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Abstract

Fluid flow models in two spatial dimensions with a one-dimensional interface are

known to support overturned traveling solutions. Computational methods of solving

the two-dimensional problem are well developed [1, 2], even in the case of overturned

waves. The three-dimensional problem is harder for three prominent reasons. First,

some formulations of the two-dimensional problem do not extend to three-dimensions.

The technique of conformal mapping is a prime example, as it is very efficient in

two dimensions but does not have a three-dimensional equivalent. Second, some

three-dimensional models, such as the Transformed Field Expansion method [3], do

not allow for overturned waves. Third, computational time can increase by more

than an order of magnitude. For example, the Birkhoff-Rott integral has a cost of

O(N2) in two-dimensions but O(N4M2) in three-dimensions, where N is the number

of discretized points in the lateral directions and M is the number of truncated

summation terms.

This study seeks to bridge the gap between efficient two-dimensional numerical

solvers and more computationally expensive three-dimensional solvers. The disserta-

tion does so by developing a dimension-breaking continuation method, which is not

limited to solving interfacial wave models. The method involves three steps: first,

conduct N-dimensional continuation to large amplitude; second, extend the solution

trivially to a (N+1)-dimensional solution and solve the linearization; and third, use

the linearization to begin (N+1)-dimensional continuation. This method is success-

fully applied to Kadomtsev-Petviashvili and Akers-Milewski interfacial models and

then in a reduced Vortex Sheet interfacial formulation. In doing so, accurate search

directions are calculated for use in higher-dimension quasi-Newton solvers.
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DIMENSION-BREAKING FOR TRAVELING WAVES IN INTERFACIAL

FLOWS

I. Introduction

Equations in fluid mechanics are used to model many interesting physical systems.

These include flows around rigid objects (e.g. water flowing past a pylon, or turbulent

air flow past a wing or vehicle roof rack). Interfacial flows model the movement of

two adjacent fluids, such as liquid/gas interfaces (e.g. the surface of a lake with

ripples, trapped bubbles, or water droplets) and liquid/liquid interfaces (e.g. oil on

the surface of water, or layers of ocean water of differing salinity). While this work

is focused on one- and two-dimensional traveling interfacial waves, the concepts are

not limited to fluid flows. The technique developed within this dissertation can be

applied in any N-dimensional system at an equilibria point.

This work considers problems at the intersection of fluid mechanics and dynamical

systems. In the fluid models studied, one-dimensional traveling wave interfaces are

essentially fixed points of a dynamical system. The intention of this dissertation is to

understand the bifurcation structure from these points in order to perform a newly

proposed dimension-breaking numerical continuation method. This method will allow

for an efficient increase in dimension, yielding accurate initial search directions for

fully two-dimensional solvers. The proposed dimension-breaking method will do so

by linearizing the one-dimensional model with a weakly-two-dimensional ansatz, then

numerically solve the generalized eigenvalue problem arising from the linearization.

Computational methods are used to numerically solve mathematical models and

equations. These methods are inherently faster at lower-dimension. For example,

1



fluid interface models of a two-dimensional wave require finding values of the surface

over a grid of size N2 (assuming N discretized points in both axes), whereas an

interface model with a one-dimensional surface wave requires only N points.

Due to this cost reduction, lower-dimensional models are often used as an ap-

proximation for a higher-dimensional system, going so far as to use zero-dimensional

(point) approximations of the system. A method to calculate the density of argon in

a laser medium [5], and a study of the combustion and heat-release in an engine [6]

are examples of lower-dimensional models being used for computational savings.

The computational efficiency gained in lower-dimensional models comes at the

cost of losing information from the full system. This work proposes to instead gain

efficiency by using a hybrid method. Instead of doing all computations in the higher-

dimensional model, the proposed method uses a lower-dimensional model for a por-

tion of the computation, then computes a search direction to effectively initialize a

higher-dimensional model. This procedure requires a delicate understanding of the

bifurcation from lower to higher dimensions.

1.1 History of Traveling Water Waves

The study of traveling water waves dates at least back to a report by J. Scott

Russell to the British Association for the Advancement of Science in August 1834.

He was observing a boat being towed rapidly through a canal when the vessel came to

a sudden stop; a wave formed and began to traverse the canal at great speed, main-

taining a steady shape. He followed the wave on horseback for a mile or two, before

losing it to the turns of the canal [7]. His observations and subsequent experimental

research are now credited as the discovery of non-linear solitary waves, though at the

time it was not well understood [8].

G.G. Stokes followed with his 1847 paper “On the Theory of Oscillatory Waves”,

2



giving accurate calculations for non-linear two-dimensional traveling waves [9]. While

he advanced the field dramatically, he was not able to model Russell’s solitary waves;

a more robust understanding of non-linear solitary traveling waves would not come

for almost 50 years [10]. In 1895, Korteweg and deVries showed that letting the

period of the wave tend to infinity yielded a solitary wave solution in-line with Stokes’

calculations and Russell’s observation [11].

1.2 Current State of the Field

Two-dimensional fluid models (with a one-dimensional line interface between wa-

ter and air) have been extensively studied over the last century. Some solutions of

these various models, such as periodic Crapper waves and solitary Korteweg-deVries

(KdV) waves, can be described with explicit formulas [12, 13].

The two-dimensional analogue of the KdV equation, the Kadomtsev-Petviashvili

(KP) equation [14] has also been heavily researched. Tajiri and Murakami pursued a

model of transversely periodic KP waves [15]. Groves, Haragus and Sun extended the

work in [15] by providing existence proofs of transversely periodic waves in Euler’s

potential flow model. Solitary KdV waves that have been trivially extended to planar

waves are an example of solutions in the KP model that undergo bifurcations to a

family of transversely periodic KP waves [4].

In recent years, much work has been done on computational methods for various

fluid models. Waves crashing onto a shore are an easy-to-visualize example of over-

turning waves in the time-dependent problem. With enough energy, water pushing

up an inclined bottom will eventually overturn and break; it is not an uncommon

phenomenon. Numerical simulations of a three-dimensional time-dependent Navier-

Stokes model exist, though at a huge computational expense. They are in good

agreement with observed wave experiments and include overturning, breaking, air

3



entrainment and spray formation [16].

In this study, we instead consider overturned traveling waves. These waves may

occur as ripples moving away from a disturbance in a lake, or fuel flow in a channel

where capillary forces dominate over the force of gravity [17].

Traveling wave solutions are interface profiles moving at a steady speed without

changing shape in the reference frame; they are essentially stationary points of a

dynamical system. Of current interest are steady, traveling waves with overturning

features, of which Crapper and Meiron-Saffman waves [18, 19] are good examples.

Over the last ten years, there has been much research into traveling waves, including

their asymptotics, singularities and instabilities [20, 21, 22, 23, 24, 25].

To the best of the author’s knowledge, there has only been one computational ex-

ample of a fully three-dimensional overturned traveling wave at the time of this work

[26]. That study used an ad-hoc dimension-breaking method in a vortex sheet formu-

lation to find and compute the overturned wave. This dissertation seeks to continue

in this area of research. By presenting formal asymptotics of the dimension-breaking

bifurcation, the linearization is solved and three-dimensional waves are computed.

A better understanding of the bifurcation structure associated with this and other

models enables an efficient numerical method by providing a valid search direction

for computing overturned traveling waves in a fully three-dimensional solver.

Applications of this work can extend to any two-dimensional equilibria with a

corresponding three-dimensional extension. An example of a potential application

area is a simulation to complement a recent study that has been conducted aboard the

International Space Station of capillary channel flows [17], which exhibit overturned

interfaces and are quasi-two-dimensional.
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1.3 Governing Equations

This study uses three fluid flow interfacial models that are derived from Euler’s

equations. Some basics of these formulations are presented here and the models will

be discussed in later sections.

Euler’s Equations of Motion

The generally accepted equations for modeling the flow of an ideal fluid are Euler’s

equations, derived in a variety of texts such as Sir Horace Lamb’s widely referenced

Hydrodynamics [27] to more modern introductions such as Acheson’s Elementary

Fluid Dynamics [28]. An assumption that a fluid is ideal means that it is incompress-

ible and of constant density, ρ.

In a three-dimensional domain in Cartesian coordinates, with x and y periodic

horizontal components and z the vertical component, let u(x, y, z, t) = (u, v, w) be

the velocity vector of an ideal fluid and F (x, y, z, t) be the forces of pressure, p, and

gravity, g, acting on a small volume, δV , of fluid. Then

F = (−∇p+ ρg)δV

The mass is the small volume, δV , of fluid multiplied by its density, ρ, and the

acceleration of the fluid is ∂u
∂t

+ (u · ∇)u.

ma =

(
∂u

∂t
+ (u · ∇)u

)
ρδV
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Utilizing the fact that F = ma, a slight reordering yields the first of Euler’s equations:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ g (1)

∇ · u = 0 (2)

Equation (2) follows from conservation of an incompressible fluid mass entering and

displacing the existing fluid in the small volume.

Irrotational Flow

An irrotational flow is one with vorticity, the curl of velocity, equal to zero.

∇× u = 0

Assuming irrotational flow, along with the ideal fluid assumption, simplifies the Euler

equations (1) - (2) and provides a widely accepted model for water waves [28]. First, if

using a velocity potential, φ, where u = ∇φ, note that from equation (2), the velocity

potential must satisfy Laplace’s equation, ∇2φ = 0, in the entire domain of the fluid.

Further, (u ·∇)u = (∇×u)×u+∇(1
2
u2) which reduces to ∇(1

2
u2) for irrotational

flows. This means that equation (1) becomes

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+ gη − τκ(η) = 0 (3)

in terms of the velocity potential on the free-surface boundary, η(x, y, t). Note that

τ is the surface tension constant and κ curvature from the pressure on the boundary.

