




Figure 78. Pressure Fluctuations on the Y-Symmetry Plane of the RN = 9.53 mm Cone
at Mach 10 with Distributed Surface Roughness

Figure 79, focuses attention on the region of pressure fluctuations near the surface

of the cone where the black box highlights the revealed instabilities which formed

above the surface roughness. The pattern of the instabilities forming in Figure 79

resembled the supersonic mode instabilities shown in Figure 19 and discussed in

Chapter 2 Section 4.4. Recall that the supersonic mode instabilities occur when an

unstable second mode instability synchronizes with the slow acoustic spectrum caus-

ing the disturbance to travel upstream supersonically relative to the mean tangential

flow outside of the boundary layer [40]. In Figure 19, which provided a schematic

of the supersonic mode, there were three regions defined by the relative Mach num-

ber. The relative Mach number compared the speed of the instability relative to the
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mean flow velocity component tangential to the wall. In the first region, the second

mode instabilities formed and bounce between the sonic line and wall geometry like

a trapped acoustic wave. In Figure 79 there were evidently instabilities formed from

the distributed surface roughness acting as a forcing function. However, it was appar-

ent from Figures 73 and 74 that these instabilities did not lead to transition. In the

second region, or the subsonic region, of the supersonic mode schematic presented

in Figure 19, was where the “rope-like” structures formed in the flowfield. These

“rope-like” structures take on a similar form as the instabilities in the black box of

Figure 79. In the final region of the supersonic mode schematic the decaying Mach

waves formed above the boundary layer. In a similar manner, decaying Mach waves

were apparent above the boundary layer in Figure 79.

Figure 79. Y-Symmetry Plane Pressure Fluctuations Near the Surface of the Cone
with RN = 9.53 mm at Mach 10 with Distributed Surface Roughness
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The instabilities seen in Figure 79 near the surface of the cone were further ex-

amined by extracting the pressure fluctuation data from the three streamtraces as

indicated in Figure 80a. The first streamtrace was extracted in the region closest

to the surface of the cone and streamtrace three was furthest from the surface. The

resulting extracted pressure fluctuation data was plotted in Figure 80b. Intuitively,

streamtrace one experienced the highest pressure fluctuations because it captured the

majority of the distributed surface roughness phenomenon. The streamtraces path

shown in Figure 80a demonstrated the entropy layer swallowing. When the stream-

traces were incoming from the freestream they were equally spaced. As the entropy

layer became entrained in the boundary layer, the streamtraces collapsed into a small

region towards the back of the cone.

(a) Location of Streamtraces on the Y-Symmetry
Plane

(b) Pressure Fluctuation Data Extracted from
Streamtraces on the Y-Symmetry Plane

Figure 80. Streamtraces of Pressure Fluctuation

3.2 Rough Body Computational Analysis.

In Chatper 3 Section 3.2, the smooth body results were presented. The current

section presents the rough body results in the same manner. Figures 81 and 83

provide full contour solution of the dynamic viscosity and the temperature while
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Figures 82 and 84 are contour solutions focused on the nose region. Figures 81, 82,

83, and 84 appear nearly identical to the respective smooth body solutions provided

in Chapter 3 Section 3.2 in Figures 51, 52, 55, and 56. In Section 3.1 of the current

chapter, the rough body simulations showed no increase in heat flux to the body

which indicated that the flow remained laminar. Therefore, it is expected that the

temperature and dynamic viscosity contour solutions would appear similar. Indeed,

similar flow features were seen in the temperature and dynamic viscosity solution

domains were present in both the smooth and rough body simulations. Specifically,

the isothermal boundary condition set at 298 K on the surface of the cone was properly

enforced and the regions of highest magnitude of each flow variable occur in the nose

region.
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(a) RN = 9.53 mm

(b) RN = 12.7 mm

Figure 81. Viscosity Contour Solution of Rough Body Flow at unit Reynolds number
of 16.9× 106 /m on Fine Grid Refinement
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(a) RN = 9.53 mm

(b) RN = 12.7 mm

Figure 82. Viscosity Contour Solution on Nose Region of Cone of Rough Body Flow
at unit Reynolds number of 16.9× 106 /m on Fine Grid Refinement
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(a) RN = 9.53 mm

