational time of an iteration. Improving the estimate of ¢ values
during the among cell calculations is more important than setting up and solving
more partial current problems.

3. Timing Analysis

The maximum number of discrete ordinate sweeps was chosen so as to at
most double the iteration time for the first spatial moment methods. This leads
to the question of what does the additional calculations do to the total time to
solving the problem? The plot of the total time for the DI WDD method
comparing the difference in time as the number of cells increase is shown in figure
7.5.

As can be seen in figure 7.5, the total time is slightly more, even though
the number of discrete ordinate sweeps cell calculations tripled as shown in table
7.2. This is due to the fewer number of total number of iterations shown in table
7.1 which offset the time for the additional discrete ordinate sweeps cell

calculations.
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Figure 7.5. Comparison of total convergence time for the checkerboard
problem with DI using WDD for a single DO sweep and the adaptive DO
sweep technique.
The first spatial moment time is more interesting, as the maximum
number of sweeps was chosen for these methods in particular. The plot of the

total time for the DI LD method comparing the difference in time as the number

of cells increase is shown in figure 7.6.
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Figure 7.6. Comparison of total convergence time for the checkerboard
problem with DI using LD for a single DO sweep and the adaptive DO
sweep technique.

As can be seen in the figure, the total time is consistently less for the
adaptive technique by as much as a factor of two, even though the number of
discrete ordinate sweeps cell calculations doubled as shown in table 7.2. Again,
the decrease in time is due to the fewer number of total iterations, as shown in
table 7.1, which offset the time for the additional discrete ordinate sweeps cell
calculations.

The checkerboard problem demonstrated the robustness of the DI method.
The problem challenged the method initially, as some of the PHI problems did
for synthetic acceleration methods. The checkerboard problem however, showed

a way to both stabilize diverging spatial methods and improve the convergence
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rates methods that were converging slowly. Furthermore, the new technique does
not come at a computational cost penalty, it actually improves the overall speed
of the method for first spatial moment methods.
B. Scattering Ratio Horizontal Interface Problem

Another problem that was tested is also a periodic horizontal interface,
but where the scattering ratio is varied between layers as opposed to the total
cross sections. The spatial mesh is 40 cells by 40 cells with Ax=Ax=1.0. A

description of the problem is shown in figure 7.13 for a total cross section o =1.

o =0

0,=0

0=10
|:| Region A
' R _
o, =1 |:| Region B
Source Region

Figure 7.7. Problem variables for the scattering ratio PHI problem.

«—40 —»

Each region’s scattering ratio are systematically changed and the rates of
convergence are checked for total cross sections of 0.1 , 1.0, and 10.0. The

problem is intended to stress the DI method for the first moment methods by
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creating regions where the current along an ordinate is not continuous and may
produce negative current artifacts.

Spatial Methods

The DI results of the scattering ratio PHI for the total cross section of 0.1
is shown in figure 7.8. All spatial methods converged readily for the scattering
ratio of 1.0 and 0.0 for regions A and B respectively. The various combinations

of scattering ratios are shown later for WDD at this total cross section in table

7.3.
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Figure 7.8. Convergence rates for different spatial methods versus
iterations using S to the scattering ratio PHI problem. Total cross
section is 0.1 and scattering ratios of 1.0 and 0.0 for regions A and B

respectively.
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The results of the scattering ratio PHI for the total cross section of 1.0 is
shown in figure 7.9. Again, all spatial methods converged readily for the
scattering ratio of 1.0 and 0.0 for regions A and B respectively. The various
combinations of scattering ratios are shown later for WDD at this total cross

section in table 7.4.
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Figure 7.9. Convergence rates for different spatial methods versus
iterations using S to the scattering ratio PHI problem. Total cross
section is 1.0 and scattering ratios of 1.0 and 0.0 for regions A and B
respectively.

The results of the scattering ratio PHI for the total cross section of 10.0 is

shown in figure 7.10. As with the previous cases, all spatial methods converged

readily for the scattering ratio of 1.0 and 0.0 for regions A and B respectively.
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The various combinations of scattering ratios are shown later for WDD at this

total cross section in table 7.4.
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Figure 7.10. Convergence rates for different spatial methods versus

iterations using S to the scattering ratio PHI problem. Total cross

section is 10.0 and scattering ratios of 1.0 and 0.0 for regions A and B

respectively.

1. Weighted Diamond Difference Performance

The various combinations of scattering ratios for regions A and B are
shown in table 7.3 for a total cross section of 0.1. For combinations where both
regions that are totally absorbing or with a scattering ratio of 0.0, the DI method
converged in one iteration. As with the previous convergence rates, the values

are determined by a linear regression of the linearized maximum SRD plots

described in chapter six. In general, the convergence rates increase slightly for
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higher scattering ratios, but the overall performance is good. For the other
spatial methods, the convergence rates were similar.

Table 7.3. WDD results for scattering ratio PHI problem with total cross
section o =0.1 as scattering ratio varies.

¢ Region A
¢ Region B 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 00822 | 00772 | 00630 | 0.1501 | 0.1429
0.2 0.00002 | 0.0518 | 01104 | 00622 | 0.1338 | 0.1385
0.4 0.0656 | 0.0759 | 0.0624 | 0.1225 | 0.1666 | 0.1574
0.6 01051 | 00629 | 0.1464 | 01570 | 0.1831 | 0.1957
0.8 00780 | 01335 | 01588 | 0.1660 | 0.1864 | 0.1892
1.0 01110 | 0.1585 | 0.1529 | 0.1449 | 0.1992 | 0.2953

The various combinations of scattering ratios for regions A and B are
shown in table 7.4 for a total cross section of 1.0 and the DI method with WDD.
Again, where both regions that are totally absorbing or with a scattering ratio of
0.0, the DI method converged in one iteration. Again, the convergence rates
increase slightly for higher scattering ratios, but the overall performance is very
good. The convergence rates are slightly better that the previous total cross
section of 0.1 shown in table 7.3. Again, the other spatial methods had similar

performance for this total cross section, the LD method is presented next.
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Table 7.4. WDD results for scattering ratio PHI problem with total cross

section 0 =1.0.

¢ Region A
¢ Region B 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 0.0161 | 0.0643 | 0.0681 | 0.0685 | 0.0657
0.2 0.00004 | 0.0203 | 0.0674 | 0.0643 | 0.0476 | 0.0659
0.4 0.0499 | 0.0506 | 0.0532 | 0.0403 | 0.0439 | 0.0640
0.6 0.0344 | 0.0411 | 00348 | 0.0341 | 00457 | 0.0686
0.8 0.0280 | 0.0315 | 0.0413 | 0.0527 | 0.0542 | 0.0875
1.0 0.0499 | 0.0506 | 0.0595 | 0.0657 | 0.0587 | 0.1046

2. Linear Discontinuous Performance
The various combinations of scattering ratios for regions A and B are shown in
table 7.5 for a total cross section of 1.0 and the DI method with LD. Again,
where both regions that are totally absorbing, the DI method converged in one
iteration.

