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Abstract 
 

There is no general method of measuring the interoperability of systems which 

accommodates all types of systems and interoperations.  Additionally, no mathematical 

method of describing the impact of interoperability on operational effectiveness has been 

published.  Creating a general method of measuring the interoperability of systems is 

difficult because the number of system types and means of their interoperation is 

infinitely large.  The complexity of modeling interoperations between all system types 

and the impossibility of cataloging them has precluded the publication of a general 

method of measuring interoperability.  While limited methods of measuring the 

interoperability of certain types of systems interoperating in specific ways have been 

published, these methods are compartmentalized, largely incompatible with each other, 

quickly become outdated as technology changes, and produce imprecise measurements.  

Because of the difficulty in creating a general interoperability measurement method, 

other researchers have relied upon a problem decomposition approach, effectively 

fracturing the problem and driving them further from the solution. 

In this research, a holistic, fundamental, and flexible approach towards describing 

a general method of interoperability measurement was taken.  The method applies to both 

collaborative and confrontational interoperability.  It models systems according to their 

interoperability-related features in the context of an operational process.  The system 

models are as abstract or concrete as desired which supports a final interoperability 

measurement that is not limited to a small set of levels, and is as precise as desired.  A 
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fundamental result of the method states that a measure of the similarity of systems 

modeled in this way is a measure of their interoperability.  Furthermore, if systems 

implement a confrontational operational process and are identified and modeled in the 

context of a measure of operational effectiveness tied to that process, then another 

fundamental result mathematically relates the change in interoperability of the systems 

with a change in the measure of operational effectiveness. 

As a general method of measuring interoperability it has uncountable uses, 

however three applications are given to illustrate the method.  The first application shows 

how the method can be used to measure the interoperability of coalition forces in the 

context of a multi-national operation.  The application also demonstrates that many extant 

interoperability measurement methods are special cases of the more general method 

given in this research.  The second application demonstrates the relationship between 

interoperability and operational effectiveness in the context of a suppression of enemy air 

defenses (SEAD) problem.  It also illustrates that an interoperability measurement can 

motivate system upgrades and highlights the concept that friendly systems should be 

directionally interoperable with adversary systems (i.e., friendly systems should control 

adversary systems).  The final application explains the time-variance of interoperability 

in the context of a precision strike example and further illustrates the sufficient conditions 

for operational effectiveness.  More applications are proposed in the areas of non-

technical interoperability, cross-domain interoperability, and international 

interoperability.  Finally, observing that the method in this dissertation measures direct 

interoperability of systems, further research is proposed in the area of indirect 
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interoperability, noting that a system may not directly impact adjacent systems, but might 

strongly, and indirectly, impact distant systems. 
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Definitions 
 

Architecture “The structure of components, their relationships, and the principles and 
guidelines governing their design and evolution over time.” (DoD, 2007a) 

 
Architecture Framework “Guidance and rules for structuring, classifying, and organizing 

architectures.” (Ibid) 
 
Blue System “A U.S. or allied system; a friendly system.” 
 
Capability “The ability to execute a specified course of action. (A capability may or may 

not be accompanied by an intention.)” (JP 1, 2007) 
 
Character “A feature, trait, attribute, or characteristic.” 
 
Classification “A taxonomy.” 
 
Collaborative Interoperability “The interoperability between friendly (blue) systems.” 
 
Confrontational Interoperability “The interoperability between friendly (blue) and 

adversary (red) systems.” 
 
Confrontational Operational Process “An operational process implemented by two or 

more opposing sets of systems.” 
 
Contextual Interoperability Measurement “A measure of the interoperability of two 

systems whose instantiations have been aligned with at least one other system 
possessed of one or more different characters not possessed by the original two 
systems.” 

 
Diagnostic Character “A character which distinguishes one taxon from related taxa.” 
 
Diametric Measure of Operational Effectiveness “A measure of operational effectiveness 

written as a pair which relates the effectiveness of the blue systems to the lack of 
effectiveness of the red systems.” 

 
Directional Interoperation “An interoperation that occurs from System A to System B, 

but not vice versa.” 
 
Effect “A change to a condition, behavior, or degree of freedom.” (JP 1, 2007) 
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Interoperability “The ability of systems, units, or forces to provide services to and accept 
services from other systems, units, or forces and to use the services so exchanged 
to enable them to operate effectively together.” (JP 1-02, 2008) 

 
Interoperability Character “Short for System Interoperability Character.  A character 

which describes how a system provides and accepts services from another 
system.” 

 
Interoperability Character State “A qualitative or quantitative instance of a system 

character; a sub-division of a system character.” 
 
Interoperability Function “A similarity function which takes a pair of system 

instantiations as its arguments, has a range of [0,1], rewards for shared characters 
and optionally penalizes for unshared characters, and gives a greater reward to 
system pairs whose shared characters’ states have a “better” value.” 

 
Interoperability Measurement “A measure of the interoperability of two or more systems, 

or in other words, a measure of the similarity of two or more systems instantiated 
with interoperability characters.” 

 
Maturity Model “A model which describes the stages through which a process 

progresses.” (DoD, 1998) 
 
Measurement “The assignment of numbers to properties or events in the real world by 

means of an objective empirical operation, in such a way as to describe them.” 
(Finkelstein & leaning, 1984) 

 
Measure of Effectiveness “A criterion used to assess changes in system behavior, 

capability, or operational environment that is tied to measuring the attainment of 
an end state, achievement of an objective, or creation of an effect. Also called 
MOE.” (JP 1-02, 2008) 

 
Measure of Operational Effectiveness “An MOE associated with an operational process 

which is used to assess changes in the production of a desired operational effect. 
Also called MoOE.” 

 
Natural Character “A character which is not confounded with another character.” 
 
Numerical Taxonomy “The grouping by numerical methods of taxonomic units into taxa 

on the basis of their character states.” (Semple & Steele, 2003) 
 
Operation “1. A military action or the carrying out of a strategic, operational, tactical, 

service, training, or administrative military mission. 2. The process of carrying on 
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combat, including movement, supply, attack, defense, and maneuvers needed to 
gain the objectives of any battle or campaign.” (JP 1-02, 2008) 

 
Operational Advantage “The condition in which a set of friendly (blue) systems enjoy 

directional interoperability over a set of adversary (red) systems.” 
 
Operational Process “A series of activities and decisions, logically sequenced, which 

when executed achieve a desired effect.” 
 
Performance Enhanced Instantiation “A system instantiation with a performance overlay 

(e.g., cost, efficiency, throughput, rate, etc.)” 
 
Pure Interoperability Measurement “A measure of the interoperability of two systems 

whose instantiations are aligned only with themselves.” 
 
Red System “An enemy or adversary system.” 
 
Self-Interoperability “A type of interoperation which originates at a system, exits the 

system boundary, and then is accepted back through the boundary.” 
 
Similarity Function “A function used to measure the resemblance of two or more system 

instantiations.  The converse of a distance (dissimilarity function).” 
 
System “An entity which is composed of at least two elements and a relation that holds 

between each of its elements and at least one other element in the set” (Ackoff, 
1971) 

 
System Characterization “A set of system instantiations which have been aligned with 

each other.” 
 
System Identification “The association of a system with the activities and decisions of an 

operational process.” 
 
System Instantiation “A sequence of character states which models a system.” 
 
System Similarity “A measure of the resemblance of two systems made by providing two 

aligned system instantiations representing those systems as the arguments to a 
similarity function.” 

 
Taxon “(plural taxa) A taxonomic grouping.” 
 
Taxonomy “An orderly grouping of systems into taxa according to their characters.” 
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xx 

Time Variant Interoperability Measurement “A set of interoperability measurements 
associated with a set of time periods.” 



 

Notation 
 

is  An individual system 

S  A set of n  systems  is

ic  A system character state 

C  A set of n  system character states  ic

ix  A system character 

X  A set of n  system characters ix  (called the Characterization of ) S

TX  A set of “transmit” system characters 

RX  A set of “receive” system characters 

iσ  An instantiation of  is

Tσ  The “transmit” portion of  iσ  

Rσ  The “receive” portion of iσ  

Bσ  A blue system instantiation 

Rσ  A red system instantiation 

Σ  A set of n  aligned system instantiations iσ  (called the Instantiation of ) S

BΣ  A set of aligned blue system instantiations 

RΣ  A set of aligned red system instantiations 
I  An interoperability function 

,i jm  The directional interoperability measurement from  to is js  
M  An interoperability measurement 
O  A diametric measure of operational effectiveness 

BO  Blue operational effectiveness 

RO  Red operational effectiveness 
G  An interoperability graph 
( )V G  The vertex set ( ) of an interoperability graph S

( )E G  The edge set of an interoperability graph 
Sim  A similarity function 
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INTEROPERABILITY MEASUREMENT 

 
 

1. Introduction 
 

Developing and applying precise measurements in an area as multidimensional  
and complex as interoperability is difficult.  However, measuring, assessing, and 

reporting interoperability in a visible way is essential to setting the right priorities. 
—M. Kasunic & W. Anderson 

 

1.1 Overview 

In 2004, then Secretary of Defense, Donald Rumsfeld, said “we’ve put a 

premium…on interoperability.”  That same year, the Department of Defense (DoD) hired 

a Federally Funded Research and Development Center (FFRDC), the Carnegie-Mellon 

University Software Engineering Institute (CMU-SEI), to research and report on the state 

of the practice in interoperability measurement.  They responded that measuring 

interoperability is difficult yet essential (see quote at chapter head). (Kasunic & 

Anderson, 2004:vii)  Unfortunately, they also wrote that “despite laudable case-by-case 

efforts, there is today no method for tracking interoperability on a comprehensive or 

systematic basis.” (Kasunic & Anderson, 2004:ix)  In fact, CMU-SEI highlighted one 

extant interoperability measurement model, published nearly a decade earlier, as the state 

of the practice and called it “immature.” (Ibid)  There has been little change to the state of 

the practice since. 

1.2 Uniqueness and Substantiality of Research 

This research presents an inaugural general method of quantitatively measuring 

the interoperability of a heterogeneous set of systems.  It overcomes the weaknesses of 
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extant methods (Chapter 2) which, 1) limit their scope to specific types of systems and 

interoperability, 2) generally qualitatively bin systems into a limited number of 

interoperability levels, resulting in an imprecise measurement, 3) do not provide a means 

of correlating interoperability to operational effectiveness in context of a confrontational 

operational process, 4) restrict themselves to interoperability attributes which can become 

outdated, 5) limit themselves to collaborative interoperability and do not recognize the 

confrontational interoperability between opposing systems, units, or forces, and 6) do not 

describe appropriate extensions to the DoD Architecture Framework (DoDAF) which 

would facilitate the use of existing architecture descriptions in performing 

interoperability measurement.  Noting that “everything in the world can be expressed as a 

system,” (Guan, et. al., 2008) this research uniquely provides a general method of 

measuring the interoperability of many different types of entities, described as a 

heterogeneous set of systems (e.g., coalitions, technological systems, organizations, 

cultures, political philosophies, languages, people, and religions, among others), 

experiencing a wide variety of types of interoperations (e.g., enterprise, doctrine, force, 

joint, logistics, operational, semantic, and technical, among others).  Indeed, the method 

improves upon existing stoplight models, maturity models, interoperability attribute 

models, and frameworks by applying those models’ descriptions of system types and 

interoperability hierarchies, levels, and attributes towards the creation of a foundational 

theory and general method of interoperability measurement.  The method of this research 

is flexible and allows systems and their interoperations to be defined at any level of 

abstraction, resulting in interoperability measurements which are not limited to a small 
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set of possible values, but are as precise as desired.  The method includes proposed 

extensions to DoDAF which allow an architecture to be better used in interoperability 

analysis and, more importantly, interoperability-based operational effectiveness analysis.  

The method recognizes that interoperability is not an end unto itself, but that it facilitates 

operational advantage and effectiveness.  Finally, the method introduces the important 

concept of confrontational interoperability, and mathematically correlates the impact of 

interoperability on operational effectiveness. 

A brief background on interoperability is given next, followed by a specific 

statement of the research problem and associated hypothesis and research goals.  The 

interoperability measurement method is then previewed and limitations of and 

assumptions pertinent to the method are given.  Chapter 1 concludes with an overview of 

the structure of the dissertation. 

1.3 Background 

Interoperability has been an important and widely discussed topic over the past 

decade, and continues to be so, especially within the Department of Defense (DoD) 

(Ford, et. al., 2007b).  A search of thirty years of definitions and types of interoperability 

(Appendices A1 and A2) indicates the recent surge in popularity of the subject (Figure 1).   

The survey of interoperability types and definitions revealed that interoperability, as a 

research area, is broad with at least a thousand academic papers written on the topic.  The 

oldest definition found (first published in 1977) is still one of the most popular and is the 

official definition given in Joint Publication 1-02, DoD Dictionary of Military and 

Associated Terms, “the ability of systems, units, or forces to provide services to and 
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accept services from other systems, units, or forces and to use the services so exchanged 

to enable them to operate effectively together.” (2008)  This definition, while not perfect 

(e.g., it limits the object of an interoperation to a service and does not address the 

confrontational interoperability of adversarial forces), is adopted in this research because 

it 1) infers that interoperation occurs between many types of entities (e.g., systems, units, 

or forces), 2) describes interoperability as a relationship between those entities, 3) implies 

that interoperation is an exchange, 4) infers that interoperation requires a “provider” and 

an “acceptor,” and 5) explains that interoperation enables effective operation.  These 

important concepts permeate and are foundational to this research. 
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Figure 1.  Popularity of interoperability research as indicated by the number of definitions and 
types introduced over the past thirty years (adapted from Ford, et. al., 2007b) 

It is important to understand that interoperability occurs in collaborative and non-

collaborative (confrontational) ways.  For example, a computer network consists of a set 

of systems working in a collaborative fashion to provide and accept information and 
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services from each other.  Collaborative interoperability is the most commonly 

understood type of interoperability today.  However, a second type of non-collaborative 

interoperability, called confrontational interoperability, is critical in both military and 

non-military domains.  Confrontational interoperability occurs when sets of opposing 

systems attempt to control each other (i.e., a jammer’s attempt to degrade an enemy 

communication system’s effectiveness or a negotiation team’s attempt to swing a deal in 

their favor).  While collaborative interoperability has been previously researched, 

confrontational interoperability has not, and is introduced in this research.  An 

understanding of this new topic of confrontational interoperability is critical to being able 

to relate interoperability to operational effectiveness. 

Joint Vision 2020 clearly states the importance of interoperability to the DoD: 

“interoperability is the foundation of effective joint, multinational, and interagency 

operations.” (2006:15)  In fact, sixty joint publications cataloged in the Joint Doctrine, 

Education and Training Electronic Information System (JDEIS) mention interoperability. 

(2008)  The recent Chief of Staff of the US Air Force stated that he takes every 

opportunity “to highlight the significant advantages of interoperable equipment and 

systems with…joint and coalition partners,” that he looks for “interoperability 

opportunities with…coalition and allied partners,” and he recognizes that 

“interoperability is cultural, as well as technical.” (Moseley, 2007)  In light of the 

importance of interoperability and noting that “management must be able to measure 

what they wish to change,” (Kasunic & Anderson, 2004:16) a comprehensive method for 
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measuring collaborative and confrontational interoperability and associating it with 

operational effectiveness is needed. 

1.4 Problem Statement 

How can collaborative and confrontational interoperability be measured, and how 

can the effectiveness of an operational process be improved by first measuring, then 

changing the interoperability of a heterogeneous set of systems implementing the 

process? 

1.5 Hypothesis and Research Objectives 

It is hypothesized that interoperability of a heterogeneous set of systems 

implementing an operational process can be measured and that there is a relationship 

between that interoperability measurement and measures of effectiveness associated with 

the process.  To confirm the hypothesis, the following research objectives are pursued. 

1) How are operational processes modeled and what are appropriate measures of 

operational effectiveness for a process? 

2) How are systems implementing an operational process identified, modeled, 

and classified?  Specifically, what characteristics, features, attributes, or traits 

of a system are important if the interoperability of systems is to be measured?  

What represents a common framework of system interoperability 

characteristics? 

3) How can the interoperability of systems be measured?  What is an acceptable 

measurement according to accepted metrological standards? 
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4) What is the relationship between operational effectiveness and 

interoperability? 

5) What is the role of architecture in interoperability measurement?  Can a 

Department of Defense Architecture Framework (DoDAF) architecture be 

used and/or extended to source and store information required for 

interoperability measurement? 

6) Demonstrate the interoperability measurement method by application. 

1.6 Method Preview 

Systems representing both friendly (blue) and adversary (red) forces implement 

the activities and decisions of an operational process and can be modeled as a sequence 

of states of system characteristics.  If strictly interoperability-related characteristics are 

used to model systems, then a fundamental result is obtained—that a measure of the 

similarity of a pair of system models is a measure of their associated systems’ 

interoperability.  This constitutes a general method of measuring the interoperability of 

systems implementing both collaborative and confrontational operational processes. 

The research is taken one step further however, and it is shown that given a 

measure of operational effectiveness for a confrontational operational process, another 

fundamental result is obtained which states that if all systems and system interoperability 

features pertinent to the confrontational operational process are completely modeled, then 

friendly (blue) systems have operational advantage over adversary (red) systems if the 

blue systems are more directionally interoperable with red systems than vice versa.  In 

other words, blue is able to control red (and prevent red from reciprocating) if blue is 
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more directionally interoperable with red than red is with blue.  This important result 

allows an interoperability measurement to be related to operational effectiveness. 

1.7 Assumptions/Limitations 

The interoperability measurement method presented in Chapter 3 is applicable to 

both military and non-military scenarios.  However, in this research, it is purposefully 

focused on military applications (Chapter 4).  Those wishing to measure the collaborative 

(non-confrontational) interoperability of non-military systems or use the method in 

blue/blue situations are encouraged to rely heavily on the Performance Enhanced 

Instantiation section (3.4.5) vice the Interoperability Impact on Operational Effectiveness 

section (3.6) and to reference the discussions on indirect interoperability and blue-to-blue 

impact on operational effectiveness presented in the Future Research section (5.3) of 

Chapter 5.  Also, as the method is model-based, any resultant interoperability 

measurement or operational effectiveness assessment should be accepted at the same 

level of accuracy and precision as the model which generated it.  Indeed, an imprecisely 

built model of a set of systems and their interoperations can result not only in an 

imprecise interoperability measurement, but possibly inaccurate analysis.  The accuracy 

of the application of the Interoperability Impact on Operational Effectiveness axiom 

especially depends upon the accuracy and precision of the initial system models. 

1.8 Dissertation Overview 

The next chapter contains a review of seminal and recent publications 

underpinning all aspects of the interoperability measurement method presented in 
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Chapter 3.  Chapter 4 uses the method in several applications, demonstrating that 1) 

extant maturity model methods of measuring interoperability, such as the Organizational 

Interoperability Maturity Model, can be derived from the more general method of this 

dissertation, 2) many types of interoperability can be measured, such as coalition and 

confrontational interoperability, 3) the Interoperability Impact on Operational 

Effectiveness axiom provides a sufficient condition for relating interoperability to 

operational advantage or effectiveness, and 4) interoperability is often time variant.  

Chapter 5 summarizes and makes recommendations for application of the dissertation 

method and proposes future research based upon the dissertation findings.  Augmenting 

the body of the dissertation are multiple appendices which provide additional original 

research results and analysis which have not been included in the body of the dissertation 

in order to optimize flow and readability of the document. 

 



 

2. Literature Review and Analysis 
 

The quest for interoperability is not new,  
but it has never been so important.—D. Alberts & R. Hayes 

 

2.1 Overview 

Current approaches to interoperability measurement, numerical (mathematical) 

taxonomy, and system classification are the starting point and the basis for development 

of the interoperability measurement method in Chapter 3.  Important publications, both 

historical as well as recent, in these areas and others are surveyed and analyzed for their 

significant contributions.  A summary of work in the supporting topic areas of process 

modeling, operational effectiveness measurement, and architecture is also presented.  An 

analysis of all these publications is given which highlights key concepts pertinent to 

interoperability measurement and its relation of interoperability to operational 

effectiveness.  Current gaps in research are highlighted and discussed. 

2.2 Interoperability Measurement 

Few papers have been published specifically on interoperability measurement.  

Allowing for a very broad definition of the term “interoperability measurement,” 

approximately a dozen papers have been written on the topic—most published within the 

decade.  All limit themselves to discussions of collaborative interoperability with none 

addressing confrontational interoperability.  Those proposing a new interoperability 

measurement method or an extension/improvement to an existing method include 

(LaVean, 1980; Mensh, et. al., 1989; Amanowicz & Gajewski, 1996; DoD, 1998; Leite, 

1998; Clark & Jones, 1999; Hamilton, et. al., 2002; Alberts & Hayes, 2003; Fewell & 

10 



 

Clark, 2003; NATO, 2003; Tolk, 2003; Tolk & Muguira, 2003; Stewart, et. al., 2004, 

2005; Kingston, et. al., 2005; Schade, 2005; Ford, et. al., 2007a, 2008b).  Other papers 

offer analyses of existing methods (Sutton, 1999; Brownsword, et. al., 2004; Kasunic & 

Anderson, 2004; Morris, et. al., 2004; Ford, et. al., 2007b).  Each published method can 

be classified as maturity- (leveling) or non-maturity model-based and generally is 

applicable to only one system and interoperability type.  Ford, et. al. provide a detailed 

survey of the aforementioned interoperability methods (Figure 2) in a separate paper 

(2007b) which is excerpted and augmented with more detail in Appendices A3 and A4. 

 
 ’80      ’89               ‘96      ’98 ’99              ’02 ’03 ’04 ’05        ‘07 

NTI 
OIAM, 
NID (revised) 

i-Score 

OIM (revised),  
LCI,  
LCIM, 
NCW, 
NMI 

Stoplight 

MCISI 

OIM 

LISI,
IAM

QoIM SoIM 

Figure 2.  Chronology of published interoperability measurement methods (non-maturity model-
based methods in italics, maturity-based methods in boldface) 

2.2.1 Maturity Model and Other Leveling Methods 

The US Air Force developed the maturity model concept through a grant to the 

Carnegie Mellon Software Engineering Institute (CMU-SEI) in 1987. (Humphrey & 

Sweet, 1987)  Although the maturity model concept, which describes the stages through 

which a process progresses (DoD, 1998:2-1), was originally designed as a management 

tool to assess contractor software engineering ability, it was adopted in 1998 by the 

MITRE Corporation as the basis of the first maturity model-based interoperability 
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measurement method called Levels of Information System Interoperability (LISI) (Figure 

3). (Ibid)  This method was eventually formalized and mandated in CJCSI 6212.01B 

Interoperability and Supportability of Information Technology and National Security 

Systems (2000) but later deleted as a requirement in the 2006 issue of the same document.  

In the LISI model, maturity was represented by thresholds of interoperability capability 

which defined measurable levels of interoperability. (DoD, 1998)  From 1998 to 2006, 

LISI was the template for numerous maturity model and maturity model-like (leveling) 

interoperability measurement models designed to measure both information and non-

information system interoperability such as the Organizational Interoperability Model for 

C2 (OIM) (Clark & Jones, 1999; Clark & Moon, 2001; Fewell & Clark, 2003), the 

Network Centric Warfare Maturity Model (NCW) (Alberts & Hayes, 2003), the Levels of 

Conceptual Interoperability Model (LCIM) (Tolk & Muguira, 2003), Layers of Coalition 

Interoperability (LCI) (Tolk, 2003), NATO C3 Technical Architecture Reference Model 

for Interoperability (NMI) (NATO, 2003), the Non-Technical Interoperability Framework 

(NTI) (Stewart, et. al., 2004), the Organizational Interoperability Agility Model (OIAM) 

(Kingston et. al., 2005), and a modification of the NATO Interoperability Directive (NID-

revised) (Schade, 2005).  As can be inferred from the titles of these models, none are 

generalized models of interoperability, but each is designed to address a specific type of 

system and interoperability. 
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Figure 3.  LISI interoperability maturity model (DoD, 1998) 

The maturity model (leveling) interoperability measurement approach defines a 

basic set of interoperability maturity levels (usually five), listed as rows in the model, 

defined by a set of attributes (usually three or four, but sometimes only one) listed as 

columns in the model (Figure 3). (DoD, 1998) Thus, the range of interoperability 

measurements is generally limited to an integer from zero to the number of levels 

(usually five).  This limited measurement range is one of the weaknesses of the maturity 

model interoperability measurement approach as there is generally not enough fidelity in 

the measurement to support design, reliability, maintainability, interoperability, or 

affordability analyses of the systems under measurement.  Indeed, two systems sharing 

the same LISI defined interoperability level may not have any real ability to interoperate. 

(CMU, 2008)  For example, two systems both classified as level 2c may still not be able 

13 



 

to share information because the level calls for the ability to create documents, briefings, 

pictures, maps, spreadsheets, and databases, yet does not specify the application to 

generate these files, nor does it specify the format the files are to be saved in.  

Interestingly, the strength of the maturity model is not in providing an interoperability 

measurement, but in its ability to facilitate a measurement; in other words, to portray a 

qualitative framework for describing the types of attributes impacting interoperability for 

different types of systems and interoperability.  For example, the LISI model describes 

four top-level attributes (Policy & Procedure, Application, Infrastructure, Data) and at 

least five sub-attributes for each. (DoD, 1998)  Published maturity model (leveling) 

methods apply strictly to collaborative interoperability.  As will be shown in Chapter 4, 

the maturity model and other leveling methods are special cases of the more general 

interoperability measurement method developed in Chapter 3. 

2.2.2 Non-Leveling Methods 

Non-maturity model-based interoperability measurement methods are a much 

more diverse group and, as a whole, generally pre-date the maturity model-based 

methods.  Like the maturity model methods, they are not generalized methods of 

measuring interoperability, but specialized to a particular type of system or 

interoperability.  The earliest known model, the Spectrum of Interoperability Model 

(SoIM), was designed as a program management tool and defined seven levels of 

interoperability for technical systems. (LaVean, 1980)  Nearly a decade later, Mensh, et. 

al., published their mission-based Quantification of Interoperability Methodology (QoIM) 

which assigned a measure of effectiveness (MOE) logic equation to each of seven 
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interoperability-related components. (1989)  Their noteworthy contributions are 1) 

associating interoperability measurement with a mission and 2) relating interoperability 

to measures of effectiveness via a discrete event simulation.  Seven years later, 

Amanowicz & Gajewski made the important observation that the distance between 

systems described in dimensional space, according to their features, was a measure of 

interoperability. (1996)  They drew heavily from Florek, et. al., (1951) who, hailing from 

Wroclaw, Poland, developed a parallel to numerical taxonomy called Wroclaw 

Taxonomy which relied upon both the Czekanowski coefficient (Czekanowski, 1913) and 

graphical techniques such as dendrograms. (Sneath & Sokal, 1973)  Concurrent with the 

publication of LISI was the Interoperability Assessment Methodology (IAM), which 

provided an eclectic mix of interoperability attributes and assorted equations applied by a 

flowcharted interoperability assessment process. (Leite, 1998)  Hamilton, et. al., 

criticized LISI as being too complex and instead offered an overly-simplified stoplight 

model (2002) which unfortunately gives no specific basis for assigning colors to systems, 

and does not provide for system-to-system comparison.  The Interoperability Score (i-

Score) (Ford, et. al., 2007a; 2008b) recognized that 1) interoperability must be measured 

in the context of the operational mission, 2) an operation is implemented by systems of 

many types, and the interoperability measurement must account for them all, 3) perfect 

interoperability is not always desirable or possible, and 4) it is not the number of 

interoperations that is important, but the quality of the interoperations. 

n
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2.2.3 Extant Method Contributions 

Each method surveyed in sections 2.2.1 and 2.2.2 contributed towards the general 

theory of interoperability measurement described in Chapter 3.  Table 1 lists their main 

contributions (details in Appendix A3) and section 2.8 highlights remaining gaps in 

knowledge which are addressed in this dissertation. 

