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Abstract

A self-referencing interferometer based closed-loop adaptive optics controller is de-

veloped which is designed to operate effectively under strong turbulence conditions. The

aberrated optical field is modeled stochastically and then estimates of the state of the system

are developed using a steady-state, fixed-gain Kalman filter. The phase of the optical field is

considered the state of the system which is wrapped in a limited range of (-π, π]. This phase

is unwrapped through the use of a least-squares reconstructor which has been modified to

work effectively in the presence of branch points associated with strong turbulence. The

conjugate of the optical phase is then applied to the system’s deformable mirror in order to

correct for the effects of atmospheric turbulence on the optical field.

The advances developed in this research are in the application of a steady-state, fixed-

gain Kalman filter to the input of an adaptive optic system, unwrapping the optical phases

after the field estimation, and improving the phase unwrapping by varying the domain of

the rotational phase component present in strong turbulence.

The system developed in this research is shown in computer simulation to be improved

over current designs by comparing performance plots of system Strehl ratios for systems

utilizing the different designs.
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Closed-Loop Adaptive Optics Control in

Strong Atmospheric Turbulence

I. Introduction

Adaptive Optics (AO) is used to correct for the effect of atmospheric turbulence on an

optical system. By correcting for the effect of atmospheric turbulence, the system can

be improved until it becomes diffraction-limited, at which point it performs as if looking

through a vacuum instead of turbulent air. In this case, the resolution of the system is

limited solely by the aperture size of the system.

1.1 AO systems

AO systems have three main parts. First, a wavefront sensor (WFS) measures the

wavefront of light received by the system. Second, a controller takes the output from the

WFS and creates the input to the third part of an AO system, a wavefront compensator

which corrects the wavefront. [12]

Figure 1.1 shows a simple system in which the distorted wavefront is sensed by a WFS.

Wavefront measurements are given to the controller which then commands a deformable

mirror (DM) to minimize the effect of atmospheric turbulence. This is an open-loop system

which is conceptually valuable but not very effective in practice. A block diagram of the

equivalent control loop is depicted in Figure 1.2.

A more realistic depiction of an adaptive optics system is given in Figure 1.3, with

the equivalent control loop block diagram in Figure 1.4. This system is closed-loop because

the DM corrects the wavefront prior to it encountering the WFS. In this system a non-

deformable mirror known as a fast-steering mirror (FSM) corrects the tilt (average phase

gradient over the entire aperture). A second mirror is deformable and flattens the wavefront.

This arrangement minimizes the dynamic range required of the DM.
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Figure 1.1: Example of a simple open-loop AO system

DM

WFS Controller

In Out

Figure 1.2: Open-loop control system block diagram. ‘In’ represents the light incident on
the telescope while ‘Out’ represents the light incident on the imaging camera.

1.2 Shack-Hartmann Wavefront Sensor

Most AO systems use a Shack-Hartmann (S-H) WFS (which measures the field gra-

dient of light), a controller and a DM. Correspondingly, improvements to AO systems have

been achieved by improving either the S-H WFS, DM, or the control algorithm connecting

the two. After years of development, systems of this design are relatively mature and offer

good performance in correcting for weak atmospheric turbulence.

Figure 1.5 shows two images of a binary star system taken at AFRL’s Starfire Optical

Range (SOR). “These images were taken using the SOR’s 3.5 m telescope in the I band,

which has a center wavelength of ∼850 nm. The compensated image was corrected by the

756 active actuator AO system. The angular separation between the two stars is 1.45 mrad.

The top two images are auto scaled, but the surface plots on the bottom are on the same
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scale. Notice that the peak intensity is much, much greater in the compensated image.” [45]

This clearly illustrates how effective conventional AO can be in weak turbulence.

1.3 Self-Referencing Interferometers

Recently, a new type of WFS known as a self-referencing interferometer (SRI) has been

developed. An SRI is an appealing alternative to the S-H because it more directly senses

the optical field while the S-H simply measures the field gradient. An SRI has two distinct

advantages over a S-H WFS. The primary benefit of an SRI is better performance under

strong turbulence conditions. [24] Traditional WFSs and reconstruction methods ignore a

portion of the phase caused by strong turbulence (the rotational field, explained in Chapter

II) while an SRI measures it accurately. [24] A second benefit to an SRI is that by more
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*Images from AFRL SOR Website

Figure 1.5: Uncorrected image (left) vs. AO corrected image (right) [45]

directly sensing the field, the reconstruction of the field from the WFS output is greatly

simplified.

For weak turbulence, the two types of WFSs provide comparable performance. The

S-H WFS gradient measurements can be reconstructed into phases with relative ease and the

turbulence is weak enough that the traditional systems detect the entire field. At stronger

turbulence levels, however, effective AO control becomes much more difficult for traditional

systems.

In strong turbulence conditions, the phase of the received light has significant spatial

variation. In addition, a phenomenon known as scintillation starts to occur where the am-

plitude of the optical field varies causing bright spots and nulls to appear in the field. These

nulls can lead to something called branch points (explained in more detail in Chapter II)

where the phase of the optical field becomes discontinuous. This complicates all three as-
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Figure 1.6: Performance comparison between S-H WFS with conventional Least Squares
reconstructor (green line), SRI WFS with exponential filter then unwrapper (blue line and
top left DM depiction), and SRI WFS with unwrapping the linear filtering (red line and top
right DM depiction) [34].

pects of standard AO systems: the reconstruction of the field gradient measurements into

the field, the computation of optimum control of the field, and the control of the field.

Since an SRI effectively eliminates the need for wavefront reconstruction and senses

the rotational component of the phase, it promises a significant improvement over gradi-

ent sensors for these stronger turbulence conditions. However, using the new sensor in

closed-loop control has proven to be problematic. Ignoring the branch point effects limits

performance of the system. Including branch point effects has created stability problems in

the control loops.

The bottom plot in Figure 1.6 show AO performance for three different system designs

under similar strong turbulence atmospheric conditions. The green line shows a system using
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a S-H WFS and a least-squares (LS) reconstructor. The poor performance of this system is

due to ignoring the effect of branch points on the measured phase of the field. The blue line

depicts the performance of system using an SRI with an exponential filter and an unwrapper

designed to account for branch point effects. This system takes branch point effects into

account, which causes it to significantly outperform the first system. The variability in

the performance of the system, however, is due to the system constructing differing branch

cuts from frame to frame. The correction present on the DM at the end of the test is

depicted on the top left of the figure. The red line shows performance of a system utilizing

an SRI with an unwrapper and a linear filter. Branch points are taken into account, but the

system becomes unstable and eventually underperforms the S-H WFS and exponential filter

system. This instability is thought to be due to the undersampling of the optical field by

the SRI which leads to erroneously identifying branch points which do not in fact exist. The

erroneous branch points build up on the DM because they cannot be sensed and eventually

yield a de-stabilized DM like the one depicted on the top right of the figure. [25]

The goal of this dissertation then is to develop a closed-loop AO control structure effec-

tive under strong turbulence conditions. The design utilizes an SRI WFS with a controller

which precludes buildup of unnecessary branch points effects on the DM.

1.4 Motivation

Weapons are the tools of the warrior and just as pilots need day/night all-weather

aircraft, military systems such as the Airborne Laser (ABL) which use optically directed

energy must work in strong turbulence conditions. A well-designed SRI-based AO sys-

tem should perform effectively under strong turbulence conditions, while conventional AO

systems cannot.

What if free people could live secure in the knowledge that their security did not
rest upon the threat of instant U.S. retaliation to deter a Soviet attack, that we
could intercept and destroy strategic ballistic missiles before they reached our
own soil or that of our allies? - Ronald Reagan [33]
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II. Literature Review

This chapter covers the background material and relevant research literature for the

project. It covers all the parts of a closed-loop AO system with special emphasis on

the WFS. More specifically, S-H and SRI WFSs are covered in detail. Stochastic estima-

tion and control is covered, and the workings of a Kalman filter are described. Wavefront

manipulation devices are discussed. Finally, branch point phenomena and their effects on

AO controllers are covered.

