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bulk liquid (Figure 12). A photo of a sample taken 120 minutes after mixing showed 

adsorption on the surface of the KAO, and in the bulk liquid (Figure 13). These images 

provide qualitative evidence showing MS2 aggregates in the bulk liquid and adsorption 

onto the colloids. 

There is reason to suspect that the observed kinetics of MS2 adsorption may be 

influenced by the presence of divalent cations and functional groups of the colloids and 

MS2. The MS2 outer surface has a slightly negative overall charge at neutral pH (Floyd 

& Sharp, 1979; Gerba, 1984; Wiencek et al., 1990), which can form electrostatic 

interactions with charged functional groups present on the surface of the colloids. 

However, the quantitative evidence for this is not yet conclusive. Some limited 

quantitative support shown by Moore et al. (1975) was based on two trials showing that 

calcium ion with KAO had less f2 phage remaining in solution than without calcium. 

They also showed that without divalent cations no viruses adsorbed to organic 

particulates. Stagg et al. (1977) showed that magnesium ions increased the amount of 

MS2 that adsorbed to bentonite particles. Tong et al. (2012) observed increased MS2 

adsorption with increased ionic strength of the divalent cations. Finally, Shen, Kim, 

Tong, & Li (2011) used divalent calcium cations with viral RNA and silica, and observed 

a greater deposition efficiency than with monovalent sodium. Further research is needed 

to investigate the removal rates in the presence of divalent cations and organic substances 

to see how the rate is impacted by divalent cations and other dissolved constituents. 
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Figure 8. First experiment low concentration FG after introducing MS2. Particle F1 is FG 

without MS2, and particles A1 and A2 are FG particles with MS2 collocated. 
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Figure 13. Second experiment high concentration KAO colloids after 120 minutes of 

mixing labeled MS2 photographed with the help of Air Force Research Laboratory and 

Dr. Irina Drachuk. Colloidal particles A1-A6 denote KAO with labeled MS2 in the same 

location. Colloidal particles U1-U2 are MS2 occurring in locations without visually 

observable KAO in the same location. 
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4.3  Surface Attachment and Aggregation 

XDLVO modeling was carried out to investigate the relative importance of the 

forces affecting MS2 and the KAO or FG colloids, and applied to the initial interactions 

with individual MS2 phages (Figure 26-Figure 29). Along the y-axis was plotted the 

dimensionless potential interaction energy as the separation distance between particles 

varies along the x-axis. The parameters used for these figures are provided in Appendix 

D Table 11. The XDLVO profiles showed an energy barrier at a separation distance of 

approximately 2.5 nm, but as the separation distance approaches zero there is a deep 

primary energy minimum. Figure 26 shows three curves. The green curve is MS2 

aggregation. The red curve shows FG-MS2 adsorption, and the blue curve shows KAO-

MS2 adsorption. The green MS2 aggregation curve shows the lowest energy barrier. This 

suggests that MS2 aggregation would be favored over KAO-MS2 and FG-MS2 

adsorption. The results also show that the energy barrier was a function of the surface 

potentials of MS2 (Figure 27), FG (Figure 28), and KAO (Figure 29). For MS2-MS2, 

FG-MS2, and KAO-MS2 interactions, as the surface potential of MS2 would become 

more negative adsorption would become less favorable and the particles would become 

more stable. The surface potentials for MS2 and the colloidal particles are expected to be 

negative in DI water at neutral pH (Chrysikopoulos & Syngouna, 2012; Meissner et al., 

2015). These  
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Figure 26. XDLVO interaction energy profiles: MS2-MS2, FG-MS2, and KAO-MS2 interactions in DI water. (MS2 Ѱ-potential = 

-0.02V, KAO Ѱ -potential = -0.04V, FG Ѱ -potential = -0.02V, ionic strength = 8.8x10-7 M, sphere-sphere for MS2-MS2 XDLVO 

calculations and sphere-plate formulas for the FG- and KAO-MS2 XDLVO calculations) 
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Figure 27. XDLVO interaction energy profiles: MS2-MS2 varying surface-potentials in DI water. (MS2 surface-potential varies, 

ionic strength = 8.8x10-7 M, sphere-sphere for MS2-MS2 XDLVO calculations). 
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Figure 28. XDLVO energy profile: FG-MS2, holding constant FG surface-potential at -0.028V and varying the MS2 surface-

potential. (MS2 Ѱ-potential varies, ionic strength = 8.8x10-7 M, sphere-plate formulas) 
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Figure 29. XDLVO energy profile: KAO-MS2, KAO surface potential constant at -0.0404V and varying the MS2 surface 

potential. (MS2 Ѱ-potential varies, ionic strength = 8.8x10-7 M, sphere-plate formulas)
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findings suggest that MS2 may initially aggregate before attaching to the colloidal 

surface.  