Table 1 Main contributions of extant interoperability measurement methods 
Method Main Contribution 
SoIM Interoperability can be measured in levels 
QoIM Interoperability can be correlated to measures of effectiveness via simulation 
MCISI The distance between systems modeled as points in space indicates their 

interoperability 
LISI Systems possess interoperability attributes 
IAM Same as LISI 
OIM Organizations interoperate, but have different interoperability attributes than 

technical systems 
Stoplight Operations and acquisitions both have interoperability requirements 
LCI Operational interoperability is an extension of technical interoperability 
LCIM Conceptual interoperability bridges system interoperability 
NMI Same as LISI 
NCW Interoperability occurs in the physical, information, cognitive, and social domains; 

lack of interoperability impedes mission accomplishment 
SoSI System-of-system research is founded upon operational, conceptual, and 

programmatic interoperability 
NTI Social, personnel, and process interoperability are valid types of non-technical 

interoperability 
OIAM There are levels of ability of organizations to be agile in their interoperations 
NID Levels of interoperability can be described in linguistic terms 
i-Score Interoperability measurements are operational process-specific and have a  maximum 

value 

2.3 Numerical Taxonomy 

The science and methods of numerical taxonomy were introduced to the world by 

Sokal and Sneath in 1963 in Principles of Numerical Taxonomy.  Their later text 

Numerical Taxonomy remains the de-facto handbook thirty years after its original 

publication date. (Sneath & Sokal, 1973)  Sneath & Sokal have defined numerical 

taxonomy as “the grouping by numerical methods of taxonomic units into taxa on the 
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basis of their character states.” (1973:4)  While numerical taxonomy has largely been 

applied to biological, botanical, and genetic research, it has also been used with great 

success in the fields of ecology, medicine, the social sciences, the earth sciences, and the 

arts and humanities. (Dunn & Everitt, 2004)  It has only recently been applied to systems. 

(Ford, et. al., 2008a) The classification of life on earth (Maddison, et. al., 2007) may be 

the most visible result of numerical taxonomy and other classification techniques.  The 

methods and applications of numerical taxonomy have been documented in over one-

thousand articles and books.  Numerical taxonomy defines a science and method used to 

classify taxonomic units (objects) according to character states. (Sneath & Sokal, 1973)  

As such, the science of numerical taxonomy includes foundational principles; a definition 

of pertinent terms such as taxa, character, state, and cluster; a description of types of 

characters and states; methods of choosing characters; methods of estimating taxonomic 

resemblance; and methods of identifying taxa and clustering taxon into those taxa. (Ibid; 

Dunn & Everitt, 2004)  If a system is also considered a taxonomic unit which can be 

described according to its character states, then the methods of numerical taxonomy can 

appropriately be applied to systems just as they are applied to the classification of 

animals, bacteria, plants, language groups, minerals, and cultures. 

2.4 System Classification 

The human mind classifies everything according to a variety of factors including 

morphological, emotional, and functional among others.  Expectedly, all branches of 

study classify. For example, historians demarcate events into time periods, poets and 

authors attribute a particular literary work to a genre, and artists associate a work with a 
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style.  In some disciplines, however, the classification is foundationally important as the 

basic conceptual and mathematical model of that discipline.  For example, the criticality 

of the biologists’ empirically derived classification of organisms (Linnaeus, 1735) and 

the chemists’ quantitative classification of the elements (Mendeleev, 1869) are 

indisputable to all biological and chemical studies and analyses.  The uses of 

classifications are as numerous as the number of types that exist and include naming, 

theory promotion, lineage determination, relationship demonstration, and discovery of an 

object’s nature. 

Several systems engineers have noted the necessity and usefulness of a system 

classification.  Maier and Magee & de Weck state that the most important use of a 

classification lies in the realm of system design and analysis. (1999; 2004)  Shenhar & 

Bonen showed by example that a system classification is necessary to determine the 

proper engineering and management style for system development. (1997) And Maier 

pointed out that misclassified systems have problems not only in design and 

development, but also in use. (1999) As Mendeleev’s classification predicted new 

elements (e.g., Germanium) which were later discovered (Mendeleev, 1869), a 

classification of systems can predict desirable future design directions or new uses of 

systems which, rather than being discovered, are created by the engineer or implemented 

by the system operator.  Ford, et. al., presented a mathematically rigorous method of 

classifying systems and postulated that if the systems were classified according to their 

interoperability characteristics, that a system interoperability measurement could be made 

from the classification.  A table summarizing generic system classifications (taxonomies) 
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published in the system science and systems engineering fields is given in Table 2 with 

more detail provided in Appendix A5. 

Table 2 Historical summary of system taxonomies (adapted from Ford, et. al., 2008a) 
Year Originator Basis of Taxonomy Purpose of Taxonomy 
1955 Von Bertalanffy open/closed Launch General Systems 

Theory (GST) 
1956 Boulding complexity An approach to GST 
1957 Goode & 

Machol 
system inputs Find solution to problems 

1962 Hall none given Partition subsystems & enhance 
meaning of “system” 

1985 Boulding world-corresponding World modeling 
1968 Jordan organizing principles Furtherance of systems thinking 
1971 Ackoff system concepts Create system concept 

framework 
1981 Checkland origin of system Group by origin 
1990 Wilson none given Refine definition of “system” 
1995, 
1997 

Shenhar & 
Bonen 

technological uncertainty & 
scope 

Allocate appropriate SE method 
to the system 

1997 Martin product type Provide SE checklist 
1999 Maier** Operational & managerial 

independence of components 
System-of-system architecting 

2005 Gideon et al.** acquisition type, operational 
type, domain type 

Aid in system-of-system 
understanding 

2005 Kovacic complexity Reduce set of systems into 
meaningful clusters 

2006 Blanchard & 
Fabrycky 

similarities & differences Provide insight into wide range 
of systems 

2007 Valdma information classes Study of non-deterministic 
phenomena 

2008 Ford, et. al. similarity of system characters Support system design 
 
System classification is important to interoperability measurement for the 

following reasons; 1) generic classifications of systems (Table 2) assist in ensuring that 

all systems implementing an operational process are identified; 2) system classifications 

highlight characteristics of systems, including interoperability-related characteristics; 3) 

quantitative classifications of systems describe numerically the similarity between 
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systems; and 4) numerical taxonometric-based system classification provides a method 

for orderly characterizing systems. 

2.5 Process Modeling 

Numerous process modeling methods and formats have been published over the 

past several decades.  A detailed survey was published by Knutilla, et. al. in 1998 which 

identified common attributes of all process modeling methods and formats, however 

several important candidate operational process models and formats were not included—

the Process Specification Language (PSL) (NIST, 2007), the flow chart (IBM, 1969), the 

SysML activity diagram (OMG, 2007), and the DoD Architecture Framework (DoDAF) 

Activity & System Diagrams  (OV-5, OV-6a, b, c, SV-5b) (DoD 2007a, b, c).  A 

complete list is given in Appendix A6.  A process modeling method or format used to 

represent an operational process in support of an interoperability measurement must 1) 

identify and describe the operational tasks (activities and decisions), 2) describe the order 

and decision logic associated with the task flow, and 3) identify and associate systems to 

tasks.  Mapping process modeling attributes from Knutilla, et. al. to these requirements 

results in the following. 

• Req. #1: Identify and describe the tasks 

o Simple Task Representation and Characteristics 

o Complex Task Representation and Parameters 

• Req. #2: Describe the order & decision logic associated with the task flow 

o Simple Sequences 

o Simple Precedence 
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o Alternative Task 

o Complex Sequences 

o Concurrent Tasks 

o Conditional Tasks 

o Iterative Loops 

o Parallel Tasks 

o Serial Tasks 

o Complex Precedence 

o Synchronization of Multiple, Parallel Task Sequences 

• Req. #3: Identify & associate systems to tasks 

o Resource 

o Resource Requirements for a Task 

o Simple Resource Capability/Characteristics 

o Resource Allocation/Deallocation for One or Many Tasks 

The following process modeling methods possess most of the aforementioned 

attributes and are considered as candidate operational process model formats: ACT 

Formalism, I-N-OVA Constraint Model, O-Plan Task Formalism, Virtual Process 

Modeling Language (VPML), Process Specification Language (PSL), and SysML.  

Although other methods could have been chosen, for this dissertation, the SysML 

Activity Diagram is the operational process modeling format of choice because 1) it is an 

emerging systems engineering tool, 2) it is derived from and similar to the ubiquitous 
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Unified Modeling Language (UML) diagrams, and 3) several popular software packages 

available at the Air Force Institute of Technology support it. 

2.6 Operational Effectiveness Measurement 

There has been much published on measures of effectiveness, to include a recent 

doctoral dissertation (Bullock, 2006), master’s theses (James, 1996; Bell, 2005), research 

reports (Doyle, et. al., 1997; Gaedecke, 2006), technical reports (including a survey 

paper) (Nelson, et. al., 1996; Campbell, 2004), refereed journal articles (Sproles, 2000; 

Sproles, 2001; Murray, 2001; Sproles, 2002; Finkelstein & Morawski, 2003; Finkelstein, 

2003; Bullock & Deckro, 2006), conference papers (Sarle, 1995; Green, 2001; Smith & 

Clark, 2004), and workshop reports (Sweet, et. al., 1985; Green & Johnson, 2002).  Also 

published have been many textbooks (of which only two are referenced here) (Keeney, 

1992; Geisler, 2000) and several Department of Defense documents (Bornman, 1993; 

Stenbit, et. al., 2002a; USJFCOM, 2005; DAU, 2006; DAU, 2006a; JP 3-0, 2006; JP 5-0, 

2006; JP 1, 2007).  Measures have many names, including metrics, measures of merit, 

figures of merit, measures of effectiveness, and measures of performance among others. 

(Stenbit, et. al., 2002a)  Many researchers have acknowledged confusion with regards to 

terminology. (Bell, 2005; Bullock, 2006; Green & Johnson, 2002; Green, 2001; Stenbit, 

et. al., 2002; Nelson, et. al., 1996; Smith & Clark, 2004; Sproles, 2000; Sproles, 2001)  

The term measure of operational effectiveness (MoOE) is used in this dissertation and is 

appropriately chosen because it 1) reflects the importance of capturing the effectiveness 

of an operation to the end of describing how changes in interoperability affect operational 

effectiveness; 2) synchronizes with Department of Defense publications which define an 
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MOE as a measure of an effect (JP 3-0, 2006; JP 5-0, 2006); and 3) fits properly within 

the measurement hierarchy (Stenbit, et. al., 2002) which has been widely accepted by 

MOE researchers. Appendix A6 includes additional analysis on the hierarchy of 

measures, operational effectiveness assessment in joint operations, and MOE 

characteristics, types, and domains. 

2.7 Architecture 

An architecture is a depiction (written or drawn) of “the structure of components, 

their relationships, and the principles and guidelines governing their design and evolution 

over time.” (DoD, 2007a)  Curts & Campbell stated, “without a consolidated, 

coordinated, and organized architecture there is little chance of ever attaining that elusive 

goal of total interoperability.” (1999:1)  The architecture description is a possible source 

and repository for that which is required to make an interoperability measurement as well 

as for decisions based upon the measurement.  Many frameworks exist which provide 

guidelines for creating such an architecture description.  The first of these was the 

Zachman Framework (Zachman, 1987) followed by numerous others including the 

Federal Enterprise Architecture Framework (FEAF) (Federal CIO, 1999), the Treasury 

Enterprise Architecture Framework (TEAF) (Department of the Treasury, 2000), the 

Open Group Architecture Framework (TOGAF) (The Open Group, 2003), and the latest 

version of the Department of Defense Architecture Framework (DoDAF) (DoD, 2007a, 

b, c).  As can be inferred from some of their titles (the Zachman framework and TOGAF 

excepted), each of these frameworks was developed for a specific government agency or 
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application.  DoDAF’s relationship to interoperability is specifically addressed in this 

research. 

Volume II, version 1.5 of DoDAF mentions many uses of DoDAF architecture 

descriptions—one of which is system interoperability analysis. (DoD, 2007b:2-5, fig 2-2)  

Specifically, the architecture products listed in Table 3 are named as being highly, 

partially, or non-applicable to system interoperability uses.  While some of the elements 

required for system interoperability measurement are stored cleanly within the DoDAF 

products in the table, section 3.7 shows that some are absent, or stored but not easily 

extracted.  For example, the interoperability measurement method of Chapter 3 

accommodates a broad definition of the word “system” whereas DoDAF defines a strong 

separation between operational nodes and organizations and system nodes and systems.  

This hampers its ability to act cleanly as a source/repository for interoperability 

measurement key elements. 

Table 3 DoDAF claimed product applicability to system interoperability (DoD, 2007b) 
Level DoDAF Product 
Highly applicable AV-1, 2 

OV-1, 2, 3, 5, 6 
SV-1, 4, 6, 8 
TV-1 

Partially applicable OV-4, 7 
SV-2, 7, 11 
TV-2 

Not applicable SV-3, 5, 9, 10 

2.8 Gaps in Current Research 

The following selected key concepts, which are critical to a unified method of 

interoperability measurement, have not been addressed by other researchers and represent 

gaps in knowledge.  All are addressed in Chapter 3.  The list is not comprehensive, but is 
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representative in showing the magnitude of the current gap in interoperability 

measurement understanding. 

What entities should have their interoperability measured? 

How are systems modeled in support of an interoperability measurement? 

How does a measure of system similarity relate to interoperability? 

Should the similarity measure be allowed to be a distance measure? 

What does a complete framework of system interoperability attributes contain? 

What method can be used to identify interoperability attributes? 

How can the interoperability of two heterogeneous systems be measured? 

How are multiple interoperability types accommodated in the measurement? 

Can one measurement accommodate different systems and interoperability types? 

Can the interoperability of confrontational (i.e., opposing systems) be measured? 

What is the difference between collaborative and confrontational interoperability? 

How do interoperability and operational effectiveness relate? 

Is an interoperability measurement specific to an operational process? 

Where should interoperability data be stored and obtained? 

How interoperable must systems be? 

How can an interoperability measurement be used? 

2.9 Conclusion 

Analysis of the aforementioned publications indicates that the following concepts 

are important for interoperability measurement: 1) interoperability of sets of systems 

(vice single systems) should be measured; 2) the set of systems should be determined by 

25 



 

26 

an operational process; 3) a framework of interoperability attributes should be used to 

help identify system interoperability characters; 4) systems should be modeled as a set of 

system interoperability character states; 5) system character states should be identified 

numerically or coded numerically; 6) a similarity function gives the resemblance between 

systems as pertaining to their system character states; 7) the similarity function is the 

interoperability measurement if the systems have been appropriately modeled; 8) 

interoperability is related to measures of operational effectiveness associated with the 

operational process; 9) the interoperability of collaborative and confrontational systems 

can be measured; 10) an interoperability architecture can be used to supply and store the 

data supporting an interoperability measurement. 

 



 

3. Method 
 

Interoperability will never be an analytically useful field of study  
until it is defined in a quantitative way.—E. Presson 

 

3.1 Overview 

This chapter describes a general interoperability measurement method (Figure 4) 

which can be summarized as follows.  Given a purpose for making an interoperability 

measurement and an associated operational process, a set of systems implementing the 

activities and decisions of that process can be identified.  Each system in that set can be 

modeled quantitatively as a sequence of states of descriptive features of the system.  

These system models, called system instantiations, can be aligned with each other and 

their similarity measured.  A fundamental concept of the interoperability measurement 

method is that if the set of systems is instantiated strictly according to interoperability 

features, then a measure of the similarity of a pair of system instantiations is a measure of 

the associated pair of systems’ interoperability.  Furthermore, another fundamental 

concept states that if the systems are instantiated with interoperability features pertinent 

to a measure of operational effectiveness associated with a confrontational operational 

process, then the interoperability measurement can be related mathematically to the 

measure of operational effectiveness.  Finally, the method can be integrated with the 

Department of Defense Architecture Framework which is suitable for storing key 

interoperability measurement elements.  Succeeding sections address the method in 

detail. 
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Figure 4.  Interoperability measurement method 

3.2 Purpose of Interoperability Measurement 

The number of interoperability types is large (Appendix A2) and the number of 

reasons to measure interoperability is even larger.  Some reasons important to the 

Department of Defense, extracted from selected joint publications and the Department of 

Defense System Engineering Plan Preparation Guide (DoD, 2008), are given in Table 4.  

Before an interoperability analysis is undertaken, the purpose of the analysis must be 
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stated.  Identification of this purpose is critical in keeping the analysis focused and 

properly scoped. 

Table 4 Some DoD reasons for measuring interoperability 

MULTINATIONAL OPERATIONS REASONS 
Collaborative or 
Confrontational 
Interoperability 

Determine level of integration and synchronization of coalition 
forces (JP 3-16) Collaborative 

Measure effectiveness of coalition equipment (JP 3-16) Confrontational 
Troubleshoot coalition logistics problems (JP 3-16) Collaborative 
Determine mission impact of lack of common tactics, techniques, 
and procedures (JP 3-16) Collaborative 

Measure mission impact of language and cultural difference among 
coalition forces (JP 3-16) Collaborative 

Measure results of multinational planning and preparation on 
mission success (JP3-16) Collaborative 

Predict impact of liaison officers on coalition force mission success 
(JP 6-0) Collaborative 

Provide metrics to 5-nation Combined Communications Electronics 
Board in support of their pursuit of  communications-electronics 
interoperability (JP 6-0) 

Collaborative 

Provide COCOM with interoperability reqs. for theater security 
cooperation plan (JP 6-0) Both 

Determine impact of interface (translation) used to ensure 
interoperability of incompatible communications systems (JP 6-0) Both 

Determine predicted advantage over the enemy Confrontational 
Identify areas for improvement in coalition operations Both 

JOINT OPERATIONS REASONS  
Determine impact of communications interoperability on personnel 
recovery (JP 3-50) Collaborative 

Determine impact of joint service training on mission success Collaborative 
Specifying joint force interoperability requirements Both 
Measure success of joint force exercises Confrontational 
Determine impact of insertion of new communications technology 
(JP 6-0) Both 

Assessing shortfalls/deficiencies of communications on operational 
effectiveness (JP 6-0) Both 

Determine ability to cooperate with OGAs and NGAs (JP 6-0) Collaborative 
Facilitate CIO responsibility to enforce interoperability (JP 6-0) Collaborative 
Support COCOMs in verifying operational interoperability 
procedures (JP 6-0) Both 
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Measure interoperability of the joint communications system (JP 6-
0) Collaborative 

Determine ISR product distribution bottlenecks (JP 6-0) Collaborative 
Measure system-to-system compatibility (JP 6-0) Both 
Validate key interoperability solutions prior to mission execution (JP 
6-0) Both 

Correlate interoperability with the speed of commander 
decisionmaking (JP 3-27) Both 

Predict advantage over the enemy in future conflicts Confrontational 
SYSTEMS ENGINEERING REASONS  

Determine compliance with program certification requirements 
(SEPPG) Both 

Specify program requirements in terms of interoperability 
measurements (SEPPG) Both 

Characterize system design requirements in the System Engineering 
Plan (SEPPG) Both 

Determine level of interoperability within and without the System-
of-System (SEPPG) Both 

Determine impact of system configuration changes (SEPPG) Both 
State interoperability key performance parameter requirements 
(SEPPG) Both 

Ensure systems in development will be interoperable with fielded 
systems (SEPPG) Collaborative 

Facilitate interoperability testing (JP 6-0) Both 
HOMELAND DEFENSE REASONS  

Measure and predict future interagency interoperability (JP 3-27) Collaborative 
Establish requirements for interagency emergency response 
communications (JP 3-27) Collaborative 

Measure ability of government agencies to share information during 
crisis (JP 3-27) Collaborative 

Measure operational connection between agencies in a dynamic 
environment (JP 3-27) Collaborative 

Determine possibility of information overload as multiple first 
responders use common equipment and procedures Collaborative 

Determine usefulness of inserting commercial communication 
standards into DoD acquisition requirements (JP 3-27) Collaborative 

HEALTH SERVICE REASONS  
Justify standardization of medical capabilities and material with 
other nations (JP 4-02) Collaborative 

Methodically measure compliance with OPLAN (JP 4-02) Collaborative 
Discover medical training, logistics, doctrine, and other concerns (JP 
4-02) Collaborative 
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Determine communication interoperability concerns between 
MEDEVAC platforms and medical regulating authority (JP 4-02) Collaborative 

OTHER REASONS  
Determine level of net-centricity of networked systems Collaborative 
Quantify Joint Interoperability Test Command operational 
interoperability test requirements (JP 6-0) Both 

3.3 Operational Process 

After determining the purpose for an interoperability measurement analysis, the 

subjects of the interoperability measurements must be determined and a method for 

identifying them must be given.  In this dissertation, the operational process is used to 

identify a set of systems, both friendly (blue) and adversarial (red), whose interoperability 

is to be measured and to identify the measure of operational effectiveness to which the 

interoperability measurement will be correlated.  The operational process is defined as a 

set of tasks, logically sequenced, which when executed achieve a desired effect.  

Operational processes can be collaborative, which are operational processes implemented 

by a set of friendly systems working together to achieve a shared goal, or confrontational, 

which are operational processes implemented by two sets of systems acting in opposition 

to each other (i.e., when one set of systems experiences a level of success in 

implementing the operational process, the other experiences a corresponding level of 

failure). 

3.3.1 Modeling Methods 

While many practical operational processes are simplistic in structure, it is 

possible to define a process in which all, some, or none of the tasks occur concurrently 

and in which timing and logic are associated with the elements of the process.  For 

example, the finish of one task may drive the start of another, or the decision of which 
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task to execute next might depend upon certain prerequisites (including timing) being 

met.  Not surprisingly, many methods and formats of task, activity, process, and thread 

modeling have been devised over the years.  These methods and formats are graphical, 

mathematical, and linguistic in nature and all have different fortes.  Of three dozen 

candidate modeling methods and formats (Appendix A6), the SysML activity diagram is 

appropriate for operational process modeling and is the method of choice for this 

dissertation because it 1) captures the operational activities and decisions in a process, 2) 

describes what is transferred between activities and decisions, 3) describes the decision 

logic and timing (swim-lane variant) of the process, 4) accommodates the association of 

systems to activities and decisions as an object attribute, and 5) is supported by a growing 

number of software packages.  An example SysML activity diagram with six activities 

and one decision is given in Figure 5. 

 
Figure 5.  Sample SysML activity diagram used to model an operational process 
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3.3.2 Measures of Operational Effectiveness 

An interoperability measurement can be correlated to operational effectiveness for 

both collaborative and confrontational operational processes.  For a collaborative 

operational process, this correlation must be done via discrete event or other type of 

simulation and is outside the scope of this research.  An early attempt at doing this was 

made in 1989 by Mensh, et. al. in which the interoperability of Battle Force Command, 

Control, and Communications systems was measured and correlated to measures of 

effectiveness and measures of performance written as binary logic equations.  For a 

confrontational operational process however, this research provides sufficient conditions 

which allow the interoperability measurement to be related to a measure of operational 

effectiveness (MoOE) for the operational process.  The MoOE should be written at a 

level of abstraction equivalent to that of the operational process and can be a natural, 

constructed, or proxy measure originating from the physical, information, or cognitive 

domain (Appendix A7).  Ideally the MoOE is relevant, measurable, responsive 

(sensitive), resourced, understandable, discriminatory, quantitative, realistic, objective, 

appropriate, inclusive, independent, valid, and reliable.  Additionally, in order to apply 

the Interoperability Impact on Operational Effectiveness axiom (section 3.6) the MoOE 

must be written diametrically.  In other words, the MoOE must be written as a pair 

{ },B RO O O=  which relates the effectiveness of the set of friendly (blue) systems to the 

lack of effectiveness of the set of adversary (red) systems.  For example,  

describes the relationship between the diametric MoOE 

1B RO O+ =

{ },B RO O O=  where BO  is the 
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percent of red force targets destroyed and  is the percent of red force targets protected.  

While many MOEs contained in the Universal Joint Task List (UJTL) (CJCSM 

3500.04D, 2006) cannot be written as diametric MoOEs, such as OP 2.2.1, M31, 

“Minutes to determine raid size.”, many others can.  For example, numerous percentage 

MOEs in the UJTL such as SN 3.4, M7 “percent of cruise missiles destroyed before 

impact,” ST 1.3.5, M5 “percent of enemy forces drawn away from main thrust after 

demonstration,” or OP 1.2.4.7, M13 “percent of friendly personnel recovered uninjured” 

can be all be written diametrically.  Similarly, MOEs in the UJTL which represent a 

count such as SN 3.4.1, M11 “number of safe passage aircraft engaged,” can be 

normalized and converted to a percentage (e.g., “percent of safe passage aircraft 

engaged”) and then written diametrically.  In general, UJTL MOEs which can be 

converted to a percentage and which correlate friendly force action to enemy force 

reaction (or vice versa) are candidate diametric MoOEs. 

RO

3.4 Systems 

Among others, the interoperability of processes, enterprises, organizations, 

coalitions, concepts, functions, objects, products, models, cultures, doctrines, forces, 

cities, public services, and applications can be measured, however, systems are chosen as 

the object of the interoperability measurement in this research.  The word “system” is 

used in a variety of fields of study, but its definition is fairly standardized across those 

disciplines.  For example, the military scientist defines system as “a functionally, 

physically, and/or behaviorally related group of regularly interacting or interdependent 

elements; that group of elements forming a unified whole.” (JP 1-02, 2008:534)  The 
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system engineer defines it as “a combination of interacting elements organized to achieve 

one or more stated purposes.” (Haskins, 2007:1.5)  The management scientist defines it 

as “an entity which is comprised of at least two elements and a relation that holds 

between each of its elements and at least one other element in the set” (Ackoff, 

1971:662).  And finally, the physician defines it as “a consistent and complex whole 

made up of correlated and semi-independent parts; a complex of functionally related 

anatomic structures.” (Pugh, 2000:1775)  There are three common themes to these 

definitions: 1) systems are comprised of a set of elements, 2) those elements interact, and 

3) the interacting set of elements forms a whole and act in concert to achieve the system’s 

purpose.  Therefore, in this research a system is defined as “an entity comprised of 

related interacting elements, which act together to achieve a purpose.”  This definition is 

broad enough to include a wide variety of systems including, but not limited to, technical, 

biological, environmental, organizational, conceptual, physical, and philosophical, among 

others.  Because the definition of system used in this research is broad, the system 

interoperability measurement method presented is applicable to an equally broad set of 

entities. 

Other interoperability researchers also promote measuring the interoperability of 

systems.  Nine of the fourteen interoperability measurement method papers surveyed 

(section 2.2), directly advocated the measurement of system interoperability. (LaVean, 

1980; Mensh, et. al., 1989; Amanowicz & Gajewski; 1996; DoD 1998; Leite, 1989; 

Hamilton, et. al., 2002; NATO, 2003; Stewart, et. al, 2004; Ford, et. al., 2007a; 2008b)  

The other five recommended measuring the interoperability of an entity that could be 
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modeled as a system or as a system enabler. (Clark & Jones, 1999; Tolk & Muguira, 

2003; Tolk, 2003; Stewart, et. al., 2004; Kingston, et. al., 2005;).  Although six of the 

fourteen methods surveyed proposed measuring the interoperability of singleton systems 

(Leite, 1989; Clark & Jones, 1999; Hamilton, et. al., 2002; Tolk & Muguira, 2003; Tolk, 

2003; Kingston, et. al., 2005), measuring the interoperability of a single system is 

antithetical to the connotation of the word interoperability and to the definition of the 

word as used in this research.  Measuring the interoperability of a set of two or more 

systems is a better choice.  But as the set of all systems is infinite, a means of limiting the 

size of the set is needed. 

