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Abstract

The Internet of Things (IoT) is growing at an alarming rate. It is estimated that

there will be over 25 billion IoT devices by 2020. The simplicity of their function

usually means that IoT devices have low processing power, which prevent them from

having intricate security features, leading to vulnerabilities. This makes IoT devices

the prime target of attackers in the coming years. Honeypots are intentionally vulner-

able machines that run programs which appear as a vulnerable device to a would-be

attacker. They are placed on a network to entice and trap an attacker and then

gather information on them, including place of origin and method of attack. Due to

their prevalence and propensity for having vulnerabilities, IoT devices are a perfect

candidate for honeypots placed on a network.

Honeyd is popular open-source software written by Niels Provos that creates low-

interaction virtual honeypots. It is able to simulate everything at the network level,

allow the user to create various Transmission Control Protocol (TCP) and User Data-

gram Protocol (UDP) services, and allow Operating System (OS) simulation for scan-

ning tools such as Nmap. This research seeks to determine if Honeyd is capable of

producing convincing IoT honeypots.

Three IoT devices: a TITAThink camera, a Proliphix thermostat, and an ezOut-

let2 power outlet, had their Hypertext-Transfer Protocol (HTTP) services simulated

through Python scripts and integrated with Honeyd to create three IoT honeypots.

These honeypots were then compared to the actual devices to determine how similar

they were. The devices and honeypots are both queried in the exact same manner

and have their response times, code, headers, and Nmap scan results compared to see

how they differ.

iv



Experimental results show there is a statistically-significant difference between the

means for query response times and Nmap scan times; however, the code and headers

were over 90% similar in 18/27 tests. The differences that were recorded were mostly

due to limitations in the physical IoT devices. The Nmap scan results were successful

at simulating the service and manufacturer scans, but Nmap was able to identify a

difference in fingerprinted operating systems.

This thesis showcases how Honeyd is a useful program for creating IoT honeypots.

The code in this research could be used to quickly deploy authentic IoT honeypots or

it could be adapted to create different types of IoT honeypots. In addition, it could

easily be adapted to create honeypots of other IoT devices that utilize HTTP. The

ability to easily create these IoT honeypots would be useful to the defense department

and members of the security industry interested in integrating IoT honeypots in their

networks.
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EXAMINING EFFECTIVENESS OF WEB-BASED

INTERNET OF THINGS HONEYPOTS

I. Introduction

1.1 Background

The Internet of Things (IoT) is growing at an alarming rate. It is estimated

that there will be over 25 billion IoT devices by 2020 [10]. These devices are always

operating, gathering information taken from outside stimuli and transmitting it over

the Internet while waiting for commands from the user. The simplicity of their

function usually means that IoT devices have low processing power, which prevents

them from having intricate security features, leading to vulnerabilities. Also, many

times, vendors do not bother to install more intricate security measures or have good

processes in place to update a device after a vulnerability has been found and fixed

[10]. This makes IoT devices an ideal avenue for a would-be attacker to exploit.

Honeypots are intentionally vulnerable machines that run programs which appear

as a vulnerable device to a would-be attacker. They are placed on a network to

trap and entice an attacker and then gather information on them, including place

of origin and method of attack. They usually only offer certain services and are

by no means used by regular users on the network. Many honeypots run on their

own custom software, but there are also honeypot managers that can be used to

create multiple honeypots that run various services among other helpful features.

Honeypots are useful tools for security professionals to place on their networks as a

way to divert attackers from mission critical devices. Attackers can be slowed down
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or locked out by interacting with a honeypot. Honeyd is a popular honeypot manager

that can create many low-interaction virtual honeypots [11]. Instead of emulating an

entire operating system, Honeyd simulates everything at the network level as well as

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) services.

1.2 Motivation

With 25 billion IoT devices entering networks across the world [10], there will be an

increasing number of malicious attackers who try to use them as a means of access into

a network. Creating honeypots that simulate these services would be a perfect way

to trap an attacker and possibly gather information about them. Moreover, devices

with vulnerabilities are a perfect pairing for intentionally vulnerable honeypots.

Many IoT devices, such as Nest and Ring, now have mobile apps which is the

main method for interacting with the user [12] [13]. However, some of these devices

still have a web interface as well. Some of the IoT devices used in this thesis have

mobile apps and web interfaces. If the web interfaces are ignored by the user, they

remain with blank or default passwords. These web-based IoT devices could be more

vulnerable than ever before. For this reason, it would be worthwhile to see how

effective honeypots could be that utilize the Hyptertext Transfer Protocol (HTTP).