We also define a quantity, f(x, y, z, t) = z−η(x, y, t), which is equal to zero on the

boundary (i.e., z = η). Under the assumption that fluid particles on the free surface

remain on the surface, which is reasonable if the boundary interface is not turbulent
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and breaking, the time derivative of f will also be zero on the boundary. Then via

the chain rule:

Df

Dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt
+
∂f

∂t
= 0 (4)

In order to express equation (4) in terms of the velocity potential and the free-surface,

note that:

dx

dt
= u = φx,

dy

dt
= v = φy,

dz

dt
= w = φz (5)

and the derivatives of f are:

∂f

∂x
= −ηx,

∂f

∂y
= −ηy,

∂f

∂z
= 1,

∂f

∂t
= −ηt (6)

Together, equations (4) - (6) direct that the fluid interface is governed by what is

known as the kinematic equation on the free-surface:

ηt + ηxφx + ηyφy = φz (7)

Euler’s Equations of Potential Flow

Combining Laplace’s equation, a condition that the vertical component of the

velocity is zero on the bottom boundary, H, the kinematic equation (7), and equation

(3) these yield the following system:

∇2φ = 0, z < η (8)

φz = 0, z = H (9)

ηt + ηxφx + ηyφy = φz, z = η (10)

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+ gη − τκ(η) = 0, z = η (11)

In this system, equation (11) is known as the Bernoulli equation or as the dynamic

boundary condition on the free surface. Note that H taken to be much smaller than
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the horizontal length of the periodic wave is typically referred to as the shallow-water

case, while H → −∞ is known as the deep-water case.

Vortex Sheet Formulation

Waves on an air/water interface can be considered a simplification of the more

general vortex sheet problem [29]. Consider two fluids as occupying two domains,

Ω1,Ω2, with the less dense fluid typically taken to be on top of the other. The fluid

flows are irrotational, but each will have its own different, continuous velocity and

velocity potential. Therefore, they will each satisfy Euler’s equations in their respec-

tive domains. There is an additional relationship, as the pressure exerted normal to

the boundary interface, S, must be equal on both domains. If not, one fluid would

either push into the other or, if the pressures were opposite, separate. This yields the

following system for i = 1, 2:

∂ui

∂t
+ (ui · ∇)ui = −∇pi

ρi
+ g in Ωi (12)

∇ · ui = 0 in Ωi (13)

n̂ · u1 = n̂ · u2 on S (14)

where n̂ is the normal vector to the interface S arbitrarily chosen to point into one

domain.

While the normal velocities are equal as seen in Equation (14), a discontinuity of

the tangential velocity on the boundary interface can occur, resulting in an infinite

∇ × u. The interface, S, is known as the vortex sheet and the jump in tangential

velocities, [u]12, gives the value µ = n̂× [u]12, known as the vortex sheet strength.
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1.4 Free-Surface Problem

A complication in the fluid wave problem is that the boundary is unknown. More-

over, the interface is the boundary of the domain over which the potential is solved.

One is required to solve for the potential simultaneously with the domain over which

the potential is defined. There are several different techniques to solve the two-

dimensional free-boundary problem.

Stokes expansion is the classic method first employed by G.G. Stokes [9]. Numer-

ical calculations using this expansion can suffer from machine-precision errors. Re-

cently, the method of Transformed Field Expansion (TFE) was introduced by Nicholls

[3] to alleviate these errors. TFE is useful on both two- and three-dimensional fluids

[30], but does not allow for overturning waves [23].

Dirichlet-to-Neumann operators (DNO) [31, 32] are another distinct method of

solution. Dirichlet data pertains to the function itself at the surface, while Neumann

data pertains to the function’s derivative on the surface. A summary of computations

of DNO methods for the water wave problem was done by Wilkening [33].

The Ablowitz, Fokas and Musslimani (AFM) Method [34] is a recent method

that removes the vertical component from the formulation. AFM converts the usual

Euler’s equations, (8) - (11), into an integro-differential equation to determine the

boundary interface. Extensions of AFM to include overturned traveling waves are

currently being pursued in two-dimensions by Oliveras [35].

Conformal mapping has been used to solve water wave problems by numerous

groups, most relevant to our work is that of Milewski and Wang [1]. This mapping

is extremely efficient, allows for overturning waves, and requires very few numerical

points. It handles the unknown domain by mapping the fluid domain of a two-

dimensional problem onto a half-plane. In this way, the free-surface becomes fixed.

Unfortunately, this method does not have a three-dimensional extension.

9



The model primarily focused on in this dissertation is a vortex sheet formulation.

This is an interface model with a system of evolution equations for the interface

location and vortex sheet strength. The system is coupled with an equation for the

fluid velocity,W , which is either the full term (the Birkhoff-Rott integral) or a “small-

scale” approximation. While not quite as efficient as conformal mapping, this method

is still tractable in a one-dimensional interfacial system. On the one-dimensional

interface discretized by N points, the cost of computing the full W is O(N2) while for

small-scale it is O(NlogN). The three-dimensional vortex sheet system is a straight

forward extension, as seen in the work of Akers and Reeger [26]. For the full W

though, the cost jumps to O(N4M2) with N being the number of points in each

lateral direction and M a number of truncated terms of a summation. The small-

scale approximation has a clear computational advantage at a cost of O(N2log(N2)).

As direct numerical simulation of the full three-dimensional vortex sheet is ex-

tremely expensive, we design a numerical continuation procedure called dimension-

breaking continuation in an effort to reduce computational requirements. Before

extending to the three-dimensional solver, a new two-dimensional solver of the lin-

earized system is proposed to accurately predict the bifurcation period of planar

waves, thereby reducing the number of computations spent working in the fully three-

dimensional model.

1.5 Traveling Wave Solutions

In this work, we consider traveling solutions of wave equations moving at a steady

speed, c, in the x-direction. We use a traveling frame of reference so that the wave

becomes stationary in the frame. For functions of x, t, a traveling wave ansatz

f(x, t) = f(x − ct) is used, yielding ft = −cfx. In the Euler equations of poten-

tial flow, this is substituted into the kinematic (10) and dynamic (11) equations
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removing time-dependence. Several models used in this dissertation will utilize this

substitution. However, waves that are overturned are of current interest in the field.

These waves are therefore no longer functions of x, so this ansatz will have limited

use.

To overcome this difficulty, the vortex sheet formulation used by Akers, Ambrose

and Wright [25] parameterizes the one-dimensional surface and Akers and Reeger

[26] parameterize the two-dimensional surface. Here and throughout this disserta-

tion, subscript numbers are a naming convention to designate different functions.

Sometimes this helps differentiate between similar functions in differing spatial di-

rections, e.g. tangent vectors t1, t2, and sometimes it helps distinguish functions at

different perturbation orders, e.g. x0, x1. Subscript variables, e.g. ux or Xα, indicate

derivatives in the subscripted variable. If both subscripts are being used, the differ-

ent subscripts will be separated by parenthesis, e.g. (u0)xx, or a comma u0,xx. In

those examples, we are taking the second x derivative of the function u0. Superscript

numbers in paranthesis, e.g. X(2), indicate entry of a vector.

Following the work of Akers and Reeger [26], a curve is parameterized as

(x(α, β, t), y(α, β, t), z(α, β, t)), with unit tangent vectors, t̂1, t̂2 in the α and β direc-

tions. These are defined to be the α and β derivatives of the position functions x, y, z

normalized to length 1. The choice of normal direction is arbitrary as long as it is

maintained throughout the system. Here, the unit normal vector is n̂ = t̂1× t̂2. Then

the curve translates with tangential velocities, V1, V2, and normal velocity, U , so that:


x

y

z


t

= Un̂+ V1t̂1 + V2t̂2 (15)

from which we will have time-based evolution equations of the curve. Rewriting the
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right-hand side as a matrix-vector multiplication and imposing the speed c in the

x-direction on the left-hand side for traveling wave solutions, we have:


c

0

0

 =

 n̂ t̂1 t̂2




U

V1

V2

 (16)

As the normal and tangent vectors are orthonormal to each other, they form a unitary

matrix. Therefore, the matrix is invertible by a simple transpose and


n̂

t̂1

t̂2




c

0

0

 =


U

V1

V2

 (17)

For traveling waves, this imposes the restrictions U = cn(1), V1 = ct
(1)
1 and V2 = ct

(1)
2 .

1.6 Dimension-Breaking Bifurcations

Dynamical systems often have points where the solution branch splits. These

are termed bifurcation points, and were first noted by Poincare in 1885 [36]. We

are studying an infinite-dimensional dynamical system whose equilibria are functions.

The bifurcations we seek are those where a solution is trivial in one spatial dimension,

then gains non-trivial transverse dependence.

This phenomenon is referred to as dimension-breaking and has been studied for

some water wave models [13, 26, 4]. Using dimension-breaking as a tool to move

from a lower-dimensional model to a higher-dimensional model will reduce the num-

ber of calculations required in the higher-dimensional solver and thereby increase

computational efficiency.
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II. Numerical Methodology

2.1 Dimension-Breaking Continuation Procedure

Dimension-breaking continuation is not limited to interfacial flows, and so the

procedure is presented in a general way. In order to compute a large amplitude

(N+1)-dimensional solution, the following procedure is proposed:

• Begin with a fully (N+1)-dimensional model, F (x1, . . . , xN+1) = 0 that allows

for planar solutions, which are trivial in the transverse direction, xN+1 = x̃N+1.

• Separate out the N-dimensional problem, F (x1, . . . , xN , x̃N+1) = 0.

• Solve the N-dimensional problem via a quasi-Newton method.

- Using numerical continuation, find a N-dimensional solution branch.

• Define a weakly-(N+1)-dimensional ansatz with small ε perturbations. The

search direction for the (N+1)-dimensional solver is comprised of the perturba-

tion functions and bifurcation parameters of the ansatz.

• Linearize the problem with the ansatz and group O(ε) terms.

• Solve for the search direction in the O(ε) terms.

• Solve (N+1)-D problem.

- Extend N-D solution to (N+1)-D planar solutions. These trivial extensions

exactly solve (N+1)-D system.

- Initialize the (N+1)-dimensional quasi-Newton solver with the search di-

rection and ansatz.

