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Abstract

An equiangular tight frame (ETF) is a sequence of equal-norm vectors in a Euclidean

space whose coherence achieves equality in the Welch bound, and thus yields an

optimal packing in a projective space. A regular simplex is a simple type of ETF

in which the number of vectors is one more than the dimension of the underlying

space. More sophisticated examples include harmonic ETFs, which are formed by

restricting the characters of a finite abelian group to a difference set. Recently, it

was shown that some harmonic ETFs are themselves comprised of regular simplices.

In this thesis, we continue the investigation into these special harmonic ETFs. We

begin by characterizing when the subspaces spanned by the ETF’s regular simplices

form an equi-isoclinic tight fusion frame, which is a type of optimal packing in a

Grassmannian space. It turns out that such ETFs yield complex circulant conference

matrices; this is remarkable since real examples of such matrices are known to not

exist. We further show that some of these ETFs yield mutually unbiased simplices,

which are a natural generalization of the quantum-information-theoretic concept of

mutually unbiased bases. Finally, we provide infinite families of ETFs that have all

of these properties.
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HARMONIC EQUIANGULAR TIGHT FRAMES

COMPRISED OF REGULAR SIMPLICES

I. Introduction

Let F be either R or C and let H be a D-dimensional Hilbert space over F whose

inner product is conjugate-linear in the first argument. Further, let N be a general

N -element indexing set. A sequence of nonzero vectors {ϕn}n∈N in H has coherence

coh({ϕn}n∈N ) := max
n6=n′

|〈ϕn,ϕn′ 〉|
‖ϕn‖‖ϕn′‖

. (1)

A well-known lower bound on the coherence of a sequence of unit norm vectors is the

Welch bound [31] √
N−D
D(N−1)

≤ max
n6=n′
|〈ϕn,ϕn′〉| (2)

and equality is achieved in this bound if and only if the vectors form an equiangular

tight frame (ETF) for H [27]. In particular, the lines spanned by the vectors of

an ETF have the property that the minimum angle between any pair of them is as

large as possible, and so they are an optimal packing of points in projective space.

Due to this optimality, ETFs have applications in areas such as compressed sensing

[1, 2], quantum information theory [23, 33], and algebraic coding theory [18], however,

constructing ETFs is not an easy task [11].

Letting ETF(D,N) denote an ETF of N vectors in a D-dimensional Hilbert space

H, an ETF(D,D) is equivalent to an orthonormal basis for H and so exists for any

positive integer D. An ETF(1, N) is equivalent to N unimodular scalars and so exists

for any positive integer N . We call an ETF(S, S+ 1) a (regular S-)simplex for H and
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these are known to exist for any positive integer S. Outside of these cases, all known

infinite families of ETFs come from combinatorial designs. For example, real ETFs are

equivalent to a certain type of strongly regular graph [17, 21, 24, 30]. Another class of

constructions exist when the redundancy of the ETF, namely the quantity N
D

, is close

to two. In this case, ETFs can be related to conference matrices, Hadamard matrices,

Paley tournaments, and Gauss sums [17, 22, 26, 27]. Less restrictive constructions

are Steiner ETFs and Harmonic ETFs. Steiner ETFs arise from using a balanced

incomplete block design to strategically arrange several regular simplices with respect

to each other [13, 15]. Harmonic ETFs arise from difference sets in finite abelian

groups [9, 27, 29, 32].

Steiner ETFs are made up of regular simplices by design in the sense that their

vectors can be partitioned into subsequences of vectors that are regular simplices for

their spans. It was shown in [18] that harmonic ETFs constructed from McFarland

difference sets are a unitary transformation of a Steiner ETF and so they too are

comprised of simplices. Further, it has been shown that the complement of both twin

prime power and some Singer difference sets also have this property [10]. It was

shown that these ETFs, while being an optimal packing of points in projective space,

further have the property that the subspaces spanned by the simplices are a type of

optimal packing in Grassmannian space known as an equi-chordal tight fusion frame

(ECTFF) and so achieve the simplex bound of [7].

In this thesis we will further investigate known harmonic ETFs comprised of reg-

ular simplices and relate them to other structures. In Chapter II, we will establish

notation and give already known results that will relate to later topics. Chapter III

will further develop the properties of difference sets that result in harmonic ETFs

comprised of simplices as well as show that a subset of these ETFs have the property

that the subspaces spanned by the simplices produce a type of ECTFF known as

2



an equi-isoclinic tight fusion frame (EITFF). Further, we will see that this subset of

ETFs also gives constructions for complex circulant conference matrices. In Chap-

ter IV we further restrict the class of harmonic ETFs and show that this restricted

class will produce collections of mutually unbiased simplices (MUS), a simplex-based

generalization of mutually unbiased bases. Finally, we will classify three known types

of difference sets according to the properties needed for the construction of EITFFs,

circulant conference matrices, and MUSs.
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II. Background

For any z ∈ F, let z∗ denote the complex conjugate of z. Given any N -element

indexing set N , let FN := {y : N → F} be the Hilbert space equipped with the

inner product 〈y1,y2〉 :=
∑

n∈N [y1(n)]∗y2(n). Further, for an M -element indexing

set M let FM×N := {A :M×N → F} be the space of all matrices whose rows and

columns are indexed byM andN , respectively, equipped with the Frobenius (Hilbert-

Schmidt) inner product, 〈A1,A2〉Fro := Tr(A∗1A2). Any such matrix represents a

linear operator from FN to FM.

The synthesis operator of a finite sequence of vectors {ϕn}n∈N in a D-dimensional

Hilbert space H is Φ : FN → H, Φx :=
∑

n∈N x(n)ϕn. Its adjoint is the analysis

operator, Φ∗ : H → FN , (Φ∗y)(n) = 〈ϕn,y〉. When N = [N ] := {1, ..., N} and

H = FD, Φ can be thought of as a D ×N matrix whose nth column is ϕn and Φ∗ is

the conjugate transpose of this matrix. Composing these operators yields the frame

operator ΦΦ∗ : H → H, ΦΦ∗y =
∑

n∈N 〈ϕn,y〉ϕn and the N × N Gram matrix

Φ∗Φ : FN → FN whose (n, n′)th entry is (Φ∗Φ)(n, n′) = 〈ϕn,ϕn′〉. We also view

each vector as its own synthesis operator ϕn : F → H, ϕn(x) = xϕn. Its adjoint is

the linear functional ϕ∗n : H → F, ϕ∗ny = 〈ϕn,y〉. Under this notation the frame

operator of {ϕn}n∈N is ΦΦ∗ =
∑

n∈N ϕnϕ
∗
n.

In the special case where ΦΦ∗ = AI for some A > 0, we say {ϕn}n∈N is an

(A-)tight frame for H. When the vectors {ϕn}n∈N are regarded as members of some

(larger) Hilbert space K which contains H = span{ϕn}n∈N as a (proper) subspace,

we say that {ϕn}n∈N is a tight frame for its span; elsewhere in the literature, such

sequences are sometimes called “tight frame sequences.” Here the analysis operator

Φ∗ : H→ FN extends to an operator Φ∗ : K→ FN and {ϕn}n∈N is a tight frame for

its span precisely when ΦΦ∗y = Ay for all y ∈ H = C(Φ). As shown in [12], this is

equivalent to having either ΦΦ∗Φ = AΦ, (ΦΦ∗)2 = AΦΦ∗, or (Φ∗Φ)2 = AΦ∗Φ.
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A Naimark complement of an A-tight frame {ϕn}n∈N for a D-dimensional Hilbert

space H is any sequence {ψn}n∈N in a space K with synthesis operator Ψ such that

Φ∗Φ + Ψ∗Ψ = AI. Since {ϕn}n∈N is an A-tight frame for H, Φ∗Φ has eigenvalues A

and 0 with multiplicities D and N−D, respectively. Consequently Ψ∗Ψ = AI−Φ∗Φ

has eigenvalues A and 0 with multiplicities N −D and D, respectively, meaning that

{ψn}n∈N is a tight frame for its (N −D)-dimensional span. Being defined in terms of

Gram matrices, Naimark complements are only unique up to unitary transformations.

They exist whenever N > D: when H = FD, N = [N ], and Φ is regarded as a D×N

matrix, a natural way to construct a Naimark complement {ψn}n∈N is as the columns

of any (N − D) × N matrix Ψ whose rows, together with the rows of Φ, form an

equal-norm orthogonal basis for FN .

2.1 Equi-Chordal and Equi-Isoclinic Tight Fusion Frames

Let {Un}n∈N be M -dimensional subspaces of a D-dimensional Hilbert space H.

For each n ∈ N let Φn be the synthesis operator of an orthonormal basis {ϕn,m}m∈M

for Un so that Φ∗nΦn = I. Here Pn = ΦnΦ
∗
n is the orthogonal projection operator

onto Un. We can also consider the synthesis operator Φ of the concatenation (union)

{ϕn,m}n∈N ,m∈M of all of these orthonormal bases. In the special case where H = FD,

N = [N ], and M = [M ] the operator Φ can be regarded as a 1 × N block matrix

whose nth block is the D ×M matrix Φn, i.e.

Φ =

[
Φ1 · · · ΦN

]
, Φn =

[
ϕn,1 · · · ϕn,M

]
.

Because of this, in general we regard the (N ×M) × (N ×M) Gram matrix Φ∗Φ

as an N ×N block matrix whose (n, n′)th block is the M×M cross-Gram matrix,

Φ∗nΦn′ . The fusion frame operator of {Un}n∈N is defined to be the sum of the orthog-
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onal projection operators onto these subspaces and equates to the frame operator of

{ϕn,m}n∈N ,m∈M since

ΦΦ∗ =
∑
n∈N

∑
m∈M

ϕn,mϕ
∗
n,m =

∑
n∈N

ΦnΦ
∗
n =

∑
n∈N

Pn.

The subspaces {Un}n∈N are said to form a tight fusion frame (TFF) for H if there

exists some scalar A > 0 such that ΦΦ∗ = AI. In this case the tight frame constant

is necessarily A = MN
D

since AD = Tr (AI) = Tr (ΦΦ∗) =
∑

n∈N Tr (Pn) = MN .