While Honeyd is an older program, it is still one of the most widely used honeypot

managers today [4]. It provides several capabilities with its Operating System (OS)

and network emulation. The scripting capability it provides can be used to create

very convincing honeypots. Even web applications can be easily scripted by using the

requests made to Honeyd as a pseudo-webserver. The challenge comes from seeing if

the way IoT devices present their information on the web can be presented to a user

through Honeyd in the exact same manner.
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1.3 Research Goals

The goal of this research is to see if Honeyd can be used to create convincing

honeypots that simulate IoT devices. The IoT devices interact with the user through

a web interface with HTTP. The convincibility of the honeypot is directly related to

how similar the honeypot is to the IoT device it is actually simulating. In theory, a

honeypot that looks and functions exactly as a real IoT device is indistinguishable to

an attacker. The hypothesis is that Honeyd is able to successfully create a near copy

of the real IoT devices. This is determined through a combination of code, header,

access time, and Nmap scan comparisons.

1.4 Approach

To determine how effective a honeypot is, it is modeled after a real IoT device

and compared. To accomplish this task, this research is broken into four parts:

1. Create a network of IoT devices and gather information about them

2. Construct the honeypots and services to simulate the devices in Honeyd

3. Compare the IoT devices and honeypots, and make changes to the honeypots

to increase their authenticity

4. Run tests on both the IoT devices and honeypots to obtain their response times,

data, headers, and Nmap scan results for comparison.

creating a network of IoT devices and gathering information about them, constructing

the honeypots and services to simulate the devices in Honeyd, comparing them to

make additional changes to increase their authenticity, and experimenting on them.
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1.4.1 IoT Network.

While there are countless IoT devices on the market today, this research is focused

on ones with web interfaces. Selected devices include an IoT camera, thermostat, and

power outlet. The camera is a TITAThink TT520PW. The thermostat is a Proliphix

NT130h. The power switch is an ezOutlet2 EZ-22b. All these devices are place on

the same Local Area Network (LAN), not connected to the Internet, and observed

through a web browser. Their files are extracted by saving the page from the web

browser to make localized copies of their web page. Using these and a combination

of the actual Hypertext Markup Language (HTML) code on the web page, these files

can be transferred to Honeyd to create a honeypot.

1.4.2 Honeyd Implementation.

Honeyd provides the ability to run scripts on service ports to give an attacker

the illusion of a fully-functioning system. Using a bash script, Honeyd is able to

function as a pseudo-webserver, taking requests from a client and sending correct

HTTP response messages along with the corresponding data. However, this is only

half of the necessary function. Some IoT devices, such as the camera and thermostat,

have functions they perform and present to the user. A camera shows a camera feed,

and a thermostat shows the current temperature. For these services, Python scripts

are written to simulate a live camera feed as well as update the temperature. This

way, when a user tries to access one of these pages, the honeypot gives the appearance

of a dynamic IoT device as opposed to a static web page characteristic of some IoT

honeypots.
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1.4.3 Comparison.

Once Honeyd is properly configured and the honeypots are running, some obser-

vations are made. Access time is an important attribute to consider, as some IoT

devices run on low-powered hardware and may take longer to access than the honey-

pot. In this case, delays may need to be built into the honeypot code to bring them

more in line with the IoT device they are trying to simulate. If it is the other way

around, more computing resources may be needed to speed up the honeypot. Also,

Nmap is a common tool used as an automated network scanner. Both the IoT device

and honeypot are scanned repeatedly to fine tune the detected operating systems

and open services. Finally, some of the devices have unique ways of presenting a page

to the user, such as redirect commands via HTTP. These can be discovered using

Wireshark. Using Wireshark to observe the transmission of data from the IoT device

to the user, the exact HTTP response codes sent can be observed and implemented

into the Honeyd web server.

1.4.4 Experimentation.

In this research, experimentation has four main components that are used to

compare the IoT device and honeypot: access time, HTML code, network headers,

and Nmap scan.

1. Access Time: The main area of interest is how fast the IoT device responds

when a user tries to access the main web page. While there are other pages

on each device, this research focuses on how fast the honeypot responds to a

request of the main page. In theory, timing should be similar for the other

pages. This provides a good baseline to compare the access time between the

IoT device and the honeypot. Requests are made from a differing number of

simultaneous users as well. This increased load should increase the response
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time from the IoT device and honeypot in the same way.

