
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-22-2019

Examining Effectiveness of Web-Based Internet of Things Examining Effectiveness of Web-Based Internet of Things

Honeypots Honeypots

Lukas A. Stafira

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Data Storage Systems Commons, and the Digital Communications and Networking

Commons

Recommended Citation Recommended Citation
Stafira, Lukas A., "Examining Effectiveness of Web-Based Internet of Things Honeypots" (2019). Theses
and Dissertations. 2284.
https://scholar.afit.edu/etd/2284

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholar.afit.edu%2Fetd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=scholar.afit.edu%2Fetd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/2284?utm_source=scholar.afit.edu%2Fetd%2F2284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

EXAMINING EFFECTIVENESS OF WEB-BASED
INTERNET OF THINGS HONEYPOTS

THESIS

Lukas A. Stafira, 2d Lt, USAF

AFIT-ENG-MS-19-M-057

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-19-M-057

EXAMINING EFFECTIVENESS OF WEB-BASED

INTERNET OF THINGS HONEYPOTS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Lukas A. Stafira, B.S.C.S.

2d Lt, USAF

March 2019

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-19-M-057

EXAMINING EFFECTIVENESS OF WEB-BASED

INTERNET OF THINGS HONEYPOTS

THESIS

Lukas A. Stafira, B.S.C.S.
2d Lt, USAF

Committee Membership:

Barry E. Mullins, Ph.D., P.E.
(Chairman)

Timothy H. Lacey, Ph.D., CISSP
(Member)

Stephen Dunlap, M.S., CISSP
(Member)

AFIT-ENG-MS-19-M-057

Abstract

The Internet of Things (IoT) is growing at an alarming rate. It is estimated that

there will be over 25 billion IoT devices by 2020. The simplicity of their function

usually means that IoT devices have low processing power, which prevent them from

having intricate security features, leading to vulnerabilities. This makes IoT devices

the prime target of attackers in the coming years. Honeypots are intentionally vulner-

able machines that run programs which appear as a vulnerable device to a would-be

attacker. They are placed on a network to entice and trap an attacker and then

gather information on them, including place of origin and method of attack. Due to

their prevalence and propensity for having vulnerabilities, IoT devices are a perfect

candidate for honeypots placed on a network.

Honeyd is popular open-source software written by Niels Provos that creates low-

interaction virtual honeypots. It is able to simulate everything at the network level,

allow the user to create various Transmission Control Protocol (TCP) and User Data-

gram Protocol (UDP) services, and allow Operating System (OS) simulation for scan-

ning tools such as Nmap. This research seeks to determine if Honeyd is capable of

producing convincing IoT honeypots.

Three IoT devices: a TITAThink camera, a Proliphix thermostat, and an ezOut-

let2 power outlet, had their Hypertext-Transfer Protocol (HTTP) services simulated

through Python scripts and integrated with Honeyd to create three IoT honeypots.

These honeypots were then compared to the actual devices to determine how similar

they were. The devices and honeypots are both queried in the exact same manner

and have their response times, code, headers, and Nmap scan results compared to see

how they differ.

iv

Experimental results show there is a statistically-significant difference between the

means for query response times and Nmap scan times; however, the code and headers

were over 90% similar in 18/27 tests. The differences that were recorded were mostly

due to limitations in the physical IoT devices. The Nmap scan results were successful

at simulating the service and manufacturer scans, but Nmap was able to identify a

difference in fingerprinted operating systems.

This thesis showcases how Honeyd is a useful program for creating IoT honeypots.

The code in this research could be used to quickly deploy authentic IoT honeypots or

it could be adapted to create different types of IoT honeypots. In addition, it could

easily be adapted to create honeypots of other IoT devices that utilize HTTP. The

ability to easily create these IoT honeypots would be useful to the defense department

and members of the security industry interested in integrating IoT honeypots in their

networks.

v

AFIT-ENG-MS-19-M-057

To Mom and Dad,

Thanks for your love and support.

vi

Acknowledgements

It’s a job that’s never started that takes the longest to finish -J.R.R Tolkien

I want to thank Dr. Barry Mullins, my advisor, for his consistent advice and

support throughout my time at AFIT and during my thesis research.

I would also like to thank everyone in the lab, for making those hours spent there

entertaining, enjoyable, insightful, and at times thought-provoking.

Lukas A. Stafira

vii

Table of Contents

Page

Abstract . iv

Dedication . vi

Acknowledgements . vii

List of Figures . xi

List of Tables . xviii

List of Acronyms . xix

I. Introduction . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Research Goals . 3
1.4 Approach . 3

1.4.1 IoT Network . 4
1.4.2 Honeyd Implementation . 4
1.4.3 Comparison . 5
1.4.4 Experimentation . 5

1.5 Assumptions and Limitations . 7
1.5.1 Assumptions . 7
1.5.2 Limitations . 7

1.6 Research Contributions . 8
1.7 Thesis Overview. 9

II. Background and Related Research . 10

2.1 Overview . 10
2.2 Background . 10

2.2.1 Internet of Things (IoT) . 10
2.2.2 Honeypots . 19
2.2.3 Nmap . 22
2.2.4 Honeyd . 23

2.3 Related Research . 27
2.3.1 IoT Honeypots . 27
2.3.2 Honeyd . 29
2.3.3 Uses for Honeypots . 30

2.4 Chapter Summary . 31

viii

Page

III. Framework Design . 32

3.1 Overview . 32
3.2 Motivation and Application . 32
3.3 IoT System Under Test . 34

3.3.1 TITAThink Camera . 34
3.3.2 Proliphix Thermostat . 39
3.3.3 ezOutlet2 Power Switch . 43

3.4 Honeyd IoT System Framework . 45
3.4.1 Honeyd Configuration . 46
3.4.2 Web Server . 48
3.4.3 Proliphix Thermostat Honeypot . 55
3.4.4 ezOutlet2 Honeypot . 59

IV. Research Methodology . 64

4.1 Goals . 64
4.2 Approach . 64

4.2.1 Packet Timing and Content . 64
4.2.2 Nmap Scans . 68

4.3 System Boundaries . 69
4.4 Parameters and Factors . 70

4.4.1 Assumptions . 70
4.4.2 System Parameters . 71
4.4.3 Factors . 72
4.4.4 Metrics . 73

4.5 Methodology. 74
4.6 Apparatus . 76
4.7 Results . 77
4.8 Chapter Summary . 83

V. Results and Analysis . 84

5.1 Overview . 84
5.2 Metric 1 - Query Completion Time . 84

5.2.1 TITAThink Camera . 84
5.2.2 Proliphix Thermostat . 86
5.2.3 ezOutlet2 Power Outlet . 90

5.3 Metric 2 - Data Difference . 93
5.3.1 TITAThink Camera . 93
5.3.2 Proliphix Thermostat . 95
5.3.3 ezOutlet Power Outlet . 97

5.4 Metric 3 - Number of Packets . 99
5.4.1 TITAThink Camera . 99
5.4.2 Proliphix Thermostat . 100

ix

Page

5.4.3 ezOutlet Power Outlet . 101
5.5 Metric 4 - Header Difference . 103

5.5.1 TITAThink Camera . 103
5.5.2 Proliphix Thermostat . 104
5.5.3 ezOutlet Power Outlet . 106

5.6 Metric 5 - Nmap Scan Time . 108
5.6.1 TITAThink Camera . 108
5.6.2 Proliphix Thermostat . 110
5.6.3 ezOutlet Power Outlet . 112

5.7 Metric 6 - Nmap Scan Difference . 115
5.7.1 TITAThink Camera . 115
5.7.2 Proliphix Thermostat . 116
5.7.3 ezOutlet Power Outlet . 116

5.8 Summary . 117

VI. Conclusions . 118

6.1 Introduction . 118
6.2 Research Conclusions . 118

6.2.1 Response Time . 118
6.2.2 Data Similarity . 119
6.2.3 Nmap Scans . 121

6.3 Research Significance . 122
6.4 Research Limitations . 122
6.5 Scalability . 124
6.6 Future Work . 124
6.7 Chapter Summary . 125