- Use numerical continuation in fully (N+1)-D solver.
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Note that there is no difference proposed for either the N- or (N+1)-dimensional

solvers in this procedure. Using this method to understand the bifurcation structure

and solving the linearization allows one to use the lower-dimensional (and thereby fast

relative to the higher-dimensional) solver first to compute planar solutions of large

amplitude. By continuing up the N-dimensional branch of solutions before starting

any fully (N+1)-dimensional calculations, computational savings are achieved.

2.2 Fourier Basis

This study focuses on bifurcations from one- to two-dimensional wave interfaces in

three different interfacial fluid flow models. One-dimensional solitary waves or wave

packets are numerically truncated and so can be estimated as periodic waves, and all

models are periodic in the transverse direction. Limiting numerical code to search

for smooth periodic solutions makes a Fourier basis the natural choice. This study

utilizes a Fourier collocation method to find the Fourier modes of wave interfaces.

In order to take computational advantage of the Fast Fourier Transform (FFT) the

domain is discretized evenly with N points, where N = 2m,m ∈ N. The discretization

allows for the FFT and IFFT to use O(N logN) operations instead of O(N2). An early

portion of this study considered using adaptive discretization, however as the waves

are periodic and smooth there was no significant advantage.

Additionally, even functions have Fourier modes with only real values, whereas

odd functions have only imaginary Fourier modes. All real-valued functions’ Fourier

modes are also even. By enforcing the even or odd parity of the functions of the wave

solution and conducting parity analysis, the number of unknowns in the numerical

code will be reduced.
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2.3 Quasi-Newton Solvers

The dimension-breaking continuation procedure utilizes three distinct solvers in

order to find the Fourier modes. First, a solver is used for the N-dimensional wave

interface, then another finds the appropriate search direction, and finally a solver

generates fully (N+1)-dimensional wave solutions.

An initial goal of this study was to use an eigensolver in order to define a valid

search direction. An eigensolver could be directly applied to a one-dimensional in-

terface anywhere along the branch of solutions, a significant advantage over a quasi-

Newton solver that requires an initial guess. If the bifurcation period had an asymp-

tote, the eigensolver could skip past it and continue.

In two of the three models studied, the bifurcation parameter, d, of the search

direction appeared as a linear operator. This allowed for the linearization to take on

the form of an eigenvalue problem and the search direction to be successfully solved

with the use of an eigensolver.

In a class of models where the bifurcation parameter, d, is embedded in non-linear

terms though, the linearization is no longer an eigenvalue problem. The third model

studied was of this form and for this reason, a quasi-Newton method was ultimately

required to solve for the search direction.

The disadvantage of the quasi-Newton solver over an eigensolver for the dimension-

breaking linearization is that it requires an initial guess. It is presently coded to

work concurrently with the one-dimensional traveling wave solver. After each one-

dimensional interface solution is calculated, the bifurcation period and perturbations

are solved with an initial guess of the previous dimension-breaking solution. This

method requires bifurcation periods to have continuous dependence on height.

Quasi-Newton solvers were also used for all one- and two-dimensional wave in-

terfaces. In a quasi-Newton solver, one immediate advantage of using Fourier col-
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location is the size of the Jacobian. Quasi-Newton methods require a full Jacobian

at every step. As mentioned in the last section, only half of the Fourier modes of

one-dimensional real-valued solutions need to be stored. The entire function can be

recreated by reflecting the stored modes appropriately based on the function’s parity.

This reduces the Jacobian size from (N+1)2 to (N/2+1)2. A two-dimensional surface

requires only one quarter of the Fourier modes to be stored.

Our code uses a numerical approximation of the Jacobian’s partial derivatives via

symmetric difference of plus or minus step size h. The fully two-dimensional interface

solver utilizes a Broyden’s update [48] to control computational time and storage

issues for the Jacobian. Broyden’s updates are not required in the one-dimensional

dimension-breaking solvers.

2.4 Numerical Continuation

As stated earlier, quasi-Newton solvers require an initial guess to get started.

After a solution is found, a small change to the problem can be made such as enforc-

ing a slightly larger amplitude. The quasi-Newton solver can be reapplied with the

new constraint and the previously found solution as an initial guess. By repeatedly

solving a mathematical model in this way, one can march up a branch of solutions.

This general technique is known as numerical continuation and is referenced often

throughout this work. It is used in the one- and two-dimensional interface solvers of

this dissertation as well as in the dimension-breaking continuation procedure.
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III. Dimension-Breaking Method in Weakly-Nonlinear
Models

Dimension-breaking has been demonstrated in several different wave equations

[13] including bifurcating from solutions of the Korteweg-deVries equation to those of

the Kadomsev-Petviashvili equation. The KdV equation has exact solutions available

to compare against computational output and the bifurcation parameter to solutions

of the KP equation is well understood [15, 4]. For these reasons, the KdV to KP

bifurcation was used in this research to demonstrate the effectiveness of the dimension-

breaking continuation procedure.

3.1 The Korteweg-deVries and Kadomtsev-Petviashvili Equations

The Korteweg-deVries equation for a line traveling wave is as follows:

uxxx − cux − 3uux = 0 (18)

with the exact solution u = −c sech2(
√
c x/2).

Kadomtsev and Petviashvili proposed the following equation as an analogue of

the KdV equation to find two-dimensional surface wave solutions [14]

(uxxx − cux − 3uux)x + uyy = 0 (19)

A solution to the KdV equation in the x direction that is extended homogeneously

in the transverse, y, direction will be a solution to the KP equation. An explicit

formula for fully two-dimensional KP waves was proposed by Tajiri and Murakami

[15] and rigorously analyzed for wave speed c = 1 by Groves et. al. [4]:
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u(δ, x, y) = −4(1− δ2)
4− δ2

1− δcosh(αδx) cos(ωδy)

(cosh(αδx)− δ cos(ωδy))2
(20)

where

α(δ) =

√
1− δ2
4− δ2

and ω(δ) =

√
3(1− δ2)
4− δ2

(21)

At δ = 0, u reduces to the KdV solution. Varying δ ∈ [0, 1) yields exact KP solutions

bifurcating from the transversely trivial state. Note that in Equation (20), the trans-

verse parameter, δ, defining the bifurcation period changes while the speed remains

stable at c = 1. For our numerical coding purposes, we will instead fix the transverse

period and allow the speed to change.

Results

In applying the dimension-breaking procedure to the KP equation (19), the fol-

lowing ansatz was used:

u(x, y) = u0(x) + εu1(x) cos(dy) (22)

where u0 is a solution to the KdV equation (18) from which we wish to bifurcate to

KP waves. This ansatz was chosen to be periodic in the transverse y direction, with

ε� h = max(u0)−min(u0).

Linearizing the KP equation with this ansatz results in an equation with an O(1)

piece that is solved exactly by u0, and an O(ε) piece of the form A(u1) = λu1 where

A(u1) = (u1)xxxx − c(u1)xx − 6(u0)x(u1)x − 3(u0)(u1)xx − 3(u0)xx(u1)

and λ = d2.
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In order to solve for [u1, d] pairs numerically, the functions are discretized with N

points. The operator A is then calculated as an N × N matrix and an eigensolver,

such as MATLAB’s eig() function, is applied. Afterwards, the eigenvalues, d, are

sorted to find smallest d ∈ R+. Figure 1 shows an example of a KdV wave, u0, and

the perturbation function, u1, calculated from the dimension-breaking continuation

procedure.

The [u1, d] pair constitutes a search direction in a quasi-Newton solver for the KP

equation by defining the transverse period, Ly = 2π/d, and as the initial guess in the

ansatz equation (22). After a KP wave solution is found, numerical continuation as

described in Section 2.4 is used to increase the amplitude of the wave.

The Speed/Amplitude plot for this model is seen in Figure 2. It shows the planar

wave branch in solid blue as computed with the more efficient one-dimensional KdV

interface model. A dimension-breaking bifurcation line in dashed red originates from

a planar wave.

Continuation on this branch was suspended at a height of h = 2.37 as marked by

the black star of Figure 2. The fully two-dimensional KP interface generated using

this procedure is seen in Figure 3.

In this model, the transverse bifurcation parameter, d, was computed for KdV

waves between speeds 0.2 and 3 and compared against the explicit formula provided

in [4]. For the KdV to KP bifurcations, it is a linear relationship, d = c
√

3/4, as seen

in Figure 4.

The bifurcation parameter, d, need not have simple amplitude dependence. For

example, initial studies of the aspect ratio of the x, y periods for Meiron-Saffman waves

(standing gravity-capillary waves in deep water) have yielded the graph in Figure 5

for the bifurcation period (here denoted as Ly = 2π/d). As the height increases, the

bifurcation period contains a minimum and then begins to increase. While an explicit

19



-20 -10 0 10 20

x

-1

-0.8

-0.6

-0.4

-0.2

0

u0

-20 -10 0 10 20

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

u1

Figure 1. Example of a starting KdV wave interface, u0, from Equation (18) with wave
speed c = 1 at left, and solved u1 perturbation, right, paired with bifurcation parameter
d = 0.433. Note that these are solitary waves over the whole real line, truncated for
numerical computation.

Figure 2. Speed/Amplitude plot. c is the wave speed and the amplitude h = max(u)−
min(u). The solid blue line is from KdV solutions extended to planar waves. The
bifurcation begins at c = 1 and continues, red dashed line, as a fully two-dimensional
wave surface solution of the KP equation.
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Figure 3. A traveling KP wave, location denoted in Figure 2 by the star, calculated
using the dimension-breaking procedure.
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Figure 4. Linear relationship of transverse bifurcation parameter, d, in the KP equation
(19) to wave speed, c. Computed results, red circles, are compared against expected
values from the explicit formula provided by Groves et. al. [4], blue dashed line.
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equation for the bifurcation parameter exists for KdV to KP bifurcations, there is a

need for a procedure to identify the appropriate bifurcation period for other models.
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Figure 5. Bifurcation periods, Ly = 2π/d, in the y axis arising from planar Merion-
Saffman waves (g = 1, τ = 0,At = 0.1 in a vortex sheet formulation, equations (24)-(27)),
plotted against h = max(z)−min(z), the amplitude of the wave.
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3.2 The Akers-Milewski Equation

Next, we apply the procedure to another interfacial fluid flow model, the Akers-

Milewski (AM) equation, first proposed in [37] and later compared to experiment in

[38]:

−cux +Hu+ 2ux −Huxx −
3

2
uux + 2Huyy = 0 (23)

where H is the Hilbert Transformation in the x-direction. This is another evolution

equation with a traveling wave ansatz applied, similar to the KP equation. Note that

the Hilbert Transform is an operator on the Fourier representation of a function, with

Fourier symbol

Ĥ(u(x)) = −i sign(k)û(x)

in which Ĥ refers to the Fourier transform of H, k is the wavenumber and i =
√
−1.