2. HTML Code: Since Honeyd has the ability to act as a pseudo-webserver, there

should be no discrepancy between the files requested from the IoT device or

honeypot. Each IoT device has multiple pages that can be accessed. The

tests query different pages including a page that requires authorization, if the

IoT device has it, and a page that does not exist. These pages are compared

to determine the number of differences between the IoT device and honeypot.

Items that are expected to change, such as date, time, temperature, Internet

Protocol (IP) addresses, etc, are not factored into the differences.

3. Network Headers: When each page is accessed, the HTTP headers are stored

in a file, and there is another program listening for all of the incoming TCP

and IP headers. The tests compare the IoT device and honeypot to ensure they

contain the same fields and that those fields have the correct values. The TCP

and IP packet header fields are typically deterministic, but HTTP header fields

can be different depending on the device. Therefore, only the TCP/IP header

values need to be compared, but it is necessary to compare both the HTTP

header fields and values.

4. Nmap Scan: The Nmap scan provides various information about the operating

system and services. The tests are run, on the IoT device and the honeypot,

to determine that the services are the same and the similarity of the operating

systems.
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1.5 Assumptions and Limitations

1.5.1 Assumptions.

In evaluating the devices and honeypots in this research, the following assumptions

are made:

• Each connection attempt ends with a success. If a connection fails, an entirely

empty web page is used for comparison purposes.

• The same commands are used on both devices.

• Date and time of access are different for each attempt.

• Non-standard commands are not attempted against any device.

• All interactions take place on the same network with the same network hard-

ware.

• All interactions begin from the same location with the same hardware. Each

interaction uses the same machine so processor specifications are not a factor.

• The same version of all software is used.

• There are no outside interaction with the devices other than the user in the

scenario.

1.5.2 Limitations.

1.5.2.1 Singular Task.

This research is only focused on the HTTP web application of these IoT devices.

Some of these devices have other services available, but they are not explored in this

research. These services are only enabled in the Honeyd configuration file, making

them observable by Nmap.
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1.5.2.2 Nmap Version.

The version of Honeyd used in this research is 1.5c. This version uses an older

Nmap fingerprint database format. Because of this, the OS scanning on the honeypots

with the latest version of Nmap may not produce ideal results. The Honeyd honeypots

do not have the option to choose some of the operating systems that Nmap can detect

in its latest version. This research is mostly focused on how convincing IoT honeypots

are with the last version of Honeyd that Provos produced.

1.5.2.3 Computer Resources.

The honeypot is running on a glsvm running Ubuntu 12.04.5, and the resources

are constrained to allow running other virtual machines without slowing down the

function of the laptop on which everything is running. Therefore, if a honeypot is

responding slower than one of the physical devices, a more powerful machine hosting

the virtual machines would be required. In this research, honeypots are able to be

slowed down, but not sped up.

1.6 Research Contributions

The research in this thesis tries to recreate as close as possible the appearance

and function of actual IoT devices to determine whether or not Honeyd is a suitable

framework within which to simulate these devices. It assesses how well Honeyd is

capable of simulating web IoT devices that have static pages of information, such as

the Proliphix thermostat and ezOutlet2, and how it may not be optimal for simulating

web IoT devices that have a dynamically-updating page, such as the TITAThink

camera. This research could be used by defense agencies and companies who seek to

delay or examine attackers on their own networks by making convincing honeypots

of IoT devices, one of the most prevalent devices that make up the Internet today,
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quickly and with limited resources.

1.7 Thesis Overview

Chapter II contains an overview of the Internet of Things, honeypots, and the

other pieces of software related to this research as well as some background research

on IoT honeypots. Chapter III provides a description of the Honeyd-based system to

simulate the three IoT devices as well as the physical system they are tested against.

Chapter IV details the design of the experiments with the corresponding results in

Chapter V. Chapter VI outlines the conclusions drawn from this research as well as

potential areas to explore in future research.
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II. Background and Related Research

2.1 Overview

This chapter details relevant background information regarding Internet of Things

(IoT) and honeypots. Section 2.2.1 discusses the background, protocols, and security

of the IoT, and Section 2.2.2 discusses honeypots. Sections 2.2.3 and 2.2.4 discuss the

tools used for this research: Nmap and Honeyd. Finally, Section 2.3 covers current

research that has been done in combining the IoT and honeypots into security tools.