3.4.1 Constraining the Set of Systems with an Operational Process 

Although many methods exist for determining which systems should have their 

interoperability measured, using the operational process to determine the set of systems is 

appropriate for at least three reasons.  First, systems perform different interoperations in 

different scenarios (i.e., they are used differently); second, effectiveness is often 

measured at the operational process level (i.e., measures of effectiveness); and third, 

operational processes can be written at any level of abstraction which enables system 

definition at the same level of abstraction.  When using an operational process to 

constrain the set of systems, all systems are identified which implement the operational 

process.  The set of systems is often diverse and can be small or large. 

3.4.2 System Identification 

There are a variety of methods which can be used, within the constraints of an 

operational process, to identify the set of systems { }1 2, , , nS s s s= …  whose 
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interoperability is to be measured.  These methods include architectural methods such as 

Activity Based Modeling (Ring, et. al., 2004) and DoD Architecture Framework-

associated structured analysis modeling (DoD, 2007a, b, c), engineering methods such as 

IDEF0 and IDEF3, project methods such as the Microsoft Project method (2007), process 

methods such as SySML activity/decision to resource (system) association (OMG, 2007), 

as well as others.  While seemingly simplistic, it is easy to neglect certain types of 

systems (e.g., weather systems) which may not be routinely considered as such, but 

which might be important in the final interoperability analysis.  For this reason, any 

system identification method chosen can be complemented by the use of a generic system 

taxonomy.  These comprehensive taxonomies, while simplistic and general in nature, are 

reminders of the wide variety of systems that exist.  Researchers in the fields of system 

science and systems engineering have published taxonomies of systems for at least fifty 

years.  A survey of these taxonomies is given in appendix A5. 

3.4.3 System Characterization 

Once the set of systems  has been identified, those systems must be modeled.   

Applying numerical taxonomic concepts, a system can be modeled using a set of 

characters 

S

{ }1 2, , , nX x x x= …  which represent traits, attributes, or characteristics which 

describe the important features of the system.  These system characters can be 

morphological (e.g., size, shape, color, structure, type and method of construction, 

material composition, or number of components), physiological (e.g., system functions or 

behaviors), interfacial (e.g., type and number of system or element interfaces), ecological 

(e.g., system context, environment, or type of fuel consumed), and distributional (e.g., 
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geographic location or domain) among others.  Ideally, the set of characters chosen 

should be natural (i.e., a character not confounded with another) and diagnostic (i.e., a 

character which distinguishes one system, or system type, from another).  Additionally, 

the types of characters chosen should be related to the type of interoperability 

measurement that is to be undertaken.  For example, interoperability measurement of 

devices on a network demands that functional characters be emphasized, whereas a 

spatial interoperability analysis requires that certain morphological characters should be 

used. 

Extending a definition from the phylogeneticists (Semple & Steel, 2003), 

characters are functions which map systems in  to the states C  of their characters S X  

where the set of valid character states for a set of characters is { }1 2, , nC c c c= …  (see 

definition below).  Character states are either qualitative (discrete) or quantitative 

(discrete or continuous), or a mixture of both (Sneath & Sokal, 1973).  Generally, the set 

of character states is restricted to the binary numbers (absence/presence states) or the 

positive real numbers, although other states are certainly possible. 

DEFINITION (System Characterization): Given a set of systems S , then 

 is a function which maps systems to a set of character 

states C  and 

:X S C→

X  is called the characterization of . S

3.4.3.1 Interoperability Characters 

As mentioned previously, there are numerous types of system characters that can 

be used to describe a system.  However, in order to form a basis for an interoperability 

measurement, only a special type of system characters should be used to model a system; 
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these are called system interoperability characters, or interoperability characters for short.  

This is a foundational concept in interoperability measurement.  In their essence, 

interoperability characters describe what systems do to each other.  For example, 

opposing forces  each other, two computers  with each other, and 

two businesses  with each other.  In these three examples, the words , 

, and t  all imply a type of interoperation. 

attack

trade

rade

communicate

attack

communicate

It is not possible to list all interoperability characters, however it is important to 

note that generally any type of character is an interoperability character in specific 

circumstances.  For example, although physiological and interfacial characters are clearly 

interoperability characters, the morphological character shape  becomes an 

interoperability character when the docking interoperation of the space shuttle and the 

international space station is measured.  Similarly, the distributional character of  

is an interoperability character when considering the environment in which systems are 

used.  For example, a Navy destroyer is interoperable with the ocean but not the land, yet 

the Marine Corps’ Expeditionary Fighting Vehicle (EFV) is interoperable with both. 

domain

An interoperability character represents a pair of actions, such as “provide” and 

“accept,” which constitute an interoperation.  These pairs describe how systems provide 

and accept matter, energy, or information from each other.  A selection of interoperability 

characters associated with pairs of actions and type of intended interoperability 

measurement is given in Table 5.  While not exhaustive, it gives a sample of the many 

types of interoperability actions performed by systems.  An example framework of some 

interoperability characters arranged by system type is given in Table 34 in Appendix A8. 
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Table 5 A selection of interoperability pairs and associated characters 
Interoperability Pairs Interoperability Type Character 

Provide  Accept ⇔ General Interoperate  
Transmit  Receive ⇔ Communication Communicate  
Attack ⇔  Attacked Confrontational Attack  
Impact ⇔  Impacted Confrontational Impact  
Detect  Detected ⇔ Technological Detect  

Publish ⇔  Subscribe Net-Centric Service  
Occupy  Accommodate ⇔ Spatial Accommodate  

Serve  Be Served ⇔ Human Service  
Give  Take ⇔ Human Share  
Buy  Sell ⇔ Business Trade  

Pay ⇔  Get Paid Financial Transact  
Output  Input ⇔ Traditional System OutputInput  
Lead  Follow ⇔ Organizational Dance  
Order  Obey ⇔ Human, Organizational Command  

Produce  Consume ⇔ Business, Human Economy  
Transport  Transported by⇔ Business Transport  

 
3.4.3.2 Interoperability Character Identification 

Interoperability characters can be extracted in a methodical fashion from 

sentences which describe what systems do.  These sentences may originate in 

requirements, architecture, and a host of other acquisition, capabilities, and operations 

documents.  A guide for relating the parts of speech commonly found in sentences to 

system interoperability measurement is given in Table 6.  Note that the table does not 

give definite relationships.  For example, the table does not insist that all nouns must be 

systems, as some nouns are simply objects of verbs. 
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Table 6 Guide for relating parts of speech to interoperability modeling 
Part of Speech Relationship 

Noun System or refinement of an interoperability character 
Verb Interoperability character 

Pronoun System 
Adverb Refinement of an interoperability character 

Adjective Refinement of a system 
Preposition Refinement of an interoperability character 
Conjunction Not applicable 
Interjection Not applicable 

Article Not applicable 
 

To illustrate, the following sentence is given.  “The long train expeditiously 

transports raw material down the tracks to the factory.”  Two of the four nouns (train, 

factory) in the sentence can be considered as systems.  The two adjectives refine the 

names of the systems (long train, raw material), or imply the existence of other systems 

(e.g., short trains or refined material).  The single verb (transports) in the sentence implies 

interoperation between system pairs and is an interoperability character.  The adverb 

(expeditiously) refines the interoperability character (transports) implying that there may 

be different types, or levels, of hauling (e.g., sluggishly transports).  And the remaining 

two nouns (material, tracks) also refine the interoperability character by describing what 

is transported and by which method it is transported.  Similarly, the prepositional phrase 

(“down the tracks”) also refines the interoperability character (transports).  The last 

prepositional phrase (“to the factory”) hints at the fact that the train and the factory 

interoperate (e.g., by providing and accepting raw material).  From this analysis, it can be 

seen that a hierarchical description of interoperability characters can be made.  If the 

interoperability pair (transports ⇔  transported by) is represented by the character 

, then refining interoperability characters can be , Transport .Transport Material
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. .Transport Material onTracks

ransp

{

, and . If the 

character states are assumed to be binary then the beginnings of a system interoperability 

model can be given in 

. . .Transport Material onTracks Expeditiously

ransport

. .Material onRoad

(1).  If a new system is added to the model, for example, a tru , 

then it can be seen that the tru  can also T  raw material, but on the road rather 

than on the tracks (i.e., T ). 

ck

ck

ort

}

{ }0,1

S train

Tr
Tr

X
Tr
Tr

C

=

=

=

1s 2s

1s

, , ,

,
. ,
. . ,
. . .

terial tracks factory

Material
Material onTracks
Material onTracks Expeditiously

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

1s 2s

2s

ma

ansport
ansport
ansport
ansport

  (1) 

3.4.3.3 Interoperability Character Directionality 

Interoperability characters are inherently directional.  As previously mentioned, 

interoperability involves a pair of systems doing something to each other.  For example, 

given two systems  and , assume that  attacks .  From both systems’ 

perspectives,  is initiating the attack (i.e., transmitting) while  is absorbing the attack 

(i.e., receiving).  Thus the interoperation (e.g., { }X Attack= 1s s) between  and  is 

directional from  to , but not vice versa.  The directionality of system interoperation 

can modeled four different ways (

2

1s 2s

Figure 6).  
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1s  2s

No interoperation

1s 2s  X

Bi-directional interoperation 

1s  2sX

Uni-directional interoperation →

1s 2s  

Uni-directional interoperation  ←

X

X =∅  

Figure 6.  Directional interoperability possibilities 

 Thus, when an interoperation occurs between two systems, the direction of the 

interoperation must be captured.  This directionality can be annotated by a (T) for 

transmit or a (R) for receive appended to each interoperability character code.  For 

example, { }( ), ( )X Attack T Attack R=  is the complete characterization for the example in 

the previous paragraph.  Generalizing, { },T RX X X= .  Although the size of X  doubles 

in order to accommodate the directionality of interoperability characters, it is important to 

keep track of one-way interoperations between systems.  Both collaborative and 

confrontational interoperations can be directional.  If every interoperability character in 

X  is bi-directional, then the (T) and (R) suffixes are not needed. 

3.4.4 System Instantiation 

Once systems, their interoperability characters, and the states of those characters 

have been identified, then a specific system can be modeled, or instantiated, as a 

sequence (Bullock, 2006; Amanowicz & Gajewski, 1996) of states of system characters. 
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DEFINITION (System Instantiation): Given a specific s S∈  and a set 

x X⊆  of system characters descriptive of , then s ( )x sσ =  is a 

sequence of system character states, called the instantiation of , 

which models . 

s

s

Once all  have been instantiated, the system instantiations must be aligned 

with each other in order to support meaningful system comparisons and other 

mathematical operations.  Unless otherwise stated, hereafter the term system instantiation 

implies an aligned system instantiation. 

s S∈

DEFINITION (Instantiation Alignment): Given a set x X′ ⊆  of system 

characters descriptive of s′  and a set x X′′ ⊆  of system characters 

descriptive of , and s′′ { }X x x′ ′′= ∪ , then two system instantiations 

σ ′  and σ′′  are aligned if ( )X sσ′ ′=  and ( )X sσ′′ ′′= .  The aligned 

instantiation of  is given by S ( )X SΣ = . 

In order to illustrate these concepts, an example is given.  Let { }1 2 3, ,S s s s=  be a 

set of systems of interest, let { }1 2 3 4, , ,X x x x x=

S

 be a set of bi-directional interoperability 

characters used to characterize , and let all character states be absence/presence states 

(i.e., { }0,1C = ).  Define individual, unaligned, system instantiations as in (2), then an 

aligned instantiation of  is given by S (3). 
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( ) ( ) ( ) ( ){ } { }
( ){ } { }
( ) ( ){ } { }

1 1 1 2 1 3 1 4 1

2 1 2

3 2 3 4 3

, , , 1,1,0,1

1

, 1,0

x s x s x s x s

x s

x s x s

σ

σ

σ

= =

= =

= =

 (2) 

 ( ) { } { } { }{ }
1 1 0 1

1,1,0,1 , 1,0,0,0 , 0,1,0,0 1 0 0 0
0 1 0 0

X S
⎡ ⎤
⎢ ⎥Σ = = = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3) 

3.4.5 Performance Enhanced Instantiation 

A system instantiation  in which interoperability characters are assigned binary 

character states is an underlying interoperability model upon which a performance-

enhanced instantiation is based.  The performance-enhanced instantiation can be used to 

facilitate data rate, cost, efficiency, or throughput analysis, among others.  For example, 

given a set of systems 

Σ

(4) and a set of bi-directional interoperability characters (5) with 

character states (6), then  can be instantiated as S (7) if it is assumed that the  has 

USB, Wi-Fi, and Serial communication capability and that the  possesses the same 

plus GSM, IR, and Bluetooth functionality. 

Laptop

PDA

 { },S Laptop PDA=  (4) 

{ }. , . , . , . , .X CommUSB CommWiFi Comm Serial CommGSM Comm Bluetooth=  (5) 

 { }0,1C =  (6) 

 1 1 1 0 0 0
1 1 1 1 1 1

USB WiFi Serial GSM IR Bluetooth
Laptop
PDA

⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (7) 
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If a data rate focused interoperability analysis is desired, a performance-enhanced 

system instantiation can be defined PΣ (8) which models, for example, the peak data rates 

(in Mbits/sec) for each type of interoperation characterized by X . 

 480 54 0.02 0 0 0
480 11 0.250 0.271 1.152 2

P

USB WiFi Serial IR GSM Bluetooth
Laptop
PDA

⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (8) 

This performance-enhanced system instantiation assumes that the  and 

 adhere to the standards given in 

Laptop

PDA Table 7. 

Table 7 System implementation standards 
  Laptop PDA  

.CommUSB   USB 2.0 USB 2.0

.CommWiFi   802.11g 802.11b

.Comm Se alri   RS‐232 (strict) RS‐232 (relaxed) 

.Comm GSM   N/A GSM

.Comm IR   N/A MIR IrDA 
  N/A Bluetooth 2.0 .Comm Bluetooth

3.5 Interoperability Measurement 

Metrology, or the science of measurement, defines measurement as “the objective 

representation of our empirical knowledge of the world by numbers,” or in other words, 

“the assignment of numbers to properties or events in the real world by means of an 

objective empirical operation, in such a way as to describe them.” (Finkelstein & 

Leaning, 1984:25-26)  If interoperability is considered as a property of a set of systems, 

then an operation, called a system interoperability measurement, can be defined which 

objectively and empirically assigns a number to systems interoperability.  This operation, 

its derivation, and its varieties are defined in succeeding sections. 
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3.5.1 System Similarity 

Similarity measures have been well-studied. (Guan, et. al., 2008)  In its essence, 

similarity reflects the degree of resemblance of two or more objects.  In this research, the 

similarity of systems is measured by using a function which takes aligned system 

instantiations as its arguments, which rewards for shared interoperability characters, and 

which (optionally) penalizes for unshared interoperability characters. 

DEFINITION (System Similarity): Given aligned sequences ,σ σ′ ′′  

instantiating two systems ,s s′ ′′ , then the similarity between ,s s′ ′′  is 

given by ( ,Sim )σ σ′ ′′  where ( ),mSi σ σ′ ′′  is a similarity function. 

There are numerous types of candidate similarity functions to choose from.  

Sneath & Sokal categorized similarity functions as distance, association, correlation, and 

probabilistic measures. (1973)  Guan, et. al., offered a new classification, describing 

similarity measures as geometric, feature contrast, alignment-based, and transformational 

measures. (2008)  Each type is briefly addressed below, followed by definitions of two 

similarity functions especially appropriate for interoperability measurement. 

Distance (geometric) functions measure how far apart objects reside in character 

space.  In other words, the geometric function is a measure of dissimilarity vice similarity 

which is a measure of how close objects reside to each other in character space. (Sneath 

& Sokal, 1973)  A geometric dissimilarity function can be converted to a similarity 

function by first normalizing the function by maximum character state value  and by 

number of characters  so that its range is 

maxc

n [ ]0,1 , then subtracting it from 1.  Thus, perfect 
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similarity implies  and no similarity implies ( ),Sim σ σ′ ′′ =1 ( ),Sim σ σ′ ′′ =

( ) ( )

0 .  For 

example, given the Minkowski distance function (9), the corresponding Minkowski 

similarity function can be written as (10).  , as defined later in this section, can be 

classified as a weighted geometric similarity measure, and is used to measure the 

similarity of systems instantiated with positive real-valued character states. 

RealSim

1

 ( )
1

n rr

i

Mink MD i iσ σ
=

⎛ ⎞′ ′′ ′ ′′= = = −⎜ ⎟
⎝ ⎠
∑ ,rd σ σowski Distance  (9) 

 ( ) ( )
1

1 max

1 1
r n

−
r rn

i

i i
MS

c
σ σ

=

⎛ ⎞′ ′′−⎛ ⎞⎛ ⎞⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∑Minkowski Similarity  (10) 

Association similarity measures are related to distance/geometric similarity 

measures but are more appropriately described as feature, or character, contrast measures.  

They are especially appropriate for measuring the similarity of objects described in 

character space with absence/presence character states. (Batagelj & Bren, 1995; Sneath & 

Sokal, 1973; Baulieu, 1989)  The general form of a character contrast measure is given in 

(11) where , ,θ α β  are weights,  is a function, σf σ′ ′′∩  represents the features that 

,σ σ′ ′ σ σ′ ′′−′  have in common,  represents the features that σ ′  possesses that σ′′  does 

not, and σ σ′′ ′−  represents the opposite. (Guan, et. al., 2008)  BinSim , as defined later in 

this section, can be considered a character contrast similarity measure and is used to 

measure the resemblance of systems instantiated with binary (absence/presence) 

character states.  Other examples of character contrast measures include the Jaccard 
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coefficient, the Czekanowski metric, and the Simple Matching coefficient, among many 

others; Batagelj & Bren compare over twenty character contrast measures (1995).  

 ( ) ( ) ( ) ( ),Sim f f fσ σ θ σ σ α σ σ β σ σ′ ′′ ′ ′′ ′ ′′ ′′ ′= ∩ − − − −  (11) 

Correlation coefficients associate the similarity of objects modeled in character 

space with a function of the angle between the object vectors. (Sneath & Sokal, 1973)  

An example of a correlation coefficient is the cosine function.  Probabilistic similarity 

measures account for the distribution of character states for a particular character (Ibid) 

and alignment-based similarity measures give greater weight to common features of 

objects which are related or belong to the same sub-object. (Guan, et. al., 2008)  Finally, 

transformational similarity measures associate similarity with the number of operations 

required to transform one object so as to become identical to another. (Hahn, et. al., 2003) 

An interoperability function is a similarity function which meets certain criteria 

given in the definition below. 

DEFINITION (Interoperability Function): An interoperability function I  

is a similarity function which 1) takes a pair of system instantiations as 

its arguments, 2) has a range of [ ]0,1 , 3) rewards for shared 

characters and optionally penalizes for unshared characters, and 4) 

gives a greater reward to system pairs whose shared characters’ states 

have a “better” value. 

Although many interoperability functions might be appropriate for 

interoperability measurement, two fundamental interoperability functions previously 
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alluded to,  and , are defined below.   is a character contrast 

similarity function used to measure the similarity of system instantiations with binary-

valued (absence/presence) character states.  It can be modified in many ways which could 

be useful for certain applications.  For example, 

BinSim RealSim BinSim

BinSim  does not penalize for unshared 

interoperability characters, although a penalty term could be easily added.  A penalty 

might be desired when the lack of a certain interoperability character is a severe 

detriment to the effectiveness of the operational process.   adheres to the standard 

character contrast measure form given in 

BinSim

(11) with 1
nθ = , 0α β= = , and 

( )f σ σ′ ′′= ∧ . 

DEFINITION ( BinSim ): Given a pair of systems ,s s′ ′′  instantiated with 

, then {,σ σ′ ′′∈ }0,1 n ( ) ( ) ( )( )1

1

n

nBin
i

I Sim iσ
=

iσ′ ′′= = ∧∑  is an 

interoperability function which gives a normalized measure of the 

similarity of systems instantiated with binary-valued character states 

where  is the boolean AND operator. ∧

RealSim , is a normalized geometric measure appropriate for measuring the 

similarity of system instantiations with real-valued character states.  It assumes that the 

range of all characters’ states are the same [ ]max0,c , either inherently or by mapping.  The 

core of  is the Minkowski similarity function RealSim (10) modified to reward strictly for 

shared characters by inserting the  parameter defined in ib (13).  The modified Minkowski 

similarity function is given in (12). 
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( ) ( )
1

1 max

1  1
r rn

ir
i

i i
Modified Minkowski Similarity MMS b

cn
σ σ

=

⎡ ⎤⎛ ⎞′ ′′−⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= = − ⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦
∑ (12) 

 ( ) ( )0 0  
1i

i or i
b

else
σ σ′ ′′ 0⎧ = =

= ⎨
⎩

 (13) 

Although it would be desirable to just use the Modified Minkowski Similarity 

function as , this is not possible because it violates the fourth criteria of an 

interoperability function by not giving a greater reward to system pairs whose shared 

characters’ states have a better value.  For example, consider four system instantiations 

RealSim

1 [1]σ = , [ ]2 2=σ , [ ]3 3σ = , [ ]4 4σ =  and assume 2r =  and max 4c = .  Each system 

instantiation possesses one (the same) interoperability character, i.e., , but each 

exhibits a different state of that character.  As expected, 

1n =

( ) =1 2,σ σ 0.MMS 75, but 

 as well.  In other words, ( )3 4, = 0.75MMS σ σ 1σ  resembles 2σ  just as much as 3σ  

resembles 4σ , but intuitively, the similarity of 3 4,σ σ

1 2,

 should be higher because those two 

systems possess larger character state values than σ σ .  Hence, a weighting must be 

applied to the similarity measurement to correct this deficiency.  Although numerous 

weighting schemes could be chosen, the average character state value (14) provides a 

simple, yet appropriate, weighting scheme and is chosen to finalize the definition of 

.  Si  has the capability of yielding very precise similarity measures of system 

instantiations limited only by the number of characters and the precision of those 

characters’ states. 

RealSim Realm
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( ) ( )

1 1

max

   
2

n n

i i
i i

Average Character State Value w
nc

σ σ
= =

′ ′′+
= =

∑ ∑
 (14) 

DEFINITION ( ): Given a pair of systems RealSim ,s s′ ′′  instantiated as 

 , then [ ma
n c∈ ∩ ]x, 0,σ σ′ ′′ \ RealI Sim w MMS= = ⋅

w

, written out 

completely in (15), is an interoperability function which gives a 

weighted, normalized measure of the similarity of systems instantiated 

with real-valued character states where  is the average character 

state value of a pair of system instantiations, MMS is the Modified 

Minkowski Similarity function,  is the number of characters used to 

instantiate 

n

,σ σ′ ′′ ,  is the maximum character state value, and r  is 

the Minkowski parameter (usually set to r

maxc

2= ). 

 
( ) ( ) ( ) ( )

1

1 1Re
1 max

max

11
2

n n r rn

i ial ir
i

i ii i
I Sim b

cnnc

σ σσ σ
= =

=

⎡ ⎤⎡ ⎤ ⎛ ⎞′ ′′′ ′′ −⎛ ⎞+ ⎛ ⎞⎢ ⎥⎢ ⎥ ⎜ ⎟= = − ⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ ∑  (15) 

3.5.2 System Interoperability 

Applying the concept of similarity to interoperability measurement, a 

foundational axiomatic relationship between similarity of systems and interoperability of 

systems can be stated. 

AXIOM  (System Similarity and Interoperability):  If a pair of systems is 

instantiated only with system interoperability characters, then the measure of 

their similarity is also a measure of their interoperability. 
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The System Similarity and Interoperability axiom can be used to formally define 

interoperability measurement. 

DEFINITION  (Interoperability Measurement): Given two systems 

,s s S′ ′′∈  instantiated with bi-directional characters as ,σ σ′ ′′and an 

interoperability function I , then  ( ),m I σ σ′ ′′=  is a measure of the  

interoperability of  and s′ s′′where 0m ,σ σ′ ′′= →  are non-

interoperable and 1 ,m σ σ′ ′′= → are perfectly interoperable.  

, ,ijM m i j S≤

S

⎡ ⎤= ⎣ ⎦  is a matrix of interoperability measurements for 

all system pairs in . 

If the interoperability characters used to instantiate systems are directional in 

nature (i.e., a system can provide an interoperation, but not accept it), then directional 

interoperability measurements (see next definition) must be made. 

DEFINITION (Directional Interoperability Measurement): If two systems 

{ } { }, , ,T R T Rσ σ σ σ σ σ′ ′ ′ ′′ ′′ ′= = ′  are instantiated with directional 

interoperability characters { },T RX X X= , then ( ),T Rm I σ σ′ ′′=  is a 

measure of the directional interoperability of σ ′  to σ′′ . 

3.5.3 Interoperability Measurement Modes 

3.5.3.1 Directional 

All interoperations are either bi-directional or uni-directional.  Bi-directional 

interoperation implies ( ) ( ), ,,m I m Iσ σ σ σ ,σ σ′ ′′ ′′ ′ σ σ′ ′′ ′′ ′= = =  whereas uni-directional 
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interoperation implies that ,m m ,σ σ σ′ ′′ ′′ ′σ≠  (e.g., σ ′  is a transmit only system and σ′′  is a 

receive only system). 

3.5.3.2 Self 

( )m I ,σSelf interoperability is defined as σ=  and is usually assumed to be zero.  

Self interoperability implies an interoperation originating at the system, exiting the 

system boundary and then accepted back through the boundary.  An example of this is a 

network loopback “ping” in which a computer attempts to detect its own IP address on 

the local network. 

3.5.3.3 Pure 

Pure interoperability is a measure of the interoperability of two systems whose 

instantiations are aligned only with each other, hence their interoperability measure is 

pure, or unencumbered by other systems’ interoperability characters.  In other words, 

2S = .  Pure interoperability is measured for performance or cost analysis reasons, 

among others.  The following example illustrates the concept. 

Given { }1 2,S s s= , { }1 2, , 3X x x x=  (all bi-directional), [ ]{ }0,9C∈ ∩\ ,  

instantiated as 

S

{ } { } { }{ }1 2σ σΣ = , 1,2,3= , 4,5,6 , and ReI Sim al=  (with Minkowski 

parameter set to ), an interoperability matrix is obtained 2r =

1 2,

(16) which shows that the 

interoperability of σ σ  is relatively low.  This was to be expected as the values of both 

system instantiation’s character states are all well below maxc 9= .  No self-

interoperability was assumed, so the diagonal of  was assigned a value of 0. M
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0 0.259

0.259 0
M ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (16) 

If a third system is added to , bringing with it additional interoperability 

characters, then expectedly, a third instantiation is added to 

S

Σ  and the size of M  

increases, but the value of ( 1,I )2σ σ can change as well because the context, or basis, of 

the interoperability measurement has changed.  This phenomenon is called contextual 

interoperability and is addressed next. 

3.5.3.4 Contextual 

Contextual interoperability is a measure of the interoperability of two systems 

whose instantiations have been aligned with at least one other system possessed of one or 

more different characters not used to characterize the initial two systems.  In other words, 

it is the measure of the interoperability of two systems in the context of a larger set of 

systems.  By increasing the size of , the number of characters in S X generally increases 

(although not necessarily so), thus providing a basis for a more precise interoperability 

measurement.  This is analogous to making a length measurement with a measuring tape 

with only two markings, versus using one with a hundred markings.  More markings 

yield a more precise basis for the length measurement. 