Moreover, in general for any M -dimensional subspaces {Un}n∈N of H,

0 ≤
∥∥∥∑
n∈N

Pn − MN
D

I
∥∥∥2

Fro
= Tr

[
(
∑
n∈N

Pn − MN
D

I)2
]

=
∑
n∈N

∑
n′∈N
n′ 6=n

Tr(PnPn′)−MN(MN
D
−1)

and equality is achieved if and only if {Un}n∈N is a TFF for H. To continue, note

that

∑
n∈N

∑
n′∈N
n′ 6=n

Tr(PnPn′) ≤ N(N − 1) max
n6=n′

Tr(PnPn′) = N(N − 1) max
n6=n′
‖Φ∗nΦn′‖2

Fro

and here equality is achieved if and only if {Un}n∈N are equi-chordal, i.e. if and only

if Tr(PnPn′) is constant over all n 6= n′. Combining these two inequalities we see that

√
M(MN−D)
D(N−1)

≤ max
n6=n′
‖Φ∗nΦn′‖Fro (3)

where equality is achieved if and only if {Un}n∈N is an equi-chordal tight fusion frame

(ECTFF) for H. That is, a tight fusion frame for H with the property that the chordal

distance between any two subspaces Un and Un′ defined as

distc(Un,Un′) = 1√
2
‖Pn −Pn′‖Fro =

√
M − ‖Φ∗nΦn′‖2

Fro

6



is constant over all n 6= n′. From (3), we see that any ECTFF yields an optimal

packing of subspaces with respect to the chordal distance, that is, an arrangement of

N subspaces of H, each of dimension M, whose minimum pairwise-chordal distance

is maximal, satisfying the so-called simplex bound of [7].

Letting ‖A‖2 be the standard (induced) 2-norm of A, namely its largest singular

value, then M(MN−D)
D(N−1)

≤ maxn 6=n′ ‖Φ∗nΦn′‖2
Fro ≤M‖Φ∗nΦn′‖2

2 and so we also have

√
MN−D
D(N−1)

≤ max
n6=n′
‖Φ∗nΦn′‖2. (4)

Here equality is achieved if and only if {Un}n∈N is an equi-isoclinic tight fusion

frame (EITFF) for H, that is, an ECTFF for H such that for all n 6= n′, Φ∗nΦn′

has constant singular values. This occurs if and only if there exists some σ ≥ 0

such that Φ∗n′PnΦn′ = σ2I for all n 6= n′. Conjugating by Φn′ gives Pn′PnPn′ =

Φn′Φ
∗
n′PnΦn′Φ

∗
n′ = σ2Pn′ . Conversely, conjugating this by Φ∗n′ yields Φ∗n′PnΦn′ =

σ2I. To summarize, {Un}n∈N is an EITFF for H if and only if it is a TFF for H and

there exists σ ≥ 0 such that Pn′PnPn′ = σ2Pn′ for all n 6= n′.

In the case that the subspaces {Un}n∈N are of dimension one, i.e. M = 1, ECTFFs

and EITFFs reduce to equiangular tight frames (ETFs): choosing a unit norm vector

ϕn from each of the subspaces produces {ϕn}n∈N . In this case, (3) and (4) both

reduce to the Welch bound (2), where equality is achieved if and only if {ϕn}n∈N

is an ETF for H, that is {ϕn}n∈N is a tight frame for H and |〈ϕn,ϕn′〉| is constant

over all n 6= n′ making the vectors equiangular. This implies {ϕn}n∈N has minimal

coherence (1). The Naimark complement of an ETF is itself an ETF since Ψ∗Ψ =

AI − Φ∗Φ and so ‖ψn‖2 = A − ‖ϕn‖2, implying that {ψn}n∈N is equal norm, and

〈ψn,ψn′〉 = −〈ϕn,ϕn′〉, implying that {ψn}n∈N is equiangular.

An ETF(S, S + 1) is called a regular S-simplex. Given any integer S, a regular

S-simplex always exists as it is a Naimark complement of any sequence of S + 1

7



unimodular scalars in F. In light of the Welch bound (2), any S+1 linearly dependent

unit vectors with coherence 1
S

necessarily form a regular simplex for their span.

2.2 Harmonic Equiangular Tight Frames and Difference Sets

A character on a finite abelian group G is a homomorphism γ : G → T where

T = {z ∈ C : |z| = 1}. The set of all characters of G, denoted Ĝ, is called the

(Pontryagin) dual of G and is itself a group under entrywise multiplication. It is well

known that Ĝ is isomorphic to G and that {γ}γ∈Ĝ is an equal-norm orthogonal basis

for CG. Therefore, its synthesis operator F : CĜ → CG is invertible with F−1 = 1
G

F∗.

The operator F is usually regarded as the (G×Ĝ)-indexed character table of G whose

(g, γ)th entry is F(g, γ) := γ(g). Its adjoint, F∗ : CG → CĜ, (F∗ϕ)(γ) = 〈γ,ϕ〉, is

the discrete Fourier transform (DFT) on G.

For any ϕ,ϕ1,ϕ2 ∈ CG, we let (ϕ1 ∗ϕ2)(g) =
∑

g′∈G ϕ1(g′)ϕ2(g − g′) denote the

convolution of ϕ1 and ϕ2 and ϕ̃(g) = [ϕ(−g)]∗ denote the involution of ϕ. Convolu-

tion and involution correspond to pointwise multiplication and conjugation, respec-

tively, in the Fourier domain. That is, [F∗(ϕ1 ∗ϕ2)](γ) = [(F∗ϕ1)(γ)][(F∗ϕ2)(γ)] and

(F∗ϕ̃)(γ) = [(F∗ϕ)(γ)]∗ for all γ ∈ Ĝ. Consequently, the autocorrelation, ϕ ∗ ϕ̃, of ϕ

corresponds to the pointwise modulus squared |F∗ϕ|2 in the Fourier domain.

Since the rows and columns of the character table F of G are equal-norm orthog-

onal, given any D ⊆ G we can restrict each character γ ∈ Ĝ to D, that is, we can

regard γ ∈ CD, and the rows of the resulting (D × Ĝ)-indexed submatrix of F are

still equal-norm orthogonal. Therefore its columns—the restricted characters—form

a tight frame for CD. Sometimes these restricted characters further form an ETF for

CD. For any D ⊆ G, the inner product of any two characters of G restricted to D is

〈γ′, γ〉D := 〈γ′χD, γχD〉 =
∑
g∈D

((γ′)−1γ)(g) = 〈γ′γ−1, χD〉 = (F∗χD)(γ′γ−1). (5)

8



As such, {γ}γ∈Ĝ is an ETF for CD if and only if |(F∗χD)(γ)| is constant over all γ 6= 1.

As we now discuss, this happens precisely when D is a difference set for G.

A subset D of a finite abelian group G is called a difference set for G if the cardi-

nality of {(d, d′) ∈ G : g = d − d′} is constant over all nonzero g ∈ G. Conceptually,

D is a difference set for G if every nonzero element of G occurs the same number of

times in the difference table for D. For example, {1, 2, 4} is a difference set for Z7

since its difference table is

− 1 2 4

1 0 6 5

2 1 0 4

4 3 2 0

.

Letting D be the cardinality of D and G be the order of G, since there are D(D− 1)

nonzero entries in such a table and G−1 nonzero elements of G, each one must appear

ΛD := D(D−1)
G−1

(6)

times, i.e. for all nonzero g ∈ G, #{(d, d′) ∈ G : g = d− d′} = ΛD.

Any subset D of G can also be classified as a difference set based on the autocor-

relation, χD ∗ χ̃D, of χD. In particular

(χD ∗ χ̃D)(g) =
∑
g′∈G

χD(g′)χD(g′ − g) = #[D ∩ (g +D)] = #{(d, d′) ∈ G : g = d− d′}.

In summary, D is a difference set for G if and only if χD ∗ χ̃D = (D − ΛD)δ0 + ΛD1.

Equivalently, taking Fourier transforms, D is a difference set for G if and only if

|F∗χD|2 = F∗(χD ∗ χ̃D) = F∗[(D − ΛD)δ0 + ΛD1] = (D − ΛD)1 +GΛDδ1

9



since F∗δ0 = 1 and F∗1 = Gδ1. Specifically, for all γ 6= 1 we have that

|(F∗χD)(γ)|2 = D − ΛD = D − D(D−1)
G−1

= D2
(

G−D
D(G−1)

)
= D2

S2 . (7)

where S :=
√

D(G−1)
G−D is the reciprocal Welch Bound (2). Since this value is constant

for all γ ∈ Ĝ, γ 6= 1, by (5) restricting the characters of G to any subset D of G

forms an ETF for CD if and only if D is a difference set for G. An ETF constructed

in this manner is called a harmonic ETF. Here we note that the complement of

any difference set is also a difference set and the corresponding harmonic ETFs are

Naimark complements. Also any shift or automorphism of G applied to a difference

set is again a difference set.

For any subgroup H of G, its annihilator is H⊥ = {γ ∈ Ĝ : γ(h) = 1, ∀h ∈ H}.

It is well known that H⊥ is a subgroup of Ĝ, and moreover that ϕ : H⊥ → (G/H)∧,

[ϕ(γ)](g) := γ(g) is a well-defined isomorphism. Here and in later chapters we let g

represent the coset g+H and γ represent the coset γH⊥. We will denote the order of

G by G and the order of H by H and so the order of H⊥ is G
H
. Throughout the later

results we will make use of the Poisson summation formula: if H is any subgroup of

G of order H then FχH⊥ = G
H
χH, or equivalently, taking the DFT, F∗χH = HχH⊥ .

To see this, note that for all γ′ ∈ H⊥ and g ∈ G,

[γ′(g)− 1]
∑
γ∈H⊥

γ(g) =
∑
γ∈H⊥

(γ′γ)(g)−
∑
γ∈H⊥

γ(g) = 0.

Then in the case that g 6∈ H, there exists γ′ ∈ H⊥ such that γ′(g) 6= 1 and so we must

have that
∑

γ∈H⊥ γ(g) = 0. In the case that g ∈ H,
∑

γ∈H⊥ γ(g) =
∑

γ∈H⊥ 1 = G
H

.
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2.3 Difference Set Constructions

Many of the results in later sections will require a difference set that has certain

properties. In particular, we will relate these results to three known types of difference

set constructions, Singer difference sets, McFarland difference sets, and twin prime

power (TPP) difference sets. Here we give the background for constructing these

difference sets.

2.3.1 Singer Difference Sets

In general, for any prime power Q let FQ be the finite field of order Q and let F×Q

be the multiplicative group formed by the nonzero elements of FQ. For any integer

J ≥ 2 the corresponding Singer difference set is

D = {β ∈ F×
QJ/F×Q : tr(β) = β + βQ + βQ

2

+ · · ·+ βQ
J−1

= 0}.