Appendix A. Honeyd Configuration Code . 126

Appendix B. TITAThink Camera Honeypot Code . 128

Appendix C. Proliphix Thermostat Honeypot Code . 137

Appendix D. ezOutlet2 Power Outlet Code . 144

Appendix E. Testing and Comparison Scripts . 150

Appendix F. Experimentation Data . 172

Appendix G. Statistical Tests . 179

Bibliography . 198

x

List of Figures

Figure Page

1. IoT architecture [1] . 11

2. MAC headers for IEEE 802.11 and IEEE 802.11ah [2] 13

3. Example ZigBee network topology adapted from [3] 15

4. Honeypot deployed as an IDS adapted from [4] . 22

5. Example Honeyd configuration file [5] . 25

6. Example of an Nmap signature database file. This
signature is for Windows XP SP3 or SP4 [6] . 26

7. test.sh script packaged with Honeyd [7] . 27

8. Model of experiment network configuration . 35

9. Network of the physical IoT devices being tested . 36

10. TITAThink TT520PW camera . 36

11. TITAThink camera login page . 37

12. TITAThink camera main page . 38

13. Proliphix NT130h thermostat . 40

14. Wiring of power and Ethernet for Proliphix thermostat 40

15. Wiring diagram of Proliphix thermostat . 41

16. Proliphix thermostat main page . 42

17. ezOutlet2 EZ-22b power outlet . 44

18. ezOutlet2 EZ-22b Ethernet port . 44

19. ezOutlet2 EZ-22b power outlet main page . 45

20. Code excerpt from iotHoneyd.conf (Appendix A)
showing how each device has a script run on TCP port 80 47

21. Example HTTP GET request [8] . 49

xi

Figure Page

22. The Python script has the capability to draw date and
time on the camera image . 50

23. Wireshark capture of the TITAThink camera showing
the redirects that happen when trying to access the
main page . 51

24. Conditional statements showing how headers and files
are sent based on the file requested . 52

25. Homepage of Honeyd camera honeypot when it is fully
configured . 53

26. Wireshark capture of the TITAThink Camera showing
access to the settings page is unauthorized . 54

27. Detected OS of a TCP SYN scan on the TITAThink
camera . 55

28. Wireshark capture of the Proliphix thermostat show
accessing the main page as well as an unauthorized page 57

29. Homepage of Honeyd thermostat honeypot when it is
fully configured . 58

30. Detected OS of a TCP SYN scan on the Proliphix
thermostat . 59

31. Homepage of Honeyd outlet honeypot when it is fully
configured . 60

32. Wireshark capture of the ezOutlet2 shown accessing the
main page as well a nonexistent page . 61

33. Script for flipping and resetting the switch on the
honeypot outlet . 62

34. ezOutlet2 Nmap OS Detection . 63

35. HTTP IoT Honeyd framework . 70

36. Example bar graph of average query response time 79

37. Example bar graph showing code percent similarity for
1 user . 79

xii

Figure Page

38. Example bar graph of TCP/IP and HTTP header
percent similarity for the trials with 1 user . 80

39. Example bar graph of number of TCP/IP packets 80

40. Example bar graph of average Nmap scan time . 81

41. Example scatter plot of average query response time
with trendline . 81

42. Camera average query response time for device and
honeypot . 85

43. IoT camera average query response versus number of
users . 86

44. Camera honeypot average query response versus
number of users . 86

45. Thermostat average query response time for device and
honeypot . 89

46. IoT thermostat average query response versus number
of users . 89

47. Thermostat honeypot average query response versus
number of users . 90

48. Outlet average query response time for device and
honeypot . 92

49. IoT outlet average query response versus number of users 92

50. Outlet honeypot average query response versus number
of users . 93

51. Code similarity for camera with 1 user . 94

52. Code similarity for camera with 10 simultaneous users 94

53. Code similarity for camera with 20 simultaneous users 95

54. Code similarity for thermostat with 1 user . 96

55. Code similarity for thermostat with 5 simultaneous users 96

xiii

Figure Page

56. Code similarity for thermostat with 10 simultaneous
users . 97

57. Code similarity for outlet with 1 user . 98

58. Code similarity for outlet with 10 simultaneous users 98

59. Code similarity for outlet with 20 simultaneous users 99

60. The number of TCP/IP packets sent by both the IoT
camera and honeypot camera . 100

61. The number of TCP/IP packets sent by both the IoT
thermostat and honeypot thermostat . 101

62. The number of TCP/IP packets sent by both the IoT
outlet and honeypot outlet . 102

63. Camera header similarity 1 user . 103

64. Camera header similarity 10 users . 104

65. Camera header similarity 20 users . 104

66. Thermostat header similarity 1 user . 105

67. Thermostat header similarity 5 users . 106

68. Thermostat header similarity 10 users . 106

69. Power outlet header similarity 1 user . 107

70. Power outlet header similarity 10 users . 108

71. Power outlet header similarity 20 users . 108

72. Average Nmap scan time for camera . 110

73. Average Nmap scan time for thermostat . 112

74. Average Nmap scan time for power outlet . 114

75. TITAThink camera query response time T-test 100
queries - 1 user . 179

76. TITAThink camera query response time T-test 100
queries - 10 users . 180

xiv

Figure Page

77. TITAThink camera query response time T-test 100
queries - 20 users . 180

78. TITAThink Camera query response time T-test 500
queries - 1 user . 181

79. TITAThink camera query response time T-test 500
queries - 10 users . 181

80. TITAThink camera query response time T-test 500
queries - 20 users . 182

81. TITAThink camera query response time T-test 1000
queries - 1 user . 182

82. TITAThink camera query response time T-test 1000
queries - 10 users . 183

83. TITAThink camera query response time T-test 1000
queries - 20 users . 183

84. Proliphix thermostat query response time T-test 100
queries - 1 user . 184

85. Proliphix thermostat query response time F-test and
T-test 100 queries - 5 users . 184

86. Proliphix thermostat query response time F-test and
T-test 100 queries - 10 users . 185

87. Proliphix thermostat query response time T-test 500
queries - 1 user . 185

88. Proliphix thermostat query response time F-test and
T-test 500 queries - 5 users . 186

89. Proliphix thermostat query response time F-test and
T-test 500 queries - 10 users . 186

90. Proliphix thermostat query response time T-test 1000
queries - 1 user . 187

91. Proliphix thermostat query response time F-test and
T-test 1000 queries - 5 users . 187

xv

Figure Page

92. Proliphix thermostat query response time F-test and
T-test 1000 queries - 10 users . 188

93. ezOutlet2 query response time T-test 100 queries - 1 user 188

94. ezOutlet2 query response time T-test 100 queries - 10
users . 189

95. ezOutlet2 query response time F-test and T-test 100
queries - 20 users . 189

96. ezOutlet2 query response time T-test 500 queries - 1 user 190

97. ezOutlet2 query response time T-test 500 queries - 10
users . 190

98. ezOutlet2 query response time T-test 500 queries - 20
users . 191

99. ezOutlet2 query response time T-test 1000 queries - 1 user 191

100. ezOutlet2 query response time T-test 1000 queries - 10
users . 192

101. ezOutlet2 query response time T-test 1000 queries - 20
users . 192

102. TITAThink camera Nmap SYN times Mann-Whitney U
test . 193

103. TITAThink camera Nmap UDP times Mann-Whitney U
test . 193

104. TITAThink camera Nmap FIN times Mann-Whitney U
test . 194

105. Proliphix thermostat Nmap SYN times Mann-Whitney
U test . 194

106. Proliphix thermostat Nmap UDP times Mann-Whitney
U test . 195

107. Proliphix thermostat Nmap FIN times Mann-Whitney
U test . 195

108. ezOutlet2 Nmap SYN times Mann-Whitney U test 196

xvi

Figure Page

109. ezOutlet2 Nmap UDP times Mann-Whitney U test 196

110. ezOutlet2 Nmap FIN times T-test . 197

xvii

List of Tables

Table Page

1. Summary of vulnerabilities and attacks found in
wearable devices [9] . 19

2. TITAThink camera and honeypot Nmap scan time
Anderson-Darling results and final p-value . 110

3. Proliphix thermostat and honeypot Nmap scan time
Anderson-Darling results and final p-value . 112

4. ezOutlet2 power outlet and honeypot Nmap scan time
Anderson-Darling results and final p-value . 115