Applying this idea and taking the example given in the previous section, add  to 

 where  is instantiated as 

3s

S 3s { }3 3,7,8,9σ =  and { }1 2 3 4, , ,X x x x x=

S

.  Aligning the three 

system instantiations yields the following complete instantiation of . 
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1 2 3 0
4 5 6 0
3 7 8 9

⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (17) 

Again, using  as the interoperability function, and assuming , 

, , and no self-interoperability, the interoperability matrix in 

RealI Sim= 4n =

2r = max 9c = (18) is 

obtained. 

 
0 0.207 0.162

0.207 0 0.276
0.162 0.276 0

M
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (18) 

By adding a new system instantiation to Σ  , which increased the number of 

characters used to instantiate , the interoperability measurement of  and  becomes 

more precise, changing from  to 

S

I

1s 2s

0.259= 0.207I = .  This drop in the interoperability 

measurement was expected because the interoperability of  and  is now being 

measured in the context of  which not only adds a new interoperability character to the 

model but exhibits much higher character state values than the other two system 

instantiations.  In the context of the expanded model,  and  still appear very similar 

(i.e., the Modified Minkowski Similarity function shows their similarity is 

1s 2s

3s

1s 2s

0.83MMS = ) 

but their overall interoperability measurement is penalized by their low interoperability 

character state values ( ).  In the context of the very capable , the 

interoperability measurement of  and  drops.  While this result might be considered 

non-intuitive, it is nevertheless correct.  Indeed,  and  are not less interoperable 

0.292w = 3s

1s 2s

1s 2s
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because  is added to , but their interoperability measurement becomes more precise 

because of the infusion of the additional characters associated with .  It can be 

postulated that as the number of characters used to instantiate  approaches infinity, then 

the interoperability measurements of the systems in  approach perfect precision. 

3s S

3s

S

S

3.5.3.5 Time-variant 

Interoperability is generally time variant.  For example, atmospheric effects due to 

the changes from night to day will degrade the optical interoperability of reconnaissance 

satellites and ground targets.  Similarly, the directional interoperability of an attacker and 

his target may increase as the attacker has ingressed long enough to come in range of the 

target.  Finally, end-to-end computer interoperability may improve or diminish with 

changes in network congestion tied to worker shift changes, lunchtime usage, etc.  There 

are two distinct methods of modeling time-variant interoperability.  The first method 

creates a time-continuous basis for the interoperability measurement in which systems are 

instantiated using interoperability characters which themselves are functions of time.  

Hence, the resulting interoperability measurement is also a function of time.  The second 

method is a discrete method in which a series of instantiations are created which 

represent “snapshots” in time.  The series of interoperability measurements tied to these 

instantiations represents a sampled time-varying interoperability measurement.  Time-

variant interoperability measurements can be directional, self, pure, contextual, 

confrontational, collaborative, direct, or in-direct interoperability measurements.  A time-

variant interoperability measurement can be equivalent to an activity-phased 

measurement if the activities occur in time sequential fashion.  Time variant 
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interoperability measurements are useful in determining if/when interoperability lapses 

cause associated degradation in operational effectiveness. 

3.5.3.6 Constrained Upper Bound on Interoperability Measurement 

It is not possible, or even desirable, for all systems to interoperate with each other, 

let alone interoperate perfectly.  Furthermore, for those systems which ought to 

interoperate, there are often many limitations, specific to the operational process, which 

prevent them from interoperating at their full potential.  Some of these limitations are 

physical (e.g., electromagnetic interference), operational (i.e., rules of engagement), or 

reliability related (i.e., mission capability), among many others.  Therefore, in order to 

manage expectations on the final interoperability measurement, it is useful to define a 

realistic upper bound on the interoperability measurement, called the constrained upper 

bound.  This constrained upper bound on the interoperability measurement admits that 

the best possible interoperability measurement must be less than 1m =  due to these 

various degradations and limitations.  The constrained upper bound on the 

interoperability measurement is calculated by first determining the operational process-

specific interoperability limiting factors, then by building an interoperability model 

which accommodates those limitations.  This model includes all interoperability 

characters the set of systems could conceivably implement with their character states set 

to their best possible value in light of the predetermined limitations.  The difference 

between the constrained upper bound on the interoperability measurement and the current 

interoperability measurement is called the interoperability gap and represents the trade 
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space, design space, or funding space in which process or system changes can occur, to 

the end of improving operational effectiveness.   

3.5.3.7 Collaborative 

Collaborative interoperability is the type of interoperability most understood by 

people today.  For example, in the Department of Defense the term interoperability is 

usually associated with the idea of service, joint, and allied systems, units, and forces 

working together to mutual advantage as opposed to friendly (blue) systems 

interoperating with adversary (red) systems.  Similarly, in the civilian sector, an engineer 

might consider interoperability to be a property of how well the various systems he 

operates or designs interface or provide and accept services from each other.  Written 

another way, collaborative interoperability is the interoperability between friendly, or 

blue systems.  Collaborative interoperability also carries a connotation that if one system 

provides something, another system gives something back in exchange.  In other words, 

the systems interoperate in a collaborative fashion for mutual benefit or to achieve a 

shared goal.  Applying traditional military terminology, collaborative interoperability can 

also be called blue-to-blue interoperability.  The interoperability measurement method 

presented in this Chapter provides a methodical means of measuring the collaborative 

interoperability of all types of systems interoperating in all kinds of ways. 

It is important to note however, that not all interoperations are collaborative.  

Indeed, collaborative interoperability often supports the goals of the operational process 

but does not directly implement them.  For example collaborative forms of 

interoperability such as linguistic, technical, logistics, and cultural interoperability of 
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coalition forces and systems enabled the ouster of Iraq from Kuwait during operation 

DESERT STORM, however they did not directly cause the ouster—that was done by 

confrontational interoperability methods such as attack operations.  In general, if the 

operational process implies any form of opposition (i.e., an oppositional or 

confrontational operational process) between systems (e.g., negotiation, attack, 

greediness, pushing, removing, limiting, and preventing, among others), then another 

type of interoperability, called confrontational interoperability can be measured.  This 

type of interoperability measurement is powerful because it can be related directly to 

operational effectiveness without discrete event, or other types of simulation. 

3.5.3.8 Confrontational 

A unique contribution of this research is the announcement and explanation of 

confrontational interoperability, which is the interoperability of friendly (blue) and 

adversary (red) forces.  Examples of confrontational interoperability include the actions 

of a friendly (blue) jammer to degrade the communications of adversary (red) force 

command and control systems, the efforts of two negotiation teams attempting to resolve 

an issue, environmental activity which inhibits technology (e.g., gravity vs a rocket, wind 

vs an airplane, oxidation vs a metal bridge, or sunspot-generated electromagnetic 

interference vs radios), and marketing aimed at attracting business for one company 

while preventing it for another, among others.  In a confrontational operational process, 

one set of systems tries to achieve advantage or effectiveness over the remaining systems.  

Many military processes, such as time critical targeting, psychological operations, or 

defensive counter air, are inherently confrontational.  Indeed, for these processes 
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confrontational interoperability should receive focus as it describes the ability of friendly 

(blue) systems to control adversary (red) systems and to prevent reciprocation—an 

inherently military concept. 

Confrontational interoperability implies and underpins effects-based operations in 

which all planning, preparation, execution, and assessment of an operation concentrates 

on the desired effects on the enemy.  Everything that does not contribute toward 

achieving the desired effect is considered irrelevant and anything that could hinder the 

effect is eliminated.  For example, in a time critical targeting operation, the goal is not to 

have a high degree of collaborative interoperability of friendly systems (this might be 

helpful or could be damaging to the operation), but to have a high degree of directional 

confrontational interoperability from friendly (blue) to adversary (red) systems.  In other 

words, the goal is to ensure that blue systems are able to destroy red systems.  Indeed, for 

certain operational processes, collaborative interoperability ideally is minimized and 

confrontational interoperability is maximized.  For example, during stealth operations, a 

single stealthy aircraft may conduct a bombing operation without support aircraft, while 

maintaining radio silence, and while flying without the benefit of active radar.   

While too much collaborative interoperability in any type of operational process 

might result have degrading effects, such as information overload, in a confrontational 

operational process, a high degree of directional confrontational interoperability from 

friendly to adversary systems is always desired as it will likely result in decisive success.  

Furthermore, in the context of a confrontational operational process, when the statement 

is made that collaborative interoperability must be improved, the implication is that it 
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must be improved in order to increase operational effectiveness (i.e., improve 

confrontational interoperability).  Some have made the dangerous assumption that the 

more interoperable friendly systems and forces are with each other the more operational 

success they will enjoy.  This is often false.  For example, fighter pilots have warned 

against information overload in the cockpit which might distract them from their main 

tasks.  Similarly, the ability of mid- and senior-level managers to interoperate with each 

other and their subordinates via e-mail is both a benefit and a detractor if misused.  

Information overload, distraction, and inefficiencies, among other detractors, are the 

result of too much collaborative interoperability.  The relationship between 

confrontational interoperability and operational effectiveness is described in succeeding 

sections and demonstrated in Chapter 4. 

3.6 Interoperability Impact on Operational Effectiveness 

General Hal Hornburg quipped in 2004 that he looks forward “to the day where 

we can convince a surface-to-air missile that it’s a Maytag in a rinse cycle, making it 

irrelevant to combat.” (Tirpak, 2004:31)  This statement implies a desire to control the 

enemy.  Stated another way, General Hornburg desires friendly (blue) force operational 

advantage resulting from improved friendly (blue)-to-adversary (red) directional 

interoperability and degraded adversary (red)-to-friendly (blue) directional 

interoperability.  Sun Tzu encapsulates this concept by stating “The clever combatant 

imposes his will on the enemy, but does not allow the enemy’s will to be imposed on 

him.” (Giles, 1910:VI-2)  The following axiom gives a sufficient condition which relates 

directional confrontational interoperability to operational advantage. 
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AXIOM  (Operational Advantage): Let the subscripts ,B R  refer to 

friendly (blue) and adversary (red) forces respectively.  Given a set of 

systems { },B RS S S=  instantiated as { },B RΣ = Σ Σ , then a sufficient 

condition for friendly (blue) force operational advantage over 

adversary (red) force is for all pairs ( ),B Rσ σ , ( ) (, , )B R RI I Bσ σ σ σ>  

assuming  completely characterizes . Σ S

While the Operational Advantage axiom states that if the directional 

interoperability of all friendly (blue) toadversary ( red) systems exceeds that of adversary 

(red) to friendly (blue), then operational advantage is obtained, it is important to 

emphasize that this is a sufficient, but not a necessary condition.  For example, if a set of 

friendly (blue) systems includes a home base HBσ  and a bomber Bσ , while the set of 

adversary (red) systems consists of an integrated air defense system IADSσ  and a target 

TGTσ , then probably the home base does not need to have operational advantage over the 

enemy target in order for the operation to be effective, however the bomber must have 

operational advantage over both the air defense system and the target.  Thus, in this 

limited example it might be postulated that a necessary condition for friendly (blue) force 

operational advantage operational advantage over adversary (red) force is that 

( ) ( ), ,B IADS IADS BI Iσ σ σ> σ  and ( ) ( ), ,B TGT TGT BI Iσ σ > σ σ .  Unfortunately, these 

necessary conditions are not always possible to define, and generally discrete event or 

some other type of simulation is required in order to determine the minimal set of 
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systems which must enjoy operational advantage over each other in order to ensure 

operational success. 

As MoOEs quantify operational advantage, applying the Operational Advantage 

axiom, the impact of interoperability on operational effectiveness can be described.  This 

important result is given below as the Interoperability Impact on Operational 

Effectiveness axiom, which, like the Operational Advantage axiom, describes a sufficient 

condition.  The Interoperability Impact on Operational Effectiveness axiom, 1) applies to 

confrontational interoperability (noting that collaborative interoperability between 

friendly systems contributes to confrontational interoperability between opposing forces’ 

systems), 2) requires that the MoOE be written as a diametric pair, and 3) demands that 

the set of systems be instantiated by a complete set of interoperability characters X  

which describe all interoperations related to the diametric pair.  For example, if  is the 

percent of red targets destroyed and 

BO

RO  is the percent of red targets protected, then X  

must characterize all interoperations between all systems in  which contribute to the 

destruction and protection of red targets. 

S

AXIOM (Interoperability Impact on Operational Effectiveness): Let the 

subscripts ,B R  refer to friendly (blue) and adversary (red) forces 

respectively.  Given a set of systems { },B RS S S=  characterized by X  

and instantiated as { },B RΣ = Σ Σ  and a diametric MoOE { },B ROO O , 

then if 

=

X  completely characterizes all interoperations related to 

,B RO O  then a sufficient condition for B RO O>  is that friendly (blue) 
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systems have Operational Advantage over adversary (red) systems, or 

in other words friendly (blue)-to-adversary (red) directional 

interoperability exceeds adversary (red)-to-friendly (blue) directional 

interoperability for all pairs ( ),B Rσ σ  (i.e., 

( ) ( ) ( ),, , ,B R B R BR B RI I Oσ σ σ σ∀ > ↔

bilityLevelCode

O>σ σ ). 

3.7 Architecture and Interoperability 

Numerous enterprise, system, and operational architectures have been created 

over the past decade using the DoD Architecture Framework (DoDAF).  Many, if not all, 

of the organizations which created these architectures are also interested in 

interoperability.  This is apparent in the heavy focus on describing needlines, information 

exchanges, and system functions as well as in documenting the technical standards 

required for communication and net-centric operation.  Unfortunately, only some of the 

key elements required to perform an interoperability measurement (e.g., operational 

process and set of systems) can be extracted from a candidate DoDAF architecture 

description.  Additionally, the Core Architecture Data Model (CADM) used as a template 

for storing DoDAF architecture descriptions (DoD, 2007c) has only a portion of the 

structure necessary to store the required elements for an interoperability measurement-

focused architecture.  The CADM designers were definitely considering interoperability 

when they designed the model.  For example, they included a seldom used field called 

 intended to hold a LISI level.  However, using CADM to 

store the key elements given in 

interopera

Table 8 would be an inefficient force-fit at best.  For 
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example, CADM provides for storing systems in multiple places (i.e., what is called a 

system in the context of this dissertation is called a system, sub-system, system node, 

operational node, and organization within the CADM model).  Possibly even more 

concerning are fields in CADM which simultaneously store interoperability measurement 

elements and non-interoperability measurement elements (e.g., operational activities, 

system functions, needlines, and information exchanges stored in a CADM database 

could be interoperability characters, but not necessarily so).  Thus it is concluded that 

DoDAF and CADM in their current forms (version 1.5) are incapable of storing or 

representing an architecture whose purpose is interoperability assessment and analysis. 

Table 8 Interoperability measurement key elements 
Key Element 

Purpose 
Operational Process 

Measure of Operational Effectiveness
Set of Systems 

Set of Interoperability Characters 
States of Interoperability Characters 

System Instantiation 
Interoperability Function 

Interoperability Measurement 
 
DoDAF and CADM are currently unable to accommodate the elements of Table 

8, but it is possible to extend them to do so.  An interoperability-focused redesign of 

CADM is outside the scope of this dissertation, however, embracing the motivations of 

DoDAF version 2.0 development (architecture with a purpose), a set of views are 

proposed specifically for the purpose of interoperability assessment (Table 9).  The views 

proposed in the extension are numbered so as to be roughly analogous to existing DoDAF 
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views.  In the table, the name, contents, format, and current DoDAF analogue view are 

given for each proposed view. 

IV-1 Interoperability Purpose and Assumptions is a text- document, augmenting 

the AV-1, which describes the purpose of the interoperability analysis, the associated 

MoOE, and critical assumptions such as which interoperability function was used to 

make the interoperability measurement.  It also includes the final analysis made based 

upon the IV-4 view. 

IV-2 Interoperability Graph visually depicts the systems and their interoperations.  

A mathematical definition follows. 

DEFINITION (Interoperability Graph): Given a set of systems  

instantiated as 

S

{ },T RΣ = Σ Σ  over a set of interoperability characters 

X  with character states C , let  be a directed multigraph in which 

 and  is a set of edges such that for all characters 

G

( ) S=V G

i

( )E G

x X∈ , there exists a directed edge from s′  to s′′  labeled with the 

name of that character if s′  is able to provide that interoperation and 

 is able to accept it. s′′

IV-3 System Instantiation (Σ ) is a system to interoperability character matrix 

containing states of the characters, IV-4 Interoperability Measurement is the matrix of 

pairwise system interoperability measurements M , and IV-5 Operational Process (i.e., an 

OV-5) is a SysML activity diagram modeling the operational process.  A simple 
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interoperability architecture is given in Table 10 to illustrate the five interoperability 

architecture products. 
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Table 10 Example interoperability architecture 
IV

-1
 

 
NAME:  Precision Strike Interoperability Measurement 
PURPOSE:  To predict operational success by application of the Interoperability 
Impact on Operational Effectiveness axiom. 
INTEROPERABILITY FUNCTION:  BinI Sim=  

MoOE: { },B RO O O= , BO  is “target destroyed?” and RO  is “target protected.” 
ANALYSIS:  Assuming the critical interoperation is PSP TGT− , then because 

 then it is assumed that . ( ) (,PSP TGT TGT PSPI Iσ σ σ σ> ), B RO O>
 

IV
-2

 

 

IV
-3

 

 
 

IV
-4

 

 

IV
-5

 (O
V

-5
) 

 

 
 

 

Transmit  Receive 
  AOC PSP TGT AOC PSP TGT 

1 1 0 1 1 0 C2 
C2.Communicate 1 1 0 1 1 0 

1 0 0 0 1 0 Intel 
Fires  0 1 0 0 0 1 

AOC PSP TGT 
AOC 0 3/4 0 
PSP 1/2 0 1/4 
TGT 0 0 0 
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3.8 Summary 

The general method of interoperability measurement presented in this chapter is 

foundational and weaves together the best ideas from extant literature with key missing 

elements described in this research (e.g., system interoperability characters, character 

states, system instantiations, system similarity, operational advantage, and others).  The 

result is a flexible method suitable for measuring the collaborative and confrontational 

interoperability of all types of systems interoperating in all types of ways.  Because the 

method is grounded in an operational process, the interoperability measurement is not 

abstract, but mathematically related to the operational effectiveness of the confrontational 

operational process.  The flexibility of the method supports the instantiation of systems at 

any level of abstraction, with resultant interoperability measurements at any desired level 

of precision.  In the method of this chapter, numerous weaknesses of extant methods are 

resolved.  For example, no longer is interoperability measurement limited to specific 

types of systems or interoperations, no longer is an interoperability measurement an 

abstract measure divorced from the operational circumstances in which the interoperation 

occurred, and no longer are interoperability measurements restricted to the precision of a 

limited scale or the accuracy of a limited/outdated set of attributes.  In short, the method 

of this chapter defines a basic theory of interoperability measurement. 

 



 

4. Analysis and Results 
 

One key way to ensure effectiveness is to ensure that our systems are interoperable. 
—General Lester Lyles 

 

4.1 Overview 

The interoperability measurement method of Chapter 3 is foundational and 

broadly useful.  By applying the method, the interoperability of organizations, coalitions, 

weapon systems, technology, philosophies, the environment, and uncountable other 

entities can be measured.  While it is not possible to provide an example for all possible 

applications (Chapter 3, Table 4) of the interoperability measurement method, several are 

given in this chapter to demonstrate its application. 

First, it will be shown that maturity model (leveling) methods are a special case of 

the more general method of Chapter 3.  Specifically, the Organizational Interoperability 

Model (OIM) will be modeled using the method of Chapter 3 and, using the same 

example given in Clark & Moon (2001), the interoperability of coalition forces will be 

measured and the results compared to that of Clark & Moon.  Second, to demonstrate the 

relationship of interoperability with operational effectiveness, the Interoperability Impact 

on Operational Effectiveness axiom will be applied to a Suppression of Enemy Air 

Defenses (SEAD) problem.  Finally, the time variance of interoperability will be explored 

through a Precision Strike application. 

4.2 Application: Coalition Interoperability 

Technological interoperability has been commonly discussed in other research, 

often focusing on network information technology standards, however, other types of 
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interoperability are often more important.  For example, the US air strikes against Libya 

in 1986 not only highlighted equipment interoperability problems (i.e., the Navy lacked 

HAVE QUICK radios which the Air Force possessed), but more especially joint 

procedural interoperability problems between the Navy and Air Force. (Clark & Moon, 

2001)  Similarly, NATO forces experienced secure, tactical voice communication 

problems in Kosovo, not because of lack of proper radios, but also because of procedural 

interoperability problems. (Nutwell & Price, 2000).  Finally, Lieutenant General Cevic 

Bir, the commander of United Nations Operations Somalia (UNOSOM II) in 1993 

remarked that interoperability was a major problem in every phase of his coalition 

operation. (Bir, 1997)  Joint and coalition interoperability must be addressed, not just at 

the technical level, but also at the organizational level.  Coalition interoperability 

measurements can focus the commander’s efforts on improving joint and coalition 

warfighting effectiveness by increasing the interoperability of coalition forces. 

Clark & Jones recognized the importance of coalition interoperability and 

described a maturity model, called the Organizational Interoperability Model (OIM), 

which describes a framework of coalition interoperability attributes and levels. (1999)  

Their model is based on the structure of the Department of Defense Levels of Information 

Systems Interoperability (LISI) model and is given in Table 11. 
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Table 11 Organizational interoperability maturity model (OIM) (Clark & Moon, 2001) 

  Preparedness  Understanding 
Command 
Style 

Ethos 

Level 4 
(Unified) 

Complete 
normal day‐to‐
day working 

Shared  Homogeneous  Uniform 

One chain of 
command and 
interaction with 

Detailed 
doctrine and 
experience in 
using it 

Shared 
communications 
and knowledge 

Level 3 
(Combined)  home 

organization 

Shared ethos 
but with 
influence from 
home 
organization 

Level 2 
(Collaborative) 

General 
doctrine in 
place and some 
experience 

Shared comms 
and shared 
knowledge about 
specific topics 

Separate 
reporting lines 
of 
responsibility 
overlaid with a 
single 
command chain 

Shared 
purpose; goals, 
value system 
significantly 
influenced by 
home 
organization 

Level 1 
(Cooperative) 

General 
elines guid

Electronic 
comms and 

Separate 
reporting lines 
of  Shared purposeshared 

information  responsibility 
Level 0 
(Independent) 

No 
preparedness 

Voice comms via 
phone, etc.  No interaction  Limited shared 

purpose 
 
The usefulness of the OIM model was demonstrated when Clark & Moon used it 

to analyze the International Force East Timor (INTERFET) coalition sent to enforce 

peace in East Timor in 1999. (2001)  The coalition consisted of forces from Australia 

(lead nation), the United States, New Zealand, Thailand, Phillipines, and Republic of 

Korea among others.  Using after-action reports pertaining to the operation, Clark & 

Moon were able to apply their model to determine qualitatively that the highest levels of 

interoperability occurred between Australia, the United States, and New Zealand, that 

Thailand and the Phillipines enjoyed a lower level of interoperability with Australia, and 

that all other interoperations were at the lowest level. 
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Clark & Moon assessed the interoperability of INTEREFET coalition forces with 

respect to the Australian Deployable Joint Force (ADJF) standard, as implemented 

according to the American, British, Canada, and Australia (ABCA) coalition operations 

handbook (COH).  Obviously, not all INTERFET member nations were capable of 

adhering, or even desired to adhere completely to this standard, and their interoperability 

levels, as assessed by Clark & Moon, reflected this.  For example, Clark & Moon stated 

that with respect to the Preparedness attribute, the Thai forces were scored at level 1 with 

respect to the standard, while the United States was scored at level 2.  Similarly, in Clark 

& Moon’s aggregate interoperability measurement, when they state that the 

interoperability of the US and the Republic of Korea was level 1, it is to be understood 

that this assessment was made 1) in context of the INTERFET operation, and 2) with 

respect to the ADJF-ABCA COH standard.  For the OIM model, level 0 infers lack of 

interoperability and level 4 infers full compliance with the standard. 

Hypothesis: Maturity model (leveling) interoperability assessment methods, such 

as the OIM model, can be shown to be a special case of the general interoperability 

method presented in Chapter 3.  To demonstrate, the method of Chapter 3 can be used to 

measure the interoperability of INTERFET coalition forces and to arrive at the same 

conclusions as those made by Clark & Moon when they applied the OIM model to the 

INTERFET operation. 

4.2.1 The Special Case of the Maturity Model Method 

A maturity model (or leveling) interoperability method such as LISI or OIM 

defines a set of entities, interoperability attributes (usually limited to one to four 
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X  which characterize the 

entities, and the levels are states of those characters C .  For each of the entities modeled, 

the maturity model methods take the lowest interoperability level of all the attributes, and 

call it the generic interoperability iG  of that entity.  Then the interoperability 

measurement for a pair of entities is called the expected interoperability, and is defined as 

the lesser of the two entities’ generic interoperability measurements.  In other words, 

Expected Interoperability = ( )1 2,Min G G .  For example, in Table 12, the expected 

interoperability assessment of Entity #1 and Entity #2 is 1 (i.e., the minimum of the two 

generic interoperability assessments).  Using the terminology from Chapter 3, it can be 

said that the maturity models use an interoperability function ( )1 2,I Min G G=  to 

calculate the interoperability of a pair of systems .  Thus, the maturity model method is 

shown to be a limited case of the general method of Chapter 3 in which entities equate to 

systems S , attributes equate to characters X , levels equate to character states C , and 

minimum common generic interoperability is used as an interoperability function I . 

Table 12 Example OIM interoperability assessments 
 Preparedness Understanding Command Style Ethos Generic Interoperability 
Entity #1 3 2 2 1 1 
Entity #2 4 4 3 3 3 

 

4.2.2 INTERFET Coalition Interoperability Results and Method Comparisons 

Clark & Moon applied the OIM model to assess the interoperability of coalition 

forces participating in the 1999 INTERFET operation. (2001)  Drawing from their paper, 
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systems, interoperability characters, and character states can be assigned as in (19), (20), 

and (21). 

 { }, , , , ,S AUS US NZ Thai Phil ROK=  (19) 

 { }, ,  ,X Preparedness Understanding Command Style Ethos=  (20) 

 { }0,1,2,3,4C =  (21) 

While the OIM authors limited themselves to four attributes (characters) and five 

levels (states), using the method of Chapter 3, their model could have been expanded to a 

much larger number of characters and states, which would result in a better 

characterization of the coalition forces and a more precise interoperability measurement.  

Indeed, after the original publication of the OIM model (Clark & Jones, 1999), other 

researchers debated the number and descriptions of the attributes of the OIM model.  

Although the final version of the OIM model remained limited to a 4-attribute, 5-level 

model, at least 35 sub-attributes were further defined. (Fewell & Clark, 2003)  The 

method of Chapter 3 could easily accommodate these 35 sub-attributes as additional 

characters.  Although these 35 additional characters help an analyst assign an 

interoperability level to each attribute, by not addressing them as individual attributes, 

fidelity is lost from the model, and their contribution is effectively averaged out.  

Extracting from Clark & Moon, the set of interoperability characters are defined in Table 

13. 

77 



 

Table 13 Explanation of coalition characterization X  
Preparedness How well does the nation adhere to ADJF standards as implemented by 

ABCA-COH doctrine and training? 
Understanding How well does the nation share information and knowledge according to 

ADJF practice and ABCA-COH guidelines? 
Command Style How well does the nation delegate and share roles according to ADJF and 

ABCA-COH guidelines? 
Ethos How well does the nation seek to assist the East Timorese and to maintain 

their relationship with Indonesia? 
 
