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Abstract 

 The objective of this research effort was to demonstrate the path to continuous wave, coherent 

beam combination through stimulated Brillouin scattering phase conjugation in optical fiber.  This work 

experimentally determined the fiber parameters necessary for phase conjugation in step-index optical fiber.  

Continuous wave phase conjugation using stimulated Brillouin scattering in step-index fibers was achieved 

for the first time with a fidelity of 0.8 and a threshold power of 16 W in a 15-m fiber with 0.13 NA.  A 

fidelity of 0.8 was also achieved using 40 m of fiber with 0.06-NA and a threshold power of 15 W.  The 

fidelity of phase conjugation was found to decline by ~45% in an additional 20 m of 0.13-NA fiber and by 

~15% in 20 m of the 0.06-NA fiber.  The effective Brillouin gain coefficient of the multimode fibers was 

found to vary directly with fidelity.  A new technique using interference to measure fidelity was tested, and 

stimulated Brillouin scattering in a 2.5-km, graded-index fiber was found to produce beam cleanup to the 

fundamental fiber mode of the fiber with fidelity less than 0.1.  This work demonstrated that coherent beam 

combining via continuous wave phase conjugation in optical fiber is achievable.   
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STIMULATED BRILLOUIN SCATTERING PHASE 
CONJUGATION IN FIBER OPTIC WAVEGUIDES 

 

1. Introduction 

1.1. Motivation  

 The laser is in use in a wide variety of applications on the battlefield and 

commercially.  Automakers employ high-power lasers for precision welding, and it is an 

instrumental tool in medicine, communications, and data storage.  Laser-guided 

munitions have led a revolution in warfare, resulting in the capability to attack multiple 

targets per sortie instead of multiple sorties per target.[1]     

 Lasers are being developed for an expanded role in warfare.  For ballistic missile 

defense, advanced laser radar devices are being developed with such precision that the 

capability to discriminate between warheads and decoys midcourse is becoming a 

reality.[2]  For this purpose, high power lasers with ultra-narrow bandwidth are needed 

for long range and precision tracking.  This same technology is being developed for the 

detection of gases, aerosols, and wind velocity measurements.[3]  Using laser radar 

systems, chemical and biological defenses are being improved and dangerous wind 

conditions at airports can be detected.   

 The laser is also being developed as a weapon with the promise of speed-of-light 

delivery and unparalleled precision.  The most notable aircraft platforms are the 

1 



Advanced Tactical Laser (ATL) and the Airborne Laser (ABL).[4]  The ATL is a 

program to deploy a “kilowatt class” chemical laser on a C-130H Gunship for precision 

strike purposes.  The ABL program is developing a “megawatt class” chemical laser on a 

747 designed to destroy ballistic missiles in boost phase.  While chemical lasers’ power is 

unmatched, the method of producing the power is through a chemical reaction involving 

high purity basic hydrogen peroxide and chlorine.  The logistics burden of chemical 

lasers has prompted the DoD to develop solid-state lasers for high-power applications 

such as the 100 kW Joint High Power Solid-State Laser program.       

 For the success of laser weapons, the high power laser is needed in addition to 

advanced beam control and atmospheric compensation methods.  Propagation of the laser 

through the atmosphere can severely degrade the beam quality of the laser and result in a 

much shorter kill range.  Deformable optics are being used for atmospheric compensation 

on ground-based telescopes for space object identification and tracking.[5]  The Starfire 

Optical Range in Albuquerque NM employs a laser to generate a fluorescent “star” at 90 

km above ground level.  Wavefront sensors detect the aberrations from this source and 

deformable optics are used to compensate these aberrations.  With atmospheric 

aberrations reduced, the telescope provides a clear view of space objects.   

 The correction of aberrations is also necessary to generate high powers in bulk 

solid-state lasers.  One approach to generating high power in a solid-state laser is with a 

master oscillator followed by power amplifiers (MOPA).  Non-uniform heating in the 

amplifying medium causes aberrations that limit the beam quality of these laser systems.  

By using wavefront reversal after the first pass through the amplifiers, a second pass 

through the amplifiers corrects the beam quality rather than causing further aberrations.  

2 



Phase conjugation via stimulated Brillouin scattering (SBS) has been used for generating 

wavefront reversal.[6]  In a similar application, SBS has been used for atmospheric 

compensation using a retroreflector in laboratory tests which demonstrated high precision 

tracking as well as phase conjugation.[7]    

 To improve the beam quality of solid-state lasers, high-power systems have been 

constructed using fiber-optic lasers and amplifiers.  Optical fibers can be designed with 

inherently good beam quality and excellent thermal management, and powers over 2 kW 

have been demonstrated.[8]  While there are predictions that single-element power 

scaling can exceed 10 kW before material constraints limit the power,[9] combining 

multiple amplifier channels into a single beam could allow orders of magnitude power 

increases.   

 The elements can be combined using coherent methods or incoherent methods.  

Spectral beam combining is one promising example of incoherent beam combining.[10]  

In the reverse process of splitting a beam into spectral components using a grating, 

multiple beams are incident on a grating from different angles with slightly different 

frequencies.  The result is a single spatial beam comprised of multiple frequencies.  

Incoherent beam combining adds the irradiance of each beam to result in an overall 

irradiance that is proportional to the number of beams.  In contrast, coherent beam 

combining locks the phase, frequency, and polarization of each beamlet such that the 

electric fields of each beam add constructively.  This results in peak irradiance that is 

proportional to the number of beams squared.      

 The first step to coherent beam combination is generating a high-power single-

element beam that is single-frequency and single-polarization.  For fiber lasers, the 
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limitation on single-frequency power from a single element is currently stimulated 

Brillouin scattering in fiber amplifiers.[11]  When the irradiance exceeds a critical value 

in a given length of fiber, a density wave in the material forms and acts as a moving 

Bragg grating to reflect the incident beam.  This process effectively clamps the power 

transmission of the fiber.  The highest reported single-frequency fiber amplifier achieved 

511 W.[12]   

 Coherent beam combining requires that the phase and polarization of each 

beamlet is matched to within a fraction of a wavelength.  Typically, the optical path 

length of each beamlet must be controlled due to dynamic fluctuations caused by heating 

and vibrations.[10]  One method of locking the phases of each beamlet is to generate a 

phase conjugate reflection and propagate the beamlets back through the amplifiers in a 

second pass.[13]  Under certain circumstances, the beam reflected by SBS is the phase-

conjugate of the incident beam.  Therefore, stimulated Brillouin scattering may limit the 

power achievable through a single beam, but it also provides a means of coherently 

combining multiple beams.                

1.2. Overview 

 The objective of this research effort is to demonstrate the path to cw coherent 

beam combination through SBS phase conjugation in optical fiber.  The theoretical 

background is presented in Chapter 2, starting with the physics of nonlinear optics.  

Stimulated Brillouin scattering is shown to arise from specific conditions of nonlinear 

optics, and the chapter concludes with a study of SBS phase conjugation.  Relevant 

experimental work in SBS phase conjugation is reviewed in Chapter 3.  This review of 

the literature traces the achievements from the first observation of SBS in waveguides in 
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1972 through the experimental pulsed laser systems that have successfully used SBS 

phase conjugation to achieve higher pulse-power, to the current challenge of avoiding 

SBS in high power fiber amplifiers.  Particular emphasis is placed on demonstrations of 

SBS phase conjugation, the degree of phase conjugation (conjugation fidelity), and the 

irradiance required for SBS to occur under various conditions and in a variety of 

materials.  The chapter concludes with a review of techniques in coherent beam 

combining.   

Phase conjugation via SBS in optical fiber had not been demonstrated using a cw 

signal beam prior to this work.  Continuous operation represents the limiting case of the 

lowest possible peak power with the highest average power, which is desired for use in 

weapons applications where the goal is to apply the most power onto a target.  CW phase 

conjugation is preferred over pulsed systems for combining fiber amplifiers because the 

small cross-sectional area of fibers is prone to damage from high pulse powers.  Since 

SBS threshold requires high irradiance, phase conjugation via SBS with cw operation 

presents the greatest challenge in terms of average power required.   

 One of the main goals of this research effort is to observe a trend in conjugation 

fidelity as a function of fiber length.  The trend data regarding phase-conjugation fidelity 

as a function of fiber length is needed to show the power and beam quality necessary to 

achieve high-fidelity phase conjugation.  Furthermore, this data is very useful for power 

and efficiency considerations in laser system design.  For example, a fidelity of 0.8 may 

be an acceptable trade over a fidelity of 0.98 if it results in a 90% decrease in SBS 

threshold with a similar decrease in irradiance-induced damage.  The trend in fidelity 

with fiber length was measured using moderately multimode silicate fiber and a high-
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power, cw signal beam, and is presented in Chapter 6.  This study was necessary since 

the theory that existed prior to the start of this work, presented in Chapter 2, is valid only 

for fidelity near 1.  In addition, the experimental efforts using pulsed lasers were unable 

to characterize the decrease in fidelity with fiber length.  This trend was measured in the 

laboratory for two different fibers and guided a model of the behavior performed by a 

Master’s student in our research group.  Using the model, a third fiber was examined, 

and, together with the experimental measurements, a correlation between the fiber 

parameters and fidelity was realized.  This correlation allows the SBS threshold power 

for a given fidelity to be plotted as a function of beam quality accepted by a step-index 

fiber.  Lastly, by measuring the SBS threshold simultaneously with the fidelity of phase 

conjugation, increases in fidelity were shown to decrease the SBS threshold compared to 

previous threshold models.         

 In order to complete this goal, an investigation into predicting the SBS thresholds 

of various candidate fibers was undertaken (Chapter 4).  A model of SBS threshold was 

constructed which could accommodate scattering or absorption losses, different gain 

coefficients, and fiber amplifiers with flexible pump geometry.  While previous models 

had ignored the difference between co-pumping and counter-pumping, this model 

demonstrated that the SBS threshold power could be doubled by choosing the counter-

pumped geometry over co-pumping fiber amplifiers.  This model was then used to design 

and build high-power fiber amplifiers free from nonlinear effects by choosing the pump 

geometry and fiber length for the amplified power predicted.  However, the main use of 

the model was to compare candidate fiber materials for SBS phase conjugation testing, 

specifically looking for those with low SBS thresholds.  In the process, Brillouin gain 
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coefficients measured by multiple research groups were unified under a single model of 

Brillouin gain broadening as a function of fiber NA.  By including scattering loss without 

an approximation for low-loss, the accuracy of calculating SBS threshold was 

significantly improved over the previous threshold models for fibers with large scattering 

losses.   

 Methods for measuring fidelity were analyzed and tested, and a new measure of 

fidelity was devised and tested as described in Chapter 5.  This new fidelity measurement 

technique relies on fringe contrast to measure fidelity equally well over the full range 

from zero to one.  The fidelity measurements described from the literature in Chapter 3 

rely on beam quality measurements or power-in-the-bucket techniques.  As pass/fail 

measurements, these techniques are relatively accurate, but can be misleading when beam 

cleanup occurs.  The in-line pinhole method was shown to distinguish between beam 

cleanup and phase conjugation while simultaneously confirming the beam-cleanup effect 

resulting from SBS in a graded-index fiber.  A more accurate approach to measuring the 

fidelity of phase conjugation was tested which employs the ability of SBS phase 

conjugation to phase-lock two beam paths.  This method was verified using a graded-

index fiber to generate beam cleanup and measuring a fidelity much less than one.  This 

contrasts the pinhole measurement of the same effect which yielded a large range of 

“fidelity” values between zero and 0.6 depending on fiber alignment.   

 Finally, using the results of this work, coherent beam combination of a two-

channel fiber amplifier at 1550 nm was attempted using a chalcogenide fiber to generate 

a phase conjugate beam via SBS.   
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 For reference, a glossary of symbols has been provided at the back of this 

dissertation.                                      
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2.  Theoretical Background 

 In this chapter, I present the physics governing the process of phase conjugation 

via stimulated Brillouin scattering (SBS) in optical fiber waveguides starting with 

Maxwell’s equations.  Brillouin scattering is a 2-photon resonant process which interacts 

with phonons in the material.  It can be described classically as a reflection of the signal 

field off of an acoustic wave in the material which is reinforced through the process of 

electrostriction.           

2.1. Nonlinear Optics 

 The field of nonlinear optics arises from Maxwell’s equations, given here in a 

dielectric material where there are no free currents or charges:[14]   

 0∇ =Di  (2.1) 

 
t

∂
∇× =

∂
DH  (2.2) 

 
t

∂
∇× = −

∂
BE  (2.3) 

 0∇ =Bi . (2.4) 

A dielectric in the presence of an electric field can be envisioned as a grouping of dipoles 

bound together representing electrons with ion nuclei.  As the field passes through the 

material, negatively charged electrons move against the field while positively charged 

ions move with the field.  These charged particles are constrained by the lattice forming 

the solid dielectric and exhibit damped harmonic motion.  The lattice may bind the 

particles evenly in all directions, or the particles may be bound in some directions 

stronger than others to form an anisotropic material.  The field interaction with the 
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material causes oscillation among the bound dipoles.  The polarization P of the material 

is the dipole moment per unit volume, and the electric displacement is then defined as 

 oε= +D E P  (2.5) 

where oε is the permittivity of free space.   

 Since the nuclei are much more massive than the electrons, the motion of the 

electrons typically dominates the polarization of the material under the influence of 

radiation in the optical regime (1014-1016 Hz).  When the amplitude of the incident field is 

small, the electron motion is approximately sinusoidal with the same frequency as the 

incident field.  Classically, nonlinear effects arise because the restoring force on the 

electrons is anharmonic.[15]  As the field amplitude increases, the motion of the electrons 

begins to deviate from that of the applied field and the polarization vector will include 

frequencies not present in the incident field.  From the perspective of quantum 

mechanics, the higher field amplitude is represented by more photons incident on the 

same region of the material.  Therefore, higher irradiance increases the probability for 

multiple photons to interact with the material in processes such as scattering or 

absorption.   

The polarization in the material can be represented by a power series expansion of 

the electric field[16] 

 (1) (2) (3)[ ...]oε= + + +P χ χ E χ EE E , (2.6) 

where χ(1) represents the linear susceptibility of the material, and the nonlinear 

susceptibilities are represented by χ(2), χ(3), and successive higher orders.  The first-order 

polarization results in a linear material response to the applied field and is given by 

 (1) (1)
oε=P χ E . (2.7) 
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The resulting electric displacement from a linear material polarization is  

(1)(1 )oε= +D χ E . (2.8)  

Continuing the expansion as a function of the electric field,  

 (1) (2) (3)(1 ...)oε= + + + +D χ χ E χ EE E  (2.9) 

where χ(1) is a 2nd rank tensor, χ(2) is a 3rd rank tensor, χ(3) is a 4th rank tensor, etc.   

 When the medium is isotropic such as gases, liquids, and glasses, the electric 

displacement can be approximated by just the linear and third-order susceptibility terms.  

The first approximation is to neglect terms higher than fourth order.  What makes this 

possible is that, in general, the contributions to the displacement from each successive 

order of the expansion decrease by an order of magnitude.[16]  Second, χ(1) reduces to a 

scalar function represented by the index of refraction where 2 1n = + (1)χ .  In addition, χ(2) 

and χ(4) vanish in isotropic materials that exhibit inversion symmetry according to 

Neumann’s principle.[15]  Neumann’s principle asserts that isotropic materials such as 

glass must have the same properties when viewed under different coordinate systems due 

to their point-group symmetry.  It follows that the elements of a susceptibility tensor 

describing an isotropic material must be identical after any rotation or inversion of the 

coordinate system.  The result is that χ(n) =(-1)(n+1)χ(n), and all even orders of the nonlinear 

susceptibility must be identically zero in isotropic materials or any material which 

exhibits inversion symmetry.  With diminishing susceptibility amplitude and vanishing of 

both χ(2) and χ(4), the nonlinear susceptibility in an isotropic material can be approximated 

by the χ(3) term in the expansion of Eq.(2.6).  With these approximations, Eq. (2.9) 

becomes 
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 (1) (3) (3)(1 )oε + + = +D εχ χ EE E E P� , (2.10) 

where (3) (3)
oε=P χ EEE , and ε is the first-order permittivity of the material.   

2.1.1.  Nonlinear Wave Equation 

 Owing to the form of the electric displacement in Eq. (2.10), the nonlinear 

polarization becomes a driving term in the nonlinear wave equation.  Taking the curl of 

Eq. (2.3) and using the identity  results in the equation 2( ) ( )∇× ∇× = ∇ ∇ −∇E Ei E

 2( )
t

∂
∇ ∇ −∇ = −∇×

∂
BE Ei . (2.11) 

Since μ=B H with μ  defined as the magnetic permeability of the material, the right 

hand side of Eq. (2.11) becomes 

 (
t t

μ )∂ ∂
−∇× = − ∇×

∂ ∂
B H . (2.12) 

Inserting Eq. (2.2) and Eq. (2.1) into Eq. (2.11) and Eq. (2.12) yields 

 
2

2
2t

μ ∂
∇ −

∂
E D = 0 . (2.13) 

where for plane waves in an isotropic medium.  Inserting Eq. 0∇ =Ei (2.10) for D into 

Eq. (2.13), the second derivative of the electric displacement adds a nonlinear driving 

term to the wave equation such that 

 
2 2

2
2 2 ( )t

t t
με μ∂ ∂

∇ − =
∂ ∂

E E P(3) , (2.14) 

where the electric field is assumed to be a superposition of monochromatic waves with 

the form  

 ' * '1
' '2

'
[ i t i te eω

ω ω
ω

−= + ]ω∑E E E , (2.15) 
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and similarly 

 (3) (3) (3)*1
2( ) [ ]i t i tt e eω ω

ω ω
ω

′ ′−
′ ′

′

= +∑P P P . (2.16) 

 From the nonlinear wave Eq. (2.14), one can derive the change in amplitude of 

the electric field responding to the nonlinear polarization term .  The field is 

assumed to consist of a superposition of monochromatic plane waves propagating in the 

z-direction, and each is described by the form .  By equating terms that 

oscillate only at frequency ω, Eq. 

(3) ( )tP

ˆ ikzeω ω=E E

(2.14) reduces to  

 
2

2
2

ˆ ˆ( )ikz ikze e
z

2 (3)
ω ωω με μω∂

+ = −
∂

E E ωP . (2.17) 

The second derivative of the field with respect to z can be reduced using the slowly 

varying envelope approximation:  the second derivative of the field amplitude with 

distance is negligible compared to the first or second derivative of the phase term[15] 

such that  

 
2

2
2

ˆ ˆ( ) 2 ( )ikz ikz ikze ike k e
z zω ω
∂ ∂

≈ −
∂ ∂

E E ˆ
ωE . (2.18) 

Recognizing that 2 2k ω με= , the substitution of Eq. (2.18) into Eq. (2.17) yields the 

change in electric field with distance due to a nonlinear polarization, 

 
2

(3)
ˆ

2
ikzi e

z k
ω

ω
μω −∂

=
∂
E P . (2.19) 

This equation shows directly how the nonlinear polarization term can result in growth or 

attenuation of the electric field at the frequency of the induced polarization of the 

material.   
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2.1.2.  Frequency Dependence  

 Up to this point, the frequency of the nonlinear polarization has been ignored with 

the exception that it will cause a change in the electric field at the same frequency as the 

polarization.  Now we will examine the frequency dependence of (3)
ωP directly.   

 The nonlinear polarization is the mixture of three vector fields (3) (3)
oε=P χ EEE , 

where E is any field present in the material as given by Eq. (2.15).  In terms of frequency, 

the Fourier transform of Eq. (2.15) yields 

 *
' '

'

1( ) [ ( ') ( ')]
2 ω ω

ω

ω δ ω ω δ ω ω= − +∑E E E + . (2.20) 

The Fourier component of the nonlinear polarization at a single frequency denoted by 

σω is 

 , (2.21) 1 2 3

1 2 3

((3) (3)
1 2 3

ˆ ˆ ˆ( ; , , ) i k k k z
o K

σω σ ω ω ω
ω

ε ω ω ω ω + += −∑P χ E E E# )e

where the frequencies 1ω , 2ω , and 3ω  each represent any of the field frequencies present 

in the material such that 1 2 3σω ω ω ω= + + , K is a numerical factor that takes into account 

permutations of frequency arguments and factors of ½ arising from Eq. (2.20), i i
i

nk
c

ω
= , 

and the summation denotes the addition of all distinct sets of frequencies that add to σω  

(this summation will be assumed in future equations).  In this form, with frequency 

arguments noted explicitly, one can see that the resulting frequency of the nonlinear 

polarization is a mixture of any three frequencies present in the material.  These 

frequency arguments can be positive, negative, or zero resulting from Eq.(2.15) and Eq. 

(2.20).   
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 If the frequencies present in the material are tuned to an absorption in the 

material, the value of  (3)
1 2 3( ; , ,σ )ω ω ω ω−χ

(3)

 can grow by many orders of magnitude, 

known as a resonant enhancement[15].  This is the situation which brings about 

stimulated Brillouin scattering.  With 
σω

P  resonantly enhanced, large changes in the 

electric field amplitude occur at frequency σω .  With frequency explicitly noted, Eq. 

(2.19) becomes 

 
2

(3)
1 2 3 1 2 32

ˆ
ˆ ˆ ˆ( ; , , )

2
i kzE i K E E

z k c
σω σ

σ ω ω ω
σ

μω χ ω ω ω ω E e− Δ∂
= −

∂
, (2.22) 

where 1 2 3k k k k kσΔ = + + −  is the phase-matching term representing conservation of 

momentum, and all vector notation has been incorporated into the susceptibility, resulting 

in a scalar equation representing a particular arrangement of fields[15]: 

 (3) (3)
1 2 3 1 2 3ˆ( ; , , ) ( ; , , )σ σχ ω ω ω ω ω ω ω ω− = ⋅ −*

σ 1 2 3e ˆ ˆ ˆχ e e e# , (2.23) 

where  represents the polarization vector of the electric field at frequency ˆ ie iω .   

 In this section, the change in the electric field at a given frequency was derived as 

a function of the general third-order susceptibility.  In the next section, stimulated 

Brillouin scattering will be developed specifically.  

2.2. Stimulated Brillouin Scattering 

 There are many field frequencies that can be generated from the 3rd-order 

nonlinear polarization.  The main concerns are that conservation of energy, 

1 2σ 3ω ω ω ω= + + , and conservation of momentum, 1 2 3 0k k k k kσΔ = + + − ≈

3σ

, are 

fulfilled.  Typical 3rd-order effects are third harmonic generation (ω ω ω ω ω= = + + ), 
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four-wave mixing ( 4 1 2σ 3ω ω ω ω ω= = + + ), and self-focusing ( σω ω ω ω ω= = − + ).  But 

under conditions of high field strength and resonant enhancement, the nonlinear 

polarization due to stimulated Brillouin scattering can increase by many orders of 

magnitude over other nonlinear effects.   

 Stimulated Brillouin scattering (SBS) is represented by the frequency set, 

b sσ s bω ω ω ω= = − ω+ , where ωs is the frequency of the signal or SBS pump laser, and 

ωb is the frequency of the scattered Stokes field, denoted with a b for “Brillouin.”  

Stimulated Brillouin scattering is described as a two-photon resonant process resulting in 

the excitation of an acoustic or density wave in the material.[15]  The signal wave excites 

the material from an initial energy state (g) to a final state (f) via a virtual level (v)  

(Fig. 1).  The virtual level is represented as a linear combination of all energy levels 

allowed through one-photon transitions from the initial and final energy states.[17]  The 

susceptibility is greatest when the material resonance frequency is equal to the difference 

between the signal frequency and the Stokes frequency:  

 fg s bω ω= − . (2.24) Ω

In SBS, the material resonance fgΩ represents an acoustic wave frequency, and the 

optical frequencies of the signal and Brillouin waves are very close together, separated by 

a frequency on the order of 10 GHz in silicate glass.     
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(g)

(f)

(v)

ωs ωb 

(g)

(f)

(v)

ωs ωb 

 

Fig. 1:  Energy-level diagram depicting SBS on the two-photon transition (g) - (f).[15] 

 SBS can be described as the generation of an acoustic wave in the material from 

electrostriction.[16]  The acoustic wave acts as a dynamic Bragg grating propagating at 

the speed of sound in the material and reflects the signal beam at the Doppler-shifted 

frequency bω .  Initially, the acoustic wave exists as thermal noise in the material, and the 

Stokes wave generated from the interaction of the signal beam with thermal density 

fluctuations is known as spontaneous Brillouin scattering.  After being created from 

noise, the backward-propagating Stokes wave beats with the signal beam to reinforce the 

acoustic wave, which in turn scatters more of the incident signal beam and reinforces the 

Stokes wave.  This is the process of stimulated Brillouin scattering.   

  The acoustic dispersion relation  

 | |B fg B vaΩ = Ω = K  (2.25) 

yields an expression for the frequency of the acoustic wave in the material 

where 2| |B
π

=
Λ

K , is the wavelength of the density wave, and is the speed of sound 

in the material.  Due to conservation of momentum,  

Λ av

 B s b= −K k k ,  (2.26)  
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and the acoustic wave propagates in a general direction away from the signal beam as 

shown in Fig. 2.  Together with Eq. (2.25),  

 2 sin
2

sB

a

n
v c

ωΩ θ  (2.27) ≈

since s Bω >> Ω  and 2s b sω ω+ ≈ ω [16, 18].  Therefore, the value of the Brillouin 

frequency shift is given by:  

 2 sin
/ 2
a

B s
v

c n
θωΩ = , (2.28) 

where n is the index of refraction of the material and θ is the angle between the signal and 

Stokes beams as shown in Fig. 2.  Eq. (2.28) shows that forward scattering is not possible 

under SBS since the Brillouin frequency shift drops to zero when θ equals zero.   

 To examine the amplification of a Stokes beam through SBS, we first look at 

electrostriction in general.  Eq. (2.10), the equation for the electric displacement to 

ks

kb

KB

z

z=0 z=L

θ
kskb

KB

 

Fig. 2: Schematic representation of the SBS process via electrostriction.[16] 
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fourth-order in susceptibility, can be rewritten in terms of the electric permittivity and a 

change in the permittivity such that  

 . (2.29) (3)ε ε ε= + Δ +D E E E P�

From Eq. (2.29), the third order polarization vector can be approximated as  

 εΔ(3)P � E . (2.30) 

The change in permittivity can be determined using thermodynamics.  The differential of 

the permittivity with respect to the independent thermodynamic properties of temperature 

and density yields  

 
T

T
T ρ

ε εε ρ
ρ

⎛ ⎞∂ ∂⎛ ⎞Δ = Δ + Δ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
. (2.31) 

For a low-absorption material undergoing an acousto-optic interaction, the change in 

permittivity with temperature is much less than the change due to density such that 

[16].  The potential energy per unit volume u of a material in an electric field is 

given by  

0TΔ ≈

 

2ˆ

2

E
u ε= , (2.32) 

and the change in energy density uΔ due to a change in permittivity is given by 

 

2 2ˆ ˆ

2

E E
u εε

ρ
⎛ ⎞∂

Δ = Δ = Δ⎜ ⎟∂⎝ ⎠ 2
ρ . (2.33) 

The change in energy density of the material is equal to the work W performed on the 

material in the form of compression: 

 st st
Vu W p p

V
ρ
ρ

Δ Δ
Δ = = = − . (2.34) 

Solving for the strictive pressure pst,  
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2ˆ

2st e

E
p γ= − , (2.35) 

where e
εγ ρ
ρ

⎛ ∂
≡ ⎜ ∂⎝ ⎠

⎞
⎟  is the electrostrictive constant.  In general, the change in ε with 

respect to ρ is positive.  Therefore, the strictive pressure is negative, and regions of high 

field strength have lower pressure.   

 To simplify the remainder of the derivation, assume that the signal beam is 

propagating in the +z direction and the Stokes beam is seeded at a frequency near 

bω given by bω′ and propagating in the –z direction.  The electric fields and density wave 

can then be described as: 

 

( )

( )

( )

ˆˆ( , )
ˆˆ( , )

ˆ ( , ) ( )

s s

b b

B

i k z t
s s s

i k z t
b b b

i K z t
o

z t E e

z t E e

z t z e

ω

ω

ρ ρ ρ

−

′ ′− −
′ ′ ′

′ −Ω

=

=

= +

E e

E e  (2.36) 

where s bω ω′Ω = − , and oρ is the mean density of the material, with the acoustic wave 

propagating in the +z direction.  For effective seeding of the Stokes beam, it is assumed 

that BΩ−Ω < Γ
� B , where  is the Brillouin linewidth.  In Eq. BΓ (2.36), a unit 

vector was introduced to represent the polarization at frequency,ˆb s′e ,b sω ′ , and the electric 

field amplitude at frequency ,b sω ′ is given by the scalar ,
ˆ

b sE ′ .  In this geometry, the 

magnitude of the acoustic wave vector is the sum of the photon wave 

vectors .  Assuming the material obeys the acoustic wave equation,[16]  B sK k k′ = + b′

 
2

2 2 2 2
2 2

ˆ ˆ ˆB
a

B

v
t K t
ρ ρ ρΓ∂ ∂
− ∇ − ∇ = ∇

′∂ ∂ stp . (2.37) 

The beating of the two electric fields produces a significant material density wave.  Let  
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2 *

2 2
s b

st e ep γ γ ′
= − = −

E E iE
. (2.38) 

Using the slowly-varying-envelope approximation for the acoustic wave, the second 

derivative of the acoustic wave amplitude with respect to z is negligible.  In general, the 

propagation of hypersonic waves is highly damped, and the propagation distance is very 

small compared to the distance where the electric fields vary significantly.  Because of 

this, the first derivative of the acoustic wave amplitude with respect to z is also neglected.  

The acoustic wave equation (Eq. (2.37)) then reduces to: 

 2 2 2 *ˆ ˆ ˆ ˆ2 ( ) (
2

e
B B B s bi i K E E

t
)γρ ρ ′ ′

∂ ′− Ω + Ω −Ω − ΩΓ =
∂

*
s be ei . (2.39) 

Under steady-state conditions, 0
t
ρ∂
=

∂
.  Solving Eq. (2.39) for the acoustic wave density 

yields the density change under electrostriction due to two counter-propagating fields 

 
( )

( )2 *

2 2

ˆ ˆ ˆ ˆ(
4

Bi K z t
o B s b

B B

K E E e
i

ρ ερ
ρ

−Ω )′ ′′ ⎛ ⎞∂
Δ = ⎜ ⎟∂ Ω −Ω − ΩΓ⎝ ⎠

*
s be ei . (2.40)  

This change in density of the material leads to a change in permittivity using Eq. (2.31) 

with .  From Eq.0TΔ ≈ (2.30) and Eq. (2.31), the nonlinear polarization oscillating at ωs 

and ωb is given by 

 

(3)

(3) *

s

b

ω

ω

ε ρ
ρ
ε ρ
ρ

′

′

∂
= Δ
∂
∂

= Δ
∂

b

s

P E

P E
 (2.41) 

and 
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( )

( )

2 ( )22
(3)

2 2

2 ( )22
(3)

2 2

ˆ ˆ ˆ ˆ ˆ( )

8

ˆ ˆ ˆ ˆ ˆ( )
.

8

s s

s

b b

b

i k z t
s bo B

B B

i k z t
s bo B

B B

E E eK
i

E E eK
i

ω

ω

ω

ω

ρ ε
ρ

ρ ε
ρ

−
′ ′ ′

′ ′− +
′ ′

′

′ ⎛ ⎞∂
= ⎜ ⎟∂ Ω −Ω − ΩΓ⎝ ⎠

′ ⎛ ⎞∂
= ⎜ ⎟∂ Ω −Ω + ΩΓ⎝ ⎠

*
s b b

*
s b s

e e e
P

e e e
P

i

i
 (2.42) 

 Using Eq. (2.19) for the change in electric field, we can now derive rate equations 

for the electric field amplitudes from this nonlinear polarization such that   

 
( )

2 222

2 2

ˆ ˆ ˆ ˆˆ

8
s bs s o B

s o B B

E EE i K
z n c i

ω ρ ε
ε ρ

′ ′′∂ ⎛ ⎞∂
= ⎜ ⎟∂ ∂ Ω −Ω − ΩΓ⎝ ⎠

*
s be ei

 (2.43) 

and 

 
( )

2 222

2 2

ˆ ˆ ˆ ˆˆ
,

8
b sb b o B

b o B B

E EE i K
z n c i

ω ρ ε
ε ρ

′ ′′ ′ ′∂ ⎛ ⎞∂
= − ⎜ ⎟∂ ∂ Ω −Ω + ΩΓ⎝ ⎠

*
s be ei

 (2.44) 

where nk
c
σ σ

σ
ω

=  and 2 1

o

c
ε μ

= .  To find the gain at the Stokes frequency due to SBS, 

these equations must be converted from fields to irradiance.  The chain rule must be used 

such that 

 

2
*

*
ˆ ˆ ˆ2 ˆ ˆ

o

E I EE E
z z cn z
σ E

z
σ σ

σ σ
σε

∂ ⎛ ⎞ σ∂ ∂ ∂
= = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

, (2.45) 

and the resulting rate equations are  

 
( )

( )  .

s
B s b

b
B s b

I g I I
z
I g I I
z

′

′
′

∂
= − Ω

∂
∂

= − Ω
∂

 (2.46) 

The Brillouin gain coefficient ( )Bg Ω is then given by:[16]  
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( )

2

2
2

2
( )  ,

2

B

B o
B

B

g g

Γ⎛ ⎞⎜ ⎟
⎝ ⎠Ω =

Γ⎛ ⎞Ω −Ω + ⎜ ⎟
⎝ ⎠

 (2.47)  

with 

 
22 2*

2 3
ˆ ˆ .o

o
o a B

g
nv c
ω ρ ε

ε ρ ′
⎛ ⎞∂

= ⎜ ⎟Γ ∂⎝ ⎠
s be ei  (2.48) 

In these equations, approximations are used such that the Brillouin-scattered Stokes 

frequency is approximately equal to the signal frequency, and the index of refraction is 

the same for both Stokes and signal beams.  The equations (2.46) are the basic relations 

governing the growth of the Stokes beam and depletion of the signal under stimulated 

Brillouin scattering when the Stokes beam is seeded near the Stokes frequency.  The 

signal depletion and Stokes growth are related to the product of the Stokes and signal 

irradiances.     

2.3. Stimulated Brillouin Scattering Threshold 

 In the SBS gain equations, Eq. (2.46), the change in irradiance due to stimulated 

Brillouin scattering is dependent on the product of the forward propagating signal 

irradiance and the backward propagating Stokes irradiance.  If the material is seeded with 

a counter-propagating beam at the Stokes frequency, then SBS takes place in the material 

to amplify the back-injected seed.  If there is no seed, SBS can still occur.  With a high 

signal irradiance, the thermal noise in the material provides a sufficient seed for the SBS 

process.  Then the onset of SBS (threshold) can be described in terms of signal irradiance 

in a given material at which point the Stokes signal is easily distinguishable from any 

other reflections.  When this threshold is exceeded, increases in signal irradiance are 
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converted to backscattered Stokes irradiance with a slope efficiency of nearly 1.  The 

transmitted signal becomes effectively clamped near this threshold value since any 

additional power is efficiently converted to the backward-propagating Stokes beam.   

 To calculate the threshold of SBS in a fiber waveguide, Eq. (2.46) must be 

modified to include transmission loss of the fiber, sα [19]: 
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∂
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where the subscript on sα  denotes scattering.  It is a good assumption that the signal 

beam is non-depleted when looking for the threshold of the nonlinear effect such that 

s
s s

I I
z

α∂
= −

∂
, and the signal irradiance is  

 ( ) (0) s z
s sI z I e α−= . (2.50) 

Substituting this signal irradiance into Eq. (2.49) for the Stokes beam yields a first-order 

differential equation.  For a fiber of length L, the integration results in  
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where an effective length can be defined by the term in brackets:[20] 

 1 (1 )sL
eff

s

L e α

α
−≡ − . (2.52) 

For the case of undepleted signal, an upper bound on the threshold can be defined as the 

signal power necessary to raise the Stokes power to the level of the incident signal 

at .  While this is experimentally impossible, the Stokes power rises very quickly 

after threshold such that this point represents a slightly high estimate of threshold as 

0z =
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defined earlier.  The Stokes beam is seeded by spontaneous scattering which is modeled 

by an injection of a single photon per mode at the location in the fiber where the 

nonlinear gain equals the natural loss of the fiber (0) s z
B s sg I e α α− = .  The condition for 

threshold is then found to be[19]:  
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where Aeff is the effective mode area of the of the confined light in a waveguide.    
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Fig. 3:  SBS threshold power as a function of fiber length for a silicate fiber with a 
20 μm core and 0.13 NA from Eq. (2.53). 