Table 7.5. LD results for scattering ratio PHI problem with total cross
section 0 =1.0. Shading indicates strictly positive solutions.

¢ Region A
c Region B | 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 | 20606 | 00943 | 0.0049 | 0.0185 | 0.1489
0.2 9.8E-8 | 4.0E-06 | 0.0005 | 0.0858 | 0.0685 | 0.1518
0.4 5.1E7 | 0.0003 | 0.0680 | 0.0906 | 0.0823 | 0.1548
0.6 0.0004 | 0.0772 | 0.1058 | 0.0691 | 0.0968 | 0.1332
0.8 0.1156 | 0.1009 | 0.0738 | 0.1005 | 0.1114 | 0.1773
1.0 00923 | 0.1057 | 0.1022 | 0.1427 | 01825 | 0.2571
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The first moment methods, LD and LC, are not positive methods and can
return negative values for certain problem values. A test was done to see if
either the cell scalar flux or edge currents (and hence distributions) were negative
during any iteration for the solutions presented in table 7.5. The results are
shown in table 7.5, and the positive values are indicated by the shaded cells. The
table shows that the LD method did indeed return negative values for most of
the cases, where the scattering sources less than 0.8. However, for all the
combinations in cross sections, the method was still able to converge in spite of
the spatial method negative artifacts. The DI method is able to tolerate some
negative values as demonstrated by this case.

The various combinations of scattering ratios for regions A and B from
figure 7.10 are shown in table 7.6 for a total cross section of 10.0 and the DI
method with WDD. In general, the convergence rates are constant across the
range of scattering ratios. The overall convergence rates are fast for WDD and
SC had similar performance. However, for this total cross section both the LD
and LC spatial method did not converge for certain scattering ratios. The
negative artifacts returned by these spatial methods prevented the DI method

from working.
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Table 7.6. WDD results for scattering ratio PHI problem with total cross

section 0 =10.0.

¢ Region A
¢ Region B 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 5.9E-06 | 0.0067 | 0.0115 | 0.0079 | 0.0082
0.2 6.5E-6 | 2.3E-06 | 0.0063 | 0.0135 | 0.0143 | 0.0084
0.4 0.0070 | 0.0070 | 0.0195 | 0.0167 | 0.0151 | 0.0085
0.6 0.0126 | 0.0157 | 0.0162 | 0.0162 | 0.0153 | 0.0087
0.8 0.0139 | 0.0149 | 0.0148 | 0.0154 | 0.0168 | 0.0091
1.0 0.0077 | 0.0083 | 0.0080 | 0.0082 | 0.0085 | 0.0067

The scattering ratio periodic horizontal interface problem also
demonstrated the robustness of the positive spatial methods for problems that
have a difference in scattering ratio at cell boundaries. The positive methods
performed well across the entire range of cross section combinations and different
of total cross sections. This problem also highlighted the issue of how the DI
method responds to the negative artifacts created by the first moment methods.
The DI method is able to tolerate some negative values, but other cases will
cause it to fail. An obvious approach, is to refine the mesh in an attempt to keep
the first moment methods positive. Another commonly used approach is to
impose a fix-up and set the negative values to zero. Both these approaches

create issues for the rate of convergence. However, rather than address this issue,
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it is more desirable to devise spatial methods that are strictly positive and not

contain non-physical numerical artifacts.
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VIII. Conclusions and Recommendations

This research showed that the distribution iteration method is a practical
alternative to current methods and suggests possibilities for new approaches to

solving the discrete ordinates system of equations.

A. Conclusions

My objectives have been achieved. The distribution iteration method was
extended to 2-d Cartesian Geometry (objective 1) and demonstrated using
multiple spatial and angular quadratures, including quadratures that correctly
meet diffusion limits (objective 2). Unlike the synthetic acceleration methods, a
different derivation is not required to change spatial methods, as this
demonstrated. The global problem was recast as a finite-volume particle
conservation formulation (objective 3) by using partial currents, rather than
partial-range angular integrals of the directional flux, creating the global partial
current problem. This change was not only shown to converge in fewer
iterations, but also provides a clear methodology for the extension to higher
dimensions. The global problem is defined in terms of only the spatial average of
the two partial currents through each cell face. (Alternative schemes could
include higher spatial moments and/or cell spatial moments as well, but this

would increase the size of the global problem.) Thus, the method minimizes the
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size of the global problem when applied to higher-order linear spatial quadratures
(objective 4).

The distribution iteration method efficiently solved problems where the
synthetic acceleration methods either failed or lost effectiveness; and testing on
more challenging problems also demonstrated the success of the distribution
iteration method (objective 5). Despite the comparisons with synthetic
acceleration methods in this research, the distribution iteration method is not an
acceleration technique.

PARDISO was evaluated (objective 6) and found to be extremely efficient
throughout my testing. It required only a small fraction of the run time of the
code. The red/black scheme maximizes opportunity for parallelization (objective
7a); while the sweep scheme enhances serial performance by requiring fewer cell
calculations (objective 7b). The desirable properties of the method that constitute
the goals for the research have been nearly fully achieved (objective 8):

Robustness — the method has been demonstrated for a broad range of cross
sections and scattering ratios. Convergence was sometimes slow or divergent for
some spatial quadratures but an inner loop with an adaptive number of sweeps
per global solver call (1 to 10) offset this limitation. This is the one area that
needs future work: finding a better sweep scheme for updating the angular

distributions at cell faces.
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Flexibility — Several spatial and angular quadratures were used. These
changed the numbers in the matrices for the cell and global problems, but did
not require changes to the algorithm (for given spatial moments carried).

Parallelizability — The global problem is solved by the PARDISO solver,
which is commercially available for many parallel computing systems. The sweep
method of improving angular distributions at cell faces has limited
parallelizability, but the red/black alternative also demonstrated here is ideal for
parallel computation.

Ezxtensibility — the method could readily be extended to 3d. The algorithm
design is unaffected, only changes in implementation (array dimensions, cell

indexing and translation to sparse array data structure, etc.) are needed.

B. Recommendations

The testing showed that a large portion of the code run time was for the
matrix multiplications required in different steps. Additional time savings are
likely by using optimized (vectorized) matrix multiplication routines and a more
compact data structure within the code.

The sweeping scheme needs to converge faster for some challenging
problems, such as the checkerboard problem. This might be achieved by tuning
the number of sweeps per global solution, by applying a convergence accelerator

to this inner iteration, or by trying variants on exactly how the sweeps are done.
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The distribution iteration is not an accelerator for the source iteration. It
may be improved by applying some acceleration scheme(s); this is an open

question.