5. TITAThink camera average query response time 172

6. Proliphix thermostat average query response time 172

7. ezOutlet2 average query response time . 173

8. TITAThink camera HTML percent similarity . 173

9. Proliphix thermostat HTML percent similarity . 174

10. ezOutlet2 HTML percent similarity . 174

11. TITAThink camera header information . 175

12. Proliphix thermostat header information . 175

13. ezOutlet2 header information . 176

14. Nmap scan times for TITAThink camera and camera
honeypot . 176

15. Nmap scan times for Proliphix thermostat and
thermostat honeypot . 177

16. Nmap scan times for ezOutlet2 and outlet honeypot 178

xviii

List of Acronyms

ACK Acknowledgement

BLE Bluetooth Low Energy

COTS Commercial Off-the-Shelf

CPU Central Processing Unit

CSV Comma-Separated Values

CUT Component Under Test

CWMP Customer-Premises Equipment Wide Area Network Management Protocol

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DoD Department of Defense

DoS Denial of Service

DVR Digital Video Recorders

FFD Full-Function Device

HTML Hypertext Markup Language

HTTP Hyptertext Transfer Protocol

ICMP Internet Control Message Protocol

ID Identification

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

ISN Initial Sequence Number

JPG Joint Photographic Experts Group

LAN Local Area Network

MAC Media Access Control

xix

MJPEG Motion Joint Photographic Experts Group

OS Operating System

RFD Reduced-Function Device

RST Reset

SCADA Supervisory Control and Data Acquisition

SSH Secure Socket Shell

SUT System Under Test

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

WPAN Wireless Personal Area Network

xx

EXAMINING EFFECTIVENESS OF WEB-BASED

INTERNET OF THINGS HONEYPOTS

I. Introduction

1.1 Background

The Internet of Things (IoT) is growing at an alarming rate. It is estimated

that there will be over 25 billion IoT devices by 2020 [10]. These devices are always

operating, gathering information taken from outside stimuli and transmitting it over

the Internet while waiting for commands from the user. The simplicity of their

function usually means that IoT devices have low processing power, which prevents

them from having intricate security features, leading to vulnerabilities. Also, many

times, vendors do not bother to install more intricate security measures or have good

processes in place to update a device after a vulnerability has been found and fixed

[10]. This makes IoT devices an ideal avenue for a would-be attacker to exploit.

Honeypots are intentionally vulnerable machines that run programs which appear

as a vulnerable device to a would-be attacker. They are placed on a network to

trap and entice an attacker and then gather information on them, including place

of origin and method of attack. They usually only offer certain services and are

by no means used by regular users on the network. Many honeypots run on their

own custom software, but there are also honeypot managers that can be used to

create multiple honeypots that run various services among other helpful features.

Honeypots are useful tools for security professionals to place on their networks as a

way to divert attackers from mission critical devices. Attackers can be slowed down

1

or locked out by interacting with a honeypot. Honeyd is a popular honeypot manager

that can create many low-interaction virtual honeypots [11]. Instead of emulating an

entire operating system, Honeyd simulates everything at the network level as well as

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) services.

1.2 Motivation

With 25 billion IoT devices entering networks across the world [10], there will be an

increasing number of malicious attackers who try to use them as a means of access into

a network. Creating honeypots that simulate these services would be a perfect way

to trap an attacker and possibly gather information about them. Moreover, devices

with vulnerabilities are a perfect pairing for intentionally vulnerable honeypots.

Many IoT devices, such as Nest and Ring, now have mobile apps which is the

main method for interacting with the user [12] [13]. However, some of these devices

still have a web interface as well. Some of the IoT devices used in this thesis have

mobile apps and web interfaces. If the web interfaces are ignored by the user, they

remain with blank or default passwords. These web-based IoT devices could be more

vulnerable than ever before. For this reason, it would be worthwhile to see how

effective honeypots could be that utilize the Hyptertext Transfer Protocol (HTTP).

While Honeyd is an older program, it is still one of the most widely used honeypot

managers today [4]. It provides several capabilities with its Operating System (OS)

and network emulation. The scripting capability it provides can be used to create

very convincing honeypots. Even web applications can be easily scripted by using the

requests made to Honeyd as a pseudo-webserver. The challenge comes from seeing if

the way IoT devices present their information on the web can be presented to a user

through Honeyd in the exact same manner.

2

1.3 Research Goals

The goal of this research is to see if Honeyd can be used to create convincing

honeypots that simulate IoT devices. The IoT devices interact with the user through

a web interface with HTTP. The convincibility of the honeypot is directly related to

how similar the honeypot is to the IoT device it is actually simulating. In theory, a

honeypot that looks and functions exactly as a real IoT device is indistinguishable to

an attacker. The hypothesis is that Honeyd is able to successfully create a near copy

of the real IoT devices. This is determined through a combination of code, header,

access time, and Nmap scan comparisons.

1.4 Approach

To determine how effective a honeypot is, it is modeled after a real IoT device

and compared. To accomplish this task, this research is broken into four parts:

1. Create a network of IoT devices and gather information about them

2. Construct the honeypots and services to simulate the devices in Honeyd

3. Compare the IoT devices and honeypots, and make changes to the honeypots

to increase their authenticity

4. Run tests on both the IoT devices and honeypots to obtain their response times,

data, headers, and Nmap scan results for comparison.

creating a network of IoT devices and gathering information about them, constructing

the honeypots and services to simulate the devices in Honeyd, comparing them to

make additional changes to increase their authenticity, and experimenting on them.

3

1.4.1 IoT Network.

While there are countless IoT devices on the market today, this research is focused

on ones with web interfaces. Selected devices include an IoT camera, thermostat, and

power outlet. The camera is a TITAThink TT520PW. The thermostat is a Proliphix

NT130h. The power switch is an ezOutlet2 EZ-22b. All these devices are place on

the same Local Area Network (LAN), not connected to the Internet, and observed

through a web browser. Their files are extracted by saving the page from the web

browser to make localized copies of their web page. Using these and a combination

of the actual Hypertext Markup Language (HTML) code on the web page, these files

can be transferred to Honeyd to create a honeypot.

1.4.2 Honeyd Implementation.

Honeyd provides the ability to run scripts on service ports to give an attacker

the illusion of a fully-functioning system. Using a bash script, Honeyd is able to

function as a pseudo-webserver, taking requests from a client and sending correct

HTTP response messages along with the corresponding data. However, this is only

half of the necessary function. Some IoT devices, such as the camera and thermostat,

have functions they perform and present to the user. A camera shows a camera feed,

and a thermostat shows the current temperature. For these services, Python scripts

are written to simulate a live camera feed as well as update the temperature. This

way, when a user tries to access one of these pages, the honeypot gives the appearance

of a dynamic IoT device as opposed to a static web page characteristic of some IoT

honeypots.

4

1.4.3 Comparison.

Once Honeyd is properly configured and the honeypots are running, some obser-

vations are made. Access time is an important attribute to consider, as some IoT

devices run on low-powered hardware and may take longer to access than the honey-

pot. In this case, delays may need to be built into the honeypot code to bring them

more in line with the IoT device they are trying to simulate. If it is the other way

around, more computing resources may be needed to speed up the honeypot. Also,

Nmap is a common tool used as an automated network scanner. Both the IoT device

and honeypot are scanned repeatedly to fine tune the detected operating systems

and open services. Finally, some of the devices have unique ways of presenting a page

to the user, such as redirect commands via HTTP. These can be discovered using

Wireshark. Using Wireshark to observe the transmission of data from the IoT device

to the user, the exact HTTP response codes sent can be observed and implemented

into the Honeyd web server.