 

 For a cylindrical fiber, the maximum effective area supported by the fiber can be 

estimated from the fiber properties and wavelength being used.  A typical optical fiber 

consists of a core with radius a and index of refraction ncore.  This is surrounded by a 

region of lower index of refraction called the cladding which may consist of air or 

another glass or plastic material with index of refraction nclad.  A fiber such as this 

confines light incident on the end of the fiber only in a range of angles such that the light 

in the core is reflected inside the fiber via total internal reflection.  The sine of the 
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maximum half-angle accepted by the fiber is called the numerical aperture (NA) and is 

given by 

 2 2
1/ 2sin core cladNA n nθ = = − . (2.54) 

The V-number of a fiber is a normalized frequency parameter which is used to describe 

the number of normal modes that are relatively low loss in a fiber.  The V-number is 

given by 

 ( )oV k a NA= , (2.55) 

where 2ok π λ= .  It has been shown that the fundamental mode of a step-index fiber is 

closely approximated by a Gaussian beam with mode radius ω  such that[21] 

 3/ 2 6

1.619 2.879.65a
V V

ω ⎡ ⎤= + +⎢ ⎥⎣ ⎦
. (2.56) 

The effective area is then simply 2
effA πω=  for a single-transverse-mode fiber.[22]  

However, the power contained in multimode fibers fills the fiber core more evenly than a 

single transverse mode.  In the case of multimode fibers, the effective area is more 

closely approximated by the area of the fiber core.   

A factor less than one, denoted by gK here, is often used in the literature to 

multiply the Brillouin gain coefficient in Eq. (2.53).[23, 24]  This factor is particularly 

important in experiments when the SBS process is seeded by an injected beam at the 

Stokes-shifted frequency from the back end of the fiber.  The factor gK represents the 

polarization overlap between the signal and Stokes seed in these experiments as given by 

the dot product of polarization vectors in Eq. (2.48).  However, when only non-seeded 

SBS experiments are considered, the validity of using the polarization factor is 
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questionable.  The Brillouin gain coefficient has been measured to be lower in fibers than 

in bulk silica material, and this factor with a value chosen between 0.5 and 0.67 has been 

used to explain the increase in SBS threshold power with no seed.[25-27]  Spring et 

al.[28] measured the SBS threshold while varying the signal polarization being coupled 

to a polarization maintaining (PM) fiber.  In this case, they measured  when the 

signal was launched at 45º to the polarization axes of the fiber, which varied sinusoidally 

to a value of 1 when the signal was aligned with the fiber polarization axes.  When they 

tested a similar non-PM fiber, threshold was less than 10% higher than the on-axis 

polarization in the PM fiber, indicating the value of 

0.5gK ≈

gK is much closer to 1.   

 Inhomogeneous broadening of the Brillouin gain has been found to account for 

the decreased SBS gain coefficient in optical fibers.  The Brillouin gain coefficient in Eq. 

(2.53) is reduced from the Brillouin gain at exact resonance if the acceptance angle of the 

fiber exceeds the backscattered angle supported by the linewidth of the acoustic phonon, 

.  When the fiber NA is small, BΓ
B

B

NA Γ
<

Ω
, the Brillouin gain is indistinguishable 

from exact resonance.[29]  For a silica fiber with signal wavelength of 1064 nm, this 

corresponds to an NA less than 0.05.  For fibers with larger NA, the Brillouin scattered 

signal is comprised of subsets of homogeneously broadened components generated from 

the different angular components of the Stokes and signal modes such that[22, 30] 

 ( ) 1 1/ 2( ) tan tan
( ) / 2 / 2
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where 
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/
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Bo c n
ων

Ω = .  For unseeded SBS, BoΩ ≈ Ω to a good 

approximation, and the inhomogeneously broadened Brillouin gain can be determined 

purely from fiber material and characteristics.  Then Eq. (2.57) reduces to 
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for unseeded SBS.   

 With these modifications to the parameters in Eq. (2.53), this SBS threshold 

prediction (“Smith model”) is typically accurate only to a factor of 2.  Some other factors 

to consider which can impact the threshold include temperature variations[31-34] due to 

absorption or waste heat in fiber amplifiers and lasers, dopant levels,[35] and fiber 

geometry fluctuations.[36, 37]     

 Estimating the SBS threshold in fiber amplifiers has been the subject of much 

research since it is seen as the main obstacle to increasing the power of single-frequency 

fiber amplifiers.[38-41]  In low-power amplifiers, the signal power required to reach the 

SBS threshold is lowered in an amplifier as compared to passive fiber of the same 

composition.  The laser gain g amplifies both the signal and the Stokes waves, which 

lowers the SBS threshold power as if the effective length of the fiber is longer than its 

physical length (see Eq. (2.53), Eq. (2.49), and Eq. (2.52) with s sgα α− → − ).[42, 43]  

However, much higher amplified powers have been achieved than were predicted by this 

model of SBS due to the temperature gradients present in the fiber amplifier under high-

power operation.[44]  The Brillouin bandwidth and frequency shift between the signal 

and Stokes waves is temperature dependent[31-33, 36].  With high thermal gradients 
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caused by end-pumping of a fiber amplifier, the Brillouin gain is effectively broadened, 

and SBS threshold is increased.[45]   

 When SBS is seeded with noise, the Smith equation (Eq. (2.53)) has typically 

been used to predict the SBS threshold in low-loss optical fibers.  The Brillouin gain 

coefficient is used as a fit parameter in this equation, and other modifications have been 

made to this equation to accommodate gain in the fiber, broadening due to the numerical 

aperture of the fiber, or depolarization.  For low-loss, passive fibers, it is reasonably 

accurate, but a more thorough model was developed to predict SBS threshold in fiber 

amplifiers or in fibers with high scattering losses, and is discussed in Chapter 4.        

2.4. Stimulated Brillouin Scattering Phase Conjugation 

 Phase conjugation is the process of reflecting a wave upon itself in such a way 

that it behaves as the time reversal of the incident wave.  In perfect phase conjugation, the 

wavefront of the incident wave is replicated exactly, but the propagation direction is 

reversed at all points.  The action of a phase conjugate mirror is to conjugate the spatial 

and polarization properties of the incident wave.  The signal beam is defined as in  

Eq. (2.15), 

 ( ) (*1 ˆ ˆ( )
2

si t i t
s s st e eω− − − )sω⎡ ⎤= +⎣ ⎦

s sk r k rE E Ei i , (2.59) 

where ˆ
sE represents both the polarization and amplitude of the signal beam.  The ideal 

phase conjugate wave is then defined as[6]   

 ( ) (*1 ˆ ˆ( )
2

si t i
c s st e eω− − + )stω⎡ ⎤= +⎣ ⎦

s sk r k rE E Ei i . (2.60) 
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By inspection, the phase conjugate wave is equivalent to the time reversal of the incident 

field .  This conjugate beam has the time-reversed polarization of the 

incident beam as well, such that an incident beam with right-handed polarization will 

have right-handed polarization upon reflection--opposite to the case of a normal mirror.   

( ) ( )c st = −E E t

 A phase conjugate mirror can be used to compensate for aberrations induced on 

the beam during propagation (Fig. 4).[46]  During an initial pass through an amplifier, for 

instance, a perfect phase front can be distorted due to inhomogeneities in the amplifying 

medium.  Reflection by a normal mirror inverts the phase front of the incident beam and 

the distortion is doubled during the second pass through the aberration.  However, a 

phase conjugate mirror does not invert the wavefront, but reverses the direction of 

propagation.  The wavefront backs through the aberration as if time were reversed to 

recreate the initial perfect wavefront upon the second pass through the aberration.   

 The most common method for wavefront correction is through the use of adaptive 

optics.  This method uses a wavefront sensor, a deformable mirror, and a control loop to 

sense and compensate distortions in the phase front of the incident light.  Adaptive optics 

are being used in optical systems to compensate for phase distortions caused by 

atmospheric effects[47] and laser amplifier aberrations.[48]  Highly aberrated beams 

present difficulties in both sensing and compensation techniques for these systems,[49] 

which are seeing rapid development in improved wavefront sensing techniques and 

control algorithms.[50-52] 
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Fig. 4:  Depiction of wavefront distortions (a) after passing through an aberration, 
(b) after reflection from a normal mirror, and (c) upon reflection from a phase 
conjugate mirror. 

 

 In addition to wavefront correction using adaptive optics, there are many 

nonlinear optical methods to achieve wavefront correction through phase conjugation 

such as degenerate four-wave mixing, stimulated Raman scattering, and photorefraction.  

With the exception of photorefractive techniques, the nonlinear optical phase conjugators 

have the benefit of response times in the tens of nanoseconds and do not use any signal 

processing or electronics in constructing the conjugate beam.  Perhaps the simplest of the 

nonlinear phase conjugation approaches is that of SBS.  SBS is characteristic of the class 

of self-pumped phase conjugators in that the signal beam is the only field necessary to be 

incident on the phase conjugate mirror.  In its absolute simplest form, a signal beam is 

focused into a block of material.  This method is referred to as the “focused geometry,” 

and has been used with much success conjugating pulsed lasers as will be discussed in 

the next chapter.  The focused geometry has a very high threshold, however, which 

makes cw phase conjugation difficult with this architecture.  Until this work, cw SBS 

phase conjugation had not been achieved.  To lower threshold to values within reach of 

cw systems, waveguides provide the confinement necessary to maintain high irradiance 
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over a long distance – two of the requirements for a low threshold as given by the 

threshold prediction in Eq. (2.53). 

 Phase conjugation via SBS was first observed in an optical waveguide by 

Zel’dovich in 1972 using a capillary tube filled with methane gas.[53]  Through a modal 

analysis, Zel’dovich showed that the phase conjugate beam experiences preferential gain 

over all other mode combinations for the reflection of the signal.  The incident field is 

viewed as one of many possible modes in the waveguide, which causes a rapidly 

fluctuating irradiance pattern in the waveguide, termed “speckle,” as shown in Fig. 5.  

Since the Brillouin gain is proportional to the product of the irradiance of this field with 

that of the Stokes beam, the mode combination that experiences the highest gain is the 

phase conjugate of the signal beam.  This can be shown starting from Eq. (2.49) with 

explicit radial ( ) and longitudinal (z) dependence,[54]  r⊥
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Integration of the equations over the radial direction transforms the equations into 

functions of power such that[55]  
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where the effective Brillouin gain coefficient is given by 
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In Eq. (2.63), any radial dependence on the Brillouin gain coefficient is represented by 

the normalized variable , which is set equal to one for step-index fiber.  According 

to this equation, the effective gain is the highest for the Stokes modes which exhibit the 

best overlap with the signal, which favors the phase conjugate beam when is a 

constant.  This analysis is applicable to any waveguide which has a homogeneous core 

such as a glass fiber with a step-index core. 

( )G r⊥

( )G r⊥

 SBS in a waveguide does not generate a perfect phase conjugate beam as defined 

in Eq. (2.60).  As a result of the interaction with a phonon wave in the material, the 

Stokes beam is shifted in frequency on the order of 10 GHz.  This small frequency shift 

leads to a limitation in the length of waveguide that can be used to generate a phase 

conjugate beam.  Since SBS phase conjugation derives from the selected gain of the 

conjugate mode, the Stokes beam must overlap the signal wave path exactly to 

(a) (b)  

Fig. 5:  (a) The irradiance pattern of the signal inside a 1 mm segment of step-index, 
multimode fiber.   The diagram in (b) shows a phase conjugate beam at the Stokes-
shifted frequency for the same segment of fiber.[56] 
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experience the gain from the speckle pattern generated from the signal wave.  The 

frequency shift of the Stokes beam thus limits the interaction length for good phase 

conjugation.  A consequence of this is higher power signals are needed to reach the SBS 

threshold power, which is inversely related to waveguide length.  The maximum 

interaction length that can be used to achieve a specified quality of phase conjugation was 

modeled by Zel’dovich in 1977[57] and similarly by Hellwarth in 1978[29] such that  

 
6 (1 ) eff

w

F A
L

N λ
−

≤
Δ

, (2.64) 

where Nw is the number of excited waveguide modes, Δλ is the wavelength difference 

between Stokes and signal beams, and F is the “fidelity” of the conjugated beam.  The 

fidelity is the fraction of the Stokes beam that is the spatial phase conjugate of the signal 

beam.  A perfectly phase-conjugated beam has a fidelity of 1.  Approximating 

( )( )2
2

2 2
o

w

k a NAVN ≈ = for multimode step-index fibers,[58] Eq. (2.64) was later given 

by[59] 
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where the Stokes shift is represented by angular frequency 22B c λπ
λ
Δ

Ω = .  Similarly, 

Zel’dovich’ model results in a length limitation of 

 2

3 1

B
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−
≤

Ω
 (2.66) 

where n is the index of refraction of the core and M is a scalar used to account for the 

spatial pump irradiance pattern such as Gaussian ( 2.8M = ) or a flat-top beam ( 12M = ).  
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The models nearly converge in the case of a Gaussian pump.  These models were derived 

analytically using the approximation of near-perfect fidelity.  The non-conjugated 

fraction of the Stokes beam was assumed to be small such that only a few terms in the 

Taylor series were kept.  As a result, these models lose validity as the fidelity declines.  

Another approach described the maximum interaction length as a function of phase error 

φΔ  between the Stokes and signal beams by examining the modal dispersion between 

normal modes of a fiber waveguide.  This method resulted in a maximum length of[55] 

 
( )2

2 core

B

n cL
NA

φΔ
≤
Ω

. (2.67) 

 These methods predict a maximum interaction length of 14 cm to produce very 

good phase conjugation (fidelity of 0.9 or wavefront error less than /10λ ) from a silicate 

fiber that supports ~100 modes (25 µm core diameter with 0.2 NA).  As discussed in the 

next chapter, fibers up to 25 m long have been shown to achieve good phase conjugation 

using pulsed lasers.[60, 61]  The discrepancy is reduced since the effective length of the 

interaction may be limited by the coherence length of the signal laser as in Eq. (3.2).[62] 

However, the result of this dissertation discovered experimentally that these 

analytic models underestimate the length of step-index fiber that can be used to generate 

a good fidelity phase conjugate beam by an order of magnitude.  In addition, the new 

experimental results of this work guided a numerical model that solved the differential 

equations governing SBS in a fiber-optic waveguide to calculate the fidelity.[63] 
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(a) (b)  

Fig. 6:  The irradiance pattern inside a 1 mm segments of step-index, multimode 
fiber after propagating 1 km (a) for the signal beam and (b) for the phase conjugate 
beam.[56] 
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Fig. 7:  Fidelity prediction as a function of fiber length from Eq. (2.65). 

   The previous discussion on SBS phase conjugation fidelity does not apply to a 

waveguide with a non-uniform core such as a graded-index fiber.  A graded-index fiber 

has an index of refraction that decreases from the center of the fiber to the cladding in a 

parabolic profile, and is common in telecommunications applications because the 
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dispersion is reduced over step-index fibers.  Due to the reduction in modal dispersion, 

the previous discussion would lead one to believe that longer lengths of graded-index 

fiber could be used to create high fidelity phase conjugation.  Unfortunately, this is not 

the case.  In this type of fiber, the fundamental Stokes mode is usually favored over all 

other fiber modes by a small margin and experiences the highest SBS gain.[55, 64]  Both 

the modal structure and the dopant distribution in the fiber used to create the index 

variation serve to increase the SBS gain in the center of the core.  In Eq. (2.63), ( )G r⊥ is 

not a constant, and the fundamental Stokes mode is favored through gain guiding.[55]  

Instead of a phase conjugate, SBS in a graded-index fiber causes a Stokes beam primarily 

in the fundamental mode regardless of the modes excited by the signal beam.[64, 65]     

 In summary, phase conjugation is achievable through SBS in a step-index optical 

fiber provided the length is short enough.  This length limitation was calculated with 

approximations for high fidelity in Eq. (2.65) and Eq. (2.66).  However, the power 

needed to achieve SBS threshold is inversely proportional to the fiber length as given by 

Eq. (2.53).  These considerations frame this work.   
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   3.  Literature Review 

 In this section, experimental observations, techniques, and accomplishments will 

be reviewed that pertain to SBS phase conjugation in optical fibers.  Most of the work 

that has been conducted has focused on pulsed laser sources to generate the high 

intensities needed to exceed the SBS threshold.  A progression towards phase conjugation 

at lower intensities will be shown to the level where this work’s achievement of cw phase 

conjugation becomes feasible.   

 The earliest work, including the discovery of the effect, used gas-filled 

waveguides.  Many pulsed lasers have been conjugated by simply focusing into a cell 

filled with a liquid or gas, or into a block of solid material.  The interaction length is 

small in these devices, leading to a large pulse energy requirement.  Multiple cells were 

employed to conjugate lower energy pulsed systems.  A large amount of work has also 

been done using pulsed lasers with solid waveguides as the SBS material.  In these cases, 

the coherence length of the pulsed laser typically limits the effective length of the 

Brillouin scattering interaction.  Long coherence length lasers with long fiber SBS media 

have been used to reduce threshold energy, but as indicated at the end of Chapter 2, this 

has produced beam cleanup or the loss of phase conjugation fidelity.  The SBS threshold 

using cw signal lasers has been recently modeled in fiber amplifiers by several authors 

since it is a limiting factor in high-power, single-frequency fiber amplifiers.  The SBS 

threshold has also been studied in newly developed glass fiber materials such as tellurite 

and chalcogenide glass fiber for the development of fast optical switches.  Those 

experiments demonstrate the promise of using fiber amplifiers, chalcogenide glass, or 

tellurite glass fibers as the SBS media for cw phase conjugation.           
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3.1. Initial Observation of SBS Phase Conjugation  

 The earliest example of phase conjugation was performed by Zel’dovich et al.in 

1972 using a large aperture glass square waveguide placed in a cell of methane gas at 125 

atm[53].  The experimental apparatus shown in Fig. 8 is one of many methods used to 

measure phase conjugation fidelity and will be described in detail here.  A pulsed laser 

was used to generate 110 ns pulses with a peak power of 1.3 MW.  The pulses were 

passed through a 6 mm x 6 mm aperture and an aberrator made from etched glass and 

focused into the methane cell with a 1 m focal length lens.  Stimulated Brillouin 

scattering was observed with 25% reflectivity, and the divergence of the light was 

measured before the etched glass (at C1) and after the etched glass (not shown) to 

examine the amount of distortion the etched glass caused.  The Stokes beam reflected 

from the cell was then measured before (not shown) and after the etched glass (at C2) to 

measure the beam quality improvement caused by the second pass through the aberration.  

A perfect phase conjugate beam will recreate the incident beam divergence after the 

second pass through the aberration.  Comparing the final divergence to the initial beam 

divergence (C2/C1 in Fig. 8) therefore gives a measure of fidelity.  The final corrected 

divergence is also compared to the final divergence observed using a standard mirror 

instead of the SBS cell to reflect the incident beam twice through the aberration.  In 

Zel’dovich’ experiment, the divergence of the signal beam was measured at 0.14 mrad x 

1.3 mrad before passing through the etched glass.  The divergence immediately after the 

etched glass had degraded to 3.5 mrad.  The divergence after being reflected in the SBS 

cell and passing through the etched glass twice was nearly identical to that of the incident 

beam.  However, replacing the SBS mirror with a standard mirror resulted in a 
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divergence of 6.5 mrad – nearly twice the single-pass divergence through the etched 

glass.   

 This successful demonstration of SBS phase conjugation was quickly followed by 

a similar experiment by Nosach et al.,[66] which was the first experiment to show that 

phase conjugation could correct for aberrations induced by an amplifier.  They used a 

ruby laser amplifier as the aberrator with a 3 mm diameter capillary tube 1 m in length 

filled with carbon disulfide to generate SBS.  In one pass, the amplifier caused the 

divergence to increase from 0.13 mrad to 2.5 mrad.  The SBS cell reflected 60% of the 

incident amplified light, and after a second pass through the amplifier, the resulting beam 

had a divergence of 0.15 mrad.  These results were confirmed by duplicating the 

experiment at Hughes Research Laboratories in 1978 using 17 ns pulsed laser [67].  

These early experiments generated phase conjugate beams using short pulses with greater 

than 1 MW peak power.     

C1

C2

Aperture

Aberrator

Methane 
cell

 

Fig. 8:  Experimental apparatus for the earlies observation of SBS phase 
conjugation.  Cameras 1 and 2 measure the divergence of the signal and Stokes 
beams, respectively. 
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3.2. Focused Cells and Capillary Tubes  

 Following this work, a large number of experiments were carried out by simply 

focusing pulsed laser light into a cell containing pressurized gases or liquids as the phase 

conjugate media.[6, 46]  Pulsed lasers were always used due to the high powers necessary 

to exceed the SBS threshold in the focused cell geometry.  For comparison, the Brillouin 

gain coefficient and phonon lifetimes measured in some of the materials used is listed in 

Table 1.[46, 68-70]  

    As a demonstration of the capabilities of an SBS phase conjugator, Eichler used 

an SBS cell in 1995 to improve the beam quality of a 2-pass rod amplifier operating at 

100 W average power.  The beam was improved from 2 times the diffraction limit to 1.2 

times the diffraction limit by reflecting from a phase conjugate mirror instead of a planar 

mirror.[71]  The oscillator produced a beam that was 1.2 times the diffraction limit, and 

the phase conjugating mirror corrected amplifier aberrations such that the resulting output 

beam had nearly the same quality as the oscillator.  The pulse width was 70 ns, and the 

SBS cell was filled with CS2 liquid.  The signal beam was reflected through a flash lamp 

pumped Nd:YALO rod using a polarizing beamsplitter and a Faraday rotator.  The beam 

Table 1:  Brillouin gain coefficients and phonon lifetimes measured in selected 
materials. [46, 68-70] 

Material gb  
(10-11 m/W) 

τp  
(ns) 

CH4 (100 atm) 65 17 
N2 (135 atm) 30 22 
SF6 (22 atm) 35 24 
Xe (39 atm) 44 30 
CS2 130 4.6 
Acetone 20 1.9 
CCl4 6 0.5 
SiO2 5 4.3 
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was focused into the SBS cell using a 2 m focal length lens, and the maximum 

reflectivity of the SBS cell was measured at 60% at an incident irradiance approximately 

7 times above the SBS threshold.  After reflection in the SBS cell, the beam passed 

through the amplifier and Faraday rotator a second time before outcoupling at the 

polarizing beamsplitter.  The thermal lens effect is a main problem in rod amplifiers.  

When operating at high powers, the lens focal length varies with pump power.[72]  As a 

demonstration of the phase conjugate properties of the SBS cell, the beam quality of the 

laser output was found to be 1.2 times the diffraction limit despite a range in pump power 

from 2 to 8 kW, with corresponding average output powers from  

2 W to 102 W.   

 SBS phase conjugation has also been used to increase the pulse power and beam 

quality from zig-zag slab architectures.[73-75]  In zig-zag slab ampifiers, the signal beam 

is incident on the edge of a typically Brewster-cut slab of solid gain material such as 

Nd:YAG pumped on its large face with flash lamps or laser diodes.  The signal reflects 

multiple times inside the slab via TIR.  The optical path averages out much of the thermal 

lens experienced with bulk solid-state amplifiers.  Using a single flash lamp-pumped slab 

in a 4-pass geometry with a phase-conjugate reflection, Offerhaus generated 20 W 

average power at the diffraction limit in 25 ns pulses at 400 Hz.  To generate the phase 

conjugate beam, two cells filled with Freon-113 were used in succession termed an 

“oscillator-amplifier” SBS configuration.  After two passes through the amplifier, the 

signal was focused through a 500 mm cell (“SBS amplifier”) with a 200 mm focal length 

lens.  Any residual transmitted beam was then focused through a 100 mm cell 
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(“oscillator”) with a 50 mm lens to increase the reflectivity of the SBS reflection, which 

was reported to be 60%.   

 The double-SBS cell in a focused geometry used by Offerhaus lowers the power 

required to achieve SBS.  It was originally developed by Crofts et al.[76] with the more 

accurate name of “generator-amplifier.”  SBS threshold depends on the cross-sectional 

area of the beam divided by the effective length as in Eq. (2.53).  The effective length in 

a focused geometry is typically taken as two to three times the Rayleigh range of the 

beam.[77]  It is interesting to note that if the area is approximated as the cross-section of 

the beam at the focus, the quotient reduces to: 
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which is independent of spot size and therefore independent of focusing optic used as 

long as the cell is longer than the effective length.  A reduction in SBS threshold arises 

from the existence of the second cell and not the power of the lens used.  In fact, Duignan 

et al. reported a reduction in SBS threshold of a factor of up to 3.4 by using a Herriott 

cell to generate an SBS mirror consisting of effectively 24 cells.[78]  1.7 μs pulses from 

an HF laser at 500 mJ per pulse were focused and refocused into a single cell filled with 

high pressure xenon.  The beam was refocused through the 50 cm cell up to 24 times by 

100 cm focal length mirrors.  They measured ~85% conjugation fidelity with this 

arrangement with peak powers at ~0.3 MW.   

  Dane et al. at Lawrence Livermore National Laboratory used SBS phase 

conjugation to clean up aberrations in an 8-pass zig-zag slab laser using flash lamp-

pumped Nd:glass amplifiers.[74]  The SBS mirror consisted of a double-cell of CCl4.  

After 4 passes through the amplifier, the signal beam was collimated through a 33 cm cell 
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with a beam diameter such that this SBS amplifier cell is operating at 1-2 times SBS 

threshold.  Then the beam was focused into a second “oscillator” cell using a 14 cm focal 

length lens.  At low powers, the oscillator cell performs a majority of the conjugation.  As 

power is increased, the amplifier cell becomes more active and reduces the irradiance in 

the oscillator cell.  The purpose of the two-cell architecture in this case is to enable a 

broad peak power range to be conjugated without concern for competing processes such 

as stimulated Raman scattering, self-focusing, or material breakdown.  Using this 

arrangement, they achieved 88% reflectivity.  They note that to avoid transient effects or 

fidelity fluctuations, it is important when using pulsed systems to ensure the rise time of 

the leading edge of the pulse is long compared to the phonon decay time of the Brillouin 

medium.  Ultimately, their laser system produced over 25 J/pulse in 14 ns pulses, 6 Hz 

PRF, in a beam 1.25 times the diffraction limit for an average power over 150 W.                 

 While SBS in focused cells has been shown to work well with such high powers 

typically found in flash lamp-pumped, short-pulse lasers as noted above, the SBS 

threshold is prohibitive for most cw lasers.  Some success at lowering the SBS threshold 

in focused geometries was achieved by using ring cavities or SBS-cell resonators to 

create a longer path length through the material.[79, 80]  Using an amplifying medium as 

the SBS cell has also been used to lower threshold by increasing the effective length as 

shown in Section 2.3.[81]  However, as the peak power incident on the cell reduces 

toward threshold levels, the fidelity of focused-cell SBS phase conjugation decreases.  

Near threshold, only the most intense portions of the focused beam in the cell are 

conjugated.[82]  In addition, the aberrations in the incident beam can cause such a large 

transverse profile at the single focus that the conjugated components of the beam are 
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uncorrelated.[83]  To reduce the SBS threshold for lower peak power lasers, waveguides 

were employed to maintain high intensities for longer effective lengths.   

 Gas or liquid-filled capillary tubes have been used to reduce the SBS threshold in 

pulsed laser systems to as low as 40 W peak power.  Liquids have typically been chosen 

as the SBS medium since the higher index of refraction than the capillary tube results in a 

high NA, which results in better guiding as compared to gas-filled waveguides.  As 

reported by Jones et al.,[84, 85] a benzene-filled capillary tube with a diameter of 60 μm 

was used to lower SBS threshold to 130 W peak power.  Jones achieved 40% reflectivity 

at an even lower peak power of 70 W using a 500 ns pulsed laser and a CS2-filled 

capillary tube that was 2 m long with a 100 μm inner diameter.  In separate experiments 

with CS2-filled waveguides, Jones obtained up to 50% reflectivity and 80% conjugation 

fidelity.  The lowest SBS threshold among pulsed laser experiments with liquid or gas-

filled waveguides was obtained in a tapered waveguide filled with CS2.[86]  The 

diameter of the waveguide was rapidly tapered from 0.5 mm to 10 μm for an additional 

30 cm.  An SBS threshold value of 40 W peak power was measured for this waveguide 

using 15 ns pulses with a reflectivity of ~60%, but fidelity measurements were not 

reported.  In experiments such as this, the small waveguide acts as an SBS seed.  The 

two-waveguide system may begin to act as an amplifier for the seed instead of a phase 

conjugate mirror, which degrades the fidelity.          

3.3. Glass Fiber Optics  

 SBS phase conjugation has been achieved at low peak powers using pulsed lasers 

with silicate-fiber phase conjugators.  The threshold reduction with fiber length has 

enticed some research in cw phase conjugation using silicate fibers, but the 
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implementation has not been successful until this research effort.  Phase conjugation has 

also been explored using pulsed lasers with silicate-fiber amplifiers as the SBS media, 

which resulted in peak power SBS thresholds of less than 10 W, well within the range of 

cw lasers.  Most research related to SBS in fiber amplifiers was aimed at increasing the 

power-limiting threshold of SBS.  Recently, new glass fibers have been manufactured 

commercially such as tellurite and chalcogenide (As2Se3) glasses, which have been 

found to exhibit a very high Brillouin gain coefficient.  While the threshold of SBS has

been explored in these new glass fibers, phase conjugation experiments have not b

performed.  Chalcogenide glass, tellurite glass, and silicate-fiber amplifiers represent 

some of the most promising materials for cw phase conjugation via SBS.     

 

een 

3.3.1. Silicate Fiber 

 One of the earliest examples of phase conjugation in multimode silicate fibers was 

done by Kuzin in 1985.[60]  Using a 7 m multimode fiber (30 μm diameter, 0.12 NA) 

and a pulsed laser with pulse duration of 500 ns, they measured SBS threshold at 50 W 

and achieved ~80% reflectivity at higher powers.  The fidelity was reportedly near 1.  

They tested a fiber with a length of 130 m and encountered depolarization in the Stokes 

beam.  The SBS threshold was measured at ~10 W, and power reflectivity approached 

100% with incident peak powers of 500 W.  From these results, they concluded the 

length of the fiber lowered SBS threshold, but the fidelity was limited by depolarization 

as high as 50% in the fiber at the longer length of fiber.  They did note that analysis of the 

Stokes beam with only the same polarization as the signal exhibited high fidelity 

conjugation.  
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Fig. 9:  Apparatus used by Kuzin to measure phase conjugation fidelity with an in-
line pinhole.[60] 
 

 The method used by Kuzin to measure fidelity employs an in-line pinhole through 

which the incident beam is sent prior to being coupled into the fiber.[60]  The SBS fiber 

itself acts as an aberrating medium, and the pinhole diameter was chosen “so that only 

that fraction of the Stokes wave which was the phase-conjugate replica of the laser beam 

could pass through in the reverse direction.”  The fidelity was measured as the ratio of 

Stokes power that transmits through the pinhole to the total Stokes power, 3 2F P P= .  

Kuzin notes that the error in the Stokes power measurements was 20%, but claims total 

transmission through the pinhole and near perfect phase conjugation using the 7 m fiber.      

Kuzin’s experiment, performed with a pulsed laser, is one case where fibers 100 

m or longer were shown to reduce the fidelity of phase conjugation attributed to 

depolarization.  However, the high fidelity obtained in this pulsed laser experiment with 7 

m of fiber suggests fibers much longer than predicted by Eq. (2.65) and Eq. (2.67) may 

produce good fidelity phase conjugation.    In fact, Vasil’ev et al. employed a 25 m fiber 

as a phase conjugate mirror to effectively remove amplifier-induced aberrations in pulsed 

laser system.[61] 

 The coherence lengths of the pulsed lasers used in Kuzin and Vasil’ev’s  

experiments were not reported.  The work of Eichler would later show the effective 
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length of the SBS interaction in the fiber is reduced based on the coherence length of the 

signal laser.[62]  Eichler used a pulsed laser to study SBS phase conjugation in silicate 

fibers with 200 μm diameter, step-index cores.  The signal laser produced 30 ns pulses at 

1064 nm wavelength, and the coherence length of the laser was varied from 20+/-10 cm 

to 80+/-30 cm.  Fiber length was varied up to 10 m to study reflectivity, fidelity, and 

threshold of SBS phase conjugation.  A schematic of the apparatus is shown in Fig. 10.   

 Eichler found that the reflectivity and fidelity achieved through SBS in the fiber 

behaved as if the length of fiber were only ~1 m even when the fiber was physically 

longer.  After conducting measurements of fidelity, reflectivity, and threshold power as a 

function of both fiber length and laser coherence length, he defined an SBS effective 

length limited by the signal laser coherence length as 

 1 1 1
s

eff coh fiberL L L
= + , (3.2) 

where s
cohL is the coherence length of the signal laser.  Using a 4.1 m fiber, the threshold 

was found at 17 kW peak power and reflectivity reached 50% of the incident power.   
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Fig. 10:  Apparatus used to measure fidelity and reflectivity from a fiber phase 
conjugate mirror.[62] 
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 The result of Eichler’s work shows good fidelity phase conjugation can be 

achieved using effective lengths of a few meters of fiber.  Eichler’s experiments are in 

reasonable agreement (within a factor of 2) with the fiber length predicted by Eq. (2.65) 

for good fidelity conjugation when the coherence length of the signal laser is taken into 

account.  Due to the short coherence length of the signal laser, the expected decrease in 

fidelity with fiber length was not explored during these experiments even though the fiber 

length was increased to 10 m.  Eichler’s conclusions regarding the effective fiber length 

were confirmed in larger diameter fibers (0.4 mm to 1.0 mm diameters) by Pashinin et al. 

using a 10 cm coherence length signal laser and fibers up to 20 m long.[87]  Yoshida 

published similar research using 10 m fibers of 200 μm diameter with a pulsed laser of 

1.2 m coherence length.[88]  Yoshida’s laser had short pulses of only 10 ns and 

experienced damaging effects from the transient effects of SBS in short pulses 

approaching the phonon lifetime of the material.  Eichler later reduced SBS threshold 

powers to 300 W peak power using a 25 μm diameter silicate fiber that was 10 m long 

with an NA of 0.22, but fidelity was not reported.[89, 90]      

 The technique Eichler used to measure fidelity is known as the power-in-the-

bucket technique.  First, the signal beam transmission, T, is measured through a pinhole 

at the focus of a lens, measured at E1 in Fig. 10 above.  The Stokes beam is focused 

through a similar pinhole by a similar lens as shown in Fig. 10, and the energy 

transmitted, E3, is recorded.  The total energy in the Stokes beam is also recorded, E2.  

The fidelity is then given by the ratio of the Stokes energy transmitted through the 

pinhole to the product of the total Stokes energy and the incident beam transmission, 
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3

2

EF
E T

= .  The reflectivity is simply the Stokes energy divided by the incident energy, 

2 / 1R E E= .   

 Several high-pulse-power laser systems have been constructed using multimode 

silicate fibers as phase conjugate mirrors.  In 1985, Vasil’ev et al. used a multimode fiber 

as the phase conjugating medium in a four-pass Nd:glass amplifier[61].  The fiber had a 

core diameter of 50 μm and a length of 25 m.  A single pass of the amplifier typically 

aberrated the single-mode beam to 15 times the diffraction limit.  When the fiber phase 

conjugator was used, the output of the amplifiers matched the divergence of the source 

beam, amplified by an overall gain of ~300.  Eichler’s research team realized similar 

results with a 4-pass MOPA system.  By using a multimode fiber as the phase-conjugate 

mirror, they increased power from 84 W to 124 W with a slight improvement of beam 

quality to 2.2 times the diffraction limit.[91]  In a different arrangement, two amplifier 

channels were separately phase-conjugated and polarization combined to form a total of 

315 W average power in 120 ns pulses with 2.6 times the diffraction limit in beam 

quality.[92]  The SBS fiber was 2 m long with a 200 μm core diameter.  They noted that 

the phase-conjugate reflection from each amplifier leg automatically superimposes the 

beams spatially at the polarizing beamsplitter (Fig. 11).   
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Fig. 11:  Two-channel, polarization-combined 315 W MOPA with multimode fiber 
phase conjugating mirrors. 