S  is instantiated as in (22) according to Clark & Moon’s descriptions of member 

nations’ participation in the INTERFET coalition operation.  Although their paper gives 

enough information to have used more precise real-valued character states, integer states 

were used to maintain consistency with their model.  One decimal precision is given in 

the interoperability measurement (23) to illustrate the improved measurement fidelity. 

 

 
2 3 3
2 3 3
2 3 3
1 1 1
1 1 1
0 1 1

Preparation Understanding Command Style Ethos
AUS
US
NZ

Thai
Phil
ROK

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
1
1
1
1
1

 (22) 

Selecting RealI Sim=  as the interoperability function, with , , and 

, the following coalition interoperability measurement 

max 4c = 2r =

4n = M  results. 

 

0.6 0.6 0.6 0.3 0.3 0.2
0.6 0.6 0.6 0.3 0.3 0.2
0.6 0.6 0.6 0.3 0.3 0.2
0.3 0.3 0.3 0.3 0.2 0.2
0.3 0.3 0.3 0.2 0.3 0.2
0.2 0.2 0.2 0.2 0.2 0.2

AUS US NZ Thai Phil ROK
AUS
US

M NZ
Thai
Phil
ROK

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (23) 
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If the interoperability measurement M  is scaled from its current [  scale to the 

OIM [  scale, then the measurement 

]

]

0,1

0,4 (24) can be compared to Clark & Moon’s 

original results (Table 14). 

 

2.3 2.3 2.3 1.0 1.0 0.9
2.3 2.3 2.3 1.0 1.0 0.9
2.3 2.3 2.3 1.0 1.0 0.9
1.0 1.0 1.0 1 0.9 0.8
1.0 1.0 1.0 0.9 1 0.8
0.9 0.9 0.9 0.8 0.8 0.8

scaled

AUS US NZ Thai Phil ROK
AUS
US

M NZ
Thai
Phil
ROK

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (24) 

Table 14 Clark & Moon's original INTERFET interoperability measurements 
 AS US NZ Thai Phil 

US 2     
NZ 2 2    

Thai 1 0 0   
Phil 1 0 0 0  

ROK 0 0 0 0 0 

Clark & Moon noted the best coalition interoperability among the US, Australia, 

and New Zealand (OIM 2) and the worst among Thailand, the Phillipines, and the 

Republic of Korea (OIM 0).  Similar measurements (24) result from the method of 

Chapter 3, but with more accuracy and precision.  For example, whereas the OIM model 

scored the interoperability of the Republic of Korea with Australia as a zero, meaning the 

nations were operating completely independently of each other, the method of Chapter 3 

gives a more accurate result of 0.9.  An OIM score of zero indicates the two nations 1) 

had no level of preparedness to operate in a coalition together, 2) had no interaction 

amongst their commanders and forces, 3) were limited to telephone communication, and 

4) shared a common purpose only in a limited fashion.  However, Clark & Moon’s paper 
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indicates that although the Koreans did have preparation issues, they 1) did jointly attend 

briefings and planning meetings, 2) understood at least half of the material presented at 

those briefings and meetings, 3) received taskings from HQ INTERFET, but operated in 

their own area of responsibility, 4) had personal contact between commanders, and 5) 

were not willing to participate in all aspects of the INTERFET operation, but strongly 

supported the humanitarian aspect of the operation.  Considering that an OIM score of 

one indicates 1) preparation was made by learning general guidelines (not met by 

Koreans), 2) understanding is obtained through electronic communication and shared 

information (partially met by Koreans), 3) command is implemented through separate 

lines of responsibility (met by Koreans), and 4) the ethos of the operation is shared 

(partially met by Koreans), it seems reasonable to assume that the Australian-Korean 

interoperability score should probably be somewhere between zero and one.  Thus, the 

Chapter 3-derived measurement of 0.9 is appropriate and more precisely and accurately 

reflects the true interoperability of the Republic of Korea with Australia than the 

assessment originally given by Clark & Moon. 

4.2.3 Analysis of INTERFET Interoperability Measurements 

INTERFET coalition interoperability M  is shown graphically in Figure 7.  It can 

be seen that among INTERFET member nations were three clusters { }, ,AUS US NZ , 

{ },Thai Phil , and { }ROK .  Expectedly the nations with Western-type philosophies, and 

presumably more familiar with ADJF standards as implemented by the ABCA-COH, 

enjoyed a high degree of interoperability with each other, but less so with the Asian 

nations and vice versa.  Coalition interoperability could improve in the future among 
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these Western and Eastern nations if common philosophies on doctrine, training, 

information sharing, delegation, and cultural values and goals, acceptable to both East 

and West, are agreed upon, practiced, and implemented prior to future operations. 

 

Figure 7 INTERFET coalition interoperability 

The lack of coalition interoperability between the Western and Eastern nations 

participating in INTERFET manifested itself in the fact that “the Thais, South Koreans, 

and Filipinos had their own areas of operation…and conducted their own operations.” 

(Clark & Moon, 2001:32)  Similarly, the “divergent nature of the operational 

philosophies of the participating countries” was one of the “most difficult aspects of 

assembling and maintaining the coalition.” (Ibid)  Furthermore, some of the coalition 

officers “only understood half of what was said at briefings and conferences and…the 

Australians were unaware of this.” (Ibid:33) 

4.3 Application: Suppression of Enemy Air Defenses (SEAD) 

The following application further demonstrates the interoperability measurement 

method of Chapter 3, explores confrontational interoperability, and illustrates the 
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Interoperability Impact on Operational Effectiveness axiom which states that improved 

friendly (blue)-to-adversary (red) directional interoperability combined with degraded 

adversary (red)-to-friendly (blue) interoperability results in higher operational 

effectiveness. 

Hypothesis: Applying the Interoperability Impact on Operational Effectiveness 

axiom, it can be shown that operational effectiveness of the SEAD mission is improved 

by 1) the addition of friendly (blue)-force precision strike and electronic attack capability 

(i.e., increased friendly (blue)-to-adversary (red) interoperability) and 2) the addition of 

friendly (blue)-force stealth (i.e., decreased adversary (red)-to-friendly (blue) 

interoperability). 

SEAD is defined by JP 1-02 Department of Defense Dictionary of Military and 

Associated Terms as “activity that neutralizes, destroys, or temporarily degrades surface-

based enemy air defenses by destructive and/or disruptive means.” (JP 1-02, 2008:523)  

In this application, the definition is further refined to include only activity which destroys 

enemy air defenses by destructive means.  An operational process for this application is 

given in Figure 8 and is based upon the targeting process given in JP 3-60 Joint Targeting 

and AFDD 2-1.9 Targeting. (2007; 2006) 
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Figure 8.  SEAD operational process 

A MoOE “Percent of enemy air defenses destroyed” for the process is taken from 

CJCSM 3500.04D Universal Joint Task List task OP 3.2.4 “Suppress Enemy Air 

Defenses” measure M1. (2006)  This MoOE can be written as the diametric pair given in 

(25) which obeys the relationship 1B RO O+ = . 

  (25) { }
Percent of enemy air defenses destroyed,

,
Percent of enemy air defenses protectedB RO O O ⎧ ⎫

= = ⎨ ⎬
⎩ ⎭

Typical SEAD systems are associated with the activities and decisions of the 

operational process (Figure 8) and are given in (26).  The  system performs the Find, 

Fix, and Track activities, the  system performs the Target, Assess, and Reattack? 

activities and decision, and the  (precision strike package) system performs the 

Engage activity.  Two enemy  systems are targets for the mission.  An operational 

view of the mission is given in 

ISR

AOC

PSP

IADS

Figure 9. 
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 { } { } { }{ }1 2, , , , , ,B RS S S HB ISR AOC PSP IADS IADS= =  (26) 
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IADS1

MEZ 

t0 t2 t3

ISR 

t1

PSP 

IADS2

90% prob. of detection 

50% prob. of detection 

AOC 

Figure 9.  Operational view of SEAD mission 

In order to apply the Interoperability Impact on Operational Effectiveness axiom, 

the characterization X  of  must include all interoperability characters which describe 

every interoperation (collaborative and confrontational) between systems in  related to 

.  In other words, all interoperability characters related to the destruction and protection 

of the IADS systems must be included in 

S

S

O

X .  This hierarchical set of directional 

interoperability characters X  is given in Table 15.  In order to ensure the set of 

interoperability characters X  chosen for the SEAD application in this section is 

complete and authoritative, they have been methodically identified and extracted from 

Joint Publications and Air Force Doctrine Documents related not just to suppression of 

enemy air defenses, but to Joint and Air Force operations in general.   The top level of the 

hierarchy is the set of joint operational functions given in JP 3-0 Joint Operations (2006) 

and the second level is a pertinent subset of the operational functions of air and space 

power given in AFDD 1 Air Force Basic Doctrine. (2003)  Lower levels of the 
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interoperability character hierarchy have been extracted from JP 3-0 Joint Operations 

(2006), AFDD 2 Operations and Organization (2007), JP 3-01 Countering Air and 

Missile Threats (2007), AFDD 2-1 Air Warfare (2000), AFDD 2-1.1 Counterair 

Operations (2002), JP 3-13.1 Electronic Warfare (2007), AFDD 2-5.1 Electronic 

Warfare (2002), AFDD 2-9 Intelligence, Surveillance, and Reconnaissance Operations 

(2007), JP 3-60 Joint Targeting (2007), AFDD 2-1.9 Targeting (2006), and JP 3-13.4 

Military Deception. (2006)  In order to maintain the ability to assess the value of future 

capabilities (e.g., precision ground attack and electronic attack), those interoperability 

characters are included in X  as well, but their states are zeroed out in the initial system 

instantiation .  An explanation of the interoperability characters in Σ X  is given in Table 

16. 

Table 15 SEAD hierarchical characterization X  
1 C2 Intel Fires
2 Comm ISR Counterair (CA) Info Ops (IO) 
3 Blue Red Detect OCA DCA EW Infl. Ops
4 Target  Blue Red Ground  EA MILDEC
5     Cluster Precision  Barrage Reactive  
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Assign the set of states of X  as absence/presence states { }0,1C =  then the 

instantiation of  is given as Σ  in S Table 17.  Although the joint operational functions 

&Movement Maneuver , , and  are included in the instantiation 

for completeness, they have been assigned zero states as their functionality is not critical 

to the following analysis.  

Protection Sustainment

Table 17. SEAD instantiation Σ  
Transmit  Receive 

  H
B 

IS
R 

PS
P 

IA
D
S1
 

IA
D
S2
 

IS
R 

A
O
C 

PS
P 

IA
D
S1
 

IA
D
S2
 

A
O
C 

H
B 

C2  1  1  1  1  1  1  1  1  1  1  1  1 
C2.Comm  1  1  1  1  1  1  1  1  1 1  1  1 
C2.Comm.Blue  1  1  1  1  0  0  1  1  1  1  0  0 

1  1  0 C2.Comm.Blue.Target  0  0  0  0  0  1  1  0  0 
C2.Comm.Red  0  0  0  0  1  1  0  1  0  0  1  1 
Intel  0  1  0  0  1  1  0  0  0  1  1  1 
Intel.ISR  0  1  0  0  1  1  0  0  0  1  1  1 
Intel.ISR.Detect  0  1  0  0  1  1  0  0  0  1  1  1 
Intel.ISR.Detect.Blue  0  1  0  0  1  1  0  0  1  1  0  0 
Intel.ISR.Detect.Red  0  1  0  0  0  0  0  0  0  0  1  1 
Fires  0  0  0  1  1  1  0  0  0  1  1  1 
Fires.CA  0  0  0  1  1  1  0  0  0  1  1  1 
Fires.CA.OCA  0  0  0  1  0  0  0  0  0  1  1  1 
Fires.CA.OCA.Ground  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.CA.OCA.Ground.Cluster  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.CA.OCA.Ground.Precision 0  0  0  0  0  0  0  0  0  0  1  1 
Fires.CA.DCA  0  0  0  0  1  1  0  0  0  0  1  1 
Fires.IO  0  0  0  0  0  0  0  0  0  0  1  1 
Fires.IO.EW  0  0  0  0  0  0  0  0  0  0  1  1 
Fires.IO.EW.EA  0  0  0  0  0  0  0  0  0  0  1  1 
Fires.IO.EW.EA.Barrage  0  0  0  0  0  0  0  0  0  0  1  1 
Fires.IO.EW.EA.Reactive  0  0  0  0  0  0  0  0  0  0  1  1 
Fires.IO.InflOps  0  0  0  0  1  1  0  1  1  1  0  0 
Fires.IO.InflOps.MILDEC  0  0  0  0  1  1  0  1  1  1  0  0 
Movement&Maneuver  0  0  0  0  0  0  0  0  0  0  0  0 
Protection  0  0  0  0  0  0  0  0  0  0  0  0 
Sustainment  0  0  0  0  0  0  0  0  0  0  0  0 
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If the interoperability function BinI Sim=  is chosen, then assuming no self-

interoperability, the resulting directional interoperability measurements are given in (27). 

 

1 2

1 1 1 2 2
9 9 9 27 27

5 81 2
9 27 27 9

1 1 4 2 2
9 9 27 27 27

7 71 1 1
9 9 9 27 27

5 5 102 1
27 27 27 27 31

5 5 102 1
27 27 27 27 32

0
0

0
0

0
0

HB ISR AOC PSP IADS IADS
HB
ISR

M AOC
PSP

IADS
IADS

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2
9

 (27) 

For this application, the appropriate analysis of M  is the comparison of friendly 

(blue)-to-adversary (red) and adversary (red)-to-friendly (blue) interoperability (i.e., 

confrontational interoperability) to the end of applying the Interoperability Impact on 

Operational Effectiveness axiom to determine if the friendly (blue) systems will enjoy 

operational effectiveness over the adversary (red) systems.  Four friendly (blue)-

adversary (red) system pairs are possible and must be considered, HB IAD↔ S , 

, , and ISR IADS↔ AOC IADS↔ PSP IADS↔ .  The Interoperability Impact on 

Operational Effectiveness axiom (see Table 18 summary) shows only one friendly (blue) 

system ( ) is operationally effective over the adversary (red)  systems.  Two 

others (

ISR

,

IADS

AOC PSP ) do not possess operational advantage over the  and a third 

(

IADS

HB ) is at a standoff (i.e., equivalent directional interoperability measurements). 
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Table 18. SEAD interoperability analysis 
Blue-Red System Pair Analysis B>R
HB IAD↔ S  ( ) ( )2

27, , B RI HB IADS I IADS HB O O= = → ≤  No 

ISR IADS↔  ( ) ( ) 52
9 27, , B RI ISR IADS I IADS ISR O O= > = → >  Yes 

AOC IADS↔  ( ) ( ) 52
27 27, , B RI AOC IADS I IADS AOC O O= < = → ≤  No 

PSP IADS↔  ( ) ( )7 10
27 27, , B RI PSP IADS I IADS PSP O O= < = → ≤  No 

 
The directional interoperability measurements in Table 18 indicate that adversary 

(red) targets are able to be detected, but not effectively destroyed by friendly (blue) 

systems.  Additionally, the measurement of the directional confrontational 

interoperability from  to  indicates that the  is vulnerable to destruction 

by the  systems.  According to the Interoperability Impact on Operational 

Effectiveness axiom, in order to give friendly (blue) systems operational effectiveness 

over adversary (red) systems, friendly (blue)-to-adversary (red) directional 

interoperability must exceed adversary (red)-to-friendly (blue) interoperability.  To this 

end, according to the hypothesis in the introduction to this section, friendly (blue)-to-

adversary (red) interoperability will be increased by adding precision strike and 

electronic attack capability to the  system.  Additionally, adversary (red)-to-friendly 

(blue) interoperability will be decreased by adding stealth capability to the  system 

(manifested in the model as an inability of the  to detect the ).  Assuming that 

adversary (red) systems are also capable of being upgraded, the ability to resist all but 

reactive jamming will be given to the  systems.  The upgraded instantiation  is 

given in 

IADS PSP

PSP

PSP

IADS

PSP

IADS PSP

IADS UΣ

Table 19.  Changes from the original instantiation are highlighted. 
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Table 19. Upgraded SEAD instantiation UΣ  
Transmit  Receive 

  H
B 

IS
R 

A
O
C 

PS
P 

IA
D
S1
 

IA
D
S2
 

H
B 

IS
R 

A
O
C 

PS
P 

IA
D
S1
 

IA
D
S2
 

C2  1  1  1  1  1  1  1  1  1  1  1  1 
C2.Comm  1  1  1  1  1 1  1  1  1  1  1  1 
C2.Comm.Blue  1  1  1  1  0  0  1  1  1  1  0  0 

1  1  0 C2.Comm.Blue.Target  0  0  0  0  0  1  1  0  0 
C2.Comm.Red  0  0  0  0  1  1  0  1  0  0  1  1 
Intel  0  1  0  0  1  1  0  0  0  1  1  1 
Intel.ISR  0  1  0  0  1  1  0  0  0  1  1  1 
Intel.ISR.Detect  0  1  0  0  1  1  0  0  0  1  1  1 
Intel.ISR.Detect.Blue  0  1  0  0  1  1  0  0  1  0  0  0 
Intel.ISR.Detect.Red  0  1  0  0  0  0  0  0  0  0  1  1 
Fires  0  0  0  1  1  1  0  0  0  1  1  1 
Fires.CA  0  0  0  1  1  1  0  0  0  1  1  1 
Fires.CA.OCA  0  0  0  1  0  0  0  0  0  1  1  1 
Fires.CA.OCA.Ground  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.CA.OCA.Ground.Cluster  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.CA.OCA.Ground.Precision 0  0  0  1  0  0  0  0  0  0  1  1 
Fires.CA.DCA  0  0  0  0  1  1  0  0  0  0  1  1 
Fires.IO  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.IO.EW  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.IO.EW.EA  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.IO.EW.EA.Barrage  0  0  0  1  0  0  0  0  0  0  0  0 
Fires.IO.EW.EA.Reactive  0  0  0  1  0  0  0  0  0  0  1  1 
Fires.IO.InflOps  0  0  0  0  1  1  0  1  1  1  0  0 
Fires.IO.InflOps.MILDEC  0  0  0  0  1  1  0  1  1  1  0  0 
Movement&Maneuver  0  0  0  0  0  0  0  0  0  0  0  0 
Protection  0  0  0  0  0  0  0  0  0  0  0  0 
Sustainment  0  0  0  0  0  0  0  0  0  0  0  0 

 
Again using BinI Sim=  as the interoperability function, a set of interoperability 

measurements UM  for the upgraded systems is obtained and given in (28).  As above, 

changes from the original interoperability matrix are highlighted. 
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1 2

1 1 1 2 2
9 9 9 27 27

5 71 2
9 27 27 9

1 1 4 2 2
9 9 27 27 27

1 1 1 4 4
9 9 9 9 9

5 52 1
27 27 27 3 31

5 52 1 1
27 27 27 3 32

0

0

0

0

0

0

U

HB ISR AOC PSP IADS IADS
HB

ISR

AOCM
PSP

IADS

IADS

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2
9

1

 (28) 

After upgrading the  system with precision strike, electronic attack, and 

stealth and countering with an adversary (red) force upgrade of the  systems with 

resistance to all but reactive jamming, then 

PSP

IADS

( ) ( )4 1
9 3I PSP IADS PSP, ,I IADS= > =  

B RO O→ > .  Hence the friendly (blue) force now has a slight edge over the adversary 

(red) force, implying that the percentage of adversary (red) targets destroyed will be 

greater than the percentage of adversary (red) targets protected.  Thus, the original 

hypothesis of this application is confirmed.  Finally, it is interesting to note that one 

element of friendly (blue)-to-friendly (blue) interoperability (i.e., collaborative 

interoperability) decreased as a result of the system upgrades.  Specifically, ( ),I ISR PSP  

decreased from 8
27  to 7

27 .  The interpretation of this is that due to the addition of stealth 

capability the  system is also less detectable by the friendly (blue) force  

system. 

PSP ISR

4.4 Application: Precision Strike 

Time variance of the interoperability of a set of systems is caused by progression 

through the activities and decisions of the operational process, by time variant characters, 
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or by random effects.  Interoperability decreases due to time variance are not always bad.  

For example, a process may call for a certain system to be periodically turned off, which 

causes its interoperability with other systems to drop to zero.  On the other hand, some 

interoperability decreases are undesirable, such as those due to time varying 

electromagnetic interference.  It is useful to analyze interoperability with respect to time 

in order to highlight process bottlenecks, discover previously unknown environmental 

impacts, or to determine minimum required interoperability to meet operational goals to 

the end of optimizing monetary investment. 

The following application illustrates the time variance of interoperability 

measurements by repeated application of the method of Chapter 3 at various stages of the 

Precision Strike mission and demonstrates that perfect interoperability of all systems at 

all stages of a mission is not desired or necessary, but that appropriate levels of 

interoperability should be achieved at the appropriate times.  

Hypothesis: The interoperability of Precision Strike systems varies during 

different mission time periods.  Furthermore, if the constrained upper bound on the 

interoperability of each system pair is achieved in each time period, then the sufficient 

condition for operational effectiveness given by the Interoperability Impact on 

Operational Effectiveness axiom can be relaxed, yet still be appropriately applied to 

predict operational effectiveness.  In other words, during a specific time period some 

friendly (blue)-to-adversary (red) and adversary (red)-to-friendly (blue) operational 

advantage can be ignored if it is not pertinent to that time period. 
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In this application (Figure 10), a penetrating strike package (PSP) attacks its 

target kinetically after being escorted part way to the target by a modified escort jammer 

(MEJ).  A static baseline interoperability measurement is first made, then interoperability 

is measured at four different time periods, (t0) prior to the PSP and MEJ crossing the 

forward edge of the battle area (FEBA), (t1) when the PSP and MEJ are between the 

FEBA and the missile engagement zone (MEZ), (t2) while the PSP is over the target 

(within the MEZ), and (t3) after the PSP attacks the target and is egressing the MEZ. 

 
Figure 10.  Operational view of time-phased precision strike mission 

The precision strike operational process (Figure 11) is derived from the following 

use case.  “A PSP launches from home base and proceeds towards its target accompanied 

from base, across the FEBA and up to the MEZ by a MEJ, which jams enemy radar and 

communications signals detected by a stand-off intelligence, surveillance, and 

reconnaissance (ISR) platform orbiting on the friendly side of the FEBA.  The PSP 

crosses into the MEZ, leaving the MEJ outside the MEZ to orbit and jam, proceeds to the 

target, destroys it kinetically, and quickly egresses, recovering on a safe route.” 

FEBA 

home base 

target 

MEZ 

t0 t2 t3

ISR 

t1

PSP 

IADS 

90% prob. of detection 

50% prob. of detection 

MEJ 
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Figure 11 Precision strike operational process 

Finally, define the diametric MoOE for the precision strike operational process is 

{ },B RO O O=  where BO  is “target destroyed” and RO  is “target protected.”  

4.4.1 Static Unconstrained Interoperability Model 

For comparison purposes, a static interoperability model is provided first which is 

later perturbed to demonstrate time-variant interoperability.  Given a set of systems 

{ }, , , , ,S PSP MEJ IADS ISR HB TGT=  
let each system js  be characterized by a set of 

interoperability characters { },T RX X X=  (29) where and are directional 

(transmit/receive) interoperability characters.  Let the set of interoperability character 

states be given as absence/presence states 

TX RX

{ }0,1C = . 

 
{ }
{ }

. ( ), . . ( ), . . ( ), ,. . ( ), . . ( )

. ( ), . . ( ), . . ( ),
. . ( ), . . ( )

Comm EM T Detect EM Radar T Attack EM Jam T
Attack KM Ground T Attack KM Air TX Comm EM R Detect EM Radar R Attack EM Jam R
Attack KM Ground R Attack KM Air R

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (29) 

Assuming no time, space, or other constraints (e.g., IADS radar has unlimited 

reach, MEJ jams continuously regardless of position, etc.) then is instantiated as  S Σ

(30). 
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 [ ]

1 1 0 1 0 1 1 0 0 1
1 1 1 0 0 1 1 0 0 0
0 1 0 0 1 0 1 1 0 0

|
1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0

T R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Σ = Σ Σ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (30) 

Using  as the interoperability function, and assuming no self-

interoperation, the interoperability measurement 

BinI Sim=

M  is given by (31). 

 

2 1 2 1 1
5 5 5 5 5

2 2 2 1
5 5 5 5
2 1 1
5 5 5
1 1 1
5 5 5
1 1 1
5 5 5

0
0 0

0 0
0 0 0
0 0

0 0 0 0 0 0

PSP MEJ IADS ISR HB TGT
PSP
MEJ

M IADS
ISR
HB

TGT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

 (31) 

The interoperability measurement M  shows the direct, contextual interoperability 

(both collaborative and confrontational) of all system pairs in .  The average 

interoperability of  is 

S

S 0.13M = .  Applying the Interoperability Impact on Operational 

Effectiveness axiom, the results in Table 20 show that while some operational advantage 

is enjoyed (e.g.,  should be effective in attacking the TG  and the PSP T MEJ  should be 

effective in jamming the ), the sufficient condition for operational effectiveness is 

not met.  However, the model raises some questions.  For example, does the  always 

need to have operational advantage over the ?  Likewise, does the 

IADS

PSP

IADS MEJ  need to 

have operational advantage over the TG ?  Similar questions can be asked for the T

( ),ISR IADS  and ( ),ISR TGT  pairs.  And most likely HB  requires no direct operational 
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advantage over any enemy system.  Hence a time-variant interoperability measurement is 

indicated.  For each time period, systems are instantiated according to operational and 

other constraints associated with that time period.  Additionally, the interoperability 

measurement taken in each time period is the constrained upper bound for that period 

because each system is instantiated by character states which represent the best the 

system can and is expected to do in that time period. 

Table 20. Precision strike static model interoperability analysis 
Blue-Red 

System Pair Analysis B RO O>

PSP IADS↔  ( ) ( )1 2
5 5, , B RI PSP IADS I IADS PSP O O= < = → ≤  No 

( ) ( )1
5, , 0 B RI PSP TGT I TGT PSP O O= > = →PSP TGT↔  >  Yes 

MEJ IADS↔  ( ) ( )2 1
5 5, , B RI MEJ IADS I IADS MEJ O O= > = → >  Yes 

MEJ TGT↔  ( ) ( ), 0 , B RI MEJ TGT I TGT MEJ O O= = → ≤  No 

ISR IADS↔  ( ) ( ) 1
5, 0 , B RI ISR IADS I IADS ISR O O= < = → ≤  No 

ISR TGT↔  ( ) ( ), 0 , B RI ISR TGT I TGT ISR O O= = → ≤  No 

HB IAD↔ S  ( ) ( ), 0 , B RI HB IADS I IADS HB O O= = → ≤  No 

HB TGT↔  ( ) ( ), 0 , B RI HB TGT I TGT HB O O= = → ≤  No 

 
4.4.2 Time Variant Interoperability Model 

Let  remain unchanged from the static model and modify the system 

instantiation  for the four time periods described in 

, ,S X C

Σ Figure 10.  For each time period, 

the modifications to Σ  are changes to the states of the interoperability characters which 

describe exactly what the systems are expected to do in that time period. 
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4.4.2.1 Prior to Crossing the FEBA ( ) 0t

At time , all friendly (blue) systems are safe on their own side of the FEBA.  

Let be given 

0t

0t
Σ (32) with the assumptions of Table 21.  In this time period it is 

appropriate to assume that only the  system should have operational advantage over 

the adversary (red) systems. 