Here D is a difference set in the quotient group G = F×
QJ/F×Q and so the harmonic

ETF is an ETF(Q
J−1−1
Q−1

, Q
J−1
Q−1

).

Example 2.3.1. Let Q = 2 and J = 4 giving that G = F×16/F×2 ∼= Z15. To find the

7-element Singer difference set we use the fact that x4+x+1 is a primitive polynomial

over F2 [16] and so the multiplicative group of

F16 = {a+ bα + cα2 + dα3 : a, b, c, d ∈ F2, α
4 + α + 1 = 0}

is generated by α, that is, F×16 = 〈α〉. Then the hyperplane {β ∈ F16 : 0 = tr(β) =

β + β2 + β4 + β8} is the set {0} ∪ {αj : j = 0, 1, 2, 4, 5, 8, 10}. To see this let A be
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the companion matrix of the primitive polynomial x4 + x+ 1 over F2, that is

A =



0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0


.

Then the field trace, tr(αj), is equivalent to the matrix trace, Tr(Aj), for all j ≥ 0

where all arithmetic is done modulo 2. Finally, removing the zero element of F16

and identifying the remaining elements modulo F×2 gives the Singer difference set

{0, 1, 2, 4, 5, 8, 10}. To see that this is a difference set, its difference table is given by:

− 0 1 2 4 5 8 10

0 0 14 13 11 10 7 5

1 1 0 14 12 11 8 6

2 2 1 0 13 12 9 7

4 4 3 2 0 14 11 9

5 5 4 3 1 0 12 10

8 8 7 6 4 3 0 13

10 10 9 8 6 5 2 0

,

and every nonzero element of Z15 appears exactly ΛD = 7(7−1)
15−1

= 3 times.

2.3.2 McFarland Difference Sets

For any prime power Q and any positive integer J ≥ 2 let {Ui : i = 1, · · · , QJ−1
Q−1
}

enumerate the distinct hyperplanes of FJQ. Further, let K = {ki : i = 0, · · · , QJ−1
Q−1
}

be any finite abelian group of order QJ−1
Q−1

+ 1 whose nonzero elements enumerate the

hyperplanes of FJQ. Then the corresponding McFarland difference set for the group
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G = K × FJQ is given by

D = {(k, u) ∈ G : k = ki, u ∈ Ui for some i = 1, · · · , QJ−1
Q−1
}.

Here the harmonic ETF is an ETF(QJ−1(Q
J−1
Q−1

), QJ(Q
J−1
Q−1

+ 1)). This leads to having

the reciprocal Welch bound S = QJ−1
Q−1

and ΛD = QJ−1(QJ−1−1)
Q−1

.

Example 2.3.2. Let Q = 2 and J = 2. Here the distinct hyperplanes of F2
2
∼= Z2×Z2

are given by {Ui : i = 1, 2, 3} where U1 = {00, 01}, U2 = {00, 10}, and U3 = {00, 11}.

Further let K = F2
2
∼= Z2 × Z2. Then the McFarland difference set in the group

G = Z2 × Z2 × Z2 × Z2 is given by

D = {1000, 1001, 0100, 0110, 1100, 1111}.

One way to verify this is a difference set is by its difference table where ΛD = 2:

− 1000 1001 0100 0110 1100 1111

1000 0000 0001 1100 1110 0100 0111

1001 0001 0000 1101 1111 0101 0110

0100 1100 1101 0000 0010 1000 1011

0110 1110 1111 0010 0000 1010 1001

1100 0100 0101 1000 1010 0000 0011

1111 0111 0110 1011 1001 0011 0000

.
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2.3.3 Twin Prime Power Difference Sets

Given any odd prime power Q such that Q + 2 is also a prime power, the corre-

sponding TPP difference set in the group G = FQ × FQ+2 is given by

D = {(x, y) ∈ FQ × FQ+2 : (x, y) ∈ SQ × SQ+2 or (x, y) ∈ NQ ×NQ+2 or y = 0}.

Here NQ denotes all nonsquares in FQ and SQ denotes all nonzero squares in FQ. Note

that the number of elements in NQ and SQ are both Q−1
2

. Therefore, the corresponding

harmonic difference set has parameters ETF(Q
2+2Q−1

2
, Q(Q+ 2)).

Example 2.3.3. Let Q = 3 so that G = F3 × F5. Since N3 = {2} and S3 = {1},

while N5 = {2, 3} and S5 = {1, 4}, the TPP difference set in G is

D = {(1, 1), (1, 4), (2, 2), (2, 3), (0, 0), (1, 0), (2, 0)}.

This difference set results in an ETF(7, 15) which is equivalent to the ETF(7, 15)

produced from the difference set in Example 2.3.1 and so will share all the same

properties. This equivalence to a Singer difference set is not common to all TPP

difference sets.

2.4 Quantum Information Theory Problem

A lot of the work in this field is motivated by the following quantum information

theory problem: Design unit vectors {ϕn}n∈N in H, a D-dimensional Hilbert space,

so that

every self-adjoint operator A : H→ H can be recovered from {ϕ∗nAϕn}n∈N . (8)
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Here, {A : H → H | A∗ = A} is a real Hilbert space under the Frobenius (Hilbert-

Schmidt) inner product 〈A,B〉Fro = Tr(AB) =
∑D

d=1〈ud,ABud〉, where {ud}Dd=1 is

any orthonormal basis for H. As such, {ϕ∗nAϕn}n∈N equates to measurements of

the form ϕ∗nAϕn = Tr(ϕ∗nAϕn) = Tr(ϕnϕ
∗
nA) = 〈Pn,A〉Fro, where Pn = ϕnϕ

∗
n is

the rank-one orthogonal projection onto the line spanned by ϕn. Thus, satisfying (8)

reduces to having {Pn}n∈N span the space {A : H → H | A = A∗}. This space has

dimension D2 when the underlying field F is C and has dimension
(
D+1

2

)
when F is

R. Meanwhile, the dimension of span({Pn}n∈N ) is the same as the rank of its Gram

matrix; since

〈Pn,Pn′〉Fro = Tr(PnPn′) = Tr(ϕnϕ
∗
n′ϕn′ϕ

∗
n) = 〈ϕn′ ,ϕn〉〈ϕn,ϕn′〉 = |〈ϕn,ϕn′〉|2,

(9)

the Gram matrix of {Pn}n∈N is the pointwise modulus squared |Φ∗Φ|2 of the Gram

matrix Φ∗Φ of {ϕn}n∈N . In summary, we see that for any {ϕn}n∈N in H,

rank(|Φ∗Φ|2) ≤

 D2, F = C,(
D+1

2

)
, F = R,

(10)

and further, {ϕn}n∈N achieves equality in (10) if and only if it satisfies property (8).

2.4.1 Mutually Unbiased Bases

One way to try to achieve (8) is to construct mutually unbiased bases (MUBs)

for H. To elaborate, for all v = 1, ..., V , let {uv,d}Dd=1 be an orthonormal basis

for H and let Uv be its (unitary) synthesis operator. The union {uv,d}Vv=1,
D
d=1 of

these bases is a tight frame for H: denoting its synthesis operator by U we have

UU∗ =
∑V

v=1 UvU
∗
v = V I and so V 2D = ‖UU∗‖2

Fro = ‖U∗U‖2
Fro. Then expanding
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‖U∗U‖2
Fro and bounding this quantity using the coherence of {uv,d}Vv=1,

D
d=1 gives

V 2D = V D +
V∑
v=1

V∑
v′=1
v′ 6=v

D∑
d=1

D∑
d′=1

|〈uv,d,uv′,d′〉|2 ≤ V D + V (V − 1)D2coh({uv,d}Vv=1,
D
d=1).

Therefore, the coherence of any union of orthonormal bases for H is bounded below

by 1√
D

and achieves equality here if and only if |〈uv,d,uv′,d′〉| = 1√
D

for all v 6= v′, that

is, if and only if these bases are mutually unbiased.

Letting JA be an all-ones matrix of size A × A, if {uv,d}Vv=1,
D
d=1 are MUBs for H

with synthesis operator U then |U∗U|2 = IV D+ 1
D

[(JV −IV )⊗JD]. Thus, |U∗U|2 has

eigenvalues V , 1, and 0 with multiplicities 1, V (D − 1), and V − 1, respectively, and

so rank(|U∗U|2) = V (D−1)+1. Therefore, by (10) when F = C, V (D−1)+1 ≤ D2,

i.e. V ≤ D+ 1; when F = R, V (D− 1) + 1 ≤
(
D+1

2

)
, i.e. V ≤ D+2

2
. When equality is

achieved we say the MUBs are maximal meaning {ϕn}n∈N = {uv,d}Vv=1,
D
d=1 achieves

equality in (10) and so satisfies (8). Maximal MUBs are known to exist when the

dimension D is a prime power, however, their existence is open for dimensions as

small as D = 6 for example [4].

2.4.2 Gerzon’s Bound

Note that when F = C maximal MUBs consist of D(D+1) vectors. However, (10)

suggests that (8) can be satisfied with as few as D2 vectors. Ideally, these vectors

should have small coherence. Therefore, if possible, we would like to construct D2

vectors in H that form an ETF for H. By a similar argument when F = R, if possible,

we would like to construct
(
D+1

2

)
vectors in H that form an ETF for H. As we now

explain, Gerzon’s bound states that such ETFs are maximal in the sense that they

consist of the largest possible number of equiangular vectors in H.

Indeed, when {ϕn}n∈N is equiangular, but not collinear, there exists W ∈ [0, 1),
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such that for all n 6= n′, |〈ϕn,ϕn′〉| = W . Then by (9), 〈Pn,Pn′〉Fro = |〈ϕn,ϕn′〉|2 =

W 2 6= 1. Therefore, the Gram matrix of {Pn}n∈N is |Φ∗Φ|2 = (1 − W 2)I + W 2J

which is positive definite and so rank(|Φ∗Φ|2) = N . Thus by (10), N ≤ D2 when

F = C and N ≤
(
D+1

2

)
when F = R.

For a maximal ETF to be real, D must be two less than an odd square, i.e.

D ∈ {3, 7, 23, 47, ...} [11]. It is known that maximal real ETFs exist for D be-

ing 3, 7, or 28 and do not exist for D = 47 [3, 11]. Complex maximal ETFs are

also known as symmetric, informationally complete, positive operator-valued mea-

sures (SIC-POVMs). Zauner’s conjecture, which remains open, is that SIC-POVMs

exist for any dimension D [33]. SIC-POVMs have been proven to exist for D being

1-24, 28, 30, 31, 35, 37, 39, 43, 48, 124, and 323 [14, 19], while many other dimensions

have numerical constructions.