161



Appendix A: Linear Discontinuous Equations in Slab Geometry

Equation Section 1

In this section, the relations for the current representation of the linear
discontinuous method in slab geometry are developed. As with the zeroth spatial
moment methods, the usual representation found is in terms of the angular flux.
The equations for the outgoing angular flux ™" in terms of the incoming
angular flux '™, scattering within the cell S*, S* and emissions E*, are
previously derived and presented in the literature (8: 222-223). The linear
discontinuous relation for the edge value is:

p R =y Ay, (A1)

This can be substituted into the zeroth and x moment cell balance

equations:

PRI Left o A gAY , (A.2)
n

3y R 4yt — 2P+ ey X = S %, (A-3)

where the following relation is defined:

a=6+4c+¢2, (A.4)
and
_ 9B (A.5)
|4

The desired relations in the angular flux relation are found using equations (A.1)

through (A.4):
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R 6-2¢ et AX(6+&) AL AXe x , AX(6+¢) EA (A.6)
a aly| aly] al]
A_Bte et AX(B+e) SA_ AX SX 4 AX(3+¢) EA (A7)
a aly aly aly
and ph =3 et X on  AXLHE) ox SAX pa (A.8)
a aly| aly aly
The definition for the current jR'ght | ,u|lﬂ Right and similarly for the left, allows

the transition from an angular flux to a current representation. The equations

for the outgoing quantities are:

Rt _ 6-2¢ jLet AX(6+¢€) on  AXE ox | AX(6+€) A (A.9)
a a a a
A:EjLeﬁ+Ax(3+8)SA_ AX SX+AX(3+€) EA (A.10)
alu| alu| alu| alu|
and l//x :ﬁjl-en 3AX SA AX(].-I—S) SX 3AX EA (All)
alul” " ald] alu| alu|

These are the relationships used in chapter 3.
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Appendix B: Zeroth Spatial Moment Methods Current Equations in
XY-Geometry

Equation Section 2

Step Characteristic Equations
In this section, the relations for the current representation of the step
characteristic method are developed. The usual representation for the cell

relations are in terms of the angular flux. In the scaled rectangular cell as shown

in figure A.1, the equations for the outgoing angular fluxes ¥'® and y"" in

botom and y'™ | scattering within the cell

terms of the incoming angular fluxes y
S", and emissions E*, are previously derived and presented in the

literature (12: 21).

Top

Ay X = aAX

T st _
Left A Right

v

0

0 X = AX
Bottom

Figure B.1. Rectangular cell for zeroth spatial moment methods. Cell

shows problem variables used for the discrete ordinates equations.

The angular flux relations for the cell shown in figure B.1 in the step

characteristic spatial quadrature are:
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T® =aMo(e, )yt + (1-a)e Yy oM+ ||[(1 2)Mo(ey) +aMy(e,)]S* +
(B.1)

A
ﬁ[(l—“)“"o(fﬁ+aM1(ey>]EA,

RO = Mgy ) B+ My (e, ) S+ My ey EA (B.2)
4 O Ey 4 |77| 1 Sy |77| 1 gy , .
Ya= OlMo(gy)l//Leﬁ+[(l OK)MO(Sy)+0{M1(gy)]l/,BOttom
- (B.3)

—[(1—a)M1(ey)+aMz(ey)1sA [(1 a)M;(g,) +aM (e, )]E.

]

Here pand n are the direction cosines along the x and y axis respectively from

-y is the optical thickness in the y direction,

7]

the angular quadrature, &,

E
a=—Y is a parameter for the cell, and Mo(€y), Mi(gy), and My(gy) are the

gX
exponential moment functions (9: 27).

Right _ Right sTop _ Top

=[nly

and | and

The definition for the currents, | | ﬂ|l//
similarly for the left and bottom, allows the transition from angular fluxes to a

current representation. The equations (B.1) through (B.3) in a current

representation are:

n
,Top_| |0,|v| o(ey) i* + (1 a)e Y BN+ AY[(1- )My (£y) + aMy (£,)]1S” +

7 (B.4)
M1~ )Moe,) + aMiy(e, EA
| A A
jRight =Mmo(gy) j B°“°m+|”|—y|v|1(gy)s‘\+|“|—yMl(ey)EA, (B.5)

J
] I

165



Wa :iaMo(gy)jLeft +i[(1_ a)MO(€y)+0!|\/|l(€y)]jBOtt°m+
4 7 (B.6)
|An—3|’[(1— a)lvll(gy)+aM2(gy)]sA+|%3|’[(1— a)M;(g,) + aM (g, )IEA.

These are the relations presented in chapter four.

Weighted Diamond Difference Equations

In the rectangular cell as shown in figure B.1, the equations are again

top right

found for the outgoing angular fluxes, ¢ and w'°", in terms of the incoming

bottom

angular fluxes y and w'", scattering within the cell SA, and emissions E”.

The WDD relations begin with the cell balance equation (3: 215):

y7i - Ui
|A_|(Wnght _wLeft) +u(l//Top —l//BOttom)+O'l//A _ SA+ EA, (B.7)
X Ay

with the weighted diamond difference assumption

1+0* | R 1-o*
l//A — leght + l//Left’ (BS)
2 2
and
1+a¥ 1-a¥
WA:( 5 Jl/lTOp+[ 5 ]WBottom. (B.Q)

The weights, &*and «”, change the relations from a diamond difference

to step spatial quadrature using the following relations:

o = coth(8x) -2 (B.10)
27 &
&

ay:coth(—y)—i. (B.11)
2 £y
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Again, g and 7 are the direction cosines along the x and y axis respectively from

(oA\/ . . : o
the angular quadrature, &, =|—|y is the optical thickness in the y direction,
n
OAX . : : . S .
and &, = ﬁ is the optical thickness in the x direction. These relations are
U

numerically ill conditioned for optically thin or thick cells, but may be

equivalently expressed using exponential moment functions (9: 27) as

X =2p(g,), (B.12)
where:
— Ml(gx)
p(&x) = Mo(e,)’ (B.13)

and similarly for the y component. A new notation for the weights can be

written as:
g =120 (B.14)
2
Sy =21 20E) (B.15)
2
The definition for the currents jR" = | ,u|l// Rot and jTOP = |77|l//TOp allows the
relations in equations (B.7) through (B.9) to be changed to:
A : Bottom
. -6
jTop _ Iy " -, ’ (B.16)
oY
Out
A X i Left
Ri -0
Jnght _ |ﬂ|‘// _ InJ ’ (B.17)
5Out
- Right :Top A A - Left - Bottom
=, +wA:E—+S—+ ] : (B.18)
e Inley o o |uec |nle
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These relations can then be solved in terms of the outgoing variables as shown in

chapter four.
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Appendix C: First Spatial Moment Methods Derivation in XY-