2.2 Background

2.2.1 Internet of Things (IoT).

The IoT is a blanket term used to describe the interconnection of various devices

and sensors through the Internet. IoT devices take in outside stimuli, react to it,

and communicate with one another through the Internet [14]. There are IoT sensors,

appliances, and cameras just to name a few. These devices are usually always running,

meaning they are constantly performing their functions and interacting with each

other through the Internet.

One example of a device is an IoT thermostat that has the ability to control

the temperature of a home dynamically. It can be changed by the user through the

Internet, or it can be programmed to change at certain times. It is always running,

waiting on a command to change the temperature. Overall, its function is quite

simple. The simplicity of the function usually means that IoT devices have low

processing power, which can lead to vulnerabilities.

Suo et al. have divided the IoT functionality into 4 layers (Figure 1): Applica-

tion, Support, Network, and Perceptual [1]. The Perceptual layer deals with data

gathering. Physical sensors such as temperature, GPS, and cameras collect data for
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processing on the device. The Network layer is responsible for the reliable transfer of

this data. It mostly passes through the Internet but also through other transporta-

tion mediums such as Bluetooth. The Support layer deals with the computation of

the data on the IoT device. This can be performed on the device itself, but due to

the low processing power of many IoT devices, it is frequently done remotely through

cloud computing. Finally, the Application layer provides services to the user, such

as the graphical user interface that displays the data from the sensors, and allows

manipulation of the device by the user. This model is a useful way to highlight the

different portions of what makes up an IoT device.

The number of IoT devices is growing every day. It is estimated that there will be

over 25 billion IoT devices by 2020 [10]. Not only does the limited processing power

lend to their insecurity, but some of their protocols do as well. The main protocol

used by these devices is the Internet Protocol (IP); however, there are also other

protocols that add additional layers of functionality and insecurity.

Figure 1. IoT architecture [1]
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2.2.1.1 IoT Protocols.

Most protocols in use by IoT devices are different than ones that have been the

standard for other Internet-connected devices. They add additional functionalities

and abilities for users to interact with their device. Sometimes the devices transfer

personal information that is collected or stored within the device. Some of these

protocols include Bluetooth, ZigBee, and WirelessHART. These protocols can add a

new dimension into fingerprinting IoT devices as well as introducing more security

vulnerabilities.

The majority of IoT devices are wireless and use exclusively wireless protocols.

They usually connect to the Internet through IEEE 802.11, also known as WiFi.

However, some IoT devices have such a small amount of processing power, that WiFi

is not feasible given the required overhead. Some devices utilize the protocol IEEE

802.11ah (hereafter referred to as 802.11ah), which is a lower-overhead version of the

standard IEEE 802.11 [14]. Figure 2 shows the headers of both protocols. 802.11ah

is ideal for IoT devices that sacrifice processing power to be compact and may need

to conserve battery life. Some features of 802.11ah that assist IoT devices include

the reduction of the Media Access Control (MAC) frame from 30 bytes to 12 bytes.

It also replaces the 14-byte ACK frame for a tiny signal called a preamble that is

used instead. There is a synchronization frame that only allows stations with valid

channel information to transmit after reserving the channel medium. Finally, there

is also efficient bidirectional packet exchange that reduces power consumption by

allowing IoT devices to go to sleep as soon as they finish their communication [14].

While IoT devices are often resource constrained, protocols such as these improve

their functionality and efficiency.
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Figure 2. MAC headers for IEEE 802.11 and IEEE 802.11ah [2]

Bluetooth is another common protocol in IoT devices. It is a standard for short

range, low power, low cost wireless communication that uses radio technology [15].

One common feature of IoT devices is the lack of user interface on the physical device.

There is no mouse or keyboard to modify how the device functions or how it presents

information to the user. Some devices do have a small touchscreen interface, but

even these devices usually still have a Bluetooth connection to a user’s smart phone.

Bluetooth requires 100 mW of power, which is too large of a power draw for some

IoT devices [16]. They require low power due to their small size and 24/7 operation.

