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Abstract 
 

Microstrip traveling-wave antennas, often referred to as leaky-wave antennas, 

have been shown to radiate when the dominant or fundamental mode is suppressed and 

the first higher-order mode is excited.  One such microstrip variation is the Thiele Half-

Width (THW) antenna, which operates from 5.9 - 8.2 GHz for this research.  Increasing 

the bandwidth over which the THW antenna radiates is desired, as is a fundamental 

understanding of the propagation characteristics over this region.  This dissertation seeks 

to vary or perturb the material and physical properties of the THW antenna, including 

strip-width variations and modifications of the substrate layer, to achieve these results. 

Three methods will be used to examine the effects of varying the material and 

physical properties of the THW antenna and extract the radiation and propagation 

characteristics.  For all three methods, the resultant percentage bandwidth improvement 

and/or degradation will be computed.  The first method to be used is the transverse 

resonance method which models the cross section of the microstrip structure as a 

transmission line system to accurately predict the transverse propagation behavior for a 

microstrip antenna.  It will be shown how the analysis can be used to extract the desired 

bandwidth of the radiation regime. 

The second method to be used is the Finite Difference Time Domain (FDTD) 

method.  The propagation characteristics for each antenna configuration can be extracted 

from the longitudinal field profile under the antenna and compared to the baseline THW 

antenna. 

iv 



 

The last method involves performing a frequency domain full-wave analysis to 

derive the bandwidth information.  Here, the strip and material perturbation are modeled 

as equivalent surface and volume currents radiating in a grounded-slab background 

environment.  Using vector potentials and the grounded-slab Green’s function, a coupled 

integral equation formulation is developed and subsequently solved via the Method of 

Moments (MoM).  Examination of the natural-mode solution of the MoM matrix leads to 

the propagation constant information.  It is from the propagation constant information 

that the modes of the antenna, the necessary length of the antenna, and the bandwidth of 

the antenna can be determined. 

Using the propagation constants derived from these methods, a complex plane 

analysis will be performed to show the migration of pole and branch point singularities 

from one quadrant in the complex plane to another.  By performing this analysis, insight 

can be gained into what factors drive the propagation and radiation properties of the 

structure. 

The main contributions found within this work come in the ability to easily and 

quickly modify a microstrip structure’s materials for design purposes, efficiently 

determine the propagation constants that define its operating regimes, and gain physical 

insight into how these materials influence the radiation and propagation characteristics of 

the structure. 

Another important contribution from this research is gaining an overall better 

understanding of the different operating regimes of the microstrip antenna. 
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Lastly, a FDTD code was developed to analyze the modified THW antenna.  The 

Transverse Resonance Code was also modified in order to analyze this same antenna, but 

it will be shown later in this document that this code does not properly predict the 

propagation characteristics of the modified structure. 
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Chapter 1 
 
 
 

MATERIAL PERTURBATIONS TO ENHANCE PERFORMANCE OF THE 

THIELE HALF-WIDTH LEAKY MODE ANTENNA 

 
 

1.1 Introduction 

Ever since Heinrich Hertz's generation and detection of the first meter-wavelength 

radio waves in 1888 and Guglielmo Marconi's sending radio waves across the Atlantic 

Ocean in 1901, the antenna has been a critical component in the ability to efficiently and 

predictably transfer data from one device to another.  This is true whether it be low-

frequency voice communication between radios or ultra high-frequency data transfer 

from a ground station to a satellite orbiting the Earth. 

Modern aircraft rely heavily on being able to retrieve data from GPS satellites, 

communicate with air traffic controllers on the ground, as well as detect near-by aircraft 

through the use of antennas positioned on the aircraft's surface.  Typically, these antennas 

are bulky, heavy, and costly due to their complexity.  They must be able to operate in the 

required frequency regime, have a gain and antenna pattern that meets their required use 

(omni-directional, narrowbeam, broadband, etc.), and efficiently radiate and receive EM 

energy.  In addition to all of these, with the advent of stealth aircraft, the need for these 

antennas to be low observable becomes increasingly more important.  One such antenna 

that meets most of these requirements is the microstrip antenna. 
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1.2  Problem Statement 

The ability of a microstrip structure to radiate as a leaky wave antenna has been 

widely investigated ever since Ermert first documented the existence of a radiation region 

near the cutoff of the higher-order modes back in the 1970s [1].  Since this discovery, 

microstrip antennas have evolved to the point where they are used for many military 

applications.  Due to their relatively small size, ability to conform to a surface, lower 

radar cross section, and low cost; microstrip antennas have many benefits for being used 

on aircraft surfaces.  However, with these benefits comes one significant deficiency: 

narrow bandwidth. 

The traveling wave microstrip antenna has been extensively analyzed by the 

electromagnetic community over the past 28 years by Oliner et al. [27, 42, 84, 89], 

Menzel [3], Nyquist et al. [13, 14, 16-18, 20-22, 31-33, 53, 57, 60], and Jackson et al. 

[24, 26, 27, 37, 84, 89].  Its baseline performance is well known and documented.  Over 

this time, researchers have tried numerous methods to tackle the challenge of improving 

its performance (bandwidth, gain, VSWR, etc.) [61-90].  Some of these methods include 

using an array of microstrip antennas (both in-plane and stacked), tapering the width of 

the top conductor longitudinally, and placing capacitors periodically along the edges of 

the top conductor.  However, all of these ideas have been met with limited results.  Why 

is this?  What is the dominating factor that prevents the microstrip from achieving greater 

bandwidth?  What other potential methods can be employed to improve bandwidth?  This 

research effort looks to investigate and answer these questions. 
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The purpose of this chapter is to provide the background necessary to understand 

the problem at hand and to give insight into why certain methods were chosen to 

investigate this problem.  A short history of leaky-wave antennas will be given, including 

the traveling wave theory behind their existence.  Several variations to the baseline 

microstrip antenna will be discussed, including their advantages and disadvantages. 

 

1.2.1 Potential Impact 

Although technology advancements over the last 50 years have allowed for the 

development of lighter-weight materials, guidance and navigation systems that can fit 

onto a microchip, and smaller, more efficient engines; as the available space to place 

antennas or any other device on modern aircraft has become more and more limited.  It 

has therefore become increasingly more important to look to reduce the size and weight 

of all of the aircraft's components.  If the microstrip antenna performance can be 

improved, a single microstrip antenna may be able to replace two older antennas, thus 

freeing up space for other mission essential equipment.  Additionally, fewer antennas on 

an aircraft can also lead to less impact on the radar cross section of that platform.  

Finally, improved bandwidth performance will lead to enhanced radar imaging and target 

detection capability. 

 

1.3 The Leaky-Wave Antenna 

 A microstrip antenna does not inherently radiate as a traveling-wave antenna.  

The fields produced by the dominant EH0 mode do not decouple from the structure.  It is 
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only until the dominant mode is blocked or restricted within the antenna that it can 

operate in a higher-order mode.  It is in these higher-order modes that the fields are able 

to decouple from the surface and, thus, radiate from the structure.  When this happens, 

the antenna is said to be operating as a leaky-wave antenna. 

 

1.3.1  Propagation Constants 

 Before the leaky-wave antenna can be analyzed, an understanding of the 

electromagnetic theory behind the propagation characteristics of the antenna is required.  

From the propagation characteristics, the specific modes of operation for the microstrip 

traveling-wave antenna can be derived and subsequently identified. 

 As electromagnetic waves propagate, they must satisfy Maxwell's curl equations 

for time-varying harmonic fields 

H J j Dω∇× = +
r r r

            (1.1) 

E m j Bω∇× = − −
r rr          (1.2) 

where J
r

 is the electric current density and mr  is the fictitious/equivalent magnetic current 

density.  The first equation is commonly called Ampère's law and the second Faraday's 

law.  For simple media (linear, homogeneous, isotropic), the magnetic and electric fields 

satisfy the relations 

B Hµ=
r r

     (1.3) 

D Eε=
r r

     (1.4) 

i cm m m= +
r r r    c

mm σ= H
rr    (1.5) (1.6) 
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i cJ J J= +
r r r

  cJ Eσ=
r r

   (1.7) (1.8) 

with the i and c superscripts meaning impressed and conduction, respectively.  

Substituting (1.3), (1.5), and (1.6) into (1.2) leads to 

i
mE m H j Hσ ωµ∇× = − − −

r r rr         (1.9) 

(i m )E m j
j

Hσω µ
ω

∇ × = − − +
r rr       (1.10) 

i
cE m j Hωµ∇× = − −

r rr              (1.11) 

where µc is the effective complex permeability.  Similarly, substitution of (1.4), (1.7), and 

(1.8) into (1.1) gives 

iH J E j Eσ ωε∇× = + +
r r r r

             (1.12) 

( )iH J j
j

Eσω ε
ω

∇× = + +
r r r

             (1.13) 

i
cH J j Eωε∇× = +

r r r
         (1.14) 

where εc is the effective complex permittivity. Taking the divergence of equation (1.11) 

produces 

( )i
cE m j Hωµ∇⋅ ∇× = − −

r rr            (1.15) 

0 i
cm j Hωµ= −∇⋅ − ∇⋅

rr         (1.16) 

The divergence of the curl (on the left hand side) is mathematically zero.  Using the 

continuity relation 

i
mvm j qω∇⋅ = − ir         (1.17) 

in (1.16) leads to the following divergence relation for the magnetic field H
r

, namely 
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i
mv

c

qH
µ

∇⋅ =
r

     (1.18) 

Similarly, taking the divergence of (1.14) and using the second continuity relation 

i
evJ j iqω∇⋅ = −

r
      (1.19) 

produces the following divergence relation for the electric field E
r

, that is 

i
ev

c

qE
ε

∇⋅ =
r

     (1.20) 

Next, taking the curl of equation (1.11) gives 

i
cE m jωµ∇×∇× = −∇× − ∇× H

r rr         (1.21) 

and substitution into equation (1.14) with the aid of the vector identity 

2( )E E∇×∇× = ∇ ∇⋅ − ∇ E
r r r

    (1.22) 

leads to 

2( ) (i i
cE E m j J jωµ ωε∇ ∇⋅ −∇ = −∇× − +

r r r
)cE
rr   (1.23) 

Using equation (1.20) and defining 2 2
c ck ω µ ε=  gives 

2( )
i

i iev
c

c

q E m j J kωµ
ε

∇ −∇ = −∇× − + 2E
r r rr          (1.24) 

Rearranging and using equation (1.19) produces the wave equation for  E
r

2 2 ( )i
i

c
c

JE k E j J m
j

ωµ
ωε

∇ ∇⋅
∇ + = − + ∇× i

r
r r r r

   (1.25) 

Similarly, the wave equation for the magnetic field, H
r

, can be derived as 

2 2 ( )i
i

c
c

m iH k H j m J
j

ωε
ωµ

∇ ∇⋅
∇ + = − −∇×

rr r r r
   (1.26) 
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For both wave equations, the source terms on the right-hand-side are very involved and 

complicated.  Because of this, one method to solve for the fields is to use the Hertzian 

potential method, which will be described later in this dissertation. 

 The natural response of a system is examined by setting the impressed currents in 

(1.25) and (1.26) equal to zero.  It will be shown later in this dissertation how the natural 

response solution leads to the desired propagation constants of leaky wave microstrip 

antennas. 

 If there are no impressed currents, this results in 

2 2, 0   i iJ m E k E 0= ⇒ ∇ + =
r r rr    (1.27) 

with similar results for the magnetic field H
r

. 

 In order to gain a better understanding of what is happening to the fields as they 

propagate throughout an antenna and the space surrounding it, it is suitable to use 

separation of variables to write the wavenumber, k, in terms of the three separate 

constants, kx, ky, and kz .  Doing so will show the influence in the x-, y-, and z- directions 

on the overall wavenumber as it is applied to (1.25) and (1.26).  The wavenumber can 

then be found using the well-known constraint equation 

2 2
x y zk k k k= + + 2          (1.28) 

where, in general, each constant takes the form of a complex propagation factor 

  jkη η ηβ α= −   η = x, y, z  (1.29) 

with β  being the phase constant, and α  being the attenuation constant along the η 

direction.  How these wave numbers interrelate in order to define and physically 
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understand the four regions of operation of the microstrip traveling-wave antenna will be 

described later in this dissertation. 

 

1.3.2  Microstrip Antenna 

Typically, a narrowband antenna will have currents that propagate down the 

length of the antenna, hit the end of the structure, and reflect back in the opposite 

direction.  These currents then constructively and destructively add to produce standing 

waves along the length of the antenna.  The currents at the ends of the antenna are driven 

to zero, thus limiting how many wavelengths of a certain frequency can fit along the 

length of the antenna.  This limiting factor drives these standing wave antennas to be 

narrow in bandwidth.  If the antenna could be infinite in length (in theory), designed to 

shed energy before reaching the end, or "matched" at the ends so as to eliminate any 

current from being reflected and standing waves from forming along their length, this 

would increase the bandwidth of the antenna.  This type of radiating structure is referred 

to as a traveling wave antenna. 

 The microstrip antenna is a simple, cost-effective structure for radiating energy as 

a traveling wave [2].  However, three main problems exist: (1) the antenna must be finite 

in length for practical applications; (2) the antenna will only radiate energy when it is 

operating in the first higher-order mode, called the EH1 mode, or higher and not in the 

dominant mode; and (3) though the bandwidth is greater than that for a standing wave 

antenna, the bandwidth for the microstrip antenna is still very limited [2].  The following 

subsections address these limitations and how they can be mitigated. 
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1.3.3  Antenna Length 

For obvious reasons, an antenna that must be extremely long in length in order to 

avoid standing waves from forming is neither realistic nor practical.  Given this, the 

antenna will be finite in length and, thus, some current will be reflected when it hits the 

physical end of the antenna.  As stated before, any current that is reflected back down the 

length of the antenna will constructively and destructively combine with the forward 

traveling current to cause a standing wave.  If this is the case, how can the microstrip 

antenna operate as a traveling wave antenna?  The answer lies in the attenuation constant, 

αz, which is a measure of how much energy escapes at a certain frequency as the wave 

propagates along the guiding axis (i.e., the z-axis).  As the energy propagates down the 

length (l) of the antenna, it is attenuated at a rate of zle α−  due to energy leaking from the 

structure.  As this energy is being "shed-off", less and less is being propagated down the 

length, to the point where very little energy actually reaches the end of the antenna.  If 

greater than 90% of the energy has been attenuated before it reaches the end of the 

antenna, the microstrip will support a traveling wave [5].  For the baseline THW antenna 

used in this research, the length required is 20cm. 
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Figure 1:  Menzel's leaky-wave antenna design [4]  

 
y 

w= 7.5 mm

 

Figure 2:  Thiele Half-Width antenna design 

 

1.3.4  Modes of Operation 

The idea of using a microstrip antenna to radiate EM energy has not been around 

as long as one might think.  It was not until the 1970s that Ermert documented the 

existence of a radiation region near the cutoff of the higher-order modes.  Later in the 

same decade, Menzel presented a paper that looked into this phenomenon further by 

purposely suppressing the dominant mode in his antenna design by cutting seven 

transverse slots in the top conductor (see Figure 1) [3].  Recently, Dr Gary Thiele of 

Analytic Designs, Inc. proposed a new  microstrip  antenna  that  effectively  blocked  the  

ε1 ε1

x
l= 220 mm

d= 0.787 mm

z
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EH0
Dominant mode

Figure 3:  Electric field distribution of dominant mode, EH0 [4] 

 

 

 

 

 

 

 

 

EH1
First higher-order mode

Figure 4:  Electric field distribution of first higher-order mode, EH1 [4] 

 

dominant mode.  Instead of using transverse slots, the Thiele Half-Width Antenna (THW) 

uses a longitudinal wall down the center of the top conductor (see Figure 2).  By blocking 

the dominant mode, both antennas are forced to operate in the first higher-order leaky 

mode.  Choosing frequencies properly, these antennas will radiate as traveling wave 

antennas.  If the frequencies are too low, all fields will evanesce at the input of the 

antenna.  If they are too high, the fields will be bound to the structure and not radiate.  By 
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looking at the relationship of the phase constant, βz, to the attenuation constant, αz, over 

these frequencies, the operating regions of the antenna can be defined. 

 The dominant mode of the microstrip, EH0, will not radiate due to the nature of 

the fields that it supports.  Since the electric field lines up in the same direction under the 

top conductor (see Figure 3), these fields will not be allowed to de-couple from the 

structure and, thus, do not radiate. 

 The higher-order modes of the microstrip (specifically, the odd numbered higher-

order modes) will not be bound to the structure as with the dominant mode and will 

actually decouple due to the phase reversal at the longitudinal center of the top conductor 

(see Figure 4). 

 Higher-order modes will propagate in three identifiable regions or regimes: 

radiation, surface, and bound regimes.  Below the cutoff frequency of the radiation 

regime, the attenuation constant, αz, will dominate, thus the microstrip will appear to be a 

reactive load at the end of the input line.  This non-propagating region is called the 

reactive regime. 

 As stated earlier, the constraint equation (1.28) dictates the propagation behavior 

along the x-, y-, and z-directions, respectively with each complex wave number being 

defined as (1.29). 

 Focusing on the direction of propagation (the z-direction), a plot of the phase 

constant, βz, and the attenuation constant, αz, versus frequency will reveal the three 

propagation regimes: radiation, surface, and bound. 
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βz/ko

Figure 5: Microstrip propagation regimes [5] 

 

 Figure 5 shows the plot of normalized (with respect to k0) βz and αz versus 

frequency.  As stated before, from 0 GHz up to the cutoff frequency, fc, this region is 

called the reactive regime.  It is characterized by a very large αz component, causing the 

microstrip to appear as a reactive load at the input of the microstrip.  At the cutoff 

frequency, the phase and attenuation constants are equal (βz = αz).  This is the start of the 

radiation regime.  In this regime, propagation is occurring in all directions. 

 The radiation regime continues until the phase constant grows larger than k0.  At 

this point, there is no attenuation in the direction of propagation (α z = 0) and large 

attenuation in the radiated direction (αy).  Because of this, fields will no longer radiate.  

However, they will continue to propagate in the longitudinal and transverse directions.  

This is called the surface regime.  This regime continues until βz > k.  At this point, there 
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is a large attenuation in the transverse direction (αx) causing all fields to be bound under 

the top conductor and only propagate in the longitudinal direction.  This is called the 

bound regime.  It is thus recognized that the computation of the various propagation 

constants is crucial to understanding the operational regimes of the microstrip leaky-wave 

antenna.  Consequently, a major thrust of this dissertation is the calculation of these 

propagation constants. 

 

1.3.5  Literature Search of Proposed Methods for Increasing Bandwidth 

In order to tackle the challenge of increasing the bandwidth of the microstrip 

antenna, researchers have tried numerous methods over the past 28 years [61 – 90].  

These ideas have been met with limited results and have drawbacks that would hinder 

their use on stealthy aircraft and missiles (size and radar signature.).  This section will 

highlight a few of the ideas developed by the antenna community, as well as talk to each 

one’s applicability to stealth vehicle design. 

 Given that the leaky-wave microstrip antenna operates with limited bandwidth 

(typically under 20%) [2,6], the first inclination would be to align several of these 

antennas (each of varied widths) in parallel with each other in order to achieve the 

desired frequency coverage.  The drawbacks of this include the need for numerous 

antennas versus a single antenna, the increased costs associated with having to purchase 

numerous antennas, and increased space required to place these additional antennas on 

the aircraft. 
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 Nalbandian's and Lee's work shows that microstrip antennas placed in an array of 

roughly the same top-down cross-section as the THW antenna have the potential to 

increase the bandwidth of the radiation region [7].  However, the drawback of this work 

was that the thickness of the microstrip antenna went up from 0.787mm up to 1.25cm.  

This increase in thickness could cause the antenna to have a higher Radar Cross Section 

(RCS), and thus make it impractical for use on stealth aircraft.  Further analysis is needed 

on this potential area of research to show the true impact on signature, as well as 

bandwidth improvement over the radiation regime. 

 Another approach to increasing the bandwidth of the leaky wave microstrip 

antenna is to modify the shape of the top conductor.  By breaking-up the top conductor 

into sections of decreasing widths (Figure 6(a)), each section can be "tuned" to operate 

over a specific frequency region.  However, with the introduction of multiple widths in 

the same top conductor comes the introduction of impedance mismatch and 

discontinuities that reduce the operating bandwidth and create spurious sidelobes [6].  In 

order to match these sections and reduce the discontinuity effects, the sections are 

separated by tapered transition sections (Figure 6(b)) or by tapering the top conductor 

linearly (Figure 6(c)).  Modest bandwidth improvement is claimed by the authors by 

using these techniques, although the results are not clearly shown.  Further analysis of 

this method is required in order to show the impact over the radiation regime. 

 The last method that has potential to increase the bandwidth of the leaky wave 

antenna is to periodically place capacitors down the length of the top conductor (Figure 

7).  This method was shown by Luxey and Laheurte to act as either a capacitive or an 
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(a) Original multi-section microstrip leaky-wave antenna 

 

(b) Insert a tapered transition section 

 

(c) Taper the steps linearly 

Figure 6: Two methods used to modify the original step discontinuities.  (a) The original multisectional 
microstrip leaky-wave antenna.  (b) Inserts additional tapered sections between each two adjacent original 
sections.  (c) Tapered linearly and the original sections are shown in solid lines. [6] 
 

inductive load (depending on the separation of the capacitors) that will move the β/k0 = 1 

point to the right (increase fhigh) [8].  Although bandwidth improvement was not 

specifically claimed in the paper, the phase constant, β, was shown to shift as the distance 

between capacitors was varied.  No plots were given showing the affects on the 

attenuation constant, α, and, thus, no conclusions can be drawn from the paper regarding 

how much bandwidth improvement can be gained from this technique.  However, the 

manipulation of the propagation constants is the key towards obtaining bandwidth 

improvement over the radiation regime.  Because of this, the use of capacitors along the 
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Figure 7: Leaky-wave microstrip antenna loaded by capacitors [8] 

 

length of the top conductor should be considered as a means for potential bandwidth 

improvement.  Future investigation is required. 