2.1 Adaptive Optics

The effects of atmospheric turbulence on optical systems were noted as early as 1656

by Christian Huygens [21]. Automatic tracking of objects, however, was not accomplished

until the 1950s and compensating for atmospheric turbulence was first suggested in 1953

by Horace W. Babcock [21]. Later, in 1973, the first crude AO system was tested at the

Rome Air Development Center optical test range in Verona, New York [21]. The use of laser

beacons to provide the reference wavefront needed to determine atmospheric turbulence was

first demonstrated in 1989 at Kirtland AFB’s Starfire Optical Range [21]. The result of many

years of development is that AO has been advanced to the point of being a relatively mature

field, able to give good performance under conditions of weak atmospheric turbulence.

2.2 Wavefront Sensors

The first step in correcting for the effects of atmospheric turbulence is to measure

these effects. This requires a sensor which can measure an optical wavefront.

Light, when treated as a wave, is represented in an x, y plane as the optical field

U(x, y, t) = A(x, y, t)exp[jφ(x, y, t) ± ωt] where A(x, y, t) represents the amplitude of the

wave field, φ(x, y, t) is the phase and ω is the angular frequency of the field [22]. Considering

only coherent light, we drop the ωt dependence and simply consider the phasor form of the

field U(x, y) = A(x, y)exp[jφ(x, y)].

Measuring an optical field is difficult because the period of optical waves is on the

order of femtoseconds, much too fast to detect directly. As such, there is no such thing as
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a field detector. Instead, sensors able to detect the intensity of light I(x, y, t) = ‖U(x, y, t)‖
are utilized. The field of the light must be inferred from these intensity measurements.

The field intensity can be measured by media such as the retina of an eye, photographic

film or solid-state photo-detector arrays. All these media work effectively the same in that

they integrate the intensity of the field over some finite amount of time. This can be

represented by

I(x, y, tk) = C

tk∫

tk−1

‖U(x, y, t)‖2dt = C

tk∫

tk−1

A2(x, y, t)dt (1)

where tk is the nomenclature for the kth time interval from tk−1 to tk and C converts the

units of ‖U(x, y, t)‖ and A2(x, y, t) (watts/m2) to the units of intensity (Joules/m2) [20].

A photo-detector array is particularly relevant for AO as it is the medium used to

measure the field in AO systems. Since the pixel size of a photo-detector array is fixed and

finite, the formula becomes

I(xi, yj , tk) =
∫

yj

∫

xi

I(x, y, tk)dxdy (2)

where x and y are integrated over the area of the ijth detector pixel. I(xi, yj , tk) is then

the average intensity of the ijth pixel for the kth time frame from tk−1 to tk. The key point

here is that I(xi, yj , tk) is a discrete representation of I(x, y, t). If pixel sizes are kept small

and time frames kept short, the representation is generally adequate.

Having the intensity of the field, the discrete amplitude A(xi, yj , tk) is easy to deter-

mine as
√

I(xi, yj , tk) [19]. Determining the phase of the field φ(xi, yj , tk) is more problem-

atic.

2.2.1 Shack-Hartmann Wavefront Sensor. The most common wavefront gradient

sensor is the Shack-Hartmann WFS. As shown in Figure 7, this sensor works by using a

lenslet array to divide the aperture into multiple sub-apertures [11]. Each sub-aperture’s

lenslet focuses incoming light onto a focal-plane detector. The detector has a small grid

of photo-detector pixels assigned to each sub-aperture. If the light in one sub-aperture is
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Figure 7: Shack-Hartmann lenslet diagram [40]

propagating in a planar fashion, the light is focused in the center of that sub-aperture’s

photo-detector grid. If the light entering a sub-aperture has a non-zero average tilt (or

average phase gradient), then the light is focused off-center on the receiving array. The x

and y centroid of the received light is computed by performing a weighted average of the

intensity of the light received by each pixel assigned to a sub-array in the equation

x̄ij =

N∑
m=1

N∑
n=1

x̄mnI(xm, yn, tk)

N∑
m=1

N∑
n=1

I(xm, yn, tk)
(3)

and

ȳij =

N∑
m=1

N∑
n=1

ȳmnI(xm, yn, tk)

N∑
m=1

N∑
n=1

I(xm, yn, tk)
(4)

where N is the number of pixels in the x and y directions (assumed to be the same) of the

ijth sub-aperture and x̄mn and ȳmn are the x and y center of the mnth pixel in the sub-
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aperture. Note that for Figure 7, N = 2 with detector pixels symmetric about the optical

axis of the subaperture. This simplifies Equations (3) and (4) to the expressions included

in the figure where a, b, c and d are the intensities I(xm, yn, tk) and the resultant 4x and

4y are the centroid of the ijth sub-aperture x̄ij and ȳij .

As shown in Figure 8, the average tilt of the field over the sub-aperture in the x and

y directions can be determined by the geometry of the setup. The phase gradients in the x

and y directions can be calculated as

(
∂φ

∂x

)

ij

=
x̄ij

2πλf
(5)

and (
∂φ

∂y

)

ij

=
ȳij

2πλf
(6)

where f is the focal length of the sub-aperture lenslet and λ is the wavelength of the light.

The net result of these gradient calculations is that arrays of phase gradients, (∂φ
∂x )ij

and (∂φ
∂y )ij , are generated and can be passed on as wavefront information to a controller.

The controller can reconstruct the field from those gradient measurements.

2.2.2 Temporally Phase-Shifted Self-Referencing Interferometer. As shown in Fig-

ure 9, a self-referencing interferometer (SRI) takes a different approach to measuring wave-

front information. Incoming light is split into two separate beams. The reference beam is

created by focusing one leg into a single mode optical fiber. This strips all but the DC,
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Figure 67: Interferogram of DM after 100 frames in AO system with A = 0.95

Figure 68: Interferogram of DM after 100 frames in AO system with A = 0.9
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V. Optical phase unwrapping in the presence of branch points

5.1 Introduction

Unwrapping an optical field in the presence of branch points is a significant chal-

lenge when designing an AO system to operate in strong turbulence. Under weak

turbulence, AO systems utilizing Shack-Hartmann WFSs and least-square reconstructors

are unwrapped as part of the reconstruction process. The result is a smooth phase, im-

plementable by a DM. With strong turbulence, branch points require branch cuts which

complicate phase unwrapping. These unavoidable 2π lines of discontinuity degrade AO sys-

tem performance when correcting with a continuous surface deformable mirror due to the

inability of the mirror to fit the required discontinuous phase [16]. Branch cut placement,

however, affects the amount of degradation and branch cuts can be placed between branch

points in many different ways. As previous published by the author [42], this chapter pro-

poses a non-optimal but effective and implementable phase unwrapping method for optical

fields containing branch points which places branch cuts where their negative impact on

system performance is minimized.

5.1.1 Phase Cuts. Phase cuts, degrade system performance because the DM can-

not change shape abruptly and instead changes smoothly between actuators in attempting

to match a phase cut. Regions between samples on either side of a cut are poorly corrected

by the DM because the DM cannot emulate a cut precisely and will ramp from the com-

manded level on one side of the cut to the level on the opposite side of the cut. As such, it

is advantageous to eliminate phase cuts wherever possible and keep them short and through

areas of low illumination when they cannot be eliminated.

For the purposes of this research, a phase cut will be considered as anywhere there is

a difference of more than π between adjacent pixels. Throughout this chapter, phase cuts

are depicted in figures by lines. ‘x’s and ‘o’s in figures indicate the location of positive and

negative branch points, respectively. The line colors are usually white but may vary from

figure to figure in an effort to keep them distinct from the background.