Geometry
Equation Section 3

This appendix contains the complete derivation for the first spatial
moment method presented in chapter four in a general form. Starting with the

current equations using sub-matrices the cell face equations are:

R _ RL=L RR+R RT =T RB+B RL 5L RRR
Jouw =KorlintKorlin+tKop Iin+Kor JintKogbin+Kogbin

(C.1)
-T -B ~ . . .
+K & Oin+ K E80in+ K 8nS™ +K 8 S™ + K 85/ S" +K SeaE™,
=L LL~L LRTR LT =T LB+B LL pL LRpR
Jouw =KorlintKor lintKor JintKor JintKogfin+Kggfin (C.2)
=T ~B = = = ~ '
+K 550in +K 530in + K 5eaS™ + K 55 S* +K 55y SY + K SgaE”,
=T TL7L , W TRYR, o TT5T | o TB7B |, | TL 5t TR 3R
Jou =Korlm+Ko lintKor lintKor Jin tKogfin+Kogbin (C.3)
T -B ~ =~ = ~ ’
+K Op0in +K 350m +K 5aS™ + K e S +K {gy S + K GeaE”,
and
~B BL¥L BR~R BT =T BB~B BL 5L BRR
Jow =KorlintKor lintKor JintKor JintKogfin+Kggbin+ (C.4)

=T -B - ~ ~ .
KShOin+Kas0m +K3aSh +K 85 S +K 8/ SY + K BeaER.
In addition to the outgoing currents, the outgoing edge distributions are:

2R RL~L RRTR RT =T RB~B RL 5L RRR
Gout =Ko Jin+tKo lintKeg IintKar JintKegbin+Kggin

(C.5)
=T -B - — - -
+K 3 0in+K 5 0in+ K S SA+ K 5o S% + K B ST + K RAEA,
—'L - - e - _’L —'R
Oou =K gt Tin+ KGR TR +K gl T+ K 5 Tin + K g5 6in + K g5 6in ©6)
-T -B ~ = = ~ ’
+K g Oin +K 55 0 + K 58S + K 55 S* +K 555" + K GeaE”,
—'T - e - - —’L —'R
O =K T KR +K T T+ KRI KTl ek B

K B+ K BB + K TeaS” +K ho 8% + K Ty S + K ToaEA,
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and
—'B d - b - _’L —'R
90ut:KSlLlllﬁ+KglRJlﬁ"'KHB|TJ|T1+K5FJ|E+K3I§9|n+KS§9|n
-T -B " ~ ~ .
+K 5 Oin+K 55 0in+ K geaS™ +K 5o S +K by SY + K SaE™.
The cell values are:
—A_ L ~L R*R, T =T B ~B Lzt R 3R
¥ =KalntKalintKalnt+Ka lintKafin+K 30in
=T -B " . — .
=X L =L R TR T =T B +B L L R R
¥ =KxlntKxilntKxlintKx Jin+tKxebin+Kxgbin
=T -B . . = ~
+K 200 +K B 00m +K yen S+ K 5 S + K 55y SY +K yeaER,
=Y L~L R +R T =T BB L L R 3R
v =Kyin+tKylntKylintKy lin+Kygbin+Kygbin

-T -B . — — —

—=A —A
S :Zsl// ’
=X —X
S ZZSI// ’
and §Y=Zsy7Y.

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)
(C.13)

(C.14)

Equations (C.12) can be substituted in equation (C.9) to eliminate the

average scattering source which gives.

—A _ . . . . ~L ~R
v =(-KannXs) 1[K,|5\I J|IF1+K§| J|§+KL| J|Tn+K/§| J|?1+KI/399|H+K§99|“

-T -B ~ - =
+K ppOin+K By 0in+ K agS* +K gy SY +K pgaE™].

(C.15)

Letting L ,=(1 =K s, Xs) " equation (C.15) with (C.13) can be substituted in

equation (C.10) to eliminate the x moment scattering sources. This gives:
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v =(-(K xsx +K xsal AK as ) Zg) (K 5 +K xea Zs L aK &y ) i +

(KR +KxsaZsL AKX Tin+ (K3 +K xsa T L aK g ) T +

(K% +K xsaZsL AK ) Tin+ (K kg +K xsa ZsL aK kﬁ)é:_nJr (C.16)
(KR +K xsa ZsL K R0)Bin+ (K kg +K xen Zs L oK hp)8in +
(K %o +K xsaZsL aK Ee)éFnJr(K xsv +K xsa sk aK asy)S" +

(Kxea+ Kxsa Zs LaK aga) EA.

Letting Ly =(1 — (K yo + K yaal 1K as0) Zs) ™ both the average and x
moment angular flux, equations (C.15) and (C.16), are substituted into the y
moment of the angular flux, equation (C.11), with equation (C.14) to eliminate

the y moment scattering source. This gives:

Y
v =(-(Kysy +KysaZsL a(K asy + K asx Zs LxK xsy) +

Kysx ZsLx (K xsy +K xsa ZsL aK asy) Zs) ™

[(Ky +KysaZsL a(K i +K asx ZsLxK %) +Kysx Ts Ly (K +K xsa Zs L aK &) i +
(KG +KysaZsL a(Kx +K ag ZsL kK %) +Kyge ZsLx (KT +K xaa Zs L AK A D TR+
Ky +KysaZsL a(K i +K asc s L xK 3) +Kys TsLx (K3 +K xsa T L aK iy ) Jin +
(K9 +KysaZsL a(K & +K as TsL kK 5) +Kygx TsLx (KK +K xea Ts L AK R ) Tin+
(Kvp+KysaZsL a(K g +K asx ZsL xK g) +Kys ZSLX(Kl)_(Q"'KXSAZSLAK,IEH))é:_n‘F
(KB +KysaZsL (K Ry +K asq TsL xK §o) + Kysx Tl x (K §o +K xea TsL aK R))Bin+
(KTp+KyanZsL alK b +K asc Bl xK ko) +Kyax ZsLx (KXp +K xan T L aK hg)Bin +
(KE+Kysa ZsL aK B +K asq Tl xK $o) + Kysx ZsLx (K 3o +K xea TsL aK 3))Bin+
(Kyea+KysaZsL a(K apa + K asx ZsL xK xga) +
Kysx Zsb x (K xea+ K xsa ZsL aK aga)) EA.