AFM images provided qualitative evidence of MS2 aggregation (Figure 30-Figure 

32). AFM images were provided courtesy of Dr. Yun Xing of the AFIT Engineering 

Department. MS2 adsorption to KAO colloids was shown in Figure 30. MS2 adsorption 

to FG colloids were shown in Figure 31 and Figure 32, and, similar to the KAO images, 

evidence of MS2 aggregates were shown. MS2 aggregates in the FG solution not near FG 

reflect the qualitative results of the lower adsorbed percentage, weaker bonds, and longer 

amount of time for equilibrium to be reached between FG and MS2 as compared with 

KAO and MS2. Additionally, particle size and topography were determined. MS2 

aggregates ranged from 20 to 30nm in diameter. KAO particles were found to be flat, 

platy, 2µm in thickness, and 120-600µm in lateral size with 120-200µm being the most 

observed size. These findings are in agreement with those of Bellou et al. (2015), and 

Chrysikopoulos & Syngouna (2012). FG particles were found to have a diameter of 

0.5µm-1.7 µm.  

XDLVO theory is concerned with single particles contacting each other, however 

images (section 4.1) showed unadsorbed MS2. A control experiment was done to further 

investigate MS2 aggregation. These experiments were carried out with the same 

protocols explained in the methods section, except that no colloidal particles were added 

into the batch test. Figure 33 shows that the fluorescence decreased from approx. 1069 

arbitrary units (a.u.) to 766 a.u. in 2 hours. The concentration of MS2 present in the 

supernatant decreased. These data were fitted to an exponential decay trend (R2 = 0.78)  
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Figure 30. AFM images: KAO without MS2 and with MS2 show adsorption. A) KAO without MS2, and B) KAO with MS2 

clusters adsorbed to its surface. Image B also shows evidence of MS2 aggregates unbound to KAO. AFM images also provided 

particle size information, thickness (120-600 nm) and lateral length (2 µm), and topography (angular edges and smooth surface). 

AFM images were courtesy of Dr. Yun Xing. 
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Figure 31. AFM images: FG without MS2 and with MS2 show adsorption. A) FG without MS2, and B) FG with MS2 clusters 

adsorbed to its surface. Image B also shows evidence of MS2 aggregates unbound to FG. AFM images also provided particle size 

information, diameter (0.5µm-1.7 µm) but fiber length was too long to measure with AFM, and topography (smooth surface). 

AFM images were courtesy of Dr. Yun Xing. 
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Figure 32. AFM image: FG with MS2 showing MS2 aggregation without FG . AFM images also provided particle size 

information, diameter (20-30nm). AFM images were courtesy of Dr. Yun Xing.
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Figure 33. MS2 control experiment: declining slope supported qualitative data showing aggregation. A blue exponential decay rate 

trendline was fitted to the data. The R2 of 0.78, p-value, and the confidence interval (gray shading) were obtained with R software. 
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consistent with the well-established kinetics of particle flocculation, including: IEP of 

virus and the pH of the medium, ionic strength of the medium, and the surface charge of 

the colloid and collector particles (Armanious et al., 2016; Dika, Gantzer, Perrin, & 

Duval, 2013; Floyd & Sharp, 1979; Israelachvili, 2011; Timchak & Gitis, 2012). The 

decrease in the fluorescence appears to be caused by the formation of MS2 clusters. 

These results are consistent with the results of XDLVO modeling, and they suggest that 

the interactions discussed in section 4.1 may have occurred between colloids and MS2 

clusters, not just individual MS2 for which XDLVO theory has been used. Also, the 

results of section 4.2 suggest that these clusters strongly bind to the colloids; they do not 

simply co-settle and associate with colloids. 

XLDVO modeling also showed that adsorption/aggregation behavior could be 

sensitive to ionic strength as shown in Figure 34. The green curves for MS2 aggregation, 

FG-MS2 and KAO-MS2 adsorption interaction energy have the lowest energy barrier to 

overcome and have the highest ionic strength. Furthermore, the MS2-KAO and MS2-FG 

interaction energies approach those of MS2-MS2 when the ionic strength is higher 

(Figure 34), and when the MS2 surface potential is positive (Figure 35). This is due to the 

ion screening effect, which causes the suppression of the electrostatic repulsive forces 

(Bharti, Meissner, Klapp, & Findenegg, 2014; Israelachvili, 2011). The ion screening 

effect partially explains previous results that show more favorable MS2 adsorption in the 

presence of divalent cations (Armanious et al., 2016; Floyd & Sharp, 1979; Israelachvili, 

2011; Timchak & Gitis, 2012). These findings may impact wastewater treatment facilities 

that receive wastes with higher dissolved solids content. 
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It is also important to note that the XDVLO model does not account for functional 

group interactions between MS2 and KAO or FG. The model also does not simulate the 

interactions between MS2 aggregates and colloidal surfaces, or surfaces covered with 

MS2 viruses. These model limitations should be investigated in future research because 

such interactions may possibly change the relative favorability of surface adsorption and 