5.1.2 Wrapping Cuts. Phase cuts take two forms, wrapping cuts and branch

cuts. A wrapping cut is only due to the field being wrapped and proceeds from one edge
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Figure 71: (a) Wrapped phase with only wrapping cuts. (b) Unwrapped version of (a).
Note that the unwrapped phase is smooth.

of the optical field to another. It can be eliminated by adding or subtracting an integer

multiple of 2π to the field on one side of the wrapping cut. Cuts which form a closed path

within the field are also unwrapping cuts and can be eliminated similarly by either adding

or subtracting an integer multiple of 2π to the interior or exterior of the cut path. As an

example, Figure 71 depicts a wrapped and unwrapped phase. Note that the wrapped phase

is limited in range to [−π, π) while the unwrapped phase is not.

5.1.3 Branch Cuts. Figure 72 shows a phase with both wrapping and branch cuts.

Unlike wrapping cuts, branch cuts do not extend across the entire field (or in a closed path)

having at least one end terminating at a branch point [17]. They either connect branch

points of opposite polarity or connect a branch point with the edge of the optical field (in

effect placing a branch point of opposite sign just off the field at that point). By terminating

at a branch point, they compensate for the non-zero curl of phase differential around the

branch point. In a closed path around a single branch point, the phase differentials integrate

to ±2π. As the line integral crosses the branch cut, however, ∓2π is added so that the closed

line integral sums to zero as it would if there were not a branch point within the closed

path. Branch cuts can be placed in a variety of ways, all of which will still compensate for

the non-zero curl of branch points in the phase. Two examples of phase cut placement are

shown in Figure 73. The poor unwrap is created by simply unwrapping the field from left
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Figure 72: Wrapped phase with both wrapping and branch cuts. If this phase were to be
unwrapped, it would not be smooth.

to right. The minimum cut distance unwrap was manually created to minimize the length

of the branch cuts.

5.1.4 Least-Squares Unwrappers. Least-squares (LS) unwrappers are very common

methods of estimating the unwrapped phase of an optical field in AO systems designed for

weak atmospheric turbulence [18]. There are two types, weighted and unweighted.

5.1.4.1 Unweighted LS Unwrappers. For an N × N array of phases, an

unweighted LS unwrapper is developed as

Gφ = s

GTGφ = GTs

(GTG)−1GTGφ = (GTG)−1GTs

φLS = (GTG)−1GTs,
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Figure 73: Poor unwrap and minimum cut distance unwrap of phase field with branch
points.

where G is a 2N(N − 1)×N2 transformation matrix that converts the N2 vector of phases

φ into a 2N(N − 1) vector of phase differentials in the x and y directions s and the inverse

notation is taken to be the pseudo-inverse. In weak turbulence, s is most commonly the

phase gradients provided by a Shack-Hartmann WFS. If actual phases φTot are available,

the phase differentials s are developed as s = W(GφTot) where W() indicates the wrapping

operation of limiting the differentials s to some 2π interval. An important point is that

while creating an N2 × N2 pseudo inverse is computationally daunting, the problem is

alleviated somewhat by G being sparse and fixed for a given AO system. Much of the work

can be pre-computed a single time rather than having to be determined in real time during

execution.

5.1.4.2 Weighted LS Unwrappers. Weighted LS unwrappers are sometimes

used to minimize noise or emphasize certain parts of a field. In a weighted LS unwrapper,
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the slopes are weighted before applying the pseudo-inverse as

Gφ = s

WGφ = Ws

(WG)TWGφ = (WG)TWs

GTWTWgφ = GTWTWs

GTW2Gφ = GTW2s

(GTW2G)−1GTW2Gφ = (GTW2G)−1GTW2s

φLS = (GTW2G)−1GW2s,

where W is an 2N(N − 1) × 2N(N − 1) diagonal array of weights. It works essentially

the same as an unweighted LS unwrapper, but the pseudo inverse cannot be pre-computed

because the weighting matrix is not typically constant. This makes a weighted LS unwrapper

difficult to implement in real-time systems.

5.1.4.3 LS Unwrappers and the hidden phase. In estimating the phases

from the slopes, there is an implicit assumption that the sum of phase differentials is path

independent, or that the field is irrotational. As a result, the phase estimate of an LS

unwrapper is irrotational. The LS unwrapper does not reconstruct the rotational portion

of the phase, which is why the rotational component of the phase is sometimes referred to

as the “hidden phase” [15]. This makes a simple LS unwrapper alone a non-optimal choice

when compensating for strong turbulence [32,39].

5.1.5 Non-LS Component of the Field. The non-LS component of the field is

the difference between the original field and the output of a LS unwrapper. If the original

field is irrotational, the output of the LS unwrapper will be modulo-2π-equivalent to the

original field, and the non-LS component will be non-existent. If the original field has branch

points and is rotational, the effects of those branch points will be isolated in the non-LS

component. As such it is sometimes referred to as the rotational component [18]. Strictly

speaking, the rotational component containing the non-zero curl effects of the field is not

unique [9], so it is referred to here as the non-LS component, uniquely identifying it as the
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Figure 74: Intensity overlaid by branch cuts using LS unwrapper to eliminate wrapping
cuts.

difference between the original field and the output of a LS unwrapper. For the purposes of

this research, the non-LS component will be wrapped to a particular 2π range.

5.2 Improved Unwrapper

The first step in unwrapping efficiently in the presence of branch points is generating

the LS and non-LS components of the field through the use of an LS unwrapper,

φLS = LS(φTot)

and

φnon−LS = W
(
φTot − LS(φTot)

)

where LS() indicates applying an LS unwrapper operation to the vector of wrapped phases

φTot and W() indicates wrapping the phase to some 2π range.

Wrapping cuts are eliminated by the LS unwrapper, and branch cuts are isolated in

φnon−LS . Thus total phase φTot adjusted to remove wrapping cuts while still retaining
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Figure 75: Poor unwrapping, phase and intensity overlaid by branch cuts.

branch cuts can be determined as

U(φTot) = φLS + φnon−LS , (62)

where U() indicates an unwrapping process which removes wrapping cuts (but not branch

cuts). While removing any wrapping cuts, this unwrapped result is modulo-2π-equivalent

to φTot, maintaining both the irrotational and rotational components of the field. This has

been covered in several texts [18] and is a common way of including rotational phase effects

in the AO systems being developed to operate under strong turbulence conditions [4].

In general, this approach is reasonably effective as shown in Figure 74. Here the field

whose phases are in Figure 72 has its wrapping cuts removed by the process depicted in

Equation (62). The resultant branch cuts are plotted over the intensity (instead of the phase

as in previous figures) to show the effectiveness of the unwrap. In this case the branch cuts

are reasonably short and seem to avoid the areas of high intensity, although they may not

be optimal.

While generally effective, this unwrap method sometimes gives less appealing results

as shown in Figure 75. Here the branch cuts are much longer than they could be and go

through areas of high intensity. Admittedly this is the worst realization encountered in the

simulation, but poor results are encountered.
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Since after unwrapping the LS portion of the phase field φLS is free of phase cuts,

the non-LS portion φNon−LS must be examined in order to reduce the impact of phase

cuts. Being wrapped, φNon−LS is restricted to some 2π range, say [0, 2π). If the range is

changed to [−π/2, 3π/2) then all the points whose phase is in [3π/2, 2π) would have 2π

subtracted from them. The resulting field would be modulo-2π equivalent to the original

field, but would have branch cuts in different positions. The field depicted in Figure 75 is

re-depicted in Figure 76 alongside unwraps for the same field with φNon−LS having differing

range restrictions. The unwrap with φNon−LS restricted to [0, 2π) has terrible branch cut

placement. The remaining three realizations depicted are much more reasonable, with the

realization created by limiting φNon−LS to [−π, π) having the lowest normalized cut length.

It should be noted that the creation of four realizations is reasonable because the majority

of the computational load is in executing the LS unwrapper which only has to be done once.

5.2.1 Unwrapping Metric - Normalized Cut Length. Having developed multiple

modulo-2π-equivalent phase realizations, it is necessary to compare different branch cut

placements so that the best one can be chosen. Short cuts through regions of minimal

illumination have the least impact on system performance [17]. As such, the metric used

in this work is ‘normalized cut length’ which is the line integral of field intensity along

any phase cuts divided by the average intensity of the field. It is an indication of what

proportion of light in the system is along phase cuts. Since light along branch cuts is

erroneously corrected by a continuous facesheet DM, it should be minimized and a shorter

normalized cut length is desired.