2.4.3 Orthoplex Bound

When N exceeds Gerzon’s bound, equiangularity is not attainable and so neither

is the Welch bound (2). In this case, a new bound for minimal coherence can be

derived. For unit norm vectors {ϕn}n∈N , the corresponding projections {Pn}n∈N can

be transformed to be traceless and therefore lie in the orthogonal complement of I.

Normalizing these gives the self-adjoint operators

P̂n =
√

D
D−1

(Pn − 1
D

I).

Here, 〈P̂n, P̂n′〉Fro = D
D−1

(
|〈ϕn,ϕn′〉|2 − 1

D

)
since

〈Pn − 1
D

I,Pn′ − 1
D

I〉Fro = Tr
[
(Pn − 1

D
I)(Pn′ − 1

D
I)
]

= |〈ϕn,ϕn′〉|2 − 1
D
. (11)
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Given any D+ 2 vectors in a real D-dimensional Hilbert space, one can show that at

least two of these vectors have a nonnegative inner product with each other [6]. Since

{P̂n}n∈N lie in I⊥, which is a subspace of {A : H→ H | A = A∗} of codimension one,

we thus have that 0 ≤ 〈P̂n, P̂n′〉 for some n 6= n′, provided N > D2 when F = C, or

N >
(
D+1

2

)
when F = R. From (11) we have 0 ≤ max

n6=n′
D
D−1

(|〈ϕn,ϕn′〉|2 − 1
D

). Rear-

ranging gives the orthoplex bound which takes over as the lower bound on coherence

from the Welch bound when N > D2 or N >
(
D+1

2

)
for F = C or F = R, respectively:

1√
D
≤ max

n6=n′
|〈ϕn,ϕn′〉|.

In particular, maximal MUBs achieve the orthoplex bound.
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III. Harmonic ETFs comprised of regular simplices

3.1 Fine Difference Sets

In [10] it was shown that certain harmonic ETFs are disjoint unions of simplices.

To elaborate, let D be a D-element difference set for a finite abelian group G of order

G and let {ϕγ}γ∈Ĝ = {γχD} be the corresponding harmonic ETF for CD. If there

exists a subgroup H of G of order H := G
S+1

where S :=
√

D(G−1)
G−D is the reciprocal

Welch bound (2) such that D∩H = ∅, then {ϕγ}γ∈Ĝ is a disjoint union of H regular

S-simplices. These simplices correspond to the cosets of H, that is, for all γ ∈ Ĝ, the

S+ 1 vectors {ϕγ′}γ′∈γH⊥ form a simplex for their span and satisfy
∑

γ′∈γH⊥ ϕγ′ = 0.

Note that S must necessarily be an integer. The results presented in this and the next

chapter will rely upon having a difference set that satisfies these properties, therefore,

we give these difference sets a name:

Definition 3.1.1. A difference set D of cardinality D in a finite abelian group G

of order G is fine if there exists a subgroup H of G with H := #(H) = G
S+1

where

S =
√

D(G−1)
G−D and such that D ∩H = ∅.

We call these differences sets fine because as the following theorem will show they

are disjoint from the largest subgroupH possible. Further, we show that all nontrivial

shifts of D intersect with H in the same number of points. To show this it helps to

establish the following notation:

Dg = (D − g) ∩H,∀g ∈ G. (12)

Theorem 3.1.2. Let D be a D-element difference set for a finite abelian group G of

order G. Then if H is a subgroup of G of order H that is disjoint from D, H ≤ G
S+1

where S :=
√

D(G−1)
G−D . Moreover, the following are equivalent:
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(i) H = G
S+1

,

(ii) (F∗χD)(γ) = −D
S

for all γ ∈ H⊥, γ 6= 1,

(iii) #(Dg) = D
S

for all g 6∈ H.

Proof. Since H ∩ D = ∅, we have 0 = 〈χH, χD〉 = 1
G
〈F∗χH,F∗χD〉. Then by the

Poisson summation formula,

0 = H
G
〈χH⊥ ,F∗χD〉 = H

G

∑
γ∈H⊥

(F∗χD)(γ) = HD
G

+ H
G

∑
γ∈H⊥
γ 6=1

(F∗χD)(γ).

Multiplying by GS
DH

and subtracting the summation we have that

S = −
∑
γ∈H⊥
γ 6=1

S
D

(F∗χD)(γ). (13)

Taking the modulus of this equation and applying (7) gives that H ≤ G
S+1

:

S = |S| = |−
∑
γ∈H⊥
γ 6=1

S
D

(F∗χD)(γ)| ≤
∑
γ∈H⊥
γ 6=1

S
D
|(F∗χD)(γ)| = (G

H
− 1).

(i⇔ii) Here since #(H⊥) = G
H

, (13) is a summation of G
H
− 1 terms each of which

has modulus one by (7). If H = G
S+1

, then this summation has S unimodular terms

and can only equal S if (F∗χD)(γ) = −D
S

for all γ ∈ H⊥, γ 6= 1. Conversely, if

(F∗χD)(γ) = −D
S

for all γ ∈ H⊥, γ 6= 1 then (13) gives that H = G
S+1

.

(i⇔iii) Let S ′ := G
H
− 1 and let {gs}S

′
s=1 be coset representatives of the nontrivial

cosets ofH. For each s = 1, ..., S ′ recall thatDgs := (D−gs)∩H and letDgs := #(Dgs).

Since D∩H = ∅,
∑S′

s=1Dgs = D and for any d, d′ ∈ D, d− d′ ∈ H if and only if there

exists s such that d, d′ ∈ Dgs . Then the number of entries of the difference table of D
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that are nonzero elements of H is

#{(d, d′) ∈ D ×D : d− d′ ∈ H \ {0}} =
S′∑
s=1

(D2
gs −Dgs) = −D +

S′∑
s=1

D2
gs .

Since D is a difference set for G, #{(d, d′) ∈ D × D : d − d′ = g} = D(D−1)
G−1

for any

nonzero g ∈ G. As such, the number of nonzero members of H in the difference table

of D is equivalently #{(d, d′) ∈ D ×D : d− d′ ∈ H \ {0}} = D(D−1)(H−1)
G−1

. Therefore,

D(D−1)(H−1)
G−1

= −D +
∑S′

s=1 D
2
gs . Thus

(D−1)(H−1)
G−1

= −1 + 1
D

S′∑
s=1

[(Dgs − D
S′

) + D
S′

]2 = D
S′
− 1 + 1

D

S′∑
s=1

(Dgs − D
S′

)2 ≥ D
S′
− 1 (14)

where equality holds if and only if Dgs = D
S′

for all s = 1, ..., S ′. Solving this inequality

for H gives H ≥ 1
D−1

(G − 1)(D
S′
− 1) + 1 = 1

D−1
[D(G−1)

S′
− (G −D)]. Multiplying by

(S ′ + 1)(D − 1) yields

G(D − 1) ≥ D(G−1)(S′+1)
S′

− (G−D)(S ′ + 1) = D(G− 1) + D(G−1)
S′
− (G−D)(S ′ + 1).

Subtracting G(D − 1) from both sides we have

0 ≥ (G−D) + D(G−1)
S′
− (G−D)(S ′ + 1) = D(G−1)

S′
− S ′(G−D).

Finally this gives that (S ′)2 ≥ D(G−1)
G−D = S2. Since equality held in (14) if and only

if Dgs = D
S′

for all s = 1, ..., S ′ and each step since has been reversible, we have that

S ′ = S if and only if Dgs = D
S

for all s = 1, ..., S. Finally, G
H
− 1 = S ′ ≥ S and so

H ≤ G
S+1

where equality holds if and only if Dgs = D
S

for all s = 1, ..., S.

This shows that for a fine difference set S must necessarily divide D since #(Dg)

must be an integer. Further, when D is a fine difference set, using (6) we know that
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D − ΛD = D − D(D−1)
G−1

= D(G−D)
G−1

= D2

S2 . Therefore, we have that D
S

=
√
D − ΛD and

so
√
D − ΛD must also be an integer.

Example 3.1.3. Recall from Example 2.3.1 that when Q = 2 and J = 4 the corre-

sponding Singer difference set is {0, 1, 2, 4, 5, 8} in the group G = Z15. Here we have

that S = 7
2

and so the corresponding harmonic ETF cannot be a disjoint union of

simplices. However, its complement is D = {3, 6, 7, 11, 12, 13, 14} and corresponds to

an ETF(8, 15) which has the inverse Welch bound S = 4. Further, this difference set

avoids a subgroup of G of order H = G
S+1

= 3, namely the subgroup H = {0, 5, 10}.

Therefore, D is fine and the ETF(8, 15) is a disjoint union of 3 regular 4-simplices.

Further, since the cosets of H partition G, we can partition D into its intersections

with these cosets giving

D = ∅ ∩ {6, 11} ∩ {7, 12} ∩ {13, 3} ∩ {9, 14}.

For this reason we will order D as D = {6, 11, 7, 12, 13, 3, 9, 14} from here forward.

To develop certain results later we will need to express this partition of D instead

as subsets of H. From Theorem 3.1.2, for all g ∈ G, each Dg is a subset of H of

cardinality D
S

= 2. These sets are D0 = D5 = D10 = ∅, D1 = D2 = D4 = D8 = {5, 10},

D6 = D7 = D9 = D13 = {0, 5}, and D3 = D11 = D12 = D14 = {0, 10}.

To construct the ETF(8, 15) we extract the rows corresponding to D of the 15×15

character table for Z15 indexed by G×Ĝ and scale it so that each vector is unit norm.

Here we let ω = e
2πi
15 and represent Ĝ as Z15, identifying n ∈ Z15 with the character
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γ(m) = ωmn. Therefore, the columns of the following matrix form an ETF(8, 15):

Φ =
1√
8



1 ω6 ω12 ω3 ω9 1 ω6 ω12 ω3 ω9 1 ω6 ω12 ω3 ω9

1 ω11 ω7 ω3 ω14 ω10 ω6 ω2 ω13 ω9 ω5 ω1 ω12 ω8 ω4

1 ω7 ω14 ω6 ω13 ω5 ω12 ω4 ω11 ω3 ω10 ω2 ω9 ω1 ω8

1 ω12 ω9 ω6 ω3 1 ω12 ω9 ω6 ω3 1 ω12 ω9 ω6 ω3

1 ω13 ω11 ω9 ω7 ω5 ω3 ω1 ω14 ω12 ω10 ω8 ω6 ω4 ω2

1 ω3 ω6 ω9 ω12 1 ω3 ω6 ω9 ω12 1 ω3 ω6 ω9 ω12

1 ω9 ω3 ω12 ω6 1 ω9 ω3 ω12 ω6 1 ω9 ω3 ω12 ω6

1 ω14 ω13 ω12 ω11 ω10 ω9 ω8 ω7 ω6 ω5 ω4 ω3 ω2 ω1



.