ISR

 
0

1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

a b c

e f g h

i j

t

k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Σ = ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

d

 (32) 

Table 21. Precision strike  assumptions 0t
a) PSP not detectable by radar until  at the soonest 1t
b) PSP can’t kinematically attack until  2t
c) see a) 
d) PSP not susceptible to missile attack until  2t
e) MEJ not detectable by radar until  at the soonest 1t
f) MEJ doesn’t jam until  1t
g) see e) 
h) MEJ not susceptible to missile attack until  2t
i) IADS has nothing to attack until  1t
j) IADS can’t detect anything until 1t  at the soonest 
k) TGT can’t be kinematically attacked until  2t

 
Using  as the interoperability function, an interoperability measurement 

at  is obtained 

BinI Sim=

0t (33).  Average interoperability of  at  is S 0t 0
0.072tM =  and an 

interoperability analysis follows in Table 22.  The analysis shows that no friendly (blue) 
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systems enjoy operational advantage over adversary (red) systems in the first phase of the 

mission.  This is only worrisome in one point, the  system is less interoperable with 

the  than vice versa.  In other words, the  system may not be able to accurately 

detect the threat for the .  All other system pairs are achieving desired levels of 

interoperability (i.e., their interoperations are not required until later time periods). 

ISR

IADS ISR

PSP

 
0

1 1 1
5 5 5

1 1 1
5 5 5

1
5

1 1 1
5 5 5
1 1 1
5 5 5

0 0
0 0

0
0

0 0 0 0
0 0 0
0 0 0

0 0 0 0 0

t

PSP MEJ ISR HB TGT

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

IADS
PSP
MEJ
IADS
ISR
HB

TGT

 (33) 

Table 22. Precision strike interoperability analysis ( ) 0t
Blue-Red Analysis B RO O>System Pair 

PSP ( ) ( ), 0 , B RI PSP IADS I P O O= = → ≤IADS PSIADS↔   No 

PSP TGT↔  ( ) ( ), 0I PSP , B RTGT I T O O= = → ≤GT PSP  No 

MEJ IADS↔  ( ) ( ), 0 , B RI MEJ IADS I MEJ O O= = → ≤IADS  No 

MEJ TGT↔  ( ) ( ), 0 , B RI MEJ TGT I J O O= = → ≤TGT ME  No 

ISR IADS↔  ( ) ( ) 1
5, 0 , B RI ISR IADS I O O= < = → ≤IADS ISR  No 

ISR TGT↔  ( ) ( )I ISR, 0 , B RTGT I T O OGT ISR= = → ≤  No 

HB IAD↔ S  ( ) ( ), 0 , B RI HB IADS I I O O= = → ≤ADS HB  No 

HB TGT↔  ( ) ( ),I HB, 0 B RTGT I TG O O= = → ≤T HB  No 

 
4.4.2.2 Prior to Entering the MEZ ( ) 1t

At time , the  and 1t PSP MEJ  have crossed the FEBA and have entered enemy 

territory.  Let be given 
1t

Σ (34) constrained by the assumptions of Table 23.  In this time 
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period, it is appropriate to assume that the  and ISR MEJ

IADS

 systems should have 

operational advantage over the adversary (red) systems.  Any adversary (red) system 

operational advantage over the  system can be ignored as the  system is neither 

in range to attack the TG , nor within the range of  defensive counter-air attack. 

PSP PSP

T

1t
Σ =

1 1
1 1 1
0 1
1 0
1 0
0 0

e f

0 0 0 1 0
0 0 1 0

0 0 0 0
0 0 0 1
0 0 0 1 0
0 0 0 0 0

a b

k

1 0
1 0
1 1
1
0
0

c

g

i j

1t

2t

2t

0
0

0
0

d

h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0 0
0 0

 (34)  
0
0
0

 

Table 23. Precision strike  assumptions 
a) PSP has small, but finite chance of reflecting IADS radar signal 
b) PSP can’t kinematically attack until  2t
c) PSP has small, but finite chance of being hit by IADS radar signal 
d) PSP still outside MEZ 
e) MEJ has small, but finite chance of reflecting IADS radar signal 
f) MEJ turns on jamming in  1t
g) MEJ has small, but finite chance of being hit by IADS radar signal 
h) MEJ not susceptible to missile attack until  
i) IADS has small, but finite chance of detecting a target 
j) IADS can be jammed 
k) TGT can’t be kinematically attacked until  

 
Using  as the interoperability function, an interoperability measurement 

at  is obtained 

BinimI S=

1t (35).  Average interoperability of  increased during  to S 1t 1
0.12tM =  

largely due to more system interoperations occurring during this time period than in the 

previous period.  An interoperability analysis follows in Table 24.  The  system’s 

lack of operational advantage over the  system remains unchanged, however, in , 

ISR

IADS 1t
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the MEJ  is beginning to disrupt the  system’s ability to counter the inbound  

(highlighted in the table). 

IADS PSP

1

2 1 2 1
5 5 5 5

2 2 2 1
5 5 5 5
1 1 1
5 5 5
1 1 1
5 5 5
1 1 1
5 5 5

0 0
0 0

0 0
0 0 0
0 0

0 0 0 0 0 0

t

PSP MEJ IADS ISR HB TGT
PSP
MEJ

M IADS
ISR
HB

TGT

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

 (35)  

Table 24. Precision strike interoperability analysis ( ) 1t
Blue-Red 

B RO O>Analysis System Pair 

PSP IADS↔  ( ) ( )1
5, , B RI PSP IADS I IADS PSP O O= = → ≤  No 

PSP TGT↔  ( ) ( ), 0 , B RI PSP TGT I TGT PSP O O= = → ≤  No 

MEJ IADS↔  ( ) ( )2 1
5 5, , B RI MEJ IADS I IADS MEJ O O= > = → >  Yes 

MEJ TGT↔  ( ) ( ), 0 , B RI MEJ TGT I TGT MEJ O O= = → ≤  No 

ISR IADS↔  ( ) ( ) 1
5, 0 , B RI ISR IADS I IADS ISR O O= < = → ≤  No 

ISR TGT↔  ( ) ( ), 0 , B RI ISR TGT I TGT ISR O O= = → ≤  No 

HB IAD↔ S  ( ) ( ), 0 , B RI HB IADS I IADS HB O O= = → ≤  No 

HB TGT↔  ( ) ( ), 0 , B RI HB TGT I TGT HB O O= = → ≤  No 

 
4.4.2.3 Within the MEZ ( ) 2t

At time , the  is within the MEZ.  Let 2t PSP
2t

Σ be given (36) using the 

assumptions in Table 25.  During this key time period, it is highly desired that all friendly 

(blue) systems (except HB ) have operational advantage over the adversary (red) systems 

as the  is within the MEZ (i.e., vulnerable to defensive counter-air attack).  PSP
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Additionally, success of the mission is contingent upon the friendly (blue) force 

maintaining operational advantage over the adversary (red) force in this time period. 

 
2

1 1 0 1 0 1 1 0 0 1
1 1 1 0 0 1 1 0 0 0
0 1 0 0 1 0 1 1 0 0
1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0

a b

c

t

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Σ = ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥  (36) 

Table 25. Precision strike  assumptions 2t
a) PSP can attack TGT 
b) PSP vulnerable to kinematic airborne attack 
c) IADS can attack airborne targets 
d) TGT vulnerable to kinematic ground attack 

 
Using BinI Sim=

2t

 as the interoperability function, the interoperability 

measurement at  (37) shows that the average interoperability of  increased slightly to S

2
0.13tM =  during this critical phase of the mission indicating an increase in the number 

of interoperations (i.e., increased operational intensity).  However, the continued lack of 

operational advantage of the  over the  in this time period is especially 

concerning in as the  is within the MEZ and subject to attack.  Hence, the  

system’s continued inability to detect threats endangers the  (i.e., a pop-up surface-

to-air missile system may emerge, yet remain undetected by the  system).  Assuming 

the  survives the , however, the  will likely be successful in destroying 

the TG  as it possesses operational advantage over the TG  in this time period. 

PSP IADS

PSP

PSP

IAD

ISR

PSP

T

ISR

PSP

T

S
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5 5 5

0
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t
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ISR
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⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥⎣ ⎦

0

0

 (37) 

Table 26. Precision strike interoperability analysis ( ) 2t
Blue-Red 

System Pair Analysis B RO O>

PSP IADS↔  ( ) ( )1 2
5 5, , B RI PSP IADS I IADS PSP O O= < = → ≤  No 

( ) ( )1
5, , 0 B RI PSP TGT I TGT PSP O O= > = → >  PSP TGT↔  Yes 

MEJ IADS↔  ( ) ( )2 1
5 5, , B RI MEJ IADS I IADS MEJ O O= > = → >  Yes 

MEJ TGT↔  ( ) ( ), 0 , B RI MEJ TGT I TGT MEJ O O= = → ≤  No 

ISR IADS↔  ( ) ( ) 1
5, 0 , B RI ISR IADS I IADS ISR O O= < = → ≤  No 

ISR TGT↔  ( ) ( ), 0 , B RI ISR TGT I TGT ISR O O= = → ≤  No 

HB IAD↔ S  ( ) ( ), 0 , B RI HB IADS I IADS HB O O= = → ≤  No 

HB TGT↔  ( ) ( ), 0 , B RI HB TGT I TGT HB O O= = → ≤  No 

 
4.4.2.4 Returning to Base ( ) 3t

During the final time period, , the target has been attacked and the  and 3t PSP

MEJ  are returning to base and are out-of-range of the  system.  The  system is 

still on-orbit ready for the next mission and the  system was not attacked, so it is 

still functioning.  Let be given by 

IADS ISR

3t

IADS

3t
Σ (38) assuming the MEJ stops jamming in  (a).  In 

this final time period, it is appropriate to assume that only the  system should 

maintain operational advantage over the adversary (red) systems (the  system in 

ISR

IADS
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particular) as it is the only aircraft remaining on-station (onstensibly to support the next 

mission). 

 
3

1 1 0 0 0 1 1 0 0 0
1 1 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 1 0 0
1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

a

t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

Σ = ⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎥  (38) 

Using  as the interoperability function, an interoperability measurement 

at  is obtained 

BinI Sim=

3t (39) with an average interoperability of  of S
3

0.116tM = .  By design, 

during this final phase of the mission, no friendly (blue) system has operational 

advantage over the adversary (red) systems.  Table 27 shows, however, that the  and 

 systems appear to be at a standoff, i.e. 

PSP

IADS ( ) ( )I 1
5, ,PSP I I IADS PS= =ADS

IAD

P

S

.  A 

review of which interoperability character state caused the measure to be non-zero 

reveals that the  system can still be detected by the  system.  However, the 

 is outside the MEZ, so, while it can still be detected, it is safe from an  attack.  

In other words, the  makes no effort to hide itself from detection since it can’t be 

attacked anyway.  Similar logic applies to the 

PSP

PSP

S

PSP IAD

MEJ . 
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5 5 5 5
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5 5 5
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 (39) 
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Table 27. Precision strike interoperability analysis ( ) 3t
Blue-Red 

System Pair Analysis B RO O>

( ) ( )1
5, , B RI PSP IADS I IADS PSP O O= = → ≤  PSP IADS↔  No 

PSP TGT↔  ( ) ( ), 0 , B RI PSP TGT I TGT PSP O O= = → ≤  No 

( ) ( )1
5, , B RI MEJ IADS I IADS MEJ O O= = → ≤  MEJ IADS↔  No 

MEJ TGT↔  ( ) ( ), 0 , B RI MEJ TGT I TGT MEJ O O= = → ≤  No 

ISR IADS↔  ( ) ( ) 1
5, 0 , B RI ISR IADS I IADS ISR O O= < = → ≤  No 

ISR TGT↔  ( ) ( ), 0 , B RI ISR TGT I TGT ISR O O= = → ≤  No 

HB IAD↔ S  ( ) ( ), 0 , B RI HB IADS I IADS HB O O= = → ≤  No 

HB TGT↔  ( ) ( ), 0 , B RI HB TGT I TGT HB O O= = → ≤  No 

 
4.4.2.5 Precision Strike Conclusions 

An important conclusion can be made as a result of the analysis in previous 

sections—although the sufficiency condition given by the Interoperability Impact on 

Operational Effectiveness axiom was relaxed in each mission time period by neglecting 

some interoperations and demanding others critical to that time period, the operational 

effectiveness concerns listed in Table 28 were apparent in each mission time period.  

Specifically, the lack of  operational advantage over the  throughout all time 

periods combined with the  operational advantage over the  during  when 

the TG  is to be attacked indicates that the mission could likely not be successful.  

Finally, a minor conclusion that can be drawn that because the 

ISR IADS

IADS PSP 2t

T

HB  system’s only role is 

to launch the  and PSP MEJ  aircraft, once it successfully does so, it can be neglected 

throughout the remainder of the analysis.   
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Table 28 Precision strike operational effectiveness concerns 
Time 

Period Operational Effectiveness Concern 

0t  ISR  can’t clearly detect  IADS

1t  ISR  can’t clearly detect  IADS
IADS  can detect the inbound  PSP

2t  IADS  has operational effectiveness over the  which is in-range of the  PSP IADS
ISR  can’t clearly detect  IADS

3t  None 
 
The operational effectiveness concerns listed in Table 28 can possibly be 

alleviated by improving the  detection capability (i.e., increasing its confrontational 

interoperability) or by decreasing the ’s detectability by either adding stealth or 

improving the 

ISR

PSP

MEJ ’s jamming ability.  Figure 12 shows the change in the directional 

interoperability of each friendly (blue) system with each adversary (red) system over time 

and Figure 13 shows the change in average confrontational interoperability (i.e., friendly 

(blue)-to-adversary (red) vs. adversary (red)-to-friendly (blue) interoperability) with time. 
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Figure 12 Precision strike blue systems directional interoperability with red systems 

 

 

Figure 13 Precision strike average interoperability versus time 
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4.5 Summary 

In this chapter, three applications were given—Coalition Interoperability, 

Suppression of Enemy Air Defenses (SEAD), and Precision Strike.  In the Coalition 

Interoperability application, it was hypothesized and shown that maturity model 

(leveling) interoperability measurement methods are a special case of the more general 

method given in Chapter 3.  Specifically, it was shown that attributes of models such as 

LISI and OIM can be used as interoperability characters and LISI and OIM levels can be 

equated to character states.  The SEAD application further demonstrated the 

interoperability measurement method of Chapter 3 and illustrated that the Interoperability 

Impact on Operational Effectiveness axiom can be used to relate interoperability to the 

operational effectiveness of a confrontational operational process.  The resultant 

interoperability measurement can be used to identify areas for system upgrade or for 

doctrine, tactics, techniques, or procedures change.  Finally, the Precision Strike 

application further exemplified the sufficient conditions given by the Interoperability 

Impact on Operational Effectiveness and Operational Advantage axioms and showed how 

they can be relaxed within the bounds of operational and time constraints. 

 



 

5. Conclusion 
 

Everything we do…we do with an eye toward jointness and interoperability. 
—K. Krieg, recent USD(AT&L) 

 

5.1 Conclusions of Research 

Measuring interoperability has long been considered unquantifiable because of its 

complex nature. (Kasunic & Anderson, 2004)  While interoperability has been defined 

and described, it is multifaceted and permeates many disciplines in many ways.  In fact, it 

is reasonable to assume that interoperations occur in all human endeavors.  Previous 

approaches to measuring or describing interoperability relied upon problem 

decomposition and several researchers designed limited methods (Chapter 2) of 

measuring specific types of interoperations of certain types of entities.  The result was an 

eclectic set of somewhat related models useful within limited spheres.  While the problem 

decomposition method was helpful in the short term for certain applications, it prevented 

the creation of a general interoperability measurement method because it fractured 

“interoperability thinking” into compartments.  The answer to the problem could not be 

found by creating “a set of compatible models that collectively address all the dimensions 

of interoperability” (Morris, et. al, 2004:12) because the set would never be complete, but 

by looking at interoperability holistically, generally, and fundamentally and then 

describing a flexible method.  Such a method was proposed in Chapter 3—a method 

which accommodates all types of systems and interoperations, produces a quantitative 

interoperability measurement as realistic and precise as desired, and is limited only by the 

desires and attentiveness of those who will use it. 
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5.2 Recommendations for Application 

Chapter 1, Table 4 lists approximately fifty applications of the interoperability 

measurement method presented in Chapter 3.  The list is small subset of a complete list, 

containing military applications extracted from only six DoD publications.  While some 

of the applications in Table 4 pertain to technical system interoperability, many concern 

non-technical interoperability or cross-domain (i.e., mixed system) interoperability.  

These three areas are ripe for application of the method given in Chapter 3.  Additionally, 

problems which have not traditionally been viewed as interoperability related can also be 

analyzed in a new way with the method of this dissertation.  Discussion follows. 

5.2.1 Technical Interoperability 

With some exceptions, historically interoperability has largely been associated 

with technical systems.  It is expected that this focus will remain into the foreseeable 

future because of the importance of technical interoperability (both collaborative and 

confrontational) to military concepts such as Network Centric Warfare, Enterprise 

Integration, and Warfighting Transformation.  The need to analyze technical 

interoperability will not diminish although there will be an increased emphasis on 

viewing technical interoperability within the context of operational art. (Alberts, et. al., 

2000)  This interest in interoperability constrained by operations endears itself to the 

method of Chapter 3.  Previous interoperability assessments, such as the LISI profiles 

formerly required by CJCSI 6212.01C (2003) can now be repeated in the context of the 

operational process in which the systems were designed to function and the measurement 

can be made with more fidelity.  Additionally, technical interoperability measurements 

for new systems can be made which don’t rely solely upon technical standards, but upon 
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interoperability characters associated with the operational processes of newer concepts 

such as Systems-of-Systems Integration. 

5.2.2 Non-technical Interoperability 

One of the most important types of non-technical interoperability is coalition 

interoperability.  The United States often fights as a coalition and because not all of our 

allies possess the same advanced equipment that the United States military does, 

interoperability of doctrine, procedures, and culture rise in importance relative to 

technical interoperability.  These non-technical types of interoperability facilitate 

integration and synchronization of coalition forces.  JP 3-16, Multinational Operations 

states that “coalition partners using very different national doctrines will obviously have 

problems harmonizing their efforts, even if they enjoy a high degree of technical 

interoperability.” (2007:III-8)  The method in Chapter 3 can be used to predict the impact 

of language and cultural differences among coalition forces, to innovate compatible 

tactics, techniques, and procedures, to measure the usefulness of liaison officers, or to 

troubleshoot coalition operations problems.  A sample of this type of analysis was given 

in Section 4.2. 

5.2.3 Cross-domain Interoperability 

Power lies in the ability of the interoperability method in Chapter 3 to measure 

cross domain interoperability, such as investigating how well non-technical systems 

interoperate with technical ones.  For example, when engineers design a human-computer 

interface (HCI), they are trying to optimize the interoperability of the human and the 

machine.  Asking the question, “how efficiently are the flight controls laid out?” is 

equivalent to saying “how interoperable is the pilot with the airplane?”  The popular 
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human factors engineering terms, “designing for human use” and “optimizing working 

conditions” (Sanders & McCormick, 1987:5) are statements of a desire for non-technical-

to-technical interoperability.  Because the method of Chapter 3 admits a set of systems of 

any type, this type of mixed-system interoperability measurement is now possible. 

5.2.4 Non-traditional Interoperability 

Applying the method of Chapter 3, a host of problems not previously viewed as 

interoperability related can now be looked at as such.  This means that many old 

problems can be solved in a new way, possibly lending insight or providing a means of 

reporting progress not previously available.  For example, when studying the relations 

between two countries, often the disciplines of history, political science, diplomacy, 

business, and economics provide the tools for the analysis.  If interoperability is a 

relationship between two systems, then two countries can be modeled as systems, and 

instantiated with characters representing all the ways in which the two countries interact.  

The degree of these interactions can also be captured.  Thus, a measure of the 

interoperability of the two countries is a measure of the quality of their relationship.  If 

separate interoperability measurements are taken with respect to cultural interoperations, 

business interoperations, technical interoperations, and others, then a portfolio is created 

which describes the full spectrum of relations between the two countries.  The resulting 

set of measurements can be used to drive policy, motivate trade, encourage cultural 

interchange, or encourage cooperation in technical development.  The method of Chapter 

3 can be used to perform “what if” analyses to predict the efficiency, cost, or other 

ramifications of diplomatic, economic, or military policy changes. 
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5.3 Recommendation for Future Research 

As a general method for interoperability measurement, this research might be the 

impetus for other research projects.  Two topics immediately present themselves.  First, 

while this research focused on direct interoperability measurement, many important 

interoperations occur through a translator system (i.e., indirect interoperability).  

Although a preliminary method of measuring the indirect interoperability of systems was 

given by Ford, et. al., (2007a, 2008b) this method is not complete and can be further 

extended.  Second, while this research related confrontational interoperability (i.e., 

friendly (blue)-to-adversary (red) system interoperability) with operational effectiveness, 

no analogue was given which associates the change in friendly (blue)-to-friendly (blue) 

system interoperability with changes in operational effectiveness.  Each of these future 

research areas is discussed in detail in subsequent sections. 

5.3.1 Indirect Interoperability Measurement 

The method in Chapter 3 measures the direct interoperation of systems, however 

an enhancement to the method could possibly be made which supports measuring the 

indirect interoperability of systems.  Indirect interoperation infers that a pair of systems 

cannot interoperate without the assistance of another system.  For example,  is the 

measure of the direct interoperability of  and .  Indirect interoperation, on the other 

hand, implies an intermediary system.  In other words, given 

1,2m

1s 2s

{ }1 2 3, ,S s s s=

3s

, if  

but  and  then it may be possible for  and  to interoperate indirectly 

(i.e., influence each other) via  which is called a translator system. 

1,3 0=m

1,2 0m > 2,3 0m > 1s

2s
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Alberts & Hayes stated this concept in a different fashion, noting three types of 

interoperation—common language, direct translation, and translation via reference 

language. (2003)  The first type, common language interoperation, equates to the term 

direct interoperation in this research.  Unfortunately, Alberts & Hayes used the 

oxymoronic term, direct translation, to refer to an interoperation that is not direct, but in-

direct with an intermediary providing translation.  Finally, their third type, translation via 

reference language, is just a special case of the first.  Alberts & Hayes used a language 

example in their text to illustrate the three types noting that common language means that 

two people can converse in the same language.  Direct translation was exemplified as a 

group of English speakers communicating with a group of French speakers via a 

translator versed in both languages.  Finally, translation via reference language was 

illustrated as two groups speaking different languages who communicate with each other 

by speaking a third (reference) language. 

Being able to measure the indirect interoperation of systems is important because 

something done by one system may or may not impact its adjacent neighbors, but may 

have a drastic effect on a “distant” system.  For example, an e-mail from one person to 

another might result in no action, but the same e-mail forwarded from the second person 

to a third could cause an uproar.  In other words, the first person in-directly interoperated 

with the third, causing an effect.  Similarly, a ground system interoperating with the 

Global Information Grid (GIG) has the potential to indirectly interoperate with the 

myriad of space- and airborne systems also networked to the GIG. This is especially true 

if the ground-based system is a service provider (i.e., a weather, geospatial, or 

intelligence providing system).  Thus, indirect interoperability is measured to analyze 
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distant effects as opposed to adjacent effects.  For example, indirect interoperability 

measurements might help determine the impact of US domestic policy on foreign 

countries or it could be used to measure the impact that a mix of legacy systems and 

technologically advanced systems have on each other as documents are constantly 

translated between them.  The ability to measure indirect interoperability facilitates 

effects-based action where one system impacts distant systems. 

Ford, et al., addressed indirect interoperability in their i-Score papers. (2007a; 

2008b)  They described a single measure of the interoperability of a set of systems 

implementing one sequential pass through an operational process.  Each system was 

viewed as a translator and was assigned an interoperability “spin” which indicated how it 

interacted with the succeeding system in the process (i.e., no translation needed, human 

translation needed, or machine translation needed).  The overall interoperability score 

was impacted each time a translation (interoperation) took place.  It was noted that each 

time an interoperation occurs, there is a potential loss (change) in physical, syntactic, or 

semantic structure of the original input to the process.  This loss only gets magnified each 

time the original input is translated.  Hence, translations occurring early in the process 

have more potential possibility for change than those occurring late in the process.  To 

account for this, each translation was given a case-specific penalty usually resulting from 

a performance overlay.  In essence, the i-Score measurement was a measure of the 

interoperability of the first system in the sequence with the last.  More work remains to 

be done in order to define a general method of measuring indirect interoperability.  
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5.3.2 Collaborative Interoperability Impact on Operational Effectiveness 

Section 3.6 provided an axiom which relates the impact of interoperability on 

operational effectiveness.  However, the axiom only applies to confrontational (friendly 

(blue)-to-adversary (red) system) interoperability.  In other words, it relates an 

improvement in friendly (blue)-to-adversary (red) directional interoperability ( ),B RI σ σ  

to an improvement in friendly (blue) operational effectiveness .  But the question 

remains as to the impact of collaborative (i.e., friendly (blue)-to-friendly (blue)) 

interoperability improvements on operational effectiveness.  To date, there is no analogue 

to the Interoperability Impact on Operational Effectiveness axiom which relates a change 

in collaborative interoperability to a change in friendly (blue) operational effectiveness. 

BO

It is reasonable to assume that if collaborative system interoperability ( ),B BI σ σ  

improves, that BO  will usually also increase.  A recognized researcher in the area of 

network centric warfare, John Garstka, speaking specifically on interoperations in which 

information is passed, wrote that there is “a strong correlation between information 

sharing…and significantly increased combat power.” (2000:1)  He further states that 

while this is intuitive to the warfighter, quantifying the relationship is “an analytical 

challenge of the first order.” (Ibid:3)  Hence, he resorts to providing empirically observed 

evidence of the relationship between a particular network centric improvement and 

increased combat power as gleaned from experiments, exercises, demonstrations, and 

real-life conflicts to justify his assertion. (Ibid)  Interestingly, Keenan wrote a decade 

earlier that the contribution of interoperability initiatives on battlefield effectiveness can 

be assessed quantitatively. (1988)  He gave six measures of effectiveness (functional area 
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performance, personnel requirements, systems cost, supporting-to-supported ratio, 

reconstitution capability, and satisfaction of CINC’s priorities), which, when properly 

measured and weighted, can be used to generate an assessment of improvement in 

battlefield effectiveness. (Ibid)  Unfortunately, Keenan’s six measures cannot be shown 

to be a complete, nor a correct list, making his resulting interoperability impact 

assessment a subjective measure. 

While no simple and complete relationship between collaborative interoperability 

and operational effectiveness has yet been published, such an axiom could be on the 

horizon.  The key to discovering it likely lies in the area of indirect interoperability 

measurement discussed in the previous section.  While a change in the interoperation of 

friendly (blue) systems has no direct impact on the directional confrontational 

interoperability of friendly (blue)-to-adversary (red) systems, it most definitely has an 

indirect impact.  For example, Garstka noted that F-15Cs equipped with the Joint Tactical 

Information Distribution System (JTIDS) experienced a kill ratio 2.5 times higher than 

that of non-JTIDS equipped F-15Cs. (2000)  In other words, an improvement in 

collaborative (F-15C-to-E-3 and F-15C-to-F-15C) interoperability indirectly increased 

confrontational (F-15C-to-Target) interoperability, resulting in an improvement in 

operational effectiveness.  A rigorous method of measuring indirect interoperability of 

systems might result in an axiom describing the impact of collaborative interoperability 

on operational effectiveness. 

While early proponents of network centric warfare and other interoperability 

improvement initiatives noted empirical evidence of improved operational effectiveness 

resulting from interoperability improvements, other researchers have identified the 
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problem of information overload (Toffler, 1970) and its effects. (Keller & Staelin, 1987)  

Noting that information-based interoperations are only a subset of the overall set of 

interoperations, the problem is extrapolated from the more specific term of information 

overload to the general term of interoperability overload.  It is postulated that a future 

axiom relating collaborative interoperability to operational effectiveness will describe a 

relation similar to that graphed in Figure 14 which shows an initial operational benefit of 

increased collaborative interoperability followed by a decrease as interoperability 

overload sets in with an optimum in between. 