 All of these methods mentioned offer, or claim to offer, some improvements to 

the bandwidth of the leaky-wave antenna.  However, they are either incomplete or 

unclear as to what level of bandwidth improvement they can achieve within the radiation 

regime.  Additionally, they do not give any insight as to how these new structures 

promote radiation or how the changes in the structure influence the propagation and 

attenuation characteristics. 

 

1.3.6  Proposed Method for Increasing Bandwidth 

 This research looks at a novel approach to bandwidth improvement of the THW 

antenna – modification to the material underneath the top conducting strip (see Figure 8). 

L 

capacitors 

top conductor 

ground plane 

h 
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ε1, µ1 ε3, µ3 ε1, µ1 

Figure 8: Microstrip with varied ε3 and µ3 under top conductor 

 

The thought process for choosing this approach stems from the operating regimes 

themselves.  When the traveling-wave antenna transitions from a surface mode to a 

bound mode, some physical phenomenology is causing the fields to become trapped 

underneath the strip conductor.  Why is this?  Why is this transition point located in the 

material under the strip conductor at its edge?  When the antenna transitions from a 

surface mode to a radiation mode, why is it that energy is now allowed to radiate normal 

to the surface versus being trapped in the dielectric sheet?  This research effort seeks to 

answer these questions. 

 Intuitively, the reason for choosing the antenna design seen in Figure 8 stems 

from the phenomenology causing energy to be physically “trapped” under the strip 

conductor in the bound regime.  This is similar to energy being reflected at the junction 

of two different mediums.  If the material under the strip conductor were varied, it might 

allow for more energy to leak out into the dielectric sheet, thus promoting surface wave 

leakage.  If more energy were allowed to enter the surface regime, then the thought is that 

this would lead to more energy being able to propagate away from the surface in the 

radiation regime.  More energy radiating would translate to greater bandwidth due to 

increased attenuation. 
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 As shown in Figure 8, the baseline THW antenna will be modified slightly.  Only 

the substrate that lies directly under the top conductor will be modified to have a different 

permittivity (ε3)  than the permittivity of the rest of the dielectric slab (ε1).  Both 

permittivity values (ε1 and ε3) will be raised and lowered and compared to the baseline 

THW performance.  In all cases, the attenuation constant, αz, and the phase constant, βz, 

will be computed.  All three regions are assumed to be non-magnetic (µ1 = µ3 = µ0). 

 The following chapters will analyze the baseline antenna, as well as the modified 

microstrip structure of Figure 8, using both computational as well as analytical methods.  

Insight into what causes the transitions between the operating regimes, as well as the 

ability to increase the bandwidth using the novel approach described previously is desired 

and will be investigated in this dissertation. 
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Chapter 2 

 

TRANSVERSE RESONANCE AND FINITE DIFFERENCE TIME DOMAIN 

 

2.1 Introduction 

 The simplistic nature of the microstrip structure (strip conductor on a grounded 

dielectric slab) lends itself to being able to be analyzed using multiple methods.  For 

example, it can be represented as a transmission line to be studied analytically or easily 

modeled in numerous computer codes to be studied computationally.  Each method has 

different advantages for analyzing the microstrip antenna, as well as limitations. 

 This chapter will investigate the traveling-wave microstrip antenna analytically, 

as well as computationally and compare both sets of data to known results.  The antenna 

structure will also be modified as described in the previous chapter and analyzed again 

using the same analytical and computational methods to determine the ability to 

improve/degrade the bandwidth of the radiation regime. 

 

2.2  Transverse Resonance 

2.2.1 Transverse Resonance Method   

 The simplistic nature of the traveling-wave microstrip structure lends itself to 

being analyzed analytically.  The antenna can be investigated in the x-y plane to find the 

transverse propagation characteristics using the Transverse Resonance Method [91]. 
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Figure 9:  Representative transverse transmission line system for the baseline THW antenna 

 

From these, the longitudinal propagation characteristics can be easily calculated using the 

constraint equation.  Looking at the microstrip structure in the x-y plane, the cross section 

of the structure can be represented as a simple transmission line.  Figure 9 shows the 

representative transmission line system. 

 For the transmission line representation, the dielectric sheet (of permittivity ε1 and 

permeability µ1) becomes a load of impedance Zxl at the left side of the transmission line.  

This impedance is an approximation derived by Chang and Kuester for a parallel-plate 

waveguide in conjunction with a grounded dielectric sheet [10]. 

 At the other end of the transmission line is a short circuit load that represents the 

shunt in the THW antenna model.  By using transmission line theory, the short can be 

transformed to the load location Zxl through distance w/2.  By equating these impedances, 

the following relationship can be derived 

( )      1,3,5,...xk W n nζ πΧ − = ± =           (2.1) 

where n represents the mode number, W is the width of the strip, and X is an expression 

that defines the reflection coefficient at the edge of the strip [10].  See Appendix A for 

more details on how (2.1) is derived. 

ε1, µ1

x

1
2 2

Wwidth =
1
2 2

Ww id th =

0 , xZ kxlZε1, µ1
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 By setting n = 1, (2.1) represents a transcendental equation for the wave number 

kx of the first higher-order mode of the structure.  Numerical solution of this equation 

gives the corresponding transverse propagation constant (kx).  From this, the desired 

longitudinal propagation constant for the microstrip structure ( 2
1 0z rk kε= ⋅ − 2

xk ) can 

easily be computed, where 1rε  is the relative permittivity of Region 1.  For the 

transmission line representation of the Transverse Resonance Method, there is assumed to 

be no contribution from the y-direction, thus ky=0. 

 Equation (2.1) will be the basis for the Transverse Resonance Code (TRC) used to 

investigate the microstrip structures in this effort. 

 

2.2.2 Transverse Resonance Code (TRC)   

A working copy of the TRC was obtained from its author, Dr Gary Thiele.  The 

TRC is able to compute the propagation characteristics of a microstrip structure, given 

the width, permittivity, and permeability of the antenna.  The first step in applying the 

TRC to the modified microstrip structure is to validate the code for a known case.  From 

there, the code can be altered to assess its ability to accurately compute the propagation 

characteristics of the modified microstrip structure. 

 In order to validate the TR code, the baseline THW antenna in Figure 9 was used 

(d = .787mm, 2W =7.5mm, ε1 = 2.33) and the results were compared with the known 

frequency range of the radiation regime (from 5.95 to 8.2 GHz) [5].  Figure 10 shows the 

results of checking the TRC for validity.  The TRC results match the frequency range of 
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Figure 10: TRC approximation of leaky-wave propagation constants for baseline THW antenna. 
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Figure 11:  Representative transverse transmission line system for the modified THW antenna 

 

the radiation regime for this particular microstrip structure (permittivity, height, width).  

The values in Figure 10 are identical to those found by Zelinski [5], who also compared 

his values to those validated by Lee [91]. 

 Appendix B further investigates the microstrip traveling-wave antenna, primarily 

over the radiation regime, to show the impact of varying the width of the strip conductor 

and varying the permittivity of the dielectric sheet. 

 

2.2.3 Variations of Microstrip Structure Using TRC 

 The TRC has shown excellent agreement with the known operating regimes of the 

baseline microstrip antenna.  The next step in using the TRC is to look at the proposed 

modified microstrip structure (Figure 11) and determine how well TRC predicts the 

propagation constants. 

 The first step in modifying the TRC to handle varied materials under the strip 

conductor was to split the code into three steps: treat the microstrip as a baseline (non-

modified) antenna and compute the admittance (or impedance) of the dielectric sheet 

using the standard method; use the modified permittivity ε3 to compute the new 

 

ε3, µ3

x

1
2 2

Wwidth =
1
2 2

Ww id th =

0 , xZ kxlZε1, µ1
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Table 1: Test Matrix for Varied Permittivity Under Top Conductor for TRC Predictions. 

 
Top Conductor 
Width (in mm) ε1 ε3

7.5 1.03 2.33 
7.5 1.33 2.33 
7.5 2.33 2.33 
7.5 3.33 2.33 

 
ε1 ε3 ε1 

 

 

transverse propagation constant (kx) of the transmission line; and combine the two results 

into (2.1) and drive this equation to zero to give the new transverse propagation constant 

(kx).  From this, the longitudinal propagation constant (kz) can be computed using the 

relation 2 2
1 0z rk kε= ⋅ − xk . 

 In order to compare results to the previous data, the physical dimensions of the 

modified antenna were the same as the baseline THW antenna (d = .787mm, W=7.5mm).  

For the permittivities, the values listed in Table 1 were used.  Starting from the baseline 

permittivity (ε1 = 2.33) a representative lower permittivity (ε1 = 1.33) and higher 

permittivity (ε1 = 3.33) were chosen to show the affect of these changes to the sheet.  The 

last permittivity selected (ε1 = 1.03) showed the affect of making the sheet essentially 

made of air.  As before, all permeabilities were assumed non-magnetic (µ0=µ1=µ2=µ3). 

 It can be seen in Figures 12-14 that the changes to the microstrip structure caused 

dramatic changes to the radiation regime.  Figure 12 shows the case where the dielectric 

sheet has a permittivity of ε1 = 1.33 and the volume under the top conductor has a 

permittivity of ε3 = 2.33.  For this case, TRC predicts the bandwidth of the radiation 

regime  to  increase  from  2.25 GHz  (for the baseline case)  up  to  6.55 GHz.   Figure 13  

25 



 

Table 2: TRC Predicted Bandwidth for Varied Permittivity Under Top Conductor. 

ε1 ε3 BW in GHz 
 

BW% 
1.03 2.33 24.05 133.8% 
1.33 2.33 6.55 71% 
2.33 2.33 2.25 32.6% 
3.33 2.33 1.41 21.2% 

 

 

ε1 ε3 ε1 

shows the case where ε1 = 1.03 and ε3 = 2.33.  From this, the new bandwidth can be 

computed to be 24.05 GHz.  Conversely, Figure 14 shows a decrease in the bandwidth 

down to 1.41 GHz for the case where ε1 = 3.33 and ε3 = 2.33. 

 Physically, these results make sense although it is unknown at this point as to the 

validity of the amount of increase or decrease in bandwidth.  This is due to the 

uncertainty of whether the modified TRC is accurate.  For the cases where the bandwidth 

increases, the permittivity ε1 of the dielectric sheet decreased.  With the decrease in 

permittivity of the sheet, the fields around the antenna structure are less tightly bound to 

the substrate, thus more leakage can occur.  The opposite holds true for the case where 

the bandwidth decreases (where the permittivity ε1 of the dielectric sheet increased).  

With the increase in permittivity of the sheet, the fields around the antenna structure are 

more tightly bound to the substrate, thus less leakage. 

 All three of these cases are compared with the baseline case (ε1 = 2.33 and ε3 = 

2.33) in Table 2.  Here, the percentage bandwidth is also computed.  In order to 

"normalize" the bandwidth measurements, the percentage bandwidth is used instead of 

absolute bandwidth.  Resultant bandwidth is given as: BW% = (fhigh - flow) / fc , where fhigh 

is the frequency at which β/k0 = 1,  flow is the frequency at which α = β and is also called 
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the cutoff frequency for the leaky regime, and fc is the center frequency of the leaky 

regime. 

 The first two cases show significant increase in BW% - with one doubling the 

baseline value and the other quadrupling it.  The last case cuts the BW% by almost a 

third.  These results will be compared later in this dissertation with the results derived 

from two other prediction methods in order to assess their validity. 

 

2.2.4 TRC Conclusions 

Overall, the TRC gives very good insight into the operating frequencies of the 

radiation and propagation regimes of a traveling-wave microstrip antenna.  These 

frequencies are derived directly from the propagation constants computed by the TRC for 

a given set of parameters.  However, TRC does not give much insight as to what is 

driving the phenomenology within the structure or solve for the currents/fields within the 

structure. 

When computing the propagation characteristics of the modified THW antenna, 

TRC gives results that show significant levels of increase/reduction in bandwidth for the 

radiation regime.  Without any “known” data to compare to, further analysis must be 

performed to validate these results.  This will be done in the following section using the 

FDTD method, as well as the following chapters using a frequency domain full-wave 

analysis. 
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Figure 12: Propagation constants for radiation regime using TRC for ε1=1.33 and ε3=2.33. 
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Figure 13: Propagation constants for radiation regime using TRC for ε1=1.03 and ε3=2.33 
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Figure 14: Propagation constants for radiation regime using TRC for ε1=3.33 and ε3=2.33 
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2.3 Finite Difference Time Domain 

2.3.1 Background 

The TRC provides a quick and fairly simple way to predict the propagation 

constants for a microstrip structure.  However, it does not compute the fields and currents 

in the structure, nor does it accurately predict the constants when there are changes in the 

permittivity of region 3.  A method that computes the fields within the structure, 

accommodates for changes in the materials, and computes the desired propagation 

constants is the Finite Difference Time Domain (FDTD) technique [92]. 

 FDTD is a computational method for solving the time-domain differential form of 

Maxwell's equations directly and discretely using a space-time grid.  By placing the 

microstrip structure into a rectilinear grid-space, discretizing it into a set number of finite 

elements that account for material and dielectric properties, and defining the location of 

the source or input; the electric and magnetic fields for each element can be computed for 

a single time step.  The electric and magnetic fields are actually spaced ½ of a cell apart 

from each other in order to accommodate for the interactions between them.  The FDTD 

code actually computes E
r

 at one time step, then computes H
r

 one half of a time step 

later.  By alternating between computing E
r

, then H
r

, then E
r

, etc.; the resultant fields 

"propagate" in time [11]. 

 In order to investigate the fields in the microstrip structure studied here a grid-

space of infinite extent is required.  Given that this is not computationally feasible, the 

grid-space will be truncated by using a Perfectly Matched Layer (PML) as the outer layer 

of the FDTD grid [93].  PMLs essentially make the grid-space look infinite in extent by 
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absorbing any incident fields and not allowing for any fields to be reflected back to the 

microstrip structure.  The PML is matched perfectly to the other layers it comes in 

contact with (thus, Γ = 0), but has absorbing properties that cause the fields to be 

attenuated. 

 

2.3.2 FDTD Set-Up 

A copy of an FDTD code previously used to analyze the THW antenna was 

obtained.  The code was loosely based on the 3-D Hagness-Willis FDTD code, but 

modified in order to optimally handle the THW structure and to compute the propagation 

constants from the electric field data [5]. 

 Before the process by which the propagation constants are extracted is explained, 

it is necessary to understand how the FDTD simulation was set-up.  In order to save time, 

the same PML thicknesses, substrate thickness, air gap thickness, and location of the 

source performed by Zelinski [5] in his efforts to measure the baseline THW antenna 

were used in this research.  His efforts optimized the parameters to measure the baseline 

antenna.  Figure 15 shows the orientation of the THW antenna and the location of the 

PML layers, PECs, and air gap (ε0).  The location of the source is indicated with a red dot 

in the figure. 

 The PMLs varied from six to twelve cells thick (frequency dependent) in order to 

adequately absorb energy incident onto them.  Plus, only two cells of ε1 substrate or air 

were required before entering either  PML.   This left a minimum of eight cells  that  were  
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Figure 15: Modified THW antenna with PML layers and source location (in red) 

 

required to be around the microstrip structure in order to not introduce any artifacts into 

the simulation. 

 The baseline THW antenna is 66.9mm long x 7.5mm wide x 0.787mm tall.  This 

translates to 142 x 47 x 5 cells at 6.7GHz (the longitudinal direction is scaled by a factor 

of 3).  Combined with the dimensions of the gaps and PMLs, this comes to 158,790 cells 

required to properly represent the microstrip structure. 

 Two other structures were also investigated in order to gain confidence in the 

FDTD results.  The first was to increase the amount of ε1 dielectric sheet on the other side 

of the shunt (Figure 17).  The second was to make the microstrip a full-width antenna 

with varied ε3 substrate under the strip, but to still include the shunt (Figure 18).  The 

shunt is required in order to block the dominant mode and force the antenna to operate as 

a leaky wave antenna.  The resultant propagation constants for each were determined and  
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z 
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Figure 16: Modified THW antenna with PML layers and source location (in red) 

 

Figure 17: Modified THW antenna with increased slab with PML layers and source location (in red) 

 

Figure 18: Modified TFW antenna with PML layers and source location (in red) 
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found to match the results of the original set-up in Figure 16.  As such, the original set-up 

can be used with confidence to determine the propagation characteristics. 

 

2.3.3. Extraction of Propagation Constants Using FDTD 

 The process by which the propagation constants are extracted for a particular 

microstrip structure is a fairly straightforward one, albeit very time consuming. A y-

directed sinusoidal source  is introduced into the structure and the fields are propagated 

over thousands of time step iterations (equivalent to 30 periods at a given frequency). At 

the end of these 30 periods, all fields within the structure have propagated and attenuated 

to a steady state.  It is at this point that the magnitude of the y-directed fields can be used 

to compute the attenuation and phase constants for the structure.  The location of the cells 

from which these fields are taken is just 1 cell to the left (in x) of the red dot (source 

location) in Figure 16.  This point stays constant in x and y, but runs the length of the 

structure in z. 

iE
r

 Typical FDTD output can be seen in Figures 19 and 20.  For this example, 325 

cells are used to represent the length of the structure.  The first 12 cells are used to 

represent the PML in the z-direction and the source can be seen at cell number 17.  The y-

directed electric fields propagate along the length of the antenna from the source down to 

cell number 317.  The last 12 cells represent the PML in the z-direction at the end of the 

length of the structure. 

 In order to extract the propagation constants from the y-directed electric field 

data, it is necessary to start with the expression for that field 
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0( , ) ( , ) Re{ }zjk z jk z j t
y yE z E e E z t E e e ωω −= ⇒ = 0

z−

z

  (2.2) 

if the sinusoidal excitation is in steady state.  Equation (2.2) can be re-written using the 

expression for z zk jβ α= −  

0( , ) cos( )z z
y zE z t E e t zα ω β−= −            (2.3) 

Taking the natural log of both sides gives 

( )
0
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z z

E z t
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α ω β

−

−

= −

= + −

= − + −

l l

l l

l

          (2.4) 

The propagation characteristics can be computed using (2.4) and the natural log of 

the normalized y-directed electric field data.  Figure 20 shows a typical plot of such data.  

By measuring the distance in meters between peaks (or between nulls), the period of the 

electric field is obtained (λz in the figure).  Using the fundamental relation: βz = 2π / λz, 

the desired phase constant, βz, can be computed.  As an example, Figure 21 reveals that 

λz/2=0.035 m, resulting in βz/k0  = 0.64038. 

 Examination of the amount of attenuation between peaks provides the value for 

αz.  In this case, the peak-to-peak slope of the ln E curve in Figure 20 gives the value for 

α / k0 = 0.043335.  In order to check the accuracy of αz and βz, an exponential curve is 

produced using these values and overlaid onto the natural log plot of the raw data (see 

Figure 21).  Figure 22 shows the same data as Figure 21, but without taking the natural 

log of the values. 
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Figure 19: FDTD y-directed electric field data (magnitude only) for THW antenna taken longitudinally 

with x fixed at cell #18 and y fixed at cell #17.  The source can be seen at cell #17 in z-direction. 
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Figure 20: Natural log of FDTD y-directed electric field data (magnitude only) for THW antenna taken 

longitudinally with x fixed at cell #18 and y fixed at cell #17. 
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Figure 21: Natural log of FDTD y-directed electric field data (magnitude only) and corresponding  

best-fit α and β curve. 
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Figure 22: Normalized FDTD y-directed electric field data (magnitude only) and corresponding  

best-fit α and β curve. 
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2.3.4 FDTD Methodology and Results 

 The first step performed was to validate the code by reproducing the results 

obtained by Zelinski during his research.  The parameters for the THW antenna were 

entered into the code and the results were compared with the TRC.  As stated in the 

previous section, the TRC has been shown to accurately predict the propagation constants 

for a standard microstrip structure, thus the TRC data will be used as “truth” data for the 

non-modified microstrip only.  From Figure 23, it can be seen that the FDTD code did a 

very good job predicting the propagation constants for the baseline antenna.  The values 

for the phase and attenuation constants are within 1 to 3% of the values obtained from 

using the TRC for the majority of the radiation regime.  The values close to cutoff (where 

the α and β curves intersect) tend to vary greater than the rest of the values.  This is due 

to the nature of the FDTD results near cutoff and will be explained later in this chapter.  

Overall, it can still be said that the bandwidth of the baseline antenna can now be 

predicted using FDTD with confidence.  The next step is to modify the structure and 

analyze the results using the same method. 

 Before the modified microstrip configuration could be tested, some modifications 

of the FDTD code were required.  These modifications allowed for the material under the 

strip conductor to vary while keeping the rest of the structure the same. 

 In order to validate the changes to the code, ε1 and ε3 were both set to the baseline 

permittivity (2.33).  The results were exactly the same as FDTD results for the baseline 

THW antenna (as shown in Figure 23), thus the code could then be used with modified ε1 

and ε3 values with confidence. 
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 The baseline THW antenna was modified by inserting a different permittivity ε3 

under the top conductor than the remainder of the substrate (ε1), similar to that which was 

done earlier in this chapter using the TRC. Table 3 shows the test matrix used for this 

microstrip configuration.  The values chosen in the test matrix give a range of realistic 

permittivity values that center around the baseline THW antenna permittivity (2.33), 

giving some values that are lower than the baseline case and one value that is greater.  By 

using these values, it is desired that trends and physical insight can be gained without 

having to perform dozens of test cases. 
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Figure 23: TRC and FDTD predictions of propagation constants for baseline THW antenna. 
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Table 3: Test Matrix for Varied Permittivity Under Top Conductor Using FDTD. 