For a discretely sampled field, normalized cut length is determined by first isolating

the phase cuts within the field. This can be accomplished by taking the difference between

adjacent pixels first up and down and then side to side. The intensities on either side of the

cuts are then summed and divided by two to account for the average intensity along the

cuts. Finally, the result is normalized by dividing by the sum of the field’s intensities.

The advantage of normalized cut length is that it can be computed during system

execution and is highly correlated to system performance. In order to show the correlation

of normalized cut length to system performance, a 256×256 complex ‘Fine’ field is developed
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φNon−LS ⊂  [−π/2,3π/2), norm cut length = 6.7
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φNon−LS ⊂  [−π,π), norm cut length = 0.7
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Figure 76: Branch cuts of four different unwrap realizations.

from the 32 × 32 field by interpolation from the coarser field. Similarly a 32× 32 array of

phases from an unwrapper is converted into a 256× 256 arrays of phases. This models an

idealized DM whose surface varies smoothly between actuators. The DM model is translated

into the complex domain by û + iv̂ = Â exp(iφ̂) where û and v̂ are the real and imaginary

estimates of the field, Â is the estimated amplitude of the field and φ̂ is the estimated phase

of the field. The field-estimation Strehl ratio can then be computed as

S =
|

N∑
a1=1

N∑
b1=1

Fa1b1E
∗
a1b1

|2

N∑
a2=1

N∑
b2=1

Fa2b2F
∗
a2b2

N∑
a3=1

N∑
b3=1

Ea3b3E
∗
a3b3

, (63)

where F is the ‘Fine’ field, E is the estimated DM field and ∗ is the conjugation operator [35].
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Figure 77: Field estimation Strehl ratio versus integrated cut intensity.

By developing both the ‘Fine’ field and estimated DM field by interpolating from the

same coarser field, degradations in the field estimation Strehl are isolated solely to the effect

of phase cuts in the field. This allows direct comparison between normalized cut length and

the effect of phase cuts on field estimation Strehl.

Normalized cut length is plotted against field estimation Strehl ratio for the various

fields and unwrapping methods examined during this work in Figure 77 and has a correlation

of −0.9982. Normalized cut length is shown to be a good measure of the impact of phase

cuts on field estimation Strehl ratio, and thus on system performance.

5.3 Simulation and Results

In order to test the unwrapper, a simulation was created that isolates and unwraps

32 × 32 sections from a 513 × 513 optical simulation generated test screen. The section

size is arbitrary and alternative sizes could be studied. The simulation was run on two test

screens depicting fields with intensity log-amplitude variances of 0.4 and 0.8. Each had a
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scaling of 16 pixels per the atmospheric coherence diameter r0. The log-amplitude variance

of intensity is a measure of the scintillation of the field and a reasonable indication of the

turbulence strength [1]. Both variances reflect strong turbulence which would create branch

points.

For a given field, the 32 × 32 window is moved throughout the larger test screen to

look at all possible realizations of the test screen. While correlated, this gives a wide variety

(482 × 482 = 232, 324) of different realizations. Some are benign and all four unwrapped

versions have effectively placed branch cuts. Others, as shown in Figure 75 have an un-

wrapped version where a cut passes through or close to a region of high intensity. This is

certainly an unwrapping solution to avoid and justifies creating an unwrapper which can

choose the best of four unwrap realizations.

For each of the 232,324 possible realizations, the integrated cut intensity metric is

recorded for the four φnon−LS ranges. The average and maximum score for all realizations

is then determined for each of the four ranges. These data show how the unwrapper would

perform if the range was fixed to a particular range. The integrated cut intensity is also

recorded for the φnon−LS range which gives the lowest score. The average and maximum

is determined for this best of four φnon−LS ranges and compared against the average and

maximum scores from the fixed ranges.

The results of the unwrapper using both unweighted and weighted (by field intensity)

LS unwrappers to separate out the rotational component are given in Tables 1 and 2 for log-

variance values of 0.4 and 0.8 respectively. Compared to limiting the non-LS component to

a single range, the variable-range ‘φLS +φnon−LS ’ mean normalized cut length is reduced in

both cases. Perhaps more importantly, the worst realizations are avoided in a variable-range

‘φLS + φnon−LS ’ unwrapper so that the maximum normalized cut length is dramatically re-

duced. The weighted variable-range ‘φLS +φnon−LS ’ unwrapper has the effect of influencing

the LS portion of the field towards the areas of higher intensity. The non-LS portion of the

field is then influenced towards the areas of lower intensity and branch cuts are forced into

darker portions of the field. While a weighted LS unwrapper has the best performance, the

computational cost of a weighted unwrapper is significant (see Section 5.4).

98



Table 1: Normalized cut lengths for 0.4 log-amplitude variance field
Non-LS component range Avg norm cut length Max norm cut length

Unweighted [0, 2π) 7.14 196.9
Results [−π/2, 3π/2) 6.65 159.2

[−π, π) 6.73 140.0
[−3π/2, π/2) 7.00 173.0

best of four realizations 1.13 37.6
Weighted [0, 2π) 1.41 88.6
Results [−π/2, 3π/2) 1.35 90.9

[−π, π) 1.40 93.3
[−3π/2, π/2) 1.44 85.7

best of four realizations 0.62 16.9

Table 2: Normalized cut lengths for 0.8 log-amplitude variance field
Non-LS component range Avg norm cut length Max norm cut length

Unweighted [0, 2π) 11.58 150.6
Results [−π/2, 3π/2) 11.57 161.4

[−π, π) 11.42 136.5
[−3π/2, π/2) 11.51 169.6

best of four realizations 3.0 43.8
Weighted [0, 2π) 3.10 94.3
Results [−π/2, 3π/2) 3.05 108.7

[−π, π) 2.95 103.7
[−3π/2, π/2) 2.98 110.6

best of four realizations 1.43 17.4
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5.4 Comparison to Other Unwrappers

In order to evaluate the worth of the variable-range ‘φLS + φnon−LS ’ method, it was

compared to other unwrappers designed to work with branch points. The other unwrappers

are the fixed-range ‘φLS + φnon−LS ’ unwrap, Goldstein’s branch cut placement unwrap

method [18], Waveprop’s xphase [7], and Fried’s smoothphase [16].

The fixed-range ‘φLS + φnon−LS ’ unwrapper is the same as the variable-range ‘φLS +

φnon−LS ’ but only develops a single unwrap realization instead of choosing the best of four

realizations. Goldstein’s branch cut placement method attempts to determine minimum

length branch cuts that connect branch points [18]. Xphase is a MATLAB unwrapping

function from the AOTools MATLAB toolbox. It is designed to work with fields containing

branch points and attempt to place branch cuts in low intensity regions of the field [7]. It

should be noted that ‘xphase’ required the 32 × 32 field to be zero-padded to 64 × 64 in

order to work properly because otherwise the field is considered to be periodic [6]. Fried’s

smoothphase unwrapper separates the field into rotational and irrotational components by

first determining the rotational component (after balancing the number of branch points by

adding additional branch points along the edge of the field as necessary). Once separated,

the irrotational component can be unwrapped and then recombined with the rotational

component of the field [16].