A one-dimensional wave interface from the AM model with speed c = 0.3 is seen in

Figure 6.

The Hilbert Transformations in this model did not affect the procedure or ansatz.

This transformation is a linear operator and the bifurcation parameter, d, remained

separable into the form of an eigenvalue problem. An eigensolver is still a viable

method of solving for the transverse bifurcation periods and perturbation functions.

A plot of the calculated bifurcation periods, Ly, can be seen in Figure 8. Additionally,

Figure 9 shows a log-log plot of the bifurcation periods along with a reference line for

the small-amplitude asymptotic, O(1/h). Milewski and Wang [39] studied the small-

amplitude asymptotic for a nonlinear Schrödinger formulation that supports wave

packets visually similar to solutions of the AM equation. Their study also yielded an

asymptotic of O(1/h).
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Figure 6. An AM traveling wave, u0, with speed c = 0.3, computed using a quasi-Newton
method with N=256 points.
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Figure 7. An AM perturbation wave, u1 generated for the u0 wave in Figure 6.
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Figure 8. Bifurcation periods, Ly = 2π/d, of the Akers-Milewski equation (23) plotted
against height h = max(u)−min(u) generated for several 2-D AM waves.

10-2 10-1 100

Log h

101

102

103

Lo
g 

Ly

Reference Line

Bifurcation Period

Figure 9. Log-log plot of bifurcation periods, Ly = 2π/d, plotted against height h =
max(u)−min(u), blue circles, for the AM equation (23). The reference line, red dashed
line, is O(1/h) to compare the deviation away from the small-amplitude asymptotic.
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Figure 10. Speed/Amplitude plot for solutions of the AM equation (23). c is wave
speed and the amplitude h = max(u) −min(u). The solid blue line is data from one-
dimensional interfaces. A bifurcation, red dashed line, of fully two-dimensional AM
surface interfaces begins at speed c = 0.03.

Note that the solid blue line Speed/Amplitude plot, Figure 10, is no longer linear

or explicitly known in the AM model, as compared to the previous KdV model.

Further, the bifurcation periods of Figure 8 do not have an explicit formula and,

as seen in Figure 9, deviate from the small amplitude asymptotic. This illustrates

the need for a method of finding the bifurcation parameter. The dimension-breaking

continuation procedure provides this parameter and search direction accurately in

order to begin solving for the fully two-dimensional surface interface.

Figure 11 shows a fully two-dimensional AM surface interface generated using

this procedure. Bifurcations have been computed from many one-dimensional wave

heights (figures not included, as they are visually similar to the one provided), sug-

gesting that the bifurcations exist continuously along the branch. The wave interfaces

generated are as expected from the previous work of Akers and Milewski [37].
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Figure 11. A traveling wave solution of the AM equation (23), location denoted on the
Speed/Amplitude plot of Figure 10 by the star, calculated using the dimension-breaking
procedure.
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IV. Vortex Sheet Model

Computations of the two-dimensional interfaces of the AM or KP equations have

been shown to work using the dimension-breaking continuation procedure. The AM

and KP models do not support overturned traveling waves (and cannot since they

are parameterized in x). Next we proceed to an approximation of the vortex sheet

equations, so as to evaluate the potential for dimension-breaking continuation in this

context.

First, the model used by Akers and Reeger in [26] is presented. A fluid velocity

closure is required in this system. The full vortex sheet equations contain a Birkhoff-

Rott integral but, as it is computationally expensive, Akers and Reeger used the

small-scale approximation of the integral in their work. This study instead uses a

reduced small-scale approximation, discussed in Section 4.4.

4.1 Model

As stated generally in Section 1.3, the vortex sheet formulation is used to model

two fluids and an interface between them. The fluids occupy distinct domains and

do not mix or push into each other. In their respective domains the fluid velocities

are continuous, but on the interface a velocity shear may exist. Vortex sheets are

used to model fluids of different densities, such as ocean water of differing salinity or

oil on top of water. Additionally, discontinuous interfacial flow velocities can arise in

airflow beyond the sharp edge of a wing or on either side of a flapping flag [40].

The vortex sheet system in this study contains four equations: an evolution equa-

tion of the vortex sheet strength, µ; an evolution equation for the velocity of the wave
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interface; and two isothermal parameterization equations.

0 =τκ+
1√
E

(V · ∇)µ+ At

(
|W |2 + 2W · t1V1 + 2W · t2V2 −

1

4E
|∇µ|2 − 2gz

)
(24)

0 =c(n)(1) −W · n (25)

0 =Xα ·Xβ (26)

0 =E − λG (27)

where τ is surface tension, κ is the curvature of the interface and g is the constant force

due to gravity. The Atwood number, At = ρ1−ρ2
ρ1+ρ2

, is a difference of the densities, ρ1, ρ2,

of the two fluids. X = (x, y, z) is the wave interface, and G and E are fundamental

forms E = Xα ·Xα, G = Xβ ·Xβ, with λ a ratio of the α and β parameterizations.

Tangent vectors to the interface are t1 = Xα/||Xα|| and t2 = Xβ/||Xβ||. The normal

vector to the interface is n = t1 × t2. The system is coupled with a fluid velocity

closure, W , discussed in the next section.

The first equation (24) of the system is the evolution equation of µ. As we are

seeking traveling wave solutions, the vortex sheet strength will be static in the trav-

eling frame and hence the left hand side is zero. The second equation (25) is the

kinematic equation. It is a reduction that seeks traveling waves with steady speed c

in the x-direction of the full kinematic equation, Xt = Un+ V1t1 + V2t2.

The isothermal parameterization will be preserved via equations (26) and (27)

in line with the work of Ambrose, Siegel, and Tlupova [41, 42]. Equation (26) is

referred to as the perpendicular equation and enforces that the parameterization

locally maintains right angles between α, β, and equation (27) is the aspect equation

and is a relationship of the average arc length in the α and β directions. The equations

allow for general λ, however we will be assuming λ = 1 throughout this study.
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4.2 The Birkhoff-Rott Integral

The Birkhoff-Rott equation, W , gives the velocity induced on the fluid flow in the

vortex sheet formulation. This section will present the derivation of the full equation

from previous works, however an approximation is used for this dissertation and is

defined in the following sections.

Recall that there are two fluid domains, with the vortex sheet defining the bound-

ary between them. Saffman’s Vortex Dynamics [43] uses the Biot-Savart law to reduce

from a general integral equation over the fluid domains to a surface integral on the

vortex sheet:

u(x, t) =
1

4π

∫
S

ω(x′, t)× x− x′

|x− x′|3
dx′ (28)

where u the fluid velocity, x is a position vector in either fluid domain (not on the

interface), x′ is a position vector on the interface, and the vorticity is ω = ∇ × u.

The fluid flows in both the upper and lower domains are assumed to be irrotational

so that the vorticity is zero away from the interface, but on the sheet itself that is

not the case.

The fluid velocities in each domain, u1,u2, are continuous but there is a velocity

shear on the sheet itself. The average velocity across the shear, U = 1/2 (u1 + u2), is

found following the derivation of Caflisch and Li [44]. They apply a limiting process

with the Plemejl formula on either side of the boundary to define:

U(x, t) =
1

4π
P.V.

∫
S

(n′ ×∇τφ
′)× x− x′

|x− x′|3
ds(x′) (29)

where n is the normal vector pointing from the sheet into the upper domain, φ is

velocity potential, and the gradient of the sheet is ∇τ = ∇φ− (n · ∇φ)n.

Note that x is now on the interface, so there is a discontinuity where x = x′. The
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P.V. indicates the surface integral will be a Cauchy Principal Value integral due to

the discontinuity.

Cauchy Principal Value integrals allow for the evaluation of integrals with sin-

gularities on their domain of integration. For the one-dimensional interface of this

particular integral (29):

P.V.

∫ ∞
−∞

f(x′)ds(x′) = lim
ε→0+

(∫ x−ε

−∞
+

∫ ∞
x+ε

)
f(x′)ds(x′) (30)

This Principal Value integral is said to exist if the limit exists as ε approaches zero.

A full discussion of Cauchy Principal Value integrals with singularities at a finite

location can be found in [46].

The Birkhoff-Rott equation for fluid velocity on the sheet can come with some

variation to fit the units of the system in which it is used. Ambrose [45], Akers and

Reeger [26], Akers, Ambrose and Wright [25] parameterize the coordinates X(α, β, t),

so the following form will be used where W is the fluid velocity:

W (X) =
1

4π
P.V.

∫ ∫ (
µαX

′
β − µβX ′α

)
× X −X ′

|X −X ′|3
dβ′dα′ (31)

Reduction of One-Dimensional Birkhoff-Rott Integral

Notice that the domain of integration of the Birkhoff-Rott integral equations (29)

is the entire surface, from −∞ to ∞, for a one-dimensional interface. This equation

can be significantly reduced using the Mittag-Leffler cotangent identity [46]:

1

2
cot
(v

2

)
=

∞∑
m=−∞

1

(v − 2πm)
(32)

Since we are interested in periodic wave solutions in this dissertation, generally where

x(α+ 2π) = x(α), an integral over the whole real line can be expressed as an infinite
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summation of integrals:

P.V.