 Top Conductor 
Width (in mm) ε1 ε3

7.5 1.03 2.33 
7.5 1.33 2.33 
7.5 2.33 2.33 
7.5 3.33 2.33 

   
7.5 1.03 1.33 
7.5 1.33 1.33 
7.5 2.33 1.33 

 

 

ε1 ε3 ε1 
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Figure 24: FDTD prediction of propagation constants for modified THW antenna. 
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Figure 25: FDTD prediction of propagation constants for microstrip with ε3 = 1.33. 
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 Figures 24 and 25 show the affect of changing the permittivity of region 1.  The 

plots show cases where the permittivity of the substrate under the top conductor was kept 

constant and the permittivity of the rest of the substrate sheet was varied. 

 As with the TRC predictions, the bandwidth and percentage bandwidth of the 

modified microstrip antenna was determined from the plots.  Table 4 summarizes these 

results for the data seen in Figures 24 and 25 and compares them to the corresponding 

TRC data obtained in the previous section. 

 

Table 4: FDTD Predicted Bandwidth for Varied Permittivity Under Top Conductor. 

 
ε1 ε3

FDTD 
BW in GHz 

FDTD 
BW% 

TRC 
BW in GHz 

TRC 
BW% 

1.03 2.33 2.7 GHz 36.24% 24.05 GHz 133.8% 
1.33 2.33 2.43 GHz 33.48% 6.55 GHz 71.0% 
2.33 2.33 2.25 GHz 32.17% 2.25 GHz 32.6% 
3.33 2.33 2.12 GHz 30.90% 1.41 GHz 21.2% 

      
1.03 1.33 9.54 GHz 75.89% 34.3 GHz 138.0% 
1.33 1.33 8.56 GHz 71.76% 8.7 GHz 72.3% 
2.33 1.33 7.25 GHz 65.76% 2.8 GHz 31.1% 

 

 

 

 
ε1 ε3 ε1 

 

From the plots, several trends can be observed: 

• When ε1 = ε3, the propagation constants match the TRC predictions very closely, 

as expected. 

• As the permittivity of the sheet is lowered, the cutoff frequency of the radiation 

regime is increased, similar to decreasing εr in a loaded rectangular waveguide. 

• As the permittivity of the sheet is increased, the cutoff frequency of the radiation 
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regime is decreased, similar to increasing εr in a loaded rectangular waveguide. 

• The bandwidth of the radiation regime does increase as the permittivity of the 

sheet is lowered and the permittivity of the material under the top conductor is 

held constant (8.43% improvement by lowering ε1 from 2.33 to 1.03 in Figure 

24).  The fields are less tightly bound to the substrate in the lower permittivity 

dielectric, thus more leakage. 

• The bandwidth of the radiation regime does decrease as the permittivity of the 

sheet is increased and the permittivity of the material under the top conductor is 

held constant.  The fields are more tightly bound to the substrate in the higher 

permittivity dielectric, thus less leakage. 

• The FDTD code has a very hard time accurately predicting both α and β as the 

frequency approached the cutoff frequency where attenuation becomes severe 

(where α = β ).  This same observation was seen by Zelinski in his research using 

the FDTD code [5].  This is due to the waveform attenuating too rapidly (α > 0.1)  

to be able to locate definitive peaks or zero crossings in the raw Ey data (Figures 

26 through 28).  Without these values, α and β  can not be computed with 

accuracy.  This is one of the biggest deficiencies of the FDTD code when used to 

calculate the propagation constants for a microstrip structure and, thus, why 

another method is sought to compute the constants of the structure (i.e., an 

integral equation formulation). 

• The time required to compute one data point (i.e., one attenuation and propagation 

combination at one frequency) was significant.  The time required to find one data 
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point would range from 2 to 10 hours to compute using a PC (2.66 GHz Dual 

Intel ® Xeon X5355 with 8GB RAM).  As the frequency increased within the 

leaky regime, the time required to compute a data point would decrease, but still 

remain above an hour. 

• For the modified structure, TRC does not compare well with FDTD.  This is most 

likely due to the lack of inclusion of the y-directed fields and the coupling that 

takes place between those fields and the currents on the surface of the strip 

conductor. 

 

 Overall, the results of this modification to the microstrip structure were good, but 

not dramatic.  The results show that variations in the impedance looking out into the 

substrate do affect the amount of energy leakage across the radiation regime. 

The FDTD analysis of the variations of the baseline THW antenna is by no means 

intended to be a definitive look at what happens when modifying the material 

characteristics of the antenna.  It is meant solely to be a "first-look" to (a) see that 

changing the material properties of the THW antenna does cause variations in the 

bandwidth of the radiation regime and (b) give a sense for how much improvement can 

be expected. 

 One of the biggest drawbacks of using FDTD to obtain the propagation constants 

of the antenna structures was the time required to obtain the results.  Typical data runs 

would take 2 to 10 hours to obtain one propagation constant at one frequency on a PC. 

48 



 

 Another deficiency of FDTD is that all that is possible is to perform a number of 

test cases to see what the results are (i.e., it is somewhat limited in providing fundamental 

physical insight into the operational characteristics of the modified antenna).  These, 

combined with the inability of FDTD to compute the propagation characteristics for large 

values of alpha (>0.1) lead to the need to find another method to compute these constants.  

An integral-equation based frequency domain full-wave analysis is one such method that 

can more definitively provide physical insight into what changes are required to lead to 

more radiation.  This method will be described in the following chapters. 
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Figure 26: FDTD y-directed electric field data (magnitude only) near cut-off frequency 

for radiation regime (6 GHz). 
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Figure 27: Natural log of FDTD y-directed electric field data (magnitude only) near cut-off frequency 

for radiation regime (6 GHz). 
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Figure 28: Natural log of FDTD y-directed electric field data (magnitude only) and corresponding  

best-fit α and β curve (6 GHz). 
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Chapter 3 

 

GREEN’S FUNCTION FORMULATION FOR FULL-WAVE ANALYSIS 

 

3.1 Introduction 

 The TRC allowed for a quick computation of the propagation constants of the 

microstrip structure, but did not properly handle variations within the substrate layer.  

FDTD allowed for variations in the structure, but was a very slow method to compute the 

propagation constants of the microstrip.  Some FDTD data runs would take upwards of 

10 hours to compute one propagation constant at one frequency on a stand-alone PC.  In 

addition, for frequencies in which α became significant, FDTD failed to converge.  

FDTD also suffered a drawback in that physical insight into design parameters and how 

material properties effect bandwidth is somewhat obscure.  Because of this, a more 

physically insightful and computationally efficient method of deriving the propagation 

constants for all frequencies is desired.  One such method is to develop an integral 

equation formulation based on a full-wave vector potential analysis in which microstrip 

material perturbations are treated using equivalent currents. 

 

3.2  Full-Wave Solution 

Full-wave solutions (i.e., based on Maxwell’s equations) to problems such as the 

microstrip antenna provide a rigorous understanding of the full electromagnetic 

interactions between various elements in the structure.  The full-wave analysis is an 
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approach that typically relies on the use of a Hertzian potential (πr ) which satisfies the 

Hertzian potential wave equation [12] 

2 2 Jk
j

π π
ωε

∇ + = −
r

r r           (3.1) 

where  is the current.  Field recovery, which is essential for enforcing boundary 

conditions, is obtained through the use of the relations 

J
r

2E k π π= + ∇∇⋅
r r r           (3.2) 

(H jωε π= ∇× )
r r         (3.3) 

 It will be shown in this chapter that the solution to (3.1) is given by 

( ')( ) ( | ') '
V

J rr G r r dV
j

π
ωε

= ⋅∫
r rtr r r r                        (3.4) 

where G  is the Hertzian potential dyadic Green’s function for the current  immersed in 

the substrate layer of the grounded-slab background environment (see Figure 29). 

r
J
r

 Although the goal of this chapter is to develop the necessary Green’s function, the 

overall process to rigorously compute the desired propagation constants is as follows: 

 1.  Decompose the wave equation (3.1) into principal (particular) and reflected 

(complementary) contributions to more easily find the general solution. 

 2.  Apply appropriate boundary conditions on the background environment to 

uniquely compute the unknown spectral coefficients of the wave equation solution. 

 3.  Identify the Hertzian-Potential Dyadic Green's function of the generic 

volumetric current source embedded in the microstrip background environment by 

comparing the solution in step 2 with equation (3.4). 
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 4.  Formulate the coupled Electric-Field Integral Equations (EFIEs) by enforcing 

boundary conditions on the equivalent volume and surface currents of the modified THW 

antenna. 

 5.  Solve the EFIEs using the Method of Moments which leads to the computation 

of the propagation constants. 

 The Method of Moments will establish the interactions between the equivalent 

volume currents in the region of interest and the surface currents on the strip conductor.  

It will be shown that the eigenvalues of the MoM matrix are inherently the propagation 

constants for the modified THW structure.  From solving for these propagation constants 

at various frequencies, the leaky regimes of the structure can be determined with the aid 

of the constraint equation.  Steps 1-3 of this process will be carried out in this chapter and 

steps 4-5 will be performed in the following chapter. 

 

3.2.1 Spectral Coefficients 

The first step in obtaining the Hertzian potential dyadic Green’s function for a 

generic 3-D current immersed in region 1 is to formulate the wave equation in each of the 

regions of the microstrip background environment.  This involves decomposing the wave 

equation into principal and/or reflected contributions for each region, as required.  Figure 

26 shows the cross-section of the microstrip background environment.  This background 

environment only varies in the y-direction, with the height of the substrate being d. 

 From the figure, three distinct regions are defined: region 1 is the substrate layer 

of permittivity ε1, region 2 is the air layer above the antenna, and the third region is the 
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Air

 

Figure 29: Cross-section of microstrip background environment.  The structure is assumed to be infinite in 

extent along the x- and z-directions. 

 

perfect electric conductor (PEC) layer below the substrate.  Both regions 1 and 2 have a 

permeability of 0µ  and, thus, are assumed to be non-magnetic. 

 Since the equivalent volume current (due to material changes under the strip) and 

equivalent surface current (due to presence of the strip) are currents immersed in region 

1, we are interested in the Dyadic Green’s function of a generic 3-D current immersed in 

this region. 

 For the microstrip antennas used in this research, the source  will always be 

located in region 1.  This is represented as the principal wave, with a component 

traveling in the +y and the -y directions in an unbounded region of permittivity ε

J
r

1.  This 

is analogous to the particular solution with no boundaries present.  Due to the 

discontinuities at the PEC/substrate boundary and the substrate/air boundary, a scattered 

wave will be present in both regions 1 and 2.  This scattered wave is analogous to the 

x

y
Region 2 (ε2, µ0) Scattere  d

Wave 
y=d 

Region 1 (ε1, µ0) Scattere  d
Wave Principal 

J
r

Wave
y=0 

PEC z
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homogeneous solution when boundaries are present.  Additionally, since there is no 

current in region 2, there is no principal contribution. 

 Thus, for each region, the total Hertzian potential can be written as 

1 1
p

1
rπ π π= +

r r r         (3.5) 

2
r
2π π=

r r      (3.6) 

where 1 1 2, ,  and p r rπ πr r rπ  satisfy the following wave equations 

2 2
1 1 1

1

p p Jk
j

π π
ωε

∇ + = −
r

r r               (3.7) 

2 2
1 1 1 0r rkπ π∇ + =
r r           (3.8) 

2 2
2 2 2 0r rkπ π∇ + =
r r           (3.9) 

with 2 2
1k 0 1ω µ ε=  and 2 2

2k 0 2ω µ ε= .  Each of these vector wave equations can be 

decomposed into the scalar wave equations, assuming separable solutions, as 

2 2
1 1 1

1

( )( ) ( )p p J rr k r
j
α

α απ π
ωε

∇ + = −
r

r r         (3.10) 

2 2
1 1 1( ) ( ) 0r rr k rα απ π∇ + =

r r              (3.11) 

2 2
2 2 2( ) ( ) 0r rr k rα απ π∇ + =

r r              (3.12) 

with α = x, y, z.  Given that the background environment is infinite in extent along the x 

and z directions, this prompts the Fourier transformation on these variables to help solve 

these equations.  Consider the generic 2-D transform pair 

( , ) ( ) j rf y f r e dxdzλλ
∞ ∞

− ⋅

−∞ −∞

= ∫ ∫
r rr r%      (3.13) 
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  2
2

1( ) ( , )
(2 )

j rf r f y e λ dλ λ
π

∞ ∞
⋅

−∞ −∞

= ∫ ∫
r rrr %         (3.14) 

where ˆ ˆx zλ ξ ζ= +
r

 ( 2 2 2λ λ λ ξ ζ⋅ = +
r r

ˆ ˆ ˆr xx yy zz= + +
r

⇒ = ),  and 2d d dλ ξ ζ= .  Upon 

Fourier Transformation, equations (3.10) to (3.12) simplify to 

2
21
1 12

1

( , ) ( , )( , )
p

py Jp y
y j

α
α

π λ λπ λ yα

ωε
∂

− = −
∂

r r
%r%

%             (3.15) 

2
21
1 12

( , ) ( , ) 0
r

ry p y
y

α
α

π λ π λ∂
− =

∂

r
r%

%       (3.16) 

2
22
2 22

( , ) ( , ) 0
r

ry p y
y

α
α

π λ π λ∂
− =

∂

r
r%

%        (3.17) 

where 2 2
1 1p kλ= − , 2 2

2 2p kλ= − with the positive square root chosen so that Re{p1} 

> 0 and Re{p2} > 0 (this will be discussed in-depth in the following chapter). 

 The principal wave 1
p
απ%  used in (3.15) is assumed to exist in an unbounded 

medium of permittivity ε1, thus we can transform in y using the Fourier differentiation 

theorem, leading to 

2 2
1 1 1

1

( , )( , ) ( , )p p Jp
j

α
α α

λ ηη π λ η π λ η
ωε

− − = −
r%%r r

% %% %             (3.18) 

where η is the transform variable associated with y and 

1 1( , ) ( , )p p y e dyη
α απ λ η π λ

∞
−

−∞

= ∫
r r

%% % j y

dy

       (3.19) 

( , ) ( , ) j yJ J y e η
α αλ η λ

∞
−

−∞

= ∫
r r%% %        (3.20) 
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Solving for 1 ( , )p
απ λ η
r

%%  in (3.18) gives 

1
1 2 2

1 1

( , ) ( , )( , )
( ) ( )(

p J j J j 1

1)p jp jp
α α

α
λ η ωε λ η ωεπ λ η
η η η

= =
+ + −

r r% %% %r
%%      (3.21) 

From this it can be seen that the poles of this equation are located at 1jpη = ± . 

 The principal wave 1 ( , )p yαπ λ
r

%%  can be recovered by taking the inverse transform of 

(3.21), giving 

1
1 1

1 1

( , )1 1( , ) ( , )
2 2 ( )(

p p j y J jy e d
jp jp

η ηα
α α

λ η ωε
)

j ye dπ λ π λ η η
π π η η

∞ ∞

−∞ −∞

= =
+ −∫ ∫ η
r%%r r

%% %        (3.22) 

Since the source current does not exist ( ( , ') 0J yα λ =
r

% ) outside of the source region, its 

Fourier representation is slightly different than in (3.13), namely, the limits of integration 

are as follows 

'

0

( , ) ( , ') ' ( , ') '
d

j y j yJ J y e dy J y eη
α α αλ η λ λ

∞
−

−∞

= =∫ ∫
r r r%% % % 'dyη−           (3.23) 

where  is used as a integration variable within the source region.  Inserting (3.23) into 

(3.22) leaves the result 

'y

1 1
10

( , ')( , ) ( ; ') '
d

p p J yy G y y dy
j

α
α

λ
π λ λ

ωε
= ∫

r
%r r

%%                 (3.24) 

where 

( ')

1 1
1 1

1( ; ') ( ; ')
2 ( )( )

j y y
p p eG y y G y y d

jp jp

η

λ λ η
π η η

∞ −

−∞

= − =
+ −∫

r r
% %            (3.25) 

is the principal wave Hertzian-potential Green's function in the spectral domain.  Using 

Cauchy's Integral Theorem [12], the solution to (3.25) is 
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1 '

1 1
1

( ; ') ( ; ')
2

p y y
p p eG y y G y y

p
λ λ

− −

= − =
r r

% %             (3.26) 

Substitution of (3.26) into (3.24) leads to the principal wave contribution  

1 '

1
1 10

( , ')( , ) '
2

d p y y
p J yey

p j
α

α
λ

π λ
ωε

− −

= ∫ dy
r

%r
%                  (3.27) 

with y as the field point,  as the source point, and p'y 1 as the y-directed propagation 

constant in region 1. 

 The scattered wave (or reflected contribution) solutions to equations (3.16) and 

(3.17) are well-known and are given by 

1 1
1 1 1( , ) ( ) ( )p y p yr y W e W eα α απ λ λ λ−+ −= +

r r r
%              (3.28) 

2 2
2 2 2( , ) ( ) ( )p y p yr y W e W eα α απ λ λ λ−+ −= +

r r r
%             (3.29) 

where Wβα
± are the α-component spectral coefficients for the +y and -y directed reflected 

waves in region β.  Thus, the total potentials in each region can be represented as 

1 1
1 1 1 1 1

p y p y p yp r V e W e W eα α α α α απ π π − −+ + −= + = + +% % % 1

1

2

 ...y' < y < d        (3.30) 

1 1
1 1 1 1 1

p y p y p yp r V e W e W eα α α α α απ π π −− + −= + = + +% % %  ...0 < y < y'        (3.31) 

2
2 2 2 2

p y p yr W e W eα α α απ π −+ −= = +% %    ... y > d            (3.32) 

with α = x, y, z  and where 2 2
1 1p kλ= − , 2

2 2p kλ 2= −  , and 

1 ( ) '

110

( , ')( ) '
2 ( )

d p y J yeV V dy
jp

λ
α

α α
λλ
ωελ

±
± ±= = ∫

r r
%r

r            (3.33) 

are the +y and -y directed waves emanating from the source. 

60 



 

 From equations (3.30) - (3.32), there are twelve spectral coefficients Wβα
±  that 

must be determined [12].  This will be done by applying the boundary conditions for the 

background environment (Figure 29).  Note, the boundary conditions on πr  come from 

the boundary conditions on  andE
r

H
r

, specifically that tangE
r

at y = 0 must be zero and that 

 and  are continuous at y = d.  Additionally, the magnitudes of  and tangE
r

tangH
r

E
r

H
r

will 

remain finite (< ) as .  It is typically easier to satisfy the boundary conditions on ∞ y → ∞

πr  than on  and .  From Havrilla [12], the boundary conditions on E
r

H
r

πr  that ensure 

 at y = 0, continuity of tang 0E =
r

tangE
r

 and tangH
r

 at y = d and ,E H < ∞
r r

 for  are y → ∞

2 ( , ) 0yαπ λ → ∞ =%  , ,x y zα =    (3.34) 

1 1 2 2( , ) ( , )d dα αε π λ ε π λ=% %  ,x zα =         (3.35) 

1 2
1 2

( , ) ( , )d d
y y

α απ λ π λε ε∂ ∂
=

∂ ∂
% %

  ,x zα =   (3.36) 

1 1 2 2( , ) ( , )y yd dε π λ ε π λ=% %              (3.37) 

[ ]1 2 2
2 2

1

( , ) ( , )
1 ( , ) (y y

x z

d d
j d j

y y
π λ π λ ε ξπ λ ζπ λ

ε
∂ ∂ ⎡ ⎤

− = − +⎢ ⎥∂ ∂ ⎣ ⎦

% %
% % , )d  (3.38) 

1 ( , 0) 0yαπ λ = =%  ,x zα =    (3.39) 

1 ( , 0)
0y y

y
π λ∂ =

=
∂

%
         (3.40) 

The first boundary condition relation (3.34) exists since the air layer (region 2) extends 

off to infinity but  and  remain finite, thus the potential will eventually be attenuated 

to zero.  Continuity across the air/dielectric interface at y = d leads to (3.35) and (3.36) 

E
r

H
r
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for tangential and (3.37) for normal components.  The PEC interface at y = 0 will create 

the boundary conditions in (3.39) and (3.40).  That is, at the PEC boundary, the tangential 

potential fields are driven to zero, as is the derivative of the normal field.  Lastly, (3.38) 

represents the mixed/coupled boundary condition (i.e., how x and z-directed currents 

couple into y-directed potential).  Using these boundary conditions, the spectral 

coefficients can now be determined. 

 Applying boundary condition (3.34) to (3.32) results in 

2 ( , ) 0yαπ λ → ∞ =%  , ,x y zα =         (3.41) 

( )2 2
2 2 2lim lim 0p y p y

y y
W e W eα α απ −+ −

→∞ →∞
= +% =     (3.42) 

( )2
2 2lim 0 0p y

y
W W eα α

+ −

→∞
⋅ + =                (3.43) 

2 0W α
−⇒ ≡  , ,x y zα =                (3.44) 

2
2 2

p yW eα απ −+⇒ =%  d y< < ∞  ( , ,x y zα = )  (3.45) 

thus, the resultant Hertzian potential in region 2 has only a upward propagating wave 

associated with it.  This is expected since the source is located in region 1 and region 2 

extends to infinity and there will be no scattered wave in the -y direction. 