The comparison between unwrapping methods is given in Tables 3 and 4 for log-

amplitude variances of 0.4 and 0.8, respectively. Execution time is the time needed to

execute an unwrapper in MATLAB on a Pentium 4 CPU (3.2GHz) with 2.0 GB of RAM

over the 230,000+ frames tested. While execution times may depend on MATLAB im-

plementation, indications from this simulation are that the variable-range ‘φLS + φnon−LS ’

unwrapper using an unweighted LS gives the best performance at a reasonable computation

burden. The variable-range ‘φLS + φnon−LS ’ unwrapper using a weighted LS improves per-

formance still more, but at an unreasonable computational burden. The AOTools ‘xphase’

unwrapper gave slightly improved results compared to a variable-range ‘φLS + φnon−LS ’

using an unweighted LS unwrapper, but at over six times the computational burden.
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Table 3: Normalized cut lengths from various unwrappers, 0.4 log-amplitude variance
field

Unwrapping Method Avg norm cut lngth Max norm cut lngth Execution time
Unwtd φLS+fxd-rng φnon−LS 7.14 196.9 10 min
Unwtd φLS+var-rng φnon−LS 1.13 37.6 16 min
Wtd φLS+fxd-rng φnon−LS 1.41 88.6 23.6 hrs
Wtd φLS+var-rng φnon−LS 0.62 16.9 23.7 hrs

Goldstein 1.48 71.9 7.5 hrs
AOTools xphase 0.85 37.6 107.8 min

Fried Smoothphase 4.11 175.5 13 min

Table 4: Normalized cut lengths from various unwrappers, 0.8 log-amplitude variance
field

Unwrapping Method Avg norm cut lngth Max norm cut lngth Execution time
Unwtd φLS+fxd-rng φnon−LS 11.58 150.6 10 min
Unwtd φLS+var-rng φnon−LS 2.98 43.8 16 min
Wtd φLS+fxd-rng φnon−LS 3.1 94.3 23.6 hrs
Wtd φLS+var-rng φnon−LS 1.43 17.4 23.7 hrs

Goldstein 3.27 84.7 7.6 hrs
AOTools xphase 1.83 38.0 110 min

Fried Smoothphase 9.33 182.7 19 min

5.5 Impact on System Performance

The purpose of developing an improved unwrapper is to improve the performance of a

closed-loop AO system encountering strong turbulence. As such, a 1000 frame closed-loop

AO simulation was performed under 0.5 log-amplitude variance strong turbulence in order

to compare the effect of the unwrapping on system performance.

With the exception of the log-amplitude variance, simulation conditions were pur-

posely benign in order to isolate the unwrapping as the dominate factor on system perfor-

mance. The remaining simulation conditions were r0 = 4DSA where DSA is the diameter

of a sub-aperture, sample rate = 223 fG where fG is the Greenwood frequency of the at-

mosphere, and average SNR ' 200. The simulation used a leak-free integrator controlled

feedback with a error signal gain of 0.4. The control law was applied immediately before the

unwrapper, whose output then went to the DM which is the design advocated in Chapter

IV.

System performance using fixed φnon−LS range ‘φLS +φnon−LS ’ unwrappers was com-

pared against using a variable φnon−LS range ‘φLS + φnon−LS ’ unwrapper. Strehl ratio
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Table 5: Average Strehl results for 1000 frame simulation
‘Best of four’ ‘Best of four’

φnon−LS range mean Strehl ratio avg improvement max improvement
[0, 2π) 0.5956 7.6% 29.8%

[−π/2, 3π/2) 0.6104 5.0% 41.6%
[−π, π) 0.6198 3.4% 23.0%

[−3π/2, π/2) 0.6024 6.3% 33.4%
best of four 0.6406 N/A N/A

performance of the various simulations are plotted in Figures 78 and shows how different

fixed ranges have different periods of reduced performance. Average results are tabulated in

Table 5 as well as average and maximum improvements when using a ‘best of four’ unwrap-

per. The new unwrapper improved the average Strehl ratio performance between 3.3% and

7.6% against the four fixed φnon−LS range unwrappers with considerably less variability.

The maximum improvement of the new unwrapper against the four fixed φnon−LS range

unwrappers was more dramatic, ranging from 23.0% to 41.6%.

As the performance of a fixed-range ‘φLS + φnon−LS ’ unwrapper is inconsistent, the

average improvement of the variable-range ‘φLS + φnon−LS ’ unwrapper over a fixed-range

‘φLS + φnon−LS ’ unwrapper is difficult to determine. In order to develop an average im-

provement, the simulations were extended to 10,000 frames to provide each fixed-range of

the ‘φLS +φnon−LS ’ unwrappers with areas of both good and bad performance. The results

of the simulation were put into histograms and then summed to form cumulative distribu-

tion functions (CDFs) shown in Figure 79. The CDFs show how the variable range φnon−LS

unwrapper improves performance. The CDF of the variable range φnon−LS unwrapper is

shifted to the right when compared to the CDF of the fixed range φnon−LS unwrapper.

Not only does this indicate improved average performance, but indicates more significant

improvement for systems such as laser communication where performance thresholds which

inhibit operation below a certain Strehl ratio.

5.6 Chapter Conclusion

In the presence of branch points, unwrapping the phase is a difficult problem. Isolating

the rotational component by using a LS unwrapper to separate the field into its LS and non-

LS components seems an excellent approach. The wrapping phase cuts of the irrotational
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component are automatically eliminated by the LS unwrapper. Altering the range of the

rotational component is a simple and effective way of varying the placement of the branch

cuts associated with the rotational phase component, and computing the normalized cut

length is an effective way of comparing the effectiveness of branch cut placements. Choosing

the best of four branch cut realizations not only improves average cut placement but, perhaps

more significantly, eliminates the worst cut placements which would significantly degrade AO

system performance. The improved unwrapping eliminates regions of degraded performance

where previous unwrappers yielded poor branch cut placements. The reduced areas of poor

performance not only improves average performance, but may significantly improve systems

such as laser communications where falling below a performance threshold causes signal

fading.
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Figure 78: Comparison of closed-loop AO performance between variable and fixed
φnon−LS range ‘φLS + φnon−LS ’ unwrappers.
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Figure 79: CDF comparisons between variable range φnon−LS and fixed range φnon−LS

unwrappers.
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VI. Results

6.1 Introduction

This chapter combines the results of this research into an basic AO control structure

and tests this structure in simulation. With the exception of log-variance, the base-

line conditions are purposely benign, to allow the parameters to vary one at a time into less

benign regions. The amplitude log-variance is 0.5 in all cases to generate the strong turbu-

lence conditions where branch points will be present in the optical field. The simulation is

tested against varying r0, sample rates, and read noise.

The baseline conditions for the system were DSA/r0 = 0.25, sampling rate 233fG, log-

variance 0.5 and read noise 1000 (this is explained in section 6.5, but is low). The baseline

Kalman gain is 0.4 and is a scalar because there is a single state variable φ. The only

variation of the Kalman gain is to illustrate the effect of altering the Kalman gain under

low-noise, low sample rate conditions.

6.2 Basic AO structure

The basic structure of the AO system under test as developed by this research is shown

in Figure 80. The system has WFS subapertures and DM actuators overlaid in a one-to-one

mapping as shown in Figure 81.

6.3 Varying r0

When considering r0, the relevant values are the ratio of r0 to the subaperture size of

the system. Figure 82 shows a performance curve over 512 frames for the baseline conditions

where DSA/r0 = 0.25. The DSA/r0 ratio was then varied from 0.1 to 1.0 to establish the

DM

SRI

WFS

PI

Controller
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Unwrapper

f
Turb
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f
Corrected

f
DM 

(Wrapped) f
WFSf

DM 
(Unwrapped)

Figure 80: Block diagram of the AO system.
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Figure 81: Depiction of WFS subaperture and DM actuator positions.

impact of DSA/r0 on system performance. The results are shown in Figure 83 where the

performance of a system is the average Strehl ratio of the system. As the graph shows,

as subaperture sizes decrease, performance improves. Larger subapertures are unable to

accurately correct the phase of the wavefront so that as DSA/r0 increases, performance

decreases.

The performance is calculated as the average Strehl ratio of the system for ten different

simulation realizations where a realization is defined as a 512 frame simulation generated

from a particular random seed. The performance of the system for a particular realization

was determined as the average Strehl ratio of the system for frames 101 to 512. Omitting

the first hundred frames was intended to allow the system to be completely locked on the
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Figure 82: System performance (Strehl ratio) for DSA/r0 = 0.25

turbulence before beginning to determine its performance. This method of determining

performance is similarly applied to the other parameter variations in this chapter.