(C.17)
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Let:

Ly =(1=(Kysy +Kysa ZsL a(K asy +K asx ZsL xK xsy)
+Kysx Zsbh x (K xsy +K xea Zs L aK agy))Zs) ™

and writing the following for the first term in equation (C.17):

m\l?l =|—Y(K\I?| +KYSAZSLA(K,I5\I +K asx ZSLXK|>'<|)+

Kysx ZsLx (K +K xsaZsL aK &)).
This same convention is followed for the remaining terms and allows the updated

equation:

- L +L R ¥R T =T BB L 5L R 3R
Wy =My Jjn+My i+ My i+ My Jip +MypBin + My Oin (C.18)
~T ~B ~ '
+m$90|n+m$99|n+mYEAEA.

Equation (C.18) is substituted into equation (C.16) to eliminate the y moment of

the angular flux:

—X -
v =Lx[K I>'<| +KXSAZSLAK,LAI +(K xsv+KXSAZsLAKA9()Zsm\|?|)J|Iﬁ+

(KR +KxsaZsL aK R + (K xsy +K xsa ZsL aK asy) Zsmi) T3 +
(K +K xsaZsL aK iy + (K xsy +K xsa ZsL aK asy) Zsmyp ) Tin +
(KR +K xsaZsk AK R + (K xsy +K xsa Zs L aAK asy) Zsmy) Jin +
(K o+ K xsa ZsL K 5+ (K xy +K xea ZsL aK asy) Zsmbp)0m + (C.19)
(KRp+K xsa ZsL aK R+ (K xy +K xea ZsL aK asy) EsmEy)fim +
(KT +K xen Zs L A g + (K oy +K xsa Zs L aK asy) EsMlp)0in +
(KR +KxsaZsL aK 2+ (K xsy +K xsa Zs L K A&()ZSmEH)éEW"'

(K xeat K xsa Zsk aK aza+ (K xay +K xsa ZsL aK asy) ZsMyea) EAL.

Let:
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ml;<l =L, (K ; +K i 2ZsL WK /Lu +(K s +Kysn ZsL K A&()Zsm;) and follow
the convention is for the remaining terms. This allows equation (C.19) to be

written:

= L vL R ¥R T =T B +B L L R R
W =My Jin My Jin My Jin+ My Jin +Myefin+Myy6in (C.20)
T 2T B 3B = A '

Both equations (C.18) and (C.20) can be substituted into back into equation
(C.15) to eliminate the higher order scattering moments. The average angular

flux is:

v = (LK +Kasx ZsM +Kasy Zsmy ) in +

(LAKR +Kasc ZsmY +Kasy Zsmy ) jin +

(L AKly +K s MYy +Kasy Zsmy ) in+

(L AK R +Kasc Zsmyy +Kasy Zsmy) jin +

(L AK 3+ K asx Zs Mg + K asy Zsm\l?e)é:_nJr (C.21)
(L AK R+ K asx ZsM %y + K asy Zsmse)éﬁﬁ

(L AK pg + K asx ZsMyp + K asy T m\Tm)élTn +

(L AK R+ K asx ZsM % + K psy Zsm\?e)g’:an

(L AK pgn + K asq ZsMyen+ K asy ZsMyea) EX.

Let m; =(L K5 +K, o Zmy +K o XMy ), and follow the same

convention for the remaining terms. The average angular flux is:

- L L R +R T =T B +B L pL R 3R
W o=Mp fin+Ma Jin+ My Jin+Ma Jin +Magfin+MpayBin (C.22)
=T -B . '
+M pyBin+M3,Oin+m sz aE™.
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Now equations (C.22), (C.20) and (C.18) with equations (C.12) through (C.14)

can be substituted into equation (C.1) to eliminate the scattering sources. This

gives:

“R RL R L R L R L+l
Jou = (Kor +KosaZsmg +Kogx LsMy; +Kosy ZsMyp) jin +

(K RR

KE
KE
(KR
(KR

+K s ZsMp +KGsx ZsM +K Gsy Zsmyy ) Tfn +

[ +K G ZsMpy +KGex ZsMy +K Gy Zsmy ) jin +

P +KosaZsMa +Kdsx Zsmy +Kdsy Zsmi)Jfn+

5+ K Ssa Zs Mg +K G ZsmxaJFKOS(Zsng)g’InJF (C.23)

5+ K Ssa ZsMiag +K 8sx Zsmxe+Kosyzsm\(e)é’lrﬁr

(KOH+KOSAZSmAH+KOS>( 2smxe*'Koswfzsmw)éln‘|r

(K&

R B R B R B 5B
+KosaZsMag +Kosx ZsMxg + Kasy LsMyg)Oin+

(K Sza+ K Bsa ZsMaga + K Gsx ZsMyea + K Bsy ZsMyga) EX

Let m& =(K

gll_‘i‘KgSAZSm/lzd +Kgsx Zsml)_q +KSSYZSmIY_|) and use the same

convention for the remaining terms in equation (C.23). The same process used to

produce equation (C.23) is applied to equations (C.2) through (C.8). The result is

the equations for the sub-matrices presented in chapter four:

Jom —m0| J|n+m0| J|n+m0| Jin t Mg J|n+m009|n+moa‘9ln

RL~L RRTR RT =T RB~B

(C.24)
LR+R LT =T LB~B

JOut —m0| Jln+mOI J|n+m0| Jin t Mgy J|n+m0¢99|n+m09‘9|n (C.25)
TLL TR+R TB+B

Jom —m0| J|n+m0| J|n+m0| J|n+m0| J|n+moe‘9|n+m ‘9ln (C.26)

= A
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~B BL~L BR~R BT =T BB~B BL 5L BRR
Jout =My Jin+ Moy Jin + Mgy Jin +Mey Jin + Megfin + My in

~T -B _
+mM5Oin +MESBin+MEAE”,

~R RL+L RR™R RT =T RB~B RL 5L RRR
Gout =My Jin+ Mg Jin+ Mgy Jin+Mgp” Jjn +Mgg Bin+ Mgy Oin

RT 5T RB B R =A
+m€69|n+m960|n+m9&E y
é'— _ o LLTL LRTR LT~T LB¥B LLéL LRéR
out =My Jijn + Mg Jin T Mg Jin+ Mg Jjn +Mgg &in+ Mgy Gin
LT 3T LB ;B L gA

3 TL-L TRTR | TT=T TB*B |, TLAE TR5R
Bout =Mgy Jin+ Mgy Jin+ Mgy Jin+Mgyr Jin+Mggfin+Mgybin

v BB T EA
and

BRTR BT =T BB~+B L

-B BL~L B BR3R
Oout =Mgy Jin+ Mgy Jin + Mgy Jin+ Mgy Jin+Mgg Oin

-L
0|n+m99

~T -B _
+mMg; Oin+ M55 Oin+MoeaE™.
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Appendix D: First Spatial Moment Methods Current equations in
XY-Geometry