 The next step is to apply the tangential boundary condition (3.39) at the PEC 

boundary (y = 0) to (3.31) 

1 ( , 0) 0yαπ λ = =%  ,x zα =        (3.46) 

0 0 0
1 1 1 0V e W e W eα α α απ − + −= + + =%  ,x zα =     (3.47) 

1 1W W Vα α α
− + −⇒ = − −  ,x zα =       (3.48) 
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 The tangential boundary condition (3.35) and the result from (3.45) at the air-

substrate boundary (y = d) leads to 

1 1 2 2( , ) ( , )d dα αε π λ ε π λ=% %  ,x zα =          (3.49) 

( )1 1 1
1 1 1 2 2

p d p d p d p dV e W e W e W eα α α αε 2− − −+ + − ++ + = ,ε       x zα =            (3.50) 

(2 1 11
2 1 )1

2

p d p d p d p dW e V e W e W eα α α α1
ε
ε

− −+ + + −⇒ = + + ,    x zα =   (3.51) 

( )2 1 1 1
1α

( )1
2 1

2

p y d p d p d p de V e W e W eα α α
επ
ε

− − − −+ + −⇒ = + +% ,   x zα =     (3.52) 

 Applying the second tangential boundary condition (3.36) with the new 2απ%  (3.52) 

and the original 1απ%  (3.30) gives 

1 2
1 2

( , ) ( , )d d
y y

α απ λ π λε ε∂ ∂
=

∂ ∂
% %

  ,x zα =     (3.53) 

( ) ( )1 1 1 2 1 1( )1
1 1 1 1 2 2 2 1 1

2

p d p d p d p d d p d p d p d1p V e W e W e p W e V e W e W eα α α α α α α
εε ε
ε

− − − − − −+ + − + + + −− + − = − + +  

(3.54) 

Solving for 1W α
−  leads to 

( ) ( )1 12 21 2
1 1 1

1 2

p d p dp pW e V W Re V W
p pα α α α α

− −− + + +−
= + = − +

+
,+       x zα =       (3.55) 

where 

2

2 1

1p pR
p p

−
=

+
          (3.56) 

Substituting this result into (3.48) gives 

( )12
1 1

p dW V Re V Wα α α α
−+ − + ++ = + ,x zα =    (3.57) 
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or, solving for 1W α
+ , leads to 

1

1

2

1 21

p d

p d

Re V VW
Re

α α
α

− + −
+

−

−
=

−
  ,x zα =         (3.58) 

Substituting (3.58) into (3.55) produces the desired result 

1 1

1

2 2

1 21

p d p d

p d

Re V Re VW
Re
α α

α

− −+ −
−

−

− +
=

−
 ,x zα =   (3.59) 

The spectral coefficient 2W α
+  can easily be determined by inserting (3.58) and (3.59) into 

(3.50). 

 Applying the normal boundary condition (3.37), using the equations for 1yπ%  and 

2 yπ% , and solving for  and, thus, 2 yW +
2 yπ%  gives 

1 1 2 2( , ) ( , )y yd dε π λ ε π λ=% %              (3.60) 

( )2 1 11
2 1

2

p d p d p d p d
y y y yW e V e W e W e 1

1
ε
ε

− −+ + +⇒ = + + −     (3.61) 

( )2 1 1( )1
2 1

2

p y d p d p d p d
y y ye V e W e W e 1

1y
επ
ε

− − − −+ + −⇒ = + +%        (3.62) 

 The coupled/mixed boundary conditions can now be used to solve for the 

remaining two coefficients,  and 1yW +
1yW − .  Starting with equation (3.38) and using the 

equation derived above for 2 yπ%  at y = d leads to 

[ ]1 2 2
2 2

1

( , ) ( , )
1 ( , ) (y y

x z

d d
j d j

y y
π λ π λ ε ξπ λ ζπ λ

ε
∂ ∂ ⎡ ⎤

− = − +⎢ ⎥∂ ∂ ⎣ ⎦

% %
% % , )d     (3.63) 
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( ) ( )1 1 1 1 1 11 1
2 1 1 1 1 1

2 2

1p d p d p d p d p d p d
y y y y y yp V e W e W e p V e W e W e Aε ε

ε ε
− − − −+ + − + + − ⎛ ⎞

− + + + + − = ⎜ ⎟
⎝ ⎠

−  

where             (3.64) 

x zA j A j Aξ ζ= +         (3.65) 

1 1
1 1

p d p d p d
x x x x

1A V e W e W e− −+ + −= + +        (3.66) 

1 1
1 1

p d p d p d
z z z zA V e W e W e− −+ + −= + + 1        (3.67) 

Solving for  leads to 1yW −

1

1 1

1

22 2
1 1

1
2 1

2

1 p d

p d p d
y y y

e A
W Re V Re W

p p

ε
ε

ε
ε

−

− −− + +

⎛ ⎞
−⎜ ⎟

⎝ ⎠= − − +
⎛ ⎞

+⎜ ⎟
⎝ ⎠

      (3.68) 

The boundary condition (3.40) at the PEC boundary (y = 0) leads to 

1 ( , 0)
0y y

y
π λ∂ =

=
∂

%
         (3.69) 

1 1y yW W Vy
− + −⇒ = −         (3.70) 

Substituting equation (3.68) for 1yW −  gives an expression for 1yW +  

( )
( )

( )

1

1

1

1 22

2 1 2 1
1 2

1

1

p d
p d

y y

y p d

e A
V Re V

p p
W

Re

ε ε
ε ε

−
−− +

+
−

−
− +

⋅ +
=

+
             (3.71) 

Similarly, using equation (3.70) and the above solution leads to an expression for 1yW −  

( )
( )

( )

1

1 1

1

1 22 2

2 1 2 1
1 2

1

1

p d
p d p d

y y

y p d

e A
Re V Re V

p p
W

Re

ε ε
ε ε

−
− −− +

−
−

−
− − +

⋅ +
=

+
        (3.72) 
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 The next step involves the A portions of these two equations.  Since the definition 

of A (and subsequently Ax and Az) includes aspects of 1xW ±  and 1zW ± , these must be defined 

in terms of the source and not the spectral coefficients.  Havrilla derives the following 

relationships [12] 

1 1 1 1y yx yyW W W W yz
+ + += + + +

yz

           (3.73) 

1 1 1 1y yx yyW W W W− − −= + + −            (3.74) 

where 

( ) ( )( )

1

1 1

1 1

2

2 22
2 1

1 2 2

( 1)

1 1 1

p d
x

p d p d
yx x yx x

yx p d p d p d

N e j A
C V e C V ep N pW

Re Re Re

ξ−

− −+ −
+

− −

−
−+

= =
+ + − 12−

          (3.75) 

1

1

2

1 21

p d
y y

yy p d

Re V V
W

Re

− + −
+

−

− +
=

+
            (3.76) 

( ) ( )( )

1

1 1

1 1

2

2 22
2 1

1 2 2

( 1)

1 1 1

p d
z

p d p d
yz z yz z

yz p d p d p d

N e j A
C V e C V ep N pW

Re Re Re

ζ−

− −+ −
+

− −

−
−+

= =
+ + − 12−

          (3.77) 

2

2
2 1

( 1)(1
( )yx

)j N RC
p N p

ξ − −
=

+
       (3.78) 

2

2
2 1

( 1)(1
( )yz

)j N RC
p N p

ζ − −
=

+
       (3.79) 

and 2
1 2/N ε ε= . Now that all of the spectral coefficients have been computed, the 

Hertzian potential dyadic Green's function ( 'G r r )
t r r  can be identified. 
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3.2.2 Green's Function 

Before E
r

 and can be computed, the Hertzian Potential Green's function must 

be identified.  The Green's function can be found from the spectral coefficients derived in 

the previous section.  Starting with the tangential components of the Hertzian potential in 

region 1, 

H
r

1xπ%  and 1zπ% , we have 

1 1
1 1 1 1 1

p y p y p yp r V e W e W eα α α α α απ π π −± + −= + = + +m% % % 1   ,x zα =  (3.80) 

1
1 1

'

1 1 1α
1 10

( , ') '
2

d p y y
p y p yJ ye dy W e W e

p j
α

α α
λπ
ωε

− −
−+ −= + +∫

r
%

%  ,x zα =  (3.81) 

Substituting for 1W α
+  and 1W α

−  gives 

1 1 1
1 1

1 1

' 2 2

1 2 2
1 10

( , ') '
2 1 1

d p y y p d p d p d
p y p y

p d p d

J y Re V V Re V Re Ve dy e e
p j Re Re

α α α α
α

λπ
ωε

− − − − −+ − + −
−

− −

− − +
= + +

− −∫
r

%
%

12
α      (3.82) 

Using the relationship for Vα
±  and ( , ')J yα λ

r
% in equation (3.33), equation (3.82) can be re-

written as 

1
10

( , ')( ; ') ( ; , ') '
d

p r J yG y y G y y d
j

α
α αα

λπ λ λ
ωε

⎡ ⎤= − +⎣ ⎦∫ y
r

%r r
% %%  ,x zα =  (3.83) 

with 

1 '

1

( ; ')
2

p y y
p eG y y

p
λ

− −

− =
r

%     (3.84) 

1 31 1 1 2 1 4

12
1

( ; , ')
2 (1 )

pp p p
r

p d

Re e Re ReG y y
p Re

φφ φ φ

αα λ
−− − −

−

− + −
=

−

r
%   ,x zα =  (3.85) 

1 2 'd y yφ = + −                 2 'y yφ = +                             (3.86), (3.87) 

    '3 2d y yφ = − + d y y               '4 2                      (3.88), (3.89) φ = − −
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Figure 30: Source (y’) and observation (y) points and paths of interaction within background environment. 

 

An examination of these terms within the background layer shows multiple paths 

and contributions (see Figure 30).  This figure shows the specific case where the 

observation point (y) is located above the source point ( ' ).   The first path is the direct 

path ( y - ) for when y > .  This path represents the principal field contribution .  

The second path shown is only for the  contributions – no coupling will 

take place off of the PEC layer due to the requirement that the tangential electric fields on 

the PEC are zero.  The last path shown (2d + y + ) is included as the fourth coupling 

term .  An infinite number of reflections take place within the substrate 

region, however only four terms are necessary in the reflected fields  as all remaining 

reflections are accommodated within these primary terms due to the pole-series 

summation of these terms.  This will be confirmed later in the results of this research. 

y

'y 'y pG%

, , and xx yy zzG G G% % %

'y

 and yx yzG G% %

rG%

   

d 
y 
y’ 
0 

'y yφ = − 4 2 'd y yφ = − −

2 'y yφ = + 1 2 'd y yφ = + −

3 2 'd y yφ = − +

5 2 'd y yφ = + +

No coupling off of PEC 
Gxx, Gyy, Gzz only Additional Gyx, Gyz  Principal Field 

1 '

1

( ; ')
2

p y y
p eG y y

p
λ

− −

− =
r

% coupling term 
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 An examination of the normal component of the Hertzian potential in Region 1 

1yπ%  leads to 

1 1
1 1 1 1 1

p y p y p yp r
y y y y y yV e W e W eπ π π −± + −= + = + +m% % % 1     (3.90) 

10

1 10 0

( , ')
( ; ') ( ; , ') '

( , ') ( , ')( ; , ') ' ( ; , ') '

d
yp r

yy

d d
r rx z
yx yz

J y
G y y G y y dy

j

J y J yG y y dy G y y d
j j

λ
λ λ

ωε

λ λλ λ
ωε ωε

⎡ ⎤= − + +⎣ ⎦

+

∫

∫ ∫ y

r
%r r

% %

r r
% %r r

% %

            (3.91) 

where 

1 31 1 1 2 1 4

12
1

( ; , ')
2 (1 )

pp p p
r
yy p d

Re e Re ReG y y
p Re

φφ φ φ

λ
−− − −

−

− + − −
=

+

r
%      (3.92) 

1 5 1 31 1 1 4

1 12 2
1

( ; , ')
2 (1 )(1 )

p pp p
y y y yr

y p d p d

C e C e C e C e
G y y

p Re Re

φ φφ φ
α α α α

α λ
− −− −++ +− −− −+

− −

− − +
=

+ −

r
%  ,x zα =      (3.93) 

and 5 2 'd y yφ = + + . 

 Placing the above relationships for the spectral-domain Hertzian potential Green's 

function in dyadic form gives 

( ; , ') ( ; ') ( ; , ')p rG y y G y y G y yλ λ λ= − +
t t tr r r
% % %    (3.94) 

ˆ ˆ ˆ ˆ ˆ ˆ( ; ')p p p pG y y IG xG x yG y zGλ − = = + +
t r

p z
t

% % % % %

r%

     (3.95) 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ; , ')r r r r r
xx yx yy yz zzG y y xG x yG x yG y yG z zG zλ = + + + +

t r
% % % % %          (3.96) 

Note that no  terms are required in the normal or tangential 

components of the reflected Green’s functions.  This is due to the properties of the 

interfaces at y = 0 and y = d.  Coupling will only occur when an x or z-directed current 

, , , or r r r r
xz zx xy zyG G G G
t t t t
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interacts with the dielectric-air boundary, which is accommodated by the  

components in the reflected dyadic Green’s function. 

 and  r r
yx yzG G
t t

Summarizing, the Green’s function is identified as 

1 1 1 1 1 1

1

' 2 ( ') ( ') ( ') ( ')
2 1 2 1

2
1 1 2 1 2 1

( ) [ ] ( )( ; , ')
2 2 [ ( ) ]

p y y p d p y y p y y p y y p y y

p d

p p e e e e p p eeG y y
p p p p p p eαα λ

− − − − − − + − +

−

− + − − +
= +

+ − −

r
%  

,x zα =   (3.97) 

1 1 1 1 1

1

' ( ') 2 ( ') ( ') ( ')2 2
2 1 2 1

22 2
1 1 2 1 2 1

( ) ( ) [( ; , ')
2 2 [ ( ) ]

p y y p y y p d p y y p y y p y y
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p N p e p N p e e e eeG y y
p p p N p p N p e

λ
− − − + − − − − +

−

+ − − + +
= +

+ + −

r
%

1 ]

(3.98) 

1 1 1 1 1

1 1

2 ( ') ( ') ( ') ( ')
2

2 22 2
2 1 2 1 2 1 2 1

[ ]( ; , ') ( 1)
[ ( ) ][ ( ) ]

p d p y y p y y p y y p y y

yx p d p d

e e e e eG y y j N
p N p p N p e p p p p e

λ ξ
− + − − − − +

− −

+ − −
= −

+ + − + − −

r
%   (3.99) 

1 1 1 1 1

1 1

2 ( ') ( ') ( ') ( ')
2

2 22 2
2 1 2 1 2 1 2 1

[ ]( ; , ') ( 1)
[ ( ) ][ ( ) ]

p d p y y p y y p y y p y y

yz p d p d

e e e e eG y y j N
p N p p N p e p p p p e

λ ζ
− + − − − − +

− −

+ − −
= −

+ + − + − −

r
%   (3.100) 

Note, since pGαα
%  contains the absolute value 'y y− , integrals or derivatives operating on 

this term must be handled carefully (it is this term located in the volume of interest that is 

crucial in the analysis of the modified leaky-wave antenna investigated in this research).  

This will be addressed in the following chapter. 

 Now that the Green’s function for the microstrip background structure has been 

identified, it can be used to develop the coupled Electric Field Integral Equation 

formulation for the modified THW antenna structure.  The EFIEs can then be solved 

using the Method of Moments to find the propagation constants for the modified antenna 

structure, as discussed in the next chapter. 
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Chapter 4 

 

ELECTRIC FIELD INTEGRAL EQUATION FORMULATION 

AND METHOD OF MOMENTS SOLUTION 

 

4.1 Introduction 

For the modified traveling-wave microstrip antenna under investigation (see 

Figure 31), two currents will exist: one on the surface of the PEC strip conductor  and 

one within the volume under the strip 

SJ
r

3 1( )VJ jω ε ε= − E
r r

.  Since both of these currents 

are immersed in region 1 of the grounded slab background environment (see Chapter 3, 

Figure 29), the Green’s function derived in the previous chapter can be used to represent 

the scattered fields maintained by these currents. 

This chapter will demonstrate how these scattered fields are used to develop a 

coupled Electric Field Integral Equation (EFIE) formulation for the unknown currents SJ
r

 

and  and subsequently solved via the Method of Moments (MoM).  From the MoM 

solution, the desired propagation characteristics can be computed for the baseline antenna 

(strip conductor only), as well as for the modified microstrip structure. 

VJ
r

It is important to note that although the THW antenna is under investigation, the 

full-width antenna shown in Figure 31 will be analyzed in this and subsequent chapters.  

This is due to the ease of modeling the full-width antenna and its associated boundary 

conditions as compared to the relative difficulty required to apply the boundary 
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conditions (specifically, the vertical shunt) to the half-width antenna.  Zelinski showed 

that for the odd-numbered higher-order modes of operation, there was no difference 

between the results for the half-width versus the full-width antenna [5].  Given that this 

research is focused on finding the propagation characteristics of the first higher-order 

mode (i.e., the  mode) for the antenna structure, the results for the full-width antenna 

will be the same as the half-width antenna in this mode.  Additionally, it will be shown 

later in this chapter how the basis functions used to represent the strip currents and 

electric fields are chosen such that they will drive the solution to an odd-numbered 

higher-order mode.  The desired  mode will therefore be the lowest-order odd mode.  

Thus, due to the proper choice of basis functions, the shunt is not required for the full-

wave analysis. 

1EH

1EH

Note, however, the physical implementation of the antenna requires the shunt to 

be present in order to block the dominant mode, and subsequent even higher order modes, 

so that the antenna can operate as a leaky-wave antenna.  The fact that the shunt 

maintains odd-mode purity is important in the integral equation development as it allows 

a natural-mode current solution to be sought (since we are interested here in only the 

propagation characteristics, a forced solution is not necessary due to this mode purity). 

 Finally, it is important to mention that the length of the modified antenna modeled 

in this chapter is assumed to be infinite in extent along the guiding axis in order to 

simplify the analytical development.  Although the actual THW antenna is finite in 

length, its leaky-wave behavior effectively supports a forward traveling wave only (with 

minimal terminal reflection), thus appearing as though it were infinite in length. 
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Air( ) ( ) ( )i sE r E r E r= +
r r rr r r

Region 2 (ε2=ε0, µ0) y

y=d 

 

Figure 31: Cross-sectional view of the modified full-width leaky-wave microstrip antenna. 

 

4.2 Electric Field Integral Equation Formulation 

The Green’s function for the background environment was derived in the previous 

chapter.  This expression can be used to find the scattered electric field within the specific 

region of interest which, when inserted into the coupled EFIEs, can be solved using the 

MoM technique and the specific propagation characteristics of the antenna can be found. 

Figure 31 shows the modified leaky-wave microstrip antenna.  The 

infinitesimally-thin PEC strip conductor supporting surface current SJ
r

 is assumed to be 

infinite in extent along the guiding axis (i.e., the z − axis) and located at y d=  

(rigorously, ).  The region 3 material supporting volume current  is also 

assumed to be infinite in extent along the guiding axis and has cross-sectional dimensions 

y d −= VJ
r

2 2 ,0W Wx y d− < < < < .  The total electric field at any location is comprised of two 

components: the impressed field and the scattered field, and can be written as 

( ) ( ) ( )i sE r E r E r= +
r r rr r r             (4.1) 

x
PEC

Region 1 (ε1, µ0) 
y=0 

x = -w/2 x = w/2C

Region 3 (ε3, µ0)

CS
z
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or in the ζ − domain (transform on  prompted by the infinite guiding length) as z

( , ) ( , ) ( , )i sE E Eρ ζ ρ ζ ρ ζ= +
r r rr r r% % % .           (4.2) 

where ˆ ˆxx yyρ = +
r

.  This fundamental field relation is utilized in the coupled EFIE 

formulation in the following manner described next. 

In order to ensure uniqueness, appropriate boundary conditions for the modified 

structure must be satisfied.  The boundary conditions of the background environment are 

naturally satisfied since they are built into the Green’s function development of Chapter 

3.  The remaining boundary/field conditions that require enforcement are at the surface of 

the strip conductor (surface contour C) and within region 3 (cross section CS), namely 

ˆ ˆ ˆ ˆ( , ) 0 ... ; ,t E for C t x zρ ζ ρ⋅ = ∈ =
r r r%            (4.3) 

( , ) ( , ) ( , ) ...i sE E E forρ ζ ρ ζ ρ ζ ρ= + ∈
r r rr r r r% % % CS

CS

.          (4.4) 

 The spectral-domain boundary condition in equation (4.3) states that the total 

tangential electric field must be zero at the surface of the strip conductor.  Equation (4.4) 

is the relation that must exist on the total electric field within region 3.  With the aid of 

equation (4.2), the above boundary condition relations can be written as 

ˆ ˆ ˆ ˆ ˆ( , ) ( , ) ... ; ,s it E t E for C t x zρ ζ ρ ζ ρ⋅ = − ⋅ ∈ =
r rr r r% %           (4.5) 

( , ) ( , ) ( , ) ...s iE E E forρ ζ ρ ζ ρ ζ ρ− = − ∈
r r rr r r r% % % .          (4.6) 

These two boundary condition relations form the basis of the coupled EFIEs.  To 

complete the EFIE development, an expression for ( , )sE ρ ζ
r r%  must be found and is 

discussed next. 
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 The spatial-domain scattered electric field in region 1 can be written in terms of 

the Hertzian potential using equation (2.45) 

( )2
1 1( , ) ( , )sE z k zρ π= + ∇∇ ⋅

r r ρrr .            (4.7) 

Upon Fourier transformation of equation (4.7), the scattered field in the ζ-domain 

becomes 

( )2
1 1( , ) ( , )sE kρ ζ π= + ∇∇ ⋅ ρ ζ

r rr r% % % %                          (4.8) 

where ˆ ˆ ˆ x y z j
x y

ζ∂ ∂
∇ = + +

∂ ∂
% .  Note, the term jζ  results from application of the Fourier 

differentiation theorem. 