 

       In attempting to lower the SBS threshold even further while maintaining high 

conjugate fidelity, Heuer et al. applied a two-cell oscillator/amplifier approach to fiber-

optic phase conjugators.[93]  In this method, a 45 cm-long, 100 μm-core fiber was 

tapered over a length of 5 cm into a 20 μm diameter fiber that was 50 cm long.  The 

narrow section of fiber served to decrease the threshold by a factor of 6.6 times lower 

than if just the 100 μm-core fiber were used with a full length of 1 m.  The reported 

fidelity was above 0.95 with a maximum reflectivity of 92%.  However, the fidelity was 

not reported for energy levels less than 5 times above SBS threshold.  Lower pulse-power 

operation approaching SBS threshold may cause a larger portion of the incident signal 

beam to be conjugated in the narrow portion of the tapered fiber.  This may decrease the 

fidelity since the narrow fiber portion cannot accept the full structure of the signal beam, 

and therefore cannot conjugate the full beam.  This is similar to seeded SBS which will 

be discussed next.       

 Providing feedback into the SBS medium at the Stokes-shifted frequency can also 

lower or even remove the SBS threshold.  The feedback provides a higher power seed 
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than the usual noise source that typically generates SBS.[16]  However, these methods 

tend to degrade the fidelity of phase conjugation.  Enclosing the fiber in a Fabry-Perot 

resonator leads to a lower threshold but also results in periodic power spikes at the 

roundtrip time of the cavity until the signal power is increased to many times above 

threshold.[94, 95]  The disappearance of the spiking at roundtrip times could be due to a 

large portion of the incident power being converted to Stokes power in a single pass of 

the material without using the cavity feedback.  A second method of feedback is the loop 

scheme or ring cavity pictured in Fig. 12.  This method reduced SBS threshold by a factor 

of 1.6 in an experiment using a 30 ns pulsed laser and a 1 m fiber with a 50 μm 

diameter.[96]  The conjugation fidelity was not measured in this test, but very short 

pulses in the Stokes beam with a periodicity of the roundtrip time in the loop were 

observed.  In a separate use of the ring resonator, a much longer fiber of 4.4 km was 

placed in a ring cavity which reduced the SBS threshold by 25%.[65]  While the temporal 

profile of the Stokes beam was studied in these research efforts involving feedback, the 

conjugation fidelity was absent.  The ability of feedback cavities to provide high fidelity 

conjugation is questionable and has not been demonstrated.        
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Fig. 12:  Loop or ring cavity used to reduce SBS threshold.[96] 
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   Since the threshold of SBS is reduced as the length of fiber increases (see Fig. 3), 

it is important to review some published results seeking SBS phase conjugation and beam 

cleanup in long fibers on the order of 1 km or more.  When a signal beam is launched into 

a long, multimode fiber in such a way as to excite nearly all the supported modes of the 

fiber, the backward propagating Stokes beam may emerge in only the LP11 or 

fundamental mode.[64, 65, 97-99]  The effect is known as SBS beam cleanup, as 

mentioned earlier in Section 2.4.  This is different from phase conjugation since a phase 

conjugate beam would be as distorted as the incident signal when reflected by the fiber 

and only experience beam cleanup upon a second pass through the original aberration.  

Bruesselbach first observed beam cleanup using fiber lengths of 2.2 km and 3.3 km that 

supported several hundred modes.  Rodgers demonstrated beam cleanup using a few-

mode, 4.4 km graded-index fiber operated in a ring geometry.  Russell et al. used a 4.4 

km graded-index fiber with a 50 μm core for beam cleanup.  The Stokes beam emerged 

from the fiber with a beam quality near the diffraction limit while the signal beam was 

measured at 18 times the diffraction limit.  To eliminate the possibility of spatial filtering, 

Russell measured the coupled beam quality after 2 m propagation in the fiber and found it 

to be 9 times the diffraction limit.  Grime carried out similar experiments confirming 

beam cleanup in long graded-index fiber with larger diameter cores of 62.5 μm and 100 

μm.  The results of these experiments showed that beam cleanup will occur as opposed to 

phase conjugation in long graded-index fibers, as discussed in Section 2.4.   

 In both modeling and pulsed experiments, Lombard explored graded-index and 

step-index fibers to find conditions for phase conjugation and beam cleanup.[64]  In the 

step-index fiber model, the Brillouin gain was found to be uniform across all supported 
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fiber modes, which is necessary for accurate phase conjugation.  However, the Brillouin 

gain for lower-order modes in a graded-index fiber was nearly twice the gain than the 

higher-order modes, which leads to beam cleanup.  In experiments, Lombard achieved 

“good quality” phase conjugation using a 2 m step-index fiber with a 50 μm core 

diameter, but “bad quality” phase conjugation using a 2 m graded-index fiber with 62.5 

μm core and NA of 0.27.  Beam cleanup was observed using multimode graded-index 

fiber longer than 30 m, and the Stokes beam emitted in the LP11 or LP01 modes 

depending on signal coupling.  In this case, the input beam had a pulse duration of 1 μs 

and was 6.5 times the diffraction limit while the Stokes beam was 1.2 times the 

diffraction limit.  Lombard’s investigations using a 1 km length of the step-index fiber 

did not yield beam cleanup nor phase conjugation.      

 In contrast to the theory and experiments regarding graded-index fibers presented 

above, there are several reports of cw phase conjugation in long, multimode, graded-

index fibers.[95, 100-105]  The experiments typically used several kilometers of 50 μm-

core, graded-index fiber to generate SBS.  The fidelity is measured by comparing beams 

as they transmit an aberration, reflect from the fiber via SBS, and re-transmit the same 

aberration.  The comparisons are done using pictures of beam irradiance, the measured 

beam divergence as done by Zel’dovich, a power-in-the-bucket technique as done by 

Eichler, or an M2 measurement.  In one experiment, a power-in-the-bucket technique was 

used to measure fidelity and phase conjugation was claimed with a fidelity of 0.3.  Since 

beam cleanup can produce a Stokes beam at the diffraction limit, divergence 

measurements, beam quality, and power-in-the-bucket measurements can be deceiving.  

Using these techniques, low fidelity measurements less than 0.5 are especially 
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ambiguous.  The most-likely explanation for their observations is beam cleanup, and 

these papers demonstrate the care that must be taken to distinguish phase conjugation 

from beam cleanup when measuring fidelity.  In this work, the in-line pinhole technique 

is applied to distinguish phase conjugation from beam cleanup, and a new technique to 

measure fidelity more accurately throughout the full range from zero to one is described 

and tested.      

3.3.2. Fiber Amplifiers 

 While much of the research into SBS in fiber amplifiers has been focused on 

raising the SBS threshold to obtain higher power amplifiers, Heuer et al. used fiber 

amplifiers as a phase conjugate medium.[42, 106]  In the experiment achieving the lowest 

SBS threshold, Heuer used a 10 m Yb-doped fiber with a 47 μm core co-pumped with a 

20 W, 940 nm wavelength diode laser (see Fig. 13).  The fiber core was doped with Yb to 

achieve a cladding-launched pump absorption of 1.5 dB/m.  The signal laser was pulsed 

with a duration of 100 ns.  With no pump power, the SBS threshold was reached with a 

signal energy of 12 μJ/pulse.  The effective length of the unpumped fiber is somewhat 

shorter than the length with a low pump power due to signal absorption by Yb.  With 20 

W pump power, threshold was achieved at 0.5 μJ for a threshold reduction by a factor of 

24.  Considering the signal pulse duration, Heuer assessed the equivalent cw threshold 

power at ~5 W.  In addition, due to the use of a fiber amplifier to generate the phase 

conjugate, a reflectivity of ~8000% was achieved when operating just above threshold.  

This reflectivity declined with increased signal power due to amplifier saturation.  

Fidelity was measured using an aberration with the energy-in-the-bucket technique at 0.9  
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Fig. 13:  Apparatus used to investigate SBS phase conjugation using a fiber amplifier.[106] 

for signal energies at ~20 times threshold, and the fidelity decreased slightly to 0.8 as the 

signal energy was increased to 200 times threshold. 

3.3.3.  Chalcogenide Fiber 

 Recent experiments using chalcogenide glass fiber have discovered a very high 

Brillouin gain coefficient in this material.  SBS threshold has been achieved with a cw 

signal laser in single-mode chalcogenide fiber, but there have been no phase-conjugation 

experiments conducted.   

 Chalcogenide glass has been made into mid-IR transmission fiber and is now 

available commercially.  This breakthrough was made possible by research at the Naval 

Research Laboratory which succeeded in reducing impurities.[107, 108]  In addition to its 

low attenuation in the mid-IR region, chalcogenide fiber is being developed for its high 

nonlinear properties.  Using fiber drawn at the Naval Research Laboratory, Florea et al. 

measured the Brillouin gain coefficient of a single mode As2Se3 glass fiber at (6.76+/-

0.36)x10-9 m/W.[109]  The fiber was 5 m long with a core diameter of 6.5 μm and an NA 

of 0.14.  The measurement was performed using an amplified 1.56 μm wavelength DFB 
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laser source to generate SBS.  The attenuation in the fiber was estimated at 0.9 dB/m, and 

the SBS threshold was found at 127+/-7 mW.  In a similar experiment, Abedin 

determined the Brillouin gain coefficient using a 5 m length of As2Se3 fiber to be 6x10-9 

m/W.[25]  The fiber had an attenuation of 0.84 dB/m at 1.55 μm wavelength, a 6 μm core 

diameter, and an NA of 0.18.  The SBS threshold for this fiber was 85 mW.  This is 

approximately 120 times greater than the Brillouin gain coefficient of silica.  It should be 

noted that in the reports of both Abedin and Florea, the reported Brillouin gain coefficient 

includes the use of a polarization factor of 0.5gK = (see Section 2.3).   

3.3.4. Tellurite Fiber 

 Tellurite glasses have recently been developed into fiber optics with scattering 

losses as low as 20 dB/km at 1.2 μm wavelength.[110]  The development is being 

pursued mainly due to the large gain bandwidth of the tellurite host doped with erbium, 

as well as the ability to dope tellurite with erbium at a much higher concentration than 

silicate glasses.[111-115]  Some of this work has been sponsored by the Defense Threat 

Reduction Agency in a contract with NP Photonics.[116]  It was discovered that the 

Brillouin gain coefficient in tellurite glass is approximately 20 times higher than silica, 

but phase conjugation experiments have not been conducted.   

 It was predicted and discovered that the stimulated Raman scattering gain 

coefficient in tellurite fiber is much higher than in silica fibers.[115, 117-119]  Mori et al. 

found the Raman gain coefficient to be 16 times that of silica fiber in side-by-side 

experiments.  Measurements of the Brillouin gain coefficient in tellurite soon followed.  

In 2004, scientists at the Army Research Laboratory measured the Brillouin gain of bulk 

tellurite glass at ~1x10-9 m/W.  The Brillouin gain coefficient in single-mode tellurite 
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fiber was measured experimentally in 2006 by Abedin.[26]  Using 2 m and 3 m lengths 

of single-mode tellurite fiber with an NA of 0.36, the SBS threshold was found at 

launched signal powers of 1 W and 630 mW, respectively.  The fiber had an attenuation 

of 0.51 dB/m, and Abedin calculated the Brillouin gain coefficient through several 

different methods to be (1.82+/-0.35)x10-10 m/W, where the factor  was used.  

A second group found SBS threshold in a low-loss, single-mode tellurite fiber at 

.[120, 121]  This fiber had an NA of 0.43 and a length of 200 m.  In 

determining the SBS gain coefficient, the factor 

0.667gK =

101.7 10  m/W−×

0.5gK =  was used. 

3.3.5. Conclusion 

In this section, a reduction of SBS threshold and improvement in phase conjugation 

fidelity was shown using pulsed lasers focused into waveguides.  The SBS threshold was 

reduced further using smaller diameter waveguides.  Other techniques that have resulted 

in reduced SBS threshold include the use of fiber amplifiers, longer fibers, feedback or 

Stokes seeding techniques, and materials with higher Brillouin gain coefficients.  Longer 

fibers have produced phase conjugation fidelity higher than predicted by Hellwarth and 

Zel’dovich’s models as given in Eq. (2.65) and Eq. (2.66), but the coherence length of the 

signal laser may have limited the interaction length between signal and Stokes beams.  

Feedback and seeding techniques were shown to reduce threshold but interfere with the 

fidelity of phase conjugation.  The SBS gain coefficient has been measured in the single-

mode tellurite and chalcogenide fibers, but phase conjugation has not been reported.  A 

measurement of the fidelity of phase conjugation as a function of fiber length has not 
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been conducted, and cw phase conjugation has not been achieved.  This is the main goal 

of this research effort.        

3.4. Phase Conjugation Models 

In the literature, when SBS is not being generated in a fiber amplifier, the seed is 

called a pump.  The language is valid since the pump excites a virtual energy level to 

generate a Stokes beam through the scattering process.  In the description of these 

models, the seed will be called the pump since SBS is not being generated in a fiber 

amplifier where the terminology would become ambiguous.   

Several models have been produced which calculate the phase conjugation fidelity 

from SBS in optical waveguides.  There are several models that are accurate for the case 

of fidelity near 1, but approximations were made which invalidate the models for 

decreased fidelity.  Lehmberg’s numerical model examined the fidelity as a function of 

average irradiance and divergence angle over short interaction lengths.[122]  Lehmberg 

accounted for pump depletion, but the model sets λΔ = 0 and therefore fails to account for 

a decrease in fidelity as fiber length is increased.  Both Zel’dovich et al.[57] and 

Hellwarth[29] reached analytical solutions for the length limitation on fidelity by 

neglecting pump depletion and solving for the case of near perfect fidelity.  Zel’dovich 

approximated the non-conjugated fraction of the Stokes beam in Taylor series expansion 

and kept only the first few terms, which limited the validity of the model to near-perfect 

fidelity.[57]  This method resulted in an equation showing a dependence on the seed 

profile and beam shape.  Hellwarth evaluated the phase-conjugate fidelity that could be 

obtained from a waveguide as a function of waveguide length, core area, and number of 
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modes excited.  His analysis was based on a perturbation of perfect fidelity phase 

conjugation which loses validity as fidelity decreases.   

Without making approximations of high fidelity, Lombard et al. solved for the 

SBS gain per mode of both a step-index and graded-index fiber with the assumption that 

all modes were equally excited by the pump.[64]  Pump depletion was included in the 

gain determination under the approximation of uniform depletion of the pump and 

amplification of the Stokes modes.  However, the fidelity achieved was not analyzed as a 

function of fiber length.  The authors deferred to Hellwarth for that discussion, and used 

the model only to show uniform gain across modes in a short, step-index fiber, while 

showing preferential mode selection for a long, graded-index fiber.   

In a model related to phase conjugation fidelity, Russell et al. analyzed the phase 

difference accumulated between the lowest and highest-order modes supported by the 

fiber. [55]  This model determines the maximum fiber length allowed by a given 

difference in phase accumulated between the Stokes and pump modes.  This model 

clearly showed an increasing phase error as the length of fiber was increased, but the 

relationship between phase mismatch and phase conjugation fidelity was undetermined.        

The experimental work of this dissertation inspired a full, three-dimensional 

analysis of phase conjugation in step-index waveguides which included pump-depletion 

effects.[63, 123]  Free-space Fourier propagation was used to propagate a Gaussian beam 

through a pinhole and focus off-center onto the tip of a fiber as done in the experiment 

which is described in Chapter 6.  The fiber modes were determined from the physical 

characteristics of the fiber with numerical root solving methods to find the modal 

transverse and longitudinal propagation constants.  The electric field of each mode in a 
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transverse plane was then determined from the propagation constants.  The product of the 

incident field and a random field in the fiber was integrated over the transverse dimension 

at the face of the fiber and maximized using a perturbation algorithm to obtain a set of 

fiber modes with amplitudes and phases that closely matched the incident field.  The SBS 

portion of the model solved for the Stokes field at the tip of the fiber by perturbing the 

Stokes field until one was found which received the highest SBS gain over the volume of 

the fiber.  The resulting Stokes beam was then counter-propagated in free space to 

determine the transmission through the pinhole.  The SBS portion of the model is 

discussed in more detail here.   

The equations describing stimulated Brillouin scattering are given by Eq. (2.49)

and are shown again here:[54]  
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∂
= − +
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 (3.3) 

where  represents the Brillouin gain, ( )Bg r⊥ , ( )p sI r⊥ represents the irradiance of the pump 

or Stokes beam, is the transverse fiber direction, and r⊥ ,p sα  represents transmission loss 

in the fiber at the pump and Stokes beam frequency.  The transmission loss in silicate 

fibers is typically less than 5 dB/km and was neglected due to the relatively short lengths 

of fiber where this model was concerned.  The pump and stokes fields are represented as 

a summation over the fiber mode fields as[55] 

 , , , , ,( , , ) ( ) ( ) cos( )f f f f
p s p s p s p s p s p sf

E r z t A z r z t ,ψ β ω φ⊥ ⊥=∑ − + . (3.4) 

The summation is over all the modes allowed by the fiber f , and includes both radial and 

azimuthal dependence represented by a single variable, r⊥ .  The amplitude of each pump 
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or Stokes mode is represented by , and the field radial and azimuthal dependences 

are given by 

, ( )f
p sA z

, ( )f
p s rψ ⊥ .   The longitudinal propagation constant, ,

f
p sβ , applies to the 

particular pump or Stokes mode, while ,p sω and ,
f

p sφ  are the pump or Stokes radial 

frequency and modal phase factors, respectively.  Following the work of Russell et 

al.,[55] the irradiance of a pump or Stokes mode was given by 
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 (3.5) 

where the brackets indicate a time average of the field, 0ε  is the permittivity of free 

space, is the index of refraction of the fiber core, and c is the speed of light.  Shorthand 

notation was used such that 

n

f
, , ,
q f

p s
q

p s p sβ βΔ = β− , and similarly for ,
fq

p sφ .   Δ

SBS causes an increase in amplitude of the scattered fields which correspond to a 

decrease in amplitude of the pump fields.  In reality, these rates are mode dependent and 

coupled together such that the Stokes increase in one mode may correspond to a 

decreased amplitude of multiple pump modes.  To simplify the analysis, all the modes of 

either the pump or Stokes were approximated to vary at the same rate.  This was 

represented by[55]  

 . (3.6) , , , (0)f
p sκ( )p sA z =

,
f
p sA

( ) p sz A f

In this equation, represents the change in amplitude common to all modes of 

either the pump or Stokes beams, and represents the mode field amplitude at the 

pump input end of the fiber.  By integrating over the transverse area, the change in Stokes 

irradiance described by Eq. 

,p sκ ( )z

(0)

(3.3) was expressed as[55] 
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which includes new notation 
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After making the substitution , Eq. 2( ) ( ) / (0)s s sz P z Pκ =

(sP L

(3.7) was integrated using 

separation of variables to yield an equation for such that[63] )
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To evaluate the integral in the exponential, an expression for ( )p zκ was derived.  

The assumption that all the pump modes are depleted at the same rate is equivalent to a 

single-mode fiber approximation with a constant transverse intensity profile across the 

core for purposes of pump depletion.  With the additional approximation that the fiber is 

lossless, the differential equations are: 
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As discussed by Boyd,[16] these equations imply ( ) ( )p sI z I z C= +  where C is a 

constant.  Since 2( ) ( ) (0)p p pz I z Iκ = , separation of variables was used to solve Eq. 

(3.10), yielding 

 2
2

(0)[ (0) (0)] (0)( ) 1
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The procedure detailed by Boyd[16] for the “SBS Generator” was used to solve a 

transcendental equation for in terms of total SBS gain, (0)sI (0)B B pG g I L= , and SBS 

threshold gain as determined by experiment.  Using this description of pump depletion, 

Eq. (3.9) was evaluated numerically. 

To reduce computation time, the product of cosines in Eq. (3.9) was approximated 

as done by Hellwarth[29] using a trigonometric identity such that 
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For nonzero fq
pβΔ and jv

sβΔ , most mode combinations would result in large values for 

these βΔ terms which oscillate rapidly and integrate to negligible values over short fiber 

distances.  Only certain mode combinations were computed in the model.  When 

f q= and j v= , both cosine terms on the right-hand side of Eq. (3.12) equal one.  

Owing to the similarity of the propagation constants under the small frequency shift of 

SBS, the contribution of the cosine term is small compared to the case of f j=  and 

 for the first cosine term on the right-hand side of Eq. q = v (3.12).  This is the case when 

the pump and Stokes modes being compared are in corresponding fiber modes.  The same 

is true when f v=  and q  for the second cosine term on the right of the equation.  

Therefore, the product of cosines was simplified to[63] 
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The Stokes beam generated in the fiber is the combination of fiber modes that 

experiences the highest SBS gain.  For a given combination of Stokes modes, the 

backscattered Stokes power was computed using Eq. (3.13) and Eq. (3.11) to solve Eq. 

(3.9).  An algorithm was used to find the amplitudes and phases of the Stokes modes that 

produced the maximum backscattered power for a given pump configuration.  The 

algorithm steps through the amplitude and phase of each Stokes mode and outputs the 

solution when the iteration fails to improve power more than a set percentage.  The sum 

of all the Stokes modes was then propagated back through free space to the pinhole 

aperture to determine fidelity. 

The results of the model are plotted in Fig. 14 for two different fibers.  In Fig. 

14(a), the fiber core diameter was 20 µm with an NA of 0.13.  In Fig. 14(b), the fiber 

core diameter was 40 µm with an NA of 0.06.  Hellwarth’s model is also shown for these 

fibers.  The results show that Spring’s model predicts the same fidelity in lengths of fiber 

that are approximately an order of magnitude longer than the calculations of Hellwarth’s 

model.  In addition, Spring’s model predicts that fidelity declines slower with length for 

the fiber with a lower NA.   
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Fig. 14:  Spring and Hellwarth models of fidelity achieved as a function of fiber 
length for (a) the 0.13-NA fiber and (b) the 0.06-NA fiber.[29, 63] 
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After the fidelity has dropped to a low value, the model predicts a rise in fidelity 

as the fiber length increases.  This effect resulted from modal phase interactions such that 

( )fq jv
p s z m2β βΔ ± Δ = π , where m is an integer.[63]  When multiple mode sets reach an 

integer number of 2π  change in phase near the same length of fiber, the mode mismatch 

is mitigated, and the model predicts fidelity increases at that length of fiber.   

3.5. Coherent Beam Combination via SBS 

 While coherent beam combining is not the direct goal of this research effort, it is 

the main application of cw phase conjugation via SBS that is being explored in this work.  

Due to materials constraints, single-fiber power scaling of single-frequency beams 

reaches a power ceiling.  By combining elements, the power can be scaled beyond the 

restrictions set by the single elements.  By simply overlapping a number of beams N in 

space, the irradiance of each beam adds to result in a beam that is N times the single 

element irradiance.  However, if the beams are coherent, the electric fields add.  This 

results in an incident irradiance that can be N2 times the single element irradiance if the 

beams are in phase and constructively interfere.  The problem becomes the construction 

of an array of lasers that are all in phase with each other.  The two main approaches are 

through electro-optic control of each element or to combine the amplifiers using 

nonlinear optics.   

 To combine an array of elements coherently using electro-optics, each element is 

first seeded by the same master oscillator.  The optical paths of each of the fiber 

amplifiers must be set and controlled to within a fraction of a wavelength to account for 

vibrations and temperature fluctuations.  To accomplish this, these methods typically 
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compare the phase of each element with that of a reference beam at a photodetector and 

electronically adjust the phase of each element using fiber stretchers or electro-optic 

phase modulators to maintain coherence.[124-128]  Using high-power, Yb-doped, single-

mode amplifiers and lithium niobate phase modulators, Anderegg et al. achieved 470 W 

by coherently combining 4 amplifier channels.[129]  AFRL recently demonstrated 

locking of 9 passive channels and, separately, an array of 6 amplifier channels using a 

self-referencing technique that resulted in residual phase error of / 20λ .[124] 

 Beam combination can also be performed by SBS phase conjugation without 

wavefront sensors or electronic feedback and control mechanisms.  If the phase conjugate 

fidelity is high, the effect of wavefront reversal ensures that the Stokes beam propagates 

back through the amplifier channels and that the phases of the beams are locked after the 

second pass through the amplifier channels. Coherent beam combination via SBS has 

been studied thoroughly in pulsed laser systems with many successful results.  There 

have been several studies using cw lasers, but none have employed a full spatial phase-

conjugate beam.   

 As reported by Valley et al., the first experiments demonstrating phase locking of 

two channels via SBS were performed by Basov in 1980 using a pulsed laser.[130]  

Basov split a single beam into two passive channels using a 50/50 beamsplitter and 

coupled both channels into a common waveguide for SBS phase conjugation.  The two 

channels became a single aberrated wavefront in the SBS cell.  A high-fidelity, phase-

conjugate reflection was created by the SBS cell which locked the phases of the Stokes 

beam after back-propagation through the two channels.   
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 Basov et al. were also the first to demonstrate a constraint on the path length 

differences that can be compensated by SBS phase conjugation.  Due to the frequency 

shift between the signal and Stokes beams, there is a residual phase error between 

different channels when path length differences exist.  The residual phase error or “piston 

error” is given by[131]  

 Bo L
c

δ Ω Δ
= , (3.14) 

where ΔL is the optical path length difference, BoΩ is the SBS frequency shift given by 

2
/
s a

Bo
v

c n
ω

Ω = , and δ is in radians.  As reported by Moyer,[132] when the Stokes beams in 

the two channels were conjugated with high fidelity, the beams recombined at the 50/50 

beamsplitter and constructively interfered in the direction towards the source laser.  

However, when Basov introduced a delay in one of the legs such that δ π= , the beams 

constructively interfered in the direction away from the source laser.  Basov remarked 

that this effect may be used to out-couple power from a phase-locked, multiple-channel 

amplifier system.  The residual phase error given by Eq. (3.14) was confirmed in 

experiments by Rockwell et al. in 1986.[131]   

 Many investigations have been performed to coherently combine multiple 

channels using pulsed lasers in focused SBS cells filled with a liquid or gas.[130, 133-

139]  The reported experiments were typically successful, combined up to 8 parallel 

amplifiers,[134] and achieved phase errors among the channels as low as / 27λ .[135]  

However, the scientists routinely discuss the extreme sensitivity to misalignment of the 

beams in the SBS cell.  Sternklar et al. quantifies the misalignment sensitivity to a 

tolerance of +/-0.64 beam spot diameters in the focal plane.  The beams must be carefully 
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overlapped in the SBS cell to obtain a common phase.  Aberrated beams were shown to 

have more relaxed overlap requirements,[130] presumably due to the larger diameter at 

focus of an aberrated beam.  SBS in an optical fiber as discussed in this work relaxes this 

requirement slightly, requiring only that the beams are coupled into the same waveguide 

where an SBS phase conjugate beam is generated.    

Another attempt to lock the phases of multiple channels using SBS in a focused 

cell architecture seeded the SBS cells with a frequency-shifted Stokes seed.  This 

technique has been examined theoretically[138, 140] and experimentally,[130, 138] with 

the goal of fixing a common phase among all the channels through seeding the SBS 

process.  Using a computer model of steady-state SBS processes called BOUNCE,[122] 

Moyer et al. calculated that the phases of multiple channels should be locked when the 

SBS process is seeded with a Stokes beam with an irradiance that is greater than 10-6 

times the signal beam irradiance.  In contrast to this, Moyer discovered experimentally 

that the power in the seed beam that was needed to lock the phase of the Stokes beams to 

that of the seed was closer to 1% of the signal power.  In addition, when a seed was used 

as a common reference to lock the phase, the conjugation fidelity dropped and the 

coherence of the piston-error conjugation disappeared.  Moyer comments that seeding the 

SBS cell causes the cell to act as a seed amplifier rather than a phase conjugate medium.  

Seeding the SBS process is one method to lower the SBS threshold, but Moyer’s results 

show that phase conjugation fidelity suffers when this technique is used.         

 The use of a light guide for SBS phase conjugation in beam combining ensures 

the overlap of the signal beams once coupled into the guide.[134, 141]  Using a pulsed 

laser with pulse duration of 15 ns, phasing of two optical paths was investigated at AFIT 
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using a 600 μm-core fiber as the phase-conjugate medium.[142]  The two paths were split 

and recombined using prisms before being coupled into the same multimode fiber.  Willis 

et al. used a lateral shearing interferometer to show that the two channels were phased 

when a phase-conjugate reflection was generated, and that the beams were not phased 

when reflected using a basic mirror.   

 The beam-cleanup property of long, graded-index fibers has also been used for 

beam combination without generating a phase-conjugate reflection.[65, 99, 143]  In these 

experiments, up to five beams were coupled into a multimode, graded-index fiber several 

kilometers in length.  Through SBS beam cleanup, the Stokes beam emerges with beam 

quality near the diffraction limit.  This effect was demonstrated for coherent combining 

as well as incoherent beam combining.  In contrast to beam combination using SBS phase 

conjugation, the Stokes beam generated in these experiments does not propagate back 

through the amplifiers.  

 Grime et al. demonstrated cw phasing of a 2-channel amplifier using polarization 

conjugation in long, optical fiber without generating a spatial phase conjugate (Fig. 

15).[144]  This technique involves polarization combining of a maximum of two single-

mode amplifier channels into a long fiber where beam cleanup occurs.  In the experiment, 

the single-frequency beam from an NPRO was amplified by a rod amplifier to 2 W 

before being split into two beams of semicircular cross-section by a prism.  Each beam 

was coupled into separate single-mode fiber amplifiers and amplified to ~10 W.  The 

beams were then polarization combined and coupled into a 4 km long fiber with a 50 μm-

core diameter.  Through the beam cleanup effect of graded-index fibers, a single-mode 

Stokes beam was created which conjugated the polarization of the combined input signal.  

70 



After propagating back through the polarizing beamsplitter, the Stokes beams passed 

once more through the amplifiers to recombine at the prism beamsplitter.  A lateral 

shearing interferometer was used to verify that the two beams were phased at this point.  

If a phase-conjugate beam was created by SBS, there could be more than 2 amplifier 

channels and the amplifiers could be multimode. 

                      

 

Fig. 15:  Schematic of the apparatus used to phase two amplifier channels using SBS 
beam cleanup in multimode fiber.[144] 
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4.  SBS Threshold Modeling 

4.1. Overview 

In this work, high power, narrow-bandwidth amplifiers must be constructed 

without reaching SBS threshold.  In contrast, multimode fibers must be evaluated such 

that SBS threshold is achievable to generate the phase conjugate beam using the output 

power from the fiber amplifiers.  An SBS threshold model was created for this purpose.   

The SBS threshold power in high-power, fiber amplifiers has been found to be 

much higher than predicted by using the Smith model given by Eq. (2.53) and repeated 

here, 21 ( )th eff B effP A g L≈ .  By incorporating the change in SBS frequency shift with 

fiber temperature in a model of SBS gain in fiber amplifiers, Kovalev was able to explain 

the increased SBS threshold power.[45]  The temperature variation is a result of the 

quantum defect between the pump and laser frequencies coupled with non-uniform pump 

irradiance throughout the length of the fiber.  However, the choice of pump geometry was 

ignored in Kovalev’s model.  Using traditional pump-coupling techniques through the tip 

of the fiber, the pump can be introduced into the signal output end (counter-pumped), the 

signal input end (co-pumped), or both ends (dual-end-pumped).  Unlike the amplifiers he 

was modeling, Kovalev’s model included only the counter-pumped architecture.    

With the pump power and pump absorption set to near zero, the model predicts 

the SBS gain and threshold of a lossless, passive fiber similar to Smith’s model.  As 

discussed in Chapter 3, chalcogenide and tellurite fibers have significant scattering loss at 

the wavelengths being considered in this work.  These scattering losses not only suppress 

the signal, but also the SBS gain.     
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In this work, the choice of pump-coupling geometry was added to the model and 

predicts that the SBS threshold of a co-pumped amplifier can be less than half the 

threshold of a counter-pumped amplifier.  Scattering loss was incorporated, and no 

approximations were made to require low-loss fiber as in Smith’s derivation.  The 

deviation from Smith’s model becomes significant at approximately 0.5 dB/m of 

attenuation.  The approach used in this model was confirmed by the modeling efforts of 

two research groups.[145-147]  In addition, the disparate Brillouin gain coefficients 

measured by several research groups are shown to be related through Brillouin gain 

broadening as a function of fiber NA without use of the polarization factor gK .     

4.2. Model of SBS Threshold 

The model starts with the growth of a signal beam (Ps) with distance as given by 

Yariv:[148]  

 
( )( ) ( ) ( )

( )
ps

s st s s
st s

P zdP z P z P P z
dz P P z

γ
α=

+
− , (4.1) 

where Ps(z), Pp(z), and Pst are the signal, pump, and saturation powers respectively, γ is 

the pump-to-gain conversion coefficient, and αs is the scattering loss coefficient of the 

fiber.  To account for pumping from the front or back ends of the fiber, let Ppf(z) 

represent the pump power coupled into the front of the fiber, while Ppb(z) represents the 

pump power coupled into the back end of the fiber.  Assuming that the pump absorption 

from the front and back are independent, the total pump power along the length of the 

fiber is the sum of power from the two ends such that ( ) ( ) ( )p pf pbP z P z P z= + .  The 

equations  
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describe the attenuation of the pump as a function of fiber length when co-pumped and 

the growth of the pump power in the fiber as a function of length when counter-pumped. 

The amplification of the signal can be described as: 

 ( ) ( )( )( ) ( ) [ (0) ( ) ] (
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s Yb s Ybz z Ls s st
pf pb s s
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+

− , (4.3) 

where the pump power has been integrated from Eq. (4.2) and substituted into Eq.(4.1).  

Then the change in Stokes power with fiber length is: 
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In Eq. (4.5), gI is given by Eq. (2.58), Cδ is the change in bandwidth with temperature, 

and Cf is the change in Brillouin frequency shift with temperature.  The room 

temperature Brillouin frequency shift is Fo, Fν is the frequency of the Stokes beam, ΔT is

the change in temperature as a function of fiber length, and Γ

 

ower due to SB

B is the Brillouin gain 

bandwidth at room temperature.  The terms on the right hand side of Eq. (4.4) represent 

the gain and loss of the Stokes power as a function of fiber length.  The first term 

represents the gain in Stokes p S, ( ) ( , )B BP z G z F− , where the negati

represents increasing power in the di tion of 

ve sign 

rec z− .  The second term is the gain in Stokes 
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power from the amplifier, ) ( )LG z , and the third term is a scattering

( ) ( )B sP z G z+ .  After integrating over z, the SBS threshold is app

( ) 21B L sG F G G+ − ≈ .  Provided the scattering loss term includes negligible ab

the change in temperature along the length of the fiber is g

(BP z−  loss, 

roximated by 

sorption, 

iven by[44]: 
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where η is the quantum defect, a and b are core and pump cladding radii respectively, and 

h is the convective coefficient at the fiber surface, approximated at 0.8+/-0.3 W/m2K for 

a fiber in ambient air and 1.7+/-0.3 W/m2K for an actively air-cooled fiber.[45]  

 Assuming high power operation allows ( )s stP z P>> , such that the denominators 

can be approximated as .  With this approximation, Eq. ( ) (st s sP P z P+ ≈ )z (4.3) can be 

integrated to find an equation for the signal power as a function of fiber length: 

     ( ) (s sz L
s pb

b

P eα α− − ( ) ( )) ( )Yb s Yb s s s Ybz L z zst
pf

s Y Yb

P Pe e P e eα α α α α α αγ γ
α

+ + − − − ++ − + −

( )

(0)

sP z

P e

=

2
st

α α+
. (4.7) 

In the absence of scattering losses, the slope efficiency of the fiber amplifier is 

represented by 

 st
sl

Yb

Pγη
α

= , (4.8) 

which can be used to estimate γ.  The Brillouin gain is found by integrating Eq. (4.4) over 

the length of the fiber.  This integration can be performed using the NIntegrate function 

of Mathematica.  The result is that the Brillouin gain is the sum of the amplification of 

the Stokes signal owing to SBS and that due to laser gain.  Stimulated Brillouin scattering 

threshold occurs when the sum of the Brillouin gain, laser gain of the Stokes beam, and 
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scattering loss reaches approximately 21 when started from noise (1 photon per mode) at 

the output end of the fiber.[19] 

4.3. Fiber Amplifier SBS Threshold 

 The general trend this modeling has revealed is that co-pumping (exciting the Yb 

by launching the pump into the cladding of the fiber from the same end as the incident 

signal) results in relatively high signal power through a long section of the fiber amplifier 

where the thermal gradient is small.  The thermal gradient in the fiber follows the pump 

absorption according to Eq. (4.6), resulting in a large thermal gradient at the front end of 

the fiber where the signal power is lower.  At the back end of the fiber, the signal power 

is higher and the thermal gradient is less, resulting in favorable conditions for SBS 

generation.  In contrast, counter-pumping (launching pump power into the cladding from 

the signal output end of the fiber) causes the signal power to increase rapidly near the 

back end of the fiber.  The thermal gradient is high at this portion of the fiber where the 

signal power increases due to counter-pumping.  This results in a much lower SBS gain 

and higher threshold power for the counter-pumped amplifier.  Using the model, the fiber 

amplifiers used in this work were designed and built at wavelengths of 1064 nm 

(ytterbium fiber amplifiers) and 1550 nm (erbium-ytterbium fiber amplifiers). 