MS2 aggregation. The speed and strength of MS2 adsorption observed in the current 

study imply energetically-favorable interactions involving aggregates. Thus, there 

appears to be an opportunity to improve the underlying theory.  
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Figure 34. XDLVO energy profile: Different ionic strengths to show that ionic strength increases the interaction energies of FG-

MS2, KAO-MS2, and MS2-MS2. The vertical lines emphasize the decreasing differences between MS2-MS2, FG-MS2, and 

KAO-MS2 as the ionic strength varies between 18Mohm (blues), 0.0001M (purples), and 0.01M (greens). 
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Figure 35. XDLVO energy profiles: Positive MS2 surface-potential compared to negative MS2 surface-potential (FG and KAO 

surface potentials held constant, ionic strength = 18 ohms) to show that  when MS2 has a positive surface-potential FG-MS2 and 

KAO-MS2 adsorption interaction energies (with positive MS2 surface potential) approach interaction energies of 

MS2 aggregation.
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V.  Conclusions  

5.1  Conclusions 

To the best of the author’s knowledge, this study observed kinetics that were 

faster than any other study that has previously investigated the adsorption of 

bacteriophage MS2 to colloidal particle suspensions of KAO and FG in water. The 

adsorption profiles fit a first order kinetic model with coefficients of determination that 

were generally equal to 0.99, and the first order rate constants were between 0.4 and 2.8 

min-1, at least an order of magnitude greater than those reported in previous studies 

carried out under comparable experimental conditions. This study also reported, for the 

first time, significant adsorptive MS2 removal by the first sampling time of each 

experiment and equilibrium within 15 minutes. Qualitative evidence for MS2 adsorption 

was collected with fluorescent and bright field microscopic images, which showed MS2 

clustered on and around the KAO and FG colloids. XDLVO modeling confirmed the 

presence of favorable adsorption interactions at separation distances of approx. 2 nm or 

less, and it also confirmed that MS2 aggregation was energetically favored over 

adsorption to KAO. MS2 aggregation was confirmed experimentally. The experimental 

and computational results, taken together, imply that MS2 clusters adsorb quickly and 

strongly to colloidal particles. 

These results have both practical and theoretical impacts. Treatment plants 

receiving bio-contaminated water need to pay attention to colloidal particles in water 

because individual and clusters of viruses can quickly and strongly bind to them and 

receive transport and protection from them. As for theoretical implications, XDLVO 

theory needs to be extended to account for MS2 aggregates interacting with surfaces. 
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This would involve the accounting for the particle size and surface potential of the MS2 

cluster. The approximate shape of the cluster and its relative size compared to the colloid 

could influence the employed shape-specific van der Waals, electrostatic double layer, 

and Lewis acid-base formulas. 
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Appendix A Statistically Significant Removal of MS2 

 

Figure 36. Significant MS2 removal: Experiment one low concentration FG. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars. 
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Figure 37. Significant MS2 removal: Experiment one high concentration FG. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 38. Significant MS2 removal: Experiment one low concentration KAO. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 39. Significant MS2 removal: Experiment one high concentration KAO. Normalized fluorescence taken at sample times 

and significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 40. Significant MS2 removal: Experiment two low concentration FG. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 41. Significant MS2 removal: Experiment two high concentration FG. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 42. Significant MS2 removal: Experiment two low concentration KAO. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 43. Significant MS2 removal: Experiment two high concentration KAO. Normalized fluorescence taken at sample times 

and significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 44. Significant MS2 removal: Experiment three low concentration FG. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 45. Significant MS2 removal: Experiment three high concentration FG. Normalized fluorescence taken at sample times and 

significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 46. Significant MS2 removal: Experiment three low concentration KAO. Normalized fluorescence taken at sample times 

and significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Figure 47. Significant MS2 removal: Experiment three high concentration KAO. Normalized fluorescence taken at sample times 

and significance of the change between specific times is shown in red. The three sample measurements are shown with error bars.
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Appendix B Supernatant Raw Data 
Table 4. Experiment One Supernatant Raw Data* 

 
   * Blank water reading average = 127.53 arbitrary units of fluorescence 

 

 

 

  



 

100 

Appendix D XDLVO Parameters 
 

Table 11. XDLVO Parameters and References 

Parameter 
Quantity for 

MS2-MS2 
Interaction 

Quantity 
for 

KAO - MS2 
Interaction 

Quantity 
for 

FG - MS2 
Interaction 

Unit Reference(s) 

Aijk combined Hamaker constant, 
M¡*L2/t2    

7.50E-21 3.10E-20 8E-21 J (Chrysikopoulos & 
Syngouna, 2012)1,2, 

(Yoon, Flinn, & 
Rabinovich, 1997) 

rp average colloidal particle radius, 
L   

1.25E-08 1.25E-08 1.25E-08 m (Chrysikopoulos & 
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