6.4 Varying sample rates

The sample rate of the system, as compared to the Greenwood frequency of the tur-

bulence is an important consideration when designing an AO system. Generally it is best

to sample as fast as possible, but sampling fast has implications to signal quality as well as

computational burden. The quality of the signal is degraded at the faster sampling rates

because the sensor integrates the light over the WFS subapertures for shorter amounts of

time. In addition, the sensor is required to read out the data and function at the higher

speeds. The computation time is important because it is a prime factor in the delay between

a WFS measurement and the application of a modified correction based on that measure-

ment to the DM. The simulation takes the simplistic approach that the computations are
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Figure 83: System performance (Strehl Ratio) vs. DSA/r0

accomplished in one frame which was deemed adequate for this research. The results are

plotted in Figure 84 and show the importance of sampling much faster than fG.

At higher sampling rates, varying the Kalman gain K had little effect on system

performance. This is because the system changed very little between samples and the

signal from the WFS was fairly clean. Performance in this case was most affected by r0

and amplitude log-variance. For the lower sampling rates, however, system performance is

improved by increasing the Kalman gain K. This is because the system is changing more

between samples and the PI controller should take a higher proportion of the WFS input.

It is quite likely that increasing the states of the system to include one or more temporal

differentials of phase would be effective in these lower sampling rate conditions, but that was

not investigated in this research. The effect of varying K at the fixed sampling frequency of

10 times fG is portrayed in Figure 85. While this is admittedly under low-noise conditions,

it highlights the impact of the Kalman gain K at lower sampling rates. Moreover, the
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Figure 84: System performance (Strehl Ratio) vs. normalized sampling rate

fact that the performance is increasing for K ≥ 1 indicates that using additional differential

phase states could further improve performance under low-noise, low sample rate conditions.

This is covered in more detail in Section 7.3 which covers future work.

6.5 Varying read noise

The final variation is that of the noise of the sensor. Sensor noise is considered as

read noise from the sensor and shot noise from the signal. Read noise from the sensor is

modeled as a fixed variance Gaussian. Shot noise is well modeled as a Poisson distribution

of the number of photons received. For simplicity, the signal is considered to be strong

enough (have enough photons) that the Poisson distribution shot noise associated with the

signal can be considered Gaussian with a variance equivalent to the intensity (measured in

photons) encountered by the sensor. The net result is a single Gaussian noise of strength

described by

σ2
Noise = σ2

Read + Imeasurement (64)
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Figure 85: Effect of varying the Kalman gain K for low noise, low sample rate

which is added to the signal.

The field strength of the simulation is such that the read noise is dominant with shot

noise contributing significant portions of the noise at only the highest regions of signal

intensity. This is shown by Figure 86, which portrays an interferogram intensity before

adding noise. The strength of the noise which would be added to the interferogram in

Figure 86 is depicted in Figure 87. The read noise variance is varied from 100 to 150,000

photons. At read noise levels below 100, the system is shot noise dominated while at read

noise levels above 1000, the system is read noise dominated. Middle read noise levels between

100 and 1000 are a mixture, with high intensity subapertures being shot noise dominated

while low intensity subapertures are read noise dominated.
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Figure 86: Interferogram intensity with colorbar scale

The performance of the system when varying read noise is portrayed in Figure 88.

Qualitatively, the SRI is very robust to noise and the performance only degraded at the

highest noise levels. The ‘knee’ in the performance curve depicted in Figure 88 is approxi-

mately 40,000, where the average SNRM defined in Chapter II is less than 2.5.

A significant impact of higher noise levels on the system was in the difficulty in locking

on the signal after closing the loop. This is indicated in Figure 89 which portrays the

performance of a single realization for 100 frames at a read noise of 200,000. The system

does not achieve steady-state until approximately 50 frames have passed, which is much

higher than at lower noise level simulations. However, once the signal is acquired the

system works well even at these much more significant noise levels.
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Figure 87: Interferogram noise variance with colorbar scale

6.6 Chapter conclusions

The purpose of this research is to design an AO system capable of effective operation

in strong turbulence conditions. The system has been shown to operate well under these

strong turbulence conditions for a reasonable range of atmospheric parameters other than

simply having strong turbulence.
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Figure 88: System performance versus measurement noise
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Figure 89: System performance at high noise levels depicting slow lock onto signal
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VII. Conclusions

The development of an AO system effective under strong atmospheric turbulence has

been a difficult problem which some consider the last and greatest challenge of AO.

This research provides insight into the problem of AO control in strong turbulence which

provides the basis for future AO control systems.

7.1 Significant Contributions

The following is a summary of the contributions resulting from this research.

7.1.1 Kalman estimation of anisoplanatic Zernike tilt. Published in the Journal

of Directed Energy, this article utilized a Kalman filter to estimate the anisoplanatic tilt of

a laser communication between a ground station and low-earth orbiting satellite. [43]

7.1.2 An improved temporally phase-shifted design. Presented at the SPIE ‘Optics

and Photonics’ conference, this research developed an improved temporally phase-shifted

SRI design which utilized an EKF to estimate the optical wavefront from individual SRI

interferograms instead of utilizing four temporally-disparate interferograms. [41]

7.1.3 Recognition of the AO controller as an estimator. The recognition of the

fact that a DM combined with a PI controller shares many of the same attributes as a Linear

Kalman Filter justifies designs currently being used and allows targeted improvements to the

system. Moreover, it justifies the common AO design structure used under weak turbulence.

Specifically, a DM followed by a WFS feeding a PI controller provides adequate performance

under both strong and weak atmospheric turbulence conditions. Recognizing this basic

structure as capable, the development emphasis can be placed on dealing with WFSs, which

are more effective under high scintillation, and the problems of unwrapping the phase of the

optical field in the presence of branch points.

7.1.4 Unwrapping last. The difficulty in unwrapping the optical field is the crux

of the problem in transitioning from systems designed to operate under weak turbulence

to system designed to be able to handle strong turbulence. In fact, when considering that

the commonly used AO system operating under weak turbulence utilizes a S-H WFS and
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LS reconstructor which creates an unwrapped phase field, systems operating under weak

turbulence conditions have not required unwrapping.

Under strong turbulence, unwrapping is much more important. When utilizing a non-

gradient WFS such as the SRI, the output of the WFS is wrapped. Unwrapping the SRI

output is insufficient, however, because the resultant phase field after the PI controller may

be wrapped even if the error signal being integrated by the PI controller is unwrapped.

Thus this work concludes that the optical field should be unwrapped after applying the PI

control law instead of unwrapping the WFS output before the PI control law. Moreover,

this research documents the effects of unwrapping at the wrong point in the AO design and

identifies the cause of the performance degradations associated with simply unwrapping the

SRI output.

7.1.5 Improved unwrapping. Unwrapping a wrapped field under weak turbulence

results in a smooth phase field having adjacent phases within π of each other. With the

exception of a constant offset (piston), this result is unique. In strong turbulence, an

unwrapped field will still have discontinuities because of the branch cuts associated with

the branch points of strong turbulence. The unwrapped field is then no longer unique.

Even with a discrete field, the variations in placement of the branch cuts is significant. The

problem becomes one of finding an effective placement of branch cuts which minimizes the

impact of the branch cuts on system performance. This research developed a non-optimal

but effective unwrapping procedure capable of unwrapping an optical field in the presence of

branch points at a reasonable computational burden and is published in Optics Express. [42]

7.2 A single graph

The results of this research in developing a closed-loop AO system utilizing an SRI

WFS can be portrayed in a single graph. The graph in Figure 90 depicts the performance

of an AO system at the baseline parameters for a system using the approach advocated

in this research of ‘control then unwrap’ (with ‘best-of-four’ unwrapping) against a system

using ‘control then unwrap’ without ‘best-of-four’ unwrapping and finally a system utilizing

‘unwrap then control.’ The improvement is clearly seen by the superior Strehl ratio for the

‘Control then unwrap with improved unwrapper’ case.
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Figure 90: Comparison between AO systems

7.3 Future Work

Throughout this research, many areas worthy of further investigation were discovered.