Bluetooth Low Energy (BLE) is often the solution. BLE is very similar to standard

Bluetooth; the only difference is that latency is fifteen times quicker and transmissions

only reach 10% as far due to low power with a minimum power output of 0.01 mW

and a maximum of 10 mW [14][17]. It uses a master/slave architecture where slaves

advertise on special channels and masters sense this and connect to the device. Nodes

stay awake only when communicating and sleep otherwise to conserve power, which

is beneficial for IoT devices [14].
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While Bluetooth is a common protocol in mobile computing and IoT devices,

ZigBee is a protocol that is similar to BLE and is almost exclusively used in IoT

devices. ZigBee is a protocol based on IEEE 802.15.4, low-rate Wireless Personal Area

Network (WPAN), for communication between devices within 10 meters [18]. While

Bluetooth has a master that connects to a slave, ZigBee uses a central coordinator

and all the devices connect to the coordinator [14]. There are two types of devices

in a ZigBee network: a Full-Function Device (FFD) and a Reduced-Function Device

(RFD). A FFD can act as a coordinator or a device, while a RFD is reserved for

low-powered simple devices [18]. As shown in Figure 3, the central FFD acts as the

coordinator, and more FFDs acting as routers or devices connect to it, and some

RFDs connect to these FFD routers. This creates a star topology where devices

communicate to the coordinator and the coordinator passes the message along to

other devices on the network. It does not provide any security features unless the

ZigBee Pro protocol is used. ZigBee Pro has more features such as symmetric key

exchange, scalability with stochastic address assignment, and improved performance

with a more computationally efficient many-to-one routing mechanism [14]. This

security is provided through the more powerful central coordinator, taking some of

the burden off the low-powered IoT device.
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Figure 3. Example ZigBee network topology adapted from [3]

The main takeaway from these IoT protocols is in the requirements of these de-

vices. All of these protocols are specifically designed to operate with the low pro-

cessing power and short range communication of IoT devices. This is the major

distinction of IoT devices compared to desktop computers. Another impact of the

design of these devices is the lack of security within this protocol. These protocols

make compromises on security to compensate for lower processing capabilities.

2.2.1.2 IoT Security.

Security managers point to the increasing number of IoT devices as a cause for

concern within network security. As previously stated, the lack of processing power

does not allow for security features such as encryption on the devices themselves or

within their protocols [1]. This is driven mainly by the vendors’ priorities which are

on ease of use and getting their products to market quickly. The IoT architecture

is not equipped to handle security updates, and manufacturers do not provide a

mechanism to provide security updates [10]. Another reason IoT devices have security
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as an afterthought is that everyday consumers do not care as much about security

as the private sector or the military. Some argue that if the Department of Defense

(DoD) sought to implement IoT devices, the industry would be enticed to put more

research and development into the security of IoT devices to obtain military contracts

[19]. A study by Hewlett-Packard found that 70% of IoT devices were vulnerable to

attack [20]. Many of the IoT devices that are used today by consumers have these

documented vulnerabilities.

Suo et al. highlight some of the most important aspects today within IoT security:

identification, confidentiality, integrity, and non-repudiation [1]. They also list the

four layers of the IoT (Figure 1) and why some of the aspects are challenging. In

the Application layer, sharing is one of the characteristic features which creates a

challenge for data privacy, access control, and disclosure of information. The Support

layer is the intelligent computing (sometimes cloud) platform for the Application

layer. Its challenge is preventing malicious information from making its way into

data processing. The next layer is the Network layer, which deals with reliable data

transfer between the Perceptual layer and the Support layer. The Network layer

is susceptible to man-in-the-middle and counterfeit attacks. The final layer is the

Perceptual layer which contains the sensors for capturing the physical world and

translating it into the computing system. The challenge here is that the lack of

computing power in sensors does not leave room for security features like encryption.

This is one of the main challenges found with IoT security, as many of the protocols

do not include security features.

Patton et al. use Shodan, a web search engine for IoT devices, and a database of

default passwords to see if they could find IoT devices for which they could log into

easily [21]. They scanned for Supervisory Control and Data Acquisition (SCADA)

devices, IoT cameras, and printers to see which ones were vulnerable. They found that
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4% of the SCADA devices were vulnerable, 40% of traffic cameras were vulnerable,

and 41% of the printers were vulnerable. This was all using default login credentials.

In this case, the vulnerabilities are the fault of the user. This is due to the perception

that an insecure IoT device has no bearing on overall network security. While logging

into a printer may seem innocuous, updating it with custom firmware can give the

attacker full control over the printer and the ability to attack the network to which

it is attached.