∫ ∞
−∞

f(α)

z(α)− z(α′)
dα′ =

∑
m∈Z

P.V.

∫ 2πm

2π(m−1)

f(α)

z(α)− z(α′)
dα′ (33)

As in [29] the summation of the periodic function is able to be moved inside the

integrand:

P.V.

∫ 2π

0

∑
m∈Z

f(α)

z(α)− z(a+ 2πm)
da = P.V.

∫ 2π

0

∑
m∈Z

f(α)

(z(α)− z(a))− 2πm)
da (34)

and, applying the Mittag-Leffler identity, results in an integral of the form:

P.V.

∫ 2π

0

f(α)

2
cot

(
z(α)− z(a)

2

)
da (35)

This allows for the infinite sum over periodic images to be replaced with the evaluation

of a trigonometric function.

The Mittag-Leffler identity is what allows the one-dimensional surface integral (29)

to be computed efficiently at O(N2), and the absence of a two-dimensional analog of

this identity is a significant computational bottleneck.

4.3 Small-Scale Approximation

Akers and Reeger [26] use a parameterized (α, β) surface Birkhoff-Rott integral,

which is doubly-periodic:

W (X) =
1

4π

∑
n∈Z

∑
m∈Z

P.V.

∫ 2π

0

∫ 2π
k

0(
µ′αX

′
β − µ′βX ′α

)
×

X −X ′ − 2nπe1 − 2mπ
k
e2∣∣X −X ′ − 2nπe1 − 2mπ

k
e2
∣∣3dβ′dα′ (36)

The cotangent identify of the previous section utilizes a map to C and has no
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3-D analogue at this time to quickly evaluate the surface integral. This makes using

the full Birkhoff-Rott integral computationally more difficult and significantly more

expensive to evaluate for a three-dimensional fluid problem. If a two-dimensional

surface is gridded by N points in each direction and each summation is truncated to

M points, then every direct numerical evaluation of the integral will require O(N4M2)

calculations. As an intermediate model, an approximation [41, 47] has been used by

Ambrose, Akers and Reeger. This approximation is termed the “small-scale” as it is

asymptotically equivalent as it approaches the flat state:

W ≈ 1

2
Hα

[
−µαXβ ×Xα

E3/2

]
− 1

2
Hβ

[
−µβXα ×Xβ

E3/2

]
(37)

where Hα, Hβ are Reisz Transformations in α and β, expressed as differential op-

erators Hα = −∂α
(
−∂2α − ∂2β

)−1/2
and Hβ = −∂β

(
−∂2α − ∂2β

)−1/2
. Using this small-

scale approximation, the velocity field, W , is calculated using a Fast Fourier Trans-

form, resulting in a cost of O(N2log(N2)) instead of the O(M2N4) cost of the full

Birkhoff-Rott equation.

4.4 Reduction of Small-Scale Approximation

For the purposes of this dissertation, a further reduction is being used by setting

W (1) = 0, which we will refer to as the “reduced small-scale”. Both the small-

scale and the reduced small-scale model have the same small amplitude asymptotic

solution as the full vortex sheet equations. Both are also vector valued, contain

Reisz transformations, and solve for a parameterized two-dimensional interface. Thus,

the reduced small-scale model has the same increases in mathematical difficulty as

the small-scale model over the weakly nonlinear models, the KP (19) and AM (23)

equations.
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Unlike the small-scale approximation, the reduced small-scale approximation does

not support overturning waves. Dimension-breaking continuation is expected to be

applied to the full small-scale approximation model in the author’s future work.

4.5 Reisz Transformations

A major difficulty encountered in the vortex sheet model as compared to the

weakly nonlinear models of Chapter 2 results from the Reisz Transformations in the

Small-Scale approximation of the Birkhoff-Rott equation. The two-dimensional Reisz

transformation acting on a function with two variables contains d dependence, unlike

the Hilbert Transform encountered in the AM equation (23). The Reisz transforma-

tion is a pseudo-differential operator and as a result the d term cannot be isolated in

an equation of the form Au1 = λu1. Consequently, an eigensolver such as MATLAB’s

eig() function is no longer available as a method of solution.

A quasi-Newton solver can be used instead, at the expense of requiring an initial

guess. The current method solves the dimension-breaking problem for each planar

wave and uses the solution as the initial guess for the next larger wave. As the

continuation is being conducted in the lower-dimensional system, the cost of the quasi-

Newton solver for the dimension-breaking continuation still represents a significant

savings over computations in the higher-dimensional system.

For the linearization ansatz in this model, the Hα operator will be evaluated

only on two-dimensional functions of the form f(α, β) = v(α) cos(dβ). Similarly,

the Hβ operator will be evaluated only on two-dimensional functions of the form

f(α, β) = v(α) sin(dβ).

For the dimension-breaking continuation method to remain efficient, calculations

must not be required over the two-dimensional surface interface. By restricting the

calculations to one dimension smaller than the full solver, the computational cost
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is limited relative to the size of the full problem. Therefore, we desire to find how

the operator acts on the function v and maintain a multiplication by cos(dβ). The

cosine term will be cancelled during the linearization. The following derivations were

completed as part of this study.

Derivation of Applicable Reisz Transformations

The Reisz transforms have the following Fourier symbols:

Ĥα(f) =
−ik1√
k21 + k22

f̂(k1, k2)

Ĥβ(f) =
−ik2√
k21 + k22

f̂(k1, k2)

where the Fourier transform, f̂ , is

f̂ =
1

4π2

∫ 2π

0

∫ 2π

0

f(α, β)e−ik1αe−ik2βdαdβ

and the inverse Fourier transform, f̌ , is

f̂ =

∫ 2π

0

∫ 2π

0

f(k1, k2)e
ik1αeik2βdk1dk2

with k1, k2 wavenumbers in the α and β directions.

First, we will detail the calculations of the Riesz transform on functions of the

form f(α, β) = v(α) cos(dβ). We will use the complex exponential form of cosine for

the manipulations, and then recover it back to cos(dβ). These derivations to eliminate
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the transverse variable, β, from the dimension-breaking continuation method:

f(α, β) = v(α) cos(dβ) = v(α)
eidβ + e−idβ

2
,

f̂ =
1

4π2

∫ 2π

0

∫ 2π

0

v(α)
eidβ + e−idβ

2
e−ik1αe−ik2βdαdβ

=
1

4π2

∫ 2π

0

∫ 2π

0

v(α)

2
eidβe−ik1αe−ik2βdαdβ

+
1

4π2

∫ 2π

0

∫ 2π

0

v(α)

2
e−idβe−ik1αe−ik2βdαdβ

=
1

4π2

∫ 2π

0

v(α)

2
e−ik1αdα

∫ 2π

0

e−i(k2−d)βdβ

+
1

4π2

∫ 2π

0

v(α)

2
e−ik1αdα

∫ 2π

0

e−i(k2+d)βdβ

=
v̂

2
δ(k2 − d) +

v̂

2
δ(k2 + d)

Applying the Reisz Transformation in the α direction to functions of this form:

Ĥα(v(α) cos(dβ)) =
−ik1√
k21 + k22

(
v̂

2
δ(k2 − d) +

v̂

2
δ(k2 + d)

)
=

−ik1√
k21 + d2

v̂

(
δ(k2 − d)

2
+
δ(k2 + d)

2

)

As the Dirac delta functions, δ, are zero except when k2 = ±d, this allows us to swap

the k2 term with d in the square root of the denominator of the first term. Now

inverting the Fourier transform, we can recover the form containing cos(dβ), so that:

Hα(v(α) cos(dβ)) =

̂(
−ik1√
k21 + d2

v̂

)
cos(dβ)
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Similarly for Hβ, it will act on functions of the form f(α, β) = v(α) sin(dβ) :

f(α, β) = v(α) sin(dβ) = v(α)
eidβ − e−idβ

2i
,

f̂ =
−i
4π2

∫ 2π

0

∫ 2π

0

v(α)
eidβ − e−idβ

2
e−ik1αe−ik2βdαdβ

=
−i
4π2

∫ 2π

0

∫ 2π

0

v(α)

2
eidβe−ik1αe−ik2βdαdβ

− −i
4π2

∫ 2π

0

∫ 2π

0

v(α)

2
e−idβe−ik1αe−ik2βdαdβ

=
−i
4π2

∫ 2π

0

v(α)

2
e−ik1αdα

∫ 2π

0

e−i(k2−d)βdβ

− −i
4π2

∫ 2π

0

v(α)

2
e−ik1αdα

∫ 2π

0

e−i(k2+d)βdβ

=
−iv̂

2
δ(k2 − d)− −iv̂

2
δ(k2 + d),

Ĥβ(v(α) sin(dβ)) =
k2√
k21 + k22

(
− v̂

2
δ(k2 − d) +

v̂

2
δ(k2 + d)

)
=

−d√
k21 + d2

v̂

2
δ(k2 − d) +

−d√
k21 + d2

v̂

2
δ(k2 + d)

=
−d√
k21 + d2

v̂

(
δ(k2 − d)

2
+
δ(k2 + d)

2

)
,

Hβ(v(α) sin(dβ)) =

̂(
−d√
k21 + d2

v̂

)
cos(dβ)

Therefore the following three operators will be used in this model, enabling the

method to proceed without requiring β, and with the last two illustrating d depen-

dence:

Hα(v(α)) =

̂

(−i sign (k1) v̂) (38)

Hα(v(α) cos(dβ)) =

̂(
−ik1√
k21 + d2

v̂

)
cos(dβ) (39)

Hβ(v(α) sin(dβ)) =

̂(
−d√
k21 + d2

v̂

)
cos(dβ) (40)
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V. Linearization of Small-Scale Vortex Sheet Model

For the vortex sheet model, periodic waves of a traveling (in the x-direction)

wave solution, (x(α), σβ, z(α)), are homogeneous in the β direction with trivial y

dependence, where σ is dependent on the arc length of the one-dimensional interface.