Moreover, since D is fine, we know that any subset of 5 vectors from this ETF

corresponding to a coset of H⊥ = {0, 3, 6, 9, 12} ⊆ Ĝ form a simplex for their span.

Choosing to index these simplices by H⊥, 1 + H⊥ and 2 + H⊥ gives the following

three simplices:

Φ =

[
Φ0 Φ1 Φ2

]
= 1√
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1 ω3 ω6 ω9 ω12 ω6 ω9 ω12 1 ω3 ω12 1 ω3 ω6 ω9

1 ω3 ω6 ω9 ω12 ω11 ω14 ω2 ω5 ω8 ω7 ω10 ω13 ω ω4

1 ω6 ω12 ω3 ω9 ω7 ω13 ω4 ω10 ω ω14 ω5 ω11 ω2 ω8

1 ω6 ω12 ω3 ω9 ω12 ω3 ω9 1 ω6 ω9 1 ω6 ω12 ω3

1 ω9 ω3 ω12 ω6 ω13 ω7 ω ω10 ω4 ω11 ω5 ω14 ω8 ω2

1 ω9 ω3 ω12 ω6 ω3 ω12 ω6 1 ω9 ω6 1 ω9 ω3 ω12

1 ω12 ω9 ω6 ω3 ω9 ω6 ω3 1 ω12 ω3 1 ω12 ω9 ω6

1 ω12 ω9 ω6 ω3 ω14 ω11 ω8 ω5 ω2 ω13 ω10 ω7 ω4 ω



.
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3.2 A Construction of EITFFs

In [10] it was shown that the complements of appropriately shifted Singer differ-

ence sets with J even, all McFarland difference sets, and the complements of TPP

difference sets are all fine. Further it was shown that if an ETF for H is a disjoint

union of simplices, then the subspaces spanned by those simplices form an ECTFF for

H. We now establish some notation to show that for fine difference sets with certain

additional properties, these ECTFFs for H are further EITFFs for H.

Let {ϕγ}γ∈Ĝ be a harmonic ETF arising from the fine difference set D. Then the

synthesis operator of {ϕγ}γ∈Ĝ, after scaling so that each vector has unit norm, is

Φ ∈ CD×Ĝ, Φ(d, γ) = 1√
D
γ(d).

Further we know this harmonic ETF is a disjoint union of simplices corresponding to

the cosets of H⊥. That is for all γ ∈ Ĝ, {ϕγ′}γ′∈γH⊥ is a regular simplex for its span

and we define Φγ to be its synthesis operator:

Φγ ∈ CD×H⊥ , Φγ(d, γ
′) = 1√

D
(γγ′)(d). (15)

By this definition, Φγ is dependent on the choice of coset representative. However, if

γ = γ′, then Φγ = Φγ′T
γ(γ′)−1

where Tγ is the “translation by γ operator over H⊥”

defined by Tγ(γ1, γ2) = 1 if and only if γ1γ
−1
2 = γ for all γ, γ1, γ2 ∈ H⊥. Because

of this relationship between Φγ and Φγ′ when γ and γ′ are in the same coset of H⊥

we know that the column spaces of Φγ and Φγ′ are equal. In Theorem 3.2.1 we

will verify that for all γ ∈ Ĝ, Φγ is indeed a regular S-simplex in a D-dimensional

Hilbert space by showing it is an isometry of the canonical regular S-simplex in an

(S + 1)-dimensional Hilbert space.
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The synthesis operator of this canonical regular S-simplex is

Ψ ∈ C(G/H)\{0}×H⊥ , Ψ(g, γ) = 1√
S
γ(g). (16)

Intuitively, Ψ is a regular S-simplex since the character table of G/H is the (G/H)×

H⊥ indexed matrix whose (g, γ)th entry is γ(g). Then Ψ is a Naimark complement

of the first row of this matrix, which is all ones, and so Ψ is a regular S-simplex.

To computationally verify this, first note that Ψ is well-defined: If g = g′, then

g − g′ ∈ H. Therefore, for any γ ∈ H⊥, γ(g)γ−1(g′) = γ(g − g′) = 1. Multiplying by

1√
S
γ(g′) then gives that Ψ(g, γ) = Ψ(g′, γ). To continue, recall that (G/H) ∧ ∼= H⊥

and so #(H⊥) = S + 1. Then Ψ is a regular S−simplex since

(Ψ∗Ψ)(γ, γ′) =
∑
g∈G/H
g 6=0

Ψ∗(γ, g)Ψ(g, γ′) =
∑
g∈G/H
g 6=0

1
S

[γ(g)]∗γ′(g)

and applying [γ(g)]∗ = γ−1(g) together with the Poisson summation formula gives

(Ψ∗Ψ)(γ, γ′) =
∑
g∈G/H
g 6=0

1
S

(γ−1γ′)(g) =

 1, γ = γ′,

− 1
S
, γ 6= γ′.

For all γ ∈ Ĝ we would like Φγ = EγΨ where Eγ ∈ CD×(G/H)\{0} is an isometry.

Applying Ψ∗ to the right gives ΦγΨ
∗ = S+1

S
Eγ. Applying (15) and (16) we have

Eγ(d, g) = S
S+1

∑
γ′∈H⊥

Φγ(d, γ
′)Ψ∗(γ′, g) =

√
Sγ(d)√
D(S+1)

∑
γ′∈H⊥

γ′(d− g).

Then by the Poisson summation formula we find that in order for Eγ to satisfy
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Φγ = EγΨ we must have

Eγ(d, g) =
√
Sγ(d)√
D(S+1)

S + 1, d− g ∈ H,

0, d− g 6∈ H
=
√

S
D

 γ(d), d = g,

0, d 6= g.

With this established notation, we now prove, for all γ ∈ Ĝ, Eγ is an isometry and

so Φγ is a regular S-simplex. Further these isometries have the property that their

cross-Gram matrices are diagonal and the subspaces of CD spanned by their column

spaces, which are the same subspaces spanned by the simplices of the ETF, form

an ECTFF for CD. Note that from [10] we already know that these subspaces form

an ECTFF for CD, however, our proof of this fact is different from the one given in

[10]. Further, we show that for certain fine difference sets these ECTFFs also form

an EITFF for CD.

Theorem 3.2.1. Let D be a fine difference set in a finite abelian group G as given

by Definition 3.1.1 and let Φγ and Ψ be defined by (15) and (16), respectively. For

any γ ∈ Ĝ, let

Eγ ∈ CD×G/H\{0}, Eγ(d, g) :=
√
S√
D

 γ(d), d = g,

0, d 6= g.
(17)

Then

(a) Eγ is an isometry, i.e. E∗γEγ = I, and Φγ = EγΨ.

(b) E∗γEγ′ is a diagonal matrix with

(E∗γEγ′)(g, g) = S
D

∑
d∈D
d=g

(γ−1γ′)(d). (18)

(c) If Uγ := C(Φγ) = C(Eγ) is the subspace spanned by both Eγ and Φγ then
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{Uγ}γ∈Ĝ/H⊥ form an ECTFF for CD.

(d) {Uγ}γ∈Ĝ/H⊥ form an EITFF for CD if and only if Dg (12) is a difference set for

H for all g ∈ G.

(e) If Dg (12) is a difference set for H for all g ∈ G then |(E∗γEγ′)(g, g)|2 = 1
S

for

all g ∈ G/H, g 6= 0.

Proof. For all γ, γ′ ∈ Ĝ we have

(E∗γEγ′)(g, g
′) =

∑
d∈D

E∗γ(g, d)Eγ′(d, g
′) = S

D


∑
d∈D
d=g

(γ−1γ′)(d), g = g′,

0, else,

giving (b). Since D is fine, by Theorem 3.1.2, #(Dg) = D
S

for all g 6∈ H and so

(E∗γEγ)(g, g
′) = S

D


∑
d∈D
d=g

1, g = g′,

0, else,

 = I(g, g′).

Applying Eγ to Ψ gives (a) since

(EγΨ)(d, γ′) =
∑
g∈G/H
g 6=0

Eγ(d, g)Ψ(g, γ′) = 1√
D
γ(g)γ′(g) = Φγ(d, γ

′).

For any d ∈ D, d = g if and only if d − g ∈ H or equivalently d − g ∈ Dg which

happens precisely when d ∈ g +Dg. Applying this gives that

#{(d, d′) ∈ D×D : g′ = d′−d, d = d
′
= g} = #{(d, d′) ∈ (g+Dg)×(g+Dg) : g′ = d′−d}.
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Therefore,

#{(d, d′) ∈ D ×D : g′ = d′ − d, d = d
′
= g} = #{d ∈ g +Dg : d ∈ (g − g′) +Dg}

= # [Dg ∩ (Dg − g′)]

= (χDg ∗ χ̃Dg)(−g′).

Taking the modulus squared of (18) and applying this equality gives

|(E∗γEγ′)(g, g)|2 = S2

D2

∑
d∈D
d=g

∑
d′∈D
d
′
=g

(γ−1γ′)(d′ − d) (19)

= S2

D2

∑
g′∈G

(γ−1γ′)(g′)(χDg ∗ χ̃Dg)(−g′)

= S2

D2 [F∗(χDg ∗ χ̃Dg)](γ−1γ′) (20)

= S2

D2 |(F∗χDg)(γ−1γ′)|2.

Then the singular values of the cross-Grams are |(E∗γEγ′)(g, g)| = S
D
|(F∗χDg)(γ−1γ′)|.

These singular values are constant if and only if Dg is a difference set for H. This

proves (e).

To prove (c) first note that

∑
g∈G/H
g 6=0

(χDg ∗ χ̃Dg)(−g′) =
∑
g∈G/H
g 6=0

#{(d, d′) ∈ D ×D : g′ = d′ − d, d = d
′
= g}

= #(
⋃

g∈G/H
g 6=0

{(d, d′) ∈ D ×D : g′ = d′ − d, d = d
′
= g}).
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Since this is a disjoint union and D ∩H = ∅ we have

∑
g∈G/H
g 6=0

(χDg ∗ χ̃Dg)(−g′) = #{(d, d′) ∈ D ×D : g′ = d′ − d, d = d
′}

= #{(d, d′) ∈ D ×D : g′ = d′ − d ∈ H}

= [(D − ΛD)δ0 +GΛDχH](g)

where ΛD is as defined by (6). Therefore, applying this to (20) gives

‖E∗γEγ′‖2
Fro =

∑
g∈G/H
g 6=0

S2

D2 [F∗(χDg ∗ χ̃Dg)](γ−1γ′) = S2

D2 [(D − ΛD)1 +GΛDχH⊥ ](γ−1γ′)

which is constant over all γ−1γ′ 6∈ H⊥ thus proving (c).