 

Operational 
Effectiveness 

Collaborative 
Interoperability 

Figure 14.  Hypothetical relationship of collaborative interoperability with operational 
effectiveness 

5.4 Final Thoughts 

The Department of Defense has been pursuing interoperability for decades.  

While some might argue that the pursuit has not been aggressive enough (GAO, 1987), 

interoperability of defense systems has most definitely improved.  Whereas early goals 

reflected concerns about equipment commonality (i.e., NATO standard equipment), the 

focus eventually moved at the turn of the millennium to assessment of system-to-system 
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interoperability via verification testing. (Hutchens, 2007)  Architecures documented 

information exchange requirements which defined how systems interoperated with each 

other and the interoperations were described in the Interoperability Key Performance 

Parameter (I-KPP). (CJCSI 6212.01B, 2000)  While the Department of Defense still 

relies upon certification testing, the newer Net-Ready KPP (NR-KPP) concept (CJCSI 

6212.01C, 2003) emphasizes compliance with the Net-Centric Operations and Warfare 

Reference Model (NCOW-RM), the use of highly integrated architectures, the definition 

of interface profiles, and adherence to information assurance precepts to ensure systems 

are interoperable and born joint (i.e., network centric). (Hutchens, 2007) 

In spite of all this progress, these efforts have been focused on qualitatively 

describing technical interoperability.  The general method of this dissertation provides a 

means to finally quantitatively measure the interoperability of not only technical systems, 

but non-technical systems or mixed sets of systems.  Because the method draws upon 

existing data already mandated by the Joint Capabilities Integration and Development 

System (JCIDS) (e.g., integrated architectures, interface profiles, operational processes, 

measures of effectiveness) it becomes an efficient extension to the current state-of-the-

practice in interoperability assessment.  The ability to put the interoperability 

measurement in the context of operations and determine the impact of system 

interoperability on those operations is an added bonus and it is hoped that the general 

method of measuring system interoperability presented in this research will greatly 

improve defense systems and military operations for years to come. 
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A2.   A Selection of Interoperability Types 

Interoperability Type Source 
Application  (Kasunic & Anderson, 2004:34), 

(Kosanke, 2005:4) 
Architecture  (Curts, 1999:10) 
C4I  (Kasunic & Anderson, 2004:9) 
Cities  (Kinder, 2002:18) 
Coalition  (USJFCOM, 2001:48), 

(Fewell & Clark, 2003, p. 1) 
Communications  (LaVean, 1980:1448), 

(Kasunic & Anderson, 2004:34) 
Conceptual  (Carney & Oberndorf, 2004:18) 
Connected  (DoD, 1998) 
Constructive  (Levine, et. al., 2003:5), 

(Carney & Oberndorf, 2004:19), 
(Morris, et al., 2004:11) 

Constructive  (Morris, et al., 2004:35) 
Cultural  (Clark & Moon, 2001:2) 
Data  (Curts, 1999:4), 

(USJFCOM, 2001:30), 
(Kasunic & Anderson, 2004:4, 7, 34) 

Domain  (DoD, 1998) 
Electronic  (DoDD 2010.6, 1980:Encl. 2, p. 2) 
Enterprise  (DoD, 1998), 

(Kosanke, 2005: 8) 
Flexible  (Clark & Moon, 2001:2) 
Force  (Clark & Moon, 2001:1) 
Functional  (DoD, 1998), 

(USJFCOM, 2001:22), 
(Clark, 2001:2) 

Higher-layer  (Kasunic & Anderson, 2004:34) 
Horizontal  (Kinder, 2002:27) 
Information  (Curts, 1999:4) 
Information Systems  (DoD, 1998) 
Intra-organisational  (Kinder, 2002:23) 
Isolated  (DoD, 1998) 
Joint  (Leite, 1998:1), 

(USJFCOM, 2001: 49), 
(Kasunic & Anderson, 2004:13-14) 

Joint Information  (Nutwell, 2000) 
Logistics  (DoDD 2010.6, 1980:Encl. 2, p. 3) 
Lower-layer  (Kasunic & Anderson, 2004:34) 
Model  (Clark & Moon, 2001:1) 
Multidatabase  (Litwin & Abdellatif, 1986:1) 
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Non-GIG  (USJFCOM, 2001:29) 
Non-technological  (Clark & Moon, 2001:1) 
Object Oriented  (Konstantas, 1993:i) 
Operational  (Levine, et. al., 2003:6), 

(Carney & Oberndorf, 2004:19), 
(Kasunic & Anderson, 2004:2), 
(Morris, et al., 2004:11) 

Organizational  (Clark & Jones, 1999:1), 
(Clark & Moon, 2001:1) 

Peacetime  (LaVean, 1980:1450) 
Planned  (Clark & Moon, 2001:3) 
Plug‐and‐Play  (USJFCOM, 2001:47) 
Procedure Oriented  (Konstantas, 1993:4) 
Process   (Clark & Moon, 2001:2) 
Product-to-Product  (Kasunic & Anderson, 2004:37) 
Programmatic  (Levine, et. al., 2003:4), 

(Carney & Oberndorf, 2004:19), 
(Morris, et al., 2004:11) 

Programmatic  (Morris, et al., 2004:33) 
Public Administration (Kinder, 2002:6) 
Public Service  (Kinder, 2002:7) 
Responsive  (Clark & Moon, 2001:2) 
Secure-Voice  (USJFCOM, 2001: 33) 
Semantic  (Heiler, 1995:1) 
Specification Level  (Wileden, et. al., 1989:74) 
System-of-Systems  (Morris et. al., 2004:Cover) 
Systems  (LaVean, 1980:1449), 

(Leite, 1998: 1), 
(Curts, 1999: 3), 
(USJFCOM, 2001:32), 
(Clark & Moon, 2001: 2), 
(Kasunic & Anderson, 2004: 1) 

System-to-System  (Amanowicz & Gajewski, 1996:280), 
(Kasunic & Anderson, 2004, p. 17) 

Technical  (Clark & Jones, 19994), 
(USJFCOM, 2001:22), 
(Clark & Moon, 2001:1), 
(Kinder, 2002:25), 
(Carney & Oberndorf, 2004:16), 
(Kasunic & Anderson, 2004:2) 

Telecommunications  (LaVean, 1980:1449) 
Total  (Curts, 1999:1) 
Transitive  (Morris, et. al., 2004:28) 
Vertical  (Kinder, 2002:27) 

 



 

A3. Summary of Interoperability Measurement Models 

Sixteen interoperability measurement models (Table 29) are surveyed in 

succeeding paragraphs with the main contributions of each model highlighted.  Appendix 

A4 summarizes the models’ measurement formats.  The succeeding review and analysis 

is modified from Ford, et. al. (2007b).  Some model nicknames (e.g., SoIM, QoIM, 

MCISI, and IAM) were not used by the model authors, but have been assigned by the 

author of this research for ease of reference. 

Table 29 Interoperability measurement model publishers (adapted from Ford, et. al., 
2007b) 

Publishing Organization Model 
Defense Information Systems Agency (DISA) SoIM (’80) 
MITRE Corporation QoIM (’89) 

LISI (’98) 
Military University of Technology, Warsaw, Poland MCISI (’96) 
Joint Theater Air & Missile Def. Org. (JTAMDO) Contractor SIM IAM (’98) 
Australian Defence Science & Technology Organisation (DSTO) OIM (’99) 

OIAM (’05) 
Joint Forces Cmd (JFCOM) Joint Forces Program Office (JFPO) Stoplight (’02) 
Old Dominion Univ. Virginia Modeling Analysis & Simulation 
Center (VMASC) 

LCI (’03) 
LCIM (’03) 

North Atlantic Treaty Organization (NATO) NMI (‘03) 
DoD Command and Control Research Program NCW (’03) 
Carnegie Mellon Software Engineering Institute (CMU-SEI) SoSI (’04) 
Defence Science & Technology Lab. (Dstl) Contractor, QinetiQ NTI (’04) 
Research Establishment for Applied Science (FGAN) NID (’05) 
Air Force Institute of Technology (AFIT) i-Score (’07) 

Spectrum of Interoperability Model (SoIM) 

MAIN CONTRIBUTION: Interoperability can be measured in levels. 

In 1980, LaVean acknowledged in the IEEE Transactions on Communications 

that inter-system interoperability was poor because there existed a “lack of a measure of 

interoperability by which to state goals for specific systems.” (1980:1449)  To combat 

this deficiency, he created a spectrum of interoperability model (SoIM). (Ibid:1448)  He 
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defined the two most important measures of interoperability (technical possibility and 

management/control possibility), assigned levels (Table 30), and stated that by 

“combining these two measures, it is possible to derive a spectrum of interoperability that 

permits cost-versus-benefits tradeoffs.” (Ibid)  Recognizing that the level of 

interoperability may be different for each service that pairs of systems provide to each 

other, he proposed a visualization method, called an interoperability matrix, which lists 

services on the rows of the matrix and levels of interoperability on the columns.  He 

further proposed a current view and a “future” view of the interoperability matrix in order 

to show evolution of the systems over time. Thus, the purpose of SoIM was to provide a 

simple tool for program managers to assess current interoperability of their systems and 

services, to set goals for future interoperability, and to visualize the current and future 

states of interoperability.  Although SoIM was groundbreaking and is possibly the earliest 

method for measuring interoperability, there is no further mention of his model after its 

original publication and it is unknown whether or not it was used by program managers 

to improve inter-system interoperability. 

Table 30 SoIM levels of interoperability 

Level  Name Technical 
Measure 

Management/Control 
Measure 

1 Separate Systems 1 1 
2 Shared Resources 1 2 
3 Gateways 2 3 
4 Multiple Entry Points 2 4 
5 Conformable/Compatible Systems 3 4 
6 Completely Interoperable Systems 3 5 
7 Same System 4 6 
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Quantification of Interoperability Methodology (QoIM) 

MAIN CONTRIBUTION: Interoperability is correlated to measures of effectiveness. 

In 1989, Mensh, Kite, and Darby published a method in the Naval Engineer’s 

Journal called “The Quantification of Interoperability” (QoIM)  Working for MITRE 

Corp., they may have laid some of the groundwork for the well-known LISI model 

published by MITRE nine years later although they were never credited.  Mensh, et. al.’s 

approach to interoperability measurement is unique because they associated 

interoperability with measures of effectiveness (MOE).  Their goal was to assess 

interoperability issues for three mission areas: wide area surveillance (WAS), over-the-

horizon targeting (OTH-T), and electronic warfare (EW) by quantifying seven 

interoperability components. (Mensh, et. al., 1989)  They stated that “interoperability of 

systems, units, or forces can be factored into a set of components that can quantify 

interoperability” (Ibid:251) and identified the seven components as media, languages, 

standards, requirements, environment, procedures, and human factors.  They specified an 

arbitrary MOE logic function for each component and used that logic function to create a 

truth table populated via discrete event simulation.  For example, the MOE logic function 

for the Language component was defined as “Message Correctness = Intelligibility and 

Manual Intervention & Error.” (Ibid:255-256)  The truth table listed the binary MOE 

value (e.g., Message Correctness, Intelligibility, and Manual Intervention and Error) for 

various “significant events” which occurred during an exercise or simulation—the 

presence of zeros indicated lack of interoperability during certain component events and 

the presence of ones indicated that some level of interoperation occurred. (Ibid:254-255)  
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A final Interoperability Data Table was formed showing the truth table results for all 

seven interoperability components, which “illustrates the overall quantification of 

interoperability,” and “for specific events it enables an evaluation of the interoperability 

of…systems in terms of the seven interoperability components…[and] 

corresponding…events,” and finally, “having this type of table for two 

different…architectures enables a comparison of the relative goodness of each 

architecture.” (Ibid:259)  Although Mensh, et. al. state that their “methodology for 

quantifying interoperability is being pursued,” they admit that “additional exercises will 

be required and are currently in the planning stages.” (Ibid)  Aside from one citation by 

Leite in 1998 (and revised paper in 2003), there are no further mentions or apparent use 

of this model beyond the original journal in which it was published. 

Military Communications and Information Systems Interoperability (MCISI) 

MAIN CONTRIBUTION: The distance between systems modeled as points in space 

indicates their interoperability. 

In 1996, Amanowicz & Gajewski published an interoperability measurement 

model (MCISI) designed to model communications and information systems (CIS) 

interoperability mathematically.  Noting that interoperability modeling combines 

operational requirements, CIS data, standards, interfaces and modeling facilities, they use 

a colored cube to visualize their model in which one axis is level of command, the second 

is CIS services, and the third is transmission medium. (Amanowicz & Gajewski, 1996)  

The color of the intersections is red, yellow, or green representing none, partial, or full 

interoperability of a specific service through a specific medium at a specified level of 
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command.  Amanowicz & Gajewski further describe a set of systems as points in multi-

dimensional space with features of these systems as the coordinates of the points.  

Defining a normalized “distance” between two points as ( ),d A B , they state that when 

systems A and B achieve full interoperability and when ( ),d A B = 0 ( ),d A B >1, the system 

pair’s interoperability decreases. (Ibid)  They accommodate a set of systems by creating 

dendrite (a broken line which connects all points of a set) arrangements of the systems 

and state that the best arrangement is the one with the shortest dendrite length.  MCISI 

was not institutionalized after its publication. 

Levels of Information System Interoperability (LISI) Model 

MAIN CONTRIBUTION: Interoperability attributes of information systems. 

LISI is the most prominent interoperability measurement model within the 

Department of Defense.  It began development at the MITRE Corporation in 1993 and 

was published in 1998 by the C4ISR Architecture Working Group (AWG) co-chaired by 

the Joint Staff J6I and the Director, Architectures Directorate of the C4ISR Integration 

Support Activity (CISA) under the direction of OSD(ASD(C3I)). (DoD, 1998)  The LISI 

report stated, “We lack a practical assessment process for determining the interoperability 

maturity level or ‘metric’ of a given system or system pair…The LISI Assessment 

Process, with its associated tool, system profiles, and data repository, fills these needs.” 

(Ibid: ES-7)  LISI is a system focused vice mission focused method applicable only to 

information systems. 

While CJCSI 6212.01C, Interoperability and Supportability of Information 

Technology and National Security Systems, (2003) required program managers to ensure 
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that they complied with LISI requirements, that mandate expired in the latest version, 

CJCSI 6212.01D. (2006)  Although LISI was originally to be institutionalized in DoDD 

4630.5, DoDI 4830.8, DoDI 5000.2, and DoDD 5000.1, this was never accomplished. 

(DoD, 1998)  The Joint Staff maintained a repository of LISI profiles for acquisition 

programs for several years. (CJCSI 6212.01C, 2003) 

Like SoIM, LISI describes levels of interoperability called maturity levels.  

Whereas SoIM has seven levels, LISI has five—Level 0 (Isolated), Level 1 (Connected), 

Level 2 (Functional), Level 3 (Domain), and Level 4 (Enterprise).  However, LISI 

improves upon SoIM by giving four attributes of the levels described by the acronym 

PAID—Procedures, Applications, Infrastructure, and Data.  The LISI Reference Model is 

shown in Figure 3.  A web-based questionnaire is completed in order to generate the 

Interoperability Profile which contains information about a system for all four 

interoperability attributes.  From the profile, an Interoperability Metric can be obtained 

which is a triplet of metric type (Generic, Expected, & Specific), Level (0…4), and Sub-

level (a…z).  The metric describes the level of interoperability for one system (generic) 

or a pair of systems (expected and specific).  The generic metric is the best level of 

interoperability a single system is capable of whereas the expected metric describes the 

highest common level of interoperability for a system pair.  The specific metric describes 

the highest common level of interoperability between two information systems across all 

PAID attributes.  LISI has been reviewed and critiqued by many other researchers since 

its publication.  Recent reviews have been written by Brownsword, et al. (2004), Carney 

& Oberndorf (2004), Clark & Jones (1999), Clark & Moon (2001), Kasunic & Anderson 

(2004), Morris, et al. (2004), and Tolk (2003), among others. 
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Interoperability Assessment Methodology (IAM) 

MAIN CONTRIBUTION: Attributes of interoperability. 

Leite’s Interoperability Assessment Methodology was initially published in the 

pProceedings of the 66th Military Operations Research Society (MORS) Symposium 

three months after LISI was published and was revised again in 1999 and 2003.  It is 

unknown if the author was aware of the LISI effort, however he did reference Mensh, et. 

al.’s QoIM in his paper.  Like QoIM, IAM is based upon the idea of “measurement and 

quantification of a set of interoperability system components.” (Leite, 2003:1)  IAM 

identified nine components (vice QoIM’s seven) which are requirements, standards, data 

elements, node connectivity, protocols, information flow, latency, interpretation, and 

information utilization.  Each of the nine components has either a “yes/no” answer or a 

mathematical equation associated with it.  Leite also defines “degrees of interconnection” 

which are connectivity, availability, interpretation, understanding, utility, execution, and 

feedback. (Ibid:3-8)  He summarizes IAM in the form of a flowchart and applies the 

process to the Navy’s Tactical Ballistic Missile Defense Program as an example.  His 

methodology was not institutionalized, but was referenced by Kasunic and Anderson in 

2004 who state that IAM’s quality attributes can be used to extend the LISI model at the 

mission slice level. (Kasunic & Anderson, 2004) 

Organisational Interoperability Maturity Model for C2 (OIM) 

MAIN CONTRIBUTION: Organizations interoperate, but have different interoperability 

attributes than technical systems. 
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In 1998, the Australian Defense Science and Technology Organisation (DSTO) 

completed a Command and Control Support (C2S) study in which they described five 

layers of C2 Support (Telecommunications, Info Technology, Info Management, C2 

Process, and C2 Framework). (Clark & Jones, 1999)  In this study, they pointed out that 

LISI) is strongly technological, 2) focuses on system and technical compatibility, and 3) 

does not address higher layers of C2 support.  As a result, Clark & Jones determined to 

create an organizational extension to LISI.  The result of their labors is the Organisational 

Interoperability Maturity Model (OIM) first introduced in June 1999 at the International 

Command and Control Research and Technology Symposium (ICCRTS), then revised in 

2003 at the same conference by Fewell and Clark. 

OIM was used to “identify problems and evaluate interoperability in a coalition 

operation” (Fewell & Clark, 2003:3)  Like LISI, OIM defined five levels of 

interoperability (independent, cooperative, collaborative, combined, and unified).  

However, unlike LISI’s technically-associated PAID attributes, OIM defined four 

attributes of organizational interoperability—1) preparation, 2) understanding, 3) 

command and coordination, and 4) ethos (Socio-Cultural factors).  Fewell & Clark 

supplied detailed descriptions of the attributes, identified multiple sub-attributes for each 

of the four main attributes and used the revised model to analyze the operational 

interoperability of three scenarios: 1) the multi-national force participating in the 

Australian led, 1999-2000 International Force East Timor (INTERFET) operation, 2) an 

Australia-US interoperability review, and 3) the Multinational Limited Objective 

Experiment 2 (MNLOE2) held in February 2003.  OIM was reviewed by several 

researchers after its initial introduction in 1999.  Some examples are: Briscombe, et al. 
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(2006), Brownsword, et al. (2004), Clark & Jones (1999), Clark & Moon (2001), Fewell, 

et al. (2004), Kasunic & Anderson (2004), and Morris, et al. (2004) Dekker published a 

modification to the model which he uses to analyze the Black Hawk Down incident in 

Mogadishu in 1993. (2005)  It is unknown whether the OIM model has been 

institutionalized by the Australian Department of Defence. 

Stoplight 

MAIN CONTRIBUTION: Operations & acquisition have interoperability requirements. 

In 2002, Hamilton, et. al. published a very uncomplicated interoperability 

measurement model which they simply called a Stoplight model.  They stated that 

“interoperability is notoriously difficult to measure,” yet gave a “simplified model” to 

measure it.  (Ibid:20-21)  The model’s purpose is to help decision makers understand 

whether or not their legacy systems meet operational and acquisition interoperability 

requirements and is designed as a two-dimensional matrix in which “meets operational 

requirements (yes/no)” appears on the rows of the matrix and “meets acquisition 

requirements (yes/no)” appears on the columns.  The intersections of the matrix are 

colored red, yellow, orange, and green depending on how well the specific type of 

requirement is met.  Hamilton, et. al. give an example of how the color codings can be 

overlaid on a timeline to show the plan to achieve improved interoperability in the future.  

This model has not been institutionalized within the Department of Defense. 

Levels of Conceptual Interoperability Model (LCIM) 

MAIN CONTRIBUTION: Conceptual interoperability bridges system interoperability. 

134 



 

The Levels of Conceptual Interoperability Model (LCIM) was published by Tolk 

& Muguira in 2003 with the intent that it be used to “become a bridge between the 

conceptual design and the technical design for implementation, integration, or 

federation,” and that it be used to “enhance the…DoD Net-Centric Data Strategy for the 

Global Information Grid (GIG).” (Tolk & Muguira, 2003:1)  Additionally, they state that 

it can be used as a framework “to determine in the early stages of the federation 

development process whether meaningful interoperability between systems is possible.” 

(Ibid)  LCIM focuses on the world of modeling and simulation, and initially gave five 

levels of interoperability but later extended to seven as a result of “new research at 

VMASC and as the response to critique by the scientific community.” (Turnitsa & Tolk, 

2006:1)  The final levels are Level 0—No interoperability, Level 1—Technical 

interoperability, Level 2—Syntactic Interoperability, Level 3—Semantic Interoperability, 

Level 4—Pragmatic Interoperability, Level 5—Dynamic Interoperability, and Level 6—

Conceptual Interoperability.  LCIM has traction within the modeling and simulation 

community.  LCIM reviewers include Brownsword, et al. (2004), Kasunic & Anderson 

(2004), and Morris, et al. (2004). 

Layers of Coalition Interoperability (LCI) 

MAIN CONTRIBUTION: Operational interoperability is an extension of technical 

interoperability. 

Also in 2003, Tolk introduced a different, but similarly acronymed, Layers of 

Coalition Interoperability (LCI) model which defines nine layers of interoperability.  He 

shows that there is a continuum between technical interoperability and operational 
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interoperability rather than a distinct breakpoint between the two and that the interface 

between technical and operational interoperability is made at the knowledge/awareness 

layer.  The nine layers in LCI are, from lowest to highest, 1) Physical Interoperability, 2) 

Protocol Interoperability, 3) Data/Object Model Interoperability, 4) Information 

Interoperability, 5) Knowledge/Awareness, 6) Aligned Procedures, 7) Aligned 

Operations, 8) Harmonized/Strategy Doctrines, and 9) Political Objectives.  These layers 

are framed by a “common model of the operation.”  Tolk proposes possible metrics for 

his model as those contained in the NATO Code of Best Practice for C2 Assessment 

(Stenbit, et. al., 2002a), Code of Best Practice for Experimentation (Stenbit, et. al., 

2002b), and Network Centric Warfare Metrics Framework (Alberts, et. al., 2000)  LISI 

and NMI were referenced by Tolk, but OIM was not.  Tolk claims that LCI is not meant 

to be a “universal replacement” for other frameworks, but is meant to be used to “help 

formulate layered models.” (Tolk, 2003:17)  LCI has been cited and briefly reviewed by 

Morris, et al. (2004). 

NATO C3 Technical Architecture Reference Model for Interoperability (NMI) 

MAIN CONTRIBUTION: Same as LISI. 

Version four of this NATO reference model was published in March 2003 and 

according to Morris, et al., it was updated to closely reflect the LISI model in December 

2003. (2004)  It is no longer available on the NATO website.  NMI originally described 

four degrees of interoperability (not including degree 0 which was no interoperability).  

The four degrees mapped directly to LISI’s top four levels and were given as: 1) 

unstructured data exchange, 2) structured data exchange, 3) seamless sharing of data, and 
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4) seamless sharing of information which.  NMI was reviewed by Brownsword, et al. 

(2004), Kasunic & Anderson (2004), Morris, et al. (2004), Tolk & Muguira (2003), and 

Tolk (2003). 

Net Centric Warfare Maturity Model (NCW) 

MAIN CONTRIBUTION: Interoperability occurs in physical, information, cognitive, 

and social domains; lack of interoperability increases difficulty in accomplishing the 

mission. 

Alberts & Hayes published Power to the Edge in 2003 and included a Net Centric 

Warfare Maturity Model (NCW) in their chapter on interoperability.  Besides 

emphasizing the need for interoperability in military operations, they point out that 

interoperability underpins the tenents of net-centric warfare. (Alberts & Hayes, 2003)  

Specifically, they state that interoperability must be present in four domains: physical, 

information, cognitive, and social.  They correlate interoperability to mission 

effectiveness by stating that “a lack of…interoperability on the part of an entity…makes 

it difficult for them to contribute to the mission.” (Ibid:108)  NCW models the maturity 

of situational awareness and command and control in the context of interoperability 

levels (Table 31).  The five interoperability levels in the model are defined as Level 0 – 

limited interoperability, Level 1—more entities share information, Level 2—

collaborative environments and processes, Level 3—shared awareness in the information 

and cognitive domains, and Level 4—interoperability in the social domain. 
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Table 31 NCW maturity model (Alberts & Hayes, 2003) 
  Command and Control 
  Traditional Collaboration Self-

synchronization

Developing 
Situational 
Awareness 

Shared 
Awareness  3 4 
Information 
Sharing 1 2  
Organic 
Sources 0   

System-of-Systems Interoperability (SoSI) Model 

MAIN CONTRIBUTION: System-of-system interoperability research is founded upon 

operational, conceptual, and programmatic interoperability. 

This simple model was published in 2004 by the Carnegie-Mellon University 

Software Engineering Institute (CMU-SEI) and was developed to facilitate system-of-

systems interoperability research. (Morris, et al., 2004)  SoSI is founded upon three types 

of interoperability (operational, constructional, and programmatic) and the activities 

associated with each.  While it is a useful way of developing and integrating systems-of-

systems, SoSI lacks metrics to specifically measure interoperability, however it provides 

a framework in which an analyst can use his/her own metrics.  The SoSI report also 

summarizes LISI, OIM, NMI, LCIM, and LCI.  SoSI has not been institutionalized within 

the Department of Defense. 

Non-Technical Interoperability (NTI) Framework 

MAIN CONTRIBUTION: Social, personnel, and process interoperability, as well as 

organizational interoperability, are valid types of non-technical interoperability. 

Stewart, et al., introduced the Non-Technical Interoperability (NTI) framework in 

2004 to allow the United Kingdom’s (UK) Ministry of Defence (MOD) “to understand 
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these aspects of interoperability better and to mitigate potential frictional factors in 

multinational forces.”  They felt that OIM was a “useful top-level framework” for the 

data they captured in their own research, but recognized that it did not cover social, 

personnel, and process interoperability.  The four enabling OIM attributes form the core 

of the NTI framework which provides a more detailed breakdown of these attributes.  

While a complete set of metrics was not provided by Stewart, et al., they did propose a 

Multinational Forces Cooperability Index which provides a score of 1, 2, 4, 8, 12, or 16 

for two (preparedness and understanding) of the four attributes.  The NTI framework was 

developed as result of 45 interviews with UK military officers ranging in rank from Army 

Captain to 3-star General.  It is unknown if NTI has been institutionalized within the UK 

Ministry of Defence. 

Revised NATO Interoperability Directive (NID) 

MAIN CONTRIBUTION: Levels of interoperability can be given in linguistic terms. 

Schade notes that LISI takes a system view of interoperability and NCW takes a 

force view. (2005)  He points out that the NATO Interoperability Directive also uses a 

system view of interoperability, but documents poorly labeled levels of interoperability.  