1.4.4 Experimentation.

In this research, experimentation has four main components that are used to

compare the IoT device and honeypot: access time, HTML code, network headers,

and Nmap scan.

1. Access Time: The main area of interest is how fast the IoT device responds

when a user tries to access the main web page. While there are other pages

on each device, this research focuses on how fast the honeypot responds to a

request of the main page. In theory, timing should be similar for the other

pages. This provides a good baseline to compare the access time between the

IoT device and the honeypot. Requests are made from a differing number of

simultaneous users as well. This increased load should increase the response

5

time from the IoT device and honeypot in the same way.

2. HTML Code: Since Honeyd has the ability to act as a pseudo-webserver, there

should be no discrepancy between the files requested from the IoT device or

honeypot. Each IoT device has multiple pages that can be accessed. The

tests query different pages including a page that requires authorization, if the

IoT device has it, and a page that does not exist. These pages are compared

to determine the number of differences between the IoT device and honeypot.

Items that are expected to change, such as date, time, temperature, Internet

Protocol (IP) addresses, etc, are not factored into the differences.

3. Network Headers: When each page is accessed, the HTTP headers are stored

in a file, and there is another program listening for all of the incoming TCP

and IP headers. The tests compare the IoT device and honeypot to ensure they

contain the same fields and that those fields have the correct values. The TCP

and IP packet header fields are typically deterministic, but HTTP header fields

can be different depending on the device. Therefore, only the TCP/IP header

values need to be compared, but it is necessary to compare both the HTTP

header fields and values.

4. Nmap Scan: The Nmap scan provides various information about the operating

system and services. The tests are run, on the IoT device and the honeypot,

to determine that the services are the same and the similarity of the operating

systems.

6

1.5 Assumptions and Limitations

1.5.1 Assumptions.

In evaluating the devices and honeypots in this research, the following assumptions

are made:

• Each connection attempt ends with a success. If a connection fails, an entirely

empty web page is used for comparison purposes.

• The same commands are used on both devices.

• Date and time of access are different for each attempt.

• Non-standard commands are not attempted against any device.

• All interactions take place on the same network with the same network hard-

ware.

• All interactions begin from the same location with the same hardware. Each

interaction uses the same machine so processor specifications are not a factor.

• The same version of all software is used.

• There are no outside interaction with the devices other than the user in the

scenario.

1.5.2 Limitations.

1.5.2.1 Singular Task.

This research is only focused on the HTTP web application of these IoT devices.

Some of these devices have other services available, but they are not explored in this

research. These services are only enabled in the Honeyd configuration file, making

them observable by Nmap.

7

1.5.2.2 Nmap Version.

The version of Honeyd used in this research is 1.5c. This version uses an older

Nmap fingerprint database format. Because of this, the OS scanning on the honeypots

with the latest version of Nmap may not produce ideal results. The Honeyd honeypots

do not have the option to choose some of the operating systems that Nmap can detect

in its latest version. This research is mostly focused on how convincing IoT honeypots

are with the last version of Honeyd that Provos produced.

1.5.2.3 Computer Resources.

The honeypot is running on a glsvm running Ubuntu 12.04.5, and the resources

are constrained to allow running other virtual machines without slowing down the

function of the laptop on which everything is running. Therefore, if a honeypot is

responding slower than one of the physical devices, a more powerful machine hosting

the virtual machines would be required. In this research, honeypots are able to be

slowed down, but not sped up.

1.6 Research Contributions

The research in this thesis tries to recreate as close as possible the appearance

and function of actual IoT devices to determine whether or not Honeyd is a suitable

framework within which to simulate these devices. It assesses how well Honeyd is

capable of simulating web IoT devices that have static pages of information, such as

the Proliphix thermostat and ezOutlet2, and how it may not be optimal for simulating

web IoT devices that have a dynamically-updating page, such as the TITAThink

camera. This research could be used by defense agencies and companies who seek to

delay or examine attackers on their own networks by making convincing honeypots

of IoT devices, one of the most prevalent devices that make up the Internet today,

8

quickly and with limited resources.

1.7 Thesis Overview

Chapter II contains an overview of the Internet of Things, honeypots, and the

other pieces of software related to this research as well as some background research

on IoT honeypots. Chapter III provides a description of the Honeyd-based system to

simulate the three IoT devices as well as the physical system they are tested against.

Chapter IV details the design of the experiments with the corresponding results in

Chapter V. Chapter VI outlines the conclusions drawn from this research as well as

potential areas to explore in future research.

9

II. Background and Related Research

2.1 Overview

This chapter details relevant background information regarding Internet of Things

(IoT) and honeypots. Section 2.2.1 discusses the background, protocols, and security

of the IoT, and Section 2.2.2 discusses honeypots. Sections 2.2.3 and 2.2.4 discuss the

tools used for this research: Nmap and Honeyd. Finally, Section 2.3 covers current

research that has been done in combining the IoT and honeypots into security tools.

2.2 Background

2.2.1 Internet of Things (IoT).

The IoT is a blanket term used to describe the interconnection of various devices

and sensors through the Internet. IoT devices take in outside stimuli, react to it,

and communicate with one another through the Internet [14]. There are IoT sensors,

appliances, and cameras just to name a few. These devices are usually always running,

meaning they are constantly performing their functions and interacting with each

other through the Internet.

One example of a device is an IoT thermostat that has the ability to control

the temperature of a home dynamically. It can be changed by the user through the

Internet, or it can be programmed to change at certain times. It is always running,

waiting on a command to change the temperature. Overall, its function is quite

simple. The simplicity of the function usually means that IoT devices have low

processing power, which can lead to vulnerabilities.

Suo et al. have divided the IoT functionality into 4 layers (Figure 1): Applica-

tion, Support, Network, and Perceptual [1]. The Perceptual layer deals with data

gathering. Physical sensors such as temperature, GPS, and cameras collect data for

10

processing on the device. The Network layer is responsible for the reliable transfer of

this data. It mostly passes through the Internet but also through other transporta-

tion mediums such as Bluetooth. The Support layer deals with the computation of

the data on the IoT device. This can be performed on the device itself, but due to

the low processing power of many IoT devices, it is frequently done remotely through

cloud computing. Finally, the Application layer provides services to the user, such

as the graphical user interface that displays the data from the sensors, and allows

manipulation of the device by the user. This model is a useful way to highlight the

different portions of what makes up an IoT device.

The number of IoT devices is growing every day. It is estimated that there will be

over 25 billion IoT devices by 2020 [10]. Not only does the limited processing power

lend to their insecurity, but some of their protocols do as well. The main protocol

used by these devices is the Internet Protocol (IP); however, there are also other

protocols that add additional layers of functionality and insecurity.

Figure 1. IoT architecture [1]

11

2.2.1.1 IoT Protocols.

Most protocols in use by IoT devices are different than ones that have been the

standard for other Internet-connected devices. They add additional functionalities

and abilities for users to interact with their device. Sometimes the devices transfer

personal information that is collected or stored within the device. Some of these

protocols include Bluetooth, ZigBee, and WirelessHART. These protocols can add a

new dimension into fingerprinting IoT devices as well as introducing more security

vulnerabilities.

The majority of IoT devices are wireless and use exclusively wireless protocols.

They usually connect to the Internet through IEEE 802.11, also known as WiFi.

However, some IoT devices have such a small amount of processing power, that WiFi

is not feasible given the required overhead. Some devices utilize the protocol IEEE

802.11ah (hereafter referred to as 802.11ah), which is a lower-overhead version of the

standard IEEE 802.11 [14]. Figure 2 shows the headers of both protocols. 802.11ah

is ideal for IoT devices that sacrifice processing power to be compact and may need

to conserve battery life. Some features of 802.11ah that assist IoT devices include

the reduction of the Media Access Control (MAC) frame from 30 bytes to 12 bytes.

It also replaces the 14-byte ACK frame for a tiny signal called a preamble that is

used instead. There is a synchronization frame that only allows stations with valid

channel information to transmit after reserving the channel medium. Finally, there

is also efficient bidirectional packet exchange that reduces power consumption by

allowing IoT devices to go to sleep as soon as they finish their communication [14].