Now assume that Dg is a difference set for H. Continuing from (19), we separate

from the summation the case when d′ = d and in the remaining sum we apply the

fact that (D − g) ∩ H is a nonempty difference set for H for all nonzero g ∈ G. This

gives (d) since

|(E∗γEγ′)(g, g
′)|2 = S2

D2 [D
S

(γ−1γ′)(0) + 1
H−1

(D
S

)(D
S
− 1)

∑
h∈H\{0}

(γ−1γ′)(h)]

= S
D
{1 + 1

H−1
(D
S
− 1)[−1 +

∑
h∈H

(γ−1γ′)(h)]}

= S
D

(1 + 1
H−1

)(D
S
− 1)

−1 +H, γ−1γ′ ∈ H⊥,

−1, γ−1γ′ 6∈ H⊥,


=

 1, γ−1γ′ ∈ H⊥,
1
S
, γ−1γ′ 6∈ H⊥.

We have just shown that for all γ, γ′ ∈ Ĝ, E∗γEγ′ is diagonal with constant modulus

precisely when Dg is a difference set for H. Recall that a necessary condition for a
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set D to be a difference set is that ΛD (6) is an integer. Therefore, for Dg to be a

difference set for H we must have that ΛDg is an integer. Recall from the proof of

Theorem 3.1.2 that D
S
− 1 = (D−1)(H−1)

G−1
whenever D is a fine difference set. Applying

this gives

ΛDg = 1
H−1

(D
S

)(D
S
− 1) = D

S(H−1)

[ (D−1)(H−1)
G−1

]
= ΛD

S
. (21)

Example 3.2.2. Recall from Examples 2.3.1 and 3.1.3 thatD = {6, 11, 7, 12, 13, 3, 9, 14}

is a fine difference set for Z15 resulting in an ETF(8, 15) comprised of 3 regular 4-

simplices. The canonical regular 4-simplex (16) and the distinct isometries (17) are

Ψ = 1
2



1 ω3 ω6 ω9 ω12

1 ω6 ω12 ω3 ω9

1 ω9 ω3 ω12 ω6

1 ω12 ω9 ω6 ω3


,

E0 = 1√
2



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1



, E1 = 1√
2



ω6 0 0 0

ω11 0 0 0

0 ω7 0 0

0 ω12 0 0

0 0 ω13 0

0 0 ω3 0

0 0 0 ω9

0 0 0 ω14



, E2 = 1√
2



ω12 0 0 0

ω7 0 0 0

0 ω14 0 0

0 ω9 0 0

0 0 ω11 0

0 0 ω6 0

0 0 0 ω3

0 0 0 ω13



.

By Theorem 3.2.1(c) the subspaces of CD given by the column spaces of E0, E1, and

E2 form an ECTFF for CD. However, recall that for all g ∈ G, Dg is either ∅, {0, 5},

{5, 10}, or {0, 10}, all of which are difference sets for H, and so by Theorem 3.2.1(e)

this ECTFF is further an EITFF for CD. Further by Theorem 3.2.1(d) the cross-
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Gram matrices of the isometries are diagonal and every diagonal entry has modulus

1√
S

= 1
2
:

E∗0E1 = −1
2



ω 0 0 0

0 ω2 0 0

0 0 ω8 0

0 0 0 ω4


,E∗0E2 = −1

2



ω2 0 0 0

0 ω4 0 0

0 0 ω 0

0 0 0 ω8


,E∗1E2 = −1

2



ω 0 0 0

0 ω2 0 0

0 0 ω8 0

0 0 0 ω4


.

3.3 Circulant Conference Matrices

A complex conference matrix is an N × N matrix A with zeros on the diagonal

and unimodular entries on the off-diagonal such that AA∗ = (N − 1)I, that is any

two columns of A are orthogonal. It is known that the only real circulant conference

matrix is of order 2 [8, 25, 28]. To conclude this chapter we will construct complex

circulant conference matrices. To elaborate, in the case that D is a fine difference set

such that for all g ∈ G, Dg is a difference set for H, by Theorem 3.2.1 the cross-Gram

matrices of the isometries are diagonal with constant modulus. As we now explain,

appending the sequence of these diagonal entries with a zero yields the first column

of a complex circulant conference matrix.

Theorem 3.3.1. Let D be a fine difference set in a finite abelian group G as given

in Definition 3.1.1 together with the property that for all g ∈ G, Dg defined by (12)

is a difference set for H. Also, for any γ ∈ Ĝ, γ 6∈ H⊥ define

x ∈ CG/H, x(g) = S3/2

D

∑
d∈D
d=g

γ(d).
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Then the translates of x are orthogonal with |x(g)| =

 0, g = 0,

1, g 6= 0.

Proof. It is clear that x(0) = 0 and by Theorem 3.2.1(d) we have |x(g)| = |
√
S(E∗γEγ′)(g, g)| =

1 for all g 6= 0.

Now note, that by (22) and (23), for all γ ∈ Ĝ and γ′, γ′′ ∈ H⊥ we have

(Φ∗1Φγ)(γ
′, γ′′) =

∑
d∈D

1√
D

[γ′(d)]∗ 1√
D

(γγ′′)(d) = (Φ∗Φ)(γ′, γγ′′).

Therefore,

|(Φ∗1Φγ)(γ
′, γ′′)| = |(Φ∗Φ)(γ′, γγ′′)| =

 1, γ′ = γγ′′,

1
S
, γ′ 6= γγ′′.

This means that when γ 6∈ H⊥, |(Φ∗1Φγ)(γ
′, γ′′)| = 1

S
. Now recall that for all γ ∈ Ĝ,

Φγ = EγΨ where Eγ and Ψ are defined by (17) and (16), respectively. Using this

and (18) we have that for all γ′ ∈ H⊥,

(Φ∗1Φγ)(1, γ
′) = (Ψ∗E∗1EγΨ)(1, γ′)

=
∑
g∈G/H
g 6=0

∑
g′∈G/H
g′ 6=0

Ψ∗(1, g)(E∗1Eγ)(g g
′)Ψ(g′, γ′)

= 1
D

∑
g∈G/H

∑
d∈D
d=g

γ(d)γ′(g).

Let F be the character table of G/H and so F∗ is the DFT on G/H. This gives

(Φ∗1Φγ)(1, γ
′) =

∑
g∈G/H

F(g, γ′)[ 1
S3/2 x(g)]∗ =

[ ∑
g∈G/H

F∗(γ′, g) 1
S3/2 x(g)

]∗
= [(F∗( 1

S3/2x
))(γ′)]∗.

Now for all γ 6∈ H⊥,
∣∣[F∗( 1

S1/2 x)](γ′)
∣∣ = |S(Φ∗1Φγ)(1, γ

′)| = 1 and so the translates of

1
S1/2 x are orthonormal. Therefore, the translates of x are orthogonal.
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Example 3.3.2. Continuing Examples 2.3.1, 3.1.3, and 3.2.2 since the difference set

D = {6, 11, 7, 12, 13, 3, 9, 14} for Z15 is fine and each Dg is a difference set for H, the

diagonal entries of the cross-Grams of the embedding operators (17) form a circulant

conference matrix. In particular, using the diagonal entries of E∗0E1 and E∗0E2 (3.2.2)

gives the following circulant conference matrices, respectively:

−



0 ω4 ω8 ω2 ω

ω 0 ω4 ω8 ω2

ω2 ω 0 ω4 ω8

ω8 ω2 ω 0 ω4

ω4 ω8 ω2 ω 0


, −



0 ω8 ω ω4 ω2

ω2 0 ω8 ω ω4

ω4 ω2 0 ω8 ω

ω ω4 ω2 0 ω8

ω8 ω ω4 ω2 0


.

Example 3.3.3. From Example 2.3.2, D = {1000, 1001, 0100, 0110, 1100, 1111} is a

McFarland difference set for the group Z2 × Z2 × Z2 × Z2 with D = 6, G = 16, and

S =
√

D(G−1)
G−D = 3. Since D is disjoint from a subgroup of order H = G

S+1
= 4,

namely H = {0} × {0} × Z2 × Z2 = {0000, 0010, 0001, 0011}, D is fine. Therefore,

by Theorem 3.2.1, for all g ∈ G, g 6∈ H, #(Dg) = D
S

= 2. Further, the cosets of

H intersect D in 2 points and each of these sets is either {1000, 1001}, {0100, 0110}

or {1100, 1111}. However, not every Dg is a difference set for H. For example,

D1000 = {0000, 0001} is not a difference set for H since its difference table would

only contain two nonzero elements of H, however there are three total. As such,

by Theorem 3.2.1 the subspaces spanned by the regular simplices that comprise the

resulting harmonic ETF do not form an EITFF, however they do form an ECTFF

for CD.

Here, we identify Ĝ with Z2 × Z2 × Z2 × Z2, regarding n1n2n3n4 as the char-

acter g1g2g3g4 7→ (−1)g1n1+g2n2+g3n3+g4n4 . In particular, H⊥ is identified with those

n1n2n3n4 such that (−1)n3 = (−1)n4 = 1, namely {0000, 1000, 0100, 1100}. Extract-
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ing the 6 rows that correspond to D from the resulting 16 × 16 character table and

then normalizing columns yields the synthesis operator of an ETF(6, 16):

Φ =
1√
6



1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1

1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1

1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1


where the columns are indexed by

{0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110,

0001, 1001, 0101, 1101, 0011, 1011, 0111, 1111}.

Since D is fine, Φ is the union of 4 regular 3-simplices indexed by the cosets of H⊥,

namely Φ0000, Φ0010, Φ0001 and Φ0011 where for any n1n2n3n4 in Ĝ,

Φn1n2n3n4 =

[
ϕn1n2n3n4

ϕ(n1+1)n2n3n4
ϕn1(n2+1)n3n4

ϕ(n1+1)(n2+1)n3n4

]
.