(b) RN = 12.7 mm

Figure 83. Temperature Contour of Distributed Surface Roughness Simulations at unit
Reynolds number of 16.9× 106 /m on Fine Grid Refinement
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(a) RN = 9.53 mm

(b) RN = 12.7 mm

Figure 84. Temperature Contour of Distributed Surface Roughness Simulations in the
Nose Region at unit Reynolds number of 16.9× 106 /m on Fine Grid Refinement
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Figure 79 demonstrated that the distributed surface roughness forced an instabil-

ity. However, Figure 75 provided the heat flux evidence that the forced instability did

not transition the laminar flow into turbulent flow. Although the overall solution do-

mains would appear similar, slight variations in the solution domain would exist due

to the instabilities forced by distributed surface roughness. To compare these slight

variations, temperature data was extracted in a vertical line at different streamwise

positions on the smooth and rough body simulations for both the 9.53 and 12.7 mm

nose radii cases and the results are shown in Figure 85. The data was extracted at

the streamwise positions of 0.01 m, 0.02 m, and 0.05 m. In both nose radii cases,

as the solution continued downstream the smooth body and rough body extracted

temperature data lines differed less and after the streamwise position of 0.1 m any

differences between the two solutions did not exceed the value of the uncertainty

due to discretization. Therefore, the decision was made to examine the extracted

temperature data lines at streamwise positions near the nose. For the 9.53 mm nose

radius case shown in Figure 85a, the rough body extracted temperature data lines

slightly exceeded the temperature data lines of the smooth body simulations. The

consistent rise in temperature of the rough body simulations above the smooth body

simulations was attributed to the presence of instabilities near the surface. For the

12.7 mm nose radius case shown in Figure 85b, only the streamwise position of 0.01

m demonstrated an increase in temperature for the rough body simulations and as

the extracted temperature data line moved downstream the rough body simulations

and the smooth body simulations matched within the discretization uncertainty.
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(a) RN = 9.53 mm

(b) RN = 12.7 mm

Figure 85. Temperature Contour Solution Slices of Smooth and Rough Body in the
Nose Region at unit Reynolds number of 16.9× 106 /m on Fine Grid Refinement
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3.3 Pressure Power Spectral Density.

The pressure Power Spectral Density (PSD) calculations are used to identify the

frequency of the instability experienced in an experiment or simulation and the lo-

cation of the frequency on the geometry. The analysis of the experimental pressure

PSDs were provided in Chapter 3 Section 1.3. The computational PSD for the 9.53

and 12.7 mm nose radii cases are provided in Figure 86 and 87. The 15 sensor co-

ordinates are provided in Appendix A. The sensors span the length of the cone and

mirror the sensor placement in the experiments conducted by Moraru [59]. The 9.53

mm nose radius case was created with 126,000 samples and was computed with a base

frequency of 160,000 kHz. Similarly, the 19.7 mm nose radius case was created with

138,000 samples and was computed with a base frequency of 1,550,000 kHz. Recall

from Section 2 that the grid tailoring was applied three times to the 9.53 mm nose

radius case and two times to the 12.7 mm nose radius case. Previously, both the 9.53

mm and the 12.7 mm nose radius cases had been running with a time step on the

order of 10−12. After the third round of grid tailoring the 9.53 mm nose radius case

was able to sustain stability with a timestep on the order of 10−11. The 12.7 mm nose

radius case did not undergo enough grid tailoring to be able to reduce the timestep

thus the time accurate DNS was unable to run at a larger timestep.

From the results in Section 3.1, it was concluded that the flow remained laminar

when the distributed surface roughness was the only forcing function present in the

system. Therefore, it was not expected that a clear second mode frequency would

be identifiable in the computational pressure PSD for either case. The pressure PSD

routines required that the data collected be at the same timestep. Therefore, the

data collection for the pressure PSDs was not run concurrently with the rough body

simulations. As a result there were not enough computational hours to collect enough

data samples to resolve the pressure PSDs to useful frequencies. The pressure PSD
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for the 9.53 mm case shown in Figure 86 revels some frequency content. However,

the frequency content does not reveal second mode instabilities. The pressure PSD

for the 12.7 mm nose radius case shown in Figure 87 reveals no frequency content

because the timestep for the 12.7 mm was an order of magnitude larger than the 9.53

mm nose radius case.