4.3.1. Ytterbium Fiber Amplifier 

 The amplifiers in this work are constructed using Nufern large-mode-area fibers.  

The Yb-fiber amplifiers are pumped with one or two 100 W LIMO diodes at 976 nm.  

The fiber characteristics are listed in Table 2.   
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 To demonstrate the difference between a co-pumped and counter-pumped 

amplifier configuration, a diagram of a co-pumped amplifier is shown in Fig. 16.  The 

diode pump is coupled to the fiber amplifier at the front end of the fiber where the seed is 

also coupled.  With a seed power of 4 W, the temperature difference and signal power as 

a function of position in the fiber at the calculated SBS threshold is shown in Fig. 17 for a 

co-pumped amplifier.  The SBS gain coefficient was approximated at for 

modeling purposes.  The output power achieved in this configuration for a 10 m fiber is 

~22 W.  In contrast, the SBS threshold for a counter-pumped amplifier of the same length 

is over 50 W.  In the counter-pumped architecture, the power rises rapidly and is high 

over a very short length of fiber, and the temperature gradient is high over the same 

length of fiber.  These two conditions raise the SBS threshold for the counter-pumped 

configuration. 

113 10  m/W−×

Table 2:  Characteristics of Nufern, large-mode-area, fiber amplifiers. 

Core diameter (µm)
Core NA
Cladding diameter (µm)
Cladding Yb absorption (dB/m)
Fundamental mode 1/e2 diameter (µm)a

Slope efficiency (%)b

20
0.06
400
1.4
18
77 

Fiber characteristics

aMarcuse, D., Loss analysis of single‐mode fiber splices. Bell Syst. Tech. J, 1977. 56(5): p. 703–718.
bThis work  
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Fig. 16: Diagram of a co-pumped fiber amplifier. 
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Fig. 17:  Signal power and temperature difference as a function of position in a co-
pumped fiber amplifier at the SBS threshold. 
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Fig. 18:  Signal power and temperature difference as a function of longitudinal 
position in the fiber for a counter-pumped fiber amplifier at the SBS threshold. 

 

 The SBS threshold model of Nufern’s amplifiers was then used to design the 

amplifiers for this work.  The SBS-limited power obtainable under various pump 

geometries is shown in Fig. 19 with a seed power of 4 W.  Longer fiber will absorb more 

pump power and increase the efficiency of the system.  However, the SBS threshold 
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decreases with length, limiting the maximum amplified signal power.  In addition, co-

pumped fiber amplifiers are preferred to limit damage to the diode pumps, but result in a 

lower SBS threshold power for a given fiber length.  For example, this work will have 

access to a maximum of 100 W from a single diode pump.  With dichroic mirror losses, 

Fresnel reflections, and imperfect, free-space coupling to the fiber, an estimate of pump 

power coupled to the fiber is 75 W.  In a co-pumped amplifier using 20/400, Yb fiber, the 

length of fiber must be kept to 5 m or less at this pump and signal power to avoid SBS.  

The shorter fiber length limits pump absorption and the expected output power is 50 W.  

In a counter-pumped architecture, the fiber length is limited to 8 m for an output power of 

57 W.  The counter-pumped amplifier increases amplifier efficiency by 15% in this case 

(57% optical-to-optical), but includes increase risk of diode damage due to amplified 

signal transmission through the dichroic mirror.  If two diodes are available, the power of 

the amplifier can be increased to 82 W with dual-end pumping and a fiber length of 3.6 m 

limited by SBS.  While this is the highest output power, it is the most inefficient (41% 

optical-to-optical) of the architectures due to coupling losses on both pumps combined 

with the shorter length of fiber to absorb the pump.  Additional dichroic mirrors must be 

used in the counter-pumped and dual-pumped architectures, which decrease the 

efficiency further over what is presented in this example.   
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Fig. 19:  Modeled SBS threshold power of fiber amplifier under different pump 
architectures. 

 

 A MOPA (Fig. 20) was designed and built using the model to generate high 

power with a narrow-frequency bandwidth while avoiding SBS.  A 700 mW non-planar 

ring oscillator was the initial seed source.  The linewidth is nominally < 5 kHz, much less 

than the Brillouin gain bandwidth of ~36 MHz.  A preamplifier was constructed with 

10.3 m of Yb-doped, PLMA (polarization-maintaining, large-mode-area) fiber counter-

pumped with a 20-W, fiber-coupled diode at 976 nm.  The output of the pre-amplifier 

was sent through a polarization-dependent, optical isolator to prevent feedback from the 

high-power amplifier.  Polarization was maintained above 95% linearly polarized at an 

output power of ~5 W. 
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Fig. 20:  Diagram of the MOPA constructed with a wavelength of 1064 nm. 
 

0 5 10 15
0

1

2

3

4

5

Pump Power HWL

Am
pl

if
ie
r

Ou
tp
ut

Po
we
r
HW
L

 

Fig. 21:  1064 nm pre-amplifier output power as a function of pump power. 

 

The power amplifier was constructed to avoid SBS using a co-pumped 

architecture and a single, 100-W, fiber-coupled diode at 976 nm.  The fiber length was 

cut to 5.2 m in accordance with the modeled SBS threshold.  The output power is shown 

in Fig. 22 after an aperture to remove power in the cladding.  The amplifier required 

periodic maintenance to maintain alignment, which resulted in variations in maximum 

output power achieved.  This power was monitored during testing and was noted between 

42 W and 50 W.    
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Fig. 22:  1064 nm amplifier output power as a function of absorbed pump power. 

            

4.3.2. Erbium-Ytterbium Fiber Amplifiers 

 Fiber amplifiers from Nufern co-doped with erbium and ytterbium are used for 

amplification at 1550 nm wavelength.[149]  Since ytterbium absorbs the pump power, the 

same diodes can be used for these amplifiers.  The energy transfer of the excited energy 

state of ytterbium to the excited state of erbium is a non-radiative transition aided by the 

addition of phosphorus in the glass.  Amplified spontaneous emission (ASE) and lasing 

of the ytterbium is a known problem with these fibers that must be overcome through 

proper fiber construction, high seed powers, and limited overall gain.  Amplifiers have 

been constructed with gain higher than 20 dB,[150] but gain is typically limited to 15 dB 

by the onset of ASE around 1535 nm.[151]  In addition, the large quantum defect 

between pump and signal wavelengths causes the efficiency of these amplifiers to be 

~33%, less than half of a typical Yb-doped fiber.  The thermal gradient along the length 

of the fiber is also higher.  Due to these issues, SBS is less of a concern with Er-Yb fiber 

amplifiers, but still must be taken into account. 
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 The SBS threshold was modeled in both single-mode and LMA fibers for the co-

pumped orientation to find the minimum SBS threshold for a given length of fiber.  The 

fiber characteristics are listed in Table 3.  The SBS gain coefficients were determined 

using the NA-broadening equation (Eq. (2.58)) and an estimated peak gain coefficient of 

at low NA.  Single-mode fiber is suitable for pre-amplifiers, and LMA 

fiber is needed for the high-power amplifiers.  The SBS threshold as a function of fiber 

length for a single-mode amplifier is shown in 

113 10  m/W−×

Fig. 23, and the threshold power for an 

LMA fiber is shown in Fig. 24.  With the pump power limited to 20 W and 100 W 

respectively in the pre-amplifier and high-power amplifiers, SBS threshold can easily be 

avoided.   

Table 3:  Er-Yb co-doped fiber characteristics. 

Core diameter (µm)
Core NA
Cladding diameter (µm)
Cladding Yb absorption (dB/m)
Fundamental mode 1/e2 diameter (µm)a

Seed power (W)
Slope efficiency (%)
SBS gain coefficient (×10-11 m/W)b

7
0.17
130

0.8 at 935 nm
7.7
0.2
32
1.1 

Single-mode Large-mode-area

aMarcuse, D., Loss analysis of single‐mode fiber splices. Bell Syst. Tech. J, 1977. 56(5): p. 703–718.
bThis work

25
0.10
300

2.0 at 976 nm
20
0.8
32
2.1
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Fig. 23:  SBS threshold of single-mode, Er-Yb fiber amplifier in co-pumped orientation. 
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Fig. 24:  SBS threshold of Er-Yb, LMA fiber amplifier in co-pumped orientation. 

 

The seed used in the 1550 nm amplifier was a 10 mW New Focus Velocity laser, 

and was amplified up to 18 W through three fiber amplifiers.  The apparatus diagram is 

shown in Fig. 25.  The Velocity is an external-cavity diode laser with a nominal linewidth 

< 300 kHz.  The Velocity laser output was sent through an optical isolator and an edge 

filter to prevent reflections and ASE from damaging the source laser.  The edge filter was 

used because the isolators designed for 1550 nm may not suppress ASE at ~1060 nm.   
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Fig. 25:  MOPA constructed at a wavelength of 1550 nm. 
 

The first stage amplifier consisted of 5 m of single-mode Er-Yb fiber, counter-

pumped with a 20-W diode at 935 nm.  The power limitation on the first stage amplifier 

was ASE in a 10 nm band around 1535 nm.  With proper alignment, the first stage 

operates with > 95% linear polarization at 500 mW with ASE suppression better than -30 

dB.  ASE at 1060 nm was not present. 

The second stage pre-amplifier consisted of 15 m of single-mode, Er-Yb fiber.  

The fiber was counter-pumped with a 20-W, fiber-coupled diode at 935 nm, and 

generated an output power of 3.38 W at 1550 nm (Fig. 28).  The output power was 

 

Fig. 26:  Ando wavemeter image showing ASE suppression to -35 dB of the first 
stage Er-Yb amplifier.  Output power was measured concurrently at 500 mW. 
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measured after the isolator, and therefore includes only a single polarization.  The 

transmission through the isolators at 1550 nm was typically 95%.  ASE near 1550 nm 

was suppressed to -25 dB (Fig. 27), while ASE at 1064 nm was measured at 263 mW 

from one end of the fiber.  SBS threshold was not reached, as shown by the linear slope 

of the signal with pump power. 

 

 

Fig. 27:  Wavemeter showing low-ASE operation of 2nd stage amplifier at 1550 nm 
wavelength with 3 W output power. 
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Fig. 28:  Stage 2 amplifier at 1550 nm with ASE at 1060 nm. 
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Two dichroic mirrors were placed between the fiber and pump to protect the 

diode from the 1550 nm signal, and an additional dichroic was used to protect the diode 

from ASE at 1060 nm.  In addition, a cladding-mode-stripper was added to the front end 

of the fiber.  This consisted of a section of index-matching glue (Norland 61) applied 

directly to the cladding of the fiber.  Preliminary tests were conducted on a fiber with a 

cladding diameter of 400 µm.  With 4.5 cm of the cladding covered with glue, 95% of the 

power was removed from the cladding.  This demonstrated that while the cladding-mode 

stripper was effective, the Norland 61 did not match the index of refraction of the 

cladding perfectly.  From geometrical optics considerations, the effectiveness of the 

cladding-mode-stripper should increase with smaller cladding diameter, and also increase 

with higher NA.  The cladding-mode-stripper removed all visible power guided by the 

cladding at a length of 2.8 cm on the 130-µm-diameter fiber.    

The high-power amplifier at 1550 nm used a 125-W, fiber-coupled diode at 935 

nm wavelength from Laserline.  Due to the lower absorption at 935 nm, a fiber length of 

18 m was used in a counter-pumped orientation.  An output power of 18 W was observed 

with 90 W of pump power.  A second test of this system is plotted in Fig. 29 and noted 

increasing ASE near ~1060 nm.  SBS was not observed.  In fact, for this fiber and 

orientation, the model predicts that for low enough seed power, SBS threshold cannot be 

reached.  The large quantum defect causes a high thermal gradient along the length of 

fiber which suppresses SBS.  With no pump power, SBS is expected at 28 W of seed 

from the Smith equation.  As pump power is increased to 20 W, the threshold of SBS 

would no longer be exceeded with a 28 W seed, and the output power would have 
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increased to 33 W.  Further increases in pump power cause a continual decline in SBS 

gain.  For decreased seed powers below 25 W, SBS threshold would never be reached.   
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Fig. 29:  3rd stage amplifier at 1550 nm output power and ASE at ~1060 nm. 

     

4.3.3. Tellurite Fiber Amplifier 

Unlike the fiber amplifiers above, a tellurite glass fiber doped with ytterbium was 

designed and purchased from NP Photonics specifically to lower the SBS threshold.  This 

amplifier was purchased as a candidate to produce phase conjugation instead of the 

previous amplifiers which were designed to amplify the seed.  The manufacture of 

tellurite glass fiber is immature, and the fibers produced have an unpredictable scattering 

loss up to 3 dB/m.  The goal was to overcome scattering losses by adding gain to the 

fiber.  A multi-mode fiber was designed for a cladding absorption of 3+/-1 dB/m using 

Beers Law absorption and measurements of the absorption cross-section of Yb in tellurite 

glass.[116]  The fiber had a core diameter of and an NA of 0.22.   25 μm

A cutback test was performed on the fiber to determine the effective pump 

absorption and scattering loss in the fiber at 1064 nm.  The scattering loss was assumed 
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to be the same in both the core and cladding.  Since the absorption of ytterbium is 

different for the core-launched signal at 1064 nm and the cladding-launched pump at 976 

nm, the cutback test was analyzed using the fiber amplifier model to decouple the effects.  

The total attenuation of the signal was measured at 2.1 / 0.3+ − dB/m, while the 

attenuation of the pump was 3.8 / 0.3+ −

2.0 / 0.2+ −

dB/m.  The signal power as a function of fiber 

length was modeled and shown in Fig. 30.  With scattering and absorption losses as fit 

parameters in the model, the loss in the tellurite was determined to be dB/m 

with a pump absorption of dB/m.      
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Fig. 30:  Seed power as a function of length measured (data points) and modeled (solid 
curve) in a tellurite amplifier. 
  

As discussed in Section 3.3.4, the Brillouin gain coefficient of tellurite has been 

measured several times by three different research groups.  The SBS gain coefficient in 

tellurite fiber can be determined from these experiments as a function of the NA of the 

fiber.  Using the measured SBS threshold power from the fiber experiments, the gain 

coefficient was determined from the SBS threshold model and plotted along with the 

expected gain broadening curve from Eq. (2.58) in Fig. 31.  The curve yields a value for 
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the gain coefficient in bulk tellurite of ~0.95x10-9  m/W, which is similar to the value 

measured by Dubinskii et al.[152]  

èè

éé ãã

0.0 0.1 0.2 0.3 0.4
0

2.μ10-10

4.μ10-10

6.μ10-10

8.μ10-10

1.μ10-9

Numerical Aperture

SB
S
Ga

in
Co

ef
fi

ci
en

t
Hm
êW
L

 

Fig. 31:  SBS gain coefficient of tellurite plotted as a function of numerical aperture.  
Experimental measurements from Dubinskii (solid circle), Abedin (hollow circle), 
and Qin (square) are shown. 
 

The model was used to calculate the SBS threshold of the tellurite amplifier.  The 

SBS gain coefficient of the fiber is expected to be 103.0 10−× m/W from the gain 

broadening curve in Fig. 31.  The high scattering loss acts on both the signal and the 

pump to reduce the interaction length for SBS.  In this case, the co-pumped orientation 

has a higher SBS threshold than dual-end pumping.  The calculated SBS threshold for a 

tellurite amplifier that has a length of 5 m is plotted in Fig. 32.  Due to the scattering loss, 

significant seed and pump powers must be launched into the fiber to achieve SBS 

threshold.  For pump powers below ~40 W, the high scattering loss negates the 

amplification from the counter-pumping diode.  For pump powers higher than 40 W, the 

signal power remains high in the fiber due to the amplification from the counter-pumped 

diode overcoming the scattering loss.    
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Fig. 32:  Calculated SBS threshold of a dual-end-pumped tellurite amplifier. 

4.4. Passive Fiber SBS Threshold 

 As shown above in Fig. 32, the fiber amplifier model with no pump power can be 

used to calculate the SBS threshold of a passive fiber.  The SBS threshold was calculated 

for two different wavelengths for tellurite and chalcogenide fibers since these fibers 

exhibit significantly lower scattering losses near 1550 nm and beyond.  In addition, the 

SBS threshold was measured and calculated for silicate fiber as a function of fiber length.  

The threshold model was used in this section to evaluate whether SBS threshold could be 

reached in these fibers using the amplifiers discussed above.    

4.4.1. Silicate Fiber 

 Due to its availability, low cost, and low attenuation, the most common fiber used 

in phase conjugation experiments is commercial, silicate fiber.  The Brillouin gain 

coefficient is an order of magnitude lower than tellurite.  However, it has negligible 

scattering loss at the lengths important for phase conjugation and has a high damage 

threshold.  With the fiber amplifier sources above, this work is limited to ~40 W of power 
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to generate SBS threshold.  Phase conjugation requires a multimode fiber, but the SBS 

threshold increases with core area.  The number of modes supported by a fiber increases 

with the normalized frequency parameter of the fiber, given by  

 2 (V a N )Aπ
λ

= , (4.9) 

where is the radius of the fiber core.[153]  The number of modes can be increased by 

increasing the core radius, the NA, or decreasing the wavelength.  By examination of  

Eq. 

a

(2.65), a fiber with a low NA is predicted to produce an equivalent phase conjugation 

fidelity as a shorter fiber of similar material with a higher NA.  In addition, the SBS gain 

coefficient is expected to be lower in a fiber with a higher NA due to gain broadening.   

 With these factors, two commercially available fibers were chosen for further 

examination.   Both of the fibers support a similar number of modes as shown in Table 4.  

Including the scattering losses, the predicted SBS threshold power is plotted as a function 

of fiber length in Fig. 35.  

 

Table 4:  Passive silicate fiber parameters at 1.064 µm wavelength.[153] 

Core diameter (µm)a

Core NAa

Core attenuation (dB/km)a

Cladding diameter (µm)a

V parameter
Fiber ~M2 (V/2)
Supported modesb

20
0.13

2
125
7.7
3.8
34

40
0.06

7
400
7.1
3.5
30

0.13 NA fiber 0.06 NA fiber

a Manufacturer supplied, CorActive
b Adams, M.J., An introduction to optical waveguides. 1981: Chichester: Wiley.  

 The SBS threshold was measured for these two fibers each at a length of 100 m.  

The threshold of the fiber with an NA of 0.13 was measured three times at this length.  
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The fiber was polished at an 8º angle on both sides to eliminate Fresnel reflections from 

interfering with measurements of the Stokes power.  A pickoff was used to measure the 

incident and reflected powers, and the power transmitted through the fiber was measured.  

The cladding of the fiber had a high attenuation such that only the core-coupled power 

was measured at the output.  The coupling efficiency was measured below SBS threshold 

by measuring the transmitted power as a function of incident power and taking into 

account transmission loss and Fresnel reflections.  This coupling efficiency was assumed 

to be constant as the SBS threshold was exceeded, and allowed the computation of 

coupled power throughout the test.  The SBS threshold was then determined using linear 

regression of the Stokes power and is plotted in Fig. 33.  The threshold was 

W, with the error given by the standard error of the linear fit, which 

corresponds to a Brillouin gain coefficient of .     

4.66 / 0.51+ −
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Fig. 33:  Plot of Stokes power as a function of coupled power into a 100-m fiber with 
NA of 0.13. 

 

 Similar measurements were made with the 0.06-NA fiber at a length of 100 m as 

shown in Fig. 34.  The SBS threshold was determined to be 6.9 / 1.4 W+ − , which yields 

93 



a Brillouin gain coefficient of .  Using these experimental 

measurements, the expected SBS threshold of the silicate fibers as a function of fiber 

length are shown in 

11(4.33 / 0.88) 10  m/W−+ − ×

Fig. 35.   
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Fig. 34:  Plot of Stokes power as a function of coupled-seed power in 100 m of 0.06-
NA fiber. 
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Fig. 35:  Calculated SBS threshold as a function of fiber length for the two silicate 
fibers. 

 

 The Brillouin gain coefficient in optical fiber is expected to decrease with 

numerical aperture as discussed in Section 2.3.  Equation (2.58) describes the broadening 
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of the Brillouin gain coefficient with fiber numerical aperture, and is plotted in Fig. 36 

along with the measured values of the Brillouin gain coefficient in the 0.06-NA fiber and 

0.13-NA fiber.  Considering that the fibers were manufactured with different amounts of 

core dopants, a reasonable agreement with Eq. (2.58) was obtained. 
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Fig. 36: Brillouin gain coefficients measured in 100-m silicate fiber plotted as a 
function of numerical aperture.  The theoretical curve of the Brillouin gain 
coefficient of silicate fiber due to numerical aperture broadening is also shown. 

4.4.2. Tellurite fiber 

 The SBS threshold was also modeled in undoped, tellurite fiber.  The scattering 

loss was measured in a 15-m length of tellurite fiber to be ~0.7 dB/m at a wavelength of 

1550 nm.  The tellurite fiber has an NA of 0.22, and accepts an approximate beam quality 

of .  A scattering loss of 2.0 dB/m was also modeled to investigate the effects of 

scattering loss as measured in the Yb-doped, tellurite fiber at 1064-nm wavelength.  At 

0.7 dB/m of scattering loss, the difference between the model in this work and Smith’s 

model are clearly visible as shown in 

2 5.6M ≈

Fig. 37.  For scattering losses of 2 dB/m, the error 

in Smith’s model is significant.   

 According to the manufacturer, the optical damage threshold of tellurite fiber is 

similar to silicate fiber.[154]  During tests of the fiber, poor cleaves would result in 
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m  of the fiber tip.  However, when the tip was properly prepared, the damage 

threshold was higher than 215.5 MW/cm .  The damage threshold in silicate fiber als

depends on the surface quality and has been shown to exceed 100 MW/cm

elting

o 

2.[155] 
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Fig. 37:  Modeled SBS threshold of passive tellurite fiber as a function of fiber 
length for scattering loss of 2 dB/m and 0.7 dB/m.  The Smith model prediction is 
also shown (dashed). 
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 both 1064 and 1550 nm wavelengths.  At 1064 nm, chalcogenide fiber has a 

very large attenuation of ~10 dB/m, and the damage threshold was less than 50 kW/cm2.  

4.4.3. Chalcogenide Fiber 

SBS threshold was 

tioned earlier.  Abedin measured th

NA with a length of 5 m.  Two fibers were purchased from the same manufacturer as 

Abedin.  The first was a single-mode fiber, 1.7 m long.  The second was 24 m in length

and multimode for phase conjugation experiments.  Both fibers had an NA of 0.18, bu

the multimode fiber had a 65 µm core diameter, while the single-mode fiber was 6 µm in

diameter.   

 The single-mode chalcogenide fiber was tested for transmission loss and damage 

threshold at
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At 1550 nm, the attenuation was 1.3 / 0.1 dB/m+ − , and the highest damage threshold 

observed was 400 kW/cm2.  The highest reported irradiance in a single-mode, 

chalcogenide fiber is 221 kW/cm2.[25] 

 Using the experimental da the SBS gain coefficient was calcula

using this work’s model at 93.55 10  m/W−× for a fiber with an NA of 0.18.  Thi

approximately two orders of magnitude 

ta from Abedin, ted 

s is 

higher than the gain coefficient of silicate fiber.  

threshold was f

At 1550 nm, the transmission loss of the multimode chalcogenide fiber was measured at 

0.33 dB/m, and the damage ound to be less than 50 kW/cm2.  The 

threshold power was calculated as a function of fiber length, and is shown in Fig. 38, 

along with the highest reported irradiance.   
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Fig. 38:  Multimode threshold as a function of fiber length 
for a wavelength of amage irradiance (dashed). 

 
4.5. Conclusion 

 The SBS threshold model aided in the design of source amplifiers while avoiding 

SBS an esearch.  

Amplifiers were designed and built with the aid of this model to avoid SBS and generate 

up to 50 W in a single-frequency beam a 1064 nm and 18 W at 1550 nm.  Without 

 chalcogenide fiber SBS 
 1550 nm with estimated d

d predicted achievable thresholds in fibers for phase conjugation r
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a

improved over the Smith m

pproximations for low scattering losses, the accuracy of SBS threshold calculations was 

odel.  In addition, the effects of scattering losses were 

observed to severely limit the effective length of high-loss materials:  after a relatively 

short length of 10 – 20 m, longer lengths fail to reduce threshold.  While novel fibers 

have one and two orders of magnitude higher Brillouin gain coefficients than silica, the 

scattering loss at a wavelength of 1064 nm prohibits reaching SBS threshold in 

chalcogenide fiber while raising the threshold power significantly in tellurite.  Taking 

into account the lower efficiency amplifiers at 1550 nm, tellurite and chalcogenide fibers 

are not predicted to show a decline in phase conjugation fidelity with length as well as the 

silicate fibers at 1064 nm.        
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5.  Fidelity Measurement Techniques 

 

5.1. Overview 

 Phase conjugation fidelity is the fraction of the Stokes beam that is the phase 

conjugate of the seed or SBS pump.  If the seed beam includes multiple transverse 

modes, then the perfect phase conjugate beam will include the same transverse modes 

propagating in the opposite direction.  Phase conjugation is typically employed to 

recreate a single-mode beam at the diffraction limit.  Therefore, divergence and beam 

quality measurements both before and after phase conjugation have been used as a 

measure of fidelity.  Similarly, the beam quality has been measured by the power 

transmission through a pinhole aperture on portions of the beam.  An improvement on 

this technique places the pinhole aperture in the main beam, and therefore verifies not 

only the maximum waist size of the Stokes beam, but also the direction of propagation.  

These methods provide a measure of fidelity that can be highly accurate in determining 

whether high-fidelity, phase conjugation has occurred, but the results are increasingly 

ambiguous as fidelity decreases.  There can always be some transmission through a 

pinhole, even for very poor quality beams.  If beam cleanup occurs instead of phase 

conjugation, the result is a low-order-mode beam, typically LP01, which has excellent 

beam quality and low divergence.  While high beam quality is the goal of many phase 

conjugate systems, coherent beam combining through phase conjugation requires a more 

rigorous approach.   

99 



In this chapter, a new measure of phase conjugation fidelity is devised and tested 

which is applicable to coherent beam combining by measuring the fringe visibility of 

interfered beams.  The results of this method are compared to those achieved through 

other methods by using a long, graded-index fiber to generate the Stokes beam.  In long, 

graded-index fiber, stimulated Brillouin scattering has been reported to produce 

continuous wave (CW) phase conjugation.[105, 156]  Conversely, it is also reported to 

produce a pure fiber mode regardless of pump mode structure.[64, 65, 97, 157, 158]  This 

process is referred to as beam cleanup.  These results are contradictory, but can be 

attributed to the methods used to measure fidelity.  In this work, the Stokes reflection 

from the graded-index fiber is shown to be beam cleanup, and the measurements of 

fidelity are compared using their ability to distinguish beam cleanup from phase 

conjugation.          

 

5.2. Beam Quality Methods 

 Improving beam quality is the goal of many phase conjugation experiments.  The 

earliest phase conjugation experiments set a standard for measuring phase conjugation by 

intentionally distorting the input beam.[53, 66]  The input beam was spatially filtered or 

was otherwise near the diffraction limit before propagating through a piece of acid-etched 

glass or an imperfect amplifier.  The distorted beam then reflected off the phase 

conjugate mirror back through the aberration (see Fig. 39).  Measures of beam quality are 

made on the input beam both before (position A in Fig. 39) and after (position B in Fig. 

39) the aberration to quantify the degree of distortion.  After reflection from the phase 

conjugate mirror, the beam quality is sampled again both before (C) and after (D) the  
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Fig. 39:  Typical apparatus diagram for measuring fidelity of phase conjugation 
using beam quality techniques. 

 

aberration to show improvement.  Often, the phase conjugate mirror is replaced with a 

standard mirror to show the beam distortion induced by two passes through the 

aberration.  The fidelity of phase conjugation is measured as a ratio of the initial beam 

quality at A to the final beam quality at D after the second pass through the aberration.  

As a variation of this approach, no external aberration is used, and the fiber where SBS is 

generated is considered the aberration itself.  The beam quality measures used to compare 

the initial and final beams are beam divergence measurements, M2 measurements, and 

pinhole transmission. 

 5.2.1. Divergence Measurements 

 As discussed in Chapter 3, Zel’dovich et. al used divergence measurements to 

verify phase conjugation in the earliest phase conjugation experiment.[53]  A single pass 

through an aberration resulted in an increase in divergence from ~1 mrad to 3.5 mrad.  

The beam was restored to the initial divergence after the second pass through the 

aberration via SBS, but a second pass using a normal mirror resulted in a divergence of 

~6 mrad.   
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This example shows that when fidelity is high and the induced aberrations are 

substantial, the divergence measurement is ample verification of phase conjugation 

fidelity.  When fidelity declines, this measurement becomes more ambiguous.  In the 

example above, for instance, the standard mirror could be claimed to generate a phase 

conjugation fidelity of 0.17.  By varying the aberration induced on the incident beam, this 

“fidelity” could be increased further.    

As the fidelity declines, the Stokes beam direction is no longer the exact opposite 

of the seed.  The divergence technique ignores this distinction and makes no measure of 

propagation direction.  Since the direction of propagation is different than the input beam, 

the distortion imparted to the beam by the aberration is not controlled.  It is possible that 

the aberration induced on the reflection is different from that of the incident beam, which 

further reduces the accuracy of this method.    

 In the event of SBS beam cleanup, the Stokes beam can exist entirely in the 

fundamental mode regardless of the seed input, as in Fig. 40.  In this example, the seed 

beam was wavefront split into two semicircular beams.  The beams were then tiled 

together as shown in Fig. 40(a) before being coupled into a 2.5-km-long, multimode, 

graded-index fiber.  The Stokes reflection is shown in Fig. 40(b) with a Gaussian-like 

irradiance pattern.  The waist of the Stokes beam is determined by the fiber 

independently.  If the induced aberration is low, and the coupling is carefully chosen to 

match that of the fundamental mode, the resulting beam would nearly match the 

divergence of the input and erroneously register a fidelity near one.   
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(a) (b)
 

Fig. 40:  Example of SBS beam cleanup.  Irradiance images show (a) the incident 
beam comprised of two wavefront-split Gaussian beams and (b) the Stokes 
reflection from SBS in a graded-index fiber. 
    

 Perhaps the largest source of error is due to the beam quality of the Stokes 

reflection.  Since SBS beam cleanup produces good beam quality regardless of seed beam 

quality (as in Fig. 40), the resulting beam has only been distorted once by the aberration.  

This can account for the improved beam quality of the Stokes reflection over that from a 

standard mirror as shown in Fig. 41(c) and (d). [100]  In this experiment, a long, graded-

index fiber was used to generate the SBS reflection and phase conjugation was claimed.  

However, these images alone are insufficient to prove phase conjugation.  According to 

typical practices, Fig. 41(c) should be comparable to Fig. 41(a).  The center lobe of (c) is 

similar to (a), but there is no measurement of the power in the sidelobes of (c).  There is 

also no measure of the direction of propagation of the (c) as compared to the input beam, 

and therefore the aberration experienced by the reflection may be different from that of 

the incident beam.  No image of a single pass through the aberration was provided to 

compare to (c).  Instead, a double-pass through the aberration is given in (d), which 

exaggerates the effect.         
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Fig. 41:  Irradiance images at decreasing exposure levels of (a) the incident beam, 
(b) the Stokes reflection without distorting object, (c) the Stokes reflection with 
distorting object, and (d) the reflection from a standard mirror through the 
distorting object.[100] 

        

5.2.2. M2 Measurements 

 As a slight improvement on the divergence measurements, some researchers have 

measured the beam quality to determine the fidelity of phase conjugation.[105]  Fidelity 

in this case was defined to be the improvement in M2 due to the aberration acting on the 

Stokes beam divided by the decline in M2 measured as the seed passes through the 

aberration.  With reference to Fig. 39,[105]  
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where 2
AM  represents the beam quality at position A of Fig. 39.  However, if 2 2

D CM M≥ , 

the fidelity is defined as zero.  Therefore, if the aberration fails to improve the beam 

quality of the Stokes beam, the fidelity is set to zero.   

 This method addresses the main issue raised in the previous section.  It 

automatically negates a Stokes beam that is not improved in beam quality after passing 

through the aberration, which was a main problem with the divergence method.  Beam 
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cleanup is seemingly elimated by this step.  However, there is no measurement of the 

propagation direction of the Stokes beam.  A phase conjugate beam would propagate in 

the opposite direction as the seed.  As fidelity declines, the aberration affecting the Stokes 

beam may not be the same as the distortion on the incident beam.   

 In addition, the measurement of beam quality is susceptible to errors.  An 

international standard describes the process for measuring the beam waist and divergence 

along two principal axes using a focusing optic and camera system.[159]  As stated in the 

standard, “Noise in the wings of the power density distribution . . . may readily dominate 

the second order moment integral.”  The correct values of background noise reduction 

and cross-sectional integration limits must be chosen carefully to yield accurate results.  

 Using a long, graded-index fiber to generate SBS, Mocofanescu et al. measured a 

phase conjugation fidelity of 0.31 using this technique.[105]  In a second trial with the 

same fiber, the measurements were set to zero due to beam cleanup.  The measurements 

from the same fiber over the range of 0 to 0.31 in fidelity demonstrate the error in this 

technique. 

5.2.3. Pinhole Transmission 

 The technique used by Eichler and described in Chapter 3 was referred to as a 

“power-in-the-bucket” technique.  The fidelity is measured by first recording the 

transmission of the incident beam through a focusing lens and aperture on a pickoff from 

the main beam (see Fig. 10 and Chapter 3 for a more thorough description).  The fiber 

itself is used as the aberration to the seed beam, and the Stokes beam transmission 

through the same or similar lens and aperture system is recorded.  The fidelity is 

determined as the Stokes transmission divided by the incident beam transmission.   
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 The fidelity measured using a pinhole measurement loses validity as the fidelity 

declines.  Even a very poor quality beam will have some transmission through a pinhole, 

so the fidelity will never be zero.  A Stokes beam generated through beam cleanup can 

increase this error.  There is also no measure of the direction of propagation on the Stokes 

beam with relation to the incident beam.  As a result, the pinhole can be aligned to 

maximize the transmission of the Stokes beam, further improving the fidelity measure in 

the event of beam cleanup.  The method is also susceptible to small errors which can 

occur during the optimization of transmission through a pinhole. 

 Using this technique, the parameters of the seed beam and size of the pinhole 

becomes very important for distinguishing beam cleanup from phase conjugation.  

Consider the case that the parameters of the incident beam are set to match the beam 

diameter of the fiber fundamental mode.  The pinhole would normally be chosen at 2 to 3 

times the waist size to transmit 86% or 99% of the beam, assuming perfect beam quality 

and focusing optic.  However, if beam cleanup occurs, nearly the same transmission 

would be achieved after optimizing the location of the pinhole on the Stokes beam 

pickoff.  A fidelity of nearly one would be erroneously measured.   