While IoT devices are often resource constrained, protocols such as these improve

their functionality and efficiency.

12

Figure 2. MAC headers for IEEE 802.11 and IEEE 802.11ah [2]

Bluetooth is another common protocol in IoT devices. It is a standard for short

range, low power, low cost wireless communication that uses radio technology [15].

One common feature of IoT devices is the lack of user interface on the physical device.

There is no mouse or keyboard to modify how the device functions or how it presents

information to the user. Some devices do have a small touchscreen interface, but

even these devices usually still have a Bluetooth connection to a user’s smart phone.

Bluetooth requires 100 mW of power, which is too large of a power draw for some

IoT devices [16]. They require low power due to their small size and 24/7 operation.

Bluetooth Low Energy (BLE) is often the solution. BLE is very similar to standard

Bluetooth; the only difference is that latency is fifteen times quicker and transmissions

only reach 10% as far due to low power with a minimum power output of 0.01 mW

and a maximum of 10 mW [14][17]. It uses a master/slave architecture where slaves

advertise on special channels and masters sense this and connect to the device. Nodes

stay awake only when communicating and sleep otherwise to conserve power, which

is beneficial for IoT devices [14].

13

While Bluetooth is a common protocol in mobile computing and IoT devices,

ZigBee is a protocol that is similar to BLE and is almost exclusively used in IoT

devices. ZigBee is a protocol based on IEEE 802.15.4, low-rate Wireless Personal Area

Network (WPAN), for communication between devices within 10 meters [18]. While

Bluetooth has a master that connects to a slave, ZigBee uses a central coordinator

and all the devices connect to the coordinator [14]. There are two types of devices

in a ZigBee network: a Full-Function Device (FFD) and a Reduced-Function Device

(RFD). A FFD can act as a coordinator or a device, while a RFD is reserved for

low-powered simple devices [18]. As shown in Figure 3, the central FFD acts as the

coordinator, and more FFDs acting as routers or devices connect to it, and some

RFDs connect to these FFD routers. This creates a star topology where devices

communicate to the coordinator and the coordinator passes the message along to

other devices on the network. It does not provide any security features unless the

ZigBee Pro protocol is used. ZigBee Pro has more features such as symmetric key

exchange, scalability with stochastic address assignment, and improved performance

with a more computationally efficient many-to-one routing mechanism [14]. This

security is provided through the more powerful central coordinator, taking some of

the burden off the low-powered IoT device.

14

Figure 3. Example ZigBee network topology adapted from [3]

The main takeaway from these IoT protocols is in the requirements of these de-

vices. All of these protocols are specifically designed to operate with the low pro-

cessing power and short range communication of IoT devices. This is the major

distinction of IoT devices compared to desktop computers. Another impact of the

design of these devices is the lack of security within this protocol. These protocols

make compromises on security to compensate for lower processing capabilities.

2.2.1.2 IoT Security.

Security managers point to the increasing number of IoT devices as a cause for

concern within network security. As previously stated, the lack of processing power

does not allow for security features such as encryption on the devices themselves or

within their protocols [1]. This is driven mainly by the vendors’ priorities which are

on ease of use and getting their products to market quickly. The IoT architecture

is not equipped to handle security updates, and manufacturers do not provide a

mechanism to provide security updates [10]. Another reason IoT devices have security

15

as an afterthought is that everyday consumers do not care as much about security

as the private sector or the military. Some argue that if the Department of Defense

(DoD) sought to implement IoT devices, the industry would be enticed to put more

research and development into the security of IoT devices to obtain military contracts

[19]. A study by Hewlett-Packard found that 70% of IoT devices were vulnerable to

attack [20]. Many of the IoT devices that are used today by consumers have these

documented vulnerabilities.

Suo et al. highlight some of the most important aspects today within IoT security:

identification, confidentiality, integrity, and non-repudiation [1]. They also list the

four layers of the IoT (Figure 1) and why some of the aspects are challenging. In

the Application layer, sharing is one of the characteristic features which creates a

challenge for data privacy, access control, and disclosure of information. The Support

layer is the intelligent computing (sometimes cloud) platform for the Application

layer. Its challenge is preventing malicious information from making its way into

data processing. The next layer is the Network layer, which deals with reliable data

transfer between the Perceptual layer and the Support layer. The Network layer

is susceptible to man-in-the-middle and counterfeit attacks. The final layer is the

Perceptual layer which contains the sensors for capturing the physical world and

translating it into the computing system. The challenge here is that the lack of

computing power in sensors does not leave room for security features like encryption.

This is one of the main challenges found with IoT security, as many of the protocols

do not include security features.

Patton et al. use Shodan, a web search engine for IoT devices, and a database of

default passwords to see if they could find IoT devices for which they could log into

easily [21]. They scanned for Supervisory Control and Data Acquisition (SCADA)

devices, IoT cameras, and printers to see which ones were vulnerable. They found that

16

4% of the SCADA devices were vulnerable, 40% of traffic cameras were vulnerable,

and 41% of the printers were vulnerable. This was all using default login credentials.

In this case, the vulnerabilities are the fault of the user. This is due to the perception

that an insecure IoT device has no bearing on overall network security. While logging

into a printer may seem innocuous, updating it with custom firmware can give the

attacker full control over the printer and the ability to attack the network to which

it is attached.

The BLE protocol in use by many IoT devices can also be a vulnerability. Using a

tool called Ubertooth, Ryan was able to sniff BLE traffic as well as inject packets and

break the encryption of BLE [22]. Because the protocol is intended for low-powered

devices, the protocol is simplistic, which aids in the creation of an eavesdropping

tool. Ubertooth is a USB dongle that can monitor a single BLE channel at any given

moment. It has a partial sniffer for Bluetooth, but since BLE is a simpler protocol,

the packets can be processed entirely on the dongle, making sniffing even easier. Ryan

documents exactly how to sniff this protocol using this tool and provides a proof of

concept injection attack.

Some devices using the popular IoT protocol BLE are Nest Cameras [23], FitBit

[24], Tile Item Locators [25], and smart light bulbs [26]. The BLE protocol has

fewer security and privacy features and consumes less energy compared to regular

Bluetooth. For example, the pairing process of the FitBit and smartphone through

BLE is not encrypted. To combat this, developers implementing BLE make the

devices frequently change their private address with each pairing in order to avoid

tracking. FitBit however does not do this, and a malicious attacker could obtain

the MAC address and BLE credentials through simple Bluetooth sniffing [24]. Using

the process laid out by Ryan, much information could be gleaned from sniffing this

protocol on FitBit and other IoT devices [22].

17

The low processing power of smart wearable devices, primarily due to the small

form factor and the lower computational requirements, limits the complicated security

mechanisms that can be implemented by developers in these devices. Ching and

Singh examine some wearable computing devices including Google Glass, FitBit, and

Samsung smart watches as well as some security vulnerabilities discovered (Table 1)

[9]. Many of these vulnerabilities are present due to protocols like BLE, that can be

easily sniffed with certain tools. For example, they cite research from Bitdefender

that had a proof of concept hack where they could access the six-digit PIN code and

Bluetooth traffic between a Samsung smart watch and Google Nexus phone through

brute force by using any open source Bluetooth sniffing tool. Strong authentication

was not used [9]. These wearable devices are part of the IoT and the same protocols,

including their vulnerabilities, are found in other stationary IoT devices that are

finding their way into homes and the workplace.

18

Table 1. Summary of vulnerabilities and attacks found in wearable devices [9]

Wearable Devices Security Vulnerabilities Attacks
Google Glass Insecure PIN system or authenti-

cation in place
The gesture-based authentication
scheme easily to be recorded by
people nearby

Privacy: pictures and videos can
be recorded without user’s con-
sent and unauthorized eye move-
ment tracking.

Eavesdropping and spyware

It relies on QR codes for WiFi
setup

QR photobombing malware

Insecure network and hostile en-
vironment

WiFi hijacking, man-in-the-
middle attacks such as session
hijacking or sniffing.