Equation Section 4

Linear Characteristic Equations

In this section, the relations for the current representation of the linear
characteristic method are developed. As with the zeroth spatial moment
methods, the usual representation found is in terms of the angular flux. In the
rectangular cell as shown in figure D.1, the equations for the outgoing angular
fluxes and edge spatial moments w'® | y"™ @' and 6" in terms of the

: : : bott left bott
incoming angular fluxes and edge spatial moments " |, &, "

and
| eft . R A X Y P A .
0" scattering within the cell S™, S and S’ ,and emissions, E™, are previously

derived and presented in the literature. (12: 23)

Top
Ay X = arAX
yT shS* g ,
Left vty Right
0
0 X —> AX
Bottom

Figure D.1. Rectangular cell for first spatial moment methods. Cell

shows problem variables used for solving the discrete ordinates equations.
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For the rectangular cell as shown in figure D.1, the equations for the
outgoing angular fluxes in terms of the incoming angular fluxes and edge

distributions, scattering within the cell and emissions are:

WTop — aMo(gy)WLeﬁ +(1- a)e—EyWBottom+

o[2M,(ey) - Mo(gy)]a'-erft — a(1-a)e S gBottom
Ay
7]
Ay
7]
Ay
7]
Ay

]

p R = Mo(e, )y "M +[(L- 20)Mo(ey) + 20 ()]0 %" +
Yy
U
Ay
U
Ay
U

[(A-a)Mq(ey) + oMy (e,)]S* +
o ~(1- )Mo (ey) + (1= 22)My(g,) + aM,(e,)]S™ + (D-1)
[-(A-a)Mg(e,) +(2-3a)My(ey) + aM,(e,)]S" +

[A-a)Mq(e,) +aMy(e,)]EA,

1(e,)S"+

[(1-22)My(e,) + 2aM 5 (£,)]S* + (D.2)

[Ma(g,)—My(e,)1S" +-Y

|77|y M, B
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0" =3a(2a-DMq(e,) — 2oMy (e )y +3a(1- a)e Yy Bomm +
30[(1- 22)Mg(&y) + (6 — 2)My (£,) — 4aM,(£,)]0"" + (1-3a + 20%)e Y 6P"™ +

A3’305[(1 AIMo(e,) + (2o —)Mj () - aM (e, )] +

|A3|’[(1 30+20%)Mo(e,) + (3 —62%)My(g,) + 6°M o (e,) - 20°My (e ]S + (D3

| |305[ 1-a)Mg(ey) + (3—4x)My(gy) - (2-5)M 5 (€y) — ZaM3(€y)]SY

|A’7_T[(1— 2)Mo(ey) +aMy(e,)]E,

gRight _ Jm 0(gy) -2M 1(gy)]l//BOtt0m +
(- 22)M(e,) + (6a— My (£,) — 4aM (£,)]0%"" +

| |qM1(8y) MZ(gy)]SA
| |3[(1 20)M(e,) - (1- 4a)M,(e,) — 2aM4(£,)]S™ + (D.4)

[ 3My(£y)+6My(gy) —2M3(e, ]S +

| | :{Ml(gy) M2(€y)]EA

yh=aM 1(<9y)lﬂl'eft +[(1-2)Mq(ey) +aM;(g,)ly """ +
0{[ M Z(Sy) - Ml(gy)]el_eft + 0{[—(1— 0!) M 0(8y) + (1— 20() Ml(gy) +aM 2(£y)]980tt0m +
Ay

H[(1— )M (g,) +aM,(e,)]S" +

| |a[ (L-)My(ey) +(1-2a)My(g,) + M (e, )]S* + (D.5)

| |[ (- )My (e,) + (1 22)M,(e,) + aM3(e, IS +

[(1 a)M;(g,) +aMy(g))]E?,
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> =3a](2a-)My(e,) - 20M (e, )y St +
3of(1- )M g(e,) + (2 ~DMy(e,) — aM (e, )Ty B +
30f(1- 22)My(e,) — (4o —DM,(e,) — 2aM3(£, )]0 +
[(1-3ar+207) Mo (ey) + (3ot 60" M () + 60°M 5 () — 20 Mg (e )]0 +

Y 3ol (1- @) My (e,) + (22 ~DM () - aMg(e,)|S* +

|77| (D.6)

IAn_yl[(l—sm2a3>M1(ey)+<3a—6a3)M2(ey>+6a3Ms<8y>—2a3M4<8y>15X *

IAn_ylsa[—(l_ )My (ey) +(2-30)Ma(zy) - (1-30)M(2y) ~aM4 (e, )IS" +

@—Tsa[(l—a)wey)+(2a—1)M2<ey>—aM3(ey)]EA,

p" =3o[M,(£,)~ M (el +

JA-)Mg(gy) + (B —2My(gy) - 20M Z(gy)]l//Bottom 4

A —-3My(€y) +6M4(gy) - 2M z(gy)]gLeft +

3o[-(1- )My (e,) + (3—4a)My(e,) + (5a—2)M,(g,) — 2aM (e, )]0°™ +

Y F1-2)My(e,) + 2 -DMy(e,) - aMy(e, 1S +

7] (D.7)

|A7y|3a[—(1_ My (£y) +(2-30)My(ey) - (1-30)Ma(y) - oMy (£, )IS™ +

I%yl[—sa_ a)My(ey)+(6-90)M,(&,) — (2-8a)Mj(e,) — 20M 4 (e, )]S" +

%q(l— Ol)l\/ll(gy) +(2a-)M 2(83’) N aMg(Sy)] E”,

For these relations, g and 77 are the direction cosines along the x and y

axis respectively from the angular quadrature, &, =——= is the optical thickness in

oAy
71
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&
the y direction, a=—2 is a parameter for the cell, and Mo(ey) s Ma(ey), My(ey),
8X
Ms(ey) , and My(gy) are the exponential moment functions (11: 27).
Right Right

Top _ Top

The definition for the currents | = |,u|W ,and | |77|l// and
similarly for the left and bottom, allows the transition from angular fluxes to a
current representation. For the first spatial moment methods however, the edge
spatial moments must also be transformed, as they now represent the spatial
moment of the current, not the angular flux. This is done in the same manner as

the currents @9 :| ,u|0Right and 7P :|77| 0T°p, although the notation is the same

for both. The equations (D.1) through (D.7) in a current representation are:
jTOD :QaMo(é‘y) J Left +(1_ a)e_gy J Bottom+
U

T o12My(e,) - Mo(e, 10" — a(1- a)e vaBoom 4
U

AY[(1- )M (e,) + oM (g,)]S* + (D.8)
Ayol-(1- )Mo (e,) + (1- 22)My(e,) + aM,(e,)]S +
AY[-(1- )M (&) +(2-3)My(e,) +aM,(e,)]SY +
AY[(1-2)Mq(e,) + aM;(g,)]EA,
O =L Mo(ey) 1P+ (1= 20)Mo(e,) + 2aMa(e,)10° "+
HY M (e,)SP +
U (D.9)

”TAV[(l— 20)My(e,) +20M (£, )]S* +

A A
”Ty[Mz(ey)—Ml(ey)]sY +“Ty My(e,)EA,
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o' = %305[(20!—1) Mo(ey) —20My ()] " +3ar(1-a)e ™ jBM +
%30{[(1— 20)Mg(e,) + (60— 2)My(e,) — 4aM 5 (£,)]0" +

(1-3a+20%)e “ygBottom .