Maintaining a reasonable scope to this research, however, meant that they would have to

be left for future endeavors. These areas are:

1. Expansion of the concepts in this research from simulation the to laboratory. The

ASALT laboratory at SOR is an excellent platform to accomplish this task.

2. Laboratory testing of the improved unwrapper developed during this research.

3. Expansion of the system state-space to include dφ/dt. This would potentially improve

systems operating at lower sample rates.

4. Design of a system which has different Kalman gains for different areas of the aperture.

An approximate SNR for the system could be determined based on signal strength.

Areas with lower noise would have a higher Kalman gain to take advantage of the

improved signal in those areas.
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5. Incorporation of the spatial correlation between adjacent subapertures. This research

concentrated solely on the temporal correlation of phase because that was deemed to

be significantly stronger than spatial correlations under high sample rate conditions.

Spatial correlation is also present and taking both temporal and spatial correlations

into account has potential, particularly at lower sampling rates when temporal corre-

lations weaken.

6. Investigation into designs which does not unwrap every frame. More specifically, de-

signs which unwrap every other frame or every third frame in order to ease the compu-

tational burden associated with unwrapping. This is potentially useful if attempting

to design systems which have a great many WFS subapertures and DM actuators but

still need to operate very fast.

7. Investigation into systems which have WFSs which oversample the wavefront (have

more subapertures than DM actuators). Unwrapping the DM last would still be

the appropriate place to unwrap, but systems could be designed which could handle

turbulence where the phase varied more than π between DM actuators.

8. Design the unwrapper to track the optimum phase range of the non-LS portion of

the phase as a continuous variable instead of a discrete variable. Then, limit the

amount of change that can take place in the range of the non-LS portion of the phase.

Basically instead of choosing between four ranges at π/2 spacing, the optimal phase

range would be tracked and the applied range would slowly vary instead of making

π/2 jumps. This could potentially smooth out the noise of the demonstrated Strehl

ratio performance. [27]
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Appendix A. Appendix

This is where relevant code is. Unless otherwise stated, simulated data was generated

using MATLAB.

A.1 Real and Imaginary contour generator code

%%%%%%%%%%%%%%%%%%

% This program takes a subset of a field and draws the contour slices where

% the real and imaginary parts of the field are zero.

% field2d is expected to already be loaded as a variable. ’start’ and N

% (size of array segment) have to be chosen so that the segment of field2d

% looked at by the program does not exceed field2d

%%%%%%%%%%%%%%%%%%

clc;

% clear;

start_row=200; start_col=200; N=50;

% load ’I:\Classes\Wave Optics II\Project\Final1.mat’ field1d

% [FieldPixSqrd frames] = size(field1d);

% FieldPix = sqrt(FieldPixSqrd);

% field2d=reshape(field1d,[FieldPix,FieldPix,frames]);

field=field2d(start_row:start_row+N-1,start_col:start_col+N-1,1);

% fid = fopen(’L:\eng students\Cain\mantravadi\test fields\scon4r20_r’);

% [field]=getufield(1,513,fid);

% fclose(fid);

% field=field(start_row:start_row+N-1,start_col:start_col+N-1,1);

% Isolate the section of field2d that will be looked at

R=sign(real(field)); I=sign(imag(field));

% Create ’real’ horizontal and vertical lines. Envision horizonal and
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% vertical lines between the NxN pixels. Thus there will be N-1 rows of

% N horizonal lines. Similarly there will be N rows of N-1 vertical lines.

% Create arrays of the real horizontal and real vertical lines - RH and RV

% respectively. Each point in RH and RV will be either a one or negative

% one. A one in RH indicates that the pixel above and below have the same

% polarity. Negative one indicates that the pixel above and below have

% opposite polarities. The RV matrix is similar except that it deals with

% pixels to the left and right instead of above and below.

RH=R(1:N-1,:).*R(2:N,:); % RH will be N-1 x N

RV=R(:,1:N-1).*R(:,2:N); % RV will be N x N-1

% Do the same thing for the imaginary portion of the field.

IH=I(1:N-1,:).*I(2:N,:); % IH will be N-1 x N

IV=I(:,1:N-1).*I(:,2:N); % IV will be N x N-1

% Draw out the figures. I couldn’t figure out a way to do it except to

% isolate the negative ones in the RH, RV, IH and IV matrices, then

% determine their endpoints and plot them individually. Brute force, but

% adequate.

% figure(2)

% hold on

% RVZ=find(RV==-1);

% for ii=1:length(RVZ)

% x = int16((RVZ(ii)-(N+1)/2)/N);

% y = RVZ(ii)-x*N;

% plot([x+1 x+1],[N+1-y N-y])

% end

% RHZ=find(RH==-1);

% for ii=1:length(RHZ)

% x = int16((RHZ(ii)-N/2)/(N-1));

% y = RHZ(ii)-x*(N-1);
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% plot([x x+1],[N-y N-y])

% end

% title(’Real portion of field contour = 0 slice’);

% legend(’Real portion of field = 0’)

%

% figure(3)

% hold on

% IVZ=find(IV==-1);

% for ii=1:length(IVZ)

% x = int16((IVZ(ii)-(N+1)/2)/N);

% y = IVZ(ii)-x*N;

% plot([x+1 x+1],[N+1-y N-y],’r:’)

% end

% IHZ=find(IH==-1);

% for ii=1:length(IHZ)

% x = int16((IHZ(ii)-N/2)/(N-1));

% y = IHZ(ii)-x*(N-1);

% plot([x x+1],[N-y N-y],’r:’)

% end

% title(’Imaginary portion of field contour = 0 slice’);

% legend(’Imaginary portion of field = 0’)

figure(4) hold on RVZ=find(RV==-1); RHZ=find(RH==-1);

IVZ=find(IV==-1); IHZ=find(IH==-1);

bp=bpfinder(angle(field)); pos_bps=find(bp==1);

neg_bps=find(bp==-1);

% Plot the first real line, imaginary line, positive and negative BPs. This properly sets up

% the legend

if length(RVZ)>0
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x = int32((RVZ(1)-(N+1)/2)/N);

y = RVZ(1)-x*N;

plot([x+1 x+1],[N+1-y N-y])

end if length(IVZ)>0

x = int32((IVZ(1)-(N+1)/2)/N);

y = IVZ(1)-x*N;

plot([x+1 x+1],[N+1-y N-y],’r:’)

end

if length(pos_bps)>0

x = int32((pos_bps(1)-N/2)/(N-1));

y = pos_bps(1)-x*(N-1);

plot(x+1,N-y,’o’);

end

if length(neg_bps)>0

x = int32((neg_bps(1)-N/2)/(N-1));

y = neg_bps(1)-x*(N-1);

plot(x+1,N-y,’x’);

end

for ii=2:length(RVZ)

x = int32((RVZ(ii)-(N+1)/2)/N);

y = RVZ(ii)-x*N;

plot([x+1 x+1],[N+1-y N-y])

end

for ii=1:length(RHZ)

x = int32((RHZ(ii)-N/2)/(N-1));

y = RHZ(ii)-x*(N-1);

plot([x x+1],[N-y N-y])
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end

for ii=2:length(IVZ)

x = int32((IVZ(ii)-(N+1)/2)/N);

y = IVZ(ii)-x*N;

plot([x+1 x+1],[N+1-y N-y],’r:’)

end

for ii=1:length(IHZ)

x = int32((IHZ(ii)-N/2)/(N-1));

y = IHZ(ii)-x*(N-1);

plot([x x+1],[N-y N-y],’r:’)

end

title(’Real and Imaginary portions of field contours = 0 slices

(overlay)’); if length(pos_bps)>0 & length(neg_bps)>0

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’, ’Positive Branch Pt’, ’Negative Branch Pt’)

else

if length(pos_bps)>0

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’, ’Positive Branch Pt’)

else

if length(neg_bps)>0

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’, ’Negative Branch Pt’)

else

legend(’Real portion of field = 0’,’Imaginary portion of field = 0’)

end

end

end

bp=bpfinder(angle(field)); pos_bps=find(bp==1);

neg_bps=find(bp==-1);
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for ii=2:length(pos_bps)

x = int32((pos_bps(ii)-N/2)/(N-1));

y = pos_bps(ii)-x*(N-1);

plot(x+1,N-y,’o’);

end

for ii=2:length(neg_bps)

x = int32((neg_bps(ii)-N/2)/(N-1));

y = neg_bps(ii)-x*(N-1);

plot(x+1,N-y,’x’);

end

axis([0 N 0 N]);