Fitbit Devices Lack of authentication Data injection attack, Denial of
Service (DoS), and battery drain
hacks

Leaky BLE technology It can be easily tracked
Privacy: Users location or places
visited can be tracked

Phishing

Samsung Smartwatch Authentication mechanism not
secure enough

Brute force attack

2.2.2 Honeypots.

The number of IoT devices is growing drastically, and it is important to under-

stand exactly what types of devices are considered part of the IoT. The increase in the

number of these devices is becoming a security concern within computer networks.

Honeypots could be the perfect pairing for devices that lack security. When trying to

secure a network, a common course of action would be to remove all of the known vul-

nerabilities on the network. Honeypots are intentionally-vulnerable machines placed

on a network that have the appearance of a working computer system complete with

an operating system, services, and even a network [4]. In actuality, they are a sealed

compartment used to lure in and contain an attacker. A tremendous amount of in-

formation can be learned about the attacker because a log of their actions is recorded

by the honeypot including access attempts, keystrokes, files accessed, files modified,

19

and processes executed [27]. This information can be used to capture and later an-

alyze the type of malware an attacker was using. It also allows security experts to

determine methodologies of their attackers when trying to infiltrate a network. Hon-

eypots can even be used as an alternative to an Intrusion Detection System (IDS).

One advantage of Honeypot devices over other IDSs is that they are able to interact

directly with an attacker at the application level [5]. This means the attacker has a

convincing device that they assume to be the real thing.

There are two main types of honeypots: physical and virtual [5]. A physical

honeypot is a physical device on the network with software to handle the honeypot

logging capabilities. A virtual honeypot is a device that simulates one or many devices

through software such as virtualization. They are more economical because one device

can create many honeypots.

The value of a honeypot comes from the value of the information gathered [28].

This is why it is so important for a honeypot to be a convincing target for an attacker.

One of the ways they can be implemented is as a high-interaction honeypot. These

are actual computer systems such as a Commercial Off-the-Shelf (COTS) computer,

router, or switch [5]. High-interaction honeypots are usually implemented as a phys-

ical honeypot (i.e., actual computing systems), but they can be implemented as a

virtual honeypot as well. Regardless of implementation, high-interaction honeypots

should not produce additional network traffic other than the traffic of the COTS

device it is contained on. This makes it a extremely convincing honeypot, because

it is an actual computer system. Every interaction with a high-interaction honeypot

would be suspect, because no legitimate user would have a reason to interact with it.

Therefore, all network traffic is logged and analyzed [28]. Several honeypots can be

placed together to create a simulated network of devices, called a honeynet. This is

more difficult with high-interaction honeypots because as physical machines they take

20

up physical space. Fully virtualized machines take up computing resources instead of

space. This means high-interaction honeypots lack scalability.

Low-interaction honeypots are very scalable. Low-interaction honeypots simulate

services, the network stack, and other aspects of a real machine allowing for only

limited interaction with an attacker [5]. The interaction does not need to provide

complete functionality of a simulated service or protocol. For example, a Hyptertext

Transfer Protocol (HTTP) server may only serve requests for a certain URL and

only implement a portion of the HTTP protocol. It only needs to be convincing

enough to fool an attacker into believing that it is a real machine. Because of the low

functionality requirements, it is much easier to create many low-interaction honeypots

which can be tailored to a specific function. Low-interaction honeypots may seem

more limited, but they are useful for gathering information at a higher level, such as

network activity [5]. That along with their ease of implementation make them very

powerful tools.

Another difference between low-interaction and high-interaction is the risk that

they pose. Because low-interaction honeypots are not full production machines, an

attacker can only perform the functions allowed by the honeypot developer. A high-

interaction honeypot, that has the full capabilities of a production machine, could

provide a new avenue for attack on the network, if implemented improperly. For

example, if a honeypot runs a full operating system and is used as a jail to keep an

attacker in, they could potentially find a way out of the cage and use the honeypot

to launch attacks against the network [4]. Fortunately, low-interaction honeypots do

not have much risk associated with them because of the limited functions available

to a potential attacker.

One common use for a honeypot is as an IDS. A traditional IDS detects attacks

against the network based on the signature of the attack [29]. Certain exploits have

21

specific actions they take against a system to execute; an IDS alerts the network

administrator when any of these actions are taken. A honeypot used as an IDS sits

on the network as a regular machine as shown in Figure 4. However, no legitimate user

would have a reason to interact with it, or even know that it is there. If anyone does

interact with it, there is a high probability an intruder is on the network. Honeypots

also produce fewer false positives, since interacting with a honeypot would not be

normal activity [4]. A regular IDS might flag legitimate work, such as the network

administrator viewing the Unix password file, /etc/shadow. These false positives

create a wave of alerts that are eventually ignored by network administrators.

Figure 4. Honeypot deployed as an IDS adapted from [4]

2.2.3 Nmap.

Nmap is an open source tool that can generate packets to scan enterprise networks

to identify live hosts, their services available, and operating systems [30]. It is widely

22

used in cyber operations to gather information on targets and has a wide variety

of features. It can automatically scan just a single address or an entire subnet. It

identifies the services open on different ports and the operating system on the machine.

The operating system is determined using fingerprinting. Nmap sends a series of

TCP and UDP packets and performs tests on the responses including: TCP Initial

Sequence Number (ISN) sampling, TCP options support and ordering, IP Identifi-

cation (ID) sampling, and the initial window size check [31]. This information is

then compared to a database to see if it matches any other known fingerprints. It

provides the vendor name, underlying Operating System (OS), OS generation, and

device type [31]. This functionality can be utilized by Honeyd to create more realistic

virtual honeypots.

2.2.4 Honeyd.

Honeyd is open-source software written by Niels Provos that creates low-interaction

virtual honeypots [11]. Instead of simulating an entire operating system, Honeyd sim-

ulates everything at the network level and simulates TCP and UDP services [11]. IoT

devices usually only perform a single simple function, which makes Honeyd an ideal

program for creating honeypots based on these devices. A common theme among

IoT devices is a simple service that a user interacts with, which makes them a good

candidate for a low-interaction honeypot.

Honeyd uses a configuration file to store all of the defining information about a

honeypot. Figure 5 shows an example Honeyd configuration file. The route portion

of the code provides an example of how Honeyd allows the user to create a honeypot

router by providing routing information to the various honeypots. The configuration

file creates two honeypots: routerone and netbsd. The simulated operating system is

set with the set <honeypotName> personality command along with a fingerprint

23

from Honeyd’s nmap-os-db file. This fingerprint is then used to simulate the device’s

TCP and UDP behavior on the network stack [28]. Default TCP/UDP actions can be

set with set <honeypotName> default tcp/udp action command. Default TCP

and UDP actions that can be taken include: Reset, Open, Block, or Script [4]. Re-

set means that Honeyd will send a TCP Reset (RST) or Internet Control Message

Protocol (ICMP) unreachable signal for specified TCP and UDP ports. Open means

that Honeyd will send an Acknowledgement (ACK) for all TCP data received, but

no service will be simulated. Block means that Honeyd will ignore connections on

specified ports. Finally, using add <honeypotName tcp/udp port <port number>

<scriptName>, a specific script is bound to the specified port. Usually a user sets a

default action for all ports then creates specific scripts for individual ports. Common

languages for these scripts include shell scripting, C, Python, or Perl. These scripts

are how Honeyd simulates the application level and how an attacker will primarily

interact with the honeypot. Whenever a user tries to access this port, the script

is executed. This is how the honeypot interacts with a user. The user sets any IP

or MAC address to the virtual honeypot using the bind command or allow Honeyd

to assign them automatically using the dhcp command. One configuration file can

create many virtual honeypots all on the same machine.

24

Figure 5. Example Honeyd configuration file [5]

Figure 6 shows an example Nmap fingerprint, which comes from the database

of OS fingerprints used by Nmap. The code in this file is the same format as the

fingerprint used by Nmap. Nmap performs a series of tests on a device and an output

similar to Figure 6 is generated. Nmap tries to match this output to fingerprints in

the database. The closest match it finds is the OS it detects.