To minimize the errors in this approach, the beam must be coupled into the fiber 

at the highest accepted NA.  The incident beam is therefore collimated at the largest 

diameter possible for the combination of fiber NA and coupling objective, and relates to 

the smallest diameter pinhole that can be used for a given lens.  In the event of beam 

cleanup, the fundamental mode has a lower NA than the seed and a larger diameter at the 

fiber tip, which results in a larger beam diameter when imaged onto the pinhole.  Low 
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measures of fidelity are still ambiguous, but beam cleanup can be eliminated from 

measurements of fidelity higher than a predictable value.   

The technique can be improved by using an in-line pinhole as done by Kuzin et 

al.[60] and described in Chapter 3.  The seed is focused through a pinhole before being 

coupled into the fiber where SBS is generated.  This is the only technique discussed that 

provides a measurement of beam direction that is integral to the diagnostics system.  

Since the seed being coupled into the fiber passed through the pinhole, a perfect phase 

conjugate reflection would achieve 100% transmission back through the pinhole.  This 

would be achieved regardless of exact fiber and pinhole alignment, provided perfect 

coupling efficiency into the fiber was maintained.  In the event of beam cleanup, the 

measured transmission would vary with fiber alignment, with a maximum value set by 

the incident beam characteristics and pinhole size as discussed above.  Low values of 

fidelity remain ambiguous, however.            
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Fig. 42:  Diagram depicting the distinction between phase conjugation and beam 
cleanup in pinhole transmission.[160] 
         

 An experiment was conducted to demonstrate the ability of the in-line pinhole to 

discriminate beam cleanup by generating SBS in a long, graded-index fiber with a core 

diameter of 50 µm and an NA of 0.21.  The full beam was focused through a pinhole with 

66% transmission before being coupled into the test fiber where SBS was generated, as 

shown in Fig. 43.  Plano-convex lenses with focal lengths of 250 mm were used to focus 

the incident beam through the 300-µm-diameter pinhole and collimate the beam before 

coupling into the graded-index fiber.  Wedged windows with one uncoated side were 

used to measure the power and to reflect a portion of the beam to a screen where the 

incident beam, the fiber transmission, and the Stokes beams could be simultaneously 

recorded.  The fiber coupling lens was an asphere with a focal length of 6.2 mm.     
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Fig. 43:  Diagram of the experiment to distinguish phase conjugation from beam 
cleanup using an in-line pinhole.[160] 

 

 As a preliminary test, the fiber tip of the graded-index fiber was translated while 

maintaining good coupling efficiency.  A perfect phase conjugate reflection would 

propagate along the direction opposite the seed regardless of small changes in fiber 

position.  However, the Stokes reflection from the graded-index fiber visibly moved 

across the screen as the fiber tip was translated by 25 μm.  Fig. 44 shows the 

displacement of the Stokes beam at the extremes of the fiber tip translation.  The incident, 

Stokes, and fiber transmission images were collected simultaneously by imaging each 

beam as reflected off a screen.  The screen reflection caused speckle in the images which 

was filtered out using 6-pixel averaging.  Also apparent in the figure is the higher 

divergence of the Stokes beam as compared to the seed.   In the upper right of each 

image, the transmission through the fiber is shown, and it is apparent from those images 

that many modes were exited in the fiber.  The input signal in the upper left was clearly 

aberrated by propagation through the fiber.   
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Fig. 44:  Irradiance images of (1) the seed beam, (2) the beam transmitted through 
the test fiber, and (3) the Stokes beam using a long, graded-index fiber to generate 
SBS.  The fiber tip was translated by 25 µm between image (a) and (b). 
 

 The transmission of the Stokes beam through the pinhole was measured to 

quantify this effect and show the distinction between phase conjugation and beam 

cleanup.  The optics were chosen to image the pinhole onto the fiber tip with a 

magnification such that the pinhole image diameter was much less than the fiber core 

diameter.  The pinhole image diameter on the fiber tip was calculated at 8.7 µm, limited 

by the test fiber NA.  Using an approximation for the Gaussian beam diameter of the 

fundamental mode in a graded-index fiber, 

 3/2 6

2 0.23 18.01a
V V V

ω
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

, (5.2) 

the fundamental mode diameter of the fiber is calculated at 12.9 µm.[21]  The 

transmission of such a Gaussian beam with diameter of 12.9 µm through a circular 

aperture with a diameter of 8.7 µm was calculated at 60% provided the beam is centered 

on the pinhole.  An off-center beam would have lower transmission.   
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The fiber tip was once again translated a total displacement of 25 µm in 

increments of 2.5 µm.  SBS was generated in the fiber, and the Stokes transmission 

through the pinhole was recorded as a function of fiber displacement.  The pinhole 

transmission was measured as the ratio of Power Meter 2 to Power Meter 1 as shown in 

Fig. 43, calibrated by taking measurements with no pinhole in place.  The data is plotted 

in Fig. 45.  After the pinhole transmission was recorded, the fiber was cut to ~3 m and the 

fiber transmission was recorded over the same incremental displacements to measure the 

coupling efficiency.  The coupling efficiency is also shown in Fig. 45.  The pinhole 

transmission is shown to match the calculated pinhole transmission of a Gaussian 

approximation of the fundamental mode through the image of the pinhole aperture at the 

fiber tip, which is shown as a continuous curve.  In the calculated transmission curve, the 

coaxial position was chosen at a displacement of 15 µm to match the experimental data.   
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Fig. 45:  Pinhole transmission of the Stokes beam and coupling efficiency of the seed 
are shown as a function of fiber tip translation.  The alculated transmission of the 
fundamental mode of the fiber through a circular aperture is also shown.[160] 
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These results verify the ability of the in-line pinhole technique to distinguish 

beam cleanup from phase conjugation.  Based on the fundamental mode diameter and the 

pinhole, a maximum transmission due to beam cleanup can be determined.  Transmission 

higher than this value indicates phase conjugation, while pinhole transmission below this 

value remains ambiguous.  The fundamental fiber mode in this experiment was limited to 

~60% transmission, while a perfect phase conjugate of the seed would achieve up to 

100% transmission.  Furthermore, controversy remains over the ability of a graded-index 

fiber to generate a phase conjugate beam as discussed in Chapter 2.  Viewed from this 

perspective, these results show that beam cleanup occurs in a long, graded-index fiber 

and not phase conjugation.    

5.3. Interference Method 

 For laser systems where improving the far-field irradiance is the goal, the 

previous methods of measuring fidelity are accurate.  When an improvement in beam 

quality is desired, using beam quality as a diagnostic is adequate.  However, coherent 

beam combination via SBS requires the spatial coherence among multiple beams, and a 

new measure of fidelity is warranted.[161]  In this section, a new method of measuring 

fidelity using the visibility of interference fringes is described and tested.  In this case, the 

ambiguity which arises from beam quality techniques is removed.   

 In this work, a seed beam was split into two paths before both beams were 

coupled into the same graded-index fiber.  Phase locking between two beams via SBS 

beam cleanup was directly measured using lateral shearing interferometers (LSIs) 

immediately after the Stokes reflection exits the fiber.  Another LSI was used to measure 

the coherence after the Stokes beam travels back through the two beam paths.  The 
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degree of coherence at this LSI is a more accurate measure of fidelity which extricates 

the measurement of phase conjugation from calculations of beam quality.  Although the 

use of LSIs to measure beam phasing is not unique to this experiment, this is the first 

time it is used to determine the relative phase characteristics of two tiled beams at 

locations critical to both beam cleanup and the fidelity of phase conjugation.  This 

measurement directly determines the relative phase of the two beams without the added 

complexity of a beam quality measurement.  From this data, a clear determination of 

spatial coherence, fidelity of phase conjugation, and beam phasing can be made. 

5.3.1. Apparatus   

The apparatus is shown in Fig. 46.  The MOPA source laser was described in 

Chapter 4, and is summarized here.  It consisted of an external cavity diode laser 

operating at 10 mW (1550 nm) followed by a 2-stage fiber amplifier.  The first fiber 

amplifier was 5 m of Nufern’s Er-Yb, co-doped 7/130 polarization maintaining fiber 

counter-pumped with a 20 W LIMO fiber-coupled diode at 935 nm.  The output of the 

first stage was ~500 mW with ASE suppressed to -36 dB.  The second stage was 15 m of 

the same fiber, co-pumped with another 20-W LIMO fiber-coupled diode at 935 nm.  

Free space coupling was used and the fiber ends were polished at 8°.  The 2-stage 

amplifier produced an output power of up to 5 W.  
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Fig. 46:  Apparatus diagram for measuring fidelity of phase conjugation using an 
interference method.  LSI: Lateral shearing interferometer, HR:  High reflecting 
mirror. 

 

After isolation, the beam was expanded to 10 mm diameter and wavefront split 

with an uncoated right angle prism into two beams with semicircular cross sections.  The 

beams then propagated through different paths.  One of the paths was equipped with an 

optical trombone to test the ability of the fiber to compensate for path length variations.  

The optical trombone consisted of a 180° turning prism on a longitudinal translation stage 

which could be controlled with a piezo-electric transducer for rapid oscillations.  The two 

beams were tiled side-by-side with a prism and coupled into 2.5 km of 50-µm core, 0.21-

NA, graded-index fiber.  As shown in Fig. 46, a lateral shearing interferometer (LSI) on 

each beam pickoff was used to analyze the SBS reflection from the graded-index fiber 

immediately after reflecting from the fiber (LSI 2) and after recombination (LSI 1).   

The beam emitted by the single mode amplifiers before being split into two channels is 

shown in Fig. 47.  A prism was placed in the beam to reflect half of the beam through a 

different optical path.  This resulted in two truncated, semicircular beams.  After 

114 



propagating through two separate paths, the beams were then tiled side-by-side using 

another right angle prism (Fig. 48).   

5.3.2. Mirror Reflection Example 

To contrast the unique properties of the Stokes reflection and to characterize the phase 

properties of the incident beams, interference images were taken of the beams as reflected 

by a highly reflective (HR) planar mirror. The mirror was placed in front of the fiber 

coupling lens to reflect the collimated incident beams back toward the source.  A wedge 

sent a portion of the beam to LSI 2.  The LSI produced an interference pattern of the two 

beams.  The LSI is made from two wedged windows separated by ~ 1 cm, and each 

window had one side AR-coated.  The two uncoated faces create reflections laterally 

 

 

Fig. 47:  Irradiance image and contour plot of the MOPA output beam. 

 

 

Fig. 48:  Tiled beam profile after propagation through separate paths. 
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shifted relative to each other.  In the resulting interference pattern, there are three zones 

of interest.  As shown in Fig. 49(b), zone one is the left semicircular beam interfering 

with itself, while zone 3 is the right beam interfering with itself.  As long as the two 

wedges are stable and much closer than the coherence length of the individual beams, 

these self-interference zones will produce stable fringes regardless of fluctuations in the 

phase of the incident beams.  This contrasts with zone two, which is the mutual 

interference between the left and right beams.  In this region, the position of the fringes 

depends on the relative phase between the left and right beams.  High contrast fringes 

indicate spatial coherence across the two semicircular beams.  If the beams are both 

coherent and have the same phase, the maxima of the high-contrast fringes will line up 

across all 3 zones.  If the beams are not coherent with each other, there will be no fringes 

visible in zone 2.  Lastly, if the beams are coherent but have a phase offset, the fringes in 

zone 2 will be visible but discontinuous between the zones.  

 

(a) (b)

1 2 3

 

Fig. 49:  Schematic of the beam profiles (a) after reflecting from the HR mirror and 
(b) after reflecting off the LSI.  The three interference zones of the LSI are 
numbered in (b) to clarify self-interference (1 and 3) and mutual interference (2) 
zones. 
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With the path length held constant, Fig. 50(a) was collected.  Each image in this 

work is an average of 10 images taken successively at the camera frame rate of 30 Hz.  

Interference fringes with good visibility in zone 2 show that the beams are spatially 

coherent, but the discontinuity on each side of zone 2 shows that the beams are not in 

phase after propagating through different paths.  In fact, the fringes in zone 2 shift rapidly 

with any translation of the path delay prism, while the fringes in zones 1 and 3 remain 

stable.   

The transducer on the path delay prism was activated to demonstrate the loss of 

spatial coherence between the two reflected beams from the HR mirror.  The vibration 

was chosen in the form of a triangle wave with a 5.5 Hz oscillation frequency to avoid 

resonance with the camera.  The full range of travel was 0.2 mm.  As shown in Fig. 

50(b), the self-interference fringes in zones 1 and 3 remain visible.  Since the transducer 

imparted a rapidly changing relative phase difference between the two beams, it resulted 

in a dramatic loss of visibility in zone 2.  

 

(a) (b)  

Fig. 50:  Interference images of the two beams at LSI 2 after one pass through 
separate paths and reflected by a standard HR mirror with vibration (a) off and (b) 
on. 
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 The fringe visibility in zone 2 of Fig. 50(b) was higher than expected since there 

was no mutual coherence at this point.  Further inspection of the self-interference images 

show that the remaining fringes in zone 2 are not due to mutual coherence.  The self-

interference was viewed from each channel independently with the other channel was 

blocked.  The images are shown in Fig. 51.  The fringes visible in zone 2 of Fig. 50(b) are 

visible in the self-interference images and are not due to mutual coherence.  Diffraction at 

the wavefront-splitting prism caused the semicircular beam to spread into zone 2 and 

interfere.  

 Similar images were taken at LSI 1 with the HR mirror in place (Fig. 52).  A lens 

was used to image the point of recombination at the right angle prism onto the camera.  

Fig. 52(a) shows the interference pattern with both beam paths held constant.  Again, the 

fringe discontinuity between the three zones indicates that the beams were not phased.  

This was emphasized by activating the vibration and noting the loss of fringe visibility in 

zone 2 in Fig. 52(b).  As expected, the results of Fig. 50 and Fig. 52 indicate that the 

beams are not in phase after traversing separate optical paths, nor after being reflected by 

an HR mirror back through the system. 

(a) (b)
 

Fig. 51:  Self-interference images at LSI 2, each taken with one path blocked.  The 
self-interference shows the fringes extending into zone 2 are not due to mutual 
coherence. 
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(b)(a)  

Fig. 52:  Interference images of the two beams at LSI 1 as reflected back through 
the respective beam paths by a standard HR mirror with vibration (a) off and (b) 
on. 

 

5.3.3. SBS Reflection Results 

The SBS reflection was characterized in the same manner, but with remarkably 

different results.  After the HR mirror was removed, the beams were coupled into a 2.5 

km length of 50/250 graded-index fiber with a core numerical aperture of 0.21.  The 

coupling efficiency to the fiber was 80+/-5%.  Care was taken to ensure that both beams 

had an equivalent coupling efficiency into the fiber.  The high coupling efficiency 

indicates that the fiber did not significantly spatially filter the input beams.  To verify that 

the coupled light was not single mode, images of the beams transmitted through the fiber 

were collected and are shown in Fig. 53.  The transmission through the fiber was clearly 

multimode and slowly varied over time.   

 

Fig. 53:  Sample irradiance images of the transmission through the graded-index 
fiber. 
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SBS threshold was reached in the fiber at 0.4+/-0.1 W of transmitted power.  The 

typical Stokes beam is shown in Fig. 54.  The Stokes beam would periodically form the 

double-lobed mode shown in Fig. 55, but this mode was very sensitive to minute changes 

to fiber alignment and the path delay prism.  The single lobe pattern of Fig. 54 was much 

more common.  The generation of the fundamental and low-order modes in the Stokes 

beam is expected from SBS beam cleanup.    

A lens was placed after wedge 2 (Fig. 46) to image the beams and measure the 

interference pattern as it would be at the location where the two optical paths come back 

together.  The interference pattern of the Stokes beam immediately after reflection from 

the graded-index fiber was measured by LSI 2.  Whether the vibration is off (Fig. 56(a)) 

or on (Fig. 56(b)), the Stokes beam remains unchanged.  An image of the 2-lobed Stokes 

beam was collected from the interferometer (Fig. 57).  In the null region between the two 

 

Fig. 54:  Stokes beam irradiance pattern.  The same image is shown as a contour 
plot for clarity. 

 

 

Fig. 55:  A two-lobed fiber mode resulting from SBS in a graded-index fiber. 
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lobes, the fringes lose contrast as the irradiance drops, and it appears that the two lobes 

are phase-shifted by π as would be expected from an LP11 mode.  When vibration was 

activated, the careful conditions required to observe the two lobed pattern are lost and the 

interference pattern recorded was identical to Fig. 56(b).  This shows that a single, 

spatially-coherent Stokes beam is generated in the fiber via SBS, as expected from beam 

cleanup.  However, a phase conjugate beam immediately after reflection from the fiber 

would not be coherent at this point.  A perfect phase-conjugate beam would have the 

coherence of the incident beam, which was shown to be incoherent at this point after a 

single pass through separate paths.  To measure the phase conjugation fidelity, the 

coherence at LSI 1 must be analyzed.  

 

(a) (b)
 

Fig. 56:  Images of the Stokes beam at LSI 2 with vibration (a) off and (b) on. 
 

 

Fig. 57:  Interference image of the double-lobed Stokes beam at LSI 2. 
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The Stokes reflection viewed using LSI 1 showed that the beams were not phased 

after propagating back through the separate paths (Fig. 58).  Fig. 58(a) shows the beams 

without interference as collected from only one of the two wedges in the LSI.  Fig. 58(b) 

shows a discontinuous fringe pattern produced in zone 2 where mutual interference 

occurs.  When the vibration was activated as shown in Fig. 58(c), the self-interference 

zones remained stable, but the mutual interference fringe visibility dropped as the fringe 

pattern rapidly oscillated.  The low-contrast fringes remaining in zone 2 of Fig. 58(c) 

appear to be self-interference since the fringes do not extend throughout the entire region 

and are at a different angle than the fringes shown in Fig. 58(b).  This indicates that the 

relative phases were not locked after propagation back through the optical paths.   

As discussed above, a phase conjugate reflection would not be phased at LSI 2.  

The fringe results should mimic those from the HR mirror.  The reflection should also 

have an irradiance pattern that closely mimics that of the incident beams.  At LSI 1, 

however, the phase conjugate reflection should be spatially coherent.  Because of the 

 

(c)(b)(a)
 

Fig. 58:  Stokes beam from the graded-index fiber after propagating back through 
the two paths.  The beams are shown at LSI 1 after recombination (a) without 
interference, (b) with interference and still prism, and (c) with interference and 
prism vibration. 
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wavelength shift induced by SBS, the two Stokes beams may not be phased after 

propagation back through the individual paths.  The dephasing of the two beams would 

be ( )2 p s l cφ π ν νΔ = − Δ , where pν  ( sν ) is the pump (Stokes) frequency, and  is the 

difference between the two beam paths.[55]  Given the small Stokes shifts in optical fiber 

(~11 GHz), this function varies slowly relative to a wavelength.  The relative phase shifts 

by 

lΔ

2π  when 27 mm.  Given that one path includes the optical trombone, the two 

beam paths vary by more than 27 mm.  It is therefore expected that a phase conjugate 

beam would only coincidentally be phased after propagation back through the two paths, 

which would generate continuous fringes in 

lΔ ≈

Fig. 58(b).  More importantly however, an 

additional 0.4 mm change in optical path length caused by vibration of the path in the 

optical trombone would have a negligible effect on the relative phase ( 0.1vibφΔ ≈ ).  

Therefore, a phase conjugate reflection would be characterized by visible fringes in zone 

two of the LSI fringe pattern even with the vibration stage turned on.  Furthermore, if the 

power in each channel was equivalent, a fringe visibility of one would result, which is the 

fidelity of the perfect phase-conjugate beam.   

Beam cleanup would have remarkably different characteristics.  Since the beam 

exits the fiber in a pure fiber mode, it would be spatially coherent across its transverse 

dimension immediately after exiting the fiber.  Once it is split into two independent 

beams which propagate through time dependent path lengths and are finally tiled 

together, the spatial coherence of the beam is lost. 

The two paths act as a beam distortion in the traditional fidelity measurements 

discussed above.  The divergence of the Stokes beams after recombination at LSI 1 

matches that of the incident beam quite well despite the double-semicircular pattern of 
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the beam (Fig. 58(a)).  Using the divergence method of fidelity, the conclusion would be 

a high phase conjugation fidelity.  Similar results would be expected from power-in-the-

bucket measurements, while the alignment of the Stokes reflection would cause an in-line 

pinhole technique to measure a varied transmission similar to the experiment plotted in 

Fig. 45.  Since the reflected beam shown in Fig. 54 has better beam quality than the input 

double-semicircular pattern of Fig. 48, the M2 technique would accurately assign a 

fidelity of zero to this situation.   

However, the occurrence of beam cleanup to the LP11 mode shown in Fig. 55 

presents some ambiguity to these methods.  The double-lobed structure of Fig. 55 could 

certainly be interpreted as a phase conjugate replica of the pump with decreased fidelity 

due to the high spatial frequency components being filtered out.  Interpreting the Stokes 

reflection as a phase conjugate is not consistent with the highly sensitive nature of the 

spatial characteristics of the reflection to variations in the coupled beam.  Additionally, 

the SBS reflection required precise angle alignment of the fiber tip in order to propagate 

back through the system on-axis.  This adjustment would not have been necessary if a 

phase conjugate beam had been generated, since a phase-conjugate reflection should 

remain stable with small perturbations to the coupling characteristics.  However, the 

fringe pattern at LSI 1 observed when the phase of one beam is rapidly varied (Fig. 

56(b)) demonstrated clearly that the beams lack coherence at this point.  Therefore, this 

double-lobed structure does not introduce error into the measurement of fidelity through 

the interference method.     

Using the interference method, fidelity near zero was determined and clearly 

indicated beam cleanup, but not phase conjugation.  The beam cleanup conclusion is 
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supported by the LSI measurements which indicate that the reflected Stokes beam 

immediately after the SBS generating fiber is spatially coherent.  This is verified even 

with significant and variable phase error between different components of the input 

beam.  But, the fact that the two legs of the Stokes beam after propagation back through 

separate beam paths do not produce a spatially coherent beam as measured by LSI 1 

eliminates the possibility that this type of reflection could be interpreted as a phase 

conjugate replica of the pump. 

The image was analyzed by reading it into Mathematica.  The pixel values were 

used to determine the maximum and minimum values of the fringes along vertical lines 

through the image.  The fringe visibility was then determined according to[162] 

 max min

max min

( ) I IV q
I I

−
=

+
, (5.3) 

where V(q) is the visibility in the vicinity of point q, and Imax and Imin are the maximum 

and minimum irradiances near point q.  When the average irradiance from the two beams 

is equivalent, the visibility represents the degree of coherence.  When the beams are 

unequal, the more general form of the equation must be used to determine the degree of 

coherence 12 ( )γ τ  for a given path difference τ such that[162] 

 ( ) 1 2
12

1 2

( ) ( )( )
2 ( ) ( )
I q I qV q

I q I q
γ τ +

= . (5.4) 

The pixel columns were grouped by interference zone and averaged together.  

While the peak of the mean irradiance in zones 1 and 3 was found to differ 

by , the mean fringe visibility was comparable within these zones at 

 and 77.3 .  The fringe visibility in zone 2 was measured at 

9.6+/-3.1%, while the mean visibility in zones 1 and 3 was 76.8+/-2.7%.  Since the 

29 / 2%+ −

75.6 / 3.1%+ − / 2.7%+ −
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irradiance was not equal between the two paths, the degree of coherence was computed 

using Eq. (5.4) at 9.7+/-3.1% in zone 2.     

A significant error in zone 2 is the residual fringes.  These fringes can be 

attributed to residual self-interference occurring through diffraction from the beams in 

zones 1 and 3.  The fringes are not as significant as those seen in zone 2 of Fig. 50 and 

Fig. 51, but exhibit the same characteristics.  This leads to the conclusion that the residual 

fringes are not indicative of mutual-coherence.  For instance, the fringes do not span zone 

2 as do the fringes shown in Fig. 58(b).  The fringes are also at a different angle than 

those in zone 2 without vibration, again shown in Fig. 58(b).  The appearance of these 

fringes may be minimized through better imaging of the prism near LSI 1 in Fig. 46 

where the beams were recombined.   

As a result of these measurements, the fidelity measured using this method was 

.  The measurement deviated from zero on average due to the error of 

self-interference fringes in zone 2.            

0.097 / 0.031+ −

5.4. Conclusion 

 Measurements of fidelity using beam quality methods were shown to be fairly 

accurate for applications demonstrating fidelity near one.  However, the occurrence of 

beam cleanup and other applications where fidelity declines cause additional error in 

these methods.  A more precise measure of fidelity was found using interference fringes, 

which is more applicable to beam combining applications. 

126 



6.  CW Phase Conjugation 

 

6.1. Overview 

As discussed in Chapter 2, fiber optic waveguides provide a long interaction 

length which lowers the threshold of SBS to power levels easily achievable by CW laser 

sources.  Since the Stokes wave experiences a small Doppler shift, the longitudinal 

propagation constants of the modes excited by the Stokes wave differ slightly from those 

excited by the seed.  The SBS reflection becomes out of phase with a theoretical perfect 

phase conjugate reflection over many meters of fiber.  As a result, the fidelity of phase 

conjugation from SBS in step-index fibers decreases with increasing fiber length.  While 

longer fibers are preferred in order to reach threshold at a lower power, shorter fibers are 

needed to generate a high fidelity phase conjugate beam.   

CW phase conjugation in step-index fibers had not been achieved prior to this 

work.  Typically only pulsed lasers could generate the irradiance necessary to exceed 

SBS threshold in fiber short enough to generate phase conjugation.  At the start of this 

work, existing theory predicted fiber lengths shorter than a few meters were needed to 

generate phase conjugation.  In Chapter 3, there are a handful of examples of fiber 

lengths longer than a couple meters generating phase conjugation using pulsed laser 

sources.  Kuzin et al. compared phase conjugation characteristics from 7 m and 130 m 

fibers.  While the 7-m fiber produced conjugation better than ~80%, they noted that 

~50% depolarization occurred in the Stokes beam for the 130 m fiber.[60]  Vasil’ev et al. 

employed a 25-m fiber as a phase conjugate mirror to effectively remove amplifier-
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induced aberrations.[61]  Fiber amplifiers up to 10 m in length have been used as well to 

generate high fidelity SBS phase conjugation with pulsed lasers to seed SBS.[106]     

     In order to design efficient CW laser systems using SBS phase conjugation for 

coherent beam combination, the length of fiber that can be used to generate a high fidelity 

phase conjugate reflection was explored further.  In this work, the phase conjugate 

fidelity was measured as a function of fiber length during cutback tests on two silicate, 

step-index fibers.  Fidelity was lower at longer lengths of fiber.  As the fibers were cut 

back, the fidelity increased to ~0.80 using a 40-m length of a 40-µm core diameter, 0.06-

NA fiber (CorActive Ge740).[123]  Similar fidelity was achieved from 15 m of 20-µm 

core, 0.13-NA fiber (CorActive MM-20/125).[123]  This work inspired Spring’s 

numerical model described in Chapter 3.  Along with modeling results for these two 

fibers plus an additional one, the fidelity obtained was related to a scaled length 

parameter which showed a correlation among the different fibers.[123]  SBS beam 

cleanup in step-index fibers was observed at longer fiber lengths, as well as the transition 

from beam cleanup to phase conjugation.   

6.2. Phase Conjugation Experiment 

The apparatus is shown in Fig. 59.[123]  It consisted of a 1064-nm, narrow-

linewidth laser (NPRO) operating at 700 mW and a 2-stage fiber amplifier as described in 

Chapter 4.  The first fiber amplifier is 10.3 m of Nufern’s Yb-doped 20/400 (core 

diameter/clad diameter in microns) PLMA fiber, counter-pumped with a fiber-coupled 

diode from LIMO which generated up to 20 W through a dichroic mirror.  The output of 

the first stage was 5.5 W.  The second stage was also a 20/400 PLMA fiber with a length 

of 5.2 m.  The second stage was co-pumped with a 100-W, fiber-coupled diode.  Co-
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pumping was chosen to prevent damage to the diodes, and the fiber length was reduced to 

prevent the onset of SBS in the amplifier as discussed in Chapter 4.  The shortened length 

reduced the pump absorption in the fiber by approximately 20%.  The 2-stage amplifier 

produced an output power of 50 W.   

Free space coupling was used throughout the experiment, and each fiber tip 

including the test fiber was polished at 8° to prevent cavity effects and Fresnel reflection 

noise in the data.  The output of the first stage amplifier was over 95% linearly polarized.  

To bypass polarization control on the high power amplifier, each polarization of the 

signal beam after the second-stage amplifier was separately isolated and recombined.    

The method employed to measure fidelity was the in-line pinhole method similar 

to Kuzin et al. [60] and described in Chapter 5.  While the interference approach was 

shown to be more accurate in distinguishing beam cleanup, the implementation would 

have required test fibers that support many more modes for efficient coupling of two tiled 

beams into the test fiber.  The larger test fiber would have required additional seed power 
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Fig. 59:  Apparatus used to test phase conjugation fidelity of silicate fibers at 1064 
nm wavelength. 
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which was not available to generate SBS in the short lengths of fiber necessary for phase 

conjugation.  An alternative to higher power is to use a fiber such as chalcogenide which 

has a much larger SBS gain coefficient as described in Chapter 4.  The higher gain 

coefficient allows chalcogenide fiber to support more modes while reducing the SBS 

threshold power.  The use of a chalcogenide fiber for this purpose is described in the next 

chapter.             

The full signal beam was focused through a pinhole with a diameter of 300 µm 

before propagating to the test fiber.  The pinhole was imaged onto the fiber tip such that 

the pinhole image diameter was less than half of the core diameter of the fiber.  The 

pinhole image size was chosen as small as possible and ultimately limited by the NA of 

the test fiber to maintain coupling efficiency.  Since the entire incident beam passed 

through the pinhole, a perfect phase-conjugate Stokes beam would have complete 

transmission back through the pinhole.  The pinhole transmission of the Stokes beam was 

the measure of fidelity.   

This fidelity measurement technique can distinguish between phase conjugation 

and SBS beam cleanup to the fundamental mode as described in Chapter 5.  Since the 

pinhole has a smaller image diameter than the fundamental fiber mode, it was calculated 

that less than 66% pinhole transmission would be achieved in the event that the Stokes 

reflection propagates in the fundamental mode.  The coupling parameters for each fiber 

are shown in Table 5.  The maximum transmission would be observed provided the 

pinhole image was centered on the fiber tip.  To further reduce this error, the signal was 

coupled off-center into the test fiber by 7.2 / 1.2 mμ+ −  for the 0.13-NA fiber.  The 

expected transmission from the fundamental mode was reduced in this case to 17+/-7%.  
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Similarly, the expected transmission of a flat-top beam would be less than 25%, which 

was computed using a ratio of the area of the pinhole image to the core area of the fiber.  

The coupling efficiency with the 0.06-NA fiber was more sensitive to position, which 

prohibited significant off-center coupling.  The fiber was centered within a few microns 

to maximize coupling efficiency.  With this coupling, pinhole transmission of 63% or less 

using the 0.06-NA fiber could be the result of beam cleanup, and a flat-top Stokes beam 

would be expected to have a transmission of 21%.  As with all spatial measurements of 

phase conjugation fidelity, low-fidelity measurements are ambiguous.    

Wedged windows with anti-reflection coating on one side were used to measure 

the power before and after the pinhole.  Additional beam pickoffs were used to reflect 

portions of the beam to a screen where a Cohu, solid-state camera simultaneously 

recorded the beam irradiance cross-section incident on the test fiber, the transmission 

through the test fiber, and the Stokes beam. 

  

Table 5:  Fiber and coupling characteristics for phase conjugation experiments. 

Core diameter (µm)
Core NA
Fiber M2 (V/2)
Fundamental mode 1/e2 diameter (µm)*
Pinhole image diameter at fiber tip (µm)
Incident beam diameter at fiber tip (µm) 
Coupling NA
Coupling efficiency (%)

20
0.13
3.8

14.5
9.6

5.5+/-0.3
0.119+/-0.006

79+/-5 

40
0.06
3.5

29.4
18.5

11.3+/-0.6
0.057+/-0.004

84+/-5 

0.13 NA fiber 0.06 NA fiber

*Marcuse, D., Loss analysis of single-mode fiber splices. Bell Syst. Tech. J, 1977. 56(5): p. 703–718.
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6.2.1. Data Collection and Analysis 

The fiber was cut back in set intervals, polished, and tested at its new length 

without disturbing the input end of the test fiber.  This enabled the measurement of 

fidelity as a function of fiber length.  To measure fidelity, the power meters labeled PM4 

and PM5 in Fig. 59 were connected to an oscilloscope.  The powers were measured 

simultaneously by the oscilloscope and the ratio of PM5 to PM4 provided the raw fidelity 

data.  To avoid large errors caused by dividing by voltages near zero, all data 

corresponding to reflected powers less than 600 mW was discarded.  A single 

measurement consists of the average of all calibrated data after SBS threshold is 

exceeded giving a Stokes reflection greater than 600 mW.  Multiple measurements were 

taken at each length whenever possible.   

By taking the data with the oscilloscope, the number of data points per trial was 

typically ~500 or more.  It was observed that connecting the power meters to an 

oscilloscope for data collection bypassed the internal calibration algorithms of the 

individual meters.  Since the response and zero of each uncalibrated meter was slightly 

different, the calibration was a function of power.  To calibrate the measurements, an HR 

mirror was placed in front of the fiber and aligned to reflect the incident beam back 

through the pinhole towards the amplifiers.  The pinhole was then removed, and 

calibration data consisted of the ratio of PM5/PM4 as a function of the PM4 power, 

shown in Fig. 60.  This accounted for differences in the power meters as well as for small 

losses from each optic between PM4 and PM5.   

The calibration data was separated into groups (bins) defined by the reflected 

power, and a span of 200 mW of reflected power per bin was chosen.  The mean and 
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standard deviation of the ratio of PM5/PM4 was taken of each bin.  The standard 

deviation of the reflected power in the bin was also calculated, and this data was plotted 

as a function of the center of each bin as shown in Fig. 61.   

  During the experiments, the seed power was increased to generate SBS in the 

test fiber.  The oscilloscope simultaneously read the seed power both incident and 

transmitting the fiber, and the Stokes power both incident (PM4) and transmitting (PM5)          
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Fig. 60:  PM5/PM4 calibration data as a function of reflected power. 

0 1 2 3 4 5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Reflected Power HWL

Ca
li

br
at
io

n
PM

5ê
PM

4

 

Fig. 61:  Error bar plot showing the mean and standard deviation of the calibration 
data in 200-mW bins of reflected power. 
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the pinhole aperture.  The oscilloscope also took the ratio of PM5/PM4, and this ratio was 

plotted as a function of Stokes power as shown in Fig. 62 taken from a 20-m length of 

0.13-NA fiber.       

The raw pinhole transmission data was then calibrated by Stokes-power bin using 

the calibration data in Fig. 61.  For each bin i of the raw data, the mean ( )i
rμ and standard 

deviation ( )i
rσ was computed, where r denotes “raw data.”  The calibrated mean ( )iμ and 

standard deviation ( )iσ  was then computed for each bin using the calibration data for that 

bin, where the mean ( )i
cμ  and standard deviation ( )i

cσ  are denoted by the subscript c for 

“calibration.”  The mean was computed as ( ) ( )i i ( )i
r cμ μ= μ for each bin, and the standard 

deviation was determined using[163] 

 
22 ( )( )

( ) ( ) 2
( ) ( )( )

ii
i i cr

i i
r c

σσσ μ
μ μ

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥= + ⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. (6.1) 

The calibrated data for this trial is shown in Fig. 63.   
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Fig. 62:  Uncalibrated pinhole transmission by the Stokes beam measured as a 
function of Stokes power reflected by a test fiber with 0.13 NA and length of 20 m. 
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Fig. 63:  Calibrated mean and standard deviation of the pinhole transmission as a 
function of Stokes power. 

 

 To determine the fidelity of the Stokes reflection for this experiment, the data in 

the bins was averaged for all Stokes-power bins above 0.6 W.  The mean was determined 

using the formula:[163] 

 
( ) ( ) ( )

( ) 2 ( ) 2( ) ( )

i i i

i
i i

N μμ
σ σ

=∑ ∑ i
N , (6.2) 

and the standard deviation was calculated as 
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Nσ
σ

−
⎛

= ⎜
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∑ ⎞

⎟ . (6.3) 

For the sample fiber shown above, the resulting fidelity was 0.552 / 0.002+ − .    