Ay3o](1-a)My(ey) + (2o -1 M, (ey) —aMy(ey)] Sh+ (D.10)
AY[(1-30r + 20°)Mg(g,) + B —6ar*) My (e,) + 6°M (&) — 20°M (e, )] S™ +
Ay3a]—(1- a)Mg(gy) + (3—4a)My(e,) — (2-5)M 5 (e,) — 2aM3(£,)]S" +

AY[(1- )Mo (ey) + oMy (eI E?,

eRight :%qMO(gy)_ZMl(gy)] J Bottom+
%:{(l— 20€)|V|0(8y)+(60!—Z)Ml(gy)_4a|\/|2(8y)]980ttom+
/JTquMl(gy)_ M2(€y)]SA+
A (D.11)
'uTyfﬂ[(l—Za)Ml(ey)—(1—4a)M2(£y)—2aM3(gy)]Sx +

”TAV[—:sM ((£,)+6M(£,) —2M4(e,)IS' +

EqMe,) - Mol EA
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1 . 1 .
yh= ;aMl(sy) jret +5[(1— a)Mo(gy) +aMy(e,)] 2 +

L oMa(e) M, 1o+

%[—(1— a)Mo(ey) +(1-20)M;(gy) +aM,(gy)] gBottom __

l-cMy(e,) +aMa(e 1S + (D.12)

11— o)My(e,) + (1- 20)M(e,) + aM (e, )] +

%[—(1— DIMy(,) + (- 20)M 5 (£,) + aMy(e, ]S +

%[(1— )My (gy)+aM (e, )]E”,

=%:saz[(zw—lw/ll(ey)—2ocM2<sy)]jLe“t ¥

%304(1— a)My(e,) + (2 —)My(g,) - aM,(e,)] j " +

%305[(1— 20)My () - (4 ~DM(&,) — 2aM (e, )6 +

%[(1—30(+ 20°)Mo(e,) + (30— 60 )My (e,) +

6°M,(e,) — 20°M(£,)]605"™ +

A3 a)My(e,) + (2o —DM(e,) - aMs(ey IS  +

%[(1—30” 209 My(e,) + (Bar—60°IM 5 (£,) + 60 M(e,) — 20°M 4 (2, )]S* +

Y321 )My (ey) + (2-3a)M(e,) — (1-30) My(e,) - aM 4(e,)]S” +

AY3% 11— o) My(e,) + (2a~DM,(e,) — aM (e, JEA, (D.13)
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v :%[Ml(sy) M) e+

g[(l— )M 0(€y) + (B —2) Ml(gy) —2aM 2(8y)] i Bottom __

1
;a[—SMO(sy) +6My(e,) —2M (g, )10 +

%[—(l— )Mo(ey) +(3—4a)M () + (5 —2)My(&y) - 2aM 3(8y)]980tt0m +

%’3[(1— BIMy(£,)+(2a—DMy(e,) - aMy(e,)|SP +

%[—(1— 2)My(ey) +(2-32)M5(ey) - (1-3)Mg(ey) — aM4(,)]S” +

%[—3(1— a)My(gy) +(6-9)M () — (2—8a)M3(ey) —20M 4 (£y)] S

AY3
Ty[(l— )My (gy) + (2a-)M,(ey) - aM(e,)]EA (D.14)

These are the relations used in chapter four for substitution into the first
spatial moment method.

Linear Discontinuous Equations

In this section, the relations for the current representation of the linear
discontinuous method are developed. As with the zeroth spatial moment
methods, the usual representation found is in terms of the angular flux. In the
rectangular cell as shown in figure D.1, the equations for the outgoing angular
fluxes and edge spatial moments w'® | " 6 and 6" in terms of the

bottom left bottom
, 6

incoming angular fluxes and edge spatial moments ¥ , W and

0" scattering within the cell SA7 sX , s’ ,and emissions EA, are previously
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derived and presented in the literature (4: 289-290). The linear discontinuous

relations for the edge values are:

yR =yt (D.15)

y =yt ry, (D.16)

ORI =y, (D.17)

and 0™ =y*. (D.18)

These can be substituted into the zeroth, x and y moment cell balance

equations:
ar(y RO ety | (4, TOP _ Bottomy SyW _gA Ay , (D.19)
(NI 4yt 2y ) 4 (6T _gBottom)+€yl//X _gX %, (D.20)
3y TOP 1y BOMOM_ o, ) 4 (RO _eLeft)_i_gyWY _ SY%, (D.21)

where the following relations are defined:

392
a=l+a+ey+ + ,

4+gy l+30!+8y
b=4+¢,, (D.22)
c=1+3a+gy.

After some algebra, the cell values are:

31//Bottom _plet _ SY a(&//Left _ gBottom _ Ay SX)

In|

b c
a

Bottom +

AisAJrW oyt

y
wh = 7]

(D.23)
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ﬂsx +930ttom+30!(l//A—WLeﬁ)

. , (D.24)
c
and
AY v | gleft 3P -y Botom)
¥ = (D.25)

b

The desired relations in the angular flux relation are found using equations

(D.15) through (D.18) with equations (D.23) through (D.25):

3+b)a 3(3B+ba 9+6b—3ab+b? —3+(a=1b
l//Topz[( ab) + (ab) ]WLeft_'_( ; )WBottom_'_( (2 ) )eLeft_
C ab ab
a(b+3) Jottom , AY(D+3) oA Aya(b+3) ox | Ay(=3+(a-1b)
— 70 + S S* + 5
abc abjp] abcl| ab®|7

S'+ (D.26)

Right _ [305(C— a(2:+3a) N 05(0+305)]WLeft L (3+Db)(c+3a) y Botom _ (C+32) et
ac ac abc abc
(ac—a(C+32)) yeattom , AY(C+3a) a  Ay(ac—a(c+3a))
2 2
ac acln| ac”|n|
Ay(c+3a)u v Ay(Cc+32)
abc|r| acln|
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S* - (D.27)

EA

+
(D.28)

grop — (30 _3(@c—3a)y 1o H3+D) povom_ 3 et , (8030 oo
ac 2 abc abc ac

Ay3a A, Ay(ac—3a2) x _Ay3o SN Ay3o
acl] ac?| abely| ~ acfy)