 The Hertzian potential 1( , )π ρ ζ
r r
%  can be found from 1( , , )yπ ξ ζ

r
%%  derived in Chapter 

3 using an inverse transform in ξ, namely 

1 1
1( , ) ( , , )

2
j xy e dξπ ρ ζ π ξ ζ ξ

π

∞

−∞

= ∫
rr r %% %             (4.9) 

From the previous chapter, it was shown that the Hertzian potential 1( , , )yπ ξ ζ
r
%%  can be 

expressed as (using the Green’s functions derived in Chapter 3 and the total current) 

1
1

10

( | '; , )( , , ) ( , ', ) '
d G y yy J

j
ξ ζπ ξ ζ ξ ζ

ωε
= ⋅∫ y dy

t
r%r % %%% %                   (4.10) 

Recall, the current is decomposed into two components, the surface conduction 

current on the top conductor and the volume polarization current in region 3, thus 

( , ', ) ( , ', ) ( , ', )C VJ y J y J yξ ζ ξ ζ ξ= +
r r r
% % %% % % ζ                   (4.11) 
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Since boundary conditions must be applied in the ,x y − domain, and the currents exist on 

the strip conductor and within region 3, it is necessary to represent ( , ', )J yξ ζ
r
%%  in terms of 

( ', ', )J x y ζ
r
%  using the inverse transform relation, that is 

( )
/ 2

'

/ 2

, ', ) ( ', ', ) ( ', ', )  '
W

j x
C V

W

J y J x y J x y e dxξξ ζ ζ ζ −

−

= +∫(
r r r
% % %%             (4.12) 

within Region 3.  Substituting (4.12) into (4.10) and the resultant into (4.9) leads to 

( )
/ 2

'1
1

10 / 2

( | '; , )1( , ) ( ', ', ) ( ', ', )  '  '
2

d W
j x j x

C V
W

G y y J x y J x y e dx dy e d
j

ξ ξξ ζπ ρ ζ ζ ζ ξ
π ωε

∞
−

−∞ −

⎧ ⎫⎡ ⎤⎪ ⎪= ⋅ +⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

∫ ∫ ∫

t
% r r%r r % %%

   (4.13) 

Interchanging limits of integration gives 

( )
/ 2

( ')1
1

10 / 2

( | '; , )1( , ) ( ', ', ) ( ', ', ) ' '
2

d W
j x x

C V
W

G y y e J x y J x y dx dy
j

ξξ ζ dπ ρ ζ ζ ζ ξ
π ωε

∞
−

−∞ −

= ⋅ +∫ ∫ ∫

t
% r r%r r % %%     

(4.14) 

and upon substitution into (4.7) produces the desired expression for the scattered field 

( ) ( )
/ 2

2 ( ')1
1

10 / 2

| '; ,
', ', ', ',

( )( , ) ( ) ( ) ' '
2

d W
s j x x

C V
W

y y
x y x y

GE k e J J dx dy
j

ξξ ζ
ζ ζ dρ ζ ξ

π ωε

∞
−

−∞ −

= + ∇∇ ⋅ ⋅ +∫ ∫ ∫

t
%r r%r% % % % %

r

                 (4.15) 

 As a final step, the volume current density VJ
r
%  is related to the total electric field 

(using volume equivalence) by the relation 3 1( )VJ jω ε ε= − E
r r
% % .  Thus, upon rearranging 

this volume current relation, the electric field E
r
%  can be written as 
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3 1

( , )( , )
( )

VJE
j

ρ ζρ ζ
ω ε ε

=
−

r rr %r%       (4.16) 

provided 3 1ε ε≠ .  In addition, the strip conduction surface current density can be 

represented using the relation 

( ', ', ) ( ', ) ( ' )C SJ x y J x yζ ζ δ d= −
r r
% %      (4.17) 

Therefore, using the relations (4.15)-(4.17) in equations (4.5) and (4.6) leads to the 

desired coupled EFIEs for the unknown spectral-domain current densities  and  SJ
r
%

VJ
r
%

( )2 / 2
1 ( ')

1
1 / 2
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( ')

1
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−
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⋅ + ∇∇ ⋅
⋅
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∫ ∫
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t r r r r%% % % x z∈ =

 

(4.18) 
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S
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V
W

y d x

y y x y

k
G e J dx

j

JG e J dx dy d E for
j

ξ

ξ

ξ ζ ζ

ξ ζ ζ

π ωε

ρ ζξ ρ ζ
ω ε ε

∞
−

−∞ −

−

−

+ ∇∇ ⋅
⋅

+ ⋅ − = −
−

∫ ∫

∫ ∫

t% % r
%% %

rt rr r% r r%% % % CSρ ∈

 (4.19) 

Note, the baseline antenna involving the strip conductor only can easily be analyzed 

based on equation (4.18) alone since the volume current density vanishes when 3 1ε ε= . 

As mentioned previously, we are only interested in the propagation constant ζ  in 

this study, thus we are not interested in how the fields are ultimately related to the source 

strength.  In addition, it is assumed that the excitation of the leaky-wave antenna leads to 

a very pure modal response (i.e., a nearly pure  mode response for the THW 1EH
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antenna).  Consequently, it is therefore sufficient to seek a natural-mode (i.e., eigen-

mode) current solution to the above coupled integral equations, which is developed next. 

 

4.2.1 Eigenmode Current 

 In general, the response to an arbitrary excitation will result in a superposition of 

natural modes (i.e., eigenmodes) whose complex amplitude coefficients are related to the 

strength of the impressed source.  However, due to the THW shunt design, the mode 

purity is very high.  Thus, we anticipate a single mode (the  mode in this research) to 

be a very good model of the currents excited on the THW antenna.  Since we are 

primarily only interested in the field distribution 

1EH

j ze ζ−  (i.e., jζ β α= − ) and not on how 

the field strength is related to the impressed source strength, we can formulate the 

integral equation for natural mode currents; that is, we are only interested in solving 

homogeneous and unforced coupled integral equations.  The unforced coupled EFIEs can 

be developed as a special case of equations (4.18) - (4.19) and is discussed next. 

If we let pζ  represent the thp  natural mode propagation constant, the anticipated 

spatial field distribution is pj ze ζm  for a forward/reverse traveling wave, respectively.  In 

the spectral domain (i.e., the ζ − domain), this exponential function manifests itself as a 

pole singularity of the form 1/( )pζ ζ± .  Thus, a spectral-domain current density 

behavior near an eigenmode can be represented as [12] 

( )
( , ) p

p

J
J

ρ
ρ ζ

ζ ζ
≅

±

r rr %r%                   (4.20) 
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where  is the eigenmode current associated with the pJ
r
% thp  discrete natural mode.  

Substituting (4.20) into (4.18) and (4.19) and multiplying through by pζ ζ±  produces 
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 (4.21) 
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(4.22) 

 Now, the impressed field iE
r
%  is not influenced by the structure it is inserted into, 

similar to an ideal battery being inserted into a circuit.  Thus, iE
r
%  must be analytic near 

the guiding-structure poles pζ ζ= m .  Therefore, in the limit as pζ ζ→ m , (4.21) and 

(4.22) reduce to the unforced coupled EFIEs 
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since .  Note, the subscript lim ( ) ( , ) 0
p

i
p E

ζ ζ
ζ ζ ρ ζ

→
± =

m

r r% p  has been dropped from ζ  and 

the eigenmode current terms in equations (4.23) and (4.24) for notational convenience.  

Finally, due to the presence of the 3 1ε ε−  in the denominator of (4.24), it is better (from a 

numerical stability viewpoint), to utilize the relation 3 1( )VJ jω ε ε= − E
r r
% %  in both equations 

(4.22) and (4.23), leading to the desired unforced coupled EFIEs 
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(4.24) 

Note, since the boundary condition in (4.23) must be enforced at Cρ ∈
r , this integral 

equation must be evaluated in the limit as .  Next, the components of the dyadic 

Green’s function, surface current density and electric field will be substituted into (4.23) 

and (4.24) to complete the unforced coupled EFIEs formulation. 

y d→
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4.2.2 Insertion of Green’s Function into EFIEs 

 The scalar components of the coupled EFIEs can be identified by inserting the 

expression for the dyadic Green’s function, surface current density and electric field into 

(4.23) and (4.24).  From (3.94) to (3.96), the total Green’s function can be written as 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ; , ') ( ) ( ) ( )p r r p r r p r
xx yx yy yz zzG y y x G G x yG x y G G y yG z z G Gλ = + + + + + + +

t r% % % % % % % %% % % % % % % % z%%

%%

      (4.25) 

Combining the principal and the reflected terms into a total Green’s function term gives 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ; , ') xx yx yy yz zzG y y xG x yG x yG y yG z zG zλ = + + + +
t r% % % % %% % % % %                      (4.26) 

where the  terms contain both the principal and reflected field 

contributions of the Green’s function. 

,  ,  and xx yy zzG G G% % %% % %

 The surface current on the top conductor SJ
r
%  and the electric field  within the 

volume of region 3 can be written as 

E
r
%

', ', ',ˆ ˆ( )  ( )  (S x zx xJ x J z J )xζ ζ ζ= +
r
% % %                (4.27) 

', ', ', ', ', ', ', ',ˆ ˆ ˆ( )  ( )  ( )  ( )x y zx y x y x y x yE x E y E z Eζ ζ ζ ζ= + +
r
% % % %        (4.28) 

thus, giving the following relations 

', ˆ ˆ ˆ ˆ( ; | ) ( )S xx x yx x yz zxG y d J xG J yG J yG J zG Jζλ ⋅ = + + +
t rr% % % %% % % %% % % %

zz z
%% %

%% %

            (4.29) 

', ', ˆ ˆ ˆ ˆ ˆ( ; , ') ( ) xx x yx x yy y yz z zz zx yG y y E xG E yG E yG E yG E zG Eζλ ⋅ = + + + +
t rr% % % % %% % % % %% % % % %      (4.30) 

which allows (4.23) and (4.24) to be written as 
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 Before the 2  operator can be brought inside the integrals, the principal 

field portions (3.84) of the Green’s function must be considered.  The absolute value term 

1k + ∇∇ ⋅% %

'y y−  in (3.84) causes a discontinuity at 'y y= , thus any integration with respect to '  

must be split into two integrals – one integral from 0 to y and the other from y to d.  Thus, 

for only the terms containing the principal field ( ) 

y
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 (4.33) 

where the PV notation indicates that the integral is evaluated in a Cauchy Principle Value 

sense. 

 Upon using Leibnitz’s rule of differentiation, the x and z differentiation operators 

can freely pass through the integral as well as the y∂ ∂  operator.  However, the operator 

2 y∂ ∂ 2  will not freely pass through due to the y − dependent limits of integration in 

(4.33).  Havrilla [12] showed that applying the 2 y2∂ ∂  operator to (4.33) results in 
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 Examination of (4.31) and (4.32) reveals that the 2 y2∂ ∂  operator will only be 

present for the term , with 'yyG% ρ ρ=
r r  leading to the extra contribution in (4.34).  

Additionally, the x∂ ∂  differentiation will only apply to the exp( ( '))j x xξ −  term 

resulting in the factor jξ, thus the operator 2
1k + ∇∇ ⋅% %  can be represented as 
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Applying (4.35) to (4.31) and (4.32) results in 
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(4.37) 

Note, this form assumes that the currents/fields are sufficiently smooth to allow this 

interchange and that the PV notation has been dropped for convenience.  Again, it must 

be noted that the Green’s function terms in (4.36) and (4.37) that are multiplied by the 

surface current are valid when 'y d=  and the subscript p  has been dropped from all ζ . 

 The next section will discuss how the Method of Moments will be used to 

discretize (4.36)-(4.37) and subsequently be solved for the  unknown eigenmode 

propagation constant of the modified microstrip structure in Figure 31. 

thp

 

4.3 Method of Moments 

The solutions of (4.36) and (4.37) are discrete-mode strip currents and volumetric 

electric fields.  As such, they lend themselves to the use of a Galerkin’s Method of 
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Moments (MoM) solution.  The coupled equations can then be solved for points at the 

discrete pole singularities ζp.  It is from these singularity values that the propagation 

characteristics of the traveling wave microstrip structure can be directly determined. 

The use of the Method of Moments to solve for the unknown strip currents and 

volumetric electric fields results in the homogeneous matrix equation 

[ ][ ] 0L u =              (4.38) 

where [ ]L  is the matrix defined by the Green’s function terms in (4.36) and (4.37) and 

the unknown vector [ ]u  is populated with the coefficients that define the strip currents 

and volumetric electric fields. 

 For non-trivial solutions, a propagation constant ζp exists that causes the 

determinant of [ ]L , written as L , to go to zero.  A root search can then be used to find 

ζp for certain frequency/permittivity combinations.  From these propagation constants; 

the radiation, surface, and bound regime characteristics of the antenna structure can be 

determined. 

This section has given a brief overview of the Method of Moments and how it 

will be used to solve for the propagation characteristics of the microstrip structure.  The 

next step in finding the propagation characteristics of the microstrip structure is to apply 

the MoM method to (4.36) and (4.37).  It will be shown, with insight gained from the 

FDTD analysis in Chapter 2, that an appropriate choice of basis functions that closely 

model the fields and currents within the structure will significantly improve 

computational efficiency. 
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4.4 MoM Implementation 

 The previous section discussed how the unknown fields and currents within the 

EFIEs can be solved using the Method of Moments.  This section will now apply the 

method to the coupled equations derived in Section 4.2 to build the desired matrix [ ]L .  

This matrix can then be used to find the propagation characteristics of the microstrip 

structure by numerically searching for ζ  values that satisfy the relation 0L =  

(rigorously, L tol< , where tol  is the specified solution accuracy – found that tol 

=  resulted in converging values for ζ ). 61 10−×

 As previously mentioned, an important step in the MoM technique is to expand 

the unknown fields and currents.  The unknown electric field at a source point in Region 

3 can be written as a summation of weighted basis functions 

1 1 1

ˆ ˆ ˆ( ', ', )  ( ', ', )  ( ', ', )  ( ', ', )

ˆ ˆ ˆ                  ( ', ', ) ( ', ', ) ( ', ', )

x y z
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n n n
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x a e x y y b e x y z c e x y

ζ ζ ζ ζ

ζ ζ ζ
= = =

= + +

≅ + +∑ ∑ ∑

% % % %

   (4.39) 

where  are known expansion functions and  are the 

unknown expansion coefficients.  Note, the same expansion is used for a field point in 

Region 3.  Similarly, for the surface currents 

,  ,  and xn yn zne e e ,  ,  and n na b cn

1 1

ˆ ˆ( ', , )  ( ', , )  ( ', , )

ˆ ˆ                  ( ', , ) ( ', , )
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n n

J x d x J x d z J x d

x d j x d z e j x d

ζ ζ ζ

ζ ζ
= =
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r
% % %

     (4.40) 

where  and  are known expansion functions and  are unknown expansion 

coefficients (note, the surface current component  is not supported since the strip 

xnj znj and nd ne

ynj
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conductor is assumed to be infinitesimally thin).  Although theoretically an infinite 

number of expansion terms are generally required, only  terms are utilized for practical 

implementation of the MoM method (  is chosen sufficiently large to reach 

convergence within a specified tolerance). 

N

N

 Inserting (4.39) and (4.40) into (4.36) and (4.37), the resultant EFIEs can be 

decomposed into ˆ ˆ ˆ,  ,  and x y z  components.  Bringing the summation outside the integrals 

and dropping the 'x ,  and ζ notation within the Green’s functions and fields and 

currents for notational convenience results in 

'y ,
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Note that the total field appearing outside the integral in (4.42), (4.43), and (4.45) is 

represented as a summation of expansion functions in x and y (not 'x  and ). 'y

Applying the Galerkin testing operators (discussed in the next section) to (4.41) 

through (4.45) will result in a matrix of the form (see Appendix C for an explanation as to 

how (4.47) through (4.71) are extracted from (4.41) through (4.45)) 
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Note that the expansion coefficients (an to en), each of length N, in (4.41) to (4.45) 

form the unknown vector [ ]u in (4.46). 
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Figure 32: Equation (4.46) split into the four regions of interaction between source and observer locations. 

 

4.4.2 Interpretation of MoM Matrix Elements 

 The matrix (4.46) is made up of the Green’s function terms found in (4.47) 

through (4.71).  Each of these has a physical interpretation as to what they represent 

within the microstrip structure.  This section will describe each of these functions and 

what physical interactions they represent and will provide the reader with a better 

understanding of what is driving the results seen in the following chapter. 

 In order to gain a better understanding of what each element of (4.46) represents, 

refer to Figure 32.  The figure clearly depicts four distinct regions.  These represent the 

four types of interactions that take place in the microstrip structure: volume-volume, 

volume-surface, surface-volume, and surface-surface.  For each of these descriptions, the 
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first term represents the observer (field or current) and uses m as its designator.  The 

second terms represents the source (field or current) and uses n as its designator.  Thus, 

the green section, for example, would describe the terms that take into account an x, y, or 

z-directed electric field (nth volume source term) acting on an x, y, or z-directed electric 

field (mth volume observer term).  As an example, the Bmn term would represent the nth x-

directed volume observed electric field due to the mth y-directed volume source electric 

field.  The matrix terms Amn, Bmn, Cmn, Fmn, Gmn, Hmn, Kmn, Lmn, and Mmn account for all of 

the volume-volume interactions in the antenna. 

 The volume observer – surface source terms are highlighted in the yellow region 

and include the terms Dmn, Emn, Imn, Jmn, Nmn, and Omn.  For all of these terms, 'y d=  

since they involve having the source term located on the strip conductor.  As an example, 

the Imn term would represent the mth y-directed volume observed electric field due to the 

nth x-directed surface current source. 

 The surface observer – volume source terms are highlighted in the blue region and 

include the Pmn, Qmn, Rmn, Umn, Vmn, and Wmn terms.  For all of these terms,  since 

they involve having the observation term located on the strip conductor.  This will be 

accounted for in the integrals themselves, with any derivatives with respect to y being 

taken before is applied.  As an example, the Q

y d=

y d= mn term would represent the mth z-

directed current observed on the surface due to the nth y-directed electric field volume 

source. 

 Lastly, the surface observer – surface source terms are highlighted in the white 

region and include the Smn, Tmn, Xmn, and Ymn sub-matrix terms.  For all of these terms, 
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'y d=  and  since they involve having the source and the observer located on the 

strip conductor.  Again, any derivatives with respect to y are being taken before 

y d=

y d=  is 

applied.  As an example, the Ymn term would represent the mth z-directed observer surface 

current due to the nth x-directed source surface current. 

 Now that the various terms representing the interactions within the microstrip 

structure have been identified in (4.46), it is necessary to represent these currents and 

fields properly using appropriate basis functions.  The next section will go through the 

process by which these basis functions were chosen. 

 

4.4.1 Basis Functions 

 The last step in developing the matrix that represents the coupled EFIEs of 

interest is to properly choose the basis functions.  The basis functions will serve as the 

expansion and test functions found in (4.47) - (4.71) that represent the electric fields and 

surface currents within the microstrip structure.  Because of this, they should be 

representative of how the real physical fields and currents behave.  For example, if it is 

known that a current will be at a maximum in the center of the conducting strip (in 'x ), 

then it is ill-advised to choose a basis function that is odd in nature to represent this 

current.  The oddness of the function will always cause the magnitude of the current to be 

zero at the center ( ), which is non-physical for certain modes. ' 0x =

 Sine and cosine basis functions were chosen for this research effort due to their 

even/odd nature; their ability to closely mimic the electric fields and currents within the 

microstrip structure; and their orthogonal characteristics. 
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Figure 33: The FDTD y-directed electric fields within the cross-section of Thiele half-width antenna.  The 

vertical shunt is at cell #68 and the edge of the top conductor is at cell #18. 

 

 In order to properly choose which sine and cosine basis functions should be used 

to model the x-, y-, and z-directed fields and the x- and z-directed surface currents, insight 

was needed as to how these behave within the structure.  Looking at the structure in 

Figure 2 and knowing that the antenna is designed to operate in the first higher order 

mode (see Figure 4), the even and odd nature of the fields and currents can be deduced. 

 Operating in the first higher order mode requires the y-directed electric fields 

within region 3 to be odd about the center point ( ' 0x = ).  Physically, this means that the 

y-directed fields must always equal zero at this point.  A sine function in 'x  will properly 

model these fields, given its odd nature.  Thus, a reasonable choice for  is ( ')yne x

(2 1) '( ') sin          0,1,2,...yn
n xe x n

W
π+

= =       (4.72) 

 In order to validate the choice of basis functions, an intensity plot of the electric 

fields inside Region 3 was analyzed from the FDTD simulations performed earlier in this 

research (see Figure 33).  The plot is of the y-directed electric fields in the cross-section 
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of the Thiele half-width antenna, thus the shunt exists at x=0.  It can be seen in the plot 

that these fields indeed are greatest at the edge of the top conductor (cell #18 in x) and go 

to zero at the location of the shunt (cell # 66 in x).  Thus, the choice of a sine basis 

function appears to be a physically reasonable choice.  In addition, its mathematical 

properties are sufficiently smooth to ensure the resulting integrals will be well behaved. 

 The behavior of the currents on the conductive strip is fairly well known for a 

microstrip antenna [13].  Any transverse current moving in the x-direction is going to be 

driven to zero at the edges ( 'x W= ± 2 ).  It is also shown in [13] that Jx can also be at a 

maximum value at .  A cosine function in ' 0x = 'x  will model this properly, leading to 

(2 1) '( ') cos          0,1, 2,...xn
n xj x n

W
π+

= =       (4.73) 

Conversely, the longitudinal (z-directed) currents moving down the length of the 

conductor will be at a maximum at the edges ( 'x W 2= ± ) and zero in the center [13].  A 

sine function in 'x  will model this current adequately, namely 

(2 1) '( ') sin          0,1, 2,...zn
n xj x n

W
π+

= =       (4.74) 

 For the remaining two unknowns (the x- and z-directed electric fields), the nature 

of these will be strongly influenced by the respective currents on the conducting strip.  