The canonical regular 3-simplex (16) is given by

Ψ =
1√
3


1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 .
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We have that the isometries (17) that satisfy Φn1n2n3n4 = En1n2n3n4Ψ are

E0000 =



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


, E0010 =



1 0 0

1 0 0

0 1 0

0 −1 0

0 0 1

0 0 −1


,

E0001 =



1 0 0

−1 0 0

0 1 0

0 1 0

0 0 1

0 0 −1


, E0011 =



1 0 0

−1 0 0

0 1 0

0 −1 0

0 0 1

0 0 1


.

Further by Theorem 3.2.1 we know that the corresponding cross-Gram matrices are

all diagonal. In particular, these cross-Gram matrices are all one of the following

matrices: 
1 0 0

0 0 0

0 0 0

 ,


0 0 0

0 1 0

0 0 0

 ,


0 0 0

0 0 0

0 0 1

 .
These cross-Grams do not have a constant modulus on the diagonal since Dg is not

a difference set for H for every g ∈ G.
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IV. Mutually Unbiased Simplices

4.1 Composite Difference Sets

To begin this chapter, we introduce an extension of the concept of MUBs to

simplices:

Definition 4.1.1. Let H be an S-dimensional Hilbert space. A collection of H

simplices {ϕh,s}Hh=1,
S+1
s=1 for H are called mutually unbiased simplices (MUSs) for H if

|〈ϕh,s ,ϕh′,s′〉| is constant over all s, s′ = 1, ..., S + 1 and all h 6= h′.

To continue to develop the concept of MUSs there are certain properties we would

like to know. Here we show that like MUBs, MUSs have coherence 1√
S

(1). Further

there is a natural upper bound on the number, H, of MUSs and when this bound is

achieved we say the MUSs are maximal:

Theorem 4.1.2. Let {ϕh,s}Hh=1,
S+1
s=1 be a collection of H mutually unbiased simplices

for an S-dimensional Hilbert space H over F. Then coh({ϕh,s}Hh=1,
S+1
s=1 ) = 1√

S
and

H ≤ S − 1 when F = C or H ≤ (S+2)(S−1)
2S

when F = R.

Proof. In the case that h = h′,

|〈ϕh,s,ϕh′,s′〉| =

 1, s = s′,

1
S
, s 6= s′.

In the case h 6= h′, let x := |〈ϕv,s,ϕd′,s′〉|. Further let Φ be the synthesis operator of

{ϕh,s}Hh=1,
S+1
s=1 . Then

H2(S+1)2

S
= ‖ΦΦ∗‖2

Fro = ‖Φ∗Φ‖2
Fro = (S + 1) + 1

S2 (S)(S + 1) + V (V − 1)(S + 1)2x2

and solving gives that x = 1√
S

. Therefore, coh({ϕh,s}Hh=1,
S+1
s=1 ) = 1√

S
.
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To compute the maximal number of MUSs, first note that

|Φ∗Φ|2 = (1− 1
S2 )IH(S+1) + 1

S
(1−S

S
IH + JH)⊗ JS+1.

Therefore, |Φ∗Φ|2 has eigenvalues 0, H(S+1)
S

, and S2−1
S2 with multiplicities H−1, 1, and

HS, respectively, and so rank(|Φ∗Φ|2) = HS + 1. Therefore, by (10) when F = C,

HS + 1 ≤ S2, i.e. H ≤ S − 1
S

; when F = R, HS + 1 ≤
(
S+1

2

)
, i.e. H ≤ 1

2
(S + 1)− 1

S
.

In both cases this upper bound on H is not an integer. Specifically in the case that

F = C, we can simplify the bound to H ≤ S − 1.

For the remainder of this section we will focus on the case where F = C. In this

case, since the true upper bound H ≤ S2−1
S

= S− 1
S

is not attainable, maximal MUSs

consisting of S − 1 simplices cannot solve the quantum information theory problem

(8) since equality is not achieved in (10). When the number of MUSs, H = S − 1,

rank(|Φ∗Φ|2) = HS+1 = S2−S+1 and so the outer products of {ϕh,s}S−1
h=1,

S+1
s=1 only

span an (S2 − S + 1)-dimensional subspace of all self-adjoint operators. A natural

candidate for such a space is the subspace of all S × S self-adjoint matrices whose

diagonal entries are constant. In order to recover the true diagonal entries and so

solve the quantum information theory problem (8) we must also include, with the

S− 1 simplices, an S×S identity matrix. This allows us to solve (8) with S2 +S− 1

vectors, that is one less vector than maximal MUBs.

In order to give a construction of MUSs we will need to have a difference set with

properties stronger than those of a fine difference set. To be precise we will need to

have a fine difference set such that for all g ∈ G, g 6∈ H, each Dg is the shift of the

same difference set for H:

Definition 4.1.3. Let D be a fine difference set, c.f. Definition 3.1.1. D is called a

composite difference set if for all g ∈ G, g 6∈ H, Dg := (D − g) ∩ H is a shift of the
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same difference set in H. That is, there exists a difference set B for H such that for

all g ∈ G, g 6∈ H, there exists hg ∈ H satisfying Dg = hg + B.

From Theorem 3.2.1 when D is a difference set for G such that for all g ∈ G,

Dg is a difference set for H, the subspaces of CD spanned by the simplices that

make up the harmonic ETF form an EITFF. Therefore, letting Pγ = EγE
∗
γ be the

orthogonal projection operators onto these subspaces, we know that for all γ, γ′ ∈ Ĝ,

PγPγ′Pγ = σ2Pγ′ for some σ ≥ 0. This all still holds true when D is a composite

difference set. However, as the following lemma shows we have a property that appears

stronger then equi-chordality since for all γ, γ′, γ′′ ∈ Ĝ, PγPγ′Pγ′′ = κPγPγ′′ for some

constant κ:

Lemma 4.1.4. Let D be a composite difference set for the group G as in Definition

4.1.3 and let Eγ be defined by (17) for all γ ∈ Ĝ. Then E∗γE1E
∗
1Eγ′ = κE∗γEγ′ for

some constant κ of modulus 1√
S

.

Proof. By definition of Eγ, for all g ∈ G/H, g 6= 0 we have

D3

S3 (E∗γ′EγE
∗
γE1E

∗
1Eγ′)(g, g) =

∑
d∈D
d=g

[(γ′)−1γ](d)
(∑
d′∈D
d
′
=g

γ−1(d′)
)(∑

d′∈D
d
′
=g

γ′(d′)
)

=
∑
d∈D
d=g

(∑
d′∈D
d
′
=g

γ−1(d′ − d)
)(∑

d′∈D
d
′
=g

γ′(d′ − d)
)
.

To simplify this sum note that for all g 6= 0, {d ∈ D : d = g} = {d ∈ D : d− g ∈ H}.

Now letting h = d− g gives

{d ∈ D : d = g} = {h+ g ∈ D : h ∈ H} = g + {h ∈ D − g : h ∈ H} = g +Dg.
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Applying this gives

D3

S3 (E∗γ′EγE
∗
γE1E

∗
1Eγ′)(g, g) =

∑
d∈g+Dg

( ∑
d′∈g+Dg

γ−1(d′ − d)
)( ∑

d′∈g+Dg

γ′(d′ − d)
)
.

Letting d = h+ g and d′ = h′ + g gives

D3

S3 (E∗γ′EγE
∗
γE1E

∗
1Eγ′)(g, g) =

∑
h∈Dg

(∑
h′∈Dg

γ−1(h′ − h)
)(∑

h′∈Dg

γ′(h′ − h)
)

=
∑
h∈Dg

[γ(γ′)−1](h)(
∑
h′∈Dg

γ−1(h′))(
∑
h′∈Dg

γ′(h′)).

Since D is composite, we know that for all g 6∈ H there exists some difference set B

for H such that Dg = hg + B for some hg ∈ H. Letting h = hg + b gives

D3

S3 (E∗γ′EγE
∗
γE1E

∗
1Eγ′)(g, g) =

∑
b∈B

[γ(γ′)−1](hg + b)(
∑
b∈B

γ−1(hg + b))(
∑
b∈B

γ′(hg + b))

=
∑
b∈B

[γ(γ′)−1](b)(
∑
b∈B

γ−1(b))(
∑
b∈B

γ′(b))

= (F∗HχB)(γ−1γ′)(F∗χB)(γ)(F∗χB)[(γ′)−1].

Therefore, E∗γE1E
∗
1Eγ′ = κγ,γ′E

∗
γEγ′ where

κγ,γ′ = S4

D3 (F∗HχB)(γ−1γ′)(F∗χB)(γ)(F∗χB)[(γ′)−1].

Since D is composite, applying Theorem 3.1.2 and (21) we know that in the

notation of Definition 4.1.3

|(F∗HχB)(γ)| = #(B)
SB

=
√

#(B)− ΛB =
√

D
S
− ΛD

S
= D

S3/2 .

Therefore, |κγ,γ′| = S4

D3 ( D
S3/2 )3 = 1√

S
.
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Example 4.1.5. Recall that D = {6, 11, 7, 12, 13, 3, 9, 14} is a composite difference

set for G = Z15 and E∗0E1, E∗0E2, and E∗1E2 are given in Example 3.3.2. Using these

cross-Gram matrices we see that as shown in Lemma 4.1.4, E∗1E0E
∗
0E2 is a constant

multiple of E∗1E2:

E∗1E0E
∗
0E2 = (E∗0E1)∗(E∗0E2) = 1

4



ω 0 0 0

0 ω2 0 0

0 0 ω8 0

0 0 0 ω4


= −1

2
E∗1E2.

As we now show when you have a composite difference set, applying the cross-

Grams of the isometries (17) to the canonical simplex (16) gives a set of MUSs.

Theorem 4.1.6. Let D be a composite difference set, cf. Definition 4.1.3. Then

Ψ ∪ {
√
SE∗1EγΨ}γ∈Ĝ/H⊥ is an MUS for H where Ψ and Eγ are defined by (16) and

(17), respectively.

Proof. First we consider inner products of vectors from
√
SE∗1EγΨ for any γ ∈ Ĝ

with vectors from Ψ. In particular, recalling that EγΨ = Φγ as given in (15), we

have |(
√
SΨ∗E∗1EγΨ)(γ′, γ′′)| = |(

√
SΦ∗1Φγ)(γ

′, γ′′)| = 1√
S

.

Now we consider inner products between vectors from
√
SE∗1EγΨ and vectors from

√
SE∗1Eγ′Ψ when γ 6= γ′. These are the entries of the matrix SΨ∗E∗γE1E

∗
1Eγ′Ψ. By

Lemma 4.1.4 we have that

|SΨ∗E∗γE1E
∗
1Eγ′Ψ| = |Sκγ,γ′Ψ∗E∗γEγ′Ψ| = |Sκγ,γ′Φ∗γΦγ′| = 1√

S
J

and so Ψ ∪ {
√
SE∗1EγΨ}γ∈Ĝ/H⊥ are MUSs for H.