 

6.2.3. Results       

The results of the cutback test show a distinct increase in phase conjugation 

fidelity as each fiber is shortened as shown in Fig. 64.[123]  The blue dots with error bars 

are the experimental results of this work, while the blue line represents modeling results 
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obtained by Spring.[63]  The red, dashed line represents fidelity as a function of length 

given by Eq. (2.65).  With a 40-m long fiber, the fidelity was ~0.40.  A fidelity of 

0.791+/-0.004 was achieved with a fiber length of 15 m for the 20-µm core, 0.13-NA 

fiber.  While the input coupling was not adjusted during testing, small changes in 

coupling due to thermal effects in the amplifiers and optics change the modes excited in 

the test fiber.  While this was not noticeable within an individual trial, these small 

coupling changes are probably responsible for the variation in measured fidelity between 

trials at the same fiber length.    

A fidelity of 0.837+/-0.008 was obtained from a 40-m length of the 0.06-NA, 40-

µm core fiber (Fig. 65), which was increased from a fidelity of ~0.65 at a length of  

100 m.   
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Fig. 64:  Phase conjugation fidelity as a function of fiber length for the 0.13-NA 
fiber.  The experimental data is compared to Spring's model and Hellwarth's model. 
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Fig. 65:  Phase conjugation fidelity as a function of fiber length for the 0.06-NA 
fiber.  The experimental data is plotted along with Spring's model and Hellwarth's 
model. 
 

These sets of data document the first time CW phase conjugation via SBS has 

been achieved in step-index fiber.  It is also the first time that the deterioration of phase 

conjugation fidelity with fiber length has been traced experimentally.   

Images were taken during testing of both of these fibers to show the beam 

incident on the test fiber, after fiber transmission, and the Stokes reflection.  The beams 

were reflected from wedged windows placed in front of PM2 (incident), PM3 

(transmitted), and PM4 (Stokes) shown in Fig. 59, and each beam was propagated to a 

screen and imaged simultaneously.  The images are shown in Fig. 66 and Fig. 67 to show 

general beam shape and relative divergence.  In each image, the incident beam is shown 

in the upper left of the frame, the transmitted beam is in the upper right, and the Stokes 

beam is shown in the lower portion of the frame.  The images were smoothed using 6-

pixel averaging to remove speckle induced by reflection from the screen.  The 
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transmission through the test fiber is multimode in each image, and the Stokes beam is 

single-lobed for all lengths tested using the 0.06-NA fiber (Fig. 66).  Coupling conditions 

were varied prior to the cutback test which occasionally resulted in an LP11 Stokes beam 

using a 100-m length of fiber.   

For the 0.13-NA fiber, the images show the Stokes beam in the LP11 mode at 40 

m and a progression toward single mode as the fiber is shortened.  While the front of the 

fiber was not disturbed throughout the cutback tests, the back end had a new 8° polish 

and slight differences in location after each cut.  These changes in the back end of the test 

fiber caused the beam to move relative to the camera image.  The incident beam was 

coupled off-center, which was the most-likely cause of the LP11 mode in the Stokes beam 

at longer fiber lengths where phase conjugation fidelity declines.  As the fiber length was 

shortened, the phase conjugation fidelity improved and the LP11 mode was gradually 

replaced by a phase conjugate of the incident beam.  Spring’s model predicts the 

occurrence of beam cleanup in step-index fibers when the test fiber is too long for good 

fidelity phase conjugation beginning at fiber lengths as short as 20 m as seen in this 

work.[63]          
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Fig. 66:  Clockwise from top left:  incident beam, test fiber transmitted beam, and 
Stokes reflection from the 0.06-NA fiber with a length of 40 m.   

 

(a) (b) (c)
 

Fig. 67:  Clockwise from top left in each frame:  incident beam, fiber transmission, 
and Stokes beam from the 0.13-NA fiber with lengths of (a) 40 m, (b) 30 m, and (c) 
15 m. 

 

6.2.4. Discussion 

The experiment shows high-fidelity phase conjugation is generated by lengths of 

fiber approximately an order of magnitude longer than had been calculated before the 

start of this work.  The model of Hellwarth is shown in Fig. 64 and Fig. 65 for each fiber.  

It predicts a very rapid decline in fidelity that reaches zero at ~ 1 m for the 0.13-NA fiber 
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in Fig. 64 and at ~5 m for the 0.06-NA fiber in Fig. 65.  For longer lengths of fiber, the 

Hellwarth model predicts negative fidelity values which are undefined.   

The fidelity predicted using the Spring model is more accurate than previous 

models.  The Spring model predicts high fidelity from much longer lengths of fiber as 

verified by this work, and it also accurately predicts the occurrence of beam cleanup in 

step-index fibers.  However, the predicted fidelity was typically ~20% lower than the 

experimental results as the fidelity decreases from one and levels off at a low fidelity 

level.  The Spring model also predicted an increase in fidelity as the fiber is lengthened 

further which was not supported by the experiment.  The main approximation in Spring’s 

model is that all pump modes and, separately, all Stokes modes vary equally with power 

as a function of length.  The common mode amplitude growth and decay rate used in the 

model prevents the relative power between modes from evolving along the length of the 

fiber, which may be responsible for this resonance effect in the model.  This indicates 

that the deviation between experiment and model may be explained through the highly-

coupled analysis of modal interactions and varied gain or depletion among modes.  

Differences in coupling could also cause discrepancies between the model and the 

experiment.    

The fidelity achieved with the 0.06-NA fiber in both modeling and experiment 

decreased with length at a much slower rate than the fiber with 0.13 NA.  Although the 

calculations of Zel’dovich (Eq. (2.66)) and Hellwarth (Eq. (2.65)) lose validity as the 

non-conjugated fraction becomes large, both of their models include an analytic solution 

for the interaction length that is inversely proportional to the NA2 of the fiber.  
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Specifically, the length of fiber that was calculated to produce a given phase conjugation 

fidelity was given by:[59]  

 2

6 (1 )

B

F c
L

NA
−

≤
Ω

 (6.4) 

Russell demonstrated a similar dependence as a function of maximum phase error, φΔ , 

such that[55] 

 2

2

B

ncL
NA
φΔ

=
Ω

 (6.5) 

The relationship between phase error and fidelity is not known, but the models of 

Hellwarth and Zel’dovich suggest 1 FφΔ ∝ − .  Regardless of this exact relationship, 

the fidelity is expected to decrease as the phase difference increases, since it is this phase 

mismatch that theoretically causes the length limitations.  Therefore, the fibers in this 

experiment and model were compared based on the physical length of the fiber, the 

Stokes shift, and the square of the fiber core NA.  This scaled length parameter has units 

of meter·GHz and is given by 

 . (6.6) 2
s BL L NA≡ Ω

The maximum phase difference as defined in Eq.(6.5) differs from this parameter by a set 

of constants 

 
2

sL
nc

φΔ = . (6.7) 

From inspection of Eq. (6.4) and Eq.(6.7), sL may be a constant for a given phase 

conjugation fidelity.[123]  In Fig. 68, the fidelity achieved experimentally with the two 

fibers as a function of fiber length is plotted for the experimental results in this work and 

Spring’s model.  In addition, a third fiber was modeled and included in this plot.  The 
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additional fiber had an NA of 0.20 and a core diameter of 20 µm.  In Fig. 69, these results 

are plotted against the scaled length parameter.  As expected the data from the model and 

experiment are well correlated using this relationship.  Also included in Fig. 69 is the plot 

of Eq. (6.4).    
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Fig. 68:  Measured fidelity is plotted as a function of fiber length for two step-index 
fibers.  Results from Spring’s model are also shown. 
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Fig. 69:  Fidelity plotted as a function of scaled length. 
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Using the correlation between fidelity and the scaled length parameter, the SBS 

threshold power was approximated as a function of the quality of the beam that could be 

conjugated by a given fiber.  The SBS threshold for a given multimode fiber is 

approximately given by[19] 

 21
th

I

AP
g L

≈ , (6.8) 

where the core area, A, has been substituted for Aeff , and the fiber was approximated as 

lossless.  Solving Eq. (6.6) for L and substituting into Eq. (6.8) gives an expression for 

the SBS threshold power Pth as a function of the fiber parameters, SBS parameters, and 

scaled length parameter: 

 
221 ( )B
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I s

A NAP
g L
Ω

= , (6.9) 

where must be given in units of GHz.  The fiber parameters dictate the beam quality 

of the incident beam which can be accepted by the fiber.  According to ISO 11146[159], 

the beam quality parameter M

BΩ

2 is defined as 

 2

4
odM θπ

λ
= , (6.10) 

where is the diameter of the beam waist andod θ  is the full beam divergence.  To 

determine the beam quality a fiber could accept, let 2NAθ =  and 2od a= .  Since the 

fiber core cross-sectional area is 2A aπ= , the beam quality acceptance of the fiber, 

2 /NAM aπ λ≈ , was substituted into equation (6.9) such that 
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MP
g L
λ
π

Ω
≈ , (6.11) 

where  is in units of GHz for this equation. BΩ
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Extrapolating the results of this work yielded a relationship between sL  and the 

fidelity of phase conjugation.  From the method of measuring fidelity, it is expected that 

the measured fidelity will approach a constant as the fiber length increases beyond the 

lengths necessary for phase conjugation.  For example, a flat-top beam would be 

expected to achieve a pinhole transmission of 0.22.  At very long fiber lengths, the Spring 

model achieved rapidly oscillating values with an average of ~0.4.  Using an exponential 

fit to the experimental data, the best fit curve approached 0.46.  A simple fit to the 

experimental data was constructed using a Gaussian exponential function 

2
1 1(1 ) [ ]sc c Exp k+ − − L

L

 such that the function returns perfect fidelity at  and a 

constant as L

0sL =

s increases to infinity.  Using Mathematica’s “FindFit” function, a fit to the 

experimental data was determined, 

 , (6.12) 20.4585 0.5415 [ 0.001093 ]sF Exp≈ + −

where the constant in the exponential has the units of (m·GHz)-2.  This function is plotted 

against the combined experimental results in Fig. 70.   

Solving Eq. (6.12) for Ls and substituting the result into Eq. (6.11) yields an 

expression for SBS threshold that is a function of beam quality accepted by the fiber and 

fidelity.  The specific core area, length, and NA of the fiber have been replaced by beam 

quality acceptance and fidelity.  Fig. 71 shows three curves of the SBS threshold power 

as a function of the maximum M2 accepted by the fiber which is expected to yield fidelity 

in a range of values (0.95, 0.90, and 0.80), with , 113 10  m/WIg −≈ × 1064 nmλ = , and 

0.1 nmλΔ ≈ .    
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Fig. 70:  Curve fit to experimental measurements of fidelity as a function of the 
scaled length parameter. 

 

2 4 6 8 10
0

50

100

150

200

250

300

Fiber M 2

SB
S
Th
re
sh
ol
d
Po
we
r
HW

L

 

Fidelity ≈ 0.95

Fidelity ≈ 0.90
Fidelity ≈ 0.80

Fig. 71:  SBS threshold power of silicate fiber for a given fidelity of phase 
conjugation as a function of the beam quality accepted by the fiber. 

 

A reduced irradiance at an equivalent fidelity of phase conjugation can be realized 

when a fiber is chosen with the lowest NA possible that accepts the beam quality 

required.  For the same M2 value, a lower NA fiber requires a larger core area, but a 
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longer interaction length can be used to generate the same fidelity.  The SBS threshold 

power is approximately equal, and the power is spread over a larger core area in the low 

NA fiber.   

For example, the test fibers in this work were chosen to be multimode with a low 

SBS threshold.  At 40-m length, the 0.06 NA fiber reached SBS threshold at ~14.5 W, 

while the 0.13 NA fiber reached threshold at ~16 W for a 15 m length.  Both fibers 

achieved ~0.80 fidelity at these respective lengths, but the irradiance on the 0.06 NA 

fiber was reduced by a factor of four.  Other fiber characteristics that effect the SBS gain 

coefficient such as the concentration of core dopants[164] and the SBS gain coefficient 

broadening are expected to have a secondary impact that was not included in this 

analysis.   

To extend this analysis to fibers other than silica, the scaled length parameter was 

used to solve for the maximum phase difference as a function of fidelity from Eq. (6.7).  

The maximum phase difference was then assumed to be a constant for a given fidelity 

across all fiber materials such that and ( ) ( )( ) ( )ch sF Fφ φΔ = Δ
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ch

ch s
s s

nL F L F
n

= s , (6.13) 

where the scaled length parameter is shown explicitly as a function of fidelity, the 

superscript (s) denotes silica, and (ch) denotes chalcogenide or other fiber material of 

interest.  The index of refraction of chalcogenide is ~2.8,[25] and that of tellurite is 

~2.0.[165]  Therefore, the scaled length parameter was determined to be a factor of ~1.9 

longer for chalcogenide and ~1.3 for tellurite for a given fidelity of phase conjugation.  

This effect further reduces the threshold power necessary for a desired fidelity value in 

these fibers compared to silicate fiber.  A plot of the SBS threshold power as a function 
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of beam quality acceptance is shown in Fig. 72 for three different fiber materials and a 

predicted fidelity of 0.9.  The silicate fiber was assumed to be lossless, while the 

calculations for chalcogenide and tellurite fiber each include a low scattering loss 

estimate of 0.33 dB .  Inclusion of the scattering loss required some loss of generality 

in this model due to the length-dependent loss.  The NA of the tellurite and chalcogenide 

fibers was fixed at 0.22 and 0.18, respectively, and the beam quality acceptance varied 

with fiber core area only.  For the purpose of comparing fiber materials shown in 

/m

Fig. 72, 

these approximations are reasonable, but specific threshold calculations are necessary for 

fibers with non-negligible attenuation.     
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Fig. 72:  Comparison of three different fiber materials showing the approximate 
SBS threshold power needed to generate a phase conjugate beam with fidelity of 
~0.9, shown as a function of beam quality accepted by the fiber. 

 

6.3. Effect of Fidelity on SBS Threshold 

 By analyzing the SBS threshold power measured during the cutback tests on the 

two silicate fibers, it was discovered that the effective Brillouin gain coefficient in 
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multimode fiber increases with phase conjugation fidelity.  This effect lowers the SBS 

threshold below that expected using the Smith model as the fiber length decreases and 

phase conjugation is achieved.  In fact, analysis of the SBS threshold as the fibers were 

shortened reinforces the phase conjugation fidelity measurements described in the 

previous section. 

 The experimental trials of Section 6.2 were analyzed to determine the SBS 

threshold of each trial as the two fibers were reduced in length.  To determine threshold, 

the fiber transmission was plotted against Stokes power for each trial.  When SBS 

threshold was reached, the Stokes power would rapidly increase while the power 

transmitting the fiber would remain relatively constant.  Using the bin technique 

developed earler, the mean and standard deviation of the transmitted power was recorded 

for the Stokes power bin comprising all data points between 0.6 W and 1.0 W.  An 

example of this technique is shown in Fig. 73.  The transmitted power was then used to 

calculate the initial power coupled into the fiber.  This was done first by assuming a 

Fresnel reflection of 4% at fiber exit face.  The attenuation of the fiber was used to 

determine the coupled power just inside the entrance face of the fiber.  The attenuation 

used in the calculation was the value provided by the manufacturer but verified using the 

cutback data.    

 The resulting threshold data was plotted as a function of fiber length for each of 

the two fibers.  The Smith model, Eq. (2.53), with Leff from Eq. (2.52), was plotted 

against the threshold data in these figures using the Brillouin gain coefficient as a fit 

parameter.  The 0.13-NA fiber threshold data is shown in Fig. 74, and the 0.06-NA fiber 

is shown in Fig. 75.  The standard deviation of the data to the fit was calculated at 1.4 W 
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for the data taken with the 0.13-NA fiber, considering deviations for the threshold power 

only, and 1.6 W for the 0.06-NA fiber.   
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Fig. 73:  Power transmitted through the test fiber plotted as a function of Stokes 
power to calculate SBS threshold. 
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Fig. 74:  SBS threshold measurements are plotted as a function of fiber length for 
the 0.13-NA fiber.  The solid curve is the Smith model fit to the data. 
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Fig. 75:  The SBS threshold measured using the 0.06-NA fiber is plotted as a 
function of fiber length, as well as the Smith model fit to the data. 

 

 While SBS threshold has been examined at very short fiber lengths using pulsed 

lasers and km-length fibers using both pulsed and cw lasers, this work represents the first 

time the intermediate region has been examined.  For single lengths of fiber, matching the 

Smith model to the data is a matter of solving for the Brillouin gain coefficient.  

However, taken as a set, the SBS threshold measured during the cutback tests did not 

increase as rapidly as predicted by the Smith model as the fiber was shortened.   

 Examination of Eq.(2.63) presented an improvement to the Smith model in this 

region, and the equation is shown again here 

 
( ) ( , ) ( , )

( )
( ) ( )

s b
eff I

s b

G r I r z I r z dr
g z g

P z P z
⊥ ⊥ ⊥

= ∫ ⊥ . (6.14) 

This equation predicts that the effective Brillouin gain coefficient increases with the 

overlap between signal and Stokes beams in the fiber.  The phase conjugation fidelity 

also results from this overlap.  While the exact overlap at long lengths of fiber is not 

150 



known, it does not drop to zero since both beams remain guided.  The fidelity as 

measured by the in-line pinhole technique in this work was therefore used as an estimate 

of the overlap between the signal and Stokes beams as a function of fiber length.  The 

Smith model was modified by multiplying the Brillouin gain coefficient by the fidelity of 

phase conjugation in Eq. (6.12) such that 

 21
( )th

I eff

AP
F L g L

≈ , (6.15) 

where F(L) is the fidelity generated by a given length of fiber, L.  In Fig. 76 and Fig. 77, 

Eq. (6.15) is plotted against the threshold data for the 0.13-NA and 0.06-NA fibers, 

respectively.  In these calculations, was used as a fit parameter and was set to 

for the 0.13-NA fiber and for the 0.06-NA fiber.  The 

standard deviation of the fit was reduced to 0.5 W in both data sets.                    

Ig
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Fig. 76:  The threshold data for the 0.13-NA fiber is shown with the threshold model 
from this work. 
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Fig. 77:  The SBS threshold measurements for the 0.06-NA fiber are shown with a 
fit using this work's model. 

 

 The increase in the effective Brillouin gain coefficient resulting from increased 

phase-conjugation fidelity has not previously been documented.  However, the same 

physics underlies both effects.  For example, perfect phase conjugation results in a 

maximum fidelity value, and, by definition, results in a maximum value for the overlap 

integral in Eq. (6.14).  In this way, the analysis of SBS threshold in the multimode fiber 

provided a secondary measure of the fidelity of phase conjugation.    

 

6.4. Beam Combination in Chalcogenide Fiber 

 Using the results of this work, an apparatus was built to phase-lock two amplifier 

channels together using chalcogenide fiber and single-frequency amplifiers at a 

wavelength of 1550 nm.  The apparatus is shown in Fig. 78.  The pre-amplifiers were 

described in Chapter 4 which generated over 3 W of power in a narrow-linewidth, single-

polarization, single-mode beam after isolation.  The apparatus was identical to Fig. 46 

except for the addition of fiber amplifiers in each leg.  Each fiber amplifier was made 
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from a Nufern  prototype Er-Yb co-doped fiber provided to AFIT by AFRL/RDLO.  The 

fiber characteristics are shown in Table 6.  The fiber amplifiers were each 7.5 m long and 

pumped with LIMO fiber-coupled diodes generating up to 100 W at 976 nm.   

 As shown in Table 6, the fiber supports 20 modes through a calculation of the V-

parameter of the fiber.  However, for this application, the number of modes must be 

reduced significantly for good coupling efficiency into the test fiber.  One method to 

achieve this is by coupling into the fundamental mode of the fiber.[166]  Since the beam 
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Fig. 78:  Apparatus for beam-combination experiments via SBS phase conjugation 
in chalcogenide fiber at 1550-nm wavelength. 
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was wavefront-split by necessity, many high-order spatial frequencies existed in the seed 

which prevented efficient coupling to the fundamental mode of the fiber.  The method 

implemented was to introduce significant bend-loss through coiling.[167]  The low-order 

modes experience less attenuation than the higher-order modes when the fiber is bent.  

With a coil diameter of 10 cm, the divergence of the beam exiting the fiber was measured 

at 0.20 rad, full-width, at e-2 power, which is over twice the diffraction limit of 0.095 rad.  

In addition, the beam was clearly multi-mode.  When coiled at a diameter of 1.6 cm, the 

divergence was reduced to 0.11 rad.  With fine adjustment of the input coupling, a single-

lobed beam could be maintained at this divergence.     

 The amplifiers were tested at low power to verify their performance relative to 

previous amplifier systems discussed in Chapter 4.  The amplifier in channel 1 is shown 

in Fig. 79.  The slope efficiency as a function of total pump power was 14%, and the ASE 

is significant in the region of 1060 nm with a 3% slope.  Similarly, the amplifier in 

channel 2 is shown in Fig. 80.  The slope efficiency at 1550 nm was 10% as a function of 

total pump power, and the ASE at 1060 nm had a slope of 3%.  ASE in the vicinity of 

1550 nm was suppressed below 30 dB during the tests.  Since ASE at 1060 nm could 

damage the chalcogenide, two dichroic mirrors were used in the beam path between the     

Table 6:  Characteristics of Er-Yb co-doped fibers used in two-beam combination 
experiment. 

Core diameter (µm)a

Core NAa

Cladding absorption ~975 nm (dB/m)a

Cladding diameter (µm)a

V parameter
Supported modesb

25
0.11
2.1
300
5.6
20

Er-Yb Fiber

a Manufacturer supplied, Nufern
b Adams, M.J., An introduction to optical waveguides. 1981: Chichester: Wiley.  
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amplifiers and the test fiber to eliminate 99% of the power near 1060 nm wavelength.  

From these tests, it was estimated that the total power that could be generated from these 

amplifiers is approximately 20 W at full pump power.   

 A chalcogenide fiber was used for generating SBS, and the specifications are 

listed in Table 7.  To determine the fidelity of phase conjugation expected from this fiber, 
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Fig. 79:  Channel 1 Er-Yb fiber amplifier performance and ASE ~1060 nm as a 
function of pump power. 
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Fig. 80:  Channel 2 Er-Yb fiber amplifier performance and ASE ~1060 nm as a 
function of pump power. 

 

155 



the scaled length parameter was compared to that of silicate fiber using Eq. (6.13).  The 

approximate fidelity was then computed to be 0.85 by using Eq. (6.12).  The SBS 

threshold of the fiber was computed at 2.5 W of coupled power using the measured 

attenuation and the threshold model described in Chapter 4.  Due to the high index of 

refraction of ~2.8, the Fresnel reflection is calculated to be 22%.  Both ends of the fiber 

were polished at 4º to divert the Fresnel reflections.   

 Coupling to the fiber was first attempted using a surrogate to test the coupling 

efficiency.  A silicate fiber with a core diameter of 50 µm and an NA of 0.21 was inserted 

into the beam.  The fiber was only a few meters long for the purpose of measuring 

coupled power, and a coupling efficiency of ~66% was achieved.  The chalcogenide fiber 

supports more modes than the silicate fiber, but coupling into the chalcogenide fiber was 

slightly worse at 61 .  This value was determined by using an aperture on the 

output end of the fiber to eliminate the cladding modes, and comparing that value to the 

total transmission including the cladding modes.  This method assumes the cladding to be 

equally transmissive as the core.  The surface quality of the chalcogenide fiber was not as 

/ 5%+ −

Table 7:  Chalcogenide fiber characteristics. 

Core diameter (µm)a

Core NAa

Core attenuation ~1550 nm (dB/m)
V parameter
Fiber ~M2 (V/2)
Length (m)
Stokes shift (GHz)b

Scaled Length Parameter (m·GHz)

65
0.18
0.33
23.7
11.9
20
8

32.6

Chalcogenide Fiber

a Manufacturer supplied, CorActive
b Abedin, K.S., Single-frequency Brillouin lasing using single-mode As2Se3
chalcogenide fiber. Optics Express, 2006. 14(9): p. 4037-4042.
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good as the polish obtained using silicate fiber, which may have been the cause of the 

decreased coupling efficiency.  With this coupling efficiency and the Fresnel reflection of 

22%, it was calculated that the incident power required to achieve SBS threshold was  

5.3 W.   

 Four tests were conducted, and SBS threshold was not achieved.  The 

transmission efficiency of the fiber decreased with increasing power as shown in Fig. 81.  

At low seed powers, the transmission efficiency exceeded 9% including fiber attenuation 

and Fresnel reflections.  As power was increased, the transmission efficiency dropped to 

less than 4%.  The decrease was reversible when power was decreased.  For example, test 

3 was conducted without material failure.  Test 4 was conducted minutes later and 

exhibited the higher efficiency transmission at low powers before eventually failing at 3.5 

W of seed power.  Two forms of failure were observed:  test 1 and 2 failed when the fiber 

tip ignited, but test 4 failed from the fiber softening and bending at the edge of the mount 

for the fiber tip.  However, along with each failure, a segment of fiber approximately 1-m 

long was permanently damaged and required removal before polishing.    
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Fig. 81:  Chalcogenide fiber transmission as a function of seed power.  Zero power 
was recorded to indicate material failure. 
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The highest reported irradiance on chalcogenide fiber was 221kW/cm2 using a 

single-mode fiber.[25]  This is approximately 3 times higher than the irradiance at failure 

during these tests.  The decrease in transmission efficiency is believed to be a precursor 

to material failure.  In this case, the increased attenuation shortens the effective length of 

the fiber as power is increased, which increases the SBS threshold accordingly.   

6.5. Conclusions 

High-fidelity, cw phase conjugation in step-index fiber was achieved for the first 

time, and is achievable with longer lengths of fiber than previously calculated.  The 

increased fiber length reduces the SBS threshold and results in higher conversion 

efficiency from pump to Stokes for a set seed power.  For the same beam quality 

supported by the fiber, a larger core area and lower NA is preferred to generate a high 

fidelity phase conjugate with lower pump irradiance.  This mitigates damage concerns in 

phase conjugate laser systems.   

The specific length of fiber that can be used to generate a given phase conjugate 

fidelity is inversely proportional to the square of the numerical aperture of the fiber as 

discussed in previous works.  A relationship was established between the fidelity of phase 

conjugation and a scaled length parameter which is linearly related to the maximum 

phase difference among fiber modes.  The fidelity of phase conjugation can be predicted 

from fiber parameters and material characteristics, and the SBS threshold power needed 

to achieve a desired fidelity can be approximated based on this work.   

Through an analysis of the SBS threshold power, a new application of existing 

theory was discovered.  Specifically, increases in fidelity represent improved overlap 
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between the signal and Stokes beams.  This increase in the overlap reduces the predicted 

SBS threshold for lengths of fiber where phase conjugation occurs.   

Using the results of this work, a beam-combination experiment using SBS in 

chalcogenide fiber was designed and experimentally tested.  A degree of coherence of 

~85% was expected from SBS in a multimode, chalcogenide fiber, but the fiber material 

failure limit was reached before SBS threshold.  High power laser systems designed to 

use SBS beam combining must greatly exceed SBS threshold for efficient operation.  

Therefore, chalcogenide fiber must be used in pulsed systems only to avoid the thermal 

effects encountered in these experiments.  Due to the scattering loss in the fiber, the 

interaction length is limited to approximately 20 m.  This removes the possibility of using 

a fiber with a larger core, lower NA, and longer length to generate the phase conjugate 

beam with lower irradiance.  Tellurite and silicate fiber provide a higher damage 

threshold to SBS threshold ratio for cw operation.     
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7. Conclusion 

 The objective of this work was to demonstrate the path to cw beam combination 

through SBS phase conjugation in optical fiber.  One of the obstacles to cw phase 

conjugation was the high powers required to reach SBS threshold in the short, step-index 

fibers required to generate high fidelity phase conjugation according to the existing 

theories on phase conjugation fidelity and SBS threshold.  Due to the high powers 

required, phase conjugation had only been achieved using pulsed laser systems and fibers 

of only a couple meters.  Reports of phase conjugation in fibers longer than 10 m were 

rarely reported and often limited in effective length by the coherence length of the laser 

system.  By contrast, phase conjugation using cw lasers had only been attempted using 

km-length fibers.  While some researchers claimed cw phase conjugation had been 

achieved using long, graded-index fibers, additional experiments by other research 

groups and in this work negated these results.   

 The approach used in this work was to study cw, SBS, phase-conjugation fidelity 

achieved using intermediate lengths of multimode silicate fiber between 10 m and 100 m 

in length.  A secondary approach was to study phase conjugation from more immature 

materials of tellurite and chalcogenide fibers which were recently reported to have much 

higher Brillouin gain coefficients, but much higher scattering losses as well.  To 

accomplish this, an experiment was designed and implemented to generate a high-power, 

narrow-linewidth seed at 1064-nm wavelength and measure the fidelity of phase 

conjugation from SBS as the fibers were shortened.  A second, narrow-linewidth laser 

was constructed at 1550-nm wavelength, and the material properties of chalcogenide and 

tellurite fibers were analyzed at both wavelengths.  A model of SBS threshold was 
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adapted from existing work to include scattering losses and the flexible end-pumping 

configurations of fiber amplifiers.  The model was used to design and build the amplifier 

systems at both wavelengths to avoid SBS, and it was used to ensure SBS threshold could 

be reached in the test fibers during phase conjugation experiments.  The measurement of 

fidelity was also studied with particular attention paid to distinguishing beam cleanup 

from phase conjugation.  Lastly, cw, beam combination via SBS phase conjugation was 

attempted using chalcogenide fiber at 1550-nm wavelength.   

7.1. Significant Accomplishments 

 The model of SBS threshold in fiber amplifiers showed that co-pumping a fiber 

amplifier reduced the SBS threshold significantly over counter-pumping.  When both 

ends are pumped, the SBS threshold is between the extreme cases of co-pumping and 

counter-pumping.   

 The SBS threshold model also showed the effect of scattering loss on SBS 

threshold is much more significant than predicted by the Smith model.  The SBS 

threshold is higher than predicted by the Smith model as the level of scattering loss 

increases.  This deviation was found to be significant for fibers with scattering losses 

exceeding 0.5 dB/m.   

 The fidelity study showed discrepancies in the fidelity measurements used in the 

literature when beam cleanup is a possibility.  The in-line pinhole technique was shown 

to distinguish beam cleanup from phase conjugation, and this was confirmed in an 

experiment which generated SBS in a long, graded-index fiber.  A more accurate measure 

of fidelity was developed and demonstrated using interference techniques.  
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 CW phase conjugation was achieved for the first time.  The increase in fidelity 

was measured as the fiber was shortened, and fidelity over 0.8 was measured using 

lengths of fiber approximately an order of magnitude longer than previously-existing 

models indicated.  A correlation between the experimental data and modeling of three 

step-index fibers was shown based on a scaled length parameter.   The scaled length 

parameter was related to the maximum phase difference between pump and Stokes modes 

in a fiber.  The fidelity and threshold powers were then calculated based on fiber 

parameters for silicate fibers and other fiber materials, independent of exact fiber 

dimensions.  Materials with a higher index of refraction and lower Stokes shift than 

silicate fiber of the same NA were predicted to achieve higher fidelity phase conjugation 

at longer lengths.   

 The phase conjugation fidelity was found to increase the effective Brillouin gain 

coefficient by increasing the overlap between seed and Stokes modes.  As fidelity 

increased, the SBS threshold was measured lower than predicted by existing models.  

This work represents the first time this effect has been documented or predicted, even 

though the effect can be derived directly from the basic differential equations describing 

SBS.    

7.2. Conclusions 

 For fiber amplifiers, the co-pumped configuration is the most-favored geometry 

due to engineering constraints.  The diodes are protected from the amplified signal in this 

configuration.  Pump combiners which fuse multiple pump-delivery fibers to the cladding 

of a single fiber amplifier may not work in the reverse direction, forcing a co-pumped 

configuration when the highest pump power can be delivered.  When single-frequency 
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amplifiers are being constructed, the lower SBS threshold of the co-pumped geometry 

must be balanced with the other design constraints.  Shortening the fiber amplifier, and 

applying a higher dopant concentration of active elements in a large mode area fiber are 

perhaps the simplest ways to avoid SBS threshold under these conditions.  The shorter 

fiber presents less of an effective length for SBS, and the higher dopant concentration 

introduces a larger thermal gradient along the fiber, which mitigates SBS.  In addition, 

when passive fibers with a high scattering loss (above 0.5 dB/m) are being used, the 

Smith model provides a lower bound to SBS threshold calculations since the 

approximations used in that model lose validity.      

 Graded-index fibers produce SBS beam cleanup, not phase conjugation, and this 

can be deceiving when measuring fidelity through methods common in the literature.  For 

beam combining purposes, the interference technique should be used to measure fidelity, 

as spatial measures can be ambiguous.   

 The threshold power needed to achieve high-fidelity phase conjugation is 

approximately an order of magnitude lower than previously calculated.  The irradiance 

required can be reduced further through the use of low-NA fibers.  As the fidelity of 

phase conjugation increases, the effective Brillouin gain coefficient increases 

proportionately due to the increased overlap between the seed and Stokes beams.  The 

increase in fidelity lowers the SBS threshold even further than calculated by the Smith 

model in short, step-index fibers.  The lower threshold reduces the damage risk 

associated with such systems and increases the efficiency of cw beam combining using 

this technique by an order of magnitude over previous models.   
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 This work demonstrates that beam combining via SBS phase conjugation in 

optical fiber is achievable.  Using the results presented here, a laser system can be 

designed for high power and beam quality which takes into account the amplifier power, 

the SBS fiber characteristics, and the damage threshold of the materials.  In such a 

system, the use of a different material as the phase conjugate mirror would avoid seeding 

the SBS process in the amplifiers.  However, this effect should not degrade the coherence 

between the amplifier channels provided a spatial phase conjugate beam is generated in 

the SBS fiber.     

7.3. Future Work 

             One such system would use a multimode tellurite fiber to conjugate two silicate 

fiber amplifiers.  The apparatus is similar to Fig. 78, with two major differences.  First, it 

should be constructed at 1064 nm wavelength to take advantage of the additional 

amplifier efficiency for the demonstration.  Second, a 80/20, non-polarizing beam splitter 

should be inserted after the isolators but before the split into multiple channels.  The 

80/20 beam splitter should transmit only 20% and will serve as the output coupler for the 

laser system.  A high-power pre-amplifier should be used to generate ~20 W before the 

splitter to enable sufficient power coupled to each amplifier for efficient seeding.  The 

amplifiers should each be pumped with up to 200 W to generate at least 100 W of output 

power per channel.    

 To generate SBS, a low-loss tellurite fiber (0.33 dB/m or better) should be 

procured.  The same dimensions of this work’s chalcogenide fiber should be sufficient for 

ample coupling efficiency, since the number of modes supported by the fiber is increased 

with the switch to the shorter wavelength of 1064 nm.  The 65-µm core fiber with an NA 
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of 0.18 is calculated to generate fidelity of 0.9 with a physical length of 7.7 m.  The SBS 

gain coefficient is calculated to be , and SBS threshold is calculated to 

be ~50 W for this length of fiber for an irradiance of 1.5 MW/cm

10~ 2.7 10  m/W−×

2.  Longer lengths 

should be attempted first for testing purposes.  If a coupling efficiency of 80% can be 

achieved into the tellurite fiber, threshold can be exceeded by a factor of 4, and each 

amplifier should be seeded on the return path with ~40 W at full power through SBS 

phase conjugation.  After the second pass through the amplifiers, up to 200 W would be 

incident on the 80/20 beam splitter, and up to 160 W would be generated in two, 

mutually-coherent beams.  The system efficiency in this prototype would be low, but 

would be scaled with the number of channels combined.  Six channels could be combined 

using the “Gatlin-gun” combiner developed by Grime et al.[99] for coupling into the 

tellurite fiber.            