EA

gRight :[%+%]WLeft + 9+3:b;33bl//80ttom+ (—::tr);lb) gLeft _
C

abc ably|~  abcly] ab? |1 ably]

(D.29)
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A_o 3o Left+(3+b) l//Bottom_igLeﬂ_ﬁgBottom

=[—+== +
v [a ac]l// ab ab ac
A Ayor A A (D-30)
Y gA_OYX ox __AY gy &Y EA
aln| -~ acly| - abln| ]
30° 3o(ac-3c 33+b)er
l//X =[ _ ( - )]l//Left + ( ) l//Bottom_
ac ac abc
. 2
abc ac
a2
Ay3ar oA AY(aCZ 37) ox _ Ay3ar oy | Ay3er EA
acl] ac®|r| abepy| — acly]
I//Y :[%+9_05]WLeft + (9+3b—233b) WBottom+ (_3+2ab) pleft _ﬂeBottom_i_
ab abc ab ab abc D 39
Ay3 oa_ Ay3ax ox  Ay(@b-3) ov  Ay3ar A (D.32)
ablp| ~  abcly] ab’|r] acf7]
The definition for the currents jRight = | ,u|wRight , and jTOp = |77| l//TOp and similarly

for the left and bottom, allows the transition from an angular flux to a current
representation. As with the LC method, the edge spatial moments must also be

transformed, as they now represent the spatial moment of the current, not the
angular flux. This is done in the same manner as the currents gRot — |,u|t9Right ,
and 6™ = |77| o™ although the notation is the same for both. The equations for

the outgoing quantities are:

jTop — (B+b)B+c)an . et 4 (9+6b—3ab+b?) i Bottom __ (=3+(a-Db) gleft _

abc] | ab? ab?| |
a(0+3) pporom | AY(D+3 ga_ Aya(d+3) ox  AY(Br@D) v, gy 5y
abc ab abc ’
Ay(b+3) EA
ab )
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Right _ 05(02"‘90“‘ c(3-3a+3a)) . Lt + (3+ b)(C+305)|,U| . Bottom _ (c+3) gLet o

. ac? : abcr| abc
(30—05(02"' 3ar)) || gBottom Ay(c+30)|y| SA, AY(aC—Of(ZC+305))ﬂ SX _ (D.34)
ac”|] acr| ac’n
Ay(c+3a) 4] oy , Ay(c+3a)|u| A
abclr| ac|n|
gToP — 3o(-ac+(3+ C)Ot)|77| Leit | A(B+h) . Bottom _
- 2 J + J
ac”|y| abc
30!|77| gleft | (ac_?;aZ) gBottom (D.35)
abc| | ac
AY3t Ay(ac—23a2) X A3 o A8 a
ac ac C ac
gRa _ 30(3+C) . e _ 3(-3+ (a_l)b)|,u| i Bottom __ (-3+ab) gt _
" ac o’y ab’
3ol goonam , 3V g 3AVOLH| o (D.36)
abc|r| ab|r| abclr|
Ay(abz— Iy o , 30yl £t
ab®[r] ablz|
A_ (3+C) et (3+b) .gottom 1 gleft _ & gBottom
| bl b
Ay ca_A¥x ox _ AY oy Ay EA
alpl ~ aclp ablg| aly
l//X _ 3a(-ac+(3+0)a) . et + 3(3+b)a . Bottom
ac®|u| abc)|
3o et (30—23052) gBottom (D.38)
abely ac?|r|
2
Ay3a SA+ Ay(a02—3a )SX _ Ay3a SY + Ay3a EA,
aclr| ac?|y] abclp| ~  acly]
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(9+3b—3ab) . gottom , (—3+ab) gleft _ 3 gBottom

v _3(3+0) e J 3o
abel 4| ab’}r ab” || abelr D.39)
AY3 ca_ AySa ox AY(@D-3) oy Ay3ar _a '
aby| ~ abelr] ab? [ acly]

These are the relationships used in chapter four.
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Appendix E: First Spatial Moment Methods Derivation in Slab

Geometry

Equation Section 5

This appendix contains the complete derivation for the first spatial
moment method presented in chapter three in a general form. The first spatial
moment methods need several additional equations to account for the
contribution to the flux from the first moment of the scattering source. The

relations described for the zeroth spatial moment methods in chapter three

become:
7O =K o 7" +K 0eaS? + K 0o SX +K opaE R (E.1)
R =K g 0" +K penSP+K q S +K aeaER, (E.2)
I =K 7"+ K yenSA K 3o % +K yenE (E.3)
SaEINTa (E.4)
and
SX =3 w*. (E.5)

Again, Ko, Kosa, Kogas Kas Kasas Kases Kaga, Ky Kxsa, Kixsc, and
K xga represent diagonal matrices of transport coefficients that define the
relations of the inputs of a cell to the calculated quantity. For example K y
represents the contribution to the first moment flux from the incoming flux and
25 is the scattering matrix described in chapter three. These matrices are the

sub-matrices used in the general derivation shown in chapter three.
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Equations (E.4) can be substituted into equation (E.2) to eliminate the
average scatter:
7= (1 —K asa Zs) K g 7" +K as S* +K paBA]. (E.6)
As a shorthand notation, let L o =(1 —K aqa2.g) ™. This result can be substituted
into equation (E.3) with (E.5) to eliminate both the x moment of scatter and the

average scatter:
7 = (1 = (K xsx Zs+K asx TsL aK asc Ts)) %
—in
[(Kx +Kasx ZsLaK a)y + (E.7)

—A
(Kxeat K asx ZsL aAK aea)E 1.

Let:
Ly =( = (K xsx Zs+K asx sk aK asx Zs)) (E.8)
My =(Kx +Kasx Zsb AK ar) (E.9)

and
Myea = (K xea + K ask ZsL aAK aga) (E.10)

are used for equation (E.7). Equation (E.7) is now substituted back into

equation (E.6) to eliminate the x moment of scatter:

—

A =L Al(K o +K pasc Zs L xmy )" +

§ (E.11)
(K aga+ K asc ZsL xMyea) EAL.

Let:
Mp =K +Kasx ZsbxMy ), (E.12)

and
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M aga = (K aga +K asc ZsL xMyen) (E.13)
are used for equation (E.11). Both equations (E.7) and (E.11) can be substituted
in equation (E.1) to eliminate the scattering terms. This gives the outgoing
detailed flow for a cell in terms of the incoming detailed flow and emissions in a

cell:

l/70u’t :(KOI +KOSAZSLAmA| +KOSX ZSLXmXI )l/_iin

) (E.14)
+(K oga K osa Zs L AMaga + K osx Zs L xMyea) E™
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