Example 4.1.7. Revisiting the complement of a Singer difference last seen in Exam-

ple 4.1.5 and the cross-Grams seen in Example 3.2.2 we can construct the following
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set of S − 1 = 3 MUSs for the 4-dimensional Hilbert space H:

1
2



1 ω3 ω6 ω9 ω12 ω1 ω4 ω7 ω10 ω13 ω2 ω5 ω8 ω11 ω14

1 ω6 ω12 ω3 ω9 ω2 ω8 ω14 ω5 ω11 ω4 ω10 ω1 ω7 ω13

1 ω9 ω3 ω12 ω6 ω8 ω2 ω11 ω5 ω14 ω1 ω10 ω4 ω13 ω7

1 ω12 ω9 ω6 ω3 ω4 ω1 ω13 ω10 ω7 ω8 ω5 ω2 ω14 ω11


.

4.2 Classifications of Known Difference Sets

4.2.1 Singer Difference Sets

From Example 3.1.3 we know that some complements of Singer difference sets

are fine. In general for any even J the complement of a Singer difference set can be

shifted so as to yield a fine difference set [10]. To see this let D be the complement of

a Singer difference set. The harmonic ETF produced from D is an ETF(QJ−1, Q
J−1
Q−1

).

Thus, the inverse Welch bound is S = QJ/2 which is an integer for even J . For D

to be fine, it would need to avoid a subgroup of order H = G
S+1

= QJ/2−1
Q−1

. Letting

H = F×
QJ/2/F×Q shows that D is fine when J is even. It is natural to ask whether all

of these fine difference sets are also composite. As we now show, this is indeed the

case since any Singer difference set, D, has the property that Dg is a difference set for

H for all g ∈ G and when g 6∈ H each Dg is a shift of the same difference set for H.

Since taking the set complement and shifting the set will not change these properties,

they also hold for the complements of Singer difference sets that are fine.

Theorem 4.2.1. If D is a Singer difference set for the group G = F×
QJ/F×Q, then for

all g ∈ G, Dg is a difference set for H and for all g 6∈ H, every Dg is a shift of the

same difference set for H. Moreover, if G = 〈α〉, then (αjD)∩H = H precisely when

j = 0 or j = QJ/2+1
2

for Q being even or odd, respectively.

Proof. Let α be a generator of G. Recall that D = {β̄ ∈ G : trQJ/Q(β) = 0} and
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H = 〈[α]Q
J/2+1〉 = F×

QJ/2/F×Q ⊆ D. For all j = 0, ..., QJ/2, we define

Cj : =
(
ᾱ−jD

)
∩H = {β̄ ∈ H : trQJ/Q(αjβ) = 0}

= {β ∈ H : trQJ/2/Q[trQJ/QJ/2(αjβ)] = 0}.

to be the #(G/H) = QJ/2 +1 cosets of D intersected with H. Since β ∈ H, β ∈ FQJ/2

and so trQJ/QJ/2(αjβ) = β trQJ/QJ/2(αj). Therefore,

Cj = {β ∈ H : trQJ/2/Q[β trQJ/QJ/2(αj)] = 0}.

First consider the case when trQJ/QJ/2(αj) = 0. Then Cj = H which is a difference

set for H. Since

trQJ/QJ/2(αj) = αj +
(
αj
)QJ/2

= αj(1 + αj(Q
J/2−1)),

we have that trQJ/QJ/2(αj) = 0 if and only if

αj(Q
J/2−1) = −1 =

 1, Q is even,

α
QJ−1

2 , Q is odd.

When Q is even this becomes trQJ/QJ/2(αj) = 0 if and only if j(QJ/2 − 1) ≡ 0

mod (QJ − 1) or equivalently j ≡ 0 mod (QJ/2 + 1). This implies that j = 0,

i.e. that C0 = D ∩ H = H as expected. Alternatively, in the case that Q is odd

this becomes, trQJ/QJ/2(αj) = 0 if and only if j(QJ/2 − 1) ≡ QJ−1
2

mod (QJ − 1) or

equivalently j ≡ QJ/2+1
2

mod (QJ/2 + 1). This implies that j = QJ/2+1
2

.

In the case that trQJ/QJ/2(αj) 6= 0, Cj is a Singer difference set with parameters

Q and J
2
.
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4.2.2 McFarland Difference Sets

Recall that a McFarland difference set D has parameters D = QJ−1(Q
J−1
Q−1

),

G = QJ(Q
J−1
Q−1

+ 1), S = Q−1
QJ−1

, and ΛD = QJ−1(QJ−1−1)
Q−1

. It was shown in [10]

that all McFarland difference sets are fine. To see this, note that we need D to be

disjoint from a subset of G of order H = G
S+1

= QJ . Choosing H = {0} × FQJ then

gives that D is fine. Again it is natural to ask if all McFarland difference sets are

composite. From Example 3.3.3 we know that this is not the case.

In general given a McFarland difference set D, Dg is not a difference set for H,

and so D is not composite since

ΛDg = ΛD
S

= QJ−1(QJ−1−1)
QJ−1−1

= QJ−2[QJ−1−(Q−1)]
QJ−1

= QJ−2 − QJ−2(Q−1)
QJ−1

6∈ Z.

4.2.3 Twin Prime Power Difference Sets

Finally, we consider TPP difference sets. In [10] it was shown that the complement

of any TPP difference set is fine. To see this let D be the complement of a TPP

difference set in the group G = FQ × FQ+2. D is given by

D = {(x, y) ∈ FQ×FQ+2 : x = 0, y 6= 0 or (x, y) ∈ SQ×NQ+2 or (x, y) ∈ NQ×SQ+2}

and results in an ETF(1
2
(Q+ 1)2, Q(Q+ 2)). Further such a difference set has

ΛD = D(D−1)
G−1

= 1
Q(Q+1)−1

[1
2
(Q+ 1)2][1

2
(Q+ 1)2 − 1] = (Q+1)2

4

and an inverse Welch bound of S = Q + 1. For D to be fine, it would need to avoid

a subgroup H of G of order H = Q. Letting H = FQ × {0} which is a subgroup of G

disjoint from D shows that D is fine. To determine when the complements of TPP
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difference sets are composite, first note that

ΛDg = ΛD
S

= (Q+1)2

4(Q+1)
= Q+1

4
. (22)

Here we show that TPP difference sets are not compostite, but when Q ≡ 3 mod 4

they do have the property that for all g ∈ G, Dg is a difference set for H.

Theorem 4.2.2. Let D be the complement of the TPP difference set for the group

G = FQ × FQ+2. If Q ≡ 3 mod 4, then D has the property that for each g ∈ G, Dg

(12) is a difference set for H. If Q ≡ 1 mod 4 this property does not hold.

Proof. First consider the case that Q ≡ 1 mod 4. Then from (22) ΛDg = Q+1
4
6∈ Z

and so Dg cannot be a difference set for H.

In the case that Q ≡ 3 mod 4, take any g0 6∈ H so g0 = (x0, y0) where y0 6= 0.

Then

g0 +D = {(x0, y+y0) : y 6= 0}∪{(x0 +x, y0 +y) : (x, y) ∈ (SQ×NQ+2)∪(NQ×SQ+2)}.

Therefore, intersecting this set with H gives

(g0 +D) ∩H = {(x0, 0)} ∪ {(x0 + x, 0) : (x,−y0) ∈ (SQ ×NQ+2) ∪ (NQ × SQ+2)}.

Note that since −1 ∈ SQ+2, y0 ∈ NQ+2 if and only if −y0 ∈ NQ+2 and y0 ∈ SQ+2 if

and only if −y0 ∈ SQ+2. Applying this result gives that

(g0 +D) ∩H = {(x0, 0)} ∪ {(x0 + x, 0) : (x, y0) ∈ (SQ ×NQ+2) ∪ (NQ × SQ+2)}.

In the case that y0 ∈ NQ+2, this becomes

(g0 +D) ∩H = {(x0, 0)} ∪ {(x0 + x, 0) : x ∈ SQ} = (x0, 0) + (SQ ∪ {0})× {0}.
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This is a difference set in H = FQ×{0} since SQ∪{0} = NC
Q = (−SQ)C is a difference

set in FQ. In the case that y0 ∈ SQ+2, we have

(g0 +D) ∩H = {(x0, 0)} ∪ {(x0 + x, 0) : x ∈ NQ} = (x0, 0) + (NQ ∪ {0})× {0}.

This is a difference set in H = FQ × {0} since NQ ∪ {0} = SCQ is a difference set in

FQ. D is not composite since, in general, NQ is not a shift of SQ.
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V. Conclusion

Since TPP difference sets with Q ≡ 3 mod 4 and appropriately shifted comple-

ments of Singer difference sets with J even satisfy that each Dg is a difference set for

H we can apply Theorems 3.2.1 and 3.3.1 to construct EITFFs and complex circu-

lant conference matrices, respectively. Moreover, since these complements of Singer

difference sets are composite we can apply Theorem 4.1.6 to construct MUSs. The

following theorem summarizes these results:

Theorem 5.0.1. Let Q be any prime power. Then there exists an EITFF for CD

consisting of H subspaces each of dimension S and there exists a complex circulant

conference matrix of size (S + 1)× (S + 1) whenever

(a) D = QJ−1, H = QJ/2−1
Q−1

, and S = QJ/2 for any even integer J ≥ 4.

(b) D = 1
2
(Q+ 1)2, H = Q, and S = Q+ 1 provided Q+ 2 is a odd prime power.

Further, there exists an MUS for a QJ/2-dimensional Hilbert space consisting of QJ/2−1
Q−1

simplices for any even integer J ≥ 4 and when Q = 2 these MUSs are maximal.

EITFFs of these sizes are known to exist [20], but it is still to be determined

whether they are equivalent to the construction presented in this thesis. Some of

these MUSs were previously obtained in [10], however, here we have shown that each

of these is actually the first member of a distinct infinite family. Further, it is known

that there exist sequences of vectors with the same cardinality and coherence of the

maximal MUSs presented here [5]. In fact, in [5], the union of such a sequence and

a standard basis is shown to meet the orthoplex bound. Whether these sequences of

vectors are equivalent is yet to be determined. Complex circulant complex matrices

of these sizes are seemingly unknown in the literature.
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