He updates the NID labeling scheme, by applying linguistic terminology extracted from 

Alberts & Hayes (2003), with the following, Level 0— missing interoperability, Level 

1—physical interoperability, Level 2—syntactic interoperability, Level 3—semantic 

interoperability, Level 4—pragmatic interoperability. 
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Organisational Interoperability Agility Model (OIAM) 

MAIN CONTRIBUTION: There are levels of ability of organizations to be agile in their 

interoperation. 

Kingston, et. al. of the Australian Defence Science and Technology organization 

(DSTO) published the Organisational Interoperability Agility Model (OIAM) in 2005.  It 

“builds on the Organizational Interoperability Model developed by Clark and Jones” and 

“aims to capture the dynamic aspects of working in coalitions including the ability of an 

organization to contribute to the rapid formation and reformation of coalitions, including 

novel ones.” (Kingston, et. al., 2005:2)  Organizational agility is defined as “a single 

organization’s potential to have agile interfaces to other organizations in future coalition 

operations” and “assesses an organization’s ability to adapt to changing circumstances.” 

(Ibid:3)  Aligning with OIM, OIAM uses five levels of organizational agility (Static, 

Amenable, Accommodating, Open, and Dynamic) as well as the four OIM attributes, 

combining preparation and understanding.  The model’s developers state they are at the 

beginning of their research on organizational agility and that they plan to develop 

additional metrics and perform case studies in order to refine the model.  As a new 

model, it has not yet been institutionalized by the Australian Department of Defence. 

The Layered Interoperability Score (i-Score) 

MAIN CONTRIBUTION: Interoperability measurements are operational process specific 

and have a maximum value. 

The Layered Interoperability Score (i-Score) is a quantitative method of 

measuring the interoperability of all types of systems in the context of an operational 
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process.  (Ford, et. al., 2007a; 2008b)  It makes use of existing architecture data and 

accommodates more than one type of interoperability.  Unique to the i-Score method is a 

means of determining a realistic upper limit on interoperability for the systems supporting 

the operational process.  The i-Score method accommodates custom layers which allow 

the analyst to compensate the i-Score measurement for any number of interoperability-

related performance factors such as bandwidth, protocols, mission capability rate, 

probability of connection, or atmospheric effects, among others.  Also possible are cost, 

schedule, reliability, and performance layers to measure the impact of various 

programmatic changes on the interoperability of the process.  The method can be used to 

make non-traditional interoperability measurements such as organizational or policy 

interoperability measurements.  The i-Score method has not been institutionalized within 

the Department of Defense. 
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A5.   A Survey of System Taxonomies 

System Science System Taxonomies 

Ludwig von Bertalanffy, a biologist accepted by many as the father of general 

systems theory (GST), noted that systems are everywhere. (1955)  He defined them as 

“complexes of elements standing in interaction,” and promptly classified them as open or 

closed, a classification which certainly originated long before von Bertalanffy’s time in 

the disciplines of physics, chemistry, and biology. 

Kenneth Boulding, an economist and the first president of the Society for General 

Systems Research (now known as the International Society for the Systems Sciences) and 

cofounder of GST, published a creative and more detailed classification of systems which 

hierarchically classifies systems as 1) frameworks, 2) clockworks, 3) thermostats, 4) 

cells, 5) plants, 6) animals, 7) human beings, 8) social organizations, and 9) 

transcendental systems. (1956)  Boulding’s classification scheme was self-described both 

as a hierarchy of complexity and as a systematic framework in which he referred to each 

of the nine classifications in the hierarchy as a level.  Approximately thirty years later, 

Boulding proposed a new, but related classification, stating that systems were either static 

or dynamic and that “something of a hierarchy” of all systems which “correspond to 

something in the real world” included systems which were either mechanical, cybernetic, 

positive-feedback, creodic, reproductive, demographic, ecological, evolutionary, human, 

and social. (1985: 18)  He then agglomerates these ten as physical, biological, or social 

systems and organizes the remainder of his book around discussions of the world as not 
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just a physical, biological, and social system, but also as an economic, political, 

communication, and evaluative system. 

Twelve years after Boulding published his first classification scheme, Jordan 

published a taxonomy of systems which grouped systems according to “intuitive guesses” 

of three “organizing principles” each holding two “polar opposite” properties. (1968: 44)  

Jordan defined eight cells (classifications) in his taxonomy, which were derived from his 

principle-property framework, by taking one property from each of the three principles—

1) rate of change (structural/static or functional/dynamic), 2) purpose (purposive, non-

purposive), and 3) connectivity (mechanistic/organismic).  As an example, Checkland 

uses the taxonomy to classify a road network as a structural, purposive, mechanically-

connected system but a mountain range as a structural, non-purposive, mechanically 

connected set of entities. (1981)  Checkland uses this logic to critique Jordan, noting that 

in his belief, Jordan erroneously “ascribes the purpose, or lack of it, to the system itself” 

rather than to the system’s creator. (Ibid: 108) 

Thus, Checkland takes Jordan’s taxonomy as a foundation, merges some ideas 

from Boulding and creates what he calls a systems typology which includes five classes 

of systems (natural, design physical, design abstract, human activity, and transcendental 

systems).  The purpose of his typology is to identify classes of entities based upon their 

origin.  According to Checkland’s typology, the set of natural systems, which includes 

both types of designed systems as well as the human activity systems, and the set of 

transcendental systems are disjoint sets.  Checkland is quite confident in the 

completeness of his typology and declares that it “completes a simple systems map of the 

universe which, as far as system classes is (sic) concerned, is itself complete.” (Ibid, 111) 
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Wilson, a colleague of Checkland, adopted a revision of Checkland’s typology, 

calling it a system classification instead. (1990)  He removed transcendental systems 

from the classification and restated the four remaining classes of systems as natural, 

designed, human activity, and social and cultural systems.  Wilson created his 

classification of systems in order to help refine the definition of the word system to a 

level that would be useful in modeling. 

Probably without prior intention, Ackoff, in his oft-cited “Toward a System of 

Systems Concepts,” published a system taxonomy of sorts, formed by definitions of 

various types of systems. (1971)  While definitely not hierarchical nor mutually 

exclusive, his list of system types is never-the-less useful.  Ackoff defines abstract, 

concrete, closed, open, static (one-state), dynamic (multi-state), homeostatic, state-

maintaining, goal-seeking, multi-goal seeking, purposive, purposeful, ideal-seeking, 

variety-increasing, and variety-decreasing systems.  Without explicitly stating so, he 

infers that other types exist, but states that he defined “the most important types of 

systems.” (Ibid: 661) 

Valdma recently published a classification scheme for information, but noted that 

an analogous scheme exists for classifying systems. (2007)  His four-level, hierarchical 

classification of systems directly mirrors his information classification model and puts 

deterministic systems at the lowest level, followed by probabilistic systems, then 

uncertain systems (sub-grouped into uncertain-deterministic, and uncertain-probabilistic), 

and finally, fuzzy systems (sub-grouped into fuzzy-deterministic and fuzzy probabilistic).  

His stated purpose in creating the classification is as a “first step in studying the non-

deterministic phenomena” in the universe. (Ibid, 265) 
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Systems Engineering System Taxonomies 

In 1957, Goode and Machol wrote in System Engineering, that systems should be 

classified “on the basis of the types of inputs with which they must cope.” (1957: 299)  

They further defined this set of inputs as 1) input which is always the same or is of many 

types, 2) input which occurs periodically (or very infrequently), and 3) input which does 

or does not seek to destroy the system.  Their rationale for developing the classification 

was to aid in the definition of steps to be followed in order to find the “solution of the 

problem of a large-scale or complex system.” (Ibid: 302) 

Hall’s A Methodology for Systems Engineering, published five years later, has no 

direct reference to system classification, but indirectly describes a classification of natural 

vice man-made systems, discusses open and closed systems, and references von 

Bertalanffy’s property of the hierarchical order of systems, (1962)  Interestingly, Hall 

interprets von Bertalanffy’s classification as a method useful in partitioning systems into 

subsystems, loosely inferring classification can be used in design, and also states that a 

system classification is useful in “enhancing the meaning of system.” (Ibid: 63, 68) 

Martin, in his Systems Engineering Guidebook, indirectly classifies systems by 

classifying product types, relating them to systems by stating that systems are comprised 

of components, and components are comprised of one or more basic product types. 

(1997)  His basic product types, which he correctly notices are not mutually exclusive, 

are hardware, software, personnel, facilities, data, materials, services, and techniques.  

His rationale for creating a taxonomy of product types is to create a checklist “to ensure 

that bases are covered” meaning that the required behavior for a system should not just be 

allocated to hardware and software. (Ibid: 24) 
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Shenhar, and Shenhar & Bonen proposed a taxonomy of systems in order to 

demonstrate that system engineering design and management methods, as well as the 

type of system engineering culture and style, which are appropriate for one type of 

system are inappropriate for another. (1995, 1997) Their taxonomy is two-dimensional 

and classifies systems “according to four levels of technological uncertainty (low, 

medium, high, and super-high tech), and three levels of system scope (assembly, system, 

and array).” (Ibid: 137)  They cite the space shuttle as an example of a system which 

NASA initially advertised to Congress as high-tech but making use of existing 

technologies, but which, in hindsight, should have been managed as a super-high-tech 

system making use of many not yet developed technologies and methods.  Shenhar & 

Bonen state that an understanding of their taxonomy and a proper classification of the 

space shuttle as a system could possibly have prevented schedule delays and even might 

have prevented the Challenger tragedy as NASA would have been “more keenly aware of 

the possibility of trouble.” (Ibid, 144)  Shenhar & Bonen admit that their framework “is 

not conclusive” and requires further refinements and investigation, but believe that it is 

useful in “finding better and more effective ways to manage the creation of different 

kinds of systems.” (Ibid, 145) 

Maier focused his research on the topic of architecting systems-of-systems. 

(1999)  He argued that systems-of-systems must possess “operational and managerial 

independence of the systems components” and provided a “limited taxonomy” in which 

system-of-systems are considered a “useful taxonomic distinction” separate from 

monolithic systems. (1999:267-284)  He further subdivided the taxonomic grouping of 

system-of-systems into virtual, voluntary, and directed categories. 
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Kovacic’s taxonomy provides “definition to the variety of fields that hold claim to 

the term systems” and reduces the set of systems into “meaningful related clusters.” 

(2005)  He erroneously states that his taxonomy uniquely uses complexity as its basis, as 

Boulding, whom Kovacic cites, called his taxonomy “a hierarchy of complexity.” 

(Boulding, 1956: 200), Kovacic makes a unique application of complexity theory, but 

more importantly notes that a good taxonomy must be inclusive, definitive, reductive, 

and applicable. (2005)  Additionally, he notes that systems are difficult to classify 

because they are perceptions of the observer.  Kovacic’s taxonomy is three-dimensional 

with decomposed/un-decomposed, complex/simple, and loosely bounded/tightly bounded 

as the three dichotomous categorizations. 

Gideon et al., published a taxonomy of systems-of-systems in order to aid in the 

understanding of the nature and attributes of systems-of-systems and because “a clearly 

defined classification scheme is essential in developing common systems engineering 

architectures and methodologies.” (2005)  While they admit that their taxonomy “may 

not be complete or even necessarily correct,” it represents one of the first attempts at a 

classification scheme specifically for systems-of-systems.  Their final taxonomy 

subordinates systems-of-systems to systems in general, then defines sub-classifications of 

acquisition type (dedicated or virtual), operational type (chaotic, collaborative, or 

directed), and domain type (social, conceptual, or physical). 

Blanchard and Fabrycky discuss classification of systems in Systems Engineering 

and Analysis, but caveat by saying that the classifications they included are “only some 

of those that could be presented” and indicate that systems can be classified “for 

convenience and to provide insight into their wide range.” (2006: 6)  They take the path 
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of dichotomies as Jordan did and defined systems as natural and man-made, physical and 

conceptual, static and dynamic, and closed and open.  As is the case with others who 

have classified systems, their classification scheme proposes agglomerations which 

overlap—a property to be expected and one that is useful.  Blanchard and Fabrycky 

acknowledged tie-in between systems engineering and systems science and partially 

aligned their system classifications to the nine levels of complex systems proposed by 

Boulding. 



 

A6.   Operational Process Modeling Methods 

Table 32 Operational process modeling methods 
ACT Formalism 
A Language for Process Specification (ALPS) 
AP213 Protocol within ISO 10303 
UML 2.0 Behavior Diagram 
EPFL’s Petri Net Representation 
Core Plan Representation (CPR) 
Entity-Relationship (E-R) Model 
Functional Flow Block Diagram (FFBD) 
Gantt Chart 
Generalized Activity Network (GAN) 
Hierarchical Task Networks (HTN) 
Integration Definition for Function Modeling (IDEF0) 
Process Flow and Object State Description Capture Method (IDEF3) 
Issues, Nodes, Ordering, Variable, and Auxiliary (<I-N-OVA>) Constraint Model 
Knowledge Interchange Format (KIF) 
Open Planning Architecture (O-Plan) Task Formalism 
OZONE 
Parts and Action (PAct) 
Product-Activity-Resource Model for Realiz. of Electro-Mech. Assemblies (PAR2) 
Part 49 of ISO 10303 
Program Evaluation and Review Technique (PERT) Network 
Petri Net 
Process Flow Representation (PFR) 
Process Interchange Format (PIF) 
Quirk Models 
Visual Process Modeling Language (VPML) (pre-1998 version) 
Visual Process Modeling Language (VPML) (post-1998 version) 
AND/OR Graph 
Data Flow Diagram (DFD) 
Digraph 
State Transition Diagram (STD) 
SysML Activity Diagram 
Tree Structure 
Process Specification Language (PSL) 
Flow Chart 
DoD Architecture Framework (DoDAF) Functionally Decomposed Activity Diagram 
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A7.   Operational Effectiveness Measurement 

Hierarchy of Measures of Operational Effectiveness 

A hierarchy of measures was first described by the Military Operations Research 

Society (Sweet, et. al., 1985) and was later adopted by the Department of Defense with 

minor modification (Grimes, 2006).  This hierarchy also seems to be widely accepted 

outside these two communities, with slight modifications, and describes a hierarchical set 

of measures ranging from dimensional parameters, to measures of performance, to 

measures of effectiveness, to measures of force effectiveness, and finally to measures of 

policy effectiveness (Green, 2001; Stenbit, et. al., 2002).  This hierarchy is often rendered 

as a pyramid or onion-skin model although it shouldn’t be viewed that rigidly.  Similarly, 

many authors strictly apply dimensional parameters to objects, measures of performance 

to systems, measures of effectiveness to systems within an environment, measures of 

force effectiveness to systems as part of a force, and measures of policy effectiveness to 

high-level policy decisions, but there should be flexibility in order to accommodate 

different system types (e.g., organizational systems).  The preferred term in this research, 

measure of operational effectiveness (MoOE), fits in the range of measurements between 

measure of performance and measure of force effectiveness, inclusive. 

Operational Effectiveness Assessment 

Operational effectiveness assessment occurs during operational planning, 

operational execution, and post-operation analysis.  This is well documented in DoD joint 

operational planning and joint operations publications (JP 5-0, 2006; JP 3-0, 2006).  A 
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common means of determining operational effectiveness is through measurement of 

appropriate factors related to the operation.  Although these measures can be qualitative, 

Keeney states that quantifying the measures “clarifies the meaning of the (operational) 

objectives, and this clarity…facilitates all aspects of decisonmaking.” (Keeney, 

1992:129). 

JP 3-0 Joint Operations (2006) and JP 5-0, Joint Operational Planning (2006) 

define assessment as “the process that measures progress of the joint force toward 

mission accomplishment” and state that commanders “continuously assess…the progress 

of operations, and compare them to their initial vision and intent.” (Ibid:III-57)  

Operational assessment uses both measures of effectiveness (MOE) and measures of 

performance (MoP) (Ibid:III-59).  Although JP 3-0 and JP 5-0 associate MOEs with 

strategic assessment and MOPs with tactical assessment, since an operation in the context 

of this dissertation can be strategic or tactical, the generalized term, measure of 

operational effectiveness (MoOE), will be used from here onward.  Since the two joint 

publications state that an MoP is used to measure task performance and an MoE is used 

to “determine progress of an operation toward achieving objectives,” (Ibid:III-60) it is 

appropriate to say that an MoOE, although retaining some characteristics of an MoP (e.g., 

measurement of level of operational tasks, or thread, completion), is more closely aligned 

with the definition of an MOE, and hence is appropriately named. 

The initial MOEs defined during operational planning are also called success 

criteria (JP 5-0, 2006:III-27).  Indeed, MOEs are defined early (Step #2, Mission 

Analysis of 7 steps) in the operational planning process and become “the basis for reports 
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to senior commanders and civilian leaders on the progress of the operation” (Ibid) 

because they measure “the attainment of an end state, achievement of an objective, or 

creation of an effect” (JP 3-0, 2006:IV-32; JP 5-0, 2006:III-60).  In fact, according to 

Murray in A Will to Measure, the desire to measure quantitatively is “irresistible” to 

modern society and the armed forces use quantitative methods to explain actions to 

leaders, politicians, and the public (2001:134).  Murray aptly states that “the 

interpretation of the MOE frequently forms the structure on which senior leaders base 

their orders.” (Ibid) 

JP 5-0 gives an example of an operation (evacuate all US personnel from an 

embassy) and two associated MOEs (“are all personnel evacuated?” and “have any rules 

of engagement been violated?”) which highlights the fact that MOEs are operation 

dependent and that there are often more than one MOE associated with the operation. 

(2006:III-27) 

An appropriate MOE must be carefully selected.  According to Murray, MOEs 

which “adequately reflect and distill reality help decisionmakers make informed and 

timely decisions,” while “poorly chosen measures have a multitude of negative effects” 

(2001:134). 

MoOE Characteristics 

Multiple researchers give desirable characteristics of MoOEs.  Fourteen 

characteristics are consolidated below (in no special order) in Table 33 and are discussed 

individually in succeeding paragraphs. 
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Table 33 MoOE characteristics 
Characteristic 
1) Relevant 
        Also called “operational” 
        Also called “mission-oriented” 
2) Measurable  
3) Responsive 
        Also called “sensitive” 
4) Resourced  
5) Understandable  
6) Discriminatory  
7) Quantitative  
8) Realistic  
9) Objective  
10) Appropriate  
11) Inclusive  
12) Independent  
13) Valid  
14) Reliable (Precision)  

 
Relevant.  An MOE must be relevant to the operation, or in other words, mission-

oriented.  For example, during the Kosovo campaign, NATO’s focus on counting the 

number of vehicles and weapons destroyed and the number of sorties flown and bombs 

dropped “did not provide a sense of whether Yugoslavian leaders were ready to accede to 

NATO demands” but instead validated “performance requirements” of weapons—an 

irrelevant indicator of operational effectiveness of the campaign. (Murray, 2001:134).  A 

positive change in the MOE value should indicate greater operational success.  Similarly, 

a negative change in the value of the MOE value should indicate a decline in operational 

success. 

It should not be assumed, however, that an MOE must be a direct (also called 

natural by Keeney (1992:101) measure of the success of the operation.  Indeed, often 

direct measures violate criteria #2 (measurability), but measurable inferential (also called 

indicative, indirect, or constructed) measures may be available.  For example, the MOE 
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“level of the morale of the enemy” cannot be directly measured, but an inferential 

measure such as “number of attacks per month made by the enemy” may be an adequate 

estimate of enemy morale in that it indicates the enemy’s desire to continue the fight.  If a 

commander or leader must resort to using inferential MOEs, extra care must be taken to 

ensure that the MOE is relevant.  For example, Secretary McNamara used body count as 

an inferential measure of operational effectiveness during the Vietnam war, but that 

measure not only did not reflect progress in winning the war, but had many unintended 

effects (Murray, 2001) such as failure of commander integrity, and possibly the 

unnecessary killing of civilians. 

Murray writes that it can be difficult to discover good MOEs which accurately 

reflect the positive and negative trends in operational effectiveness because the 

“underlying causal mechanisms are exceedingly difficult to determine” (Ibid:138).  He 

accurately observes that rarely is one measure appropriate but that most operational 

effectiveness must be measured from a complex set of factors. 

Measurable.  An MOE must be measurable (Bornman, 1993; JP 3-0, 2006; JP 5-

0, 2006).  Although JP 5-0 acknowledges that MOEs can be qualitative or quantitative, 

quantitative MOEs are preferred because they are “less susceptible to subjective 

interpretation.” (2006:III-61)  Qualitative measures can usually be quantized.  For 

example, the MOE, “are all personnel evacuated,” is a yes or no question which can be 

rendered as a 1 or 0.  Similarly, the MOE, “to what level has the enemy’s ability to place 

improvised explosive devices (IED) been degraded,” appears qualitative, but infers that a 
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scale can be applied by using the word level.  If a scale of 0 to 10 IEDs per day is used, 

then the MOE becomes quantitative and measurable. 

Responsive (Sensitive).  An MOE must be responsive, or sensitive, to changes in 

the operation. (Bornman, 2001; JP 3-0, 2006; JP 5-0, 2006)  In order to give the 

commander fidelity of understanding on how the effectiveness of the operation is 

changing, the MOE must be sensitive to changes in operational effectiveness.  For 

example, if the operational goal is to assist democratic revolutionaries in overthrowing 

their country’s dictatorship, a measurable and relevant, yet insensitive MOE could be, 

“number of machines guns provided to the revolutionaries each month.”  Although 

machine guns may eventually help revolutionaries overthrow the dictatorship, the time 

required for training and planning may result in delayed progress toward the goal of the 

operation.  In fact, more machine guns than necessary may be provided in successive 

months as the operation’s commander attempts to accelerate the overthrow of the 

dictatorship. 

Resourced.  An MOE must have the necessary resources (i.e., manpower, money, 

time, etc.) allocated for data collection, analysis, and reporting (JP 3-0, 2006; JP 5-0, 

2006).  If resources are not allocated for assessment, it won’t matter how appropriate the 

MOEs are, because the measurements will not be able to be made, or the measurements 

may be incomplete or inaccurate.  For example, if a commander desires to improve war 

fighting efficiency of his unit, but does not have enough people on staff to dedicate to 

data gathering and analysis, the commander may find that the efficiency analysis 

eventually provided is shallow, too narrowly focused, or downright erroneous. 
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Understandable.  This characteristic is self explanatory and is also called simple 

by Bornman (2001) and Green & Johnson (2002).  An MOE must be understandable 

(Keeney, 1992; Campbell, 2004) not only to the person making the measurement, but 

also to the leader whose decisions are based upon the measurement. 

Discriminatory.  Bornman states that an MOE must be discriminatory in order to 

“identify real differences between alternatives” (1993:2-3).  This characteristic is related 

to the characteristics of objectivity and independence described below. 

Quantitative.  Keeney writes that objectives are qualitative and attributes (MOEs) 

are quantitative (1992). JP 3-0 states that MOEs are qualitative and MOPs are 

quantitative (2006), however JP 5-0 states that MOEs are either qualitative or quantitative 

(2006).  Bornman insists that MOEs are quantitative (1993). 

Realistic.  Although Bornman calls out realistic as a separate characteristic of a 

desirable MOE, “realistic” is largely implied in the more important characteristics of 

measurable, resourced, and understandable—all of which, if missing, result in a MOE 

which is not realistic.  Murray reminds that realistic measures which “adequately distill 

and accurately reflect reality help decisionmakers make informed, timely decisions.” 

(2001:134) 

Objective.  Bornman states that measures can be objective or subjective, but lists 

objectivity as a desirable characteristic. (1993)  Keeney mentions that a subjective, or 

qualitative, “structure” can be quantified using a value model. (1992)  Keeney’s 

philosophy is that any qualitative measure can be rendered quantitatively.  This usually is 
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accomplished by applying a scale, or other type of model, to give meaning to the values 

of the measure.  Non-objective measures are often constructed or proxy measures. 

Appropriate.  Bornman states that a measure of effectiveness should be 

appropriate, which he defines as relating to “acceptable standards and analysis 

objectives.” (1993:2-3) 

Inclusive.  Bornman also mentions that a desirable measure of effectiveness is 

inclusive, meaning it “reflect(s) those standards required by the analysis objectives.” 

(1993:2-3)  No further clarification is offered although a reference is made to a 1985 

Military Operations Research Society workshop which developed some (or possibly all) 

of the characteristics listed in the Bornman (Army TRADOC) handbook.  Unfortunately, 

no bibliography was included in the handbook, so it is difficult to accurately identify the 

source which Bornman referenced, although it likely was the 1985 document referenced 

by Green & Johnson. (2002) 

Independent.  Independence is an important characteristic of an MOE, because it 

drives the analyst to find measures of operational effectiveness which are not confounded 

with each other.  This is desirable from a commander’s perspective since it results in 

measures which are distinct from each other.  This allows commanders to change certain 

aspects of their operation and measure that change without affecting other aspects of the 

operation.  In practice, it is difficult to describe independent MOEs.  Design of 

experiments and response surface methodology theory recommend if independence of 

factors is impossible (i.e., due to cost, ease of measurement, or other reasons), then care 

should be taken to ensure important factors are confounded with negligible factors.  This 
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minimizes the impact due to variable dependence.  This same philosophy can be applied 

to MOE selection by choosing measures of important effects which are not confounded 

with a measure of another equally important effect. 

Measure independence was listed as “desired but not essential” by Bornman 

(1993) and was listed as a desired characteristic of MOEs by Green & Johnson. (2002)  

The NATO Code of Best Practice for C2 Assessment states that analysis of operations is 

challenging due to “the number of confounded variables” (Stenbit, et. al., 2002:191) and 

and further states that independent measures are controllable. 

Valid. Bullock states that a measurement is valid if it “reflects the…attributes it 

was supposed to represent.” (2006:8) 

Reliable.  Finally, Bullock writes that a measure must be reliable (which he also 

calls precision), meaning that the measurement process must be able to yield a consistent 

and repeatable measurement. 

MOE Types and Domains 

Keeney lists three types of MOEs (which he called attributes)—natural, 

constructed, and proxy. (1992)  A natural MOE is one which has “a common 

interpretation to everyone” such as annual profit in millions of dollars. (Ibid:101)  A 

constructed MOE is not a direct or natural measure, but includes a subjective judgment. 

(Campbell, 2004)  For example, the Richter scale for measuring earthquake intensity is a 

constructed measure. (Ibid)  Campbell points out that constructed measures, as they 

become commonly known and understood can become natural measures (e.g., the Dow 

Jones Industrial Average and the Gross National Product).  Finally, the proxy MOE is an 
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inferential, or indicator, measure which describes something related to what is actually 

wanted to be measured.  For example, the level of Carbon 14 is an indicator of the age of 

an object.  A natural measure is often objective whereas constructed and proxy measures 

are often subjective. (Bornman, 1993)  Although natural MOEs are the most desirable, 

more often than not, constructed or proxy MOEs 1) more readily meet the MOE criteria, 

2) cost less to gather data and measure, or are 3) more easily discovered.  An MOE is 

measured in the physical, information, or cognitive domain .(Stenbit, et. al., 2002)  

Generally, measurements in the physical domain are easier to make and those in the 

cognitive domain are more difficult. 

MOE Summary 

An MOE is defined as “a standard used to assess changes in the production of a 

desired operational effect.”  It is exists within the range of measure of performance, 

measure of effectiveness, and measure of force effectiveness in the hierarchy of 

measures.  The three types of MOE—natural, constructed, and proxy—exist within the 

physical, information, and cognitive domains.  The best MOEs are relevant, measurable, 

responsive, resourced, understandable, discriminatory, quantitative, realistic, objective, 

appropriate, inclusive, independent, valid, and reliable.  An MOE associates proper units 

of measurement and includes limits on the range of the measurement as appropriate. 
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