A.2 Branch point finder

% bpfinder find branch points in a phase field

% [bp]=bpfinder(pfield)

% takes a 2 dimensional phase front and returns a 2-dimensional image

% with 1’s and -1’s corresponding to branch points in that phase front

% Originally made by Jai Montravadi, modified by Todd Venema

function [bp]=bpfinder(pfield)

d1=diff(pfield,1,1); d2=diff(pfield,1,2);

d1=(d1<-pi).*2.*pi-(d1>pi).*2.*pi+d1;

d2=(d2<-pi).*2.*pi-(d2>pi).*2.*pi+d2;

bp=[d1(:,2:end)-d2(2:end,:)-d1(:,1:end-1)+d2(1:end-1,:)]; bp =

(bp>0.1)-(bp<-0.1);

return

124



A.3 pdf maker

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code generates a pdf of the error from an SRI WFS. It does so my

% generating 1000^2 samples. Each sample has four interferograms and then

% noise is added to each interferogram. The interferograms are then used

% to generated phases via the arctan function. Errors are determined as

% the difference between the estimate and truth. The errors are then put

% into a histogram and the histogram is plotted. This histogram is

% effectively an empirical pdf of the error signal.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

clc;

noise_var=0.3;

samples=1000;

real_phi=pi/4;

photons_per_unit=60;

A=1;

Ar=1;

x=A*cos(real_phi);

y=A*sin(real_phi);

M=(Ar+x).^2+y.^2;

M1=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

SNR1=M/(noise_var+M/photons_per_unit)

M=x.^2+(Ar+y).^2;

M2=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

SNR2=M/(noise_var+M/photons_per_unit)

M=(Ar-x).^2+y.^2;

M3=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);
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SNR3=M/(noise_var+M/photons_per_unit)

M=x.^2+(Ar-y).^2;

M4=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

SNR4=M/(noise_var+M/photons_per_unit)

phi=mod(atan2(M2-M4,M1-M3)-real_phi+pi,2*pi)-pi;

[y x]=hist(phi(:),100);

y=y./sum(y)*99/(x(100)-x(1));

y2=exp(-x.^2./2./std(phi(:)).^2);

y2=y2./sum(y2).*99./(x(100)-x(1));

plot(x,y,x,y2)

axis([-1 1 0 2.5])

legend(’pdf of phi_{SRI}’,’Gaussian pdf w/ same variance’)

xlabel(’\phi_{error}’)

ylabel(’pdf’)

set(gcf,’Position’,[50 400 800 400])

set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH3_Methodology\figures\pdf

A.4 Error variance for different phases

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code generates a plot of error variance as phase changes for an

% SRI WFS. It works by generating 200^2 samples of interferograms for

% 360 different angles for a given signal amplitude. The variance at

% each angle is determined and the different variances are plotted

% against their phases.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

clc;
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noise_var=.3;

samples=300;

photons_per_unit=60;

A=1;

Ar=1;

real_phi=zeros(360,1);

SD=zeros(360,1);

for ii=1:360

ii

real_phi(ii)=(ii-1)*2*pi/360;

x=A*cos(real_phi(ii));

y=A*sin(real_phi(ii));

M=(Ar+x).^2+y.^2;

M1=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

M=x.^2+(Ar+y).^2;

M2=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

M=(Ar-x).^2+y.^2;

M3=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

M=x.^2+(Ar-y).^2;

M4=M+(noise_var+M/photons_per_unit).^0.5.*randn(samples);

est_phi_error=mod(atan2(M2-M4,M1-M3)-real_phi(ii)+pi,2*pi)-pi;

SD(ii)=std(est_phi_error(:));

end

plot(real_phi,SD)

axis([0 2*pi 0.1 1])

xlabel(’\phi’)

ylabel(’\sigma’)

set(gcf,’Position’,[50 400 800 400])
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set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH3_Methodology\figures\st_dev_vs_phi

A.5 Variance generator

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This code generates a surface of noise variance for an SRI WFS. It

% works by generating 200^2 samples of interferograms for a given

% referernce and signal amplitude (Ar and A). The interferograms have

% noise of a given strength added to them and the the estimated phase is

% computed from the standard arctan function. The errors are determined

% difference between the estimate and truth. The errors are put into a

% histogram which is effectively an empirically determined pdf of the

% error. The standard deviation of the pdf then plotted against Ar and A

% is stored to show how they affect the error variance.

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;

clc;

read_noise=50000;

samples=200;

real_phi=pi/4;

span=40;

actual_SD=zeros(span);

est_SD=zeros(span);

Ar=ones(span,1);

As=ones(span,1);

mx_Ar=1300;

mx_As=260;

for jj=1:span
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As(jj)=jj*mx_As/span;

% jj

for kk=1:span

Ar(kk)=kk*mx_Ar/span;

x=As(jj)*cos(real_phi);

y=As(jj)*sin(real_phi);

M=(Ar(kk)+x).^2+y.^2;

M1=M+sqrt(read_noise.^2+M).*randn(samples);

M=x.^2+(Ar(kk)+y).^2;

M2=M+sqrt(read_noise.^2+M).*randn(samples);

M=(Ar(kk)-x).^2+y.^2;

M3=M+sqrt(read_noise.^2+M).*randn(samples);

M=x.^2+(Ar(kk)-y).^2;

M4=M+sqrt(read_noise.^2+M).*randn(samples);

phi=mod(atan2(M2-M4,M1-M3)-real_phi+pi,2*pi)-pi;

actual_var(jj,kk)=var(phi(:));

est_var(jj,kk)=3.29.*(exp(-As(jj).*Ar(kk)./35000)).^2;

end

end

figure(1)

surf(Ar,As,actual_var)

ylabel(’A_R’)

xlabel(’A_S’)

zlabel(’\sigma^2_\phi’)

title(’\sigma^2_\phi from Monte Carlo analysis’)

camorbit(75,-24)

% set(gcf,’Position’,[50 400 800 400])
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% set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH_AO_as_estimator\figures\Monte_Carlo_variance

figure(2);

surf(Ar,As,est_var);

ylabel(’A_R’)

xlabel(’A_S’)

zlabel(’\sigma^2_\phi’)

title(’estimated \sigma^2_\phi’)

camorbit(75,-24)

% set(gcf,’Position’,[50 400 800 400])

% set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH_AO_as_estimator\figures\estimated_variance

adj=mean(mean(est_var-actual_var))

figure(3)

surf(Ar,As,est_var-actual_var)

sum(sum(abs(actual_var-est_var)))

Qd=0.0583;

As2d=repmat(As,1,span);

Ar2d=repmat(Ar’,span,1);

RoverQd=3.29.*(exp(-As2d.*Ar2d./17500)).^1./Qd;

K=1./(2.*RoverQd).*((1+4.*RoverQd).^0.5-1);

figure(4)

surf(Ar,As,K)

title(’K vs. A_R and A_S’)

ylabel(’A_R’)
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xlabel(’A_S’)

zlabel(’K’)

% set(gcf,’Position’,[50 400 600 400])

% set(gcf,’PaperPositionMode’,’auto’)

% print -depsc I:\Dissertation\CH_AO_as_estimator\figures\K_vs_AR_AS
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