Figure 86. Pressure Power Spectral Density for RN = 9.53 mm
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Figure 87. Pressure Power Spectral Density for RN = 12.7 mm

4 Concluding Remarks

Chapter 4 covered the initial results of the simulation as a result of the method-

ology presented in Chapter 3. The analysis of the initial results indicated that ad-

justments in the form of grid tailoring were required for the time accurate DNS

calculations. From the time accurate DNS with the tailored grid, it was concluded

that the forcing function caused by the simulation of distributed surface roughness

was not sufficient to transition the 7° axi-symmetric cones with the nose radii of 9.53

and 12.7 mm.
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V. Conclusion

The ability to build proper thermal protection systems for hypersonic vehicle

flight depends greatly on the ability to predict transition and the ability to predict

transition is predicated on full understanding of the modalities to turbulent flow.

Presently, the complexity of hypersonic boundary layer transition exceeds academic

understanding but continues to be a quickly evolving and exciting area of research.

The current research effort sought to pair the analysis of experimental data conducted

by Moraru [59] with an analysis of data produced via computational means to gain

insight into a non-modal transition phenomena which incurred a break with modern

modal boundary layer transition theory as nose radius increased on axi-symmetric

cones. The Arnold Engineering Development Center (AEDC) Hypervelocity Wind

Tunnel 9 conducted experiments on six, 7° half-angle cones with increasing nose radii

and documented the break with modern modal boundary layer transition theory

between the nose radii of 9.53 and 12.7 mm. The cone with the nose radius of

9.53 mm was the last cone to conform to the established second mode dominated

transition which dictated that as the nose radius increased the transition location

would move downstream [72]. On the other hand, the cone with the nose radius of 12.7

mm broke with the established second mode precedent when the transition location

failed to move downstream in correspondence to the increase in nose radius. The

departure from modern modal transition theory observed in the 12.7 mm nose radius

case was predicted to be caused by distributed surface roughness as a result of the

machine finish on the physical test article [59]. In 1983, Stetson documented the same

break with modern modal transition theory on blunt cones with increase nose radii

and similarly hypothesized that the distributed surface roughness was an influencing

factor on transition [79]. Therefore, the hypothesis that distributed surface roughness

was a likely culprit for non-modal transition on blunt nose axi-symmetric cones has
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been prevalent for almost four decades and was previously untested until the present

research effort. In order to test this theory a computational fluid dynamic (CFD)

direct numerical simulation (DNS) was run on both nose radii cases while simulated a

distributed roughness surface at the same amplitude as the experimental test articles

in effort to reproduce the experimental data. The totality of this research effort

amounted to the conclusion that the transition experienced on the AEDC Tunnel 9

7° half-angle cones with the nose radii of 9.53 and 12.7 mm was not solely due to

distributed surface roughness.

1 Key Findings

Distributed surface roughness has been a hypothesized reason for the break with

modern modal theory since Stetson’s 1983 and this research effort provided proof that

the distributed forcing function caused by the simulated distributed roughness was

insufficient. The heat transfer profile which resulted from the computational sim-

ulations which employed a distributed surface roughness at a maximum amplitude

of 15 µm, it was concluded that transition did not occur. Further examination of

the instabilities imposed by the distributed surface roughness revealed no meaning-

ful frequency content and yielded N factors which immediately decayed. However,

this conclusion does not exclude distributed surface roughness from playing an inte-

gral part in hypersonic boundary layer transition on blunt nose cones. The resulting

instabilities from distributed surface roughness could be interacting with other dis-

turbances and causing the non-modal transition phenomenon observed by Moraru

[59] and Stetson [79].
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2 Future Work

The results from the present research effort contribute to the conversation of the

effects of distributed surface roughness on hypersonic boundary layer transition. That

being stated, much work remains to achieve full understanding of the mechanisms that

lead to boundary layer transition. In regards to the data aggregated in the current

research effort, the interaction of the entropy layer and the boundary layer should

be analyzed. As discussed in Section 1.2, the entropy layer is a region of inherent

vorticity. Therefore analysis of the effects of the entropy layer swallowing are of

poignant relevance to the overall understanding of boundary layer transition.