The BLE protocol in use by many IoT devices can also be a vulnerability. Using a

tool called Ubertooth, Ryan was able to sniff BLE traffic as well as inject packets and

break the encryption of BLE [22]. Because the protocol is intended for low-powered

devices, the protocol is simplistic, which aids in the creation of an eavesdropping

tool. Ubertooth is a USB dongle that can monitor a single BLE channel at any given

moment. It has a partial sniffer for Bluetooth, but since BLE is a simpler protocol,

the packets can be processed entirely on the dongle, making sniffing even easier. Ryan

documents exactly how to sniff this protocol using this tool and provides a proof of

concept injection attack.

Some devices using the popular IoT protocol BLE are Nest Cameras [23], FitBit

[24], Tile Item Locators [25], and smart light bulbs [26]. The BLE protocol has

fewer security and privacy features and consumes less energy compared to regular

Bluetooth. For example, the pairing process of the FitBit and smartphone through

BLE is not encrypted. To combat this, developers implementing BLE make the

devices frequently change their private address with each pairing in order to avoid

tracking. FitBit however does not do this, and a malicious attacker could obtain

the MAC address and BLE credentials through simple Bluetooth sniffing [24]. Using

the process laid out by Ryan, much information could be gleaned from sniffing this

protocol on FitBit and other IoT devices [22].
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The low processing power of smart wearable devices, primarily due to the small

form factor and the lower computational requirements, limits the complicated security

mechanisms that can be implemented by developers in these devices. Ching and

Singh examine some wearable computing devices including Google Glass, FitBit, and

Samsung smart watches as well as some security vulnerabilities discovered (Table 1)

[9]. Many of these vulnerabilities are present due to protocols like BLE, that can be

easily sniffed with certain tools. For example, they cite research from Bitdefender

that had a proof of concept hack where they could access the six-digit PIN code and

Bluetooth traffic between a Samsung smart watch and Google Nexus phone through

brute force by using any open source Bluetooth sniffing tool. Strong authentication

was not used [9]. These wearable devices are part of the IoT and the same protocols,

including their vulnerabilities, are found in other stationary IoT devices that are

finding their way into homes and the workplace.
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Table 1. Summary of vulnerabilities and attacks found in wearable devices [9]

Wearable Devices Security Vulnerabilities Attacks
Google Glass Insecure PIN system or authenti-

cation in place
The gesture-based authentication
scheme easily to be recorded by
people nearby

Privacy: pictures and videos can
be recorded without user’s con-
sent and unauthorized eye move-
ment tracking.

Eavesdropping and spyware

It relies on QR codes for WiFi
setup

QR photobombing malware

Insecure network and hostile en-
vironment

WiFi hijacking, man-in-the-
middle attacks such as session
hijacking or sniffing.

Fitbit Devices Lack of authentication Data injection attack, Denial of
Service (DoS), and battery drain
hacks

Leaky BLE technology It can be easily tracked
Privacy: Users location or places
visited can be tracked

Phishing

Samsung Smartwatch Authentication mechanism not
secure enough

Brute force attack

2.2.2 Honeypots.

The number of IoT devices is growing drastically, and it is important to under-

stand exactly what types of devices are considered part of the IoT. The increase in the

number of these devices is becoming a security concern within computer networks.

Honeypots could be the perfect pairing for devices that lack security. When trying to

secure a network, a common course of action would be to remove all of the known vul-

nerabilities on the network. Honeypots are intentionally-vulnerable machines placed

on a network that have the appearance of a working computer system complete with

an operating system, services, and even a network [4]. In actuality, they are a sealed

compartment used to lure in and contain an attacker. A tremendous amount of in-

formation can be learned about the attacker because a log of their actions is recorded

by the honeypot including access attempts, keystrokes, files accessed, files modified,
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and processes executed [27]. This information can be used to capture and later an-

alyze the type of malware an attacker was using. It also allows security experts to

determine methodologies of their attackers when trying to infiltrate a network. Hon-

eypots can even be used as an alternative to an Intrusion Detection System (IDS).

One advantage of Honeypot devices over other IDSs is that they are able to interact

directly with an attacker at the application level [5]. This means the attacker has a

convincing device that they assume to be the real thing.

There are two main types of honeypots: physical and virtual [5]. A physical

honeypot is a physical device on the network with software to handle the honeypot

logging capabilities. A virtual honeypot is a device that simulates one or many devices

through software such as virtualization. They are more economical because one device

can create many honeypots.

The value of a honeypot comes from the value of the information gathered [28].