Thus, given that the x-directed currents are represented as an even function in x, the 

electric fields in the volume will also be an even function (due to the relation between the 

fields, potentials, and currents), thus 

(2 1) '( ') cos          0,1, 2,...xn
n xe x n

W
π+

= =       (4.75) 
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The z-directed currents were shown to have odd basis functions in x.  The fields 

supported by these currents in the volume will also be odd in x (again, due to the relation 

between the fields, potentials, and currents), therefore 

(2 1) '( ') sin          0,1, 2,...zn
n xe x n

W
π+

= =       (4.76) 

 Only the electric fields will require basis functions in the y-direction.  It is known 

that the transverse fields (x and z) will vanish at a PEC surface.  Thus, at the surface of 

the top conductor (y=d) and the PEC ground plane (y=0), a sine basis function will 

always go to zero at these points.  Thus, a suitable representation for  and  

is 

( ')xne y ( ')xne y

( 1) '( ') sin          0,1, 2,...xn
n ye y n

d
π+

= =       (4.77) 

( 1) '( ') sin          0,1, 2,...zn
n ye y n

d
π+

= =       (4.78) 

 Again, looking at an intensity plot of the y-directed fields from the FDTD 

simulations (Figure 33), it can be seen how the y-directed fields stay fairly constant from 

0 to d in  (as expected from this approximate parallel-plate region).  They do not go to 

zero at the surface of the PECs, like the transverse fields do (as expected from the 

boundary conditions on the normal component of electric field at a PEC surface).  Given 

this, a cosine function is best suited to represent these fields, that is 

'y

'( ') cos          0,1, 2,...yn
n ye y n

d
π

= =       (4.79) 
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If, indeed, the fields are of constant value from 0 to d, the cosine basis function would 

still model it properly by having n=0 (thus, the basis function is a constant value of 

 from 0 to d). cos(0) 1=

 The Galerkin test functions used will be the same as the expansion functions, but 

with the variables n, 'x , and  swapped with m, x, and y to give 'y

(2 1)( ) cos          0,1, 2,...xm
m xj x m

W
π+

= =       (4.80) 

(2 1)( ) sin          0,1, 2,...zm
m xj x m

W
π+

= =       (4.81) 

(2 1)( ) cos          0,1, 2,...xm
m xe x m

W
π+

= =       (4.82) 

(2 1)( ) sin          0,1, 2,...ym
m xe x m

W
π+

= =       (4.83) 

(2 1)( ) sin          0,1, 2,...zm
m xe x m

W
π+

= =       (4.84) 

( 1)( ) sin          0,1, 2,...xm
m ye y m

d
π+

= =       (4.85) 

( ) cos                 0,1, 2,...ym
m ye y m

d
π

= =       (4.86) 

( 1)( ) sin          0,1, 2,...zm
m ye y m

d
π+

= =       (4.87) 

These basis functions are summarized in Table 5. 

 Upon inserting the expansion and test functions given in (4.72) to (4.87) into the 

matrix elements defined by (4.47) to (4.71), these terms can finally be integrated in x, 'x , 

y, and .  The resultant matrix elements will therefore be functions of ξ and ζ.  The 'y
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Table 5: Basis Functions Used to Represent Unknown Currents and Electric Fields (n Unknowns are the 

Same as the m Unknown Values Shown). 

y

 

(2 1)( ) cos          0,1, 2,...xm
m xj x m

W
π+

= =
(2 1)( ) sin          0,1, 2,...zm

m xj x m
W

π+
= =

(2 1)( ) cos          0,1, 2,...xm
m xe x m

W
π+

= =

(2 1)( ) sin          0,1, 2,...ym
m xe x m

W
π+

= =

(2 1)( ) sin          0,1, 2,...zm
m xe x m

W
π+

= =

( 1)( ) sin          0,1,2,...xm
m ye y m

d
π+

= =

( ) cos                0,1,2,...ym
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variable ζ  is subsequently numerically iterated using Newton’s method until the 

condition L tol<  is satisfied, resulting in the desired propagation constant pζ  (the prior 

FDTD analysis is used to obtain the initial guess in this research). 

 The next step in finding the propagation constants of the microstrip structure is to 

consider the integration path of the matrix elements in ξ.  Although the inverse Fourier 

transform path is along the real ξ axis, complex pole and branch point migration behavior 

constrains the integration path and consequently complicates the analysis and is discussed 

in the next section. 

 

x zPEC 
Region 1Region 3

C

y=0 C
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4.4.2 Integration Path 

 As discussed in Section 1.3.4, the microstrip structure used in this research can 

operate in four distinct regimes: reactive, radiation, surface, and bound.  Each regime has 

distinct features as to how electromagnetic fields propagate throughout the structure; and 

are ultimately defined by the pole and branch point singularities that are associated with 

the EFIEs.  The EFIEs derived in (4.36) and (4.37) represent a set of equations that define 

the propagation and coupling of electromagnetic energy within the structure.  Closer 

investigation of these equations reveals situations where singularities will exist (where 

the denominator or square root functions will vanish).  Some of these singularities (i.e., 

branch point) exist within Region 1 (those associated with p1).  These are removable 

singularities since these equations are even with respect to p1 [14].  The branch point 

singularities associated with p2, however, are not removable and must be handled 

appropriately. 

 Another singularity, a simple pole (i.e., a discrete surface wave mode) associated 

with the background environment, is identified with the denominator found in the 

Green’s function derived in Chapter 3 ((3.98) to (3.100)) when 

122 2
2 1 2 1( ) p dp N p p N p e− 0+ + − =    (4.88) 

or, rearranging terms 

2
2 1 1tanh 0p N p p d+ =          (4.89) 

where 2 2
1 1p kλ= − , 2 2

2 2p kλ= −  , 2
1 2/N ε ε= , and d is the height of the substrate 

layer.  This function defines the location of the poles for the EFIEs.  By finding the λp 
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value (i.e., the pole of the background environment in the lambda plane) for which (4.89) 

is valid, the pole ξp can be found from 

2 2
p pξ λ ζ= ± −               (4.90) 

Note, the operational frequency regime is assumed to be such that only a single 

background environment mode is propagating (i.e., only a single pole on the proper 

Riemann sheet). 

Another singularity will arise when p2 itself is zero.  This occurs when 

2 2 2 2 2 2 2 2 2
2 2 2 2 2( ) ( ) ( )p k k k kλ ξ ζ ξ ζ ξ ζ= − = − − = − − + − = 0

2

             (4.91) 

where 2 2λ ξ ζ= + .  Thus, branch point singularities exist at 

2 2
2b kξ ζ= ± −                (4.92) 

where ξb represents the branch point singularity location in the ξ-plane. 

 The next concern is the location of the branch cut.  The branch cut is what 

separates the top and bottom Riemann sheets ( and ) in the 

complex ξ plane.  In order to determine the branch cut trajectory, it is convenient to 

square the value for p

2Re( ) 0p > 2Re( ) 0p <

2.  The initial p2 plane and resultant 2
2p  plane are depicted in Figure 

34, with the top Riemann sheet depicted by the shaded region.  By squaring the value for 

p2, the branch cut now lies along the axis where 2
2Im( ) 0p =  and .  Using this 

expression, the branch cut trajectory can now be determined. 

2
2Re( ) 0p <

 It is important to keep track of which Riemann sheet the integral is being 

evaluated on in order to maintain continuity of the fields.   If  the integration  path  causes 

101 



 

2p

 

Figure 34: Riemann sheets in the complex p2 and 2
2p   planes. 

 

the interval to go from the upper Riemann sheet to the lower sheet (i.e., the integration 

path passes through the branch cut), this must be taken into account in order to evaluate 

the interval numerically.  How this is accounted for in the numerical integration of the 

interval is discussed later in this section. 

 Solving for the branch cut results in 

2 2 2 2 2 2
2 2 2

2 2 2 2 2 2
2 2 2 2

( ) ( ) (

    2( )
b r i r i r

r i r i r i r i r i r i

2
2 )ip k j j k jk

k k j k k

ξ ζ ξ ξ ζ ζ

ξ ξ ζ ζ ξ ξ ζ ζ

= + − = + + + − +

= − + − − + + + −
   (4.93) 

Using leads to 2
2Im( ) 0p =

2 2
2 2 0          r i r i

r i r i r i r
i

k kk k ζ ζξ ξ ζ ζ ξ
ξ
−

+ − = → =        (4.94) 

  

Im(p2) 

Re(p2) 

2Re( ) 0p >2Re( ) 0p <

Im(p2) 

2
2Re( ) 0p >

2
2Re( ) 0p <

2
2Im( ) 0p =

2
2 planep plane

Re(p2) 
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Figure 35: Typical pole and branch point locations for Bound Regime (lossy case) 

 

Thus, (4.94) is the relationship between the imaginary and real components of the branch 

cut in ξ and describes a hyperbolic trajectory (i.e., the Sommerfeld branch cut path).  The 

branch cut will start at the branch point ξb and stem off from that location as seen in 

Figure 35.  This is a typical complex plane plot showing the location of the poles, branch 

points, and branch cuts for a microstrip structure operating in the bound regime.  For this 

case, both the pole and branch point reside in quadrants II and IV. 

 The pole, branch point, and branch cut will move within the complex ξ plane as 

the material properties of the structure vary.  Extreme care must be taken in 

understanding where these points are located for a given frequency before any integration 

in ξ can be performed.  The pole and branch points transition between quadrants as the 
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Figure 36: Migration path for the pole and branch points for Bound Regime (lossy to lossless) 

 

permittivity of the sheet varies from lossy (large imaginary component) to lossless (no 

imaginary component) [13].  Sommerfeld states that when integrating in ξ, the integration 

path must remain on the same side of the pole and the branch point as they transition 

between quadrants in order to maintain physical continuity of the fields [15]. 

 For the bound mode depicted in Figure 36, the pole and branch points will 

transition from quadrant II to I and from quadrant IV to III as the permittivity varies from 

lossy to a lossless.  As such, neither set of points migrates across the real ξ-axis.  

Numerical integration can be performed along the real ξ-axis and will result in the 

Sommerfeld condition being met (this path is indicated with a green arrow in the figure). 

 Figure 37 shows the case where the pole and branch point are now associated with 

the radiation regime.  Going from the lossy to lossless case, the poles and branch points 
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Figure 37: Integration path around typical pole and branch point locations in the 

Radiation Regime (lossless case) 

 

will migrate from quadrant II to III and quadrant IV to I.  Because these points cross the 

real ξ-axis, the integration path must be deformed in order to remain on the same side of 

the pole and branch point.  This results in the integration path shown in the figure (green 

and blue lines combine to give the total integration path) to be done numerically. 

 The indicated integration path goes above the pole and branch point (meets the 

Sommerfeld radiation condition), but must pass through the branch cut in order to do so.  

This is a violation of the Cauchy Integral Theorem [15] that states that the integration 

path can not pass through any singularity points in order to be valid, unless the branch cut 

violation is accommodated for, as discussed next. 

105 



 

In addition to having to meet the Sommerfeld radiation condition, there still exists 

the area of concern mentioned earlier.  When the integration path crosses the branch cut, 

the value for p2 now lies on the lower Riemann sheet ( 2Re( ) 0p < ).  In order to maintain 

continuity, 2Re( )p  must be set to 2Re( )p− over this region (depicted as a blue line in 

Figure 37).  Since all integration is being performed numerically, this can be done easily 

by setting 2Re( )p  to 2Re( )p− along this interval and integrating on the lower Riemann 

sheet.  However, doing this will result in growing waves over the interval.  These 

growing waves will, thus, contribute to the leaky characteristics of the antenna [15]. 

As long as the Sommerfeld and Cauchy conditions are met and p2 is properly 

handled numerically when the interval lies on the lower Riemann sheet, the integration 

path can be varied and the results of the integration will remain the same.  However, 

before the elements of the MoM matrix can actually be integrated in ξ, a value for ζ must 

be determined.  The following section will show how this is accomplished. 

 

4.4.3 Newton Root Search 

 The last step in finding the propagation constants of the microstrip structure is to 

perform the integration of the matrix elements and solve for the determinant of the matrix 

in (4.46).  A dilemma exists in that the EFIEs that make up the matrix can not be 

integrated in ξ until a value of ζ is determined, but ζ cannot be found without integrating 

the matrix elements to compute the determinant.  The way around this problem is to 

perform a Newton Root Search of the matrix.  The root search starts with an initial guess 
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for ζ  and then iterates until a new value of ζ  is found that causes the determinant to 

vanish within the specified tolerance.   

 The end result of performing the root search is a value of pζ ζ=  that represents 

the thp  natural mode propagation constant for the microstrip structure under 

investigation.  As shown in Chapter 2, the real (βz ) and imaginary components (αz ) of ζp 

(also represented as ζz ) and their relationship to each other versus frequency define the 

operating regimes for the antenna structure.  The bandwidth of the radiation regime can 

directly be found from these values. 

 The next chapter will discuss specific cases of the modified THW antenna that 

were investigated and the resulting propagation constants for those cases.  This data will 

then be used to perform a complex plane analysis to gain insight into how the material 

properties of the modified microstrip impact the movement of the pole and branch points 

and, thus, influence how the antenna radiates. 
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Chapter 5 

 

RESULTS 

 

5.1 Introduction 

This chapter will present the results of the Method of Moments implementation 

discussed previously.  Numerous material perturbations are made to the proposed 

microstrip antenna and the corresponding propagation constants and associated 

operational regimes are identified for each scenario using the TR, FDTD and MoM 

techniques.  The results are compared and contrasted with the baseline antenna to identify 

conditions that lead to radiation bandwidth improvement.  In addition, the advantages and 

fundamental limitations of each technique is compared and contrasted.  Finally, a 

complex plane analysis of the pole and branch cut migration behavior versus frequency is 

discussed using the MoM results to gain a deeper physical understanding of the factors 

that define and influence the various operational regimes of the modified leaky-wave 

antenna. 

 

5.2 Method of Moments Solution For The Baseline Microstrip Antenna 

An MoM analysis of the baseline leaky-wave antenna (i.e., strip current only) is 

performed here for future comparison to the MoM analysis of the modified leaky-wave 

antenna (strip and volume currents).  The baseline results are compared with those 

obtained from the TR and FDTD methods to ensure confidence in the MoM code. 
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In the baseline case (strip current only), 3 1ε ε=  (see Figure 29), thus no volume 

current exists in Region 3.  Under these conditions, the only boundary condition to be 

enforced is zero tangential electric field on the strip conductor, therefore the MoM matrix 

(4.46) reduces to (see previous chapter for surface observer – surface source interactions) 

  
0

 
mn mn n

mn mn n

S T d
X Y e

⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
.                  (5.1) 

Thus, only the surface currents and respective Green’s function of the background 

environment are driving the operation of the baseline microstrip structure. 

In order to determine how well the Method of Moments predicts the propagation 

constants for the baseline Thiele half-width antenna, the results were compared to the 

TRC and FDTD data from Chapter 2.  For comparison purposes, even and odd 

Chebyshev basis functions, as well as sinusoidal basis functions, were used in the MoM 

analysis to represent the surface currents of the baseline antenna.  Chebyshev functions 

were selected because they are known to very accurately model the physical behavior of 

surface currents on the microstrip conductor [12, 13, 15, 16]. 

Given that this research will also model the electric fields in Region 3 for the 

modified antenna, it was intuitively decided that sinusoidal basis functions would also be 

investigated for the baseline antenna.  Specifically, sinusoidal basis functions were 

chosen since they would adequately represent the surface current of the baseline antenna 

and, more importantly, do a much better job at modeling the actual field behavior in 

Region 3 for the modified antenna (weighted Chebyshev polynomials have edge 

singularities that are suitable for currents, but  not  for  bounded  fields).   The  sinusoidal 
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Figure 38: Propagation constants for the Baseline THW Antenna over the Radiation Regime  

using TRC, FDTD, and Method of Moments. 

 

 

Table 6: Bandwidth of Baseline THW Antenna Using TRC, FDTD, and Method of Moments. 

 
ε1 ε1 ε1

Method Used Radiation Regime Bandwidth Percentage Bandwidth 

TRC 5.96 to 8.22 GHz 2.26 GHz 31.88% 

FDTD 5.87 to 8.12 GHz 2.25 GHz 32.17% 

MoM Chebyshev 6.02 to 8.18 GHz 2.16 GHz 30.42% 

MoM Sin-Cos 6.08 to 8.28 GHz 2.20 GHz 30.64% 
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basis functions sufficiently weaken the source-point singularity behavior in Region 3 

discussed previously thereby improving convergence.  A comparison of the propagation 

constant jζ β α= −  using the MoM, TR and FDTD methods is shown in Figure 38. 

 It can be seen from Figure 38 that the Method of Moments does a very good job 

of matching the propagation constants for the baseline antenna with the same values 

found using TRC and FDTD.  The percentage bandwidth found using the four methods is 

listed in Table 6. 

 At first inspection, it would appear that the Chebyshev basis functions do a better 

job matching the propagation constants found using TRC and FDTD than the results of 

using Sin-Cos basis functions.  It is observed that the Sin-Cos curves are “shifted” in 

frequency to the right of the TRC and FDTD curves by roughly 100 MHz.  However, 

looking closely at the results in Table 6, it can be seen that the Sin-Cos basis functions 

come closer to matching the TRC and FDTD bandwidth and percentage bandwidth 

values for the radiation regime.  Given that the bandwidth of the radiation regime is 

maintained and that the cut-off frequency is within 100 MHz of the TRC and FDTD data 

by using sines and cosines, they are acceptable for use as basis functions for this research. 

 Additionally, as discussed previously, the Sin-Cos basis functions will do a better 

job than the Chebyshev functions at modeling the bounded field behavior within Region 

3 of the modified antenna.  This is due to the weighted Chebyshev functions having edge 

singularities that are excellent for modeling current behavior, but not for representing the 

fields within a volume.  Note that this choice of weighting functions allows all spatial 

integrals to be computed in closed form, resulting in enhanced numerical efficiency. 
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5.3 Method of Moments Solution for the Modified Microstrip Antenna 

 The MoM was used to determine the propagation constants of several material 

perturbations of Regions 1 and 3 for the modified antenna as summarized in Table 7.  

The results of this analysis are shown in Figures 39 to 42.  Table 8 summarizes the 

operating region of the radiation regime for the cases investigated (baseline THW 

antenna cases in bold) and compares the results to the corresponding TRC and FDTD 

data. 

 Looking at the summary of results in Table 8, the data obtained using the Method 

of Moments compares favorably to the results from the FDTD data, but varies greatly 

with the TRC data.  The baseline case is the only situation where the TRC data matches 

the results from the Method of Moments and FDTD predictions.  For the modified 

microstrip antenna cases, the data obtained using the TRC varies greatly from the other 

two methods.  The TR method is not as robust of a method as FDTD and the Method of 

Moments.  As discussed in Chapter 2, TR represents the microstrip structure as a 

transmission line system.  In doing so, it does not take into account any y-varying fields 

nor the coupling and interaction of these fields with the x-directed fields and currents.  

These interactions are critical for determining the propagation constants of the modified 

structure.  Thus, the TR technique in its present form is not deemed a valid method for 

predicting the propagation constants for a modified microstrip structure. 

 It can be seen in Table 8 how closely the Method of Moments results (Figures 39-

42) compare with those derived from FDTD (Figures 23 and 24).  In most cases, the 

bandwidth between the two methods only varies by 100 MHz or less.  This is deemed to 
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be quite good, especially given that the baseline cases vary between them by 50 MHz 

alone. 

 The real benefit of using the Method of Moments to predict the propagation 

constants for the baseline and modified structures over FDTD is that the Method of 

Moments does so at upwards of 200 times faster than FDTD.  A typical data point (one 

propagation constant at one frequency) takes 3 minutes for the Method of Moments 

compared to upwards of 10 hours for FDTD on a PC (2.66 GHz Dual Intel ® Xeon 

X5355 with 8GB RAM). 

 Additionally, from the plots it can be observed how FDTD does not predict the 

alpha and beta values close to the cutoff frequency (as stated earlier in Chapter 2), but the 

Method of Moments predicts these values with ease. 

 All of the results obtained from the MoM analysis follow the same trends found in 

the FDTD data.  The next section will discuss the physical meaning of these results and 

any design insight gained from them. 

 

Table 7: Test Matrix for Modified THW Antennas Using Method of Moments. 

 ε1 ε3
1.03 2.33 
1.33 2.33 
2.33 2.33 
3.33 2.33 

  
1.03 1.33 
1.33 1.33 
2.33 1.33 

 

ε1 ε3 ε1 
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Figure 39: Propagation constants for radiation regime using MoM for ε1=1.33 and ε3=2.33. 
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Figure 40: Propagation constants for radiation regime using MoM for ε1=1.03 and ε3=2.33. 
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Figure 41: Propagation constants for radiation regime using MoM for ε1=3.33 and ε3=2.33. 
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Figure 42: Propagation constants for radiation regime using MoM for ε1=1.33, 1.03, and 2.33 and ε3=1.33. 

 

Table 8: Radiation Regime Bandwidth of Modifi HW Antennas Using MoM, FDTD, and TRC. ed T

  
MoM MoM FDTD FDTD TRC 

 
TRC 

ε1 ε3
 

Ba h 
Percentage 
Ba h 

 
B  

Percentage 
B h 

 
Ba h 

Percentage 
Ba h ndwidt ndwidt andwidth andwidt ndwidt ndwidt

1.03 2.33 2.61 GHz 35.37% 2.7 GHz 36.24% 24.1 GHz 133.8% 
1.33 2.33 2.33 GHz 2.43 GHz 6.55 GHz 31.98% 33.5% 71.0% 
2.33  2.33 2.20 GHz 30.64% 2.25 GHz 32.17% 2.25 GHz 32.6% 
3.33 2.33 1.81 GHz 25.88% 2.12 GHz 30.9% 1.41 GHz 21.2% 

        
1.03 1.33 11.91 GHz 84.15% 9.54 GHz 75.89% 34.3 GHz 138.0% 
1.33 1.33 8.59 GHz 70.38% 8.56 GHz 71.76% 8.7 GHz 72.3% 
2.33 1.33 6.78 GHz 61.85% 7.25 GHz 65.76% 2.8 GHz 31.1% 
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5.3.1 Physical Insight From 

 The results obtained from the MoM analysis were in agreement with the data 

provided a much quicker and 

mpler

aterial 

) operating in the first higher-

rom attaching to the ground plane.  This would lead to little energy being 

Radiation Regime Results 

derived from the FDTD analysis discussed in Chapter 2 and 

si  method to obtain them.  This section will talk more in-depth to those results, as 

well as attempt to give a physical understanding of why the data behaved as it did. 

 Similar to what was stated in Chapter 2, the bandwidth of the radiation regime 

increases as the permittivity of the sheet ε1 is lowered and the permittivity of the m

in region 3 ε3 is held constant.  The opposite also holds true where the bandwidth of the 

radiation regime decreases as the permittivity of the sheet ε1 is increased and the 

permittivity of the material in region 3 ε3 is held constant. 

 Physically, this can be thought of in the sense that the microstrip structure (the 

strip conductor, region 3 dielectric, and PEC ground plane

order mode is generating fringe fields based on the frequency of the source (as discussed 

in Chapter 1 and shown in Figure 4).  These fringe fields radiate out from the structure 

and couple with the PEC ground plane.  However, to do so, they must penetrate the slab 

of the background environment.  If this slab is of higher permittivity, it will be more 

difficult for these fields to do so (due to depolarization) than if the slab were of lower 

permittivity.  Thus, for the cases where the permittivity of the sheet ε1 is lowered, it is 

easier for the fields to couple with the PEC ground plane and, in turn, radiate away from 

the structure. 

 For the extremely high permittivity case, the slab would more readily reduce the 

fringe fields f
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allowed to radiate from the structure, thus causing it to resemble that of a tightly-confined 

field within a slab waveguide. 

 For the case where region 1 is air, the fringe fields would freely attach to the 

ground plane as they decoupled from the antenna structure.  With no blockage of these 

pact of keeping sheet permittivity ε1 fixed and varying the ε3 values in 

).  The sheet permittivity ε1. then 

rves 

fields due to the slab, this would result in a virtually infinite bandwidth (i.e., no trapped 

surface wave would exist in this case, thus radiation is the dominant scattering 

mechanism). 

 Further investigation into the results listed in Table 8 and in Figures 39 and 42 

shows the im

Region 3.  For the case where ε1 is fixed at 2.33 and ε3 increases from 1.33 to 2.33 the 

cutoff frequency decreases from 7.6 GHz to 6.2 GHz and the bandwidth decreases from 

6.8 GHz to 2.2 GHz.  For the case where ε1 is fixed at 1.33 and ε3 increases from 1.33 to 

2.33 the cutoff frequency decreases from 8 GHz to 6.2 GHz and the bandwidth decreases 

from 8.6 GHz to 2.3 GHz.  These results follow those found in Appendix B and Figure 62 

for a baseline THW antenna with varied permittivity. 

 Thus, the propagation characteristics of the antenna are strongly influenced by ε3 

(cutoff frequency and bandwidth of radiation regime

se to shift these values from those determined by ε3.  This makes physical sense since 

the fields in Region 3 are setting up within the volume due to the surface currents on the 

strip.  The electrons on the strip are causing fields to couple with the PEC directly below 

the strip, but doing so within the material of permittivity ε3.  The fringe fields that do not 
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directly couple with the strip conductor do so within Region 1 and, in doing so, are 

influenced by ε1. 

 In addition to the MoM analysis providing a significant improvement in the 

gime

.4 Complex Plane Analysis of Poles and Branch Points 

 of Moments) to solve for 

hapter 4, the microstrip antenna being investigated in this 

re  of convergence and computational efficiency in evaluating the desired 

propagation constants, these results can also be utilized to gain a deeper understanding of 

the governing factors that dictate the various operational regimes of the modified 

antenna.  This deeper understanding is primarily accomplished through an analysis of 

how the pole and branch point singularities in the integrands of the coupled EFIEs 

migrate in the complex plane as the operational frequency is varied.  This complex plane 

analysis is discussed next. 

 

5

 The results of the full-wave analysis (using the Method

the propagation constants of the modified microstrip structure were given in the previous 

section.  This section will take those results and perform a complex plane analysis to 

investigate how the materials within the structure can influence and modify the radiation 

and propagation regimes. 

 As discussed in C

research can operate in four distinct regimes: reactive, radiation, surface, and bound.  

Each regime is defined by the location of the propagation constants in the complex ζ 

plane.  However, these values can also be translated to the complex ξ plane (i.e., the x-
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directed propagation) where further insight can be gained into the radiation and 

propagation characteristics of the antenna. 

 Using the values for ζ z from Figures 39 to 42, combined with (4.90) and (4.92), 

the resultant pole and branch point singularities in the complex ξ plane are shown in 

Figures 43 to 53. 

 To understand these plots, start with the baseline THW antenna analyzed in 

Figure 43.  The plot shows the location of the pole and branch point as the frequency is 

increased from 2 GHz up to 20 GHz.  Starting in the lower right-hand corner, this 

represents the location of the pole and branch point at 2 GHz (reactive regime).  Both 

points lie virtually on top of one another at this frequency and move to the left as the 

frequency is increased. 

 When the frequency reaches 5.97 GHz, the cut-off frequency (where αz = βz ) for 

the radiation regime is encountered and is highlighted in the figure.  It is interesting to 

note that nothing “extraordinary” is seen in the curves at this point, even though it is 

considered a hard cross-over point between the reactive and radiation regimes.  The poles 

and branch points continue to move in a straight line towards the imaginary ξ axis as the 

frequency transitions from the reactive regime to the radiation regime, with no distinctive 

transition.  It is a common misconception within the leaky wave community that the 

poles and branch points shift from one quadrant in the complex plane to another at this 

point in frequency.  This is not the case, as seen in the figure. 

 The two curves continue moving to the left along the same path, with the 

imaginary component of each point being very close to zero.  When the frequency 
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reaches the end of the radiation regime (8.2 GHz on the plot), the curves stop moving 

toward the origin and now turn upward and towards the imaginary ξ axis.  Figure 44 

shows a close-up view of this transition region (the end of the radiation regime and the 

start of the surface regime).  By 8.25 GHz, both points are very close to lying on the 

imaginary ξ axis. 

 As the frequency continues to increase in the surface regime, all of the remaining 

poles and branch points lie just off of the imaginary axis.  When they finally do reach the 

axis, this is the start of the bound regime (11.5 GHz in the Figure 43). 

 Figure 45 compares the poles and branch points obtained using the TRC, FDTD, 

and MoM methods for the baseline THW antenna.  All three cases start at roughly the 

same location, follow the same trajectory and then turn upwards at the same location.  

Although all three curves are not exact to one another, they are similar.  The main point 

of this analysis was to show that there were not any pronounced differences between the 

three sets of data when analyzed in the complex ξ plane. 

 Figure 46 compares the three modified THW antennas with the baseline THW 

antenna using the MoM data in Figures 39 to 41.  For all cases, the permittivity of region 

3 is 2.33.  It can be seen that as the permittivity of the slab is lowered (the green and red 

curves), the pole and branch point move closer to the real ξ axis than does the baseline 

curve (the black curve).  If the permittivity of the slab is increased (the blue curve), it is 

observed that the pole and branch point move slightly further away from the real ξ axis as 

compared to the baseline curve.  A closer view of this data can be seen in Figure 47, with 

only the radiation regime data shown. 
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 For comparison purposes, the FDTD and TRC data can be seen in Figures 48 and 

49, respectively.  From these figures, the same trends can be seen in the curves as were 

found in the MoM results.  One item of note is the reason why the FDTD curves are not 

as smooth as the MoM and TRC plots.  This is an artifact of the process by which the 

data is taken from the FDTD computations, namely, small errors in the propagation 

constants translates to large variations in the complex ξ plane data.  If the FDTD data 

were to be smoothed out, this would translate to smoother curves in the complex ξ plane.  

Despite this, the same trends can be seen as those found in the MoM and TRC data. 

 Figures 50 – 53 show the case where the permittivity of region 3 is 1.33.  These 

cases again use the data obtained from the previous section and serve as a second set of 

data to validate the results of the 2.33 analysis. 

 One item of concern can be seen in the data.  The data in Figure 50 (and in the 

close-up view of the same data seen in Figure 51) shows where the increased permittivity 

case (blue curve) actually moved below the baseline case (black curve).  This is only 

observed in the MoM data.  The FDTD and TRC data (Figures 52 and 53 respectively) 

both follow the same trends seen in the 2.33 data.  It is unknown as to why this specific 

case does not follow the same trends as seen in all of the other cases and methods, but is 

likely due to numerical integration sensitivity. 

 From the figures, several trends can be observed: 

 1.  For all of the cases, the pole and branch point locations are extremely close to 

one another.  The branch point is located just to the left of the pole for all frequencies 
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within the reactive and radiation regimes.  The pole and branch point, for a given 

frequency, will be further apart depending on the permittivity of the slab. 

 2.  As frequency increases within the radiation regime, both the pole and branch 

point migrate to the left, towards the imaginary ξ axis. 

 3.  Once the antenna enters into the surface regime, the pole and branch point split 

apart, with the branch point being the closer of the two to the imaginary ξ axis.  Neither 

point will lie directly on the imaginary axis, but will move closer and closer as frequency 

increases within the regime.  Only for a small fraction of the surface regime does the pole 

and branch point not lie close to the imaginary axis.  This occurs at the point where the 

antenna goes from the radiation regime into the surface regime.  After this point, the pole 

and branch point are virtually located on the imaginary axis. 

 4.  As the antenna moves into the bound regime, both the pole and branch point 

lie directly on the imaginary ξ axis.  This is a direct result of the propagation constant 

being strictly a real value (i.e., no attenuation). 

 5.  In the bound regime, the pole and branch point will continue to move further 

up the imaginary ξ axis as frequency continues to increase. 

 6.  As the permittivity of the sheet decreases (and region 3 stays fixed), both the 

pole and branch point move closer to the real ξ axis. 

 7.  As the permittivity of the sheet increases (and region 3 stays fixed), both the 

pole and branch point move further from the real ξ axis. 

 8.  Regardless of the permittivity of the sheet, the pole and branch point are very 

close to one another for the entire radiation regime.  It is only when the antenna enters the 
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surface regime (and the subsequent bound regime) that the pole and branch point separate 

in the complex ξ plane.  This is also material dependent (background). 

 9.  For all of the cases shown, the materials used were lossless.  Because of this, 

all pole and branch point singularities stayed within quadrants I and III (not shown) as the 

antenna transitioned from reactive to radiation to surface to bound regimes.  Any loss in 

the materials would push the points closer to the real ξ axis or potentially into quadrants 

IV and II, respectively, for the radiation regime. 

 

5.4.1 Constraint Equation Analysis 

 The previous section looked at the poles and branch points in the complex ξ plane 

as they moved with respect to changes in frequency.  Tracking the location of these 

points is critical in determining a valid integration path for the integrals involving the 

Greens function components of (4.46).  From this, combined with using the Newton’s 

method, the propagation characteristics of the microstrip structure can be computed. 

 Looking at the constraint equation of (1.28), there still exists one remaining 

variable that is critical in understanding the propagation characteristics of the structure: 

p2.  The variable p2 is tied to the y-directed propagation through the equations described 

back in Chapter 3, specifically as , where 2p ye− 2 2
2 z

2
0p kξ ζ= + − .  Note, this crucial y-

variation was not accommodated in the TRC analysis as previously discussed, and hence 

is an important contribution. 

 Using the values of ζz found previously, values for p2 can be determined.  Since p2 

is dependent on ξ (the variable of integration for the integrals involving the Green’s 
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function components of (4.46)), there is not one value for p2 for each frequency.  The 

proper way to analyze p2 is to look at the ξ integration path (previously described in 

Chapter 4) and highlight the regions during which the values of p2 are imaginary.  An 

imaginary value for p2 will cause energy to propagate in y. 

 Figure 54 shows the values of p2 as computed along the integration path used in 

this research (Figure 41 in Chapter 4) for three sample frequencies (6, 7, and 8 GHz 

shown).  Note that the bulk of the values lie on, or extremely close to, the real axis.  For 

these values, there is no contribution to propagation in the y-direction.  However, a small 

collection of points reside close to the imaginary axis.  These points are the ones that 

make up the radiation contribution for the antenna. 

 Figure 54 shows how these points move closer to the real p2 axis as frequency 

increases.  All of the other values for p2 remain on, or extremely close to, the real axis.  In 

order to simplify the analysis of p2 across all values of ξ, only the small collection of 

points that contribute to the propagation (i.e., have a large imaginary component) will be 

tracked versus frequency.  Figure 55 shows the results of doing this for the baseline THW 

antenna.  For comparison purposes, the poles and branch points (in ξ) and propagation 

constant (ζz) are also shown.  All values are normalized to k0.   

 The modified microstrip structure is shown in Figures 56 to 59.  For all of these 

cases, ε1 =1.33 and ε3 =2.33.  Figure 56 highlights which points correspond to 5 GHz 

(reactive regime); Figure 57 highlights the points at 6 GHz (cutoff of the radiation 

regime); Figure 58 highlights the points at 12.55 GHz (radiation-surface regime 

transition); and Figure 59 highlights the points at 32 GHz (bound regime). 
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 From the figures, two interesting observations can be made: 

 1.  While in the reactive and radiation regimes, there are values for p2 that 

contribute to the propagation of energy in the y-direction.  However, in the reactive 

regime, the corresponding values for ζz have a large imaginary component.  Because of 

this, energy will not propagate in the longitudinal z-direction; thus, propagating waves are 

not supported in this structure and the antenna is considered reactive in nature.  In the 

radiation regime, the corresponding values for ζz have an equal or smaller imaginary 

component (compared to the real component of ζz ).  Because of this, longitudinally 

propagating waves can be supported in the structure.   

 2.  As frequency is increased, the values for p2 that contribute to radiation get 

smaller.  This continues until the points lie on the real axis, at which time there is no 

propagation in the y-direction.  The frequency that this takes place at corresponds to the 

same frequency at which the real component of ζz equals 1.  As described in Section 

1.3.4, this is the end of the radiation regime.  Since all energy is now bound within the 

substrate slab and only propagates in the x-direction, having no p2 values with any 

imaginary component makes sense. 

 This section has shown how the y-directed radiation of the microstrip antenna 

structure is driven by a few values of p2 along the path of integration.  For these values, 

there exists a large imaginary component.  This component, when tied with  

provides the necessary propagation in the y-direction to radiate in the normal direction 

away from the surface.  These values are directly tied to the material characteristics of the 

structure.  

2p ye−
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5.4.2 Conclusions from Complex Plane Analysis 

 Performing a complex ξ plane analysis of the propagation constants for the 

modified antenna has given several insights into how radiation may be promoted and 

bandwidth increased for the radiation regime of the structure.  Lowering the permittivity 

of the background environment (i.e., the dielectric slab) showed the greatest impact for 

increasing bandwidth.  The cut-off frequency of the antenna is still closely tied to the 

height and width of the metal strip and the permittivity of region 3; but the overall 

propagation characteristics of the structure are very much tied to the material that makes 

up the background environment of the leaky-wave antenna. 
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Figure 43: ξ plane poles and branch points for baseline THW antenna over reactive, radiation, surface, and 

bound regimes. 
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Figure 44: ξ plane poles and branch points for baseline THW antenna over radiation and surface regimes. 
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Figure 45: ξ plane poles and branch points for baseline THW antenna over radiation and surface regimes 

using TRC, MoM, and FDTD for ε3 =2.33. 
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Figure 46: ξ plane poles and branch points for modified THW antenna over radiation and surface regimes 

using MoM for ε3 =2.33. 
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Figure 47: Close-up view of ξ plane poles and branch points for modified THW antenna over radiation 

regime using MoM for ε3 =2.33. 
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Figure 48: Close-up view of ξ plane poles and branch points for modified THW antenna over radiation 

regime using FDTD for ε3 =2.33. 
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Figure 49: ξ plane poles and branch points for modified THW antenna over radiation and surface regimes 

using TRC for ε3 =2.33. 
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Figure 50: ξ plane poles and branch points for modified THW antenna over radiation and surface regimes 

using MoM for ε3 =1.33. 
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Figure 51: Close-up view of ξ plane poles and branch points for modified THW antenna over radiation 

regime using MoM for ε3 =1.33. 
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Figure 52: Close-up view of ξ plane poles and branch points for modified THW antenna over radiation 

regime using FDTD for ε3 =1.33. 
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Figure 53: ξ plane poles and branch points for modified THW antenna over radiation and surface regimes 

using TRC for ε3 =1.33. 
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Figure 54: Complex p2-plane values over ξ integration path for baseline THW antenna, ε1 =2.33.   
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Figure 55: Complex ξp, ξb, ζz, and p2 values for baseline THW antenna over reactive, radiation, surface, 

 

 

 

 

and bound regimes.   
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Figure 56: Complex ξp, ξb, ζz, and p2 values for modified THW antenna (ε1 =1.33 and ε3 =2.33) over 

reactive, radiation, surface, and bound regimes with values at 5 GHz highlighted. 

 

 

 

 

 

ε1 ε1ε1=2.33 

ε1 ε3 ε1ε1=1.33 
ε3=2.33 

5 GHz 

142 



 

 

 

 

0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1
Normalized ξp, ξb, ζz, and p2 for Modified THW Antenna

ξ 
Im

ag
in

ar
y

ξ Real

ξ poles 

 

Figure 57: Complex ξp, ξb, ζz, and p2 values for modified THW antenna (ε1 =1.33 and ε3 =2.33) over 

reactive, radiation, surface, and bound regimes with values at 6 GHz highlighted. 
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Figure 58: Complex ξp, ξb, ζz, and p2 values for modified THW antenna (ε1 =1.33 and ε3 =2.33) over 

reactive, radiation, surface, and bound regimes with values at 12.55 GHz highlighted. 
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Figure 59: Complex ξp, ξb, ζz, and p2 values for modified THW antenna (ε1 =1.33 and ε3 =2.33) over 

reactive, radiation, surface, and bound regimes with values at 32 GHz highlighted. 
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Chapter 6 

 

CONCLUSIONS 
 

6.1 Introduction 

Microstrip traveling-wave antennas radiate when the dominant mode is 

suppressed and the first higher-order mode is excited.  One such microstrip is the Thiele 

Half-Width (THW) antenna, which operates from 5.95 - 8.2 GHz in this research.  

Increasing the bandwidth over which the THW antenna operates is desired, as is an 

increase in the attenuation constant, αz, over this region.  This dissertation sought to vary 

the material and physical properties of the THW antenna, including strip-width variations 

and modifications of the substrate layer, to achieve these improvements. 

 

6.2 Overview of Research Effort 

The microstrip traveling-wave antenna operating in the first higher order mode 

has been studied extensively within the research community over the last 30 years.  This 

research effort looked to investigate a novel change to this antenna structure by varying 

the permittivity of the material under the strip conductor.  The goal of modifying the 

antenna structure in this manner was to achieve increased bandwidth over the radiation 

regime. 

In order to measure the effect of modifying the antenna in this manner, three 

different methods were implemented to extract the resultant propagation constants and, 

ultimately, the bandwidth.  The first method used was the transverse resonance (TR) 
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method which represented the microstrip structure as a transmission line (incorporating 

strip width and material properties) in order to compute the transverse propagation 

characteristics.  From these, the longitudinal propagation constants could be determined, 

along with the bandwidth of the radiation regime.  This method was shown to accurately 

compute these values for the baseline THW antenna, but not for the modified cases 

studied. 

The second method used was the finite difference time domain (FDTD) method.  

FDTD is a computational method for solving the time-domain differential form of 

Maxwell's equations directly and discretely using a space-time grid.  By placing the 

microstrip structure into a rectilinear grid-space and discretizing it into a set number of 

finite elements that account for material and dielectric properties, the electric and 

magnetic fields for each element can be computed for a single time step.  FDTD allowed 

for easy modifications to the microstrip structure and was able to compute the 

propagation constants and bandwidth easily and fairly accurately for these cases, as well 

as the baseline antenna.  The major drawback to the FDTD method is the time required to 

compute the desired results, as well as its inability to accurately compute the propagation 

constants near the cutoff of the radiation regime. 

In order to gain a greater understanding of the antenna and its four operating 

regimes, a full-wave analysis and Method of Moments (MoM) solution was implemented 

as the third method used in this research.  The full-wave analysis used the background 

environment of the antenna as a basis to build the Green’s function that define the 

principal and reflected waves within the structure.  From these, insight into how the 
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various elements (electric fields and currents) interact with each other in order to 

influence the operation of the antenna was gained.  The Green’s function components 

were then used in a Method of Moments analysis that sought to drive the determinant of 

the MoM matrix to zero, thus revealing its eigenvalues (the longitudinal natural-mode 

propagation constants of interest).  These constants were then mapped over the entire 

range of operating frequencies for the baseline and modified antennas, showing the 

effective increase or decrease in bandwidth. 

Next, the propagation constants derived from all three methods used in this 

research were used to find the poles and branch points for those cases in the complex ξ 

plane.  It was shown how these values changed their location in the complex plane based 

on variations to the permittivity in the region under the conducting strip. 

Lastly, the propagation constants, poles, and branch points were used to find the 

complex values of p2 that had an impact on the radiation of the structure.  These points 

were shown to vary based on location within the radiation regime, as well as with 

material changes in the structure. 

In the end, the results seen from modifying the THW antenna were approximately 

a 10% improvement in bandwidth for the test cases studied.  Physical insight was gained 

as to what characteristics of the microstrip antenna drive propagation and radiation within 

the structure.  By translating these results into the complex ξ and p2 planes, it was shown 

how the materials within the microstrip structure shifted the location of the poles and 

branch points and promoted the radiation of energy. 

In summary, the contributions of this work to the research community include: 
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(a) demonstrated bandwidth improvement of the microstrip traveling-wave 

antenna through material variations in the region under the metallic strip. 

(b) clarified the common misconception that poles and branch points change 

quadrants within the complex ξ plane with frequency – they do not.  The only time that 

these points will migrate from one quadrant to another is through a change of the material 

properties from the extremely lossy case to the lossless case.  Determining how these 

points migrate when the materials go from a lossy case to a lossless case will determine 

the integration path required to meet the Sommerfeld radiation condition.  Bagby wrote 

about this in his paper, but it is still commonly seen in the community the other way 

where points shift quadrants with changes in frequency [13]. 

(c) demonstrated how material variations move the poles and branch points in the 

complex ξ plane. 

(d) demonstrated how material variations move the p2 values that contribute to the 

radiation of the antenna structure. 