In order to preserve the isothermal parameterization of Equations (26)-(27),

σ2 = x2a + z2a. The solver seeks functions that observe the following parities, Figure

12, where x̃ = x− α and ỹ = y − σβ are periodic in order to effectively use the Fast

Fourier Transform in the function approximation.

Coordinate
α β

x̃(α, β) odd even
ỹ(α, β) even odd
z(α, β) even even
µ(α, β) odd even

Figure 12. Function parities sought in the vortex sheet formulation.

The following weakly three-dimensional linearization ansatz is proposed, ε � 1,

using an O(ε) perturbation to the planar traveling wave solution informed by the

parities of Figure 12:

x(α, β) = x0(α) + εx1(α) cos(dβ)

y(α, β) = σβ + εy1(α) sin(dβ)

z(α, β) = z0(α) + εz1(α) cos(dβ)

µ(α, β) = µ0(α) + εµ1(α) cos(dβ) (41)

In addition to the matching parities, all of the perturbation functions, subscripted

by 1, have zero mean. Any mean in the x and y parameterizations of α, β would

indicate a shift of coordinates and can be ignored. The depth of each domain above

and below the free-surface of the interfacial flow, z, is infinite and is therefore invariant
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to shift. The mean of µ is the mean vortex sheet strength, which is an input parameter

that we set to zero. These will be enforced in the quasi-Newton solver.

It was unclear whether the speed, c, and length, σ, terms required an O(ε) ad-

justment in the linearization. Both terms were evaluated using the full small-scale

approximation model at several small-amplitude planar waves. The bifurcation peri-

ods of these tests were found by a guess-and-check method. This was done to ensure

that the linearization ansatz was correct. Log-log plots of σ and c versus ε for one

amplitude of h = 0.8229 follow.

The general linearization of the speed is c = c0 + εc1 + ε2c2 + O(ε3). After

subtracting c0 from the planar bifurcation, ∆c = εc1 + ε2c2 + O(ε3). In the log-log

plot of Figure 13, the remaining variation is seen to be O(ε2). Therefore, c1 does not

need to be included in the ansatz. The same is true for σ1 (see Figure 14).

The following sections detail the linearization of the vortex sheet system,

equations (24) - (27). Each O(ε) piece is used in the dimension-breaking numerical

code in order to find the appropriate bifurcation period.
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Figure 13. Log-Log plot of difference of speed, c in fully 3-D wave from the planar wave
in the vortex sheet formulation, equations (24)-(27).
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Figure 14. Log-Log plot of difference of arc length, σ, in fully 3-D wave from the planar
wave in the vortex sheet formulation, equations (24)-(27).
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5.1 Fundamental Forms and Taylor Expansions

Throughout the model equations (24)-(27), there are instances of E,G in the

denominators of terms. In order to effectively use the O(1) and O(ε) parts, they

will require Taylor expansions about the one-dimensional interface parameterized

functions, f0.

E =Xα ·Xα =


xα

yα

zα

 ·


xα

yα

zα

 = x2α + y2α + z2α

=
(
x20,α + z20,α

)
+ ε2 (x0,αx1,α + z0,αz1,α) cos(dβ) +O(ε2)

=A+ εB +O(ε2)

In which,

A =
(
x20,α + z20,α

)
= σ2, B = 2 (x0,αx1,α + z0,αz1,α) cos(dβ) (42)

The Taylor expansion of the form 1
(A+εB)p

= A−p − pA−p−1Bε + O(ε2), and the

following forms appear in the vortex sheet formulation (24)-(27):

1

E1/2
= A−1/2 − 1

2
A−3/2Bε+O(ε2)

1

E
= A−1 − A−2Bε+O(ε2) (43)

1

E3/2
= A−3/2 − 3

2
A−5/2Bε+O(ε2)
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Combining Equations (42) and (43) gives

1

E1/2
=

1

σ
− ε

(
(x0,αx1,α + z0,αz1,α)

σ3

)
cos(dβ) +O(ε2)

1

E
=

1

σ2
− ε

(
2 (x0,αx1,α + z0,αz1,α)

σ4

)
cos(dβ) +O(ε2)

1

E3/2
=

1

σ3
− ε

(
3

(x0,αx1,α + z0,αz1,α)

σ5

)
cos(dβ) +O(ε2)

Likewise, we can linearize the second fundamental form, G,

G =Xβ ·Xβ =


xβ

yβ

zβ

 ·


xβ

yβ

zβ

 = x2β + y2β + z2β

=σ2 + ε2 (σy1d) cos(dβ) +O(ε2)

1

G1/2
=

1

σ
− ε 1

σ2
(y1d) cos(dβ) +O(ε2)

These Taylor expansions of the fundamental forms E and G are now in a useful

O(1) + O(ε) format. This will allow them to be used more easily in the remaining

pieces of the linearization.

5.2 Small-Scale Birkhoff-Rott Approximation

In the formulation used by Akers and Reeger [26], the small-scale approximation

to the Birkhoff-Rott integral is:

W ≈ Hα

[
−µαXβ ×Xα

2E3/2

]
−Hβ

[
−µβXα ×Xβ

2E3/2

]

where the H terms are Reisz Transformations. Note that this formulation depends

on the assumption λ = 1 (both terms being divided by E instead of one by G). Given
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that Xα ×Xβ = −Xβ ×Xα,

W ≈ 1

2

(
Hα

[
−µαXβ ×Xα

E3/2

]
+Hβ

[
−µβXβ ×Xα

E3/2

])

In order to linearize W , note that a large portion of the two terms under the Reisz

transformations are the same. Beginning with the cross product,

Xβ ×Xα =


yβzα − zβyα

zβxα − xβzα

xβyα − yβxα

 =


σz0,α

0

−σx0,α

+ε


[σz1,α + y1z0,αd] cos(dβ)

[x1z0,α − x0,αz1] d sin(dβ)

[−σx1,α − x0,αy1d] cos(dβ)


+O(ε2)

and including the Taylor expansion:

1

E3/2
=

1

σ3
− ε

(
3 (x0,αx1,α + z0,αz1,α)

σ5

)
cos(dβ) +O(ε2)

gives

Xβ ×Xα

E3/2
=

1

σ2


z0,α

0

−x0,α



+ ε

 1

σ4


(σ2z1,α + σy1z0,αd− 3z0,α (x0,αx1,α + z0,αz1,α)) cos(dβ)

σ [x1z0,α − x0,αz1] d sin(dβ)

(−σ2x1,α − σx0,αy1d+ 3x0,α (x0,αx1,α + z0,αz1,α)) cos(dβ)




+O(ε2) (44)

Equation (44) is multiplied by either µα or µβ in the small-scale approximation. Both
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terms are presented below:

µα
Xβ ×Xα

E3/2
=

1

σ2


z0,αµ0,α

0

−x0,αµ0,α



+ ε

 1

σ4


(σ2z1,α + σy1z0,αd− 3z0,α (x0,αx1,α + z0,αz1,α))µ0,α cos(dβ)

σ [x1z0,α − x0,αz1] dµ0,α sin(dβ)

(−σ2x1,α − σx0,αy1d+ 3x0,α (x0,αx1,α + z0,αz1,α))µ0,α cos(dβ)



+
1

σ2


z0,αµ1,α cos(dβ)

0

−x0,αµ1,α cos(dβ)


+O(ε2), (45)

µβ
Xβ ×Xα

E3/2
=ε

d

σ2


−z0,αµ1

0

x0,αµ1

 sin(dβ) +O(ε2) (46)

Together (45) and (46) are produce the following small-scale linearization of W .

W ≈1

2
Hα

 1

σ3


−z0,αµ0,α

0

x0,αµ0,α




+ ε
1

2

Hα

 1

σ5


−µ0,α (σ2 [z1,α + y1z0,αd]− 3z0,α (x0,αx1,α + z0,αz1,α)) cos(dβ)

−µ0,ασ
2 [x1z0,α − x0,αz1] d sin(dβ)

−µ0,α (σ2 [−x1,α − x0,αy1d] + 3x0,α (x0,αx1,α + z0,αz1,α)) cos(dβ)



+
1

σ3


−z0,αµ1,α cos(dβ)

0

x0,αµ1,α cos(dβ)


+Hβ

 d

σ3


−z0,αµ1

0

x0,αµ1

 sin(dβ)


+O(ε2)
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For use in the linearization ansatz (41), we also denote the following terms, where

the superscript indicates the entry of a vector:

W0 =


W

(1)
0

W
(2)
0

W
(3)
0

 ,W1 =


W

(1)
1

W
(2)
1

W
(3)
1

 , D(β) =


cos(dβ) 0 0

0 sin(dβ) 0

0 0 cos(dβ)


so that

W = W0 + εD(β)W1 +O(ε2)

Keeping the O(1) and O(ε) pieces of the velocity expansion isolated in these terms

will allow an easy switch from approximations to the full Birkhoff-Rott integral in

future work.

Therefore, in the Small-Scale Approximation and under the assumption d > 0:

W
(1)
0 =

1

2
Hα

[
−z0,αµ0,α

σ3

]
W

(2)
0 =0

W
(3)
0 =

1

2
Hα

[x0,αµ0,α

σ3

]
W

(1)
1 =A

(1)
1 +B

(1)
1

A
(1)
1 =

1

2
Hα

[
3

σ5
µ0,αz0,α (x0,αx1,α + z0,αz1,α)

+
1

σ3
(−z0,αµ1,α − µ0,αz1,α − µ0,αz0,α (x0,αx1,α + z0,αz1,α))

]
B

(1)
1 = −1

2
Hβ

[
d

σ3
z0,αµ1

]
W

(2)
1 =

1

2
Hα

[
d

σ3
µ0,α (x0,αz1 − x1z0,α) sin(dβ)

]
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W
(3)
1 =A

(3)
1 +B

(3)
1

A
(3)
1 =

1

2
Hα

[
−3

σ5
µ0,αx0,α (x0,αx1,α + z0,αz1,α)

+
1

σ3
(µ0,αx1,α + µ0,αx0,α (x0,αx1,α + z0,αz1,α) + x0,αµ1,α)

]
B

(3)
1 =

1

2
Hβ

[
d

σ3
x0,αµ1

]

5.3 Isothermal Parameterization

The last two equations of the vortex sheet model, equations (26)-(27), are the

isothermal parameterization equations. These equations are the two-dimensional sur-

face analog of the arc length parameterization used in the one-dimensional interface.