Improvements to the current research effort include aggressively tailoring the grids

to achieve better alignment between the cell faces and the shock region. This would

lead to the ability to run with a larger timestep. Additionally, the results of the

instability resolution study in the spanwise direction dictated the necessary width

of the cone slice. For future work it is suggested to reduce the model from a 30°

slice to the minimum slice required to adequately resolve instabilities in the spanwise

direction.

Ideally, improvements could be made to all distributed surface roughness studies

by creating a distributed surface roughness that was not cell size dependent. The

state of the art methodology of creating distributed surface roughness discussed in

Section 3.5 was developed to force at the frequency of the grid cell size [21]. Therefore,

the broadband forcing was a function of the grid. However, better conclusions about

the effects of distributed surface roughness will be made when the distributed surface

roughness methodology is not dependent on the modeling.

The conclusion of this work underpins the great scientific need of continuing the

pragmatic study of individual influencing transitional factors as well as combination of

influencing transitional factors. As referenced in Section 5, the factors which influence
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transition are not additive in effect [8] therefore the study of the effects of distributed

surface roughness alone is just the beginning of the journey to a full understanding of

hypersonic boundary layer over axi-symmetric blunt nose cones. The research effort of

performing a DNS while simulating distributed surface roughness with another forcing

function such as noise or entropy layer instabilities would be a logical continuation

of this research effort. Currently, there is no precedent for how the instabilities of

freestream noise or instabilities entering through the entropy layer, a region of inherent

voriticty, and instabilities of distributed surface roughness would interact with each

other but arguably, these are likely instabilities to be interacting on axi-symmetric

blunt nose cones.

The computational resources required for a DNS simulating the freestream noise

and distributed surface roughness are high. However, the emerging input-output

analysis for blunt nose cones emerging out of the University of Minnesota is trail

blazing a new norm for hypersonic boundary layer transition theory. Recall from Sec-

tion 6.5 that input-output analysis no longer employs the parallel flow assumption

that fails to adequately model the flow phenomenon at the nose of the blunt cone.

This methodology has the potential to completely replace the linear stability theory

for the application of blunt nose cones. Even though the input-output analysis is

only available for two dimensional slices of a geometry, valuable information on the

characteristics of the instabilities could be gleaned by subjecting the AEDC Tunnel 9

geometries to this analysis. This analysis requires substantially less computational re-

sources and is the recommended next step to this research effort in the computational

domain.
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Appendix A. Computational Sensor Location

Table 4. Sensor Locations on Computational Model for RN = 9.53 mm

SensorSensorSensor X Location (m)X Location (m)X Location (m) Y Location (m)Y Location (m)Y Location (m) Z Location (m)Z Location (m)Z Location (m)
1 0.076 0.015 0.009
2 0.128 0.021 0.012
3 0.179 0.026 0.015
4 0.230 0.032 0.018
5 0.281 0.037 0.021
6 0.332 0.043 0.024
7 0.486 0.059 0.034
8 0.588 0.070 0.040
9 0.716 0.084 0.048
10 0.844 0.097 0.056
11 1.011 0.115 0.066
12 1.101 0.125 0.071
13 1.229 0.138 0.079
14 1.357 0.152 0.087
15 1.484 0.165 0.095
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Table 5. Sensor Locations on Computational Model for RN = 12.7 mm

SensorSensorSensor X Location (m)X Location (m)X Location (m) Y Location (m)Y Location (m)Y Location (m) Z Location (m)Z Location (m)Z Location (m)
1 0.055 0.016 0.009
2 0.106 0.021 0.012
3 0.158 0.027 0.015
4 0.209 0.032 0.018
5 0.260 0.037 0.022
6 0.311 0.043 0.025
7 0.465 0.058 0.034
8 0.567 0.070 0.040
9 0.695 0.084 0.048
10 0.823 0.097 0.056
11 0.989 0.115 0.066
12 1.079 0.125 0.072
13 1.207 0.138 0.080
14 1.335 0.152 0.088
15 1.463 0.165 0.095
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