This is why it is so important for a honeypot to be a convincing target for an attacker.

One of the ways they can be implemented is as a high-interaction honeypot. These

are actual computer systems such as a Commercial Off-the-Shelf (COTS) computer,

router, or switch [5]. High-interaction honeypots are usually implemented as a phys-

ical honeypot (i.e., actual computing systems), but they can be implemented as a

virtual honeypot as well. Regardless of implementation, high-interaction honeypots

should not produce additional network traffic other than the traffic of the COTS

device it is contained on. This makes it a extremely convincing honeypot, because

it is an actual computer system. Every interaction with a high-interaction honeypot

would be suspect, because no legitimate user would have a reason to interact with it.

Therefore, all network traffic is logged and analyzed [28]. Several honeypots can be

placed together to create a simulated network of devices, called a honeynet. This is

more difficult with high-interaction honeypots because as physical machines they take
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up physical space. Fully virtualized machines take up computing resources instead of

space. This means high-interaction honeypots lack scalability.

Low-interaction honeypots are very scalable. Low-interaction honeypots simulate

services, the network stack, and other aspects of a real machine allowing for only

limited interaction with an attacker [5]. The interaction does not need to provide

complete functionality of a simulated service or protocol. For example, a Hyptertext

Transfer Protocol (HTTP) server may only serve requests for a certain URL and

only implement a portion of the HTTP protocol. It only needs to be convincing

enough to fool an attacker into believing that it is a real machine. Because of the low

functionality requirements, it is much easier to create many low-interaction honeypots

which can be tailored to a specific function. Low-interaction honeypots may seem

more limited, but they are useful for gathering information at a higher level, such as

network activity [5]. That along with their ease of implementation make them very

powerful tools.

Another difference between low-interaction and high-interaction is the risk that

they pose. Because low-interaction honeypots are not full production machines, an

attacker can only perform the functions allowed by the honeypot developer. A high-

interaction honeypot, that has the full capabilities of a production machine, could

provide a new avenue for attack on the network, if implemented improperly. For

example, if a honeypot runs a full operating system and is used as a jail to keep an

attacker in, they could potentially find a way out of the cage and use the honeypot

to launch attacks against the network [4]. Fortunately, low-interaction honeypots do

not have much risk associated with them because of the limited functions available

to a potential attacker.

One common use for a honeypot is as an IDS. A traditional IDS detects attacks

against the network based on the signature of the attack [29]. Certain exploits have
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specific actions they take against a system to execute; an IDS alerts the network

administrator when any of these actions are taken. A honeypot used as an IDS sits

on the network as a regular machine as shown in Figure 4. However, no legitimate user

would have a reason to interact with it, or even know that it is there. If anyone does

interact with it, there is a high probability an intruder is on the network. Honeypots

also produce fewer false positives, since interacting with a honeypot would not be

normal activity [4]. A regular IDS might flag legitimate work, such as the network

administrator viewing the Unix password file, /etc/shadow. These false positives

create a wave of alerts that are eventually ignored by network administrators.

Figure 4. Honeypot deployed as an IDS adapted from [4]

2.2.3 Nmap.

Nmap is an open source tool that can generate packets to scan enterprise networks

to identify live hosts, their services available, and operating systems [30]. It is widely
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used in cyber operations to gather information on targets and has a wide variety

of features. It can automatically scan just a single address or an entire subnet. It

identifies the services open on different ports and the operating system on the machine.

The operating system is determined using fingerprinting. Nmap sends a series of

TCP and UDP packets and performs tests on the responses including: TCP Initial

Sequence Number (ISN) sampling, TCP options support and ordering, IP Identifi-

cation (ID) sampling, and the initial window size check [31]. This information is

then compared to a database to see if it matches any other known fingerprints. It

provides the vendor name, underlying Operating System (OS), OS generation, and

device type [31]. This functionality can be utilized by Honeyd to create more realistic

virtual honeypots.

2.2.4 Honeyd.

Honeyd is open-source software written by Niels Provos that creates low-interaction

virtual honeypots [11]. Instead of simulating an entire operating system, Honeyd sim-

ulates everything at the network level and simulates TCP and UDP services [11]. IoT

devices usually only perform a single simple function, which makes Honeyd an ideal

program for creating honeypots based on these devices. A common theme among

IoT devices is a simple service that a user interacts with, which makes them a good

candidate for a low-interaction honeypot.