 An experiment should be conducted to verify the fidelity of phase conjugation 

predicted from non-silicate fibers.  The maximum phase shift was used as a constant as a 

function of fidelity to compare different fibers, which adds the index of refraction into the 

computations of the scaled length parameter.  Also, it is unknown whether the scattering 

loss in a fiber will cause an effective scaled length parameter shorter than calculated in 

this work.  If so, the fidelity achieved should be higher than predicted.  Two lengths of 

multimode tellurite fiber should be tested.  The fibers should have the same geometry but 

different levels of scattering.  A cutback test similar to this work should be conducted 

using an in-line pinhole to measure the fidelity.  The results should be examined with 

particular attention to the effects of scattering loss and the relation between fidelity and 

maximum phase difference.             
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 Hollow-core waveguides are commercially available with core diameter of 20 µm 

and an NA of 0.13 for use at 1550 nm.[168]  Combined with the very small Stokes shift 

of methane or xenon of approximately 0.6 GHz at 1550 nm, a hollow-core guide filled 

with one of these gases could produce a phase conjugate beam with fidelity of 0.9 at 

lengths of ~140 m.[16, 169]  The Brillouin gain coefficient of these gases at 10 atm is 

approximately , which increases to ( for CH111 10  m/W−× 1144 10  m/W−× 1165 10  m/W−× 4) 

at 39 atm.  Even at the lower pressure of 10 atm, the SBS threshold is calculated at 4.7 W 

with fidelity of 0.9.  As a result of this work, the Brillouin gain coefficient alone is not 

the deciding metric on a material.  In the case of these gases, the small Stokes shift 

enables much longer waveguide lengths and comparable reduction in threshold.  A 

custom, large core waveguide should be used to increase the acceptance of the fiber.  

This technique would include the added benefits of hollow-core waveguides by 

eliminating damage concerns and significant Fresnel reflections at the fiber surface.                        
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Glossary of Symbols 

 
a radius of the fiber core 
Aeff area of the confined power in a waveguide 
Af(z) field amplitude of fiber mode f as a function of z 
B magnetic induction 
b radius of the fiber cladding 
Cδ coefficient of the change in bandwidth with temperature 
Cf coefficient of the change in Brillouin frequency shift with temperature 
D electric displacement 
E electric field 

ωE  electric field at monochromatic frequency ω 
ˆ
ωE  electric field amplitude and polarization at frequency ω 

Êω  electric field amplitude at frequency ω 

ê  unit vector in direction of electric field polarization 
F fidelity, ratio of power that is in the phase conjugate mode to total power 
Fo room temperature Brillouin frequency shift 
Fc frequency parameter of the NA-broadened Brillouin gain coefficient 
Fν Stokes beam frequency 
g laser or amplifier gain 
go peak Brillouin gain coefficient 
gB(Ω) homogeneously broadened Brillouin gain coefficient 
gb(z,F) temperature broadened Brillouin gain coefficient 
geff effective Brillouin gain due to radial integral of pump and Stokes beams 
gI(Ω) inhomogeneously broadened Brillouin gain coefficient 
GB total Brillouin gain 

( )G r⊥  radially dependent Brillouin gain factor 
GL total laser gain 
Gs total scattering loss 
H magnetic field 
h fiber convective coefficient 
ħ Planck’s constant divided by 2π 
I intensity, power per unit area 
K numerical factor representing frequency permutations and factors of 1/2 
Kg polarization factor used with Brillouin gain coefficient 
k wave vector 
KB Brillouin acoustic wave wave vector 
l path length 
L fiber length, also Lfiber
Leff effective length of the SBS interaction 

s
cohL  coherence length of the signal laser 
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Ls scaled length parameter equal to LΩBNA2
 

M scalar term related to irradiance pattern of SBS pump 
M2

 beam quality as defined by ISO 11146 
N molecular density  
n index of refraction 
NA numerical aperture or acceptance half-angle 
Nw number of excited waveguide modes 
P electric polarization, dipole moment per unit volume 
PP  

(n) electric polarization, dipole moment per unit volume, nth-order 
Pω electric polarization at frequency ω 
P power (Watts) 
Pst saturation power 
pst strictive pressure 
Ps signal power 
PB Stokes power 
Pp pump power 
Ppf(b) pump power incident from the front (back) of the fiber 
R reflectivity 
T temperature 
u potential energy per unit volume 
V normalized frequency parameter of a fiber 
V(q) visibility of fringes in vicinity of point q 
W work 
wo beam waist 
z longitudinal position 
α loss or attenuation coefficient, s=scattering, Yb=Ytterbium absorption 
βf

 propagation constant of mode f 
Γfg linewidth of photon transition 
ΓB Brillouin resonance natural linewidth 
γ pump power to laser gain conversion coefficient 

12 ( )γ τ  degree of coherence due to pathlength difference τ 

γe electrostrictive constant 
δ phase error or piston error in radians 
ε electric permittivity 
εo permittivity of free space 
φ  phase factor of electric field 
η quantum defect 
ηsl slope efficiency of amplifier above threshold 
θ angle between signal and Stokes beams 

1/2θ  acceptance half-angle of a fiber 
( )zκ  field amplitude longitudinal dependence for all modes 

Λ acoustic wavelength 
λ wavelength 
μ magnetic permeability 
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μ statistical mean 
νa acoustic frequency 
νp(s) electric field frequency of the pump (Stokes) beams 
ρ material density 
σ standard deviation 
τ pathlength difference equal to  
χ(n)

 susceptibility tensor, nth order 
( )f rψ ⊥  electric field radial and azimuthal dependence for mode f 

Ω difference in angular frequency between signal and Stokes beams 
ΩB acoustic wave frequency due to SBS interaction 
ΩBo acoustic wave frequency from SBS directly backscattered 
Ωfg phonon transition frequency, homogeneously broadened 
ω angular frequency (rad/s) 
ωb Stokes frequency  
ωs signal frequency  

σω  sum frequency 
 

 

 

 

 

169 



Bibliography 

1. R. Wall, "Run-up to war," Aviation Week and Space Technology 158, 44-49 
(2003). 

2. MDALink, "Advanced Discriminating Ladar Technology," (Missile Defense 
Agency, 2007), www.mda.mil/mdalink/html/asptadlt.html, Accessed 13 April 
2007. 

3. F. Liégeois, C. Vercambre, Y. Hernandez, M. Salhi, and D. Giannone, "Pulsed 
high-peak-power and single-frequency fibre laser design for LIDAR aircraft 
safety application," Proceedings of SPIE 6367, 63670H (2006). 

4. H. Stephens, "Toward a new laser era," Journal of the Air Force Association 89, 
1-8 (2006). 

5. R. Q. Fugate, "The Starfire Optical Range 3.5-m adaptive optical telescope," 
Proceedings of SPIE 4837, 934-943 (2003). 

6. D. M. Pepper, "Nonlinear optical phase conjugation," Optical Engineering 21, 
156-183 (1982). 

7. H. Bruesselbach, D. C. Jones, D. A. Rockwell, R. C. Lind, and G. Vogel, "Real-
time atmospheric compensation by stimulated Brillouin-scattering phase 
conjugation," J. Opt. Soc. Am. B 12, 1434-1447 (1995). 

8. V. P. Gapontsev, "New Milestones in the development of super high power fiber 
lasers," Photonics West, OE/LASE, 21-26 (2006). 

9. A. Galvanauskas, "High Power Fiber Lasers," Optics and Photonics News 15, 42-
47 (2004). 

10. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," 
Selected Topics in Quantum Electronics, IEEE Journal of 11, 567-577 (2005). 

11. Y. Jeong, D. B. S. Soh, C. A. Codemard, P. Dupriez, C. Farrell, V. Philippov, J. 
K. Sahu, D. J. Richardson, J. Nilsson, and D. J. Payne, "State of the art of cw fibre 
lasers,"  (2005). 

12. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. 
W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master-
oscillator power-amplifier sources up to 500W," IEEE J. Sel. Top. Quantum 
Electron. 13, 546-551 (2007). 

13. D. M. Pepper, "Applications of optical phase conjugation," Scientific American 
254, 74-83 (1986). 

170 

http://www.mda.mil/mdalink/html/asptadlt.html


14. J. D. Jackson 3rd, Classical Electrodynamics, 3rd edn, 671 (Wiley & Sons, New 
York, 1998). 

15. P. N. Butcher, and D. Cotter, The Elements of Nonlinear Optics (Cambridge 
University Press, 1990). 

16. R. W. Boyd, Nonlinear Optics (Academic Press, 2003). 

17. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation 
(Springer, 2002). 

18. A. Yariv, and P. Yeh, Optical Waves in Crystals (Wiley New York, 2003). 

19. R. G. Smith, "Optical power handling capacity of low loss optical fibers as 
determined by stimulated Raman and Brillouin scattering," Applied Optics 11, 
2489-2494 (1972). 

20. R. H. Stolen, "Nonlinearity in fiber transmission," Proceedings of the IEEE 68, 
1232-1236 (1980). 

21. D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J 56, 
703–718 (1977). 

22. A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, and M. 
Sharma, "SBS threshold for single mode and multimode GRIN fibers in an all 
fiber configuration," Optics Express 13, 2019-2024 (2005). 

23. M. O. van Deventer, and A. J. Boot, "Polarization properties of stimulated 
Brillouin scattering in single-mode fibers," Journal of Lightwave Technology 12, 
585-590 (1994). 

24. R. H. Stolen, "Polarization Effects in Fiber Raman and Brillouin Lasers," IEEE 
JOURNAL OF QUANTUM ELECTRONICS 15, 1157 (1979). 

25. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-
mode As2Se3 chalcogenide fiber," Optics Express 13, 10266-10271 (2005). 

26. K. S. Abedin, "Stimulated Brillouin scattering in single-mode tellurite glass 
fiber," Opt. Express 11, 2641-2645 (2003). 

27. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. 
Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of 
chalcogenide glasses and fibers," Journal of Non-Crystalline Solids 354, 462-467 
(2008). 

28. J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. 
Ward, and W. B. Roh, "Comparison of stimulated Brillouin scattering thresholds 

171 



and spectra in nonpolarization-maintaining and polarization-maintaining passive 
fibers," Proceedings of SPIE 5709, 147 (2005). 

29. R. W. Hellwarth, "Theory of phase conjugation by stimulated scattering in a 
waveguide," Journal of the Optical Society of America 68, 1050 (1978). 

30. V. I. Kovalev, and R. G. Harrison, "Waveguide-induced inhomogeneous spectral 
broadening of stimulated Brillouin scattering in optical fiber," Optics Letters 27, 
2022 (2002). 

31. Y. Imai, and N. Shimada, "Dependence of stimulated Brillouin scattering on 
temperaturedistribution in polarization-maintaining fibers," Photonics Technology 
Letters, IEEE 5, 1335-1337 (1993). 

32. Y. Li, F. Zhang, and T. Yoshino, "Wide-Range Temperature Dependence of 
Brillouin Shift in a Dispersion-Shifted Fiber and Its Annealing Effect," 
JOURNAL OF LIGHTWAVE TECHNOLOGY 21, 1663 (2003). 

33. Q. Yu, X. Bao, and L. Chen, "Temperature dependence of Brillouin frequency, 
power, and bandwidth in panda, bow-tie, and tiger polarization-
maintainingfibers," Optics Letters 29, 17-19 (2004). 

34. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, 
"Increase of the SBS threshold in a short highly nonlinear fiber byapplying a 
temperature distribution," Lightwave Technology, Journal of 19, 1691-1697 
(2001). 

35. K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin 
frequency shift distribution," Lightwave Technology, Journal of 14, 50-57 (1996). 

36. X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, 
"Stimulated Brillouin threshold dependence on fiber type and uniformity," IEEE 
Photonics Technology Letters 4, 66-69 (1992). 

37. C. C. Lee, and S. Chi, "Measurement of stimulated-Brillouin-scattering threshold 
forvarious types of fibers using Brillouin optical-time-domain reflectometer," 
Photonics Technology Letters, IEEE 12, 672-674 (2000). 

38. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency 
master-oscillator fiber power amplifier," Optics Letters 28, 1537-1539 (2003). 

39. Y. Jeong, J. K. Sahu, S. Baek, C. Alegria, C. A. Codemard, D. B. S. Soh, V. 
Philippov, R. B. Williams, K. Furusawa, and D. J. Richardson, "The rising power 
of fibre lasers," in IEEE/LEOS Annual Meeting(Tuscon, AZ, 2003). 

40. N. A. Brilliant, "Stimulated Brillouin scattering in a dual-clad fiber amplifier," 
Journal of the Optical Society of America B 19, 2551-2557 (2002). 

172 



41. C. N. Pannell, P. S. J. Russell, and T. P. Newson, "Stimulated Brillouin scattering 
in optical fibers: the effects of optical amplification," J. Opt. Soc. Amer. B 10, 
684–690 (1993). 

42. A. Heuer, C. Haenisch, and R. Menzel, "New concept for low-threshold optical 
phase conjugation via SBS in a fiber amplifier," Proceedings of SPIE 4972, 151 
(2003). 

43. B. Y. Zel'dovich, Y. E. Kapitskii, V. A. Krivoshchenkov, A. N. Pilipetskii, N. F. 
Pilipetskii, and V. V. Shkunov, "Stimulated Brillouin scattering in a fiber 
waveguide with linear amplification," Quantum Electronics 17, 1604-1607 
(1987). 

44. D. C. Brown, H. J. Hoffman, A. L. Syst, and P. A. Brackney, "Thermal, stress, 
and thermo-optic effects in high average power double-clad silica fiber lasers," 
Quantum Electronics, IEEE Journal of 37, 207-217 (2001). 

45. V. I. Kovalev, and R. G. Harrison, "Suppression of stimulated Brillouin scattering 
in high-power single-frequency fiber amplifiers," Optics Letters 31, 161-163 
(2006). 

46. D. A. Rockwell, "A review of phase-conjugate solid-state lasers," Quantum 
Electronics, IEEE Journal of 24, 1124-1140 (1988). 

47. "3.5-Meter Telescope," (United States Air Force, 2001), Accessed 15 May, 2008. 

48. X. Levecq, "Adaptive Optics:  Optical fuse protects intracavity laser 
components," in Laser Focus World(2008). 

49. D. L. Fried, "Branch point problem in adaptive optics,"  15, 2759-2768 (1998). 

50. F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. 
Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, and 
F. Y. Kanev, "Wavefront reconstruction of an optical vortex by a Hartmann-
Shack sensor,"  32, 2291-2293 (2007). 

51. K. L. Baker, E. A. Stappaerts, S. C. Wilks, P. E. Young, D. T. Gavel, J. W. 
Tucker, D. A. Silva, and S. S. Olivier, "Open-and closed-loop aberration 
correction by use of a quadrature interferometric wave-front sensor,"  29, 47-49 
(2004). 

52. T. M. Venema, and J. D. Schmidt, "Optical phase unwrapping in the presence of 
branch points,"  16, 6985-6998 (2008). 

53. B. Y. Zel'Dovich, V. I. Popovichev, V. V. Ragul'Skii, and F. S. Faizullov, 
"Connection between the wave fronts of the reflected and exciting light in 
stimulated Mandel'shtem-Brillouin scattering," Journal of Experimental and 
Theoretical Physics Letters 15, 109 (1972). 

173 



54. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001). 

55. T. H. Russell, B. W. Grime, T. G. Alley, and W. B. Roh, "Stimulated Brillouin 
scattering beam cleanup and combining in optical fiber," in Nonlinear Optics and 
Applications, H. A. Abdeldayem, and D. O. Frazier, eds. (Research Signpost, 
Kerala, India, 2007), pp. 179-206. 

56. T. H. Russell, "Step-index fiber irradiance pattern," (Air Force Institute of 
Technology, Wright-Patterson AFB, 2007). 

57. B. Y. Zel'dovich, V.V. Shkunov, Soviet Journal of Quantum Electronics 4, 610–
615 (1977). 

58. D. Gloge, "Weakly guiding fibers," Appl. Opt 10, 2252-2258 (1971). 

59. M. Gower, and D. Proch, Optical Phase Conjugation (Springer, 1994). 

60. E. A. Kuzin, M. P. Petrov, and B. E. Davydenko, "Phase conjugation in an optical 
fibre," Optical and Quantum Electronics 17, 393-397 (1985). 

61. Y. P. Vasil'ev, P. S. Razenshtein, and E. I. Shklovskii, "Stimulated Brillouin 
scattering mirror in the form of a multimode optical fiber in a four-pass 
neodymium phosphate glass laser amplifier," Quantum Electronics 15, 1417-1418 
(1985). 

62. H. J. Eichler, J. Kunde, and B. Liu, "Quartz fibre phase conjugators with high 
fidelity and reflectivity," Optics Communications 139, 327-334 (1997). 

63. J. Spring, "Modeling of SBS Phase Conjugation in Multimode Step Index Fibers," 
in Dept of Engineering Physics(Air Force Institute of Technology, Air University, 
2008), pp. 40-89. 

64. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier, and P. Georges, "Beam 
cleanup in a self-aligned gradient-index Brillouin cavity for high-power 
multimode fiber amplifiers," Optics Letters 31, 158-160 (2006). 

65. B. C. Rodgers, T. H. Russell, and W. B. Roh, "Laser beam combining and 
cleanup by stimulated Brillouin scattering in a multimode optical fiber," Opt. Lett 
24, 1124-1126 (1999). 

66. O. Y. Nosach, V. I. Popovichev, V. V. Ragul'Skii, and F. S. Faizullov, 
"Cancellation of phase distortions in an amplifying medium with a" Brillouin 
mirror"," Journal of Experimental and Theoretical Physics Letters 16, 435 (1972). 

67. V. Wang, and C. R. Giuliano, "Correction of phase aberrations via stimulated 
Brillouin scattering," Optics Letters 2 (1978). 

174 



68. V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, "Gain and 
line width in stimulated Brillouin scattering in gases," Quantum Electronics 2, 69-
71 (1972). 

69. D. Pohl, and W. Kaiser, "Time-resolved investigations of stimulated Brillouin 
scattering in transparent and absorbing media: determination of phonon 
lifetimes," Physical Review B 1, 31-43 (1970). 

70. E. P. Ippen, and R. H. Stolen, "Stimulated Brillouin scattering in optical fiber," 
Applied Physics Letters 21, 539-541 (1972). 

71. H. J. Eichler, A. Haase, and R. Menzel, "100-watt average output power 1.2 
diffraction limited beam frompulsed neodymium single-rod amplifier with SBS 
phase conjugation," Quantum Electronics, IEEE Journal of 31, 1265-1269 (1995). 

72. W. Koechner, Solid-State Laser Engineering (Springer, 1999). 

73. H. L. Offerhaus, and H. P. Godfried, "All solid-state diode pumped Nd: Yag 
MOPA with stimulated Brillouin phase conjugate mirror," Lasers and Electro-
optics Europe, 1996. CLEO/Europe., Conference on, 6-6 (1996). 

74. C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, and L. A. Hackel, 
"Design and operation of a 150 W near diffraction-limited laser amplifier with 
SBS wavefront correction," Quantum Electronics, IEEE Journal of 31, 148-163 
(1995). 

75. S. Amano, and T. Mochizuki, "High average and high peak brightness slab laser," 
Quantum Electronics, IEEE Journal of 37, 296-303 (2001). 

76. G. J. Crofts, M. J. Damzen, and R. A. Lamb, "Experimental and theoretical 
investigation of two-cell stimulated-Brillouin-scattering systems," J. Opt. Soc. 
Am. B 8, 2282-2288 (1991). 

77. J. Munch, R. Wuerker, and M. Lefebvre, "Interaction length for optical phase 
conjugation by stimulated Brillouin scattering- An experimental investigation," 
Applied Optics 28, 3099-3105 (1989). 

78. M. T. Duignan, B. J. Feldman, and W. T. Whitney, "Threshold reduction for 
stimulated Brillouin scattering using a multipass Herriott cell," J. Opt. Soc. Am. B 
9, 548-559 (1992). 

79. A. M. Scott, and W. T. Whitney, "Characteristics of a Brillouin ring resonator 
used for phase conjugation at 2.1 mm," J. Opt. Soc. Am.(B) 12, 1634-1641 
(1995). 

80. H. Meng, and H. J. Eichler, "Nd: YAG laser with a phase-conjugating mirror 
based on stimulated Brillouin scattering in SF6 gas," Opt. Lett 16, 569-571 
(1991). 

175 



81. H. S. Kim, S. H. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, "Threshold 
reduction of stimulated Brillouin scattering by the enhanced Stokes noise 
initiation," Applied Physics Letters 74, 1358 (1999). 

82. L. P. Schelonka, and C. M. Clayton, "Effect of focal intensity on stimulated-
Brillouin-scattering reflectivity and fidelity," Opt. Lett 13, 42–44 (1988). 

83. N. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, A. B. Mironov, S. I. 
Mikhailov, and M. G. Smirnov, "Influence of certain radiation parameters on 
wavefront reversal of a pump wave in a Brillouin mirror," Quantum Electronics 9, 
455-458 (1979). 

84. M. S. M. D. Crispin Jones, D.A. Rockwell, "A stimulated Brillouin scattering 
phase-conjugate mirror having a peak-power threshold <100W," Optics 
Communications 123, 175-181 (1996). 

85. V. R. Belan, A. G. Lazarenko, V. M. Nikitin, and A. V. Polyakov, "Stimulated 
Brillouin scattering mirrors made of capillary waveguides," Quantum Electronics 
17, 122-124 (1987). 

86. P. Shalev, S. M. Jackel, R. Lallouz, and A. Bornstein, "Low-threshold phase 
conjugate mirrors based on position-insensitive tapered waveguides," Optical 
Engineering 33, 278 (1994). 

87. V. Pashinin, V. Sturm, V. Tumorin, and R. Noll, "Stimulated Brillouin scattering 
of Q-switched laser pulses in large-core optical fibres," Optics and Laser 
Technology 33, 617-622 (2001). 

88. H. Yoshida, H. Fujita, and M. Nakatsuka, "Optical damage threshold due to 
stimulated Brillouin scattering reflection with multimode optical fiber," Jpn. J. 
Appl. Phys 42, 2735-2736 (2003). 

89. H. J. Eichler, A. Mocofanescu, T. Riesbeck, E. Risse, and D. Bedau, "Stimulated 
Brillouin scattering in multimode fibers for optical phase conjugation," Optics 
Communications 208, 427-431 (2002). 

90. H. J. Eichler, J. Kunde, and B. Liu, "Fiber phase conjugators at 1064-nm, 532-nm, 
and 355-nm wavelengths," Optics Letters 22, 495-497 (1997). 

91. T. Riesbeck, E. Risse, and H. J. Eichler, "Pulsed solid state laser systems with 
high brightness by fiber phase conjugation," Proceedings of SPIE 5120, 494-499 
(2002). 

92. T. Riesbeck, E. Risse, and H. J. Eichler, "Pulsed solid-state laser system with 
fiber phase conjugation and 315 W average output power," Applied Physics B: 
Lasers and Optics 73, 847-849 (2001). 

176 



93. A. Heuer, and R. Menzel, "Phase-conjugating stimulated Brillouin scattering 
mirror for low powers and reflectivities above 90% in an internally tapered optical 
fiber," Opt. Lett 23, 834-836 (1998). 

94. M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin 
scattering in fibers with and without external feedback," Physical Review A 48, 
3301-3309 (1993). 

95. V. I. Kovalev, and I. R. G. Harrison, "Temporally stable CW phase conjugation 
via stimulated Brillouin scattering in optical fiber with cavity feedback," Optics 
Letters 30, 1375-1377 (2004). 

96. C. Hänisch, A. Heuer, and R. Menzel, "Threshold reduction of stimulated 
Brillouin scattering (SBS) using fiber loop schemes," Applied Physics B: Lasers 
and Optics 73, 851-854 (2001). 

97. H. Bruesselbach, "Beam cleanup using stimulated Brillouin scattering in 
multimode fibers," in Conference on Lasers and Electro-Optics(Optical Society 
of America, 1993), pp. 424-426. 

98. T. H. Russell, "Laser intensity scaling through stimulated scattering in optical 
fibers," in Department of Engineering Physics(Air University, AFIT, Wright-
Patterson AFB, 2001). 

99. B. W. Grime, "Multiple channel laser beam combination and phasing using 
stimulated Brillouin scattering in optical fibers," in Department of Engineering 
Physics(Air University, AFIT, Wright-Patterson AFB, 2005). 

100. R. G. Harrison, and V. I. Kovalev, "SBS self-phase conjugation of CW Nd: YAG 
laser radiation in an optical fibre," Lasers and Electro-Optics, 1999. CLEO'99. 
Summaries of Papers Presented at the Conference on, 275-276 (1999). 

101. V. I. Kovalev, and R. G. Harrison, "The build up of stimulated Brillouin 
scattering excited by pulsed pump radiation in a long optical fibre," in Lasers and 
Electro-Optics Europe (2000), p. 1. 

102. V. I. Kovalev, and R. G. Harrison, "CW phase conjugation in optical fibres," in 
Lasers and Electro-Optics Europe(2005), p. 176. 

103. V. I. Kovalev, R. G. Harrison, and A. M. Scott, "300 W quasi-continuous-wave 
diffraction-limited output from a diode-pumped Nd: YAG master oscillator power 
amplifier with fiber phase-conjugate stimulated Brillouin scattering mirror," 
Optics Letters 30, 3386-3388 (2005). 

104. V. I. Kovalev, R. G. Harrison, J. K. Sahu, and J. Nilsson, "Continuous-wave all-
fiber MOPA with SBS phase conjugate mirror," Proceedings of SPIE 5335, 46 
(2004). 

177 



105. A. Mocofanescu, and K. D. Shaw, "Stimulated Brillouin scattering phase 
conjugating properties of long multimode optical fibers," Optics communications 
266, 307-316 (2006). 

106. A. Heuer, C. Hänisch, and R. Menzel, "Low-power phase conjugation based on 
stimulated Brillouin scattering in fiber amplifiers," Optics Letters 28, 34-36 
(2003). 

107. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, 
"Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 
chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004). 

108. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. 
Miklos, and I. D. Aggarwal, "Fabrication of single-mode chalcogenide optical 
fiber," Lightwave Technology, Journal of 16, 214-217 (1998). 

109. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, 
"Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide 
fibers," Optics Express 14, 12063-12070 (2006). 

110. A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, "Ultra-
wideband tellurite-based Raman fibre amplifier," Electronics Letters 37, 1442-
1443 (2001). 

111. A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. 
Ohishi, "Low noise broadband tellurite-based Er 3-doped fibre amplifiers," 
Electronics Letters 34, 887-888 (1998). 

112. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain 
characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 µm 
broadband amplification," Opt. Lett 23, 274-276 (1998). 

113. A. Mori, T. Sakamoto, K. Kobayashi, K. Shikano, K. Oikawa, K. Hoshino, T. 
Kanamori, Y. Ohishi, and M. Shimizu, "1.58-µm broad-band erbium-doped 
tellurite fiber amplifier," Lightwave Technology, Journal of 20, 822-827 (2002). 

114. J. D. Minelly, "New materials for fiber optic amplifiers," Lasers and Electro-
Optics Society 1999 12th Annual Meeting. LEOS'99. IEEE 2 (1999). 

115. J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for 
fiber devices," Optical materials(Amsterdam) 3, 187-203 (1994). 

116. T. Luo, "Ultra-broadband Er3+ doped tellurite glass fiber amplifier," D. T. R. 
Agency, ed. (DTIC, 2003). 

117. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, "Ultra-wide-band tellurite-
based fiber Raman amplifier," Lightwave Technology, Journal of 21, 1300-1306 
(2003). 

178 



118. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, 
and M. F. Churbanov, "Raman band intensities of tellurite glasses," Optics Letters 
30, 1156-1158 (2005). 

119. G. S. Murugan, T. Suzuki, and Y. Ohishi, "Tellurite glasses for ultrabroadband 
fiber Raman amplifiers," Applied Physics Letters 86, 161109 (2005). 

120. G. Qin, A. Mori, and Y. Ohishi, "Brillouin lasing in a single-mode tellurite fiber,"  
32, 2179-2181 (2007). 

121. G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, 
"Stimulated Brillouin Scattering in a Single-Mode Tellurite Fiber for 
Amplification, Lasing, and Slow Light Generation,"  26, 492-498 (2008). 

122. R. H. Lehmberg, "Numerical study of phase conjugation in stimulated Brillouin 
scattering from an optical waveguide," (NRL-MR-4985, Naval Research Lab., 
Washington, DC (USA), 1982). 

123. S. M. Massey, J. B. Spring, and T. H. Russell, "Stimulated Brillouin scattering 
continuous wave phase conjugation in step-index fiber optics," Opt. Express 16, 
16873-16885 (2008). 

124. T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, 
D. Pilkington, J. Spring, D. J. Nelson, and C. A. Lu, "First experimental 
demonstration of self-synchronous phase locking of an optical array," Optics 
Express 14, 12015-12021 (2006). 

125. M. K. Culpepper, "Coherent combination of fiber laser beams," Proc. SPIE 4629, 
99-108 (2002). 

126. S. Hofer, H. Zellmer, J. P. Raske, and A. Tunnermann, "Coherent beam 
combining of fiber amplifiers," in Lasers and Electro-Optics Europe(2003), p. 
635. 

127. S. J. Augst, T. Y. Fan, and A. Sanchez, "Coherent beam combining and phase 
noise measurements of ytterbium fiber amplifiers," Optics Letters 29, 474-476 
(2004). 

128. J. Anderegg, S. J. Brosnan, M. E. Weber, H. Komine, and M. G. Wickham, "8-W 
coherently phased 4-element fiber array," Proceedings of SPIE 4974, 1-6 (2003). 

129. J. Anderegg, S. Brosnan, E. Cheung, P. Epp, D. Hammons, H. Komine, M. 
Weber, and M. Wickham, "Coherently coupled high-power fiber arrays," 
Proceedings of SPIE 6102, 61020U (2006). 

130. M. Valley, G. Lombardi, and R. Aprahamian, "Beam combination by stimulated 
Brillouin scattering," Optical Society of America, Journal, B: Optical Physics 3, 
1492-1497 (1986). 

179 



131. D. A. Rockwell, and C. R. Giuliano, "Coherent coupling of laser gain media using 
phase conjugation," Optics Letters 11, 147-149 (1986). 

132. R. H. Moyer, "Beam combination with stimulated Brillouin scattering: A review," 
SPIE Conference on Laser Wavefront Control, 25-32 (1988). 

133. D. L. Carroll, R. Johnson, S. J. Pfeifer, and R. H. Moyer, "Experimental 
investigations of stimulated Brillouin scattering beam combination," J. Opt. Soc. 
Amer. B 9, 2214–2224 (1992). 

134. D. S. Sumida, D. C. Jones, and D. A. Rockwell, "An 8.2 J phase-conjugate solid-
state laser coherently combiningeight parallel amplifiers," Quantum Electronics, 
IEEE Journal of 30, 2617-2627 (1994). 

135. H. Becht, "Experimental investigation on phase locking of two Nd: YAG laser 
beams by stimulated Brillouin scattering," J Opt Soc Am B 15, 16-78 (1998). 

136. J. Falk, M. Kanefsky, and P. Suni, "Limits to the efficiency of beam combination 
by stimulated Brillouin scattering," Opt. Lett 13, 39–41 (1988). 

137. S. Sternklar, D. Chomsky, S. Jackel, and A. Zigler, "Misalignment sensitivity of 
beam combining by stimulated Brillouin scattering," Opt. Lett 15, 469-470 
(1990). 

138. R. Moyer, M. Valley, and M. Cimolino, "Beam combination through stimulated 
Brillouin scattering," Optical Society of America, Journal, B: Optical Physics 5, 
2473-2489 (1988). 

139. N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. 
Palashov, G. A. Pasmanik, V. I. Rodchenkov, S. Scott, and P. Soan, "A two-
channel repetitively pulsed Nd: YAG laser operating at 25 Hz with diffraction-
limited beam quality," IEEE Journal of Quantum Electronics 35, 110-114 (1999). 

140. G. T. Moore, "A model for diffraction-limited high-power multimode fiber 
amplifiers using seeded stimulated Brillouin scattering phase conjugation," IEEE 
Journal of Quantum Electronics 37, 781 (2001). 

141. A. F. Vasil'ev, S. B. Gladin, and V. E. Yashin, "Pulse-periodic Nd: YAlO3 laser 
with a phase-locked aperture under conditions of phase conjugation by stimulated 
Brillouin scattering," Quantum Electronics 21, 494-497 (1991). 

142. S. M. Willis, and W. B. Roh, "Beam phasing properties of optical fiber as phase 
conjugate mirror," in Lasers and Electro-Optics Society, 2003. LEOS 2003. The 
16th Annual Meeting of the IEEE(IEEE, 2003), pp. 105-106. 

143. K. C. Brown, "Passive multiple beam combination of optical fibers via stimulated 
Brillouin scattering," in Department of Engineering Physics(Air University, 
AFIT, Wright-Patterson AFB, 2005). 

180 



144. B. W. Grime, W. B. Roh, and T. G. Alley, "Phasing of a two-channel continuous-
wave master oscillator-power amplifier by use of a fiber phase-conjugate mirror," 
Optics Letters 30, 2415-2417 (2005). 

145. A. Liu, "Novel SBS suppression scheme for high-power fiber amplifiers," 
Proceedings of SPIE 6102, 61021R (2006). 

146. A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using 
nonuniform fiber and temperature gradient," (OSA, 2007), pp. 977-984. 

147. C. Wang, F. Zhang, Y. Lu, R. Geng, Z. Tong, T. Ning, and S. Jian, "Study of 
stimulated Brillouin scattering effect in high-power single-frequency fiber 
amplifiers," Chinese Journal of Lasers 33, 1630-1635 (2006). 

148. A. Yariv, "Optical electronics in modern communications,"  (1997). 

149. K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. 
Manyam, A. Sanchez, A. Galvanauskas, W. Torruellas, and Y. Chen, "New 
Developments in High Power Eye-Safe LMA Fibers," in Photonics West(SPIE, 
San Jose, CA, 2006). 

150. Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, "Seeded erbium/ytterbium 
codoped fibre amplifier source with 87 W of single-frequency output power," 
Electronics Letters 39, 1717-1719 (2003). 

151. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. 
Ibsen, and J. Nilsson, "83-W single-frequency narrow-linewidth MOPA using 
large-core erbium-ytterbium co-doped fiber," Photonics Technology Letters, 
IEEE 16, 1825-1827 (2004). 

152. M. A. Dubinskii, and L. D. Merkle, "Ultrahigh-gain bulk solid-state stimulated 
Brillouin scattering phase-conjugation material," Optics Letters 29, 992-994 
(2004). 

153. M. J. Adams, An introduction to optical waveguides (Chichester: Wiley, 1981). 

154. S. Jiang (Telephone call, 2006). 

155. J. Nilsson, J. K. Sahu, Y. Jeong, W. A. Clarkson, R. Selvas, A. B. Grudinin, and 
S. U. Alam, "High power fiber lasers: new developments," Proc. of SPIE 4974, 51 
(2003). 

156. V. I. Kovalev, and R. G. Harrison, "Continuous wave stimulated Brillouin 
scattering in optical fibers: new results and applications for high power lasers," 
Proceedings of SPIE 5975, 59750L (2006). 

181 



182 

157. T. Russell, W. Roh, and J. Marciante, "Incoherent beam combining using 
stimulated Brillouin scattering in multimode fibers," Optics Express 8, 246-254 
(2001). 

158. K. C. Brown, T. H. Russell, T. G. Alley, and W. B. Roh, "Passive combination of 
multiple beams in an optical fiber via stimulated Brillouin scattering," Optics 
Letters 32, 1047-1049 (2007). 

159. I. 11146-1, "Lasers and laser-related equipment - Test methods for laser beam 
widths, divergence angles, and beam propagation ratios - Part 1: Stigmatic and 
simple astigmatic beams," (International Organization for Standardization, 2005). 

160. S. M. Massey, "Continuous wave stimulated Brillouin scattering phase 
conjugation in optical fiber," in Solid State and Diode Laser Technology Review, 
I. McKinnie, ed. (Directed Energy Professional Society, Albuquerque, NM, 
2008). 

161. S. M. Massey, and T. H. Russell, "Phase analysis of stimulated Brillouin 
scattering in long, graded-index optical fiber," Opt. Express 16, 11496-11505 
(2008). 

162. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of 
Propagation, Interference and Diffraction of Light (Cambridge University Press, 
1999). 