25

Figure 6. Example of an Nmap signature database file. This signature is for Windows

XP SP3 or SP4 [6]

One advantage of Honeyd is how quickly it can create new honeypots. In theory,

a network admin could easily fill an IP space with virtual honeypots. This would not

only add obscurity to a network, but any interaction with these machines from the

outside would surely be malicious since they do nothing on their own. IoT honeypots

could blend in with normal IoT devices already on a network.

The power of Honeyd is truly shown by the ability of the user to add scripts

on specific ports to simulate services. Users have the ability to use any scripting

language they desire to simulate many services. Honeyd comes with a sample shell

script (Figure 7) that supplies an Secure Socket Shell (SSH) banner then logs and

echos the entered text [4].

26

Figure 7. test.sh script packaged with Honeyd [7]

The challenge presented by Honeyd is making these scripts convincing. As with

all low-interaction honeypots, how convincing the honeypot is depends entirely on

how realistic it appears to an attacker. Honeyd does a good job of simulating the

network stack in a convincing way, but if the service is unconvincing, an attacker will

see through the facade.

2.3 Related Research

2.3.1 IoT Honeypots.

Some research has been done to try and create varying types of IoT honeypots that

perform different functionls. The following research involves custom honeypots. The

researchers created their own systems to simulate IoT services and log connections.

They did not use Honeyd, rather other honeypot programs.

Pa Pa et al. developed a system called IoTPOT and IoTBOX [32]. IoTPOT is a

honeypot system that simulates Telnet services that are used by various IoT devices.

They found various types of IoT devices using this protocol that had been com-

promised including Digital Video Recorders (DVR), IP Cameras, Wireless Routers,

TV Receivers, etc. They focused on presenting realistic experiences to an attacker

including accurate welcome messages and support for multiple Central Processing

27

Figure 104. TITAThink camera Nmap FIN times Mann-Whitney U test

Figure 105. Proliphix thermostat Nmap SYN times Mann-Whitney U test

194

Figure 106. Proliphix thermostat Nmap UDP times Mann-Whitney U test

Figure 107. Proliphix thermostat Nmap FIN times Mann-Whitney U test

195

Figure 108. ezOutlet2 Nmap SYN times Mann-Whitney U test

Figure 109. ezOutlet2 Nmap UDP times Mann-Whitney U test

196

Figure 110. ezOutlet2 Nmap FIN times T-test

197

Bibliography

1. H. Suo, J. Wan, C. Zou, and J. Liu, “Security in the internet of things: A review,”
in International Conference on Computer Science and Electronics Engineering,
vol. 3, 2012, pp. 648–651.

2. W. Sun, M. Choi, and S. Choi, “IEEE 802.11ah: A Long Range 802.11 WLAN
at Sub 1 GHz,” Journal of ICT Standardization, vol. 2, no. 2, pp. 83–108, 2014.

3. A. Stachowicz, “ZigBee Wireless Networks,” 2010 [Online]. Available:
http://zigbee.pbworks.com/w/page/25465049/ZigBee [Accessed: 2019-11-01].

4. L. Spitzner, Honeypots: Tracking Hackers. Boston: Pearson Education, 2002.

5. N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to Intrusion
Detection, 1st ed. Boston: Pearson Education, 2008.

6. Insecure.COM LLC, “Nmap OS Fingerprinting 2nd Generation DB,” 2017
[Online]. Available: https://svn.nmap.org/nmap/nmap-os-db [Accessed: 2019-
11-01].

7. N. Provos, “test.sh,” 2008 [Online]. Available: https://searchcode.com/
codesearch/view/19216596/ [Accessed: 2019-11-01].

8. C. Hock-Chuan, “HTTP (HyperText Transfer Protocol),” 2009 [Online]. Avail-
able: http://www.ntu.edu.sg/home/ehchua/programming/webprogramming/
http basics.html [Accessed: 2019-11-01].

9. K. W. Ching and M. M. Singh, “Wearable Technology Devices Security and
Privacy Vulnerability Analysis,” International Journal of Network Security & Its
Applications, vol. 8, no. 3, pp. 19–30, 2016.

10. T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling a trillion (unfix-
able) flaws on a billion devices,” Proceedings of the 14th ACM Workshop on Hot
Topics in Networks - HotNets-XIV, pp. 1–7, 2015.

11. N. Provos, “Honeyd: A Virtual Honeypot Daemon,” in Proceedings of the 10th
DFNCERT Workshop, Hamburg, Germany, 2003, pp. 1–7.

12. Nest Support, “How to add your Nest thermostat to the Nest
app,” 2019 [Online]. Available: https://nest.com/support/article/
How-do-I-pair-my-Nest-Learning-Thermostat-with-my-Nest-Account#section-4
[Accessed: 2019-06-01].

13. Ring, “Ring Setup Guide,” 2018 [Online]. Available: https://images-na.
ssl-images-amazon.com/images/I/E1I-CD2BeQS.pdf [Accessed: 2019-06-01].

14. T. Salman and R. Jain, “A Survey of Protocols and Standards for Internet of
Things,” Advanced Computing and Communications, vol. 1, no. 1, 2017.

15. P. McDermott-Wells, “What is Bluetooth?” Potentials, IEEE, vol. 23, no. 5, pp.
33–35, 2005.

198

16. Bluetooth SIG, “Specification of the Bluetooth System: Core System Package
[BR/EDR Controller volume],” Bluetooth Specification Version 4.0, vol. 2, p. 36,
2010.

17. Bluetooth SIG, “Specification of the Bluetooth System: Core System Package
[Low Energy Controller volume],” Bluetooth Specification Version 4.0, vol. 6,
p. 17, 2010.

18. J. S. Lee, Y. W. Su, and C. C. Shen, “A comparative study of wireless pro-
tocols: Bluetooth, UWB, ZigBee, and Wi-Fi,” IECON Proceedings (Industrial
Electronics Conference), pp. 46–51, 2007.

19. D. E. Zheng and W. A. Carter, Leveraging the Internet of Things for a More
Efficient and Effective Military. Washington D.C.: Center for Strategic & In-
ternational Studies, 2015.

20. K. Rawlinson, “HP Study Reveals 70 Percent of Internet of Things Devices
Vulnerable to Attack,” 2014 [Online]. Available: http://www8.hp.com/us/en/
hp-news/press-release.html?id=1744676 [Accessed: 2018-04-06].

21. M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, and H. Chen, “Uninvited
connections: A study of vulnerable devices on the internet of things (IoT),”
Proceedings - 2014 IEEE Joint Intelligence and Security Informatics Conference,
JISIC 2014, pp. 232–235, 2014.

22. M. Ryan, “Bluetooth: With Low Energy Comes Low Security,” in Proceedings
of the 7th USENIX Conference on Offensive Technologies, Washington D.C.,
2013, p. 7 [Online]. Available: https://www.usenix.org/system/files/conference/
woot13/woot13-ryan.pdf [Accessed: January 25, 2019].

23. Nest, “What is Bluetooth Low Energy (BLE), and do I need it to use
Nest Products?” 2018 [Online]. Available: https://nest.com/support/article/
What-is-Bluetooth-Low-Energy-BLE-and-do-I-need-it-to-use-Nest-Products
[Accessed: 2018-07-23].

24. B. Cyr, W. Horn, D. Miao, and M. Specter, “Secu-
rity Analysis of Wearable Fitness Devices (Fitbit),” pp. 1–14,
2014 [Online]. Available: https://courses.csail.mit.edu/6.857/2014/files/
17-cyrbritt-webbhorn-specter-dmiao-hacking-fitbit.pdf [Accessed: 2018-07-23].

25. Tile, “What’s Tile’s range?” 2018 [Online]. Available: https://
support.thetileapp.com/hc/en-us/articles/200991837-What-s-Tile-s-range- [Ac-
cessed: 2018-07-23].