Honeyd uses a configuration file to store all of the defining information about a

honeypot. Figure 5 shows an example Honeyd configuration file. The route portion

of the code provides an example of how Honeyd allows the user to create a honeypot

router by providing routing information to the various honeypots. The configuration

file creates two honeypots: routerone and netbsd. The simulated operating system is

set with the set <honeypotName> personality command along with a fingerprint
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from Honeyd’s nmap-os-db file. This fingerprint is then used to simulate the device’s

TCP and UDP behavior on the network stack [28]. Default TCP/UDP actions can be

set with set <honeypotName> default tcp/udp action command. Default TCP

and UDP actions that can be taken include: Reset, Open, Block, or Script [4]. Re-

set means that Honeyd will send a TCP Reset (RST) or Internet Control Message

Protocol (ICMP) unreachable signal for specified TCP and UDP ports. Open means

that Honeyd will send an Acknowledgement (ACK) for all TCP data received, but

no service will be simulated. Block means that Honeyd will ignore connections on

specified ports. Finally, using add <honeypotName tcp/udp port <port number>

<scriptName>, a specific script is bound to the specified port. Usually a user sets a

default action for all ports then creates specific scripts for individual ports. Common

languages for these scripts include shell scripting, C, Python, or Perl. These scripts

are how Honeyd simulates the application level and how an attacker will primarily

interact with the honeypot. Whenever a user tries to access this port, the script

is executed. This is how the honeypot interacts with a user. The user sets any IP

or MAC address to the virtual honeypot using the bind command or allow Honeyd

to assign them automatically using the dhcp command. One configuration file can

create many virtual honeypots all on the same machine.
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Figure 5. Example Honeyd configuration file [5]

Figure 6 shows an example Nmap fingerprint, which comes from the database

of OS fingerprints used by Nmap. The code in this file is the same format as the

fingerprint used by Nmap. Nmap performs a series of tests on a device and an output

similar to Figure 6 is generated. Nmap tries to match this output to fingerprints in

the database. The closest match it finds is the OS it detects.
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Figure 6. Example of an Nmap signature database file. This signature is for Windows

XP SP3 or SP4 [6]

One advantage of Honeyd is how quickly it can create new honeypots. In theory,

a network admin could easily fill an IP space with virtual honeypots. This would not

only add obscurity to a network, but any interaction with these machines from the

outside would surely be malicious since they do nothing on their own. IoT honeypots

could blend in with normal IoT devices already on a network.

The power of Honeyd is truly shown by the ability of the user to add scripts

on specific ports to simulate services. Users have the ability to use any scripting

language they desire to simulate many services. Honeyd comes with a sample shell

script (Figure 7) that supplies an Secure Socket Shell (SSH) banner then logs and

echos the entered text [4].
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Figure 7. test.sh script packaged with Honeyd [7]

The challenge presented by Honeyd is making these scripts convincing. As with

all low-interaction honeypots, how convincing the honeypot is depends entirely on

how realistic it appears to an attacker. Honeyd does a good job of simulating the

network stack in a convincing way, but if the service is unconvincing, an attacker will

see through the facade.

2.3 Related Research

2.3.1 IoT Honeypots.

Some research has been done to try and create varying types of IoT honeypots that

perform different functionls. The following research involves custom honeypots. The

researchers created their own systems to simulate IoT services and log connections.

They did not use Honeyd, rather other honeypot programs.

Pa Pa et al. developed a system called IoTPOT and IoTBOX [32]. IoTPOT is a

honeypot system that simulates Telnet services that are used by various IoT devices.

They found various types of IoT devices using this protocol that had been com-

promised including Digital Video Recorders (DVR), IP Cameras, Wireless Routers,

TV Receivers, etc. They focused on presenting realistic experiences to an attacker

including accurate welcome messages and support for multiple Central Processing

27





Figure 104. TITAThink camera Nmap FIN times Mann-Whitney U test

Figure 105. Proliphix thermostat Nmap SYN times Mann-Whitney U test
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Figure 106. Proliphix thermostat Nmap UDP times Mann-Whitney U test

Figure 107. Proliphix thermostat Nmap FIN times Mann-Whitney U test

195



Figure 108. ezOutlet2 Nmap SYN times Mann-Whitney U test

Figure 109. ezOutlet2 Nmap UDP times Mann-Whitney U test
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Figure 110. ezOutlet2 Nmap FIN times T-test
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