163. P. R. Bevington, and D. K. Robinson, Data Reduction and Error Analysis for the 
Physical Sciences (2d ed.) (McGraw-Hill, New York, 1992). 

164. S. Meister, T. Riesbeck, and H. J. Eichler, "Glass fibers for stimulated Brillouin 
scattering and phase conjugation," Laser and Particle Beams 25, 15-21 (2007). 

165. K. S. Abedin, "Stimulated Brillouin scattering in single-mode tellurite glass 
fiber," Opt. Express 11, 2641-2645 (2006). 

166. K. Tankala, "Large Mode Area Erbium-Ytterbium Fibers," (DTIC, 2006). 

167. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a 
coiled multimode fiber amplifier," Opt. Lett 25, 442–444 (2000). 

168. "www.blazephotonics.com," (Crystal Fibre A/S, 2005), Accessed June 16, 2008. 

169. M. Damzen, and H. Hutchinson, "Laser pulse compression by stimulated 
Brillouin scattering in tapered waveguides," Quantum Electronics, IEEE Journal 
of 19, 7-14 (1983). 

 

 

http://www.blazephotonics.com,/


183 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 
12-09-2008 

2. REPORT TYPE
Doctoral Dissertation

3. DATES COVERED (From - To)
Sep 2005 – Sep 2008

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 
 

Stimulated Brillouin Scattering Phase Conjugation in Fiber Optic Waveguides 
 

5b. GRANT NUMBER 
 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 5d. PROJECT NUMBER 
F2KBAB7355G005 

Massey, Steven M., Major, USAF 5e. TASK NUMBER 
 

 5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT   
Air Force Institute of Technology 
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way 
WPAFB, OH 45433-7765 

AFIT/DS/ENP/08-S03 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  10. SPONSOR/MONITOR’S ACRONYM(S)
High Energy Laser Joint Technology Office 
ATTN: Walt Fink 
901 University Blvd SE Ste 100 
Albuquerque NM 87106 
505-248-8204 

11. SPONSOR/MONITOR’S REPORT  

      NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE 
 
13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
The objective of this research effort was to demonstrate the path to continuous wave, coherent beam combination through stimulated 
Brillouin scattering phase conjugation in optical fiber.  This work experimentally determined the fiber parameters necessary for phase 
conjugation in step-index optical fiber.  Continuous wave phase conjugation using stimulated Brillouin scattering in step-index fibers was 
achieved for the first time with a fidelity of 0.8 and a threshold power of 16 W in a 15-m fiber with 0.13 NA.  A fidelity of 0.8 was also 
achieved using 40 m of fiber with 0.06-NA and a threshold power of 15 W.  The fidelity of phase conjugation was found to decline by 
~45% in an additional 20 m of 0.13-NA fiber and by ~15% in 20 m of the 0.06-NA fiber.  The effective Brillouin gain coefficient of the 
multimode fibers was found to vary directly with fidelity.  A new technique using interference to measure fidelity was tested, and 
stimulated Brillouin scattering in a 2.5-km, graded-index fiber was found to produce beam cleanup to the fundamental fiber mode of the 
fiber with fidelity less than 0.1.  This work demonstrated that coherent beam combining via continuous wave phase conjugation in optical 
fiber is achievable.   

15. SUBJECT TERMS 
Laser Amplifiers, Phase Conjugation, Brillouin Scattering, Stokes Radiation, Nonlinear Optics, Fiber Optics, Coherent Beam Combination 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT  

 

18. NUMBER 
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Timothy H. Russell, AFIT/ENP

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE
U 

UU 198 
 

19b. TELEPHONE NUMBER (include area 
code) 
937-238-5818 

 Standard Form 298 (Re . 8-98)v
Prescribed by ANSI Std. Z39.18 

 


	Stimulated Brillouin Scattering Phase Conjugation in Fiber Optic Waveguides
	Recommended Citation

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	1. Introduction
	1.1. Motivation 
	1.2. Overview

	2.  Theoretical Background
	2.1. Nonlinear Optics
	2.1.1.  Nonlinear Wave Equation
	2.1.2.  Frequency Dependence 

	2.2. Stimulated Brillouin Scattering
	2.3. Stimulated Brillouin Scattering Threshold
	2.4. Stimulated Brillouin Scattering Phase Conjugation

	   3.  Literature Review
	3.1. Initial Observation of SBS Phase Conjugation 
	3.2. Focused Cells and Capillary Tubes 
	3.3. Glass Fiber Optics 
	3.3.1. Silicate Fiber
	3.3.2. Fiber Amplifiers
	3.3.3.  Chalcogenide Fiber
	3.3.4. Tellurite Fiber
	3.3.5. Conclusion

	3.4. Phase Conjugation Models
	3.5. Coherent Beam Combination via SBS

	4.  SBS Threshold Modeling
	4.1. Overview
	4.2. Model of SBS Threshold
	4.3. Fiber Amplifier SBS Threshold
	4.3.1. Ytterbium Fiber Amplifier
	4.3.2. Erbium-Ytterbium Fiber Amplifiers
	4.3.3. Tellurite Fiber Amplifier

	4.4. Passive Fiber SBS Threshold
	4.4.1. Silicate Fiber
	4.4.2. Tellurite fiber
	4.4.3. Chalcogenide Fiber

	4.5. Conclusion

	5.  Fidelity Measurement Techniques
	5.1. Overview
	5.2. Beam Quality Methods
	 5.2.1. Divergence Measurements
	5.2.2. M2 Measurements
	5.2.3. Pinhole Transmission

	5.3. Interference Method
	5.3.1. Apparatus  
	5.3.2. Mirror Reflection Example
	5.3.3. SBS Reflection Results

	5.4. Conclusion

	6.  CW Phase Conjugation
	6.1. Overview
	6.2. Phase Conjugation Experiment
	6.2.1. Data Collection and Analysis
	6.2.3. Results      
	6.2.4. Discussion

	6.3. Effect of Fidelity on SBS Threshold
	6.4. Beam Combination in Chalcogenide Fiber
	6.5. Conclusions

	7. Conclusion
	7.1. Significant Accomplishments
	7.2. Conclusions
	7.3. Future Work

	Glossary of Symbols
	Bibliography
	1. R. Wall, "Run-up to war," Aviation Week and Space Technology 158, 44-49 (2003).
	2. MDALink, "Advanced Discriminating Ladar Technology," (Missile Defense Agency, 2007), www.mda.mil/mdalink/html/asptadlt.html, Accessed 13 April 2007.
	3. F. Liégeois, C. Vercambre, Y. Hernandez, M. Salhi, and D. Giannone, "Pulsed high-peak-power and single-frequency fibre laser design for LIDAR aircraft safety application," Proceedings of SPIE 6367, 63670H (2006).
	4. H. Stephens, "Toward a new laser era," Journal of the Air Force Association 89, 1-8 (2006).
	5. R. Q. Fugate, "The Starfire Optical Range 3.5-m adaptive optical telescope," Proceedings of SPIE 4837, 934-943 (2003).
	6. D. M. Pepper, "Nonlinear optical phase conjugation," Optical Engineering 21, 156-183 (1982).
	7. H. Bruesselbach, D. C. Jones, D. A. Rockwell, R. C. Lind, and G. Vogel, "Real-time atmospheric compensation by stimulated Brillouin-scattering phase conjugation," J. Opt. Soc. Am. B 12, 1434-1447 (1995).
	8. V. P. Gapontsev, "New Milestones in the development of super high power fiber lasers," Photonics West, OE/LASE, 21-26 (2006).
	9. A. Galvanauskas, "High Power Fiber Lasers," Optics and Photonics News 15, 42-47 (2004).
	10. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," Selected Topics in Quantum Electronics, IEEE Journal of 11, 567-577 (2005).
	11. Y. Jeong, D. B. S. Soh, C. A. Codemard, P. Dupriez, C. Farrell, V. Philippov, J. K. Sahu, D. J. Richardson, J. Nilsson, and D. J. Payne, "State of the art of cw fibre lasers,"  (2005).
	12. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, "Power scaling of single-frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500W," IEEE J. Sel. Top. Quantum Electron. 13, 546-551 (2007).
	13. D. M. Pepper, "Applications of optical phase conjugation," Scientific American 254, 74-83 (1986).
	14. J. D. Jackson 3rd, Classical Electrodynamics, 3rd edn, 671 (Wiley & Sons, New York, 1998).
	15. P. N. Butcher, and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
	16. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
	17. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2002).
	18. A. Yariv, and P. Yeh, Optical Waves in Crystals (Wiley New York, 2003).
	19. R. G. Smith, "Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering," Applied Optics 11, 2489-2494 (1972).
	20. R. H. Stolen, "Nonlinearity in fiber transmission," Proceedings of the IEEE 68, 1232-1236 (1980).
	21. D. Marcuse, "Loss analysis of single-mode fiber splices," Bell Syst. Tech. J 56, 703–718 (1977).
	22. A. Mocofanescu, L. Wang, R. Jain, K. Shaw, A. Gavrielides, P. Peterson, and M. Sharma, "SBS threshold for single mode and multimode GRIN fibers in an all fiber configuration," Optics Express 13, 2019-2024 (2005).
	23. M. O. van Deventer, and A. J. Boot, "Polarization properties of stimulated Brillouin scattering in single-mode fibers," Journal of Lightwave Technology 12, 585-590 (1994).
	24. R. H. Stolen, "Polarization Effects in Fiber Raman and Brillouin Lasers," IEEE JOURNAL OF QUANTUM ELECTRONICS 15, 1157 (1979).
	25. K. S. Abedin, "Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber," Optics Express 13, 10266-10271 (2005).
	26. K. S. Abedin, "Stimulated Brillouin scattering in single-mode tellurite glass fiber," Opt. Express 11, 2641-2645 (2003).
	27. J. S. Sanghera, C. M. Florea, L. B. Shaw, P. Pureza, V. Q. Nguyen, M. Bashkansky, Z. Dutton, and I. D. Aggarwal, "Non-linear properties of chalcogenide glasses and fibers," Journal of Non-Crystalline Solids 354, 462-467 (2008).
	28. J. B. Spring, T. H. Russell, T. M. Shay, R. W. Berdine, A. D. Sanchez, B. G. Ward, and W. B. Roh, "Comparison of stimulated Brillouin scattering thresholds and spectra in nonpolarization-maintaining and polarization-maintaining passive fibers," Proceedings of SPIE 5709, 147 (2005).
	29. R. W. Hellwarth, "Theory of phase conjugation by stimulated scattering in a waveguide," Journal of the Optical Society of America 68, 1050 (1978).
	30. V. I. Kovalev, and R. G. Harrison, "Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber," Optics Letters 27, 2022 (2002).
	31. Y. Imai, and N. Shimada, "Dependence of stimulated Brillouin scattering on temperaturedistribution in polarization-maintaining fibers," Photonics Technology Letters, IEEE 5, 1335-1337 (1993).
	32. Y. Li, F. Zhang, and T. Yoshino, "Wide-Range Temperature Dependence of Brillouin Shift in a Dispersion-Shifted Fiber and Its Annealing Effect," JOURNAL OF LIGHTWAVE TECHNOLOGY 21, 1663 (2003).
	33. Q. Yu, X. Bao, and L. Chen, "Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintainingfibers," Optics Letters 29, 17-19 (2004).
	34. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, "Increase of the SBS threshold in a short highly nonlinear fiber byapplying a temperature distribution," Lightwave Technology, Journal of 19, 1691-1697 (2001).
	35. K. Shiraki, M. Ohashi, and M. Tateda, "SBS threshold of a fiber with a Brillouin frequency shift distribution," Lightwave Technology, Journal of 14, 50-57 (1996).
	36. X. P. Mao, R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Derosier, "Stimulated Brillouin threshold dependence on fiber type and uniformity," IEEE Photonics Technology Letters 4, 66-69 (1992).
	37. C. C. Lee, and S. Chi, "Measurement of stimulated-Brillouin-scattering threshold forvarious types of fibers using Brillouin optical-time-domain reflectometer," Photonics Technology Letters, IEEE 12, 672-674 (2000).
	38. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, "100-W single-frequency master-oscillator fiber power amplifier," Optics Letters 28, 1537-1539 (2003).
	39. Y. Jeong, J. K. Sahu, S. Baek, C. Alegria, C. A. Codemard, D. B. S. Soh, V. Philippov, R. B. Williams, K. Furusawa, and D. J. Richardson, "The rising power of fibre lasers," in IEEE/LEOS Annual Meeting(Tuscon, AZ, 2003).
	40. N. A. Brilliant, "Stimulated Brillouin scattering in a dual-clad fiber amplifier," Journal of the Optical Society of America B 19, 2551-2557 (2002).
	41. C. N. Pannell, P. S. J. Russell, and T. P. Newson, "Stimulated Brillouin scattering in optical fibers: the effects of optical amplification," J. Opt. Soc. Amer. B 10, 684–690 (1993).
	42. A. Heuer, C. Haenisch, and R. Menzel, "New concept for low-threshold optical phase conjugation via SBS in a fiber amplifier," Proceedings of SPIE 4972, 151 (2003).
	43. B. Y. Zel'dovich, Y. E. Kapitskii, V. A. Krivoshchenkov, A. N. Pilipetskii, N. F. Pilipetskii, and V. V. Shkunov, "Stimulated Brillouin scattering in a fiber waveguide with linear amplification," Quantum Electronics 17, 1604-1607 (1987).
	44. D. C. Brown, H. J. Hoffman, A. L. Syst, and P. A. Brackney, "Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers," Quantum Electronics, IEEE Journal of 37, 207-217 (2001).
	45. V. I. Kovalev, and R. G. Harrison, "Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers," Optics Letters 31, 161-163 (2006).
	46. D. A. Rockwell, "A review of phase-conjugate solid-state lasers," Quantum Electronics, IEEE Journal of 24, 1124-1140 (1988).
	47. "3.5-Meter Telescope," (United States Air Force, 2001), Accessed 15 May, 2008.
	48. X. Levecq, "Adaptive Optics:  Optical fuse protects intracavity laser components," in Laser Focus World(2008).
	49. D. L. Fried, "Branch point problem in adaptive optics,"  15, 2759-2768 (1998).
	50. F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, and F. Y. Kanev, "Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor,"  32, 2291-2293 (2007).
	51. K. L. Baker, E. A. Stappaerts, S. C. Wilks, P. E. Young, D. T. Gavel, J. W. Tucker, D. A. Silva, and S. S. Olivier, "Open-and closed-loop aberration correction by use of a quadrature interferometric wave-front sensor,"  29, 47-49 (2004).
	52. T. M. Venema, and J. D. Schmidt, "Optical phase unwrapping in the presence of branch points,"  16, 6985-6998 (2008).
	53. B. Y. Zel'Dovich, V. I. Popovichev, V. V. Ragul'Skii, and F. S. Faizullov, "Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtem-Brillouin scattering," Journal of Experimental and Theoretical Physics Letters 15, 109 (1972).
	54. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
	55. T. H. Russell, B. W. Grime, T. G. Alley, and W. B. Roh, "Stimulated Brillouin scattering beam cleanup and combining in optical fiber," in Nonlinear Optics and Applications, H. A. Abdeldayem, and D. O. Frazier, eds. (Research Signpost, Kerala, India, 2007), pp. 179-206.
	56. T. H. Russell, "Step-index fiber irradiance pattern," (Air Force Institute of Technology, Wright-Patterson AFB, 2007).
	57. B. Y. Zel'dovich, V.V. Shkunov, Soviet Journal of Quantum Electronics 4, 610–615 (1977).
	58. D. Gloge, "Weakly guiding fibers," Appl. Opt 10, 2252-2258 (1971).
	59. M. Gower, and D. Proch, Optical Phase Conjugation (Springer, 1994).
	60. E. A. Kuzin, M. P. Petrov, and B. E. Davydenko, "Phase conjugation in an optical fibre," Optical and Quantum Electronics 17, 393-397 (1985).
	61. Y. P. Vasil'ev, P. S. Razenshtein, and E. I. Shklovskii, "Stimulated Brillouin scattering mirror in the form of a multimode optical fiber in a four-pass neodymium phosphate glass laser amplifier," Quantum Electronics 15, 1417-1418 (1985).
	62. H. J. Eichler, J. Kunde, and B. Liu, "Quartz fibre phase conjugators with high fidelity and reflectivity," Optics Communications 139, 327-334 (1997).
	63. J. Spring, "Modeling of SBS Phase Conjugation in Multimode Step Index Fibers," in Dept of Engineering Physics(Air Force Institute of Technology, Air University, 2008), pp. 40-89.
	64. L. Lombard, A. Brignon, J. P. Huignard, E. Lallier, and P. Georges, "Beam cleanup in a self-aligned gradient-index Brillouin cavity for high-power multimode fiber amplifiers," Optics Letters 31, 158-160 (2006).
	65. B. C. Rodgers, T. H. Russell, and W. B. Roh, "Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber," Opt. Lett 24, 1124-1126 (1999).
	66. O. Y. Nosach, V. I. Popovichev, V. V. Ragul'Skii, and F. S. Faizullov, "Cancellation of phase distortions in an amplifying medium with a" Brillouin mirror"," Journal of Experimental and Theoretical Physics Letters 16, 435 (1972).
	67. V. Wang, and C. R. Giuliano, "Correction of phase aberrations via stimulated Brillouin scattering," Optics Letters 2 (1978).
	68. V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, "Gain and line width in stimulated Brillouin scattering in gases," Quantum Electronics 2, 69-71 (1972).
	69. D. Pohl, and W. Kaiser, "Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: determination of phonon lifetimes," Physical Review B 1, 31-43 (1970).
	70. E. P. Ippen, and R. H. Stolen, "Stimulated Brillouin scattering in optical fiber," Applied Physics Letters 21, 539-541 (1972).
	71. H. J. Eichler, A. Haase, and R. Menzel, "100-watt average output power 1.2 diffraction limited beam frompulsed neodymium single-rod amplifier with SBS phase conjugation," Quantum Electronics, IEEE Journal of 31, 1265-1269 (1995).
	72. W. Koechner, Solid-State Laser Engineering (Springer, 1999).
	73. H. L. Offerhaus, and H. P. Godfried, "All solid-state diode pumped Nd: Yag MOPA with stimulated Brillouin phase conjugate mirror," Lasers and Electro-optics Europe, 1996. CLEO/Europe., Conference on, 6-6 (1996).
	74. C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, and L. A. Hackel, "Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction," Quantum Electronics, IEEE Journal of 31, 148-163 (1995).
	75. S. Amano, and T. Mochizuki, "High average and high peak brightness slab laser," Quantum Electronics, IEEE Journal of 37, 296-303 (2001).
	76. G. J. Crofts, M. J. Damzen, and R. A. Lamb, "Experimental and theoretical investigation of two-cell stimulated-Brillouin-scattering systems," J. Opt. Soc. Am. B 8, 2282-2288 (1991).
	77. J. Munch, R. Wuerker, and M. Lefebvre, "Interaction length for optical phase conjugation by stimulated Brillouin scattering- An experimental investigation," Applied Optics 28, 3099-3105 (1989).
	78. M. T. Duignan, B. J. Feldman, and W. T. Whitney, "Threshold reduction for stimulated Brillouin scattering using a multipass Herriott cell," J. Opt. Soc. Am. B 9, 548-559 (1992).
	79. A. M. Scott, and W. T. Whitney, "Characteristics of a Brillouin ring resonator used for phase conjugation at 2.1 mm," J. Opt. Soc. Am.(B) 12, 1634-1641 (1995).
	80. H. Meng, and H. J. Eichler, "Nd: YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas," Opt. Lett 16, 569-571 (1991).
	81. H. S. Kim, S. H. Kim, D. K. Ko, G. Lim, B. H. Cha, and J. Lee, "Threshold reduction of stimulated Brillouin scattering by the enhanced Stokes noise initiation," Applied Physics Letters 74, 1358 (1999).
	82. L. P. Schelonka, and C. M. Clayton, "Effect of focal intensity on stimulated-Brillouin-scattering reflectivity and fidelity," Opt. Lett 13, 42–44 (1988).
	83. N. G. Basov, V. F. Efimkov, I. G. Zubarev, A. V. Kotov, A. B. Mironov, S. I. Mikhailov, and M. G. Smirnov, "Influence of certain radiation parameters on wavefront reversal of a pump wave in a Brillouin mirror," Quantum Electronics 9, 455-458 (1979).
	84. M. S. M. D. Crispin Jones, D.A. Rockwell, "A stimulated Brillouin scattering phase-conjugate mirror having a peak-power threshold <100W," Optics Communications 123, 175-181 (1996).
	85. V. R. Belan, A. G. Lazarenko, V. M. Nikitin, and A. V. Polyakov, "Stimulated Brillouin scattering mirrors made of capillary waveguides," Quantum Electronics 17, 122-124 (1987).
	86. P. Shalev, S. M. Jackel, R. Lallouz, and A. Bornstein, "Low-threshold phase conjugate mirrors based on position-insensitive tapered waveguides," Optical Engineering 33, 278 (1994).
	87. V. Pashinin, V. Sturm, V. Tumorin, and R. Noll, "Stimulated Brillouin scattering of Q-switched laser pulses in large-core optical fibres," Optics and Laser Technology 33, 617-622 (2001).
	88. H. Yoshida, H. Fujita, and M. Nakatsuka, "Optical damage threshold due to stimulated Brillouin scattering reflection with multimode optical fiber," Jpn. J. Appl. Phys 42, 2735-2736 (2003).
	89. H. J. Eichler, A. Mocofanescu, T. Riesbeck, E. Risse, and D. Bedau, "Stimulated Brillouin scattering in multimode fibers for optical phase conjugation," Optics Communications 208, 427-431 (2002).
	90. H. J. Eichler, J. Kunde, and B. Liu, "Fiber phase conjugators at 1064-nm, 532-nm, and 355-nm wavelengths," Optics Letters 22, 495-497 (1997).
	91. T. Riesbeck, E. Risse, and H. J. Eichler, "Pulsed solid state laser systems with high brightness by fiber phase conjugation," Proceedings of SPIE 5120, 494-499 (2002).
	92. T. Riesbeck, E. Risse, and H. J. Eichler, "Pulsed solid-state laser system with fiber phase conjugation and 315 W average output power," Applied Physics B: Lasers and Optics 73, 847-849 (2001).
	93. A. Heuer, and R. Menzel, "Phase-conjugating stimulated Brillouin scattering mirror for low powers and reflectivities above 90% in an internally tapered optical fiber," Opt. Lett 23, 834-836 (1998).
	94. M. Dämmig, G. Zinner, F. Mitschke, and H. Welling, "Stimulated Brillouin scattering in fibers with and without external feedback," Physical Review A 48, 3301-3309 (1993).
	95. V. I. Kovalev, and I. R. G. Harrison, "Temporally stable CW phase conjugation via stimulated Brillouin scattering in optical fiber with cavity feedback," Optics Letters 30, 1375-1377 (2004).
	96. C. Hänisch, A. Heuer, and R. Menzel, "Threshold reduction of stimulated Brillouin scattering (SBS) using fiber loop schemes," Applied Physics B: Lasers and Optics 73, 851-854 (2001).
	97. H. Bruesselbach, "Beam cleanup using stimulated Brillouin scattering in multimode fibers," in Conference on Lasers and Electro-Optics(Optical Society of America, 1993), pp. 424-426.
	98. T. H. Russell, "Laser intensity scaling through stimulated scattering in optical fibers," in Department of Engineering Physics(Air University, AFIT, Wright-Patterson AFB, 2001).
	99. B. W. Grime, "Multiple channel laser beam combination and phasing using stimulated Brillouin scattering in optical fibers," in Department of Engineering Physics(Air University, AFIT, Wright-Patterson AFB, 2005).
	100. R. G. Harrison, and V. I. Kovalev, "SBS self-phase conjugation of CW Nd: YAG laser radiation in an optical fibre," Lasers and Electro-Optics, 1999. CLEO'99. Summaries of Papers Presented at the Conference on, 275-276 (1999).
	101. V. I. Kovalev, and R. G. Harrison, "The build up of stimulated Brillouin scattering excited by pulsed pump radiation in a long optical fibre," in Lasers and Electro-Optics Europe (2000), p. 1.
	102. V. I. Kovalev, and R. G. Harrison, "CW phase conjugation in optical fibres," in Lasers and Electro-Optics Europe(2005), p. 176.
	103. V. I. Kovalev, R. G. Harrison, and A. M. Scott, "300 W quasi-continuous-wave diffraction-limited output from a diode-pumped Nd: YAG master oscillator power amplifier with fiber phase-conjugate stimulated Brillouin scattering mirror," Optics Letters 30, 3386-3388 (2005).
	104. V. I. Kovalev, R. G. Harrison, J. K. Sahu, and J. Nilsson, "Continuous-wave all-fiber MOPA with SBS phase conjugate mirror," Proceedings of SPIE 5335, 46 (2004).
	105. A. Mocofanescu, and K. D. Shaw, "Stimulated Brillouin scattering phase conjugating properties of long multimode optical fibers," Optics communications 266, 307-316 (2006).
	106. A. Heuer, C. Hänisch, and R. Menzel, "Low-power phase conjugation based on stimulated Brillouin scattering in fiber amplifiers," Optics Letters 28, 34-36 (2003).
	107. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004).
	108. R. Mossadegh, J. S. Sanghera, D. Schaafsma, B. J. Cole, V. Q. Nguyen, R. E. Miklos, and I. D. Aggarwal, "Fabrication of single-mode chalcogenide optical fiber," Lightwave Technology, Journal of 16, 214-217 (1998).
	109. C. Florea, M. Bashkansky, Z. Dutton, J. Sanghera, P. Pureza, and I. Aggarwal, "Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers," Optics Express 14, 12063-12070 (2006).
	110. A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, "Ultra-wideband tellurite-based Raman fibre amplifier," Electronics Letters 37, 1442-1443 (2001).
	111. A. Mori, K. Kobayashi, M. Yamada, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi, "Low noise broadband tellurite-based Er 3-doped fibre amplifiers," Electronics Letters 34, 887-888 (1998).
	112. Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, "Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5 µm broadband amplification," Opt. Lett 23, 274-276 (1998).
	113. A. Mori, T. Sakamoto, K. Kobayashi, K. Shikano, K. Oikawa, K. Hoshino, T. Kanamori, Y. Ohishi, and M. Shimizu, "1.58-µm broad-band erbium-doped tellurite fiber amplifier," Lightwave Technology, Journal of 20, 822-827 (2002).
	114. J. D. Minelly, "New materials for fiber optic amplifiers," Lasers and Electro-Optics Society 1999 12th Annual Meeting. LEOS'99. IEEE 2 (1999).
	115. J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Optical materials(Amsterdam) 3, 187-203 (1994).
	116. T. Luo, "Ultra-broadband Er3+ doped tellurite glass fiber amplifier," D. T. R. Agency, ed. (DTIC, 2003).
	117. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, "Ultra-wide-band tellurite-based fiber Raman amplifier," Lightwave Technology, Journal of 21, 1300-1306 (2003).
	118. V. G. Plotnichenko, V. O. Sokolov, V. V. Koltashev, E. M. Dianov, I. A. Grishin, and M. F. Churbanov, "Raman band intensities of tellurite glasses," Optics Letters 30, 1156-1158 (2005).
	119. G. S. Murugan, T. Suzuki, and Y. Ohishi, "Tellurite glasses for ultrabroadband fiber Raman amplifiers," Applied Physics Letters 86, 161109 (2005).
	120. G. Qin, A. Mori, and Y. Ohishi, "Brillouin lasing in a single-mode tellurite fiber,"  32, 2179-2181 (2007).
	121. G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, "Stimulated Brillouin Scattering in a Single-Mode Tellurite Fiber for Amplification, Lasing, and Slow Light Generation,"  26, 492-498 (2008).
	122. R. H. Lehmberg, "Numerical study of phase conjugation in stimulated Brillouin scattering from an optical waveguide," (NRL-MR-4985, Naval Research Lab., Washington, DC (USA), 1982).
	123. S. M. Massey, J. B. Spring, and T. H. Russell, "Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics," Opt. Express 16, 16873-16885 (2008).
	124. T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, D. Pilkington, J. Spring, D. J. Nelson, and C. A. Lu, "First experimental demonstration of self-synchronous phase locking of an optical array," Optics Express 14, 12015-12021 (2006).
	125. M. K. Culpepper, "Coherent combination of fiber laser beams," Proc. SPIE 4629, 99-108 (2002).
	126. S. Hofer, H. Zellmer, J. P. Raske, and A. Tunnermann, "Coherent beam combining of fiber amplifiers," in Lasers and Electro-Optics Europe(2003), p. 635.
	127. S. J. Augst, T. Y. Fan, and A. Sanchez, "Coherent beam combining and phase noise measurements of ytterbium fiber amplifiers," Optics Letters 29, 474-476 (2004).
	128. J. Anderegg, S. J. Brosnan, M. E. Weber, H. Komine, and M. G. Wickham, "8-W coherently phased 4-element fiber array," Proceedings of SPIE 4974, 1-6 (2003).
	129. J. Anderegg, S. Brosnan, E. Cheung, P. Epp, D. Hammons, H. Komine, M. Weber, and M. Wickham, "Coherently coupled high-power fiber arrays," Proceedings of SPIE 6102, 61020U (2006).
	130. M. Valley, G. Lombardi, and R. Aprahamian, "Beam combination by stimulated Brillouin scattering," Optical Society of America, Journal, B: Optical Physics 3, 1492-1497 (1986).
	131. D. A. Rockwell, and C. R. Giuliano, "Coherent coupling of laser gain media using phase conjugation," Optics Letters 11, 147-149 (1986).
	132. R. H. Moyer, "Beam combination with stimulated Brillouin scattering: A review," SPIE Conference on Laser Wavefront Control, 25-32 (1988).
	133. D. L. Carroll, R. Johnson, S. J. Pfeifer, and R. H. Moyer, "Experimental investigations of stimulated Brillouin scattering beam combination," J. Opt. Soc. Amer. B 9, 2214–2224 (1992).
	134. D. S. Sumida, D. C. Jones, and D. A. Rockwell, "An 8.2 J phase-conjugate solid-state laser coherently combiningeight parallel amplifiers," Quantum Electronics, IEEE Journal of 30, 2617-2627 (1994).
	135. H. Becht, "Experimental investigation on phase locking of two Nd: YAG laser beams by stimulated Brillouin scattering," J Opt Soc Am B 15, 16-78 (1998).
	136. J. Falk, M. Kanefsky, and P. Suni, "Limits to the efficiency of beam combination by stimulated Brillouin scattering," Opt. Lett 13, 39–41 (1988).
	137. S. Sternklar, D. Chomsky, S. Jackel, and A. Zigler, "Misalignment sensitivity of beam combining by stimulated Brillouin scattering," Opt. Lett 15, 469-470 (1990).
	138. R. Moyer, M. Valley, and M. Cimolino, "Beam combination through stimulated Brillouin scattering," Optical Society of America, Journal, B: Optical Physics 5, 2473-2489 (1988).
	139. N. F. Andreev, E. A. Khazanov, O. V. Kulagin, B. Z. Movshevich, O. V. Palashov, G. A. Pasmanik, V. I. Rodchenkov, S. Scott, and P. Soan, "A two-channel repetitively pulsed Nd: YAG laser operating at 25 Hz with diffraction-limited beam quality," IEEE Journal of Quantum Electronics 35, 110-114 (1999).
	140. G. T. Moore, "A model for diffraction-limited high-power multimode fiber amplifiers using seeded stimulated Brillouin scattering phase conjugation," IEEE Journal of Quantum Electronics 37, 781 (2001).
	141. A. F. Vasil'ev, S. B. Gladin, and V. E. Yashin, "Pulse-periodic Nd: YAlO3 laser with a phase-locked aperture under conditions of phase conjugation by stimulated Brillouin scattering," Quantum Electronics 21, 494-497 (1991).
	142. S. M. Willis, and W. B. Roh, "Beam phasing properties of optical fiber as phase conjugate mirror," in Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the IEEE(IEEE, 2003), pp. 105-106.
	143. K. C. Brown, "Passive multiple beam combination of optical fibers via stimulated Brillouin scattering," in Department of Engineering Physics(Air University, AFIT, Wright-Patterson AFB, 2005).
	144. B. W. Grime, W. B. Roh, and T. G. Alley, "Phasing of a two-channel continuous-wave master oscillator-power amplifier by use of a fiber phase-conjugate mirror," Optics Letters 30, 2415-2417 (2005).
	145. A. Liu, "Novel SBS suppression scheme for high-power fiber amplifiers," Proceedings of SPIE 6102, 61021R (2006).
	146. A. Liu, "Suppressing stimulated Brillouin scattering in fiber amplifiers using nonuniform fiber and temperature gradient," (OSA, 2007), pp. 977-984.
	147. C. Wang, F. Zhang, Y. Lu, R. Geng, Z. Tong, T. Ning, and S. Jian, "Study of stimulated Brillouin scattering effect in high-power single-frequency fiber amplifiers," Chinese Journal of Lasers 33, 1630-1635 (2006).
	148. A. Yariv, "Optical electronics in modern communications,"  (1997).
	149. K. Tankala, B. Samson, A. Carter, J. Farroni, D. Machewirth, N. Jacobson, U. Manyam, A. Sanchez, A. Galvanauskas, W. Torruellas, and Y. Chen, "New Developments in High Power Eye-Safe LMA Fibers," in Photonics West(SPIE, San Jose, CA, 2006).
	150. Y. Jeong, J. K. Sahu, D. J. Richardson, and J. Nilsson, "Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power," Electronics Letters 39, 1717-1719 (2003).
	151. C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen, and J. Nilsson, "83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber," Photonics Technology Letters, IEEE 16, 1825-1827 (2004).
	152. M. A. Dubinskii, and L. D. Merkle, "Ultrahigh-gain bulk solid-state stimulated Brillouin scattering phase-conjugation material," Optics Letters 29, 992-994 (2004).
	153. M. J. Adams, An introduction to optical waveguides (Chichester: Wiley, 1981).
	154. S. Jiang (Telephone call, 2006).
	155. J. Nilsson, J. K. Sahu, Y. Jeong, W. A. Clarkson, R. Selvas, A. B. Grudinin, and S. U. Alam, "High power fiber lasers: new developments," Proc. of SPIE 4974, 51 (2003).
	156. V. I. Kovalev, and R. G. Harrison, "Continuous wave stimulated Brillouin scattering in optical fibers: new results and applications for high power lasers," Proceedings of SPIE 5975, 59750L (2006).
	157. T. Russell, W. Roh, and J. Marciante, "Incoherent beam combining using stimulated Brillouin scattering in multimode fibers," Optics Express 8, 246-254 (2001).
	158. K. C. Brown, T. H. Russell, T. G. Alley, and W. B. Roh, "Passive combination of multiple beams in an optical fiber via stimulated Brillouin scattering," Optics Letters 32, 1047-1049 (2007).
	159. I. 11146-1, "Lasers and laser-related equipment - Test methods for laser beam widths, divergence angles, and beam propagation ratios - Part 1: Stigmatic and simple astigmatic beams," (International Organization for Standardization, 2005).
	160. S. M. Massey, "Continuous wave stimulated Brillouin scattering phase conjugation in optical fiber," in Solid State and Diode Laser Technology Review, I. McKinnie, ed. (Directed Energy Professional Society, Albuquerque, NM, 2008).
	161. S. M. Massey, and T. H. Russell, "Phase analysis of stimulated Brillouin scattering in long, graded-index optical fiber," Opt. Express 16, 11496-11505 (2008).
	162. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
	163. P. R. Bevington, and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (2d ed.) (McGraw-Hill, New York, 1992).
	164. S. Meister, T. Riesbeck, and H. J. Eichler, "Glass fibers for stimulated Brillouin scattering and phase conjugation," Laser and Particle Beams 25, 15-21 (2007).
	165. K. S. Abedin, "Stimulated Brillouin scattering in single-mode tellurite glass fiber," Opt. Express 11, 2641-2645 (2006).
	166. K. Tankala, "Large Mode Area Erbium-Ytterbium Fibers," (DTIC, 2006).
	167. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett 25, 442–444 (2000).
	168. "www.blazephotonics.com," (Crystal Fibre A/S, 2005), Accessed June 16, 2008.
	169. M. Damzen, and H. Hutchinson, "Laser pulse compression by stimulated Brillouin scattering in tapered waveguides," Quantum Electronics, IEEE Journal of 19, 7-14 (1983).