26. T. DiCola, “Reverse Engineering a Bluetooth Low Energy
Light Bulb,” 2015 [Online]. Available: https://learn.adafruit.com/
reverse-engineering-a-bluetooth-low-energy-light-bulb/overview [Accessed: Jan-
uary 25, 2019].

27. B. Scottberg, W. Yurcik, and D. Doss, “Internet honeypots: protection or en-
trapment?” in IEEE 2002 International Symposium on Technology and Society
(ISTAS’02). Social Implications of Information and Communication Technology.
Proceedings, no. 2, Raleigh, NC, 2002, pp. 387–391.

199

28. N. Provos, “A Virtual Honeypot Framework,” in Proceedings of the 13th
USENIX Security Symposium, San Diego, CA, 2004, pp. 1–14 [Online].
Available: http://static.usenix.org/event/sec04/tech/full papers/provos/provos
html/ [Accessed: January 25, 2019].

29. M. Masters, “Understanding Intrusion Detection Systems,” 2001 [On-
line]. Available: https://www.sans.org/reading-room/whitepapers/detection/
understanding-intrusion-detection-systems-337 [Accessed: 2018-07-23].

30. A. Orebaugh and B. Pinkard, Nmap in the Enterprise: Your Guide to Network
Scanning. Burlington: Syngress, 2011.

31. G. F. Lyon, Nmap network scanning : official Nmap project guide
to network discovery and security scanning, 2008 [Online]. Available:
https://nmap.org/book/ [Accessed: January 25, 2019].

32. Y. M. Pa Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow,
“IoTPOT: Analysing the Rise of IoT Compromises,” in USENIX Workshop on
Offensive Technologies, 2015.

33. A. G. Manzanares, “HoneyIo4 The construction of a virtual , low- interaction
IoT Honeypot,” Ph.D. dissertation, Universitat Politècnica de Catalunya,
2017 [Online]. Available: https://upcommons.upc.edu/bitstream/handle/2117/
108166/Alejandro Guerra Manzanares.pdf [Accessed: January 25, 2019].

34. K. P, “Capturing attacks on IoT devices with a multi-purpose IoT honeypot,”
Ph.D. dissertation, Indian Institute of Technology Kanpur, 2017 [Online].
Available: https://security.cse.iitk.ac.in/node/155 [Accessed: February 20,
2018].

35. M. Freeman and A. Woodward, “SmartPot - Creating a 1 st Generation Smart-
phone Honeypot,” in Australian Digital Forensics Conference, Perth, Western
Australia, 2009, pp. 24–31.

36. C. Kreibich and J. Crowcroft, “Honeycomb Creating Intrusion Detection Signa-
tures Using Honeypots,” ACM SIGCOMM Computer Communications Review,
vol. 34, no. 1, pp. 51–56, 2004.

37. L. Spitzner, “Honeypots: Catching the insider threat,” in Proceedings - Annual
Computer Security Applications Conference, ACSAC, Las Vegas, NV, 2003, pp.
170–179.

38. H. Zhang, S. Wei, L. Ge, D. Shen, W. Yu, E. P. Blasch, K. D. Pham, and G. Chen,
“Towards An Integrated Defense System for Cyber Security Situation Awareness
Experiment,” Sensors and Systems for Space Applications, vol. 8, 2015.

39. TITAThink, “TITAThink Store,” 2018 [Online]. Available: https://titathink.
com/shop/ [Accessed: 2019-02-01].

40. Proliphix Inc, Professional Series Network Thermostat Configuration Guide
(NT100e/h, NT120e/h, NT130e/h, NT150e/h, and NT160), 2007 [On-
line]. Available: http://www.proliphix.com/Collateral/Documents/English-US/
ProSeriesConfigurationGuide.pdf [Accessed: January 25, 2019].

200

41. Mega System Technologies, “Product Introductions & Information,” 2017
[Online]. Available: http://www.megatec.com.tw/info.htm#ezOutlet [Accessed:
January 25, 2019].

42. IANA, “Hypertext Transfer Protocol (HTTP) Status Code Registry,”
2018 [Online]. Available: https://www.iana.org/assignments/http-status-codes/
http-status-codes.xhtml [Accessed: 2019-11-01].

43. S. Moon, “Basic Sniffer,” 2011 [Online]. Available: https://www.binarytides.
com/python-packet-sniffer-code-linux [Accessed: January 25, 2019].

44. D. Siegle, “T Test” [Online]. Available: https://researchbasics.education.uconn.
edu/t-test/ [Accessed: 2019-09-01].

45. T. Levine, “T-test for non normal when N>50?” 2011 [Online]. Available: https:
//stats.stackexchange.com/questions/9573/t-test-for-non-normal-when-n50 [Ac-
cessed: 2019-03-01].

46. B. McNeese, “Anderson Darling Test for Normality,” 2011 [On-
line]. Available: https://www.spcforexcel.com/knowledge/basic-statistics/
anderson-darling-test-for-normality [Accessed: 2019-09-01].

47. C. Zaiontz, “Wilcoson Rank Sum Test,” 2014 [Online]. Available: https:
//www.real-statistics.com/non-parametric-tests/wilcoxon-rank-sum-test/ [Ac-
cessed: 2019-11-01].

48. C. Zaiontz, “Mann-Whitney Test for Independent Samples,” 2014
[Online]. Available: https://www.real-statistics.com/non-parametric-tests/
mann-whitney-test/ [Accessed: 2019-11-01].

49. J. Jones, “Stats: F-Test,” 1996 [Online]. Available: https://people.richland.edu/
james/lecture/m170/ch13-f.html [Accessed: 2019-09-01].

50. Nest, “Nest Home Page,” 2019 [Online]. Available: https://nest.com/ [Accessed:
2019-06-01].

51. Ring, “Ring Home Page,” 2019 [Online]. Available: https://ring.com/ [Accessed:
2019-06-01].

52. L. J. Flynn, “Poor Nations Are Littered With Old PC’s, Report Says,”
2005 [Online]. Available: https://www.nytimes.com/2005/10/24/technology/
poor-nations-are-littered-with-old-pcs-report-says.html [Accessed: 2019-06-01].

53. N. Provos, “Honeyd Downloads and Releases,” 2009 [Online]. Available:
http://www.honeyd.org/release.php [Accessed: 2019-06-01].

54. DataSoft, “Honeyd 1.6d GitHub,” 2013 [Online]. Available: https://github.com/
DataSoft/Honeyd [Accessed: 2019-06-01].

55. Cymmetria, “Honeycomb GitHub,” 2018 [Online]. Available: https://github.
com/Cymmetria/honeycomb [Accessed: 2019-06-01].

201

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2019 Master’s Thesis Sept 2017 — Mar 2019

Examining Effectiveness of Web Based
Internet of Things Honeypots

19G437

Stafira, Lukas A, 2d Lt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-19-M-057

Joseph A. Misher
Department of Homeland Security
Cyber Physical Division, Federal Protective Service
800 North Capitol Street NW, Washington D.C. 20001
COMM 202-658-8806
Email: Joseph.misher@hq.dhs.gov

DHS

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The Internet of Things (IoT) is growing at an alarming rate. It is estimated that there will be over 25 billion IoT devices
by 2020. The simplicity of their function usually means that IoT devices have low processing power, which prevent them
from having intricate security features, leading to vulnerabilities for attackers. Honeyd is popular open-source software
written by Niels Provos that creates low-interaction virtual honeypots. It is able to simulate everything on the network
level, allow the user to create various Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) services,
and allow Operating System (OS) simulation for scanning tools such as Nmap. Three IoT devices are simulated in
Honeyd: a TITAThink camera, a Proliphix thermostat, and an ezOutlet2 power outlet. The common theme among all
the devices is that that they utilize the Hyptertext Transfer Protocol (HTTP) to display their information to the user.
This research seeks to determine if Honeyd is capable of producing convincing web based IoT honeypots.

Internet of Things, Honeypots, Honeyd, Smart Devices, IoT Honeypots

U U U UU 223

Dr. B. E. Mullins, AFIT/ENG

(937)-255-3636 x7979; Barry.Mullins@afit.edu