Equation (26) locally enforces right angles between the α and β parameterizations,

and equation (27) is an aspect ratio of the parameterization of α and β. They are

linearized in the following subsections.

Perpendicular Equation

The perpendicular (23) equation is:

0 =


xα

yα

zα

 ·


xβ

yβ

zβ


Using the ansatz equations (41), we have:

0 =


x0,α + εx1,α cos(dβ)

εy1,α sin(dβ)

z0,α + εz1,α cos(dβ)

 ·


−εx1d sin(dβ)

σ + εy1d cos(dβ)

−εz1d sin(dβ)


0 =ε (−x0,αx1d+ σy1,α − z0,αz1d) sin(dβ) +O(ε2)
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So that at O(ε),

0 = −x0,αx1d+ σy1,α − z0,αz1d (47)

Aspect Equation

The aspect equation (24) is:

λG =E

λ


xβ

yβ

zβ

 ·


xβ

yβ

zβ

 =


xα

yα

zα

 ·


xα

yα

zα


Using the ansatz equation (41), we have:

λ


−εx1d sin(dβ)

σ + εy1d cos(dβ)

−εz1d sin(dβ)

 ·


−εx1d sin(dβ)

σ + εy1d cos(dβ)

−εz1d sin(dβ)

 =


x0,α + εx1,α cos(dβ)

εy1,α sin(dβ)

z0,α + εz1,α cos(dβ)

 ·


x0,α + εx1,α cos(dβ)

εy1,α sin(dβ)

z0,α + εz1,α cos(dβ)


λσ2+ε (2σy1d)λ cos(dβ)+O(ε2) =

(
x20,α + z20,α

)
+ε2 (x0,αx1,α + z0,αz1,α) cos(dβ)+O(ε2)

At O(ε), this gives:

0 = x0,αx1,α + z0,αz1,α − λσy1d (48)
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5.4 Tangent and Normal Vectors

In the α, β parameterization, the unit tangent and normal vectors are:

t1 =
Xα

||Xα||
= Xα

1

E1/2

t2 =
Xβ

||Xβ||
= Xβ

1

G1/2

n =t1 × t2

In this linearization with ansatz equations (41):

t1 =


x0,α + εx1,α cos(dβ)

εy1,α sin(dβ)

z0,α + εz1,α cos(dβ)


(

1

σ
− ε

(
(x0,αx1,α + z0,αz1,α)

σ3

)
cos(dβ) +O(ε2)

)

=
1

σ


x0,α

0

z0,α

+ ε
1

σ


[
x1,α − 1

σ2

(
x20,αx1,α + z0,αz1,αx0,α

)]
cos(dβ)

y1,α sin(dβ)[
z1,α − 1

σ2

(
z0,αx0,αx1,α + z20,αz1,α

)]
cos(dβ)

+O(ε2)

=
1

σ


x0,α

0

z0,α

+ ε
1

σ3


[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ)

σ2y1,α sin(dβ)

[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ)

+O(ε2) (49)

t2 =


−εx1d sin(dβ)

σ + εy1d cos(dβ)

−εz1d sin(dβ)

( 1σ − ε 1
σ2 (y1d) cos(dβ) +O(ε2)

)

=


0

1

0

− ε dσ


x1 sin(dβ)

0

z1 sin(dβ)

+O(ε2) (50)
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For the normal vector, recall:

n =t1 × t2

n(1) =t
(2)
1 t

(3)
2 − t

(3)
1 t

(2)
2

n(2) =t
(3)
1 t

(1)
2 − t

(1)
1 t

(3)
2

n(3) =t
(1)
1 t

(2)
2 − t

(2)
1 t

(1)
2

therefore after using the linearized versions of the tangent equations, the normal

vector is as follows:

n(1) =

(
ε

1

σ
y1,α sin(dβ) +O(ε2)

)(
−εdz1 sin(dβ) +O(ε2)

)
−
(

1

σ
z0,α + ε

1

σ3
[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ) +O(ε2)

)(
1 +O(ε2)

)
=− 1

σ
z0,α − ε

1

σ3
[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ) +O(ε2) (51)

n(2) =

(
1

σ
z0,α +O(ε)

)(
−εd

σ
x1 sin(dβ) +O(ε2)

)
−
(

1

σ
x0,α +O(ε)

)(
−εd

σ
z1 sin(dβ) +O(ε2)

)
=ε

d

σ2
(x0,αz1 − z0,αx1) sin(dβ) +O(ε2) (52)

n(3) =

(
1

σ
x0,α + ε

1

σ3
[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ) +O(ε2)

)(
1 +O(ε2)

)
−
(
ε

1

σ3
λσ2y1,α sin(dβ) +O(ε2)

)(
−εdx1 sin(dβ) +O(ε2)

)
=

1

σ
x0,α + ε

1

σ3
[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ) +O(ε2) (53)
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5.5 Kinematic Equation

All of the terms required for the kinematic equation (25) are now available and it

can be linearized as follows:

0 =c(n)1 −W · n

=− c

σ
z0,α − ε

c

σ3
[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ)

−
[(
W

(1)
0 + εD1,1W

(1)
1

)(
− 1

σ
z0,α − ε

1

σ3
[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ) +O(ε2)

)
+
(
W

(2)
0 + εD2,2W

(2)
1

)(
ε
d

σ
(x0,αz1 − z0,αx1) sin(dβ) +O(ε2)

)
+
(
W

(3)
0 + εD3,3W

(3)
1

)( 1

σ
x0,α + ε

1

σ3
[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ) +O(ε2)

)]
=

1

σ

(
W

(1)
0 z0,α −W (3)

0 x0,α − cz0,α
)

+ ε
1

σ3

(
W

(1)
0 [x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ)−W (2)

0 dσ2 (x0,αz1 − z0,αx1) sin(dβ)

−W (3)
0 [z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ)− c [x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ)

+D1,1W
(1)
1 σ2z0,α −D3,3W

(3)
1 σ2x0,α

)
+O(ε2)

In the small-scale approximation, W
(2)
0 = 0, which allows the cosine function to be

factored out:

0 =c(n)1 −W · n

=
1

σ

(
W

(1)
0 z0,α −W (3)

0 x0,α − cz0,α
)

+ ε
1

σ3

(
W

(1)
0 [x0,α (−z0,αx1,α + x0,αz1,α)]

+W
(1)
1 σ2z0,α −W (3)

0 [z0,α (z0,αx1,α − z1,αx0,α)]−W (3)
1 σ2x0,α

− c [x0,α (−z0,αx1,α + x0,αz1,α)]

)
cos(dβ) +O(ε2) (54)
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And at O(ε):

0 =W
(1)
0 [x0,α (−z0,αx1,α + x0,αz1,α)] +W

(1)
1 σ2z0,α −W (3)

0 [z0,α (z0,αx1,α − z1,αx0,α)]

−W (3)
1 σ2x0,α − c [x0,α (−z0,αx1,α + x0,αz1,α)] (55)

5.6 Bernoulli Equation

The linearization of the Bernoulli equation (24) is challenging due to the number of

terms. Looking for the O(ε) piece of each additive term allows them to be isolated and

handled separately. This is much more manageable. We begin with the curvature,

which is not used elsewhere, and the tangential velocity terms, which factor into

many of the remaining terms. From there, we will use the tangential velocity terms

to linearize the remaining additive terms into their O(1) and O(ε) pieces.

Curvature

τ is the surface tension constant coupled with the curvature, κ = L+λN
2E

. E is as

previously calculated and L = Xα,α · n, N = Xβ,β · n.

L =xα,αn
(1) + yα,αn

(2) + zα,αn
(3)

= (x0,α,α + εx1,α,α cos(dβ))

(
− 1

σ
z0,α − ε

1

σ3
[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ) +O(ε2)

)
+ (εy1,α,α sin(dβ))

(
ε
d

σ
(x0,αz1 − z0,αx1) sin(dβ) +O(ε2)

)
+ (z0,α,α + εz1,α,α cos(dβ))

(
1

σ
x0,α + ε

1

σ3
[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ) +O(ε2)

)
=

1

σ
(x0,αz0,α,α − x0,α,αz0,α) + ε

1

σ

[
(x0,αz1,α,α − x1,α,αz0,α)

+
1

σ2
(z0,α,αz0,α (z0,αx1,α − z1,αx0,α)− x0,α,αx0,α (−z0,αx1,α + x0,αz1,α))

]
cos(dβ)
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N =xβ,βn
(1) + yβ,βn

(2) + zβ,βn
(3)

=
(
−εx1d2 cos(dβ)

)(
− 1

σ
z0,α − ε

1

σ3
[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ) +O(ε2)

)
+
(
−εy1d2 sin(dβ)

)(
ε
d

σ
(x0,αz1 − z0,αx1) sin(dβ) +O(ε2)

)
+
(
−εz1d2 cos(dβ)

)( 1

σ
x0,α + ε

1

σ3
[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ) +O(ε2)

)
=ε

d2

σ
(z0,αx1 − x0,αz1) cos(dβ)

In the numerator of κ, this yields

L+ λN =
1

σ
(x0,αz0,α,α − x0,α,αz0,α)

+ ε

(
λd2

σ
(z0,αx1 − x0,αz1) +

1

σ
(x0,αz1,α,α − x1,α,αz0,α)

+
1

σ3
(z0,α,αz0,α (z0,αx1,α − z1,αx0,α)− x0,α,αx0,α (−z0,αx1,α + x0,αz1,α))

)
cos(dβ)

+O(ε2)

which will be multiplied by the E term,

1

2E
=

1

2σ2
− ε

(
(x0,αx1,α + z0,αz1,α)

σ4

)
cos(dβ) +O(ε2)