(e) mapped out locations of ξp, ξb, ζz, and p2 in their corresponding complex 

planes.  Plotting all four of these sets of complex variables onto one complex plane plot 

has not been demonstrated in prior work – especially the identification of the elements of 

p2 that contribute to the radiation of the structure and how they shift location with 

frequency. 

(f) modified the TR method to look at the modified microstrip traveling-wave 

antenna. 
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(g) modified the FDTD method to look at the modified microstrip traveling-wave 

antenna. 

(h) used the complex plane data to gain a better understanding of the reactive 

regime and what happens at the cut-off frequency to the radiation regime.  There is no 

distinctive change in the poles, branch points, or radiation-contributing p2 values when 

the antenna transitions from radiation to reactive regimes.  The structure is reactive in this 

region based on the high attenuation in the z-direction (large αz).  This is not well 

documented in the community. 

(i) combined a volume equivalence current with a surface current in order to 

determine the propagation characteristics of a microstrip traveling wave antenna. 

 

6.3 Recommendations for Future Research 

The results of modifying the materials under the top conductor of a microstrip 

antenna led to some bandwidth improvement of the radiation regime.  Several 

suggestions can be made for future research that can potentially uncover greater levels of 

bandwidth improvement for the traveling-wave microstrip antenna. 

Suggestions include: 

- permeability variations in regions 1 and 3 

- lossy materials to further drive complex ξ plane singularities closer to the real 

ξ axis 

- tapered material inside or just outside of region 3 

- tapered strip conductor along with material variations underneath in region 3 
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- include effects of non-perfect electric conductors (σ < ∞ ) for the ground 

plane, strip and shunt 

- add a cover layer on top of microstrip 

- perforated ground plane 

- examine the characteristics of the EH2, EH3, EH4,... higher order modes 

- develop TR method for a modified LW antenna based on a Weiner-Hopf 

technique (further investigating the TR method) 

 

6.4 Conclusions 

 The impact of varying the material under the top conductor of a traveling-wave 

microstrip antenna was shown to be on the order of 10% bandwidth improvement.  In 

addition, a greater understanding of the antenna and its transitions between regimes was 

gained from this research.  MoM was shown to be an effective method for analyzing a 

structure such as the one used in this effort for the higher order modes of operation.  The 

shortfalls of using FDTD and TRC to analyze such structures was also shown, as well as 

the benefits of using these methods.   

 In the complex ξ plane, the movement of the pole and branch point as the 

operating frequency varied from reactive to radiation to surface to bound regimes were 

depicted.  For these lossless cases, the points were shown to remain within the same 

quadrants of the complex plane across all operating regimes.  However, as the 

permittivity of region 3 was lowered (compared to that of the slab), the pole and branch 
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point were shown to shift closer to the real ξ axis.  For these cases, this resulted in 

increased bandwidth for the antenna structure over the baseline case.   

 In the complex p2 plane, the elements of p2 (as ξ is integrated from  to ∞ ) that 

contribute to the radiation of the structure were plotted.  It was shown how these points 

contain large imaginary and small real components in the radiation regime near cut-off.  

It was also shown how the location of these points move closer to the real axis (smaller 

imaginary component) as the frequency is increased.  Upon transition into the surface 

regime, the points no longer contain any significant imaginary component.  This 

corresponds directly to the antenna no longer having any radiation in the y-direction.   

−∞

 Future research is recommended in this area to find additional ways to increase 

the bandwidth of the radiation regime.  Several suggestions were listed, most of which 

involved combining varying the permittivity of region 3 with other methods used within 

the research community to increase bandwidth. 
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Appendix A 

 

TRANSVERSE RESONANCE METHOD 
 

A.1 Introduction 

This appendix is aimed at giving a more in-depth review of the Transverse 

Resonance Method used in Chapter 2 of the dissertation.  The TRM is the basis for the 

Transverse Resonance Code used as one method to find the propagation characteristics of 

the traveling-wave microstrip antenna. 

 
A.2 Transverse Resonance Method 

The propagation constants of the THW microstrip leaky wave antenna have been 

found using the Transverse Resonance Method [5].  This method involves taking a cross-

section (in the transverse plane) of the microstrip structure and representing it as a 

transmission line.  The fields of this transmission line must satisfy the transverse wave 

equation 

2 2( )t ze k k e2∇ + − = 0
r r              (A.1) 

where 
2 2

2
2 2t x y

∂ ∂
∇ = +

∂ ∂
 , 2 2 2 2

t zk k k ω µε= + = , and 2 2
t xk k k 2

y= + .  The factor kt is called 

the transverse wave number and z zk zjβ α= −  is the longitudinal (i.e., guiding-axis) 

wave number.  This factor is also represented as ζ z throughout this dissertation and are 

interchangeable with each other.  The factor er  represents the electric field. 
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Figure 60:  Representative transverse transmission line system for the baseline THW antenna 

 

In general, solution of (A.1) subject to appropriate boundary conditions lead to an 

expression for kt, thus the desired guided propagation constant kz may be found using the 

constraint equation relation 2 2
zk k kt= − .  Alternatively, one may arrive at an 

expression for kt by using impedances (ratio of tangential electric field to tangential 

magnetic field) and is referred to as the TR method. A specific example of the TR 

method is given next for the THW antenna. 

 Given any point within a transmission line of constant characteristic impedance 

(Z0), the input impedance looking in the +x direction must be equal in magnitude and 

opposite in phase of the input impedance looking in the -x direction [9].  Knowing this, 

we can pick any point along our representative transmission line system and develop a 

relationship for the input impedances in order to solve for our propagation constants.  

Figure 60 shows the representative transmission line system. 

 Chang solved for the reflection coefficient at the junction of a parallel plate 

waveguide with an extended dielectric sheet using a Wiener-Hopf method.  This point is 

represented as the red dashed-line in Figure 60.  It was found that at this junction 

Γl Γr ε1, µ1

x

1
2 2

Wwidth =
1
2 2

Wwidth =

0 , xZ kxlZ Γl Γr
ε1, µ1 Γsc Γsc
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( )zj
l e ζΧΓ =                (A.2) 

where 

( ) 1

0 0

( ) 2 tan tanh xz z
z e

x

kk k f
k k

ζ − ⎛ ⎞ ⎛
Χ = Χ = ∆ − −⎜ ⎟ ⎜

⎝ ⎠ ⎝ k
⎞
⎟
⎠

           (A.3) 

( )2 2
0 0

1

1 1 1z
z e

k d n k k d Q2 ( )γ δ
π ε

⎧ ⎫⎛ ⎞⎪ ⎪⎡ ⎤∆ ≅ − − + − + −⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦⎪ ⎪⎝ ⎠⎩ ⎭
l           (A.4) 

( ) ( )2 2
0 0

0 1

2 1 1 2 ( ) 2x x
e z

k k df n k k d Q
k e nγ δ

π ε
⎛ ⎞ ⎧ ⎫⎡ ⎤− ≅ − − + − + − −⎨ ⎬⎜ ⎟ ⎢ ⎥⎣ ⎦⎩ ⎭⎝ ⎠

l l π    (A.5) 

1

1

1
1ε

εδ
ε

−
=

+
                (A.6) 

0
1

( ) ( ) (m
e e

m
Q nδ δ

∞

=

− = −∑ l )m                     (A.7) 

Additionally, the reflection coefficient can also be used to determine the admittance of 

the dielectric sheet as seen from under the parallel plate waveguide ( 1
xlZ −  in Figure 60).  

This is given by the well known result 

[ ]1( ) tan ( ) / 2
1

l
a z c c z

l

Y Y jYζ ζ− Γ
= = − Χ

+ Γ
             (A.8) 

where 1/ 2 1
1 1 0( ) ( / )c zY ζ ε µ η −=  mho is the characteristic wave admittance within the 

transmission line and Ya is the admittance looking out into the dielectric sheet [10] at the 

junction point. 

Given the expression from Chang for the reflection coefficient of the microstrip 

structure at the edge of the top conductor looking out into the dielectric sheet [9], the 

input impedance can be written with respect to its reflection coefficient 
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0
1
1

l
xl

l
Z Z + Γ

=
− Γ

          (A.9) 

 Similarly, the input impedance at the right of the transmission line can be written 

as 

0
1
1

r
xr

r
Z Z + Γ

=
− Γ

          (A.10) 

 At any point along the transmission line, the impedance looking to the right must 

be equal in magnitude, but opposite in phase of the impedance looking to the left.  This is 

based on the need to keep continuity of the tangential fields within the line. 

 In order to simplify the computation, set the width to zero (W = 0).  Using the 

transmission line theory stated above, the input impedances must now be equal in 

magnitude and opposite in phase at this junction [9], thus 

xl xrZ Z= −      (A.11)

 Combining (A.9) and (A.10) with (A.11), results in 

1 1
1 1

l

l r

r+ Γ +
= −

Γ
− Γ − Γ

      (A.12) 

or 

( )( ) ( )( )1 1 1 1l r r l+ Γ − Γ = − + Γ − Γ         (A.13) 

1 1l r r l r l l⋅− Γ Γ − Γ + Γ = − − Γ + Γ + Γ Γr⋅             (A.14) 

2 2 l r⋅= Γ Γ                 (Α.15) 

1l r⋅Γ Γ =              (A.16) 

 The next step in the analysis is to allow for a finite W value. Equation (A.16) will 

still hold true at any point along the transmission line.  If we choose to look at the far left 
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side of the transmission line (the red dashed line in Figure 60), we will have to translate 

the reflection coefficient on the right side of the transmission line (the short circuit Γsc) 

the length of the line to this location in order to determine the value for Γr.  This resultant 

reflection coefficient is found using the well-known result 

2
2 1x

x

Wj k jk W jk W
r sce e

− − −Γ = ⋅Γ = − ⋅ = − xe                    (Α.17) 

 Conversely,  Γxl does not have to be translated since it is located at the point of 

interest (at the location of the dashed line), leaving 

( )zj
l e ζΧΓ =              (A.18) 

 Substituting the values for Γr and Γl into (A.16) and solving gives 

( ) 3 51 ...x zjk W j j j je e e e eζ π π π− Χ⋅ = − = = = =           (A.19) 

thus 

( ) 3 5z xk Wζ π π πΧ − = , , ...     (A.20) 

( )      1,3,5,...z xk W n nζ πΧ − = ± =           (A.21) 

where n represents the mode number.  For the first higher-order mode, n = 1 is used since 

we are interested in the EH1 mode.  Thus, the expression: Χ - kxW = +/- π  will be the 

basis for the Transverse Resonance Code (TRC) used to investigate the microstrip 

structures in this effort.  By driving this equation to zero, the TRC will compute the 

corresponding transverse propagation constant (kx) and, thus, the corresponding 

propagation constant for the microstrip structure ( 2
1 0z rk kε= ⋅ − 2

xk ).  Note that the 

code does not require any vertical component of the propagation constant (ky) as 

discussed next. 
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Given the relatively small thickness of the structure (0.787mm), the ky 

contribution is assumed to be negligible.  The thin plate spacing between strip conductor 

and PEC ground plane, acting approximately like a parallel plate capacitor in which the 

y-variation is essentially constant, the structure, in the spirit of the approximation, is 

essentially y-invariant.  Hence, the ky wavenumber is zero.  Thus, we only need 

 2 2 2 2 2, 0    x y z y z xk k k k k k k k= + + ≅ ⇒ = − 2                      (A.22) 

 

A.3 Summary 

 This appendix has given an brief overview of the Transverse Resonance (TR) 

method and how it can be used to determine the propagation characteristics of a 

microstrip traveling wave antenna operating in the first higher order mode. 
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Appendix B 

 

MICROSTRIP ANTENNA CHARACTERISTICS USING TRC 
 

B.1 Introduction 

This appendix is aimed at giving a more in-depth look into the baseline microstrip 

structure and how the propagation characteristics can be influenced by the width of the 

strip conductor and the permittivity of the substrate sheet.  The modified microstrip 

structures found in Chapter 2 of this work are not investigated in this section. 

 
B.2 Transverse Resonance Code   

A copy of the TRC was obtained from its author, Dr Gary Thiele.  As discussed 

earlier, the transverse resonance code (TRC) uses the expression for the reflection 

coefficient derived by Chang to compute the appropriate wave impedances at the junction 

of a parallel-plate waveguide with an extended dielectric slab.  From these, the code is 

able to compute the propagation characteristics of the microstrip structure. 

 Upon obtaining the TRC, the first step was to validate the code with known 

results.  To do this, the baseline THW antenna was used (d = .787mm, W/2=7.5mm, εr = 

2.33) and the results were compared with the known frequency range of the radiation 

regime (from 5.95 to 8.2 GHz) [5].  Figure 61 shows the results of the baseline TRC code 

for validity.  The values in Figure 61 are identical to those found by Zelinski [5], who 

compared his values to those validated by Lee [91]. 
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Figure 61: TRC approximation of leaky-wave propagation constants for baseline THW antenna. 

 

 In order to gain a better understanding as to how the width of the top conductor 

and the permittivity of the slab affect the cutoff frequency and bandwidth of the radiation 

regime, several microstrip structures were investigated.    Table 8 shows the test matrix 

used to show the impact of varying the permittivity of the sheet.  The permittivity values 

chosen represent a lower and a higher permittivity from the baseline case, as well as one 

that is essentially air (1.03).  These results are shown in Figure 62.  The widths listed for 

the microstrip antennas are for Thiele Half-Width antennas, thus their equivalent full-

width values are double the widths listed. 
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Table 9: Microstrip Antenna Widths and Permittivities 

Top Conductor 
Width (in mm) ε1 

7.5 3.33 
7.5 2.33 
7.5 1.33 
7.5 1.03 
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Figure 62: Multiple leaky-wave microstrip antennas 

BW=20.4% BW=70.6% 

BW=144.9% BW=32.6% 
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Figure 63: Leaky-wave antennas with varying conductor widths 

 

 

 In order to "normalize" the bandwidth measurements, it is common practice to use 

percentage bandwidth instead of absolute bandwidth when reporting this type of data [5].  

Resultant bandwidth is given as: BW% = (fhigh - flow) / fc , where fhigh is the frequency at 

which β/k0 = 1, flow is the frequency at which α = β and is also called the cutoff frequency 

for the radiation regime, and fc is the center frequency of the radiation regime.  It can be 

seen in Figure 62 that the resultant bandwidth increases as the permittivity decreases (and 

the opposite case holds true).  For example, by lowering the relative permittivity from 

2.33 to 1.33, the bandwidth increases from 32.6% to 70.6% - a 120% increase.  The 
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fringe fields are more easily established for lower ε1 values since they aren't as tightly 

bound in the dielectric, thus increased BW% (i.e., enhanced radiation and leakage). 

 Given that the permittivity was varied for the cases in Figure 62, it was necessary 

to run another set of cases where the strip width was varied.  Doing so would serve to 

isolate the impact of the strip width on BW%.  Figure 63 shows the results of this 

analysis.  Changing the width of the top conductor has no effect on the BW%, but serves 

to shift the cutoff frequency of the radiation regime.  Increasing the width of the top 

conductor (while keeping permittivity constant) shifts the cutoff frequency downward, 

whereas decreasing the width increases the cutoff frequency.  These effects are similar to 

changing the size of a rectangular waveguide or a parallel plate waveguide.  As one 

increases the size of a waveguide, the cutoff frequency will be lowered.  The larger 

opening allows for fields with larger and larger wavelengths to be set-up within the 

structure.  If the opening of the waveguide is decreased, the cutoff frequency is increased.  

Only fields with smaller wavelengths can “fit” within the opening of the waveguide, thus 

ones with higher frequencies. 

 

B.3 Summary 

 This appendix has given an overview of microstrip antennas operating in the 

radiation regime and showed the impact of changing the physical characteristics (width of 

strip conductor, permittivity of dielectric slab) of the structure.  It showed how the 

bandwidth of the radiation regime would vary based on the permittivity of the slab.  It 

also showed that the percentage bandwidth (BW%) was not affected by changes in the 
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width of the strip conductor for a thin microstrip structure, but the cutoff frequency did 

move based on these changes. 

 Hopefully, from the analysis presented in this appendix, a better understanding of 

the microstrip structure and how the radiation regime can be influenced by the physical 

characteristics of the structure was gained by the reader. 
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Appendix C 

 

MoM MATRIX ELEMENT EXTRACTION FROM EFIEs 
 

C.1 Introduction 

This appendix is aimed at explaining how the elements of the MoM matrix (4.46) 

are derived from (4.41) through (4.45).  The MoM elements (4.47) through (4.71) are 

critical for showing the interaction between the various electric fields and surface 

currents in the structure.  By understanding how these elements are extracted from the 

EFIEs of interest,  it can easily be seen what fields and currents are driving the 

propagation characteristics of the antenna structure after each are numerically integrated. 

 
C.2 MoM Implementation 

 Section 4.4 built the MoM matrix (4.46) that was used to find the propagation 

characteristics of the modified THW antenna structures.  The matrix was made up of 25 

elements (4.47) to (4.71), but it was not explained in detail how these elements were 

extracted from the EFIEs found in (4.41) through (4.45).  This section will discuss one 

example (for (4.47)) in detail and leave the reader to extract the other 24 elements in 

similar fashion. 

 Looking at (4.47), it is seen that this represents the Amn term in (4.46).  Looking at 

Figure 32, it can be seen that this term represents the x-directed electric field source as 

observed by the x-directed electric field observer component within Region 3.  The 

corresponding expanded EFIE equation from which (4.46) is extracted is (4.42).  Note 
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that (4.42) is only the expansion of the x-directed EFIE and does not yet contain the test 

functions needed to complete the Galerkin’s method (which show up as  in 

(4.47)).   

( , )xme x y

 Closer inspection of (4.42) reveals that it contains the five expansion coefficients 

(an to en), each of length N, that form the unknown vector [ ]u in (4.46).  Before Amn can 

be inserted into the MoM matrix (4.46), it is necessary to extract these coefficients from 

(4.41) to (4.45).  Thus, when these elements (4.47) to (4.71) are multiplied by the 

expansion coefficients, the results are the homogeneous EFIEs of interest.  Thus, Amn will 

contain only the x-directed terms within Region 3 that are multiplied by an, Bmn by bn, Cmn 

by cn, Dmn by dn, and Emn by en.   

 Applying the Galerkin’s Method will multiply all of these elements by the x-

directed test function  to represent their contribution and interaction with an x-

directed observer within Region 3.   By extracting only the terms associated with an in 

(4.42), multiplying these by the x-directed test function , and integrating with 

respect to x and y, this results in the representation of Amn given in (4.47).  The 

summation notation in (4.42) is no longer needed in (4.47) since this will be taken into 

account when (4.47) is multiplied by the unknown vector 

( , )xme x y

( , )xme x y

[ ]u . 

 Note that Amn also contains the total electric field, represented as the expansion 

coefficient an multiplied by the expansion function .  When the test function is 

applied to this term and integrated with respect to x and y, orthogonality of the basis 

functions is such that the resultant integral will only be non-zero when n = m. 

( , )xne x y
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 For ease of reference, (4.42) and (4.47) are given here as first shown in Chapter 4. 
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C.3 Summary 

 This appendix explained how the elements (4.47) to (4.71) of the MoM matrix 

(4.46) are derived from (4.41) through (4.45) by walking through one such example.  It 

was shown how (4.47) was extracted from (4.42) after the appropriate test function 

 was applied and integrated with respect to x and y.  The remaining 24 other 

elements of (4.46) can be found in similar fashion. 

( , )xme x y
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Appendix D 

 

MATLAB CODE IMPLEMENTATION 
 

D.1 Introduction 

This appendix is aimed at explaining the basic set-up and implementation of the 

Matlab code used to implement the Newton’s Method and solve for the eigenvalue ζz of 

the MoM matrix.    

 

D.2  Overview 

The main Matlab code (NewtonSinSin.m) is set up in two steps: variable set-up 

and Newton’s Method.  Within the Newton’s Method, it starts off with an initial guess 

ζguess for the eigenvalue ζz (helpful to use a priori knowledge to aid in convergence of the 

root search); computes the pole, branch point, and branch cut location based off of this ζz 

value; and then calls the integration subroutine (NumIntSinSin.m) for the ζguess and a 

ζdelta (slightly different than the ζguess value and necessary for the Newton’s Method).   

Under the integration subroutine, the Matlab code sets up the empty MoM matrix 

using the number of nx and ny (expansion) and mx and my (test) basis functions that are 

being used to represent the volume in Region 3 and ns (expansion) and ms (test) basis 

functions for the surface contribution.  A vector containing all of variables that will be 

passed to the Green’s functions as they are integrated is then established.  The MoM 

matrix is then filled using several iterative loops that address the volume-volume, 
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volume-surface, surface-volume, or surface-surface regions of interest.  Within each of 

these loops, each Green’s function (Amn, Bmn, Cmn, etc.) is numerically integrated along 

the integration path of interest using the quadl function within Matlab.  The path starts off 

at –Ulimit, which has been determined far enough out to ensure convergence of each 

MoM matrix subelement at that point.  The path then goes above and beyond the pole 

location by integration factors fac and fac2, respectively.  Note that the integration path 

steps over the branch cut, where it now calls the Green’s function .m files that take into 

account being on the lower Riemann sheet by setting p2 negative.  After the path crosses 

back over the second branch cut, the original Green’s function components are again used 

to complete the numerical integration out to Ulimit. 

The last part of the integration subroutine fills the full MoM matrix with these 

integration values from each subelement and uses the Matlab function det to find the 

determinant of the subsequent matrix.  This value is what is passed back to the main 

Matlab code. 

The main code then calls the integration subroutine again, this time to find the 

determinant using ζdelta.  The Newton’s Method is then applied using these two 

determinant values to compute whether we are within the tolerance level (typically 1e-

10).  If not, a new ζguess value is computed and the process is repeated.  If the tolerance 

level is met, then ζguess = ζz (the propagation constant we are looking for). 

Figure 64 shows a diagram of the code and how it is implemented. 
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Figure 64:  Matlab Method of Moments code implementation flowchart.
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