The fully linearized curvature term is therefore,

κ =
1

2σ3
(x0,αz0,α,α − x0,α,αz0,α)

+ ε

(
λd2

2σ3
(z0,αx1 − x0,αz1) +

1

2σ3
(x0,αz1,α,α − x1,α,αz0,α)

+
1

2σ5
(z0,α,αz0,α (z0,αx1,α − z1,αx0,α)− x0,α,αx0,α (−z0,αx1,α + x0,αz1,α))

− 1

σ5
(x0,αz0,α,α − x0,α,αz0,α) (x0,αx1,α + z0,αz1,α)

)
cos(dβ) +O(ε2)

52



Tangential Velocity Terms

For the remaining pieces, we will need to linearize the tangential velocity of the

fluid particles, W · ti, and of the interface motion, ct
(1)
i :

W · t1 =

[(
W

(1)
0 + εD1,1W

(1)
1

)( 1

σ
x0,α + ε

1

σ3
[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ) +O(ε2)

)
+ (W0,y + εD2,2W1,y)

(
ε

1

σ
y1,α sin(dβ) +O(ε2)

)
+
(
W

(3)
0 + εD3,3W

(3)
1

)( 1

σ
z0,α + ε

1

σ3
[x0,α (−z0,αx1,α + x0,αz1,α)] cos(dβ) +O(ε2)
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=
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1

σ
y1,α sin(dβ)

+
1

σ3

(
W

(1)
0 [z0,α (z0,αx1,α − z1,αx0,α)] +W

(3)
0 [x0,α (−z0,αx1,α + x0,αz1,α)]

)
cos(dβ)

)
+O(ε2)

V1 =ct
(1)
1 −W · t1

=
( c
σ
x0,α + ε

c

σ3
[z0,α (z0,αx1,α − z1,αx0,α)] cos(dβ) +O(ε2)
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−W · t1

=
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(
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+O(ε2)
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V2 =ct
(1)
2 −W · t2

=− εcdx1 sin(dβ) +O(ε2)

−
[(
W

(1)
0 + εD1,1W

(1)
1 +O(ε2)

) (
−εdx1 sin(dβ) +O(ε2)

)
+
(
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sin(dβ)

+O(ε2)

Remaining Terms

Note that since W0,y = 0, V2 and µβ are both only O(ε), and therefore their

product can be neglected in the following terms:

(V · ∇)√
E

µ =
1√
E

(V1µα + V2µβ) =
1√
E
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=
1
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(
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0 x0,α −W (3)
0 z0,α

) ]
cos(dβ)

(56)
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|W |2 =
[(
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(1)
1 +O(ε2)
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W ·t2, V2 and µβ are all O(ε), and so 2W ·t2V2 need not be evaluated, and 1
4E
|∇µ|2

simplifies to:

1
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(59)
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and finally, the gravity term:

gz = gz0 + εgz1 cos(dβ) (60)

The O(ε) parts of these separate terms will be combined for the linearization of

the Bernoulli equation.

56



VI. Numerical Simulation of the Vortex Sheet Model

The dimension-breaking procedure was applied to the vortex sheet formulation

with reduced small-scale approximation for several different parameter sets. As a

demonstration of the results, the bulk of the figures and data presented here are for

τ = 0, g = 1,At = 0.1 and are specified as such. Several figures are presented and

identified with different parameters to show that the procedure was not limited to

one particular parameter set.

To begin, bifurcation periods were calculated for waves of increasing height and

are graphed in Figure 15. Additionally, a log-log plot of the periods against wave

height is presented in Figure 16. Note that the reference line is O(1/h). For this

particular model the wave began to form cusps and the solver no longer converged to

a solution beyond the maximum height plotted, but there is an observable deviation

from the small amplitude asymptotic at the larger wave heights.

The bifurcation periods have dependence on planar wave height, Atwood number,

surface tension and gravity. Figure 17 shows the bifurcation periods as a surface with

height and Atwood number fixed, gravity ranging from 0.1 to 1 and surface tension

from 0.1 to 2. It is notably smooth suggesting continuous dependence on these last

two parameters, with a significant decrease as g → 0.

In addition to the bifurcation period, Ly = 1/d, perturbation functions of α

are calculated using the linearization and dimension-breaking procedure. Figure 18

shows an example set of four perturbation functions, x1, y1, z1, µ1, for the bifurcation

at speed c = 0.307 with parameters τ = 0, g = 1,At = 0.1. In Figure 19, we compare

the actual variation from the planar wave as found by the solver against the ansatz

for this bifurcation. This is done by taking the infinity-norm of the difference of the

two functions. The difference between all calculated perturbation functions and the

solved values are trending down on the order of ε2, indicating that the linearization

57



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

h

0

10

20

30

40

50

60

70

80

90

Ly

Bifurcation Period vs Planar Height

Figure 15. Bifurcation period, Ly = 2π/d as a function of planar wave height, h =
max(z) −min(z), for the reduced Small-Scale approximation Vortex Sheet model with
parameters τ = 0, g = 1,At = 0.1.

Figure 16. Log-Log plot of bifurcation periods, Ly = 2π/d, plotted against height h =
max(z)−min(z), blue circles, for the reduced Small-Scale approximation Vortex Sheet
model with parameters τ = 0, g = 1,At = 0.1. The same behavior was observed with
parameters τ = 2, g = 0,At = 1. The reference line, red dashed line, is O(1/h) is to
compare the deviation away from the small-amplitude asymptotic.
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Figure 17. Bifurcation periods, Ly = 2π/d, of the vortex sheet model plotted against
gravity, g, and surface tension, τ . All iterations were with an Atwood number of 0.5
and bifurcated from a planar wave of height h = 0.0505

ansatz is valid.

Using the calculated search direction, comprised of the bifurcation period and

perturbation functions, a variety of fully-three-dimensional waves were computed.

These waves were tested with parameters τ = 0, g = 1,At = 0.1 to bifurcate from

planar waves of speed c = 0.316, 0.3148, 0.3131, and 0.307. These tests demonstrated

that the procedure yields valid solutions at many wave speeds, however as the results

are all similar, they are not all presented.

The Speed/Amplitude plot in Figure 20 for the reduced small-scale approximation

model shows the planar wave branch as the dashed red line. It is zoomed in to

emphasize the accuracy of several of the bifurcations, blue diamonds, derived from

the dimension-breaking procedure.

Additional Speed/Amplitude plots are presented in Figures 21, 22, and 23 for

different parameter sets. The parameters are identified in each figure caption and all

follow the same labeling conventions of Figure 20.
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Figure 18. Example Perturbation functions (a) x1, (b) y1, (c) z1, and (d) µ1 for the
two-dimensional wave at speed c = 0.307.

Figure 19. The norm between the calculated perturbation functions from the
dimension-breaking continuation procedure and the actual waves computed in the full
solver are compared against ε2, dashed green line, for reference in a log-log plot. The
symbols are labeled in the legend as to which perturbation function they represent.
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Figure 20. Speed/Amplitude plot of reduced small-scale approximation in the vortex
sheet formulation with τ = 0, g = 1, At = 0.1. Planar waves are shown as the dashed
red line. c is wave speed and the amplitude h = max(z) −min(z). Several bifurcations
are shown occurring at multiple starting speeds and continuing in the fully three-
dimensional vortex sheet model, Equations (24)-(27), blue diamonds. The wave at left
bifurcated from speed c = 0.307 and is marked on the plot with the large black star.
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Figure 21. Speed/Amplitude plot of reduced small-scale approximation in the vortex
sheet formulation with τ = 1, g = 0, At = 1.
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Figure 22. Speed/Amplitude plot of reduced small-scale approximation in the vortex
sheet formulation with τ = 0, g = 2, At = 0.5.
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Figure 23. Speed/Amplitude plot of reduced small-scale approximation in the vortex
sheet formulation with τ = 2, g = 0.5, At = 1.
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VII. Conclusion

Overall, this study has shown the proposed dimension-breaking continuation pro-

cedure to be effective at generating search directions for an (N+1)-dimensional solver.

The procedure has been applied to both single evolution equations and a system of

equations. Computational results of bifurcations from KdV to KP solutions were

compared to the previous work of Groves, Haragus and Sun [4] and shown to be in

agreement with their explicit formulas.

The bifurcations from the Akers-Milewski model are new results that show this

work to be a valid concept. The small-amplitude asymptotics agree with similar

wave packets from Milewski and Wang [39]. This procedure is also able to generate

bifurcation parameters beyond where it is in agreement with the asymptotics.

Applied to the vortex sheet formulation, this work was able to account for the d

dependency of the pseudo-differential operators in the linearization. The W (2) and

W (3) terms of the Birkhoff-Rott integral in the reduced model of Section 4.4 contains

all of the complexity found in the small-scale version.

While overturning waves have not yet been achieved with the dimension-breaking

continuation procedure, all of the difficulties leading up to the small-scale approxima-

tion model have been handled and produced accurate results. This suggests that the

dimension-breaking continuation procedure will be able to generate accurate search

directions in the small-scale approximation, facilitating the work of the solver with a

valid initial guess and thereby eliminating the need to repeatedly guess-and-check.

7.1 Future Work

The next step in this work is to re-introduce the W (1) term to the vortex sheet

model (24) - (27) with small-scale approximation, equation (37). The vortex sheet

63



model with small-scale approximation supports overturned traveling waves and will

directly contribute in line with the work of Akers and Reeger [26]. After achieving this,

we will move to linearize the full Birkhoff-Rott integral. This procedure should also

be applied to other weakly-nonlinear models such as other variations stemming from

the work of Akers and Milewski [49, 50, 21] and in the Ablowitz-Fokas-Musslimani

model [34].

Finally, note that while the dimension-breaking continuation procedure is applied

to traveling water waves in this study, it is not limited to them. The ideas of this

thesis generalize to PDEs arising in other areas, for example in lasers and weather

phenomena. The general dimension-breaking continuation procedure outlined in Sec-

tion 2.1 can be used on an equilibria state in any model to bifurcate to the next higher

dimension from the